

Salt Table of Contents

	Salt Project
	About Salt

	About our sponsors

	Download and install Salt

	Technical support

	Salt Project documentation

	Security advisories

	Join our community

	License

	Introduction to Salt
	The 30 second summary

	Simplicity

	Parallel execution

	Builds on proven technology

	Python client interface

	Fast, flexible, scalable

	Open

	Salt system architecture
	Overview

	What is Salt?

	The Salt system architecture

	Contributing
	Environment setup

	Salt issues

	Hacking away

	Troubleshooting

	Salt Project maintenance policies
	Issue management

	Pull request management

	Salt Enhancement Proposals (SEP) process

	Installation

	Configuring Salt
	Configuring Salt

	Configuring the Salt Master

	Configuring the Salt Minion

	Configuring the Salt Proxy Minion

	Delta proxy minions

	Configuration file examples

	Minion Blackout Configuration

	Access Control System

	Job Management

	Managing the Job Cache

	Storing Job Results in an External System

	Logging

	External Logging Handlers

	salt.log_handlers.fluent_mod

	salt.log_handlers.log4mongo_mod

	salt.log_handlers.logstash_mod

	salt.log_handlers.sentry_mod

	Salt File Server

	Git Fileserver Backend Walkthrough

	MinionFS Backend Walkthrough

	Salt Package Manager

	Storing Data in Other Databases

	Running the Salt Master/Minion as an Unprivileged User

	Using cron with Salt

	Use cron to initiate a highstate

	Hardening Salt

	Security disclosure policy

	Salt Channels

	Salt Transport

	Master Tops System

	Renderers

	Using Salt
	Grains

	Storing Static Data in the Pillar

	Targeting Minions

	The Salt Mine

	Runners

	Salt Engines

	What is YAML and How To Use It

	Understanding Jinja

	Tutorials Index

	Troubleshooting

	Frequently Asked Questions

	Salt Best Practices

	Remote Execution
	Remote execution tutorial

	Running Commands on Salt Minions

	Writing Execution Modules

	Returners

	Executors

	Configuration Management
	How Do I Use Salt States?

	States tutorial, part 1 - Basic Usage

	States tutorial, part 2 - More Complex States, Requisites

	States tutorial, part 3 - Templating, Includes, Extends

	States tutorial, part 4

	State System Reference

	Return Codes
	Retcode Passthrough

	Utility Modules - Code Reuse in Custom Modules

	Events & Reactor
	Event System

	Beacons

	Reactor System

	Orchestration
	Orchestrate Runner

	Solaris
	Solaris-specific Behaviour

	Salt SSH
	Getting Started

	Salt SSH Roster

	Deploy ssh key for salt-ssh

	Calling Salt SSH

	States Via Salt SSH

	Targeting with Salt SSH

	Configuring Salt SSH

	Running Salt SSH as non-root user

	Define CLI Options with Saltfile

	Advanced options with salt-ssh

	Debugging salt-ssh

	Different Python Versions

	Thorium Complex Reactor
	Starting the Thorium Engine

	Thorium Modules

	Writing Thorium Formulas

	The Thorium Register

	Salt Cloud
	Configuration

	Configuration Inheritance

	QuickStart

	Using Salt Cloud

	Core Configuration

	Windows Configuration

	Cloud Provider Specifics

	Miscellaneous Options

	Troubleshooting Steps

	Extending Salt Cloud

	Using Salt Cloud from Salt

	Feature Comparison

	Tutorials

	Salt Proxy Minion
	New in 2017.7.0

	New in 2016.11.0

	New in 2016.3

	New in 2015.8.2

	New in 2015.8

	Getting Started

	The __proxyenabled__ directive

	SSH Proxymodules

	Network Automation
	New in Carbon (2016.11)

	NAPALM

	JUNOS

	Salt Virt
	Salt Virt Tutorial

	The Salt Virt Runner

	Based on Live State Data

	Deploy from Network or Disk

	Onedir Packaging
	Relenv onedir packaging

	Docker Containers

	Package Grain

	How to build onedir only

	How to build rpm packages

	How to build deb packages

	How to build MacOS packages

	How to build Windows packages

	How to access python binary

	Testing the packages

	Command Line Reference
	salt-api

	salt-call

	salt

	salt-cloud

	salt-cp

	salt-extend

	salt-key

	salt-master

	salt-minion

	salt-proxy

	salt-run

	salt-ssh

	salt-syndic

	spm

	Pillars

	Master Tops

	Salt Module Reference
	auth modules

	beacon modules

	cache modules

	cloud modules

	engine modules

	execution modules

	executors modules

	fileserver modules

	grains modules

	netapi modules

	output modules

	pillar modules

	proxy modules

	queue modules

	renderer modules

	returner modules

	roster modules

	runner modules

	sdb modules

	serializer modules

	state modules

	thorium modules

	token modules

	master tops modules

	wheel modules

	APIs
	Python client API

	netapi modules

	Architecture
	High Availability Features in Salt

	Salt Syndic

	Using Salt at scale

	Master Cluster

	Multi Master Tutorial

	Multi-Master-PKI Tutorial With Failover

	Minion Data Cache
	Pluggable Data Cache

	Configuring the Minion Data Cache

	Slots
	Execution functions

	Example Usage

	Execution module returns as file contents or data

	Windows
	Multi-minion setup on Windows

	Windows Package Manager

	Windows-specific Behaviour

	Developing Salt
	Overview

	Salt Client

	Salt Master

	Salt Minion

	A Note on ClearFuncs vs. AESFuncs

	Changelog

	Contributing

	Deprecating Code

	Python 2 Deprecation FAQ

	Installing Salt for development

	GitHub Labels and Milestones

	Logging Internals

	Package Providers

	Pull Requests

	Pull Request Requirements

	Pull Request CI/CD test suite

	Release Notes

	Reporting Bugs

	Salt Extensions

	Salt Topology

	Developing Salt Tutorial

	Modular Systems

	Salt Extend

	Salt's Test Suite

	Integration Tests

	Writing Unit Tests

	SaltStack Git Policy

	Salt Conventions

	Salt code and internals

	Salt Community Projects

	Salt's Test Suite: An Introduction

	Release notes
	Upcoming release

	Previous releases

	Venafi Tools for Salt
	Introduction

	Runner Functions

	Transfer certificate to a minion

	Glossary

Salt Project

[image: Salt Project License: Apache v2.0]
 [https://github.com/saltstack/salt/blob/master/LICENSE][image: PyPi Package Downloads]
 [https://pypi.org/project/salt][image: PyPi Package Downloads]
 [https://lgtm.com/projects/g/saltstack/salt/context:python][image: Salt Project Slack Community]
 [https://via.vmw.com/salt-slack][image: Salt Project Twitch Channel]
 [https://www.twitch.tv/saltprojectoss][image: Salt Project subreddit]
 [https://www.reddit.com/r/saltstack/][image: Follow SaltStack on Twitter]
 [https://twitter.com/intent/follow?screen_name=Salt_Project_OS]
[image: Salt Project Logo]

	Latest Salt Documentation [https://docs.saltproject.io/en/latest/]

	Open an issue [https://github.com/saltstack/salt/issues/new/choose] (bug report, feature request, etc.)

Salt is the world's fastest, most intelligent and scalable automation
engine.

About Salt

Built on Python, Salt is an event-driven automation tool and framework to
deploy, configure, and manage complex IT systems. Use Salt to automate common
infrastructure administration tasks and ensure that all the components of your
infrastructure are operating in a consistent desired state.

Salt has many possible uses, including configuration management, which involves:

	Managing operating system deployment and configuration.

	Installing and configuring software applications and services.

	Managing servers, virtual machines, containers, databases, web servers,
network devices, and more.

	Ensuring consistent configuration and preventing configuration drift.

Salt is ideal for configuration management because it is pluggable,
customizable, and plays well with many existing technologies. Salt enables you
to deploy and manage applications that use any tech stack running on nearly any
operating system [https://docs.saltproject.io/salt/install-guide/en/latest/topics/salt-supported-operating-systems.html],
including different types of network devices such as switches and routers from a
variety of vendors.

In addition to configuration management Salt can also:

	Automate and orchestrate routine IT processes, such as common required tasks
for scheduled server downtimes or upgrading operating systems or applications.

	Create self-aware, self-healing systems that can automatically respond to
outages, common administration problems, or other important events.

About our sponsors

Salt powers VMware's VMware Aria Automation Config [https://www.vmware.com/products/vrealize-automation/saltstack-config.html]
(previously vRealize Automation SaltStack Config / SaltStack Enterprise), and can be found
under the hood of products from Juniper, Cisco, Cloudflare, Nutanix, SUSE, and
Tieto, to name a few.

The original sponsor of our community, SaltStack, was acquired by VMware in 2020 [https://www.vmware.com/company/acquisitions/saltstack.html].
The Salt Project remains an open source ecosystem that VMware supports and
contributes to. VMware ensures the code integrity and quality of the Salt
modules by acting as the official sponsor and manager of the Salt project. Many
of the core Salt Project contributors are also VMware employees. This team
carefully reviews and enhances the Salt modules to ensure speed, quality, and
security.

Download and install Salt

Salt is tested and packaged to run on CentOS, Debian, RHEL, Ubuntu, MacOS,
Windows, and more. Download Salt and get started now. See
supported operating systems [https://docs.saltproject.io/salt/install-guide/en/latest/topics/salt-supported-operating-systems.html]
for more information.

To download and install Salt, see:
* The Salt install guide [https://docs.saltproject.io/salt/install-guide/en/latest/index.html]
* Salt Project repository [https://repo.saltproject.io/]

Technical support

Report bugs or problems using Salt by opening an issue: https://github.com/saltstack/salt/issues

To join our community forum where you can exchange ideas, best practices,
discuss technical support questions, and talk to project maintainers, join our
Slack workspace: Salt Project Community Slack [https://via.vmw.com/salt-slack]

Salt Project documentation

Installation instructions, tutorials, in-depth API and module documentation:

	The Salt install guide [https://docs.saltproject.io/salt/install-guide/en/latest/index.html]

	The Salt user guide [https://docs.saltproject.io/salt/user-guide/en/latest/]

	Latest Salt documentation [https://docs.saltproject.io/en/latest/]

	Salt's contributing guide [https://docs.saltproject.io/en/master/topics/development/contributing.html]

Security advisories

Keep an eye on the Salt Project
Security Announcements [https://saltproject.io/security-announcements/]
landing page. Salt Project recommends subscribing to the
Salt Project Security RSS feed [https://saltproject.io/security-announcements/index.xml]
to receive notification when new information is available regarding security
announcements.

Other channels to receive security announcements include the
Salt Community mailing list [https://groups.google.com/forum/#!forum/salt-users]
and the Salt Project Community Slack [https://via.vmw.com/salt-slack].

Responsibly reporting security vulnerabilities

When reporting security vulnerabilities for Salt or other SaltStack projects,
refer to the SECURITY.md [https://github.com/saltstack/salt/blob/master/SECURITY.md] file found in this repository.

Join our community

Salt is built by the Salt Project community, which includes more than 3,000
contributors working in roles just like yours. This well-known and trusted
community works together to improve the underlying technology and extend Salt by
creating a variety of execution and state modules to accomplish the most common
tasks or solve the most important problems that people in your role are likely
to face.

If you want to help extend Salt or solve a problem with Salt, you can join our
community and contribute today.

Please be sure to review our
Code of Conduct [https://github.com/saltstack/salt/blob/master/CODE_OF_CONDUCT.md].
Also, check out some of our community resources including:

	Salt Project Community Wiki [https://github.com/saltstack/community/wiki]

	Salt Project Community Slack [https://via.vmw.com/salt-slack]

	Salt Project: IRC on LiberaChat [https://web.libera.chat/#salt]

	Salt Project YouTube channel [https://www.youtube.com/channel/UCpveTIucFx9ljGelW63-BWg]

	Salt Project Twitch channel [https://www.twitch.tv/saltprojectoss]

There are lots of ways to get involved in our community. Every month, there are
around a dozen opportunities to meet with other contributors and the Salt Core
team and collaborate in real time. The best way to keep track is by subscribing
to the Salt Project Community Events Calendar on the main
https://saltproject.io website.

If you have additional questions, email us at saltproject@vmware.com or reach out
directly to the Community Manager, Jimmy Chunga via Slack. We'd be glad to
have you join our community!

License

Salt is licensed under the Apache 2.0 license. Please
see the
LICENSE file [https://github.com/saltstack/salt/blob/master/LICENSE] for the
full text of the Apache license, followed by a full summary of the licensing
used by external modules.

A complete list of attributions and dependencies can be found here:
salt/DEPENDENCIES.md [https://github.com/saltstack/salt/blob/master/DEPENDENCIES.md]

Introduction to Salt

We’re not just talking about NaCl.

The 30 second summary

Salt is:

	A configuration management system. Salt is capable of maintaining remote
nodes in defined states. For example, it can ensure that specific packages are
installed and that specific services are running.

	A distributed remote execution system used to execute commands and
query data on remote nodes. Salt can query and execute commands either on
individual nodes or by using an arbitrary selection criteria.

It was developed in order to bring the best solutions found in the
world of remote execution together and make them better, faster, and more
malleable. Salt accomplishes this through its ability to handle large loads of
information, and not just dozens but hundreds and even thousands of individual
servers quickly through a simple and manageable interface.

Simplicity

Providing versatility between massive scale deployments and smaller systems may seem
daunting, but Salt is very simple to set up and maintain, regardless of the
size of the project. The architecture of Salt is designed to work with any
number of servers, from a handful of local network systems to international
deployments across different data centers. The topology is a simple
server/client model with the needed functionality built into a single set of
daemons. While the default configuration will work with little to no
modification, Salt can be fine tuned to meet specific needs.

Parallel execution

The core functions of Salt:

	enable commands to remote systems to be called in parallel rather than serially

	use a secure and encrypted protocol

	use the smallest and fastest network payloads possible

	provide a simple programming interface

Salt also introduces more granular controls to the realm of remote
execution, allowing systems to be targeted not just by hostname, but
also by system properties.

Builds on proven technology

Salt takes advantage of a number of technologies and techniques. The
networking layer is built with the excellent ZeroMQ [https://zeromq.org/] networking
library, so the Salt daemon includes a viable and transparent AMQ
broker. Salt uses public keys for authentication with the master
daemon, then uses faster AES [https://en.wikipedia.org/wiki/Advanced_Encryption_Standard] encryption for payload communication;
authentication and encryption are integral to Salt. Salt takes
advantage of communication via msgpack [https://msgpack.org/], enabling fast and light
network traffic.

Python client interface

In order to allow for simple expansion, Salt execution routines can be written
as plain Python modules. The data collected from Salt executions can be sent
back to the master server, or to any arbitrary program. Salt can be called from
a simple Python API, or from the command line, so that Salt can be used to
execute one-off commands as well as operate as an integral part of a larger
application.

Fast, flexible, scalable

The result is a system that can execute commands at high speed on
target server groups ranging from one to very many servers. Salt is
very fast, easy to set up, amazingly malleable and provides a single
remote execution architecture that can manage the diverse
requirements of any number of servers. The Salt infrastructure
brings together the best of the remote execution world, amplifies its
capabilities and expands its range, resulting in a system that is as
versatile as it is practical, suitable for any network.

Open

Salt is developed under the Apache 2.0 license [http://www.apache.org/licenses/LICENSE-2.0.html], and can be used for
open and proprietary projects. Please submit your expansions back to
the Salt project so that we can all benefit together as Salt grows.
Please feel free to sprinkle Salt around your systems and let the
deliciousness come forth.

Salt system architecture

Overview

This page provides a high-level overview of the Salt system architecture and its
different components.

What is Salt?

Salt is a Python-based open-source remote execution framework used for:

	Configuration management

	Automation

	Provisioning

	Orchestration

The Salt system architecture

The following diagram shows the primary components of the basic Salt
architecture:

[image: ../_images/salt-architecture.png]
The following sections describe some of the core components of the Salt
architecture.

Salt Masters and Salt Minions

Salt uses the master-client model in which a master issues commands to a client
and the client executes the command. In the Salt ecosystem, the Salt Master is a
server that is running the salt-master service. It issues commands to one or
more Salt Minions, which are servers that are running the salt-minion
service and that are registered with that particular Salt Master.

Another way to describe Salt is as a publisher-subscriber model. The master
publishes jobs that need to be executed and Salt Minions subscribe to those
jobs. When a specific job applies to that minion, it will execute the job.

When a minion finishes executing a job, it sends job return data back to the
master. Salt has two ports used by default for the minions to communicate with
their master(s). These ports work in concert to receive and deliver data to the
Message Bus. Salt’s message bus is ZeroMQ, which creates an asynchronous network
topology to provide the fastest communication possible.

Targets and grains

The master indicates which minions should execute the job by defining a
target. A target is the group of minions, across one or many masters, that a
job's Salt command applies to.

Note

A master can also be managed like a minion and can be a target if it is
running the salt-minion service.

The following is an example of one of the many kinds of commands that a master
might issue to a minion. This command indicates that all minions should install
the Vim application:

salt -v '*' pkg.install vim

In this case the glob '*' is the target, which indicates that all minions
should execute this command. Many other targeting options are available,
including targeting a specific minion by its ID or targeting minions by their
shared traits or characteristics (called grains in Salt).

Salt comes with an interface to derive information about the underlying system.
This is called the grains interface, because it presents Salt with grains of
information. Grains are collected for the operating system, domain name,
IP address, kernel, OS type, memory, and many other system properties. You can
also create your own custom grain data.

Grain data is relatively static. However, grain data is refreshed when system
information changes (such as network settings) or when a new value is assigned
to a custom grain.

Open event system (event bus)

The event system is used for inter-process communication between the Salt Master
and Salt Minions. In the event system:

	Events are seen by both the master and minions.

	Events can be monitored and evaluated by both.

The event bus lays the groundwork for orchestration and real-time monitoring.

All minions see jobs and results by subscribing to events published on the event
system. Salt uses a pluggable event system with two layers:

	ZeroMQ (0MQ) - The current default socket-level library providing a
flexible transport layer.

	Tornado - Full TCP-based transport layer event system.

One of the greatest strengths of Salt is the speed of execution. The event
system’s communication bus is more efficient than running a higher-level web
service (http). The remote execution system is the component that all components
are built upon, allowing for decentralized remote execution to spread load
across resources.

Salt states

In addition to remote execution, Salt provides another method for configuring
minions by declaring which state a minion should be in, otherwise referred to
as Salt states. Salt states make configuration management possible. You can
use Salt states to deploy and manage infrastructure with simple YAML files.
Using states, you can automate recursive and predictable tasks by queueing jobs
for Salt to implement without needing user input. You can also add more complex
conditional logic to state files with Jinja.

To illustrate the subtle differences between remote execution and configuration
management, take the command referenced in the previous section about
Targets and grains in which Salt installed the application Vim on all
minions:

	Methodology

	Implementation

	Result

	Remote execution

	
	Run salt -v '*' pkg.install vim from the terminal

	
	Remotely installs Vim on the targeted minions

	Configuration management

	
	Write a YAML state file that checks whether Vim is installed

	This state file is then applied to the targeted minions

	
	Ensures that Vim is always installed on the targeted minions

	Salt analyzes the state file and determines what actions need to be
taken to ensure the minion complies with the state declarations

	If Vim is not installed, it automates the processes to install Vim on
the targeted minions

The state file that verifies Vim is installed might look like the following
example:

File:/srv/salt/vim_install.sls

install_vim_now:
 pkg.installed:
 - pkgs:
 - vim

To apply this state to a minion, you would use the state.apply module, such
as in the following example:

salt '*' state.apply vim_install

This command applies the vim_install state to all minions.

Formulas are collections of states that work in harmony to configure a minion
or application. For example, one state might trigger another state.

The Top file

It is not practical to manually run each state individually targeting specific
minions each time. Some environments have hundreds of state files targeting
thousands of minions.

Salt offers two features to help with this scaling problem:

	The top.sls file - Maps Salt states to their applicable minions.

	Highstate execution - Runs all Salt states outlined in top.sls in a
single execution.

The top file maps which states should be applied to different minions in certain
environments. The following is an example of a simple top file:

File: /srv/salt/top.sls

base:
 '*':
 - all_server_setup

 '01webserver':
 - web_server_setup

In this example, base refers to the Salt environment, which is the default.
You can specify more than one environment as needed, such as prod, dev, QA, etc.

Groups of minions are specified under the environment, and states are listed for
each set of minions. This top file indicates that a state called
all_server_setup should be applied to all minions '*' and the state
called web_server_setup should be applied to the 01webserver minion.

To run the Salt command, you would use the state.highstate function:

salt * state.highstate

This command applies the top file to the targeted minions.

Salt pillar

Salt’s pillar feature takes data defined on the Salt Master and distributes it
to minions as needed. Pillar is primarily used to store secrets or other highly
sensitive data, such as account credentials, cryptographic keys, or passwords.
Pillar is also useful for storing non-secret data that you don't want to place
directly in your state files, such as configuration data.

Salt pillar brings data into the cluster from the opposite direction as grains.
While grains are data generated from the minion, the pillar is data generated
from the master.

Pillars are organized similarly to states in a Pillar state tree, where
top.sls acts to coordinate pillar data to environments and minions privy to
the data. Information transferred using pillar has a dictionary generated for
the targeted minion and encrypted with that minion’s key for secure data
transfer. Pillar data is encrypted on a per-minion basis, which makes it useful
for storing sensitive data specific to a particular minion.

Beacons and reactors

The beacon system is a monitoring tool that can listen for a variety of system
processes on Salt Minions. Beacons can trigger reactors which can then help
implement a change or troubleshoot an issue. For example, if a service’s
response times out, the reactor system can restart the service.

Beacons are used for a variety of purposes, including:

	Automated reporting

	Error log delivery

	Microservice monitoring

	User shell activity

	Resource monitoring

When coupled with reactors, beacons can create automated pre-written responses
to infrastructure and application issues. Reactors expand Salt with automated
responses using pre-written remediation states.

Reactors can be applied in a variety of scenarios:

	Infrastructure scaling

	Notifying administrators

	Restarting failed applications

	Automatic rollback

When both beacons and reactors are used together , you can create unique states
customized to your specific needs.

Salt runners and orchestration

Salt runners are convenience applications executed with the salt-run
command. Salt runners work similarly to Salt execution modules. However, they
execute on the Salt Master instead of the Salt Minions. A Salt runner can be a
simple client call or a complex application.

Salt provides the ability to orchestrate system administrative tasks throughout
the enterprise. Orchestration makes it possible to coordinate the activities of
multiple machines from a central place. It has the added advantage of being able
to control the sequence of when certain configuration events occur.
Orchestration states execute on the master using the state runner module.

Contributing

So you want to contribute to the Salt project? Excellent! You can help
in a number of ways:

	Use Salt and open well-written bug reports.

	Join a working group [https://github.com/saltstack/community].

	Answer questions on irc [https://web.libera.chat/#salt],
the community Slack [https://via.vmw.com/salt-slack],
the salt-users mailing
list [https://groups.google.com/forum/#!forum/salt-users],
Server Fault [https://serverfault.com/questions/tagged/saltstack],
or r/saltstack on Reddit [https://www.reddit.com/r/saltstack/].

	Fix bugs.

	Improve the documentation [https://saltstack.gitlab.io/open/docs/docs-hub/topics/contributing.html].

	Provide workarounds, patches, or other code without tests.

	Tell other people about problems you solved using Salt.

If you'd like to update docs or fix an issue, you're going to need the
Salt repo. The best way to contribute is using
Git [https://git-scm.com/].

Environment setup

To hack on Salt or the docs you're going to need to set up your
development environment. If you already have a workflow that you're
comfortable with, you can use that, but otherwise this is an opinionated
guide for setting up your dev environment. Follow these steps and you'll
end out with a functioning dev environment and be able to submit your
first PR.

This guide assumes at least a passing familiarity with
Git [https://git-scm.com/], a common version control tool used
across many open source projects, and is necessary for contributing to
Salt. For an introduction to Git, watch Salt Docs Clinic - Git For the
True
Beginner [https://www.youtube.com/watch?v=zJw6KNvmuq4&ab_channel=SaltStack].
Because of its widespread use, there are many resources for learning
more about Git. One popular resource is the free online book Learn Git
in a Month of
Lunches [https://www.manning.com/books/learn-git-in-a-month-of-lunches].

pyenv, Virtual Environments, and you

We recommend pyenv [https://github.com/pyenv/pyenv], since it allows
installing multiple different Python versions, which is important for
testing Salt across all the versions of Python that we support.

On Linux

Install pyenv:

git clone https://github.com/pyenv/pyenv.git ~/.pyenv
export PATH="$HOME/.pyenv/bin:$PATH"
git clone https://github.com/pyenv/pyenv-virtualenv.git $(pyenv root)/plugins/pyenv-virtualenv

On Mac

Install pyenv using brew:

brew update
brew install pyenv
brew install pyenv-virtualenv

Now add pyenv to your .bashrc:

echo 'export PATH="$HOME/.pyenv/bin:$PATH"' >> ~/.bashrc
pyenv init 2>> ~/.bashrc
pyenv virtualenv-init 2>> ~/.bashrc

For other shells, see the pyenv
instructions [https://github.com/pyenv/pyenv#basic-github-checkout].

Go ahead and restart your shell. Now you should be able to install a new
version of Python:

pyenv install 3.9.18

If that fails, don't panic! You're probably just missing some build
dependencies. Check out pyenv common build
problems [https://github.com/pyenv/pyenv/wiki/Common-build-problems].

Now that you've got your version of Python installed, you can create a
new virtual environment with this command:

pyenv virtualenv 3.9.18 salt

Then activate it:

pyenv activate salt

Sweet! Now you're ready to clone Salt so you can start hacking away! If
you get stuck at any point, check out the resources at the beginning of
this guide. IRC and Slack are particularly helpful places to go.

Get the source!

Salt uses the fork and clone workflow for Git contributions. See Using
the Fork-and-Branch Git
Workflow [https://blog.scottlowe.org/2015/01/27/using-fork-branch-git-workflow/]
for how to implement it. But if you just want to hurry and get started
you can go ahead and follow these steps:

Clones are so shallow. Well, this one is anyway:

git clone --depth=1 --origin salt https://github.com/saltstack/salt.git

This creates a shallow clone of Salt, which should be fast. Most of the
time that's all you'll need, and you can start building out other
commits as you go. If you really want all 108,300+ commits you can
just run git fetch --unshallow. Then go make a sandwich because it's
gonna be a while.

You're also going to want to head over to GitHub and create your own
fork of Salt [https://github.com/saltstack/salt/fork]. Once you've
got that set up you can add it as a remote:

git remote add yourname <YOUR SALT REMOTE>

If you use your name to refer to your fork, and salt to refer to the
official Salt repo you'll never get upstream or origin confused.

Note

Each time you start work on a new issue you should fetch the most recent
changes from salt/upstream.

Set up pre-commit and nox

Here at Salt we use pre-commit [https://pre-commit.com/] and
nox [https://nox.thea.codes/en/stable/] to make it easier for
contributors to get quick feedback, for quality control, and to increase
the chance that your merge request will get reviewed and merged. Nox
enables us to run multiple different test configurations, as well as
other common tasks. You can think of it as Make with superpowers.
Pre-commit does what it sounds like: it configures some Git pre-commit
hooks to run black for formatting, isort for keeping our imports
sorted, and pylint to catch issues like unused imports, among
others. You can easily install them in your virtualenv with:

python -m pip install pre-commit nox
pre-commit install

Warning

Currently there is an issue with the pip-tools-compile pre-commit hook on Windows.
The details around this issue are included here:
https://github.com/saltstack/salt/issues/56642.
Please ensure you export SKIP=pip-tools-compile to skip pip-tools-compile.

Now before each commit, it will ensure that your code at least looks
right before you open a pull request. And with that step, it's time to
start hacking on Salt!

Set up imagemagick

One last prerequisite is to have imagemagick installed, as it is required
by Sphinx for generating the HTML documentation.

On Mac, via homebrew
brew install imagemagick

Example Linux installation: Debian-based
sudo apt install imagemagick

Salt issues

Create your own

Perhaps you've come to this guide because you found a problem in Salt,
and you've diagnosed the cause. Maybe you need some help figuring out
the problem. In any case, creating quality bug reports is a great way to
contribute to Salt even if you lack the skills, time, or inclination to
fix it yourself. If that's the case, head on over to Salt's issue
tracker on
GitHub [https://github.com/saltstack/salt/issues/new/choose].

Creating a good report can take a little bit of time - but every
minute you invest in making it easier for others to reproduce and
understand your issue is time well spent. The faster someone can
understand your issue, the faster it will be able to get fixed
correctly.

The thing that every issue needs goes by many names, but one at least as
good as any other is MCVE - Minimum Complete
Verifiable Example.

In a nutshell:

	Minimum: All of the extra information has been removed. Will
2 or 3 lines of master/minion config still exhibit the behavior?

	Complete: Minimum also means complete. If your example is missing
information, then it's not complete. Salt, Python, and OS versions
are all bits of information that make your example complete. Have you
provided the commands that you ran?

	Verifiable: Can someone take your report and reproduce it?

Slow is smooth, and smooth is fast - it may feel like you're taking a
long time to create your issue if you're creating a proper MCVE, but a
MCVE eliminates back and forth required to reproduce/verify the issue so
someone can actually create a fix.

Pick an issue

If you don't already have an issue in mind, you can search for help
wanted [https://github.com/saltstack/salt/issues?q=is%3Aissue+is%3Aopen+label%3A%22help+wanted%22]
issues. If you also search for good first
issue [https://github.com/saltstack/salt/issues?q=is%3Aissue+is%3Aopen+label%3A%22help+wanted%22+label%3A%22good+first+issue%22]
then you should be able to find some issues that are good for getting
started contributing to Salt. Documentation
issues [https://github.com/saltstack/salt/issues?q=is%3Aissue+is%3Aopen+label%3Adocumentation+]
are also good starter issues. When you find an issue that catches your
eye (or one of your own), it's a good idea to comment on the issue and
mention that you're working on it. Good communication is key to
collaboration - so if you don't have time to complete work on the issue,
just leaving some information about when you expect to pick things up
again is a great idea!

Hacking away

Salt, tests, documentation, and you

Before approving code contributions, Salt requires:

	documentation

	meaningful passing tests

	correct code

Documentation fixes just require correct documentation.

What if I don't write tests or docs?

If you aren't into writing documentation or tests, we still welcome your
contributions! But your PR will be labeled Needs Testcase and
Help Wanted until someone can get to write the tests/documentation.
Of course, if you have a desire but just lack the skill we are more than
happy to collaborate and help out! There's the documentation working
group [https://saltstack.gitlab.io/open/docs/docs-hub/topics/home.html]
and the testing working group [https://github.com/saltstack/community/tree/master/working_groups/wg-Testing].
We also regularly stream our test clinic live on
Twitch [https://www.twitch.tv/saltprojectoss] every Tuesday afternoon
and Thursday morning, Central Time. If you'd like specific help with
tests, bring them to the clinic. If no community members need help, you
can also just watch tests written in real time.

Documentation

Salt uses both docstrings, as well as normal reStructuredText files in
the salt/doc folder for documentation. Sphinx is used to generate the
documentation, and does require imagemagick. See Set up imagemagick for
more information.

Before submitting a documentation PR, it helps to first build the Salt docs
locally on your machine and preview them. Local previews helps you:

	Debug potential documentation output errors before submitting a PR.

	Saves you time by not needing to use the Salt CI/CD test suite to debug, which takes
more than 30 minutes to run on a PR.

	Ensures the final output looks the way you intended it to look.

To set up your local environment to preview the core Salt and module
documentation:

	Install the documentation dependencies. For example, on Ubuntu:

sudo apt-get update

sudo apt-get install -y enchant-2 git gcc imagemagick make zlib1g-dev libc-dev libffi-dev g++ libxml2 libxml2-dev libxslt-dev libcurl4-openssl-dev libssl-dev libgnutls28-dev xz-utils inkscape

	Navigate to the folder where you store your Salt repository and remove any
.nox directories that might be in that folder:

rm -rf .nox

	Install pyenv for the version of Python needed to run the docs. As of the
time of writing, the Salt docs theme is not compatible with Python 3.10, so
you'll need to run 3.9 or earlier. For example:

pyenv install 3.9.18
pyenv virtualenv 3.9.18 salt-docs
echo 'salt-docs' > .python-version

	Activate pyenv if it's not auto-activated:

pyenv exec pip install -U pip setuptools wheel

	Install nox into your pyenv environment, which is the utility that will
build the Salt documentation:

pyenv exec pip install nox

Since we use nox, you can build your docs and view them in your browser
with this one-liner:

python -m nox -e 'docs-html(compress=False, clean=False)'; cd doc/_build/html; python -m webbrowser http://localhost:8000/contents.html; python -m http.server

The first time you build the docs, it will take a while because there are a
lot of modules. Maybe you should go grab some dessert if you already finished
that sandwich. But once nox and Sphinx are done building the docs, python should
launch your default browser with the URL
http://localhost:8000/contents.html. Now you can navigate to your docs
and ensure your changes exist. If you make changes, you can simply run
this:

cd -; python -m nox -e 'docs-html(compress=False, clean=False)'; cd doc/_build/html; python -m http.server

And then refresh your browser to get your updated docs. This one should
be quite a bit faster since Sphinx won't need to rebuild everything.

Alternatively, you could build the docs on your local machine and then preview
the build output. To build the docs locally:

pyenv exec nox -e 'docs-html(compress=False, clean=True)'

The output from this command will put the preview files in: doc > _build > html.

If your change is a docs-only change, you can go ahead and commit/push
your code and open a PR. You can indicate that it's a docs-only change by
adding [Documentation] to the title of your PR. Otherwise, you'll
want to write some tests and code.

Running development Salt

Note: If you run into any issues in this section, check the
Troubleshooting section.

If you're going to hack on the Salt codebase you're going to want to be
able to run Salt locally. The first thing you need to do is install Salt
as an editable pip install:

python -m pip install -e .

This will let you make changes to Salt without having to re-install it.

After all of the dependencies and Salt are installed, it's time to set
up the config for development. Typically Salt runs as root, but you
can specify which user to run as. To configure that, just copy the
master and minion configs. We have .gitignore setup to ignore the
local/ directory, so we can put all of our personal files there.

mkdir -p local/etc/salt/

Create a master config file as local/etc/salt/master:

cat <<EOF >local/etc/salt/master
user: $(whoami)
root_dir: $PWD/local/
publish_port: 55505
ret_port: 55506
EOF

And a minion config as local/etc/salt/minion:

cat <<EOF >local/etc/salt/minion
user: $(whoami)
root_dir: $PWD/local/
master: localhost
id: saltdev
master_port: 55506
EOF

Now you can start your Salt master and minion, specifying the config
dir.

salt-master --config-dir=local/etc/salt/ --log-level=debug --daemon
salt-minion --config-dir=local/etc/salt/ --log-level=debug --daemon

Now you should be able to accept the minion key:

salt-key -c local/etc/salt -Ay

And check that your master/minion are communicating:

salt -c local/etc/salt * test.version

Rather than running test.version from your master, you can run it
from the minion instead:

salt-call -c local/etc/salt test.version

Note that you're running salt-call instead of salt, and you're
not specifying the minion (*), but if you're running the dev
version then you still will need to pass in the config dir. Now that
you've got Salt running, you can hack away on the Salt codebase!

If you need to restart Salt for some reason, if you've made changes and
they don't appear to be reflected, this is one option:

kill -INT $(pgrep salt-master)
kill -INT $(pgrep salt-minion)

If you'd rather not use kill, you can have a couple of terminals
open with your salt virtualenv activated and omit the --daemon
argument. Salt will run in the foreground, so you can just use ctrl+c to
quit.

Test first? Test last? Test meaningfully!

You can write tests first or tests last, as long as your tests are
meaningful and complete! Typically the best tests for Salt are going
to be unit tests. Testing is a whole topic on its
own [https://docs.saltproject.io/en/master/topics/tutorials/writing_tests.html],
But you may also want to write functional or integration tests. You'll
find those in the tests/ directory.

When you're thinking about tests to write, the most important thing to
keep in mind is, “What, exactly, am I testing?” When a test fails, you
should know:

	What, specifically, failed?

	Why did it fail?

	As much as possible, what do I need to do to fix this failure?

If you can't answer those questions then you might need to refactor your
tests.

When you're running tests locally, you should make sure that if you
remove your code changes your tests are failing. If your tests aren't
failing when you haven't yet made changes, then it's possible that
you're testing the wrong thing.

But whether you adhere to TDD/BDD, or you write your code first and your
tests last, ensure that your tests are meaningful.

Running tests

As previously mentioned, we use nox, and that's how we run our
tests. You should have it installed by this point but if not you can
install it with this:

python -m pip install nox

Now you can run your tests:

python -m nox -e "test-3(coverage=False)" -- tests/unit/cli/test_batch.py

It's a good idea to install
espeak [https://github.com/espeak-ng/espeak-ng] or use say on
Mac if you're running some long-running tests. You can do something like
this:

python -m nox -e "test-3(coverage=False)" -- tests/unit/cli/test_batch.py; espeak "Tests done, woohoo!"

That way you don't have to keep monitoring the actual test run.

python -m nox -e "test-3(coverage=False)" -- --core-tests

You can enable or disable test groups locally by passing their respected flag:

	--no-fast-tests - Tests that are ~10s or faster. Fast tests make up ~75% of tests and can run in 10 to 20 minutes.

	--slow-tests - Tests that are ~10s or slower.

	--core-tests - Tests of any speed that test the root parts of salt.

	--flaky-jail - Test that need to be temporarily skipped.

In your PR, you can enable or disable test groups by setting a label.
All fast, slow, and core tests specified in the change file will always run.

	test:no-fast

	test:core

	test:slow

	test:flaky-jail

Changelog and commit!

When you write your commit message you should use imperative style. Do
this:

Add frobnosticate capability

Don't do this:

Added frobnosticate capability

But that advice is backwards for the changelog. We follow the
keepachangelog [https://keepachangelog.com/en/1.0.0/] approach for
our changelog, and use towncrier to generate it for each release. As a
contributor, all that means is that you need to add a file to the
salt/changelog directory, using the <issue #>.<type> format. For
instance, if you fixed issue 123, you would do:

echo "Made sys.doc inform when no minions return" > changelog/123.fixed

And that's all that would go into your file. When it comes to your
commit message, it's usually a good idea to add other information, such as

	What does a reviewer need to know about the change that you made?

	If someone isn't an expert in this area, what will they need to know?

This will also help you out, because when you go to create the PR it
will automatically insert the body of your commit messages.

See the changelog [https://docs.saltproject.io/en/latest/topics/development/changelog.html]
docs for more information.

Pull request time!

Once you've done all your dev work and tested locally, you should check
out our PR
guidelines [https://docs.saltproject.io/en/master/topics/development/pull_requests.html].
After you read that page, it's time to open a new
PR [https://github.com/saltstack/salt/compare]. Fill out the PR
template - you should have updated or created any necessary docs, and
written tests if you're providing a code change. When you submit your
PR, we have a suite of tests that will run across different platforms to
help ensure that no known bugs were introduced.

Now what?

You've made your changes, added documentation, opened your PR, and have
passing tests… now what? When can you expect your code to be merged?

When you open your PR, a reviewer will get automatically assigned. If
your PR is submitted during the week you should be able to expect some
kind of communication within that business day. If your tests are
passing and we're not in a code freeze, ideally your code will be merged
that week or month. If you haven't heard from your assigned reviewer, ping them
on GitHub, irc [https://web.libera.chat/#salt], or Community Slack.

It's likely that your reviewer will leave some comments that need
addressing - it may be a style change, or you forgot a changelog entry,
or need to update the docs. Maybe it's something more fundamental -
perhaps you encountered the rare case where your PR has a much larger
scope than initially assumed.

Whatever the case, simply make the requested changes (or discuss why the
requests are incorrect), and push up your new commits. If your PR is
open for a significant period of time it may be worth rebasing your
changes on the most recent changes to Salt. If you need help, the
previously linked Git resources will be valuable.

But if, for whatever reason, you're not interested in driving your PR to
completion then just note that in your PR. Something like, “I'm not
interested in writing docs/tests, I just wanted to provide this fix -
someone else will need to complete this PR.” If you do that then we'll
add a “Help Wanted” label and someone will be able to pick up the PR,
make the required changes, and it can eventually get merged in.

In any case, now that you have a PR open, congrats! You're a Salt
developer! You rock!

Troubleshooting

zmq.core.error.ZMQError

Once the minion starts, you may see an error like the following:

::

zmq.core.error.ZMQError: ipc path "/path/to/your/virtualenv/var/run/salt/minion/minion_event_7824dcbcfd7a8f6755939af70b96249f_pub.ipc" is longer than 107 characters (sizeof(sockaddr_un.sun_path)).

This means that the path to the socket the minion is using is too long.
This is a system limitation, so the only workaround is to reduce the
length of this path. This can be done in a couple different ways:

	Create your virtualenv in a path that is short enough.

	Edit the :conf_minion:sock_dir minion config variable and reduce
its length. Remember that this path is relative to the value you set
in :conf_minion:root_dir.

NOTE: The socket path is limited to 107 characters on Solaris and Linux,
and 103 characters on BSD-based systems.

No permissions to access ...

If you forget to pass your config path to any of the salt* commands,
you might see

No permissions to access "/var/log/salt/master", are you running as the
correct user?

Just pass -c local/etc/salt (or whatever you named it)

File descriptor limit

You might need to raise your file descriptor limit. You can check it
with:

ulimit -n

If the value is less than 3072, you should increase it with:

ulimit -n 3072
For c-shell:
limit descriptors 3072

Pygit2 or other dependency install fails

You may see some failure messages when installing requirements. You can
directly access your nox environment and possibly install pygit (or
other dependency) that way. When you run nox, you'll see a message like
this:

nox > Re-using existing virtual environment at .nox/pytest-parametrized-3-crypto-none-transport-zeromq-coverage-false.

For this, you would be able to install with:

.nox/pytest-parametrized-3-crypto-none-transport-zeromq-coverage-false/bin/python -m pip install pygit2

Salt Project maintenance policies

This document explains the current project maintenance policies. The goal of
these policies are to reduce the maintenance burden on core maintainers of the
Salt Project and to encourage more active engagement from the Salt community.

	Issue management

	Pull request management

	Salt Enhancement Proposals (SEP) process

Issue management

Issues for the Salt Project are critical to Salt community communication and to
find and resolve issues in the Salt Project. As such, the issue tracker needs to
be kept clean and current to the currently supported releases of Salt. They also
need to be free of feature requests, arguments, and trolling.

We have decided to update our issue policy to be similar to RedHat community
project policies.

Community members who repeatedly violate these policies are subject to bans.

	All issues that were not opened against a currently supported release of Salt
will be closed.

	When an old release of Salt is marked out of support, all issues opened
against the now defunct release will be closed.

	If the issue is still present in the current release of Salt, submit a new
issue. Do not re-open the old issue after it has been closed.

	When opening a new issue that was a bug in a previous release of Salt, you
must validate it against a currently supported release of Salt for
consideration. Issues that do not show the problem against a current
release will be closed without consideration.

	Only defects can be submitted to the issue tracker.

	Feature requests without a PR will be immediately closed.

	Feature requests must be designated as a feature being developed and owned
by the issue submitter and assigned to a release. Otherwise they will be
immediately closed.

	Discussions about features can be held in the GitHub
Discussions [https://github.com/saltstack/salt/discussions] tab or in
the community Open Hour [https://saltproject.io/calendar/].

	Questions will be immediately closed.

	Issues must submit sufficient information.

	Issues must follow the relevant template for information.

	Issues that do not give sufficient information about the nature of the
issue and how to reproduce the issue will be immediately closed.

	Issues that do not comply will be immediately closed.

Pull request management

The Salt pull request (PR) queue has been a challenge to maintain for the entire
life of the project. This is in large part due to the incredibly active and
vibrant community around Salt.

Unfortunately, it has proven to be too much for the core team and the greater
Salt community to manage. As such, we deem it necessary to make fundamental
changes to how we manage the PR queue:

	All PRs opened against releases of Salt that are no longer supported will be
closed immediately.

	Closed PRs can be resubmitted, NOT re-opened.

	PRs need to provide full tests for all of the code affected, regardless of
whether the PR author wrote the code affected.

	PR tests need to be written using the current test mechanism (pytest).

	PRs need to pass tests.

	PRs must NOT increase the overall test time by a noticeable length.

	PRs must NOT add new plugins directly to Salt unless sanctioned by the Salt
core team. New plugins should be made into Salt Extensions.

	PRs that have not been updated due to inactivity will be closed. Inactivity
is determined by a lack of submitter activity for the space of 1 month.

	PR tests should always maintain or increase total code coverage.

Salt Enhancement Proposals (SEP) process

A message from Thomas Hatch, creator of Salt:

In 2019, we decided to create a community process to discuss and review Salt
Enhancement Proposals (SEPs). Unfortunately, I feel that this process has not
proven to be an effective way to solve the core issues around Salt Enhancements.
Overall, the Salt enhancement process has proven itself to be more of a burden
than an accelerant to Salt stability, security, and progress. As such, I feel
that the current optimal course of action is to shut the process down.

Instead of the Salt Enhancement Proposal process, we will add a time in the
Open Hour [https://saltproject.io/calendar/] for people to present ideas and
concepts to better understand if they are worth their effort to develop.
Extensive documentation around more intrusive or involved enhancements should
be included in pull requests (PRs). Conversations about enhancements can also be
held in the Discussions [https://github.com/saltstack/salt/discussions] tab
in GitHub.

By migrating the conversation into the PR process, we ensure that we are only
reviewing viable proposals instead of being burdened with requests that the core
team is expected to fulfill.

Effective immediately (January 2024), we are archiving and freezing the SEP
repo.

Installation

See the Salt Install Guide [https://docs.saltproject.io/salt/install-guide/en/latest/]
for the current installation instructions.

Configuring Salt

This section explains how to configure user access, view and store job results,
secure and troubleshoot, and how to perform many other administrative tasks.

	Configuring Salt

	Configuring the Salt Master

	Configuring the Salt Minion

	Configuring the Salt Proxy Minion

	Delta proxy minions

	Configuration file examples

	Minion Blackout Configuration

	Access Control System

	Job Management

	Managing the Job Cache

	Storing Job Results in an External System

	Logging

	External Logging Handlers

	salt.log_handlers.fluent_mod

	salt.log_handlers.log4mongo_mod

	salt.log_handlers.logstash_mod

	salt.log_handlers.sentry_mod

	Salt File Server

	Git Fileserver Backend Walkthrough

	MinionFS Backend Walkthrough

	Salt Package Manager

	Storing Data in Other Databases

	Running the Salt Master/Minion as an Unprivileged User

	Using cron with Salt

	Use cron to initiate a highstate

	Hardening Salt

	Security disclosure policy

	Salt Channels

	Salt Transport

	Master Tops System

	Renderers

Configuring Salt

Salt configuration is very simple. The default configuration for the
master will work for most installations and the only requirement for
setting up a minion is to set the location of the master in the minion
configuration file.

The configuration files will be installed to /etc/salt and are named
after the respective components, /etc/salt/master, and
/etc/salt/minion.

Master Configuration

By default the Salt master listens on ports 4505 and 4506 on all
interfaces (0.0.0.0). To bind Salt to a specific IP, redefine the
"interface" directive in the master configuration file, typically
/etc/salt/master, as follows:

- #interface: 0.0.0.0
+ interface: 10.0.0.1

After updating the configuration file, restart the Salt master.
See the master configuration reference
for more details about other configurable options.

Minion Configuration

Although there are many Salt Minion configuration options, configuring
a Salt Minion is very simple. By default a Salt Minion will
try to connect to the DNS name "salt"; if the Minion is able to
resolve that name correctly, no configuration is needed.

If the DNS name "salt" does not resolve to point to the correct
location of the Master, redefine the "master" directive in the minion
configuration file, typically /etc/salt/minion, as follows:

- #master: salt
+ master: 10.0.0.1

After updating the configuration file, restart the Salt minion.
See the minion configuration reference
for more details about other configurable options.

Proxy Minion Configuration

A proxy minion emulates the behaviour of a regular minion
and inherits their options.

Similarly, the configuration file is /etc/salt/proxy and the proxy
tries to connect to the DNS name "salt".

In addition to the regular minion options,
there are several proxy-specific - see the
proxy minion configuration reference.

Running Salt

	Start the master in the foreground (to daemonize the process, pass the
-d flag):

salt-master

	Start the minion in the foreground (to daemonize the process, pass the
-d flag):

salt-minion

Having trouble?

The simplest way to troubleshoot Salt is to run the master and minion in
the foreground with log level set to debug:

salt-master --log-level=debug

For information on salt's logging system please see the logging
document.

Run as an unprivileged (non-root) user

To run Salt as another user, set the user parameter in the
master config file.

Additionally, ownership, and permissions need to be set such that the
desired user can read from and write to the following directories (and
their subdirectories, where applicable):

	/etc/salt

	/var/cache/salt

	/var/log/salt

	/var/run/salt

More information about running salt as a non-privileged user can be found
here.

There is also a full troubleshooting guide
available.

Key Identity

Salt provides commands to validate the identity of your Salt master
and Salt minions before the initial key exchange. Validating key identity helps
avoid inadvertently connecting to the wrong Salt master, and helps prevent
a potential MiTM attack when establishing the initial connection.

Master Key Fingerprint

Print the master key fingerprint by running the following command on the Salt master:

salt-key -F master

Copy the master.pub fingerprint from the Local Keys section, and then set this value
as the master_finger in the minion configuration file. Save the configuration
file and then restart the Salt minion.

Minion Key Fingerprint

Run the following command on each Salt minion to view the minion key fingerprint:

salt-call --local key.finger

Compare this value to the value that is displayed when you run the
salt-key --finger <MINION_ID> command on the Salt master.

Key Management

Salt uses AES encryption for all communication between the Master and
the Minion. This ensures that the commands sent to the Minions cannot
be tampered with, and that communication between Master and Minion is
authenticated through trusted, accepted keys.

Before commands can be sent to a Minion, its key must be accepted on
the Master. Run the salt-key command to list the keys known to
the Salt Master:

[root@master ~]# salt-key -L
Unaccepted Keys:
alpha
bravo
charlie
delta
Accepted Keys:

This example shows that the Salt Master is aware of four Minions, but none of
the keys has been accepted. To accept the keys and allow the Minions to be
controlled by the Master, again use the salt-key command:

[root@master ~]# salt-key -A
[root@master ~]# salt-key -L
Unaccepted Keys:
Accepted Keys:
alpha
bravo
charlie
delta

The salt-key command allows for signing keys individually or in bulk. The
example above, using -A bulk-accepts all pending keys. To accept keys
individually use the lowercase of the same option, -a keyname.

See also

salt-key manpage

Sending Commands

Communication between the Master and a Minion may be verified by running
the test.version command:

[root@master ~]# salt alpha test.version
alpha:
 2018.3.4

Communication between the Master and all Minions may be tested in a
similar way:

[root@master ~]# salt '*' test.version
alpha:
 2018.3.4
bravo:
 2018.3.4
charlie:
 2018.3.4
delta:
 2018.3.4

Each of the Minions should send a 2018.3.4 response as shown above,
or any other salt version installed.

What's Next?

Understanding targeting is important. From there, depending
on the way you wish to use Salt, you should also proceed to learn about
Remote Execution and Configuration Management.

Configuring the Salt Master

The Salt system is amazingly simple and easy to configure, the two components
of the Salt system each have a respective configuration file. The
salt-master is configured via the master configuration file, and the
salt-minion is configured via the minion configuration file.

See also

Example master configuration file.

The configuration file for the salt-master is located at /etc/salt/master
by default. Atomic included configuration files can be placed in
/etc/salt/master.d/*.conf. Warning: files with other suffixes than .conf will
not be included. A notable exception is FreeBSD, where the configuration file is
located at /usr/local/etc/salt. The available options are as follows:

Primary Master Configuration

interface

Default: 0.0.0.0 (all interfaces)

The local interface to bind to, must be an IP address.

interface: 192.168.0.1

ipv6

Default: False

Whether the master should listen for IPv6 connections. If this is set to True,
the interface option must be adjusted too (for example: interface: '::')

ipv6: True

publish_port

Default: 4505

The network port to set up the publication interface.

publish_port: 4505

master_id

Default: None

The id to be passed in the publish job to minions. This is used for MultiSyndics
to return the job to the requesting master.

Note

This must be the same string as the syndic is configured with.

master_id: MasterOfMaster

user

Default: root

The user to run the Salt processes

user: root

Note

Starting with version 3006.0, Salt's offical packages ship with a default
configuration which runs the Master as a non-priviledged user. The Master's
configuration file has the user option set to user: salt. Unless you
are absolutly sure want to run salt as some other user, care should be
taken to preserve this setting in your Master configuration file..

enable_ssh_minions

Default: False

Tell the master to also use salt-ssh when running commands against minions.

enable_ssh_minions: True

Note

Enabling this does not influence the limitations on cross-minion communication.
The Salt mine and publish.publish do not work from regular minions
to SSH minions, the other way around is partly possible since 3007.0
(during state rendering on the master).
This means you can use the mentioned functions to call out to regular minions
in sls templates and wrapper modules, but state modules
(which are executed on the remote) relying on them still do not work.

ret_port

Default: 4506

The port used by the return server, this is the server used by Salt to receive
execution returns and command executions.

ret_port: 4506

pidfile

Default: /var/run/salt-master.pid

Specify the location of the master pidfile.

pidfile: /var/run/salt-master.pid

root_dir

Default: /

The system root directory to operate from, change this to make Salt run from
an alternative root.

root_dir: /

Note

This directory is prepended to the following options:
pki_dir, cachedir, sock_dir,
log_file, autosign_file,
autoreject_file, pidfile,
autosign_grains_dir.

conf_file

Default: /etc/salt/master

The path to the master's configuration file.

conf_file: /etc/salt/master

pki_dir

Default: <LIB_STATE_DIR>/pki/master

The directory to store the pki authentication keys.

<LIB_STATE_DIR> is the pre-configured variable state directory set during
installation via --salt-lib-state-dir. It defaults to /etc/salt. Systems
following the Filesystem Hierarchy Standard (FHS) might set it to
/var/lib/salt.

pki_dir: /etc/salt/pki/master

cluster_id

New in version 3007.

When defined, the master will operate in cluster mode. The master will send the
cluster key and id to minions instead of its own key and id. The master will
also forward its local event bus to other masters defined by cluster_peers

cluster_id: master

cluster_peers

New in version 3007.

When cluster_id is defined, this setting is a list of other master
(hostnames or ips) that will be in the cluster.

cluster_peers:
 - master2
 - master3

cluster_pki_dir

New in version 3007.

When cluster_id is defined, this sets the location of where this cluster
will store its cluster public and private key as well as any minion keys. This
setting will default to the value of pki_dir, but should be changed
to the filesystem location shared between peers in the cluster.

cluster_pki: /my/gluster/share/pki

extension_modules

Changed in version 2016.3.0: The default location for this directory has been moved. Prior to this
version, the location was a directory named extmods in the Salt
cachedir (on most platforms, /var/cache/salt/extmods). It has been
moved into the master cachedir (on most platforms,
/var/cache/salt/master/extmods).

Directory where custom modules are synced to. This directory can contain
subdirectories for each of Salt's module types such as runners,
output, wheel, modules, states, returners, engines,
utils, etc. This path is appended to root_dir.

Note, any directories or files not found in the module_dirs location
will be removed from the extension_modules path.

extension_modules: /root/salt_extmods

extmod_whitelist/extmod_blacklist

New in version 2017.7.0.

By using this dictionary, the modules that are synced to the master's extmod cache using saltutil.sync_* can be
limited. If nothing is set to a specific type, then all modules are accepted. To block all modules of a specific type,
whitelist an empty list.

extmod_whitelist:
 modules:
 - custom_module
 engines:
 - custom_engine
 pillars: []

extmod_blacklist:
 modules:
 - specific_module

	Valid options:
	
	modules

	states

	grains

	renderers

	returners

	output

	proxy

	runners

	wheel

	engines

	queues

	pillar

	utils

	sdb

	cache

	clouds

	tops

	roster

	tokens

module_dirs

Default: []

Like extension_modules, but a list of extra directories to search
for Salt modules.

module_dirs:
 - /var/cache/salt/minion/extmods

cachedir

Default: /var/cache/salt/master

The location used to store cache information, particularly the job information
for executed salt commands.

This directory may contain sensitive data and should be protected accordingly.

cachedir: /var/cache/salt/master

verify_env

Default: True

Verify and set permissions on configuration directories at startup.

verify_env: True

keep_jobs

Default: 24

Set the number of hours to keep old job information. Note that setting this option
to 0 disables the cache cleaner.

Deprecated since version 3006: Replaced by keep_jobs_seconds

keep_jobs: 24

keep_jobs_seconds

Default: 86400

Set the number of seconds to keep old job information. Note that setting this option
to 0 disables the cache cleaner.

keep_jobs_seconds: 86400

gather_job_timeout

New in version 2014.7.0.

Default: 10

The number of seconds to wait when the client is requesting information
about running jobs.

gather_job_timeout: 10

timeout

Default: 5

Set the default timeout for the salt command and api.

loop_interval

Default: 60

The loop_interval option controls the seconds for the master's Maintenance
process check cycle. This process updates file server backends, cleans the
job cache and executes the scheduler.

maintenance_interval

New in version 3006.0.

Default: 3600

Defines how often to restart the master's Maintenance process.

maintenance_interval: 9600

output

Default: nested

Set the default outputter used by the salt command.

outputter_dirs

Default: []

A list of additional directories to search for salt outputters in.

outputter_dirs: []

output_file

Default: None

Set the default output file used by the salt command. Default is to output
to the CLI and not to a file. Functions the same way as the "--out-file"
CLI option, only sets this to a single file for all salt commands.

output_file: /path/output/file

show_timeout

Default: True

Tell the client to show minions that have timed out.

show_timeout: True

show_jid

Default: False

Tell the client to display the jid when a job is published.

show_jid: False

color

Default: True

By default output is colored, to disable colored output set the color value
to False.

color: False

color_theme

Default: ""

Specifies a path to the color theme to use for colored command line output.

color_theme: /etc/salt/color_theme

cli_summary

Default: False

When set to True, displays a summary of the number of minions targeted,
the number of minions returned, and the number of minions that did not
return.

cli_summary: False

sock_dir

Default: /var/run/salt/master

Set the location to use for creating Unix sockets for master process
communication.

sock_dir: /var/run/salt/master

enable_gpu_grains

Default: False

Enable GPU hardware data for your master. Be aware that the master can
take a while to start up when lspci and/or dmidecode is used to populate the
grains for the master.

enable_gpu_grains: True

skip_grains

Default: False

MasterMinions should omit grains. A MasterMinion is "a minion function object
for generic use on the master" that omit pillar. A RunnerClient creates a
MasterMinion omitting states and renderer. Setting to True can improve master
performance.

skip_grains: True

job_cache

Default: True

The master maintains a temporary job cache. While this is a great addition, it
can be a burden on the master for larger deployments (over 5000 minions).
Disabling the job cache will make previously executed jobs unavailable to
the jobs system and is not generally recommended. Normally it is wise to make
sure the master has access to a faster IO system or a tmpfs is mounted to the
jobs dir.

job_cache: True

Note

Setting the job_cache to False will not cache minion returns, but
the JID directory for each job is still created. The creation of the JID
directories is necessary because Salt uses those directories to check for
JID collisions. By setting this option to False, the job cache
directory, which is /var/cache/salt/master/jobs/ by default, will be
smaller, but the JID directories will still be present.

Note that the keep_jobs_seconds option can be set to a lower
value, such as 3600, to limit the number of seconds jobs are stored in
the job cache. (The default is 86400 seconds.)

Please see the Managing the Job Cache
documentation for more information.

minion_data_cache

Default: True

The minion data cache is a cache of information about the minions stored on the
master, this information is primarily the pillar, grains and mine data. The data
is cached via the cache subsystem in the Master cachedir under the name of the
minion or in a supported database. The data is used to predetermine what minions
are expected to reply from executions.

minion_data_cache: True

cache

Default: localfs

Cache subsystem module to use for minion data cache.

cache: consul

memcache_expire_seconds

Default: 0

Memcache is an additional cache layer that keeps a limited amount of data
fetched from the minion data cache for a limited period of time in memory that
makes cache operations faster. It doesn't make much sense for the localfs
cache driver but helps for more complex drivers like consul.

This option sets the memcache items expiration time. By default is set to 0
that disables the memcache.

memcache_expire_seconds: 30

memcache_max_items

Default: 1024

Set memcache limit in items that are bank-key pairs. I.e the list of
minion_0/data, minion_0/mine, minion_1/data contains 3 items. This value depends
on the count of minions usually targeted in your environment. The best one could
be found by analyzing the cache log with memcache_debug enabled.

memcache_max_items: 1024

memcache_full_cleanup

Default: False

If cache storage got full, i.e. the items count exceeds the
memcache_max_items value, memcache cleans up its storage. If this option
set to False memcache removes the only one oldest value from its storage.
If this set set to True memcache removes all the expired items and also
removes the oldest one if there are no expired items.

memcache_full_cleanup: True

memcache_debug

Default: False

Enable collecting the memcache stats and log it on debug log level. If enabled
memcache collect information about how many fetch calls has been done and
how many of them has been hit by memcache. Also it outputs the rate value that
is the result of division of the first two values. This should help to choose
right values for the expiration time and the cache size.

memcache_debug: True

ext_job_cache

Default: ''

Used to specify a default returner for all minions. When this option is set,
the specified returner needs to be properly configured and the minions will
always default to sending returns to this returner. This will also disable the
local job cache on the master.

ext_job_cache: redis

event_return

New in version 2015.5.0.

Default: ''

Specify the returner(s) to use to log events. Each returner may have
installation and configuration requirements. Read the returner's
documentation.

Note

Not all returners support event returns. Verify that a returner has an
event_return() function before configuring this option with a returner.

event_return:
 - syslog
 - splunk

event_return_queue

New in version 2015.5.0.

Default: 0

On busy systems, enabling event_returns can cause a considerable load on
the storage system for returners. Events can be queued on the master and
stored in a batched fashion using a single transaction for multiple events.
By default, events are not queued.

event_return_queue: 0

event_return_whitelist

New in version 2015.5.0.

Default: []

Only return events matching tags in a whitelist.

Changed in version 2016.11.0: Supports glob matching patterns.

event_return_whitelist:
 - salt/master/a_tag
 - salt/run/*/ret

event_return_blacklist

New in version 2015.5.0.

Default: []

Store all event returns _except_ the tags in a blacklist.

Changed in version 2016.11.0: Supports glob matching patterns.

event_return_blacklist:
 - salt/master/not_this_tag
 - salt/wheel/*/ret

max_event_size

New in version 2014.7.0.

Default: 1048576

Passing very large events can cause the minion to consume large amounts of
memory. This value tunes the maximum size of a message allowed onto the
master event bus. The value is expressed in bytes.

max_event_size: 1048576

master_job_cache

New in version 2014.7.0.

Default: local_cache

Specify the returner to use for the job cache. The job cache will only be
interacted with from the salt master and therefore does not need to be
accessible from the minions.

master_job_cache: redis

job_cache_store_endtime

New in version 2015.8.0.

Default: False

Specify whether the Salt Master should store end times for jobs as returns
come in.

job_cache_store_endtime: False

enforce_mine_cache

Default: False

By-default when disabling the minion_data_cache mine will stop working since
it is based on cached data, by enabling this option we explicitly enabling
only the cache for the mine system.

enforce_mine_cache: False

max_minions

Default: 0

The maximum number of minion connections allowed by the master. Use this to
accommodate the number of minions per master if you have different types of
hardware serving your minions. The default of 0 means unlimited connections.
Please note that this can slow down the authentication process a bit in large
setups.

max_minions: 100

con_cache

Default: False

If max_minions is used in large installations, the master might experience
high-load situations because of having to check the number of connected
minions for every authentication. This cache provides the minion-ids of
all connected minions to all MWorker-processes and greatly improves the
performance of max_minions.

con_cache: True

presence_events

Default: False

Causes the master to periodically look for actively connected minions.
Presence events are fired on the event bus on a
regular interval with a list of connected minions, as well as events with lists
of newly connected or disconnected minions. This is a master-only operation
that does not send executions to minions.

presence_events: False

detect_remote_minions

Default: False

When checking the minions connected to a master, also include the master's
connections to minions on the port specified in the setting remote_minions_port.
This is particularly useful when checking if the master is connected to any Heist-Salt
minions. If this setting is set to True, the master will check all connections on port 22
by default unless a user also configures a different port with the setting
remote_minions_port.

Changing this setting will check the remote minions the master is connected to when using
presence events, the manage runner, and any other parts of the code that call the
connected_ids method to check the status of connected minions.

detect_remote_minions: True

remote_minions_port

Default: 22

The port to use when checking for remote minions when detect_remote_minions is set
to True.

remote_minions_port: 2222

ping_on_rotate

New in version 2014.7.0.

Default: False

By default, the master AES key rotates every 24 hours. The next command
following a key rotation will trigger a key refresh from the minion which may
result in minions which do not respond to the first command after a key refresh.

To tell the master to ping all minions immediately after an AES key refresh,
set ping_on_rotate to True. This should mitigate the issue where a
minion does not appear to initially respond after a key is rotated.

Note that enabling this may cause high load on the master immediately after the
key rotation event as minions reconnect. Consider this carefully if this salt
master is managing a large number of minions.

If disabled, it is recommended to handle this event by listening for the
aes_key_rotate event with the key tag and acting appropriately.

ping_on_rotate: False

transport

Default: zeromq

Changes the underlying transport layer. ZeroMQ is the recommended transport
while additional transport layers are under development. Supported values are
zeromq and tcp (experimental). This setting has a significant impact on
performance and should not be changed unless you know what you are doing!

transport: zeromq

transport_opts

Default: {}

(experimental) Starts multiple transports and overrides options for each
transport with the provided dictionary This setting has a significant impact on
performance and should not be changed unless you know what you are doing! The
following example shows how to start a TCP transport alongside a ZMQ transport.

transport_opts:
 tcp:
 publish_port: 4605
 ret_port: 4606
 zeromq: []

master_stats

Default: False

Turning on the master stats enables runtime throughput and statistics events
to be fired from the master event bus. These events will report on what
functions have been run on the master and how long these runs have, on
average, taken over a given period of time.

master_stats_event_iter

Default: 60

The time in seconds to fire master_stats events. This will only fire in
conjunction with receiving a request to the master, idle masters will not
fire these events.

sock_pool_size

Default: 1

To avoid blocking waiting while writing a data to a socket, we support
socket pool for Salt applications. For example, a job with a large number
of target host list can cause long period blocking waiting. The option
is used by ZMQ and TCP transports, and the other transport methods don't
need the socket pool by definition. Most of Salt tools, including CLI,
are enough to use a single bucket of socket pool. On the other hands,
it is highly recommended to set the size of socket pool larger than 1
for other Salt applications, especially Salt API, which must write data
to socket concurrently.

sock_pool_size: 15

ipc_mode

Default: ipc

The ipc strategy. (i.e., sockets versus tcp, etc.) Windows platforms lack
POSIX IPC and must rely on TCP based inter-process communications. ipc_mode
is set to tcp by default on Windows.

ipc_mode: ipc

ipc_write_buffer

Default: 0

The maximum size of a message sent via the IPC transport module can be limited
dynamically or by sharing an integer value lower than the total memory size. When
the value dynamic is set, salt will use 2.5% of the total memory as
ipc_write_buffer value (rounded to an integer). A value of 0 disables
this option.

ipc_write_buffer: 10485760

tcp_master_pub_port

Default: 4512

The TCP port on which events for the master should be published if ipc_mode is TCP.

tcp_master_pub_port: 4512

tcp_master_pull_port

Default: 4513

The TCP port on which events for the master should be pulled if ipc_mode is TCP.

tcp_master_pull_port: 4513

tcp_master_publish_pull

Default: 4514

The TCP port on which events for the master should be pulled fom and then republished onto
the event bus on the master.

tcp_master_publish_pull: 4514

tcp_master_workers

Default: 4515

The TCP port for mworkers to connect to on the master.

tcp_master_workers: 4515

auth_events

New in version 2017.7.3.

Default: True

Determines whether the master will fire authentication events.
Authentication events are fired when
a minion performs an authentication check with the master.

auth_events: True

minion_data_cache_events

New in version 2017.7.3.

Default: True

Determines whether the master will fire minion data cache events. Minion data
cache events are fired when a minion requests a minion data cache refresh.

minion_data_cache_events: True

http_connect_timeout

New in version 2019.2.0.

Default: 20

HTTP connection timeout in seconds.
Applied when fetching files using tornado back-end.
Should be greater than overall download time.

http_connect_timeout: 20

http_request_timeout

New in version 2015.8.0.

Default: 3600

HTTP request timeout in seconds.
Applied when fetching files using tornado back-end.
Should be greater than overall download time.

http_request_timeout: 3600

use_yamlloader_old

New in version 2019.2.1.

Default: False

Use the pre-2019.2 YAML renderer.
Uses legacy YAML rendering to support some legacy inline data structures.
See the 2019.2.1 release notes for more details.

use_yamlloader_old: False

req_server_niceness

New in version 3001.

Default: None

Process priority level of the ReqServer subprocess of the master.
Supported on POSIX platforms only.

req_server_niceness: 9

pub_server_niceness

New in version 3001.

Default: None

Process priority level of the PubServer subprocess of the master.
Supported on POSIX platforms only.

pub_server_niceness: 9

fileserver_update_niceness

New in version 3001.

Default: None

Process priority level of the FileServerUpdate subprocess of the master.
Supported on POSIX platforms only.

fileserver_update_niceness: 9

maintenance_niceness

New in version 3001.

Default: None

Process priority level of the Maintenance subprocess of the master.
Supported on POSIX platforms only.

maintenance_niceness: 9

mworker_niceness

New in version 3001.

Default: None

Process priority level of the MWorker subprocess of the master.
Supported on POSIX platforms only.

mworker_niceness: 9

mworker_queue_niceness

New in version 3001.

default: None

process priority level of the MWorkerQueue subprocess of the master.
supported on POSIX platforms only.

mworker_queue_niceness: 9

event_return_niceness

New in version 3001.

default: None

process priority level of the EventReturn subprocess of the master.
supported on POSIX platforms only.

event_return_niceness: 9

event_publisher_niceness

New in version 3001.

default: none

process priority level of the EventPublisher subprocess of the master.
supported on POSIX platforms only.

event_publisher_niceness: 9

reactor_niceness

New in version 3001.

default: None

process priority level of the Reactor subprocess of the master.
supported on POSIX platforms only.

reactor_niceness: 9

Salt-SSH Configuration

roster

Default: flat

Define the default salt-ssh roster module to use

roster: cache

roster_defaults

New in version 2017.7.0.

Default settings which will be inherited by all rosters.

roster_defaults:
 user: daniel
 sudo: True
 priv: /root/.ssh/id_rsa
 tty: True

roster_file

Default: /etc/salt/roster

Pass in an alternative location for the salt-ssh flat roster file.

roster_file: /root/roster

rosters

Default: None

Define locations for flat roster files so they can
be chosen when using Salt API. An administrator can place roster files into
these locations. Then, when calling Salt API, the roster_file
parameter should contain a relative path to these locations. That is,
roster_file=/foo/roster will be resolved as
/etc/salt/roster.d/foo/roster etc. This feature prevents passing insecure
custom rosters through the Salt API.

rosters:
 - /etc/salt/roster.d
 - /opt/salt/some/more/rosters

ssh_passwd

Default: ''

The ssh password to log in with.

ssh_passwd: ''

ssh_priv_passwd

Default: ''

Passphrase for ssh private key file.

ssh_priv_passwd: ''

ssh_port

Default: 22

The target system's ssh port number.

ssh_port: 22

ssh_scan_ports

Default: 22

Comma-separated list of ports to scan.

ssh_scan_ports: 22

ssh_scan_timeout

Default: 0.01

Scanning socket timeout for salt-ssh.

ssh_scan_timeout: 0.01

ssh_sudo

Default: False

Boolean to run command via sudo.

ssh_sudo: False

ssh_timeout

Default: 60

Number of seconds to wait for a response when establishing an SSH connection.

ssh_timeout: 60

ssh_user

Default: root

The user to log in as.

ssh_user: root

ssh_log_file

New in version 2016.3.5.

Default: /var/log/salt/ssh

Specify the log file of the salt-ssh command.

ssh_log_file: /var/log/salt/ssh

ssh_minion_opts

Default: None

Pass in minion option overrides that will be inserted into the SHIM for
salt-ssh calls. The local minion config is not used for salt-ssh. Can be
overridden on a per-minion basis in the roster (minion_opts)

ssh_minion_opts:
 gpg_keydir: /root/gpg

ssh_use_home_key

Default: False

Set this to True to default to using ~/.ssh/id_rsa for salt-ssh
authentication with minions

ssh_use_home_key: False

ssh_identities_only

Default: False

Set this to True to default salt-ssh to run with -o IdentitiesOnly=yes. This
option is intended for situations where the ssh-agent offers many different identities
and allows ssh to ignore those identities and use the only one specified in options.

ssh_identities_only: False

ssh_list_nodegroups

Default: {}

List-only nodegroups for salt-ssh. Each group must be formed as either a comma-separated
list, or a YAML list. This option is useful to group minions into easy-to-target groups
when using salt-ssh. These groups can then be targeted with the normal -N argument to
salt-ssh.

ssh_list_nodegroups:
 groupA: minion1,minion2
 groupB: minion1,minion3

Default: False

Run the ssh_pre_flight script defined in the salt-ssh roster. By default
the script will only run when the thin dir does not exist on the targeted
minion. This will force the script to run and not check if the thin dir
exists first.

thin_extra_mods

Default: None

List of additional modules, needed to be included into the Salt Thin.
Pass a list of importable Python modules that are typically located in
the site-packages Python directory so they will be also always included
into the Salt Thin, once generated.

min_extra_mods

Default: None

Identical as thin_extra_mods, only applied to the Salt Minimal.

Master Security Settings

open_mode

Default: False

Open mode is a dangerous security feature. One problem encountered with pki
authentication systems is that keys can become "mixed up" and authentication
begins to fail. Open mode turns off authentication and tells the master to
accept all authentication. This will clean up the pki keys received from the
minions. Open mode should not be turned on for general use. Open mode should
only be used for a short period of time to clean up pki keys. To turn on open
mode set this value to True.

open_mode: False

auto_accept

Default: False

Enable auto_accept. This setting will automatically accept all incoming
public keys from minions.

auto_accept: False

keysize

Default: 2048

The size of key that should be generated when creating new keys.

keysize: 2048

autosign_timeout

New in version 2014.7.0.

Default: 120

Time in minutes that a incoming public key with a matching name found in
pki_dir/minion_autosign/keyid is automatically accepted. Expired autosign keys
are removed when the master checks the minion_autosign directory. This method
to auto accept minions can be safer than an autosign_file because the
keyid record can expire and is limited to being an exact name match.
This should still be considered a less than secure option, due to the fact
that trust is based on just the requesting minion id.

autosign_file

Default: not defined

If the autosign_file is specified incoming keys specified in the autosign_file
will be automatically accepted. Matches will be searched for first by string
comparison, then by globbing, then by full-string regex matching.
This should still be considered a less than secure option, due to the fact
that trust is based on just the requesting minion id.

Changed in version 2018.3.0: For security reasons the file must be readonly except for its owner.
If permissive_pki_access is True the owning group can also
have write access, but if Salt is running as root it must be a member of that group.
A less strict requirement also existed in previous version.

autoreject_file

New in version 2014.1.0.

Default: not defined

Works like autosign_file, but instead allows you to specify
minion IDs for which keys will automatically be rejected. Will override both
membership in the autosign_file and the
auto_accept setting.

autosign_grains_dir

New in version 2018.3.0.

Default: not defined

If the autosign_grains_dir is specified, incoming keys from minions with
grain values that match those defined in files in the autosign_grains_dir
will be accepted automatically. Grain values that should be accepted automatically
can be defined by creating a file named like the corresponding grain in the
autosign_grains_dir and writing the values into that file, one value per line.
Lines starting with a # will be ignored.
Minion must be configured to send the corresponding grains on authentication.
This should still be considered a less than secure option, due to the fact
that trust is based on just the requesting minion.

Please see the Autoaccept Minions from Grains
documentation for more information.

autosign_grains_dir: /etc/salt/autosign_grains

permissive_pki_access

Default: False

Enable permissive access to the salt keys. This allows you to run the
master or minion as root, but have a non-root group be given access to
your pki_dir. To make the access explicit, root must belong to the group
you've given access to. This is potentially quite insecure. If an autosign_file
is specified, enabling permissive_pki_access will allow group access to that
specific file.

permissive_pki_access: False

publisher_acl

Default: {}

Enable user accounts on the master to execute specific modules. These modules
can be expressed as regular expressions.

publisher_acl:
 fred:
 - test.ping
 - pkg.*

publisher_acl_blacklist

Default: {}

Blacklist users or modules

This example would blacklist all non sudo users, including root from
running any commands. It would also blacklist any use of the "cmd"
module.

This is completely disabled by default.

publisher_acl_blacklist:
 users:
 - root
 - '^(?!sudo_).*$' # all non sudo users
 modules:
 - cmd.*
 - test.echo

sudo_acl

Default: False

Enforce publisher_acl and publisher_acl_blacklist when users have sudo
access to the salt command.

sudo_acl: False

external_auth

Default: {}

The external auth system uses the Salt auth modules to authenticate and
validate users to access areas of the Salt system.

external_auth:
 pam:
 fred:
 - test.*

token_expire

Default: 43200

Time (in seconds) for a newly generated token to live.

Default: 12 hours

token_expire: 43200

token_expire_user_override

Default: False

Allow eauth users to specify the expiry time of the tokens they generate.

A boolean applies to all users or a dictionary of whitelisted eauth backends
and usernames may be given:

token_expire_user_override:
 pam:
 - fred
 - tom
 ldap:
 - gary

keep_acl_in_token

Default: False

Set to True to enable keeping the calculated user's auth list in the token
file. This is disabled by default and the auth list is calculated or requested
from the eauth driver each time.

Note: keep_acl_in_token will be forced to True when using external authentication
for REST API (rest is present under external_auth). This is because the REST API
does not store the password, and can therefore not retroactively fetch the ACL, so
the ACL must be stored in the token.

keep_acl_in_token: False

eauth_acl_module

Default: ''

Auth subsystem module to use to get authorized access list for a user. By default it's
the same module used for external authentication.

eauth_acl_module: django

file_recv

Default: False

Allow minions to push files to the master. This is disabled by default, for
security purposes.

file_recv: False

file_recv_max_size

New in version 2014.7.0.

Default: 100

Set a hard-limit on the size of the files that can be pushed to the master.
It will be interpreted as megabytes.

file_recv_max_size: 100

master_sign_pubkey

Default: False

Sign the master auth-replies with a cryptographic signature of the master's
public key. Please see the tutorial how to use these settings in the
Multimaster-PKI with Failover Tutorial [https://docs.saltproject.io/en/latest/topics/tutorials/multimaster_pki.html]

master_sign_pubkey: True

master_sign_key_name

Default: master_sign

The customizable name of the signing-key-pair without suffix.

master_sign_key_name: <filename_without_suffix>

master_pubkey_signature

Default: master_pubkey_signature

The name of the file in the master's pki-directory that holds the pre-calculated
signature of the master's public-key.

master_pubkey_signature: <filename>

master_use_pubkey_signature

Default: False

Instead of computing the signature for each auth-reply, use a pre-calculated
signature. The master_pubkey_signature must also be set for this.

master_use_pubkey_signature: True

rotate_aes_key

Default: True

Rotate the salt-masters AES-key when a minion-public is deleted with salt-key.
This is a very important security-setting. Disabling it will enable deleted
minions to still listen in on the messages published by the salt-master.
Do not disable this unless it is absolutely clear what this does.

rotate_aes_key: True

publish_session

Default: 86400

The number of seconds between AES key rotations on the master.

publish_session: Default: 86400

publish_signing_algorithm

New in version 3006.9.

Default: PKCS1v15-SHA1

The RSA signing algorithm used by this minion when connecting to the
master's request channel. Valid values are PKCS1v15-SHA1 and
PKCS1v15-SHA224. Minions must be at version 3006.9 or greater if this
is changed from the default setting.

ssl

New in version 2016.11.0.

Default: None

TLS/SSL connection options. This could be set to a dictionary containing
arguments corresponding to python ssl.wrap_socket method. For details see
Tornado [http://www.tornadoweb.org/en/stable/tcpserver.html#tornado.tcpserver.TCPServer]
and Python [https://docs.python.org/3/library/ssl.html#ssl.wrap_socket]
documentation.

Note: to set enum arguments values like cert_reqs and ssl_version use
constant names without ssl module prefix: CERT_REQUIRED or PROTOCOL_SSLv23.

ssl:
 keyfile: <path_to_keyfile>
 certfile: <path_to_certfile>
 ssl_version: PROTOCOL_TLSv1_2

preserve_minion_cache

Default: False

By default, the master deletes its cache of minion data when the key for that
minion is removed. To preserve the cache after key deletion, set
preserve_minion_cache to True.

WARNING: This may have security implications if compromised minions auth with
a previous deleted minion ID.

preserve_minion_cache: False

allow_minion_key_revoke

Default: True

Controls whether a minion can request its own key revocation. When True
the master will honor the minion's request and revoke its key. When False,
the master will drop the request and the minion's key will remain accepted.

allow_minion_key_revoke: False

optimization_order

Default: [0, 1, 2]

In cases where Salt is distributed without .py files, this option determines
the priority of optimization level(s) Salt's module loader should prefer.

Note

This option is only supported on Python 3.5+.

optimization_order:
 - 2
 - 0
 - 1

Master Large Scale Tuning Settings

max_open_files

Default: 100000

Each minion connecting to the master uses AT LEAST one file descriptor, the
master subscription connection. If enough minions connect you might start
seeing on the console(and then salt-master crashes):

Too many open files (tcp_listener.cpp:335)
Aborted (core dumped)

max_open_files: 100000

By default this value will be the one of ulimit -Hn, i.e., the hard limit for
max open files.

To set a different value than the default one, uncomment, and configure this
setting. Remember that this value CANNOT be higher than the hard limit. Raising
the hard limit depends on the OS and/or distribution, a good way to find the
limit is to search the internet for something like this:

raise max open files hard limit debian

worker_threads

Default: 5

The number of threads to start for receiving commands and replies from minions.
If minions are stalling on replies because you have many minions, raise the
worker_threads value.

Worker threads should not be put below 3 when using the peer system, but can
drop down to 1 worker otherwise.

Standards for busy environments:

	Use one worker thread per 200 minions.

	The value of worker_threads should not exceed 1½ times the available CPU cores.

Note

When the master daemon starts, it is expected behaviour to see
multiple salt-master processes, even if 'worker_threads' is set to '1'. At
a minimum, a controlling process will start along with a Publisher, an
EventPublisher, and a number of MWorker processes will be started. The
number of MWorker processes is tuneable by the 'worker_threads'
configuration value while the others are not.

worker_threads: 5

pub_hwm

Default: 1000

The zeromq high water mark on the publisher interface.

pub_hwm: 1000

zmq_backlog

Default: 1000

The listen queue size of the ZeroMQ backlog.

zmq_backlog: 1000

Master Module Management

runner_dirs

Default: []

Set additional directories to search for runner modules.

runner_dirs:
 - /var/lib/salt/runners

utils_dirs

New in version 2018.3.0.

Default: []

Set additional directories to search for util modules.

utils_dirs:
 - /var/lib/salt/utils

cython_enable

Default: False

Set to true to enable Cython modules (.pyx files) to be compiled on the fly on
the Salt master.

cython_enable: False

Master State System Settings

state_top

Default: top.sls

The state system uses a "top" file to tell the minions what environment to
use and what modules to use. The state_top file is defined relative to the
root of the base environment. The value of "state_top" is also used for the
pillar top file

state_top: top.sls

state_top_saltenv

This option has no default value. Set it to an environment name to ensure that
only the top file from that environment is considered during a
highstate.

Note

Using this value does not change the merging strategy. For instance, if
top_file_merging_strategy is set to merge, and
state_top_saltenv is set to foo, then any sections for
environments other than foo in the top file for the foo environment
will be ignored. With state_top_saltenv set to base, all
states from all environments in the base top file will be applied,
while all other top files are ignored. The only way to set
state_top_saltenv to something other than base and not
have the other environments in the targeted top file ignored, would be to
set top_file_merging_strategy to merge_all.

state_top_saltenv: dev

top_file_merging_strategy

Changed in version 2016.11.0: A merge_all strategy has been added.

Default: merge

When no specific fileserver environment (a.k.a. saltenv) has been specified
for a highstate, all environments' top files are
inspected. This config option determines how the SLS targets in those top files
are handled.

When set to merge, the base environment's top file is evaluated first,
followed by the other environments' top files. The first target expression
(e.g. '*') for a given environment is kept, and when the same target
expression is used in a different top file evaluated later, it is ignored.
Because base is evaluated first, it is authoritative. For example, if there
is a target for '*' for the foo environment in both the base and
foo environment's top files, the one in the foo environment would be
ignored. The environments will be evaluated in no specific order (aside from
base coming first). For greater control over the order in which the
environments are evaluated, use env_order. Note that, aside from
the base environment's top file, any sections in top files that do not
match that top file's environment will be ignored. So, for example, a section
for the qa environment would be ignored if it appears in the dev
environment's top file. To keep use cases like this from being ignored, use the
merge_all strategy.

When set to same, then for each environment, only that environment's top
file is processed, with the others being ignored. For example, only the dev
environment's top file will be processed for the dev environment, and any
SLS targets defined for dev in the base environment's (or any other
environment's) top file will be ignored. If an environment does not have a top
file, then the top file from the default_top config parameter
will be used as a fallback.

When set to merge_all, then all states in all environments in all top files
will be applied. The order in which individual SLS files will be executed will
depend on the order in which the top files were evaluated, and the environments
will be evaluated in no specific order. For greater control over the order in
which the environments are evaluated, use env_order.

top_file_merging_strategy: same

env_order

Default: []

When top_file_merging_strategy is set to merge, and no
environment is specified for a highstate, this
config option allows for the order in which top files are evaluated to be
explicitly defined.

env_order:
 - base
 - dev
 - qa

master_tops

Default: {}

The master_tops option replaces the external_nodes option by creating
a pluggable system for the generation of external top data. The external_nodes
option is deprecated by the master_tops option.
To gain the capabilities of the classic external_nodes system, use the
following configuration:

master_tops:
 ext_nodes: <Shell command which returns yaml>

renderer

Default: jinja|yaml

The renderer to use on the minions to render the state data.

renderer: jinja|json

userdata_template

New in version 2016.11.4.

Default: None

The renderer to use for templating userdata files in salt-cloud, if the
userdata_template is not set in the cloud profile. If no value is set in
the cloud profile or master config file, no templating will be performed.

userdata_template: jinja

jinja_env

New in version 2018.3.0.

Default: {}

jinja_env overrides the default Jinja environment options for
all templates except sls templates.
To set the options for sls templates use jinja_sls_env.

Note

The Jinja2 Environment documentation [https://jinja.palletsprojects.com/en/2.11.x/api/#jinja2.Environment] is the official source for the default values.
Not all the options listed in the jinja documentation can be overridden using jinja_env or jinja_sls_env.

The default options are:

jinja_env:
 block_start_string: '{%'
 block_end_string: '%}'
 variable_start_string: '{{'
 variable_end_string: '}}'
 comment_start_string: '{#'
 comment_end_string: '#}'
 line_statement_prefix:
 line_comment_prefix:
 trim_blocks: False
 lstrip_blocks: False
 newline_sequence: '\n'
 keep_trailing_newline: False

jinja_sls_env

New in version 2018.3.0.

Default: {}

jinja_sls_env sets the Jinja environment options for sls templates.
The defaults and accepted options are exactly the same as they are
for jinja_env.

The default options are:

jinja_sls_env:
 block_start_string: '{%'
 block_end_string: '%}'
 variable_start_string: '{{'
 variable_end_string: '}}'
 comment_start_string: '{#'
 comment_end_string: '#}'
 line_statement_prefix:
 line_comment_prefix:
 trim_blocks: False
 lstrip_blocks: False
 newline_sequence: '\n'
 keep_trailing_newline: False

Example using line statements and line comments to increase ease of use:

If your configuration options are

jinja_sls_env:
 line_statement_prefix: '%'
 line_comment_prefix: '##'

With these options jinja will interpret anything after a % at the start of a line (ignoreing whitespace)
as a jinja statement and will interpret anything after a ## as a comment.

This allows the following more convenient syntax to be used:

(this comment will not stay once rendered)
(this comment remains in the rendered template)
ensure all the formula services are running
% for service in formula_services:
enable_service_{{ service }}:
 service.running:
 name: {{ service }}
% endfor

The following less convenient but equivalent syntax would have to
be used if you had not set the line_statement and line_comment options:

{# (this comment will not stay once rendered) #}
(this comment remains in the rendered template)
{# ensure all the formula services are running #}
{% for service in formula_services %}
enable_service_{{ service }}:
 service.running:
 name: {{ service }}
{% endfor %}

jinja_trim_blocks

Deprecated since version 2018.3.0: Replaced by jinja_env and jinja_sls_env

New in version 2014.1.0.

Default: False

If this is set to True, the first newline after a Jinja block is
removed (block, not variable tag!). Defaults to False and corresponds
to the Jinja environment init variable trim_blocks.

jinja_trim_blocks: False

jinja_lstrip_blocks

Deprecated since version 2018.3.0: Replaced by jinja_env and jinja_sls_env

New in version 2014.1.0.

Default: False

If this is set to True, leading spaces and tabs are stripped from the
start of a line to a block. Defaults to False and corresponds to the
Jinja environment init variable lstrip_blocks.

jinja_lstrip_blocks: False

failhard

Default: False

Set the global failhard flag. This informs all states to stop running states
at the moment a single state fails.

failhard: False

state_verbose

Default: True

Controls the verbosity of state runs. By default, the results of all states are
returned, but setting this value to False will cause salt to only display
output for states that failed or states that have changes.

state_verbose: False

state_output

Default: full

The state_output setting controls which results will be output full multi line:

	full, terse - each state will be full/terse

	mixed - only states with errors will be full

	changes - states with changes and errors will be full

full_id, mixed_id, changes_id and terse_id are also allowed;
when set, the state ID will be used as name in the output.

state_output: full

state_output_diff

Default: False

The state_output_diff setting changes whether or not the output from
successful states is returned. Useful when even the terse output of these
states is cluttering the logs. Set it to True to ignore them.

state_output_diff: False

state_output_profile

Default: True

The state_output_profile setting changes whether profile information
will be shown for each state run.

state_output_profile: True

state_output_pct

Default: False

The state_output_pct setting changes whether success and failure information
as a percent of total actions will be shown for each state run.

state_output_pct: False

state_compress_ids

Default: False

The state_compress_ids setting aggregates information about states which
have multiple "names" under the same state ID in the highstate output.

state_compress_ids: False

state_aggregate

Default: False

Automatically aggregate all states that have support for mod_aggregate by
setting to True.

state_aggregate: True

Or pass a list of state module names to automatically
aggregate just those types.

state_aggregate:
 - pkg

state_events

Default: False

Send progress events as each function in a state run completes execution
by setting to True. Progress events are in the format
salt/job/<JID>/prog/<MID>/<RUN NUM>.

state_events: True

yaml_utf8

Default: False

Enable extra routines for YAML renderer used states containing UTF characters.

yaml_utf8: False

runner_returns

Default: True

If set to False, runner jobs will not be saved to job cache (defined by
master_job_cache).

runner_returns: False

Master File Server Settings

fileserver_backend

Default: ['roots']

Salt supports a modular fileserver backend system, this system allows the salt
master to link directly to third party systems to gather and manage the files
available to minions. Multiple backends can be configured and will be searched
for the requested file in the order in which they are defined here. The default
setting only enables the standard backend roots, which is configured using
the file_roots option.

Example:

fileserver_backend:
 - roots
 - gitfs

Note

For masterless Salt, this parameter must be specified in the minion config
file.

fileserver_followsymlinks

New in version 2014.1.0.

Default: True

By default, the file_server follows symlinks when walking the filesystem tree.
Currently this only applies to the default roots fileserver_backend.

fileserver_followsymlinks: True

fileserver_ignoresymlinks

New in version 2014.1.0.

Default: False

If you do not want symlinks to be treated as the files they are pointing to,
set fileserver_ignoresymlinks to True. By default this is set to
False. When set to True, any detected symlink while listing files on the
Master will not be returned to the Minion.

fileserver_ignoresymlinks: False

fileserver_list_cache_time

New in version 2014.1.0.

Changed in version 2016.11.0: The default was changed from 30 seconds to 20.

Default: 20

Salt caches the list of files/symlinks/directories for each fileserver backend
and environment as they are requested, to guard against a performance
bottleneck at scale when many minions all ask the fileserver which files are
available simultaneously. This configuration parameter allows for the max age
of that cache to be altered.

Set this value to 0 to disable use of this cache altogether, but keep in
mind that this may increase the CPU load on the master when running a highstate
on a large number of minions.

Note

Rather than altering this configuration parameter, it may be advisable to
use the fileserver.clear_file_list_cache runner to clear these
caches.

fileserver_list_cache_time: 5

fileserver_verify_config

New in version 2017.7.0.

Default: True

By default, as the master starts it performs some sanity checks on the
configured fileserver backends. If any of these sanity checks fail (such as
when an invalid configuration is used), the master daemon will abort.

To skip these sanity checks, set this option to False.

fileserver_verify_config: False

hash_type

Default: sha256

The hash_type is the hash to use when discovering the hash of a file on
the master server. The default is sha256, but md5, sha1, sha224, sha384, and
sha512 are also supported.

hash_type: sha256

file_buffer_size

Default: 1048576

The buffer size in the file server in bytes.

file_buffer_size: 1048576

file_ignore_regex

Default: ''

A regular expression (or a list of expressions) that will be matched
against the file path before syncing the modules and states to the minions.
This includes files affected by the file.recurse state.
For example, if you manage your custom modules and states in subversion
and don't want all the '.svn' folders and content synced to your minions,
you could set this to '/.svn($|/)'. By default nothing is ignored.

file_ignore_regex:
 - '/\.svn($|/)'
 - '/\.git($|/)'

file_ignore_glob

Default ''

A file glob (or list of file globs) that will be matched against the file
path before syncing the modules and states to the minions. This is similar
to file_ignore_regex above, but works on globs instead of regex. By default
nothing is ignored.

file_ignore_glob:
 - '*.pyc'
 - '*/somefolder/*.bak'
 - '*.swp'

Note

Vim's .swp files are a common cause of Unicode errors in
file.recurse states which use
templating. Unless there is a good reason to distribute them via the
fileserver, it is good practice to include '*.swp' in the
file_ignore_glob.

master_roots

Default: ''

A master-only copy of the file_roots dictionary, used by the
state compiler.

Example:

master_roots:
 base:
 - /srv/salt-master

roots: Master's Local File Server

file_roots

Changed in version 3005.

Default:

base:
 - /srv/salt

Salt runs a lightweight file server written in ZeroMQ to deliver files to
minions. This file server is built into the master daemon and does not
require a dedicated port.

The file server works on environments passed to the master. Each environment
can have multiple root directories. The subdirectories in the multiple file
roots cannot match, otherwise the downloaded files will not be able to be
reliably ensured. A base environment is required to house the top file.

As of 2018.3.5 and 2019.2.1, it is possible to have __env__ as a catch-all environment.

Example:

file_roots:
 base:
 - /srv/salt
 dev:
 - /srv/salt/dev/services
 - /srv/salt/dev/states
 prod:
 - /srv/salt/prod/services
 - /srv/salt/prod/states
 __env__:
 - /srv/salt/default

Taking dynamic environments one step further, __env__ can also be used in
the file_roots filesystem path as of version 3005. It will be replaced with
the actual saltenv and searched for states and data to provide to the
minion. Note this substitution ONLY occurs for the __env__ environment. For
instance, this configuration:

file_roots:
 __env__:
 - /srv/__env__/salt

is equivalent to this static configuration:

file_roots:
 dev:
 - /srv/dev/salt
 test:
 - /srv/test/salt
 prod:
 - /srv/prod/salt

Note

For masterless Salt, this parameter must be specified in the minion config
file.

roots_update_interval

New in version 2018.3.0.

Default: 60

This option defines the update interval (in seconds) for
file_roots.

Note

Since file_roots consists of files local to the minion, the update
process for this fileserver backend just reaps the cache for this backend.

roots_update_interval: 120

gitfs: Git Remote File Server Backend

gitfs_remotes

Default: []

When using the git fileserver backend at least one git remote needs to be
defined. The user running the salt master will need read access to the repo.

The repos will be searched in order to find the file requested by a client and
the first repo to have the file will return it. Branches and tags are
translated into salt environments.

gitfs_remotes:
 - git://github.com/saltstack/salt-states.git
 - file:///var/git/saltmaster

Note

file:// repos will be treated as a remote and copied into the master's
gitfs cache, so only the local refs for those repos will be exposed as
fileserver environments.

As of 2014.7.0, it is possible to have per-repo versions of several of the
gitfs configuration parameters. For more information, see the GitFS
Walkthrough.

gitfs_provider

New in version 2014.7.0.

Optional parameter used to specify the provider to be used for gitfs. More
information can be found in the GitFS Walkthrough.

Must be either pygit2 or gitpython. If unset, then each will be tried
in that same order, and the first one with a compatible version installed will
be the provider that is used.

gitfs_provider: gitpython

gitfs_ssl_verify

Default: True

Specifies whether or not to ignore SSL certificate errors when fetching from
the repositories configured in gitfs_remotes. The False
setting is useful if you're using a git repo that uses a self-signed
certificate. However, keep in mind that setting this to anything other True
is a considered insecure, and using an SSH-based transport (if available) may
be a better option.

gitfs_ssl_verify: False

Note

pygit2 only supports disabling SSL verification in versions 0.23.2 and
newer.

Changed in version 2015.8.0: This option can now be configured on individual repositories as well. See
here for more info.

Changed in version 2016.11.0: The default config value changed from False to True.

gitfs_mountpoint

New in version 2014.7.0.

Default: ''

Specifies a path on the salt fileserver which will be prepended to all files
served by gitfs. This option can be used in conjunction with
gitfs_root. It can also be configured for an individual
repository, see here for more info.

gitfs_mountpoint: salt://foo/bar

Note

The salt:// protocol designation can be left off (in other words,
foo/bar and salt://foo/bar are equivalent). Assuming a file
baz.sh in the root of a gitfs remote, and the above example mountpoint,
this file would be served up via salt://foo/bar/baz.sh.

gitfs_root

Default: ''

Relative path to a subdirectory within the repository from which Salt should
begin to serve files. This is useful when there are files in the repository
that should not be available to the Salt fileserver. Can be used in conjunction
with gitfs_mountpoint. If used, then from Salt's perspective the
directories above the one specified will be ignored and the relative path will
(for the purposes of gitfs) be considered as the root of the repo.

gitfs_root: somefolder/otherfolder

Changed in version 2014.7.0: This option can now be configured on individual repositories as well. See
here for more info.

gitfs_base

Default: master

Defines which branch/tag should be used as the base environment.

gitfs_base: salt

Changed in version 2014.7.0: This option can now be configured on individual repositories as well. See
here for more info.

gitfs_saltenv

New in version 2016.11.0.

Default: []

Global settings for per-saltenv configuration parameters. Though per-saltenv configuration parameters are
typically one-off changes specific to a single gitfs remote, and thus more
often configured on a per-remote basis, this parameter can be used to specify
per-saltenv changes which should apply to all remotes. For example, the below
configuration will map the develop branch to the dev saltenv for all
gitfs remotes.

gitfs_saltenv:
 - dev:
 - ref: develop

gitfs_disable_saltenv_mapping

New in version 2018.3.0.

Default: False

When set to True, all saltenv mapping logic is disregarded (aside from
which branch/tag is mapped to the base saltenv). To use any other
environments, they must then be defined using per-saltenv configuration
parameters.

gitfs_disable_saltenv_mapping: True

Note

This is is a global configuration option, see here for examples of configuring it for individual
repositories.

gitfs_ref_types

New in version 2018.3.0.

Default: ['branch', 'tag', 'sha']

This option defines what types of refs are mapped to fileserver environments
(i.e. saltenvs). It also sets the order of preference when there are
ambiguously-named refs (i.e. when a branch and tag both have the same name).
The below example disables mapping of both tags and SHAs, so that only branches
are mapped as saltenvs:

gitfs_ref_types:
 - branch

Note

This is is a global configuration option, see here for examples of configuring it for individual
repositories.

Note

sha is special in that it will not show up when listing saltenvs (e.g.
with the fileserver.envs runner),
but works within states and with cp.cache_file to retrieve a file from a specific git SHA.

gitfs_saltenv_whitelist

New in version 2014.7.0.

Changed in version 2018.3.0: Renamed from gitfs_env_whitelist to gitfs_saltenv_whitelist

Default: []

Used to restrict which environments are made available. Can speed up state runs
if the repos in gitfs_remotes contain many branches/tags. More
information can be found in the GitFS Walkthrough.

gitfs_saltenv_whitelist:
 - base
 - v1.*
 - 'mybranch\d+'

gitfs_saltenv_blacklist

New in version 2014.7.0.

Changed in version 2018.3.0: Renamed from gitfs_env_blacklist to gitfs_saltenv_blacklist

Default: []

Used to restrict which environments are made available. Can speed up state runs
if the repos in gitfs_remotes contain many branches/tags. More
information can be found in the GitFS Walkthrough.

gitfs_saltenv_blacklist:
 - base
 - v1.*
 - 'mybranch\d+'

gitfs_global_lock

New in version 2015.8.9.

Default: True

When set to False, if there is an update lock for a gitfs remote and the
pid written to it is not running on the master, the lock file will be
automatically cleared and a new lock will be obtained. When set to True,
Salt will simply log a warning when there is an update lock present.

On single-master deployments, disabling this option can help automatically deal
with instances where the master was shutdown/restarted during the middle of a
gitfs update, leaving a update lock in place.

However, on multi-master deployments with the gitfs cachedir shared via
GlusterFS [http://www.gluster.org/], nfs, or another network filesystem, it is strongly recommended
not to disable this option as doing so will cause lock files to be removed if
they were created by a different master.

Disable global lock
gitfs_global_lock: False

gitfs_update_interval

New in version 2018.3.0.

Default: 60

This option defines the default update interval (in seconds) for gitfs remotes.
The update interval can also be set for a single repository via a
per-remote config option

gitfs_update_interval: 120

GitFS Authentication Options

These parameters only currently apply to the pygit2 gitfs provider. Examples of
how to use these can be found in the GitFS Walkthrough.

gitfs_user

New in version 2014.7.0.

Default: ''

Along with gitfs_password, is used to authenticate to HTTPS
remotes.

gitfs_user: git

Note

This is is a global configuration option, see here for examples of configuring it for individual
repositories.

gitfs_password

New in version 2014.7.0.

Default: ''

Along with gitfs_user, is used to authenticate to HTTPS remotes.
This parameter is not required if the repository does not use authentication.

gitfs_password: mypassword

Note

This is is a global configuration option, see here for examples of configuring it for individual
repositories.

gitfs_insecure_auth

New in version 2014.7.0.

Default: False

By default, Salt will not authenticate to an HTTP (non-HTTPS) remote. This
parameter enables authentication over HTTP. Enable this at your own risk.

gitfs_insecure_auth: True

Note

This is is a global configuration option, see here for examples of configuring it for individual
repositories.

gitfs_pubkey

New in version 2014.7.0.

Default: ''

Along with gitfs_privkey (and optionally
gitfs_passphrase), is used to authenticate to SSH remotes.
Required for SSH remotes.

gitfs_pubkey: /path/to/key.pub

Note

This is is a global configuration option, see here for examples of configuring it for individual
repositories.

gitfs_privkey

New in version 2014.7.0.

Default: ''

Along with gitfs_pubkey (and optionally
gitfs_passphrase), is used to authenticate to SSH remotes.
Required for SSH remotes.

gitfs_privkey: /path/to/key

Note

This is is a global configuration option, see here for examples of configuring it for individual
repositories.

gitfs_passphrase

New in version 2014.7.0.

Default: ''

This parameter is optional, required only when the SSH key being used to
authenticate is protected by a passphrase.

gitfs_passphrase: mypassphrase

Note

This is is a global configuration option, see here for examples of configuring it for individual
repositories.

gitfs_refspecs

New in version 2017.7.0.

Default: ['+refs/heads/*:refs/remotes/origin/*', '+refs/tags/*:refs/tags/*']

When fetching from remote repositories, by default Salt will fetch branches and
tags. This parameter can be used to override the default and specify
alternate refspecs to be fetched. More information on how this feature works
can be found in the GitFS Walkthrough.

gitfs_refspecs:
 - '+refs/heads/*:refs/remotes/origin/*'
 - '+refs/tags/*:refs/tags/*'
 - '+refs/pull/*/head:refs/remotes/origin/pr/*'
 - '+refs/pull/*/merge:refs/remotes/origin/merge/*'

hgfs: Mercurial Remote File Server Backend

hgfs_remotes

New in version 0.17.0.

Default: []

When using the hg fileserver backend at least one mercurial remote needs to
be defined. The user running the salt master will need read access to the repo.

The repos will be searched in order to find the file requested by a client and
the first repo to have the file will return it. Branches and/or bookmarks are
translated into salt environments, as defined by the
hgfs_branch_method parameter.

hgfs_remotes:
 - https://username@bitbucket.org/username/reponame

Note

As of 2014.7.0, it is possible to have per-repo versions of the
hgfs_root, hgfs_mountpoint,
hgfs_base, and hgfs_branch_method parameters.
For example:

hgfs_remotes:
 - https://username@bitbucket.org/username/repo1
 - base: saltstates
 - https://username@bitbucket.org/username/repo2:
 - root: salt
 - mountpoint: salt://foo/bar/baz
 - https://username@bitbucket.org/username/repo3:
 - root: salt/states
 - branch_method: mixed

hgfs_branch_method

New in version 0.17.0.

Default: branches

Defines the objects that will be used as fileserver environments.

	branches - Only branches and tags will be used

	bookmarks - Only bookmarks and tags will be used

	mixed - Branches, bookmarks, and tags will be used

hgfs_branch_method: mixed

Note

Starting in version 2014.1.0, the value of the hgfs_base
parameter defines which branch is used as the base environment,
allowing for a base environment to be used with an
hgfs_branch_method of bookmarks.

Prior to this release, the default branch will be used as the base
environment.

hgfs_mountpoint

New in version 2014.7.0.

Default: ''

Specifies a path on the salt fileserver which will be prepended to all files
served by hgfs. This option can be used in conjunction with
hgfs_root. It can also be configured on a per-remote basis, see
here for more info.

hgfs_mountpoint: salt://foo/bar

Note

The salt:// protocol designation can be left off (in other words,
foo/bar and salt://foo/bar are equivalent). Assuming a file
baz.sh in the root of an hgfs remote, this file would be served up via
salt://foo/bar/baz.sh.

hgfs_root

New in version 0.17.0.

Default: ''

Relative path to a subdirectory within the repository from which Salt should
begin to serve files. This is useful when there are files in the repository
that should not be available to the Salt fileserver. Can be used in conjunction
with hgfs_mountpoint. If used, then from Salt's perspective the
directories above the one specified will be ignored and the relative path will
(for the purposes of hgfs) be considered as the root of the repo.

hgfs_root: somefolder/otherfolder

Changed in version 2014.7.0: Ability to specify hgfs roots on a per-remote basis was added. See
here for more info.

hgfs_base

New in version 2014.1.0.

Default: default

Defines which branch should be used as the base environment. Change this if
hgfs_branch_method is set to bookmarks to specify which
bookmark should be used as the base environment.

hgfs_base: salt

hgfs_saltenv_whitelist

New in version 2014.7.0.

Changed in version 2018.3.0: Renamed from hgfs_env_whitelist to hgfs_saltenv_whitelist

Default: []

Used to restrict which environments are made available. Can speed up state runs
if your hgfs remotes contain many branches/bookmarks/tags. Full names, globs,
and regular expressions are supported. If using a regular expression, the
expression must match the entire minion ID.

If used, only branches/bookmarks/tags which match one of the specified
expressions will be exposed as fileserver environments.

If used in conjunction with hgfs_saltenv_blacklist, then the subset
of branches/bookmarks/tags which match the whitelist but do not match the
blacklist will be exposed as fileserver environments.

hgfs_saltenv_whitelist:
 - base
 - v1.*
 - 'mybranch\d+'

hgfs_saltenv_blacklist

New in version 2014.7.0.

Changed in version 2018.3.0: Renamed from hgfs_env_blacklist to hgfs_saltenv_blacklist

Default: []

Used to restrict which environments are made available. Can speed up state runs
if your hgfs remotes contain many branches/bookmarks/tags. Full names, globs,
and regular expressions are supported. If using a regular expression, the
expression must match the entire minion ID.

If used, branches/bookmarks/tags which match one of the specified expressions
will not be exposed as fileserver environments.

If used in conjunction with hgfs_saltenv_whitelist, then the subset
of branches/bookmarks/tags which match the whitelist but do not match the
blacklist will be exposed as fileserver environments.

hgfs_saltenv_blacklist:
 - base
 - v1.*
 - 'mybranch\d+'

hgfs_update_interval

New in version 2018.3.0.

Default: 60

This option defines the update interval (in seconds) for
hgfs_remotes.

hgfs_update_interval: 120

svnfs: Subversion Remote File Server Backend

svnfs_remotes

New in version 0.17.0.

Default: []

When using the svn fileserver backend at least one subversion remote needs
to be defined. The user running the salt master will need read access to the
repo.

The repos will be searched in order to find the file requested by a client and
the first repo to have the file will return it. The trunk, branches, and tags
become environments, with the trunk being the base environment.

svnfs_remotes:
 - svn://foo.com/svn/myproject

Note

As of 2014.7.0, it is possible to have per-repo versions of the following
configuration parameters:

	svnfs_root

	svnfs_mountpoint

	svnfs_trunk

	svnfs_branches

	svnfs_tags

For example:

svnfs_remotes:
 - svn://foo.com/svn/project1
 - svn://foo.com/svn/project2:
 - root: salt
 - mountpoint: salt://foo/bar/baz
 - svn//foo.com/svn/project3:
 - root: salt/states
 - branches: branch
 - tags: tag

svnfs_mountpoint

New in version 2014.7.0.

Default: ''

Specifies a path on the salt fileserver which will be prepended to all files
served by hgfs. This option can be used in conjunction with
svnfs_root. It can also be configured on a per-remote basis, see
here for more info.

svnfs_mountpoint: salt://foo/bar

Note

The salt:// protocol designation can be left off (in other words,
foo/bar and salt://foo/bar are equivalent). Assuming a file
baz.sh in the root of an svnfs remote, this file would be served up via
salt://foo/bar/baz.sh.

svnfs_root

New in version 0.17.0.

Default: ''

Relative path to a subdirectory within the repository from which Salt should
begin to serve files. This is useful when there are files in the repository
that should not be available to the Salt fileserver. Can be used in conjunction
with svnfs_mountpoint. If used, then from Salt's perspective the
directories above the one specified will be ignored and the relative path will
(for the purposes of svnfs) be considered as the root of the repo.

svnfs_root: somefolder/otherfolder

Changed in version 2014.7.0: Ability to specify svnfs roots on a per-remote basis was added. See
here for more info.

svnfs_trunk

New in version 2014.7.0.

Default: trunk

Path relative to the root of the repository where the trunk is located. Can
also be configured on a per-remote basis, see here for more info.

svnfs_trunk: trunk

svnfs_branches

New in version 2014.7.0.

Default: branches

Path relative to the root of the repository where the branches are located. Can
also be configured on a per-remote basis, see here for more info.

svnfs_branches: branches

svnfs_tags

New in version 2014.7.0.

Default: tags

Path relative to the root of the repository where the tags are located. Can
also be configured on a per-remote basis, see here for more info.

svnfs_tags: tags

svnfs_saltenv_whitelist

New in version 2014.7.0.

Changed in version 2018.3.0: Renamed from svnfs_env_whitelist to svnfs_saltenv_whitelist

Default: []

Used to restrict which environments are made available. Can speed up state runs
if your svnfs remotes contain many branches/tags. Full names, globs, and
regular expressions are supported. If using a regular expression, the expression
must match the entire minion ID.

If used, only branches/tags which match one of the specified expressions will
be exposed as fileserver environments.

If used in conjunction with svnfs_saltenv_blacklist, then the subset
of branches/tags which match the whitelist but do not match the blacklist
will be exposed as fileserver environments.

svnfs_saltenv_whitelist:
 - base
 - v1.*
 - 'mybranch\d+'

svnfs_saltenv_blacklist

New in version 2014.7.0.

Changed in version 2018.3.0: Renamed from svnfs_env_blacklist to svnfs_saltenv_blacklist

Default: []

Used to restrict which environments are made available. Can speed up state runs
if your svnfs remotes contain many branches/tags. Full names, globs, and
regular expressions are supported. If using a regular expression, the
expression must match the entire minion ID.

If used, branches/tags which match one of the specified expressions will not
be exposed as fileserver environments.

If used in conjunction with svnfs_saltenv_whitelist, then the subset
of branches/tags which match the whitelist but do not match the blacklist
will be exposed as fileserver environments.

svnfs_saltenv_blacklist:
 - base
 - v1.*
 - 'mybranch\d+'

svnfs_update_interval

New in version 2018.3.0.

Default: 60

This option defines the update interval (in seconds) for
svnfs_remotes.

svnfs_update_interval: 120

minionfs: MinionFS Remote File Server Backend

minionfs_env

New in version 2014.7.0.

Default: base

Environment from which MinionFS files are made available.

minionfs_env: minionfs

minionfs_mountpoint

New in version 2014.7.0.

Default: ''

Specifies a path on the salt fileserver from which minionfs files are served.

minionfs_mountpoint: salt://foo/bar

Note

The salt:// protocol designation can be left off (in other words,
foo/bar and salt://foo/bar are equivalent).

minionfs_whitelist

New in version 2014.7.0.

Default: []

Used to restrict which minions' pushed files are exposed via minionfs. If using
a regular expression, the expression must match the entire minion ID.

If used, only the pushed files from minions which match one of the specified
expressions will be exposed.

If used in conjunction with minionfs_blacklist, then the subset
of hosts which match the whitelist but do not match the blacklist will be
exposed.

minionfs_whitelist:
 - server01
 - dev*
 - 'mail\d+.mydomain.tld'

minionfs_blacklist

New in version 2014.7.0.

Default: []

Used to restrict which minions' pushed files are exposed via minionfs. If using
a regular expression, the expression must match the entire minion ID.

If used, only the pushed files from minions which match one of the specified
expressions will not be exposed.

If used in conjunction with minionfs_whitelist, then the subset
of hosts which match the whitelist but do not match the blacklist will be
exposed.

minionfs_blacklist:
 - server01
 - dev*
 - 'mail\d+.mydomain.tld'

minionfs_update_interval

New in version 2018.3.0.

Default: 60

This option defines the update interval (in seconds) for MinionFS.

Note

Since MinionFS consists of files local to the
master, the update process for this fileserver backend just reaps the cache
for this backend.

minionfs_update_interval: 120

s3fs: S3 File Server Backend

New in version 0.16.0.

See the s3fs documentation for usage examples.

s3fs_update_interval

New in version 2018.3.0.

Default: 60

This option defines the update interval (in seconds) for s3fs.

s3fs_update_interval: 120

fileserver_interval

New in version 3006.0.

Default: 3600

Defines how often to restart the master's FilesServerUpdate process.

fileserver_interval: 9600

Pillar Configuration

pillar_roots

Changed in version 3005.

Default:

base:
 - /srv/pillar

Set the environments and directories used to hold pillar sls data. This
configuration is the same as file_roots:

As of 2017.7.5 and 2018.3.1, it is possible to have __env__ as a catch-all environment.

Example:

pillar_roots:
 base:
 - /srv/pillar
 dev:
 - /srv/pillar/dev
 prod:
 - /srv/pillar/prod
 __env__:
 - /srv/pillar/others

Taking dynamic environments one step further, __env__ can also be used in
the pillar_roots filesystem path as of version 3005. It will be replaced
with the actual pillarenv and searched for Pillar data to provide to the
minion. Note this substitution ONLY occurs for the __env__ environment. For
instance, this configuration:

pillar_roots:
 __env__:
 - /srv/__env__/pillar

is equivalent to this static configuration:

pillar_roots:
 dev:
 - /srv/dev/pillar
 test:
 - /srv/test/pillar
 prod:
 - /srv/prod/pillar

on_demand_ext_pillar

New in version 2016.3.6,2016.11.3,2017.7.0.

Default: ['libvirt', 'virtkey']

The external pillars permitted to be used on-demand using pillar.ext.

on_demand_ext_pillar:
 - libvirt
 - virtkey
 - git

Warning

This will allow minions to request specific pillar data via
pillar.ext, and may be considered a
security risk. However, pillar data generated in this way will not affect
the in-memory pillar data, so this risk is
limited to instances in which states/modules/etc. (built-in or custom) rely
upon pillar data generated by pillar.ext.

decrypt_pillar

New in version 2017.7.0.

Default: []

A list of paths to be recursively decrypted during pillar compilation.

decrypt_pillar:
 - 'foo:bar': gpg
 - 'lorem:ipsum:dolor'

Entries in this list can be formatted either as a simple string, or as a
key/value pair, with the key being the pillar location, and the value being the
renderer to use for pillar decryption. If the former is used, the renderer
specified by decrypt_pillar_default will be used.

decrypt_pillar_delimiter

New in version 2017.7.0.

Default: :

The delimiter used to distinguish nested data structures in the
decrypt_pillar option.

decrypt_pillar_delimiter: '|'
decrypt_pillar:
 - 'foo|bar': gpg
 - 'lorem|ipsum|dolor'

decrypt_pillar_default

New in version 2017.7.0.

Default: gpg

The default renderer used for decryption, if one is not specified for a given
pillar key in decrypt_pillar.

decrypt_pillar_default: my_custom_renderer

decrypt_pillar_renderers

New in version 2017.7.0.

Default: ['gpg']

List of renderers which are permitted to be used for pillar decryption.

decrypt_pillar_renderers:
 - gpg
 - my_custom_renderer

gpg_decrypt_must_succeed

New in version 3005.

Default: False

If this is True and the ciphertext could not be decrypted, then an error is
raised.

Sending the ciphertext through basically is never desired, for example if a
state is setting a database password from pillar and gpg rendering fails, then
the state will update the password to the ciphertext, which by definition is
not encrypted.

Warning

The value defaults to False for backwards compatibility. In the
Chlorine release, this option will default to True.

gpg_decrypt_must_succeed: False

pillar_opts

Default: False

The pillar_opts option adds the master configuration file data to a dict in
the pillar called master. This can be used to set simple configurations in
the master config file that can then be used on minions.

Note that setting this option to True means the master config file will be
included in all minion's pillars. While this makes global configuration of services
and systems easy, it may not be desired if sensitive data is stored in the master
configuration.

pillar_opts: False

pillar_safe_render_error

Default: True

The pillar_safe_render_error option prevents the master from passing pillar
render errors to the minion. This is set on by default because the error could
contain templating data which would give that minion information it shouldn't
have, like a password! When set True the error message will only show:

Rendering SLS 'my.sls' failed. Please see master log for details.

pillar_safe_render_error: True

ext_pillar

The ext_pillar option allows for any number of external pillar interfaces to be
called when populating pillar data. The configuration is based on ext_pillar
functions. The available ext_pillar functions can be found herein:

salt/pillar [https://github.com/saltstack/salt/blob/master/salt/pillar]

By default, the ext_pillar interface is not configured to run.

Default: []

ext_pillar:
 - hiera: /etc/hiera.yaml
 - cmd_yaml: cat /etc/salt/yaml
 - reclass:
 inventory_base_uri: /etc/reclass

There are additional details at Pillars

ext_pillar_first

New in version 2015.5.0.

Default: False

This option allows for external pillar sources to be evaluated before
pillar_roots. External pillar data is evaluated separately from
pillar_roots pillar data, and then both sets of pillar data are
merged into a single pillar dictionary, so the value of this config option will
have an impact on which key "wins" when there is one of the same name in both
the external pillar data and pillar_roots pillar data. By
setting this option to True, ext_pillar keys will be overridden by
pillar_roots, while leaving it as False will allow
ext_pillar keys to override those from pillar_roots.

Note

For a while, this config option did not work as specified above, because of
a bug in Pillar compilation. This bug has been resolved in version 2016.3.4
and later.

ext_pillar_first: False

pillarenv_from_saltenv

Default: False

When set to True, the pillarenv value will assume the value
of the effective saltenv when running states. This essentially makes salt-run
pillar.show_pillar saltenv=dev equivalent to salt-run pillar.show_pillar
saltenv=dev pillarenv=dev. If pillarenv is set on the CLI, it
will override this option.

pillarenv_from_saltenv: True

Note

For salt remote execution commands this option should be set in the Minion
configuration instead.

pillar_raise_on_missing

New in version 2015.5.0.

Default: False

Set this option to True to force a KeyError to be raised whenever an
attempt to retrieve a named value from pillar fails. When this option is set
to False, the failed attempt returns an empty string.

Git External Pillar (git_pillar) Configuration Options

git_pillar_provider

New in version 2015.8.0.

Specify the provider to be used for git_pillar. Must be either pygit2 or
gitpython. If unset, then both will be tried in that same order, and the
first one with a compatible version installed will be the provider that is
used.

git_pillar_provider: gitpython

git_pillar_base

New in version 2015.8.0.

Default: master

If the desired branch matches this value, and the environment is omitted from
the git_pillar configuration, then the environment for that git_pillar remote
will be base. For example, in the configuration below, the foo
branch/tag would be assigned to the base environment, while bar would
be mapped to the bar environment.

git_pillar_base: foo

ext_pillar:
 - git:
 - foo https://mygitserver/git-pillar.git
 - bar https://mygitserver/git-pillar.git

git_pillar_branch

New in version 2015.8.0.

Default: master

If the branch is omitted from a git_pillar remote, then this branch will be
used instead. For example, in the configuration below, the first two remotes
would use the pillardata branch/tag, while the third would use the foo
branch/tag.

git_pillar_branch: pillardata

ext_pillar:
 - git:
 - https://mygitserver/pillar1.git
 - https://mygitserver/pillar2.git:
 - root: pillar
 - foo https://mygitserver/pillar3.git

git_pillar_env

New in version 2015.8.0.

Default: '' (unset)

Environment to use for git_pillar remotes. This is normally derived from the
branch/tag (or from a per-remote env parameter), but if set this will
override the process of deriving the env from the branch/tag name. For example,
in the configuration below the foo branch would be assigned to the base
environment, while the bar branch would need to explicitly have bar
configured as its environment to keep it from also being mapped to the
base environment.

git_pillar_env: base

ext_pillar:
 - git:
 - foo https://mygitserver/git-pillar.git
 - bar https://mygitserver/git-pillar.git:
 - env: bar

For this reason, this option is recommended to be left unset, unless the use
case calls for all (or almost all) of the git_pillar remotes to use the same
environment irrespective of the branch/tag being used.

git_pillar_root

New in version 2015.8.0.

Default: ''

Path relative to the root of the repository where the git_pillar top file and
SLS files are located. In the below configuration, the pillar top file and SLS
files would be looked for in a subdirectory called pillar.

git_pillar_root: pillar

ext_pillar:
 - git:
 - master https://mygitserver/pillar1.git
 - master https://mygitserver/pillar2.git

Note

This is a global option. If only one or two repos need to have their files
sourced from a subdirectory, then git_pillar_root can be
omitted and the root can be specified on a per-remote basis, like so:

ext_pillar:
 - git:
 - master https://mygitserver/pillar1.git
 - master https://mygitserver/pillar2.git:
 - root: pillar

In this example, for the first remote the top file and SLS files would be
looked for in the root of the repository, while in the second remote the
pillar data would be retrieved from the pillar subdirectory.

git_pillar_ssl_verify

New in version 2015.8.0.

Changed in version 2016.11.0.

Default: False

Specifies whether or not to ignore SSL certificate errors when contacting the
remote repository. The False setting is useful if you're using a
git repo that uses a self-signed certificate. However, keep in mind that
setting this to anything other True is a considered insecure, and using an
SSH-based transport (if available) may be a better option.

In the 2016.11.0 release, the default config value changed from False to
True.

git_pillar_ssl_verify: True

Note

pygit2 only supports disabling SSL verification in versions 0.23.2 and
newer.

git_pillar_global_lock

New in version 2015.8.9.

Default: True

When set to False, if there is an update/checkout lock for a git_pillar
remote and the pid written to it is not running on the master, the lock file
will be automatically cleared and a new lock will be obtained. When set to
True, Salt will simply log a warning when there is an lock present.

On single-master deployments, disabling this option can help automatically deal
with instances where the master was shutdown/restarted during the middle of a
git_pillar update/checkout, leaving a lock in place.

However, on multi-master deployments with the git_pillar cachedir shared via
GlusterFS [http://www.gluster.org/], nfs, or another network filesystem, it is strongly recommended
not to disable this option as doing so will cause lock files to be removed if
they were created by a different master.

Disable global lock
git_pillar_global_lock: False

git_pillar_includes

New in version 2017.7.0.

Default: True

Normally, when processing git_pillar remotes, if more than one repo under the same git
section in the ext_pillar configuration refers to the same pillar
environment, then each repo in a given environment will have access to the
other repos' files to be referenced in their top files. However, it may be
desirable to disable this behavior. If so, set this value to False.

For a more detailed examination of how includes work, see this
explanation from the git_pillar documentation.

git_pillar_includes: False

git_pillar_update_interval

New in version 3000.

Default: 60

This option defines the default update interval (in seconds) for git_pillar
remotes. The update is handled within the global loop, hence
git_pillar_update_interval should be a multiple of loop_interval.

git_pillar_update_interval: 120

Git External Pillar Authentication Options

These parameters only currently apply to the pygit2
git_pillar_provider. Authentication works the same as it does
in gitfs, as outlined in the GitFS Walkthrough,
though the global configuration options are named differently to reflect that
they are for git_pillar instead of gitfs.

git_pillar_user

New in version 2015.8.0.

Default: ''

Along with git_pillar_password, is used to authenticate to HTTPS
remotes.

git_pillar_user: git

git_pillar_password

New in version 2015.8.0.

Default: ''

Along with git_pillar_user, is used to authenticate to HTTPS
remotes. This parameter is not required if the repository does not use
authentication.

git_pillar_password: mypassword

git_pillar_insecure_auth

New in version 2015.8.0.

Default: False

By default, Salt will not authenticate to an HTTP (non-HTTPS) remote. This
parameter enables authentication over HTTP. Enable this at your own risk.

git_pillar_insecure_auth: True

git_pillar_pubkey

New in version 2015.8.0.

Default: ''

Along with git_pillar_privkey (and optionally
git_pillar_passphrase), is used to authenticate to SSH remotes.

git_pillar_pubkey: /path/to/key.pub

git_pillar_privkey

New in version 2015.8.0.

Default: ''

Along with git_pillar_pubkey (and optionally
git_pillar_passphrase), is used to authenticate to SSH remotes.

git_pillar_privkey: /path/to/key

git_pillar_passphrase

New in version 2015.8.0.

Default: ''

This parameter is optional, required only when the SSH key being used to
authenticate is protected by a passphrase.

git_pillar_passphrase: mypassphrase

git_pillar_refspecs

New in version 2017.7.0.

Default: ['+refs/heads/*:refs/remotes/origin/*', '+refs/tags/*:refs/tags/*']

When fetching from remote repositories, by default Salt will fetch branches and
tags. This parameter can be used to override the default and specify
alternate refspecs to be fetched. This parameter works similarly to its
GitFS counterpart, in that it can be
configured both globally and for individual remotes.

git_pillar_refspecs:
 - '+refs/heads/*:refs/remotes/origin/*'
 - '+refs/tags/*:refs/tags/*'
 - '+refs/pull/*/head:refs/remotes/origin/pr/*'
 - '+refs/pull/*/merge:refs/remotes/origin/merge/*'

git_pillar_verify_config

New in version 2017.7.0.

Default: True

By default, as the master starts it performs some sanity checks on the
configured git_pillar repositories. If any of these sanity checks fail (such as
when an invalid configuration is used), the master daemon will abort.

To skip these sanity checks, set this option to False.

git_pillar_verify_config: False

Pillar Merging Options

pillar_source_merging_strategy

New in version 2014.7.0.

Default: smart

The pillar_source_merging_strategy option allows you to configure merging
strategy between different sources. It accepts 5 values:

	none:

It will not do any merging at all and only parse the pillar data from the passed environment and 'base' if no environment was specified.

New in version 2016.3.4.

	recurse:

It will recursively merge data. For example, theses 2 sources:

foo: 42
bar:
 element1: True

bar:
 element2: True
baz: quux

will be merged as:

foo: 42
bar:
 element1: True
 element2: True
baz: quux

	aggregate:

instructs aggregation of elements between sources that use the #!yamlex renderer.

For example, these two documents:

foo: 42
bar: !aggregate {
 element1: True
}
baz: !aggregate quux

bar: !aggregate {
 element2: True
}
baz: !aggregate quux2

will be merged as:

foo: 42
bar:
 element1: True
 element2: True
baz:
 - quux
 - quux2

Note

This requires that the render pipeline
defined in the renderer master configuration ends in
yamlex.

	overwrite:

Will use the behaviour of the 2014.1 branch and earlier.

Overwrites elements according the order in which they are processed.

First pillar processed:

A:
 first_key: blah
 second_key: blah

Second pillar processed:

A:
 third_key: blah
 fourth_key: blah

will be merged as:

A:
 third_key: blah
 fourth_key: blah

	smart (default):

Guesses the best strategy based on the "renderer" setting.

Note

In order for yamlex based features such as !aggregate to work as expected
across documents using the default smart merge strategy, the renderer
config option must be set to jinja|yamlex or similar.

pillar_merge_lists

New in version 2015.8.0.

Default: False

Recursively merge lists by aggregating them instead of replacing them.

pillar_merge_lists: False

pillar_includes_override_sls

New in version 2017.7.6,2018.3.1.

Default: False

Prior to version 2017.7.3, keys from pillar includes
would be merged on top of the pillar SLS. Since 2017.7.3, the includes are
merged together and then the pillar SLS is merged on top of that.

Set this option to True to return to the old behavior.

pillar_includes_override_sls: True

Pillar Cache Options

pillar_cache

New in version 2015.8.8.

Default: False

A master can cache pillars locally to bypass the expense of having to render them
for each minion on every request. This feature should only be enabled in cases
where pillar rendering time is known to be unsatisfactory and any attendant security
concerns about storing pillars in a master cache have been addressed.

When enabling this feature, be certain to read through the additional pillar_cache_*
configuration options to fully understand the tunable parameters and their implications.

pillar_cache: False

Note

Setting pillar_cache: True has no effect on
targeting minions with pillar.

pillar_cache_ttl

New in version 2015.8.8.

Default: 3600

If and only if a master has set pillar_cache: True, the cache TTL controls the amount
of time, in seconds, before the cache is considered invalid by a master and a fresh
pillar is recompiled and stored.
The cache TTL does not prevent pillar cache from being refreshed before its TTL expires.

pillar_cache_backend

New in version 2015.8.8.

Default: disk

If an only if a master has set pillar_cache: True, one of several storage providers
can be utilized:

	disk (default):

The default storage backend. This caches rendered pillars to the master cache.
Rendered pillars are serialized and deserialized as msgpack structures for speed.
Note that pillars are stored UNENCRYPTED. Ensure that the master cache has permissions
set appropriately (sane defaults are provided).

	memory [EXPERIMENTAL]:

An optional backend for pillar caches which uses a pure-Python
in-memory data structure for maximal performance. There are several caveats,
however. First, because each master worker contains its own in-memory cache,
there is no guarantee of cache consistency between minion requests. This
works best in situations where the pillar rarely if ever changes. Secondly,
and perhaps more importantly, this means that unencrypted pillars will
be accessible to any process which can examine the memory of the salt-master!
This may represent a substantial security risk.

pillar_cache_backend: disk

Master Reactor Settings

reactor

Default: []

Defines a salt reactor. See the Reactor documentation for more
information.

reactor:
 - 'salt/minion/*/start':
 - salt://reactor/startup_tasks.sls

reactor_refresh_interval

Default: 60

The TTL for the cache of the reactor configuration.

reactor_refresh_interval: 60

reactor_worker_threads

Default: 10

The number of workers for the runner/wheel in the reactor.

reactor_worker_threads: 10

reactor_worker_hwm

Default: 10000

The queue size for workers in the reactor.

reactor_worker_hwm: 10000

Salt-API Master Settings

There are some settings for salt-api that can be
configured on the Salt Master.

api_logfile

Default: /var/log/salt/api

The logfile location for salt-api.

api_logfile: /var/log/salt/api

api_pidfile

Default: /var/run/salt-api.pid

If this master will be running salt-api, specify the pidfile of the
salt-api daemon.

api_pidfile: /var/run/salt-api.pid

rest_timeout

Default: 300

Used by salt-api for the master requests timeout.

rest_timeout: 300

netapi_enable_clients

New in version 3006.0.

Default: []

Used by salt-api to enable access to the listed clients. Unless a
client is addded to this list, requests will be rejected before
authentication is attempted or processing of the low state occurs.

This can be used to only expose the required functionality via
salt-api.

Configuration with all possible clients enabled:

netapi_enable_clients:
 - local
 - local_async
 - local_batch
 - local_subset
 - runner
 - runner_async
 - ssh
 - wheel
 - wheel_async

Note

Enabling all clients is not recommended - only enable the
clients that provide the functionality required.

Syndic Server Settings

A Salt syndic is a Salt master used to pass commands from a higher Salt master
to minions below the syndic. Using the syndic is simple. If this is a master
that will have syndic servers(s) below it, set the order_masters setting to
True.

If this is a master that will be running a syndic daemon for passthrough the
syndic_master setting needs to be set to the location of the master server.

Do not forget that, in other words, it means that it shares with the local minion
its ID and PKI directory.

order_masters

Default: False

Extra data needs to be sent with publications if the master is controlling a
lower level master via a syndic minion. If this is the case the order_masters
value must be set to True

order_masters: False

syndic_master

Changed in version 2016.3.5,2016.11.1: Set default higher level master address.

Default: masterofmasters

If this master will be running the salt-syndic to connect to a higher level
master, specify the higher level master with this configuration value.

syndic_master: masterofmasters

You can optionally connect a syndic to multiple higher level masters by
setting the syndic_master value to a list:

syndic_master:
 - masterofmasters1
 - masterofmasters2

Each higher level master must be set up in a multi-master configuration.

syndic_master_port

Default: 4506

If this master will be running the salt-syndic to connect to a higher level
master, specify the higher level master port with this configuration value.

syndic_master_port: 4506

syndic_pidfile

Default: /var/run/salt-syndic.pid

If this master will be running the salt-syndic to connect to a higher level
master, specify the pidfile of the syndic daemon.

syndic_pidfile: /var/run/syndic.pid

syndic_log_file

Default: /var/log/salt/syndic

If this master will be running the salt-syndic to connect to a higher level
master, specify the log file of the syndic daemon.

syndic_log_file: /var/log/salt-syndic.log

syndic_failover

New in version 2016.3.0.

Default: random

The behaviour of the multi-syndic when connection to a master of masters failed.
Can specify random (default) or ordered. If set to random, masters
will be iterated in random order. If ordered is specified, the configured
order will be used.

syndic_failover: random

syndic_wait

Default: 5

The number of seconds for the salt client to wait for additional syndics to
check in with their lists of expected minions before giving up.

syndic_wait: 5

syndic_forward_all_events

New in version 2017.7.0.

Default: False

Option on multi-syndic or single when connected to multiple masters to be able to
send events to all connected masters.

syndic_forward_all_events: False

Peer Publish Settings

Salt minions can send commands to other minions, but only if the minion is
allowed to. By default "Peer Publication" is disabled, and when enabled it
is enabled for specific minions and specific commands. This allows secure
compartmentalization of commands based on individual minions.

peer

Default: {}

The configuration uses regular expressions to match minions and then a list
of regular expressions to match functions. The following will allow the
minion authenticated as foo.example.com to execute functions from the test
and pkg modules.

peer:
 foo\.example\.com:
 - test\..*
 - pkg\..*

This will allow all minions to execute all commands:

peer:
 .*:
 - .*

This is not recommended, since it would allow anyone who gets root on any
single minion to instantly have root on all of the minions!

It is also possible to limit target hosts with the Compound Matcher.
You can achieve this by adding another layer in between the source and the
allowed functions:

peer:
 '.*\.example\.com':
 - 'G@role:db':
 - test\..*
 - pkg\..*

Note

Notice that the source hosts are matched by a regular expression
on their minion ID, while target hosts can be matched by any of
the available matchers.

Note that globbing and regex matching on pillar values is not supported. You can only match exact values.

peer_run

Default: {}

The peer_run option is used to open up runners on the master to access from the
minions. The peer_run configuration matches the format of the peer
configuration.

The following example would allow foo.example.com to execute the manage.up
runner:

peer_run:
 foo.example.com:
 - manage.up

Master Logging Settings

log_file

Default: /var/log/salt/master

The master log can be sent to a regular file, local path name, or network
location. See also log_file.

Examples:

log_file: /var/log/salt/master

log_file: file:///dev/log

log_file: udp://loghost:10514

log_level

Default: warning

The level of messages to send to the console. See also log_level.

log_level: warning

Any log level below the info level is INSECURE and may log sensitive data. This currently includes:
#. profile
#. debug
#. trace
#. garbage
#. all

log_level_logfile

Default: warning

The level of messages to send to the log file. See also
log_level_logfile. When it is not set explicitly
it will inherit the level set by log_level option.

log_level_logfile: warning

Any log level below the info level is INSECURE and may log sensitive data. This currently includes:
#. profile
#. debug
#. trace
#. garbage
#. all

log_datefmt

Default: %H:%M:%S

The date and time format used in console log messages. See also
log_datefmt.

log_datefmt: '%H:%M:%S'

log_datefmt_logfile

Default: %Y-%m-%d %H:%M:%S

The date and time format used in log file messages. See also
log_datefmt_logfile.

log_datefmt_logfile: '%Y-%m-%d %H:%M:%S'

log_fmt_console

Default: [%(levelname)-8s] %(message)s

The format of the console logging messages. See also
log_fmt_console.

Note

Log colors are enabled in log_fmt_console rather than the
color config since the logging system is loaded before the
master config.

Console log colors are specified by these additional formatters:

%(colorlevel)s
%(colorname)s
%(colorprocess)s
%(colormsg)s

Since it is desirable to include the surrounding brackets, '[' and ']', in
the coloring of the messages, these color formatters also include padding
as well. Color LogRecord attributes are only available for console
logging.

log_fmt_console: '%(colorlevel)s %(colormsg)s'
log_fmt_console: '[%(levelname)-8s] %(message)s'

log_fmt_logfile

Default: %(asctime)s,%(msecs)03d [%(name)-17s][%(levelname)-8s] %(message)s

The format of the log file logging messages. See also
log_fmt_logfile.

log_fmt_logfile: '%(asctime)s,%(msecs)03d [%(name)-17s][%(levelname)-8s] %(message)s'

log_granular_levels

Default: {}

This can be used to control logging levels more specifically. See also
log_granular_levels.

log_rotate_max_bytes

Default: 0

The maximum number of bytes a single log file may contain before it is rotated.
A value of 0 disables this feature. Currently only supported on Windows. On
other platforms, use an external tool such as 'logrotate' to manage log files.
log_rotate_max_bytes

log_rotate_backup_count

Default: 0

The number of backup files to keep when rotating log files. Only used if
log_rotate_max_bytes is greater than 0. Currently only supported
on Windows. On other platforms, use an external tool such as 'logrotate' to
manage log files.
log_rotate_backup_count

Node Groups

nodegroups

Default: {}

Node groups allow for logical groupings of minion nodes.
A group consists of a group name and a compound target.

nodegroups:
 group1: 'L@foo.domain.com,bar.domain.com,baz.domain.com or bl*.domain.com'
 group2: 'G@os:Debian and foo.domain.com'
 group3: 'G@os:Debian and N@group1'
 group4:
 - 'G@foo:bar'
 - 'or'
 - 'G@foo:baz'

More information on using nodegroups can be found here.

Range Cluster Settings

range_server

Default: 'range:80'

The range server (and optional port) that serves your cluster information
https://github.com/ytoolshed/range/wiki/%22yamlfile%22-module-file-spec

range_server: range:80

Include Configuration

Configuration can be loaded from multiple files. The order in which this is
done is:

	The master config file itself

	The files matching the glob in default_include

	The files matching the glob in include (if defined)

Each successive step overrides any values defined in the previous steps.
Therefore, any config options defined in one of the
default_include files would override the same value in the
master config file, and any options defined in include would
override both.

default_include

Default: master.d/*.conf

The master can include configuration from other files. Per default the
master will automatically include all config files from master.d/*.conf
where master.d is relative to the directory of the master configuration
file.

Note

Salt creates files in the master.d directory for its own use. These
files are prefixed with an underscore. A common example of this is the
_schedule.conf file.

include

Default: not defined

The master can include configuration from other files. To enable this,
pass a list of paths to this option. The paths can be either relative or
absolute; if relative, they are considered to be relative to the directory
the main minion configuration file lives in. Paths can make use of
shell-style globbing. If no files are matched by a path passed to this
option then the master will log a warning message.

Include files from a master.d directory in the same
directory as the master config file
include: master.d/*

Include a single extra file into the configuration
include: /etc/roles/webserver

Include several files and the master.d directory
include:
 - extra_config
 - master.d/*
 - /etc/roles/webserver

Keepalive Settings

tcp_keepalive

Default: True

The tcp keepalive interval to set on TCP ports. This setting can be used to tune Salt
connectivity issues in messy network environments with misbehaving firewalls.

tcp_keepalive: True

tcp_keepalive_cnt

Default: -1

Sets the ZeroMQ TCP keepalive count. May be used to tune issues with minion disconnects.

tcp_keepalive_cnt: -1

tcp_keepalive_idle

Default: 300

Sets ZeroMQ TCP keepalive idle. May be used to tune issues with minion disconnects.

tcp_keepalive_idle: 300

tcp_keepalive_intvl

Default: -1

Sets ZeroMQ TCP keepalive interval. May be used to tune issues with minion disconnects.

tcp_keepalive_intvl': -1

Windows Software Repo Settings

winrepo_provider

New in version 2015.8.0.

Specify the provider to be used for winrepo. Must be either pygit2 or
gitpython. If unset, then both will be tried in that same order, and the
first one with a compatible version installed will be the provider that is
used.

winrepo_provider: gitpython

winrepo_dir

Changed in version 2015.8.0: Renamed from win_repo to winrepo_dir.

Default: /srv/salt/win/repo

Location on the master where the winrepo_remotes are checked out
for pre-2015.8.0 minions. 2015.8.0 and later minions use
winrepo_remotes_ng instead.

winrepo_dir: /srv/salt/win/repo

winrepo_dir_ng

New in version 2015.8.0: A new ng repo was added.

Default: /srv/salt/win/repo-ng

Location on the master where the winrepo_remotes_ng are checked
out for 2015.8.0 and later minions.

winrepo_dir_ng: /srv/salt/win/repo-ng

winrepo_cachefile

Changed in version 2015.8.0: Renamed from win_repo_mastercachefile to winrepo_cachefile

Note

2015.8.0 and later minions do not use this setting since the cachefile
is now generated by the minion.

Default: winrepo.p

Path relative to winrepo_dir where the winrepo cache should be
created.

winrepo_cachefile: winrepo.p

winrepo_remotes

Changed in version 2015.8.0: Renamed from win_gitrepos to winrepo_remotes.

Default: ['https://github.com/saltstack/salt-winrepo.git']

List of git repositories to checkout and include in the winrepo for
pre-2015.8.0 minions. 2015.8.0 and later minions use
winrepo_remotes_ng instead.

winrepo_remotes:
 - https://github.com/saltstack/salt-winrepo.git

To specify a specific revision of the repository, prepend a commit ID to the
URL of the repository:

winrepo_remotes:
 - '<commit_id> https://github.com/saltstack/salt-winrepo.git'

Replace <commit_id> with the SHA1 hash of a commit ID. Specifying a commit
ID is useful in that it allows one to revert back to a previous version in the
event that an error is introduced in the latest revision of the repo.

winrepo_remotes_ng

New in version 2015.8.0: A new ng repo was added.

Default: ['https://github.com/saltstack/salt-winrepo-ng.git']

List of git repositories to checkout and include in the winrepo for
2015.8.0 and later minions.

winrepo_remotes_ng:
 - https://github.com/saltstack/salt-winrepo-ng.git

To specify a specific revision of the repository, prepend a commit ID to the
URL of the repository:

winrepo_remotes_ng:
 - '<commit_id> https://github.com/saltstack/salt-winrepo-ng.git'

Replace <commit_id> with the SHA1 hash of a commit ID. Specifying a commit
ID is useful in that it allows one to revert back to a previous version in the
event that an error is introduced in the latest revision of the repo.

winrepo_branch

New in version 2015.8.0.

Default: master

If the branch is omitted from a winrepo remote, then this branch will be
used instead. For example, in the configuration below, the first two remotes
would use the winrepo branch/tag, while the third would use the foo
branch/tag.

winrepo_branch: winrepo

winrepo_remotes:
 - https://mygitserver/winrepo1.git
 - https://mygitserver/winrepo2.git:
 - foo https://mygitserver/winrepo3.git

winrepo_ssl_verify

New in version 2015.8.0.

Changed in version 2016.11.0.

Default: False

Specifies whether or not to ignore SSL certificate errors when contacting the
remote repository. The False setting is useful if you're using a
git repo that uses a self-signed certificate. However, keep in mind that
setting this to anything other True is a considered insecure, and using an
SSH-based transport (if available) may be a better option.

In the 2016.11.0 release, the default config value changed from False to
True.

winrepo_ssl_verify: True

Winrepo Authentication Options

These parameters only currently apply to the pygit2
winrepo_provider. Authentication works the same as it does in
gitfs, as outlined in the GitFS Walkthrough,
though the global configuration options are named differently to reflect that
they are for winrepo instead of gitfs.

winrepo_user

New in version 2015.8.0.

Default: ''

Along with winrepo_password, is used to authenticate to HTTPS
remotes.

winrepo_user: git

winrepo_password

New in version 2015.8.0.

Default: ''

Along with winrepo_user, is used to authenticate to HTTPS
remotes. This parameter is not required if the repository does not use
authentication.

winrepo_password: mypassword

winrepo_insecure_auth

New in version 2015.8.0.

Default: False

By default, Salt will not authenticate to an HTTP (non-HTTPS) remote. This
parameter enables authentication over HTTP. Enable this at your own risk.

winrepo_insecure_auth: True

winrepo_pubkey

New in version 2015.8.0.

Default: ''

Along with winrepo_privkey (and optionally
winrepo_passphrase), is used to authenticate to SSH remotes.

winrepo_pubkey: /path/to/key.pub

winrepo_privkey

New in version 2015.8.0.

Default: ''

Along with winrepo_pubkey (and optionally
winrepo_passphrase), is used to authenticate to SSH remotes.

winrepo_privkey: /path/to/key

winrepo_passphrase

New in version 2015.8.0.

Default: ''

This parameter is optional, required only when the SSH key being used to
authenticate is protected by a passphrase.

winrepo_passphrase: mypassphrase

winrepo_refspecs

New in version 2017.7.0.

Default: ['+refs/heads/*:refs/remotes/origin/*', '+refs/tags/*:refs/tags/*']

When fetching from remote repositories, by default Salt will fetch branches and
tags. This parameter can be used to override the default and specify
alternate refspecs to be fetched. This parameter works similarly to its
GitFS counterpart, in that it can be
configured both globally and for individual remotes.

winrepo_refspecs:
 - '+refs/heads/*:refs/remotes/origin/*'
 - '+refs/tags/*:refs/tags/*'
 - '+refs/pull/*/head:refs/remotes/origin/pr/*'
 - '+refs/pull/*/merge:refs/remotes/origin/merge/*'

Configure Master on Windows

The master on Windows requires no additional configuration. You can modify the
master configuration by creating/editing the master config file located at
c:\salt\conf\master. The same configuration options available on Linux are
available in Windows, as long as they apply. For example, SSH options wouldn't
apply in Windows. The main differences are the file paths. If you are familiar
with common salt paths, the following table may be useful:

	linux Paths

	
	Windows Paths

	/etc/salt

	<--->

	c:\salt\conf

	/

	<--->

	c:\salt

So, for example, the master config file in Linux is /etc/salt/master. In
Windows the master config file is c:\salt\conf\master. The Linux path
/etc/salt becomes c:\salt\conf in Windows.

Common File Locations

	Linux Paths

	Windows Paths

	conf_file: /etc/salt/master

	conf_file: c:\salt\conf\master

	log_file: /var/log/salt/master

	log_file: c:\salt\var\log\salt\master

	pidfile: /var/run/salt-master.pid

	pidfile: c:\salt\var\run\salt-master.pid

Common Directories

	Linux Paths

	Windows Paths

	cachedir: /var/cache/salt/master

	cachedir: c:\salt\var\cache\salt\master

	extension_modules: /var/cache/salt/master/extmods

	c:\salt\var\cache\salt\master\extmods

	pki_dir: /etc/salt/pki/master

	pki_dir: c:\salt\conf\pki\master

	root_dir: /

	root_dir: c:\salt

	sock_dir: /var/run/salt/master

	sock_dir: c:\salt\var\run\salt\master

Roots

file_roots

	Linux Paths

	Windows Paths

	/srv/salt

	c:\salt\srv\salt

	/srv/spm/salt

	c:\salt\srv\spm\salt

pillar_roots

	Linux Paths

	Windows Paths

	/srv/pillar

	c:\salt\srv\pillar

	/srv/spm/pillar

	c:\salt\srv\spm\pillar

Win Repo Settings

	Linux Paths

	Windows Paths

	winrepo_dir: /srv/salt/win/repo

	winrepo_dir: c:\salt\srv\salt\win\repo

	winrepo_dir_ng: /srv/salt/win/repo-ng

	winrepo_dir_ng: c:\salt\srv\salt\win\repo-ng

Configuring the Salt Minion

The Salt system is amazingly simple and easy to configure. The two components
of the Salt system each have a respective configuration file. The
salt-master is configured via the master configuration file, and the
salt-minion is configured via the minion configuration file.

See also

example minion configuration file

The Salt Minion configuration is very simple. Typically, the only value that
needs to be set is the master value so the minion knows where to locate its master.

By default, the salt-minion configuration will be in /etc/salt/minion.
A notable exception is FreeBSD, where the configuration will be in
/usr/local/etc/salt/minion.

Minion Primary Configuration

master

Default: salt

The hostname or IP address of the master. See ipv6 for IPv6
connections to the master.

Default: salt

master: salt

master:port Syntax

New in version 2015.8.0.

The master config option can also be set to use the master's IP in
conjunction with a port number by default.

master: localhost:1234

For IPv6 formatting with a port, remember to add brackets around the IP address
before adding the port and enclose the line in single quotes to make it a string:

master: '[2001:db8:85a3:8d3:1319:8a2e:370:7348]:1234'

Note

If a port is specified in the master as well as master_port,
the master_port setting will be overridden by the master configuration.

List of Masters Syntax

The option can also be set to a list of masters, enabling
multi-master mode.

master:
 - address1
 - address2

Changed in version 2014.7.0: The master can be dynamically configured. The master value
can be set to an module function which will be executed and will assume
that the returning value is the ip or hostname of the desired master. If a
function is being specified, then the master_type option
must be set to func, to tell the minion that the value is a function to
be run and not a fully-qualified domain name.

master: module.function
master_type: func

In addition, instead of using multi-master mode, the minion can be
configured to use the list of master addresses as a failover list, trying
the first address, then the second, etc. until the minion successfully
connects. To enable this behavior, set master_type to
failover:

master:
 - address1
 - address2
master_type: failover

color

Default: True

By default output is colored. To disable colored output, set the color value to
False.

ipv6

Default: None

Whether the master should be connected over IPv6. By default salt minion
will try to automatically detect IPv6 connectivity to master.

ipv6: True

master_uri_format

New in version 2015.8.0.

Specify the format in which the master address will be evaluated. Valid options
are default or ip_only. If ip_only is specified, then the master
address will not be split into IP and PORT, so be sure that only an IP (or domain
name) is set in the master configuration setting.

master_uri_format: ip_only

master_tops_first

New in version 2018.3.0.

Default: False

SLS targets defined using the Master Tops system
are normally executed after any matches defined in the Top File. Set this option to True to have the minion execute the
Master Tops states first.

master_tops_first: True

master_type

New in version 2014.7.0.

Default: str

The type of the master variable. Can be str, failover,
func or disable.

master_type: str

If this option is str (default), multiple hot masters are configured.
Minions can connect to multiple masters simultaneously (all master are "hot").

master_type: failover

If this option is set to failover, master must be a list of
master addresses. The minion will then try each master in the order specified
in the list until it successfully connects. master_alive_interval
must also be set, this determines how often the minion will verify the presence
of the master.

master_type: func

If the master needs to be dynamically assigned by executing a function instead
of reading in the static master value, set this to func. This can be used
to manage the minion's master setting from an execution module. By simply
changing the algorithm in the module to return a new master ip/fqdn, restart
the minion and it will connect to the new master.

As of version 2016.11.0 this option can be set to disable and the minion
will never attempt to talk to the master. This is useful for running a
masterless minion daemon.

master_type: disable

max_event_size

New in version 2014.7.0.

Default: 1048576

Passing very large events can cause the minion to consume large amounts of
memory. This value tunes the maximum size of a message allowed onto the
minion event bus. The value is expressed in bytes.

max_event_size: 1048576

enable_legacy_startup_events

New in version 2019.2.0.

Default: True

When a minion starts up it sends a notification on the event bus with a tag
that looks like this: salt/minion/<minion_id>/start. For historical reasons
the minion also sends a similar event with an event tag like this:
minion_start. This duplication can cause a lot of clutter on the event bus
when there are many minions. Set enable_legacy_startup_events: False in the
minion config to ensure only the salt/minion/<minion_id>/start events are
sent. Beginning with the 3001 Salt release this option will default to
False.

enable_legacy_startup_events: True

master_failback

New in version 2016.3.0.

Default: False

If the minion is in multi-master mode and the :conf_minion`master_type`
configuration option is set to failover, this setting can be set to True
to force the minion to fail back to the first master in the list if the first
master is back online.

master_failback: False

master_failback_interval

New in version 2016.3.0.

Default: 0

If the minion is in multi-master mode, the :conf_minion`master_type` configuration
is set to failover, and the master_failback option is enabled, the master
failback interval can be set to ping the top master with this interval, in seconds.

master_failback_interval: 0

master_alive_interval

Default: 0

Configures how often, in seconds, the minion will verify that the current
master is alive and responding. The minion will try to establish a connection
to the next master in the list if it finds the existing one is dead. This
setting can also be used to detect master DNS record changes when a minion has
been disconnected.

master_alive_interval: 30

master_shuffle

New in version 2014.7.0.

Deprecated since version 2019.2.0.

Default: False

Warning

This option has been deprecated in Salt 2019.2.0. Please use
random_master instead.

master_shuffle: True

random_master

New in version 2014.7.0.

Changed in version 2019.2.0: The master_failback option can be used in conjunction with
random_master to force the minion to fail back to the first master in the
list if the first master is back online. Note that master_type
must be set to failover in order for the master_failback setting to
work.

Default: False

If master is a list of addresses, shuffle them before trying to
connect to distribute the minions over all available masters. This uses Python's
random.shuffle method.

If multiple masters are specified in the 'master' setting as a list, the default
behavior is to always try to connect to them in the order they are listed. If
random_master is set to True, the order will be randomized instead upon Minion
startup. This can be helpful in distributing the load of many minions executing
salt-call requests, for example, from a cron job. If only one master is listed,
this setting is ignored and a warning is logged.

random_master: True

Note

When the failover, master_failback, and random_master options are
used together, only the "secondary masters" will be shuffled. The first master
in the list is ignored in the random.shuffle
call. See master_failback for more information.

retry_dns

Default: 30

Set the number of seconds to wait before attempting to resolve
the master hostname if name resolution fails. Defaults to 30 seconds.
Set to zero if the minion should shutdown and not retry.

retry_dns: 30

retry_dns_count

New in version 2018.3.4.

Default: None

Set the number of attempts to perform when resolving
the master hostname if name resolution fails.
By default the minion will retry indefinitely.

retry_dns_count: 3

master_port

Default: 4506

The port of the master ret server, this needs to coincide with the ret_port
option on the Salt master.

master_port: 4506

publish_port

Default: 4505

The port of the master publish server, this needs to coincide with the publish_port
option on the Salt master.

publish_port: 4505

source_interface_name

New in version 2018.3.0.

The name of the interface to use when establishing the connection to the Master.

Note

If multiple IP addresses are configured on the named interface,
the first one will be selected. In that case, for a better selection,
consider using the source_address option.

Note

To use an IPv6 address from the named interface, make sure the option
ipv6 is enabled, i.e., ipv6: true.

Note

If the interface is down, it will avoid using it, and the Minion
will bind to 0.0.0.0 (all interfaces).

Warning

This option requires modern version of the underlying libraries used by
the selected transport:

	zeromq requires pyzmq >= 16.0.1 and libzmq >= 4.1.6

	tcp requires tornado >= 4.5

Configuration example:

source_interface_name: bond0.1234

source_address

New in version 2018.3.0.

The source IP address or the domain name to be used when connecting the Minion
to the Master.
See ipv6 for IPv6 connections to the Master.

Warning

This option requires modern version of the underlying libraries used by
the selected transport:

	zeromq requires pyzmq >= 16.0.1 and libzmq >= 4.1.6

	tcp requires tornado >= 4.5

Configuration example:

source_address: if-bond0-1234.sjc.us-west.internal

source_ret_port

New in version 2018.3.0.

The source port to be used when connecting the Minion to the Master ret server.

Warning

This option requires modern version of the underlying libraries used by
the selected transport:

	zeromq requires pyzmq >= 16.0.1 and libzmq >= 4.1.6

	tcp requires tornado >= 4.5

Configuration example:

source_ret_port: 49017

source_publish_port

New in version 2018.3.0.

The source port to be used when connecting the Minion to the Master publish
server.

Warning

This option requires modern version of the underlying libraries used by
the selected transport:

	zeromq requires pyzmq >= 16.0.1 and libzmq >= 4.1.6

	tcp requires tornado >= 4.5

Configuration example:

source_publish_port: 49018

user

Default: root

The user to run the Salt processes

user: root

sudo_user

Default: ''

The user to run salt remote execution commands as via sudo. If this option is
enabled then sudo will be used to change the active user executing the remote
command. If enabled the user will need to be allowed access via the sudoers file
for the user that the salt minion is configured to run as. The most common
option would be to use the root user. If this option is set the user option
should also be set to a non-root user. If migrating from a root minion to a non
root minion the minion cache should be cleared and the minion pki directory will
need to be changed to the ownership of the new user.

sudo_user: root

pidfile

Default: /var/run/salt-minion.pid

The location of the daemon's process ID file

pidfile: /var/run/salt-minion.pid

root_dir

Default: /

This directory is prepended to the following options: pki_dir,
cachedir, log_file, sock_dir, and
pidfile.

root_dir: /

conf_file

Default: /etc/salt/minion

The path to the minion's configuration file.

conf_file: /etc/salt/minion

pki_dir

Default: <LIB_STATE_DIR>/pki/minion

The directory used to store the minion's public and private keys.

<LIB_STATE_DIR> is the pre-configured variable state directory set during
installation via --salt-lib-state-dir. It defaults to /etc/salt. Systems
following the Filesystem Hierarchy Standard (FHS) might set it to
/var/lib/salt.

pki_dir: /etc/salt/pki/minion

id

Default: the system's hostname

See also

Salt Walkthrough

The Setting up a Salt Minion section contains detailed
information on how the hostname is determined.

Explicitly declare the id for this minion to use. Since Salt uses detached ids
it is possible to run multiple minions on the same machine but with different
ids.

id: foo.bar.com

minion_id_caching

New in version 0.17.2.

Default: True

Caches the minion id to a file when the minion's id is not
statically defined in the minion config. This setting prevents potential
problems when automatic minion id resolution changes, which can cause the
minion to lose connection with the master. To turn off minion id caching,
set this config to False.

For more information, please see Issue #7558 [https://github.com/saltstack/salt/issues/7558] and Pull Request #8488 [https://github.com/saltstack/salt/pull/8488].

minion_id_caching: True

append_domain

Default: None

Append a domain to a hostname in the event that it does not exist. This is
useful for systems where socket.getfqdn() does not actually result in a
FQDN (for instance, Solaris).

append_domain: foo.org

minion_id_remove_domain

New in version 3000.

Default: False

Remove a domain when the minion id is generated as a fully qualified domain
name (either by the user provided id_function, or by Salt). This is useful
when the minions shall be named like hostnames. Can be a single domain (to
prevent name clashes), or True, to remove all domains.

	Examples:
	
	minion_id_remove_domain = foo.org
- FQDN = king_bob.foo.org --> minion_id = king_bob
- FQDN = king_bob.bar.org --> minion_id = king_bob.bar.org

	minion_id_remove_domain = True
- FQDN = king_bob.foo.org --> minion_id = king_bob
- FQDN = king_bob.bar.org --> minion_id = king_bob

For more information, please see issue 49212 [https://github.com/saltstack/salt/issues/49212] and PR 49378 [https://github.com/saltstack/salt/pull/49378].

minion_id_remove_domain: foo.org

minion_id_lowercase

Default: False

Convert minion id to lowercase when it is being generated. Helpful when some hosts
get the minion id in uppercase. Cached ids will remain the same and not converted.

minion_id_lowercase: True

cachedir

Default: /var/cache/salt/minion

The location for minion cache data.

This directory may contain sensitive data and should be protected accordingly.

cachedir: /var/cache/salt/minion

color_theme

Default: ""

Specifies a path to the color theme to use for colored command line output.

color_theme: /etc/salt/color_theme

append_minionid_config_dirs

Default: [] (the empty list) for regular minions, ['cachedir'] for proxy minions.

Append minion_id to these configuration directories. Helps with multiple proxies
and minions running on the same machine. Allowed elements in the list:
pki_dir, cachedir, extension_modules.
Normally not needed unless running several proxies and/or minions on the same machine.

append_minionid_config_dirs:
 - pki_dir
 - cachedir

verify_env

Default: True

Verify and set permissions on configuration directories at startup.

verify_env: True

Note

When set to True the verify_env option requires WRITE access to the
configuration directory (/etc/salt/). In certain situations such as
mounting /etc/salt/ as read-only for templating this will create a stack
trace when state.apply is called.

cache_jobs

Default: False

The minion can locally cache the return data from jobs sent to it, this can be
a good way to keep track of the minion side of the jobs the minion has
executed. By default this feature is disabled, to enable set cache_jobs to
True.

cache_jobs: False

grains

Default: (empty)

See also

Using grains in a state

Statically assigns grains to the minion.

grains:
 roles:
 - webserver
 - memcache
 deployment: datacenter4
 cabinet: 13
 cab_u: 14-15

grains_blacklist

Default: []

Each grains key will be compared against each of the expressions in this list.
Any keys which match will be filtered from the grains. Exact matches, glob
matches, and regular expressions are supported.

Note

Some states and execution modules depend on grains. Filtering may cause
them to be unavailable or run unreliably.

New in version 3000.

grains_blacklist:
 - cpu_flags
 - zmq*
 - ipv[46]

grains_cache

Default: False

The minion can locally cache grain data instead of refreshing the data
each time the grain is referenced. By default this feature is disabled,
to enable set grains_cache to True.

grains_cache: False

grains_cache_expiration

Default: 300

Grains cache expiration, in seconds. If the cache file is older than this number
of seconds then the grains cache will be dumped and fully re-populated with
fresh data. Defaults to 5 minutes. Will have no effect if
grains_cache is not enabled.

grains_cache_expiration: 300

grains_deep_merge

New in version 2016.3.0.

Default: False

The grains can be merged, instead of overridden, using this option.
This allows custom grains to defined different subvalues of a dictionary
grain. By default this feature is disabled, to enable set grains_deep_merge
to True.

grains_deep_merge: False

For example, with these custom grains functions:

def custom1_k1():
 return {"custom1": {"k1": "v1"}}

def custom1_k2():
 return {"custom1": {"k2": "v2"}}

Without grains_deep_merge, the result would be:

custom1:
 k1: v1

With grains_deep_merge, the result will be:

custom1:
 k1: v1
 k2: v2

grains_refresh_every

Default: 0

The grains_refresh_every setting allows for a minion to periodically
check its grains to see if they have changed and, if so, to inform the master
of the new grains. This operation is moderately expensive, therefore care
should be taken not to set this value too low.

Note: This value is expressed in minutes.

A value of 10 minutes is a reasonable default.

grains_refresh_every: 0

grains_refresh_pre_exec

New in version 3005.

Default: False

The grains_refresh_pre_exec setting allows for a minion to check its grains
prior to the execution of any operation to see if they have changed and, if
so, to inform the master of the new grains. This operation is moderately
expensive, therefore care should be taken before enabling this behavior.

grains_refresh_pre_exec: True

metadata_server_grains

New in version 2017.7.0.

Default: False

Set this option to enable gathering of cloud metadata from
http://169.254.169.254/latest for use in grains (see here for more information).

metadata_server_grains: True

fibre_channel_grains

Default: False

The fibre_channel_grains setting will enable the fc_wwn grain for
Fibre Channel WWN's on the minion. Since this grain is expensive, it is
disabled by default.

fibre_channel_grains: True

iscsi_grains

Default: False

The iscsi_grains setting will enable the iscsi_iqn grain on the
minion. Since this grain is expensive, it is disabled by default.

iscsi_grains: True

nvme_grains

Default: False

The nvme_grains setting will enable the nvme_nqn grain on the
minion. Since this grain is expensive, it is disabled by default.

nvme_grains: True

mine_enabled

New in version 2015.8.10.

Default: True

Determines whether or not the salt minion should run scheduled mine updates. If this is set to
False then the mine update function will not get added to the scheduler for the minion.

mine_enabled: True

mine_return_job

New in version 2015.8.10.

Default: False

Determines whether or not scheduled mine updates should be accompanied by a job
return for the job cache.

mine_return_job: False

mine_functions

Default: Empty

Designate which functions should be executed at mine_interval intervals on each minion.
See this documentation on the Salt Mine for more information.
Note these can be defined in the pillar for a minion as well.

example minion configuration file

mine_functions:
 test.ping: []
 network.ip_addrs:
 interface: eth0
 cidr: '10.0.0.0/8'

mine_interval

Default: 60

The number of minutes between mine updates.

mine_interval: 60

sock_dir

Default: /var/run/salt/minion

The directory where Unix sockets will be kept.

sock_dir: /var/run/salt/minion

enable_fqdns_grains

Default: True

In order to calculate the fqdns grain, all the IP addresses from the minion are
processed with underlying calls to socket.gethostbyaddr which can take 5 seconds
to be released (after reaching socket.timeout) when there is no fqdn for that IP.
These calls to socket.gethostbyaddr are processed asynchronously, however, it still
adds 5 seconds every time grains are generated if an IP does not resolve. In Windows
grains are regenerated each time a new process is spawned. Therefore, the default for
Windows is False. In many cases this value does not make sense to include for proxy
minions as it will be FQDN for the host running the proxy minion process, so the default
for proxy minions is False`. On macOS, FQDN resolution can be very slow, therefore
the default for macOS is False as well. All other OSes default to True.
This option was added here [https://github.com/saltstack/salt/pull/55581].

enable_fqdns_grains: False

enable_gpu_grains

Default: True

Enable GPU hardware data for your master. Be aware that the minion can
take a while to start up when lspci and/or dmidecode is used to populate the
grains for the minion, so this can be set to False if you do not need these
grains.

enable_gpu_grains: False

outputter_dirs

Default: []

A list of additional directories to search for salt outputters in.

outputter_dirs: []

backup_mode

Default: ''

Make backups of files replaced by file.managed and file.recurse state modules under
cachedir in file_backup subdirectory preserving original paths.
Refer to File State Backups documentation for more details.

backup_mode: minion

acceptance_wait_time

Default: 10

The number of seconds to wait until attempting to re-authenticate with the
master.

acceptance_wait_time: 10

acceptance_wait_time_max

Default: 0

The maximum number of seconds to wait until attempting to re-authenticate
with the master. If set, the wait will increase by acceptance_wait_time
seconds each iteration.

acceptance_wait_time_max: 0

rejected_retry

Default: False

If the master denies or rejects the minion's public key, retry instead of
exiting. These keys will be handled the same as waiting on acceptance.

rejected_retry: False

random_reauth_delay

Default: 10

When the master key changes, the minion will try to re-auth itself to
receive the new master key. In larger environments this can cause a syn-flood
on the master because all minions try to re-auth immediately. To prevent this
and have a minion wait for a random amount of time, use this optional
parameter. The wait-time will be a random number of seconds between
0 and the defined value.

random_reauth_delay: 60

master_tries

New in version 2016.3.0.

Default: 1

The number of attempts to connect to a master before giving up. Set this to
-1 for unlimited attempts. This allows for a master to have downtime and the
minion to reconnect to it later when it comes back up. In 'failover' mode, which
is set in the master_type configuration, this value is the number
of attempts for each set of masters. In this mode, it will cycle through the list
of masters for each attempt.

master_tries is different than auth_tries because auth_tries
attempts to retry auth attempts with a single master. auth_tries is under the
assumption that you can connect to the master but not gain authorization from it.
master_tries will still cycle through all of the masters in a given try, so it
is appropriate if you expect occasional downtime from the master(s).

master_tries: 1

auth_tries

New in version 2014.7.0.

Default: 7

The number of attempts to authenticate to a master before giving up. Or, more
technically, the number of consecutive SaltReqTimeoutErrors that are acceptable
when trying to authenticate to the master.

auth_tries: 7

auth_timeout

New in version 2014.7.0.

Default: 5

When waiting for a master to accept the minion's public key, salt will
continuously attempt to reconnect until successful. This is the timeout value,
in seconds, for each individual attempt. After this timeout expires, the minion
will wait for acceptance_wait_time seconds before trying again.
Unless your master is under unusually heavy load, this should be left at the
default.

Note

For high latency networks try increasing this value

auth_timeout: 5

auth_safemode

New in version 2014.7.0.

Default: False

If authentication fails due to SaltReqTimeoutError during a ping_interval,
this setting, when set to True, will cause a sub-minion process to
restart.

auth_safemode: False

request_channel_timeout

New in version 3006.2.

Default: 30

The default timeout timeout for request channel requests. This setting can be used to tune minions to better handle long running pillar and file client requests.

request_channel_timeout: 30

request_channel_tries

New in version 3006.2.

Default: 3

The default number of times the minion will try request channel requests. This
setting can be used to tune minions to better handle long running pillar and
file client requests by retrying them after a timeout happens.

request_channel_tries: 3

ping_interval

Default: 0

Instructs the minion to ping its master(s) every n number of minutes. Used
primarily as a mitigation technique against minion disconnects.

ping_interval: 0

random_startup_delay

Default: 0

The maximum bound for an interval in which a minion will randomly sleep upon starting
up prior to attempting to connect to a master. This can be used to splay connection attempts
for cases where many minions starting up at once may place undue load on a master.

For example, setting this to 5 will tell a minion to sleep for a value between 0
and 5 seconds.

random_startup_delay: 5

recon_default

Default: 1000

The interval in milliseconds that the socket should wait before trying to
reconnect to the master (1000ms = 1 second).

recon_default: 1000

recon_max

Default: 10000

The maximum time a socket should wait. Each interval the time to wait is calculated
by doubling the previous time. If recon_max is reached, it starts again at
the recon_default.

	Short example:
	
	reconnect 1: the socket will wait 'recon_default' milliseconds

	reconnect 2: 'recon_default' * 2

	reconnect 3: ('recon_default' * 2) * 2

	reconnect 4: value from previous interval * 2

	reconnect 5: value from previous interval * 2

	reconnect x: if value >= recon_max, it starts again with recon_default

recon_max: 10000

recon_randomize

Default: True

Generate a random wait time on minion start. The wait time will be a random value
between recon_default and recon_default + recon_max. Having all minions reconnect
with the same recon_default and recon_max value kind of defeats the purpose of being
able to change these settings. If all minions have the same values and the setup is
quite large (several thousand minions), they will still flood the master. The desired
behavior is to have time-frame within all minions try to reconnect.

recon_randomize: True

loop_interval

Default: 1

The loop_interval sets how long in seconds the minion will wait between
evaluating the scheduler and running cleanup tasks. This defaults to 1
second on the minion scheduler.

loop_interval: 1

pub_ret

Default: True

Some installations choose to start all job returns in a cache or a returner
and forgo sending the results back to a master. In this workflow, jobs
are most often executed with --async from the Salt CLI and then results
are evaluated by examining job caches on the minions or any configured returners.
WARNING: Setting this to False will disable returns back to the master.

pub_ret: True

return_retry_timer

Default: 5

The default timeout for a minion return attempt.

return_retry_timer: 5

return_retry_timer_max

Default: 10

The maximum timeout for a minion return attempt. If non-zero the minion return
retry timeout will be a random int between return_retry_timer and
return_retry_timer_max

return_retry_timer_max: 10

return_retry_tries

Default: 3

The maximum number of retries for a minion return attempt.

return_retry_tries: 3

cache_sreqs

Default: True

The connection to the master ret_port is kept open. When set to False, the minion
creates a new connection for every return to the master.

cache_sreqs: True

ipc_mode

Default: ipc

Windows platforms lack POSIX IPC and must rely on slower TCP based inter-
process communications. ipc_mode is set to tcp on such systems.

ipc_mode: ipc

ipc_write_buffer

Default: 0

The maximum size of a message sent via the IPC transport module can be limited
dynamically or by sharing an integer value lower than the total memory size. When
the value dynamic is set, salt will use 2.5% of the total memory as
ipc_write_buffer value (rounded to an integer). A value of 0 disables
this option.

ipc_write_buffer: 10485760

tcp_pub_port

Default: 4510

Publish port used when ipc_mode is set to tcp.

tcp_pub_port: 4510

tcp_pull_port

Default: 4511

Pull port used when ipc_mode is set to tcp.

tcp_pull_port: 4511

transport

Default: zeromq

Changes the underlying transport layer. ZeroMQ is the recommended transport
while additional transport layers are under development. Supported values are
zeromq and tcp (experimental). This setting has a significant impact
on performance and should not be changed unless you know what you are doing!

transport: zeromq

syndic_finger

Default: ''

The key fingerprint of the higher-level master for the syndic to verify it is
talking to the intended master.

syndic_finger: 'ab:30:65:2a:d6:9e:20:4f:d8:b2:f3:a7:d4:65:50:10'

http_connect_timeout

New in version 2019.2.0.

Default: 20

HTTP connection timeout in seconds.
Applied when fetching files using tornado back-end.
Should be greater than overall download time.

http_connect_timeout: 20

http_request_timeout

New in version 2015.8.0.

Default: 3600

HTTP request timeout in seconds.
Applied when fetching files using tornado back-end.
Should be greater than overall download time.

http_request_timeout: 3600

proxy_host

Default: ''

The hostname used for HTTP proxy access.

proxy_host: proxy.my-domain

proxy_port

Default: 0

The port number used for HTTP proxy access.

proxy_port: 31337

proxy_username

Default: ''

The username used for HTTP proxy access.

proxy_username: charon

proxy_password

Default: ''

The password used for HTTP proxy access.

proxy_password: obolus

no_proxy

New in version 2019.2.0.

Default: []

List of hosts to bypass HTTP proxy

Note

This key does nothing unless proxy_host etc is configured, it does not
support any kind of wildcards.

no_proxy: ['127.0.0.1', 'foo.tld']

use_yamlloader_old

New in version 2019.2.1.

Default: False

Use the pre-2019.2 YAML renderer.
Uses legacy YAML rendering to support some legacy inline data structures.
See the 2019.2.1 release notes for more details.

use_yamlloader_old: False

Docker Configuration

docker.update_mine

New in version 2017.7.8,2018.3.3.

Changed in version 2019.2.0: The default value is now False

Default: True

If enabled, when containers are added, removed, stopped, started, etc., the
mine will be updated with the results of docker.ps
verbose=True all=True host=True. This mine data is
used by mine.get_docker. Set this
option to False to keep Salt from updating the mine with this information.

Note

This option can also be set in Grains or Pillar data, with Grains
overriding Pillar and the minion config file overriding Grains.

Note

Disabling this will of course keep mine.get_docker from returning any information for a given
minion.

docker.update_mine: False

docker.compare_container_networks

New in version 2018.3.0.

Default: {'static': ['Aliases', 'Links', 'IPAMConfig'], 'automatic': ['IPAddress', 'Gateway', 'GlobalIPv6Address', 'IPv6Gateway']}

Specifies which keys are examined by
docker.compare_container_networks.

Note

This should not need to be modified unless new features added to Docker
result in new keys added to the network configuration which must be
compared to determine if two containers have different network configs.
This config option exists solely as a way to allow users to continue using
Salt to manage their containers after an API change, without waiting for a
new Salt release to catch up to the changes in the Docker API.

docker.compare_container_networks:
 static:
 - Aliases
 - Links
 - IPAMConfig
 automatic:
 - IPAddress
 - Gateway
 - GlobalIPv6Address
 - IPv6Gateway

optimization_order

Default: [0, 1, 2]

In cases where Salt is distributed without .py files, this option determines
the priority of optimization level(s) Salt's module loader should prefer.

Note

This option is only supported on Python 3.5+.

optimization_order:
 - 2
 - 0
 - 1

Minion Execution Module Management

disable_modules

Default: [] (all execution modules are enabled by default)

The event may occur in which the administrator desires that a minion should not
be able to execute a certain module.

However, the sys module is built into the minion and cannot be disabled.

This setting can also tune the minion. Because all modules are loaded into system
memory, disabling modules will lower the minion's memory footprint.

Modules should be specified according to their file name on the system and not by
their virtual name. For example, to disable cmd, use the string cmdmod which
corresponds to salt.modules.cmdmod.

disable_modules:
 - test
 - solr

disable_returners

Default: [] (all returners are enabled by default)

If certain returners should be disabled, this is the place

disable_returners:
 - mongo_return

whitelist_modules

Default: [] (Module whitelisting is disabled. Adding anything to the config option
will cause only the listed modules to be enabled. Modules not in the list will
not be loaded.)

This option is the reverse of disable_modules. If enabled, only execution modules in this
list will be loaded and executed on the minion.

Note that this is a very large hammer and it can be quite difficult to keep the minion working
the way you think it should since Salt uses many modules internally itself. At a bare minimum
you need the following enabled or else the minion won't start.

whitelist_modules:
 - cmdmod
 - test
 - config

module_dirs

Default: []

A list of extra directories to search for Salt modules

module_dirs:
 - /var/lib/salt/modules

returner_dirs

Default: []

A list of extra directories to search for Salt returners

returner_dirs:
 - /var/lib/salt/returners

states_dirs

Default: []

A list of extra directories to search for Salt states

states_dirs:
 - /var/lib/salt/states

grains_dirs

Default: []

A list of extra directories to search for Salt grains

grains_dirs:
 - /var/lib/salt/grains

render_dirs

Default: []

A list of extra directories to search for Salt renderers

render_dirs:
 - /var/lib/salt/renderers

utils_dirs

Default: []

A list of extra directories to search for Salt utilities

utils_dirs:
 - /var/lib/salt/utils

cython_enable

Default: False

Set this value to true to enable auto-loading and compiling of .pyx modules,
This setting requires that gcc and cython are installed on the minion.

cython_enable: False

enable_zip_modules

New in version 2015.8.0.

Default: False

Set this value to true to enable loading of zip archives as extension modules.
This allows for packing module code with specific dependencies to avoid conflicts
and/or having to install specific modules' dependencies in system libraries.

enable_zip_modules: False

providers

Default: (empty)

A module provider can be statically overwritten or extended for the minion via
the providers option. This can be done on an individual basis in an
SLS file, or globally here in the minion config, like
below.

providers:
 service: systemd

modules_max_memory

Default: -1

Specify a max size (in bytes) for modules on import. This feature is currently
only supported on *NIX operating systems and requires psutil.

modules_max_memory: -1

extmod_whitelist/extmod_blacklist

New in version 2017.7.0.

By using this dictionary, the modules that are synced to the minion's extmod cache using saltutil.sync_* can be
limited. If nothing is set to a specific type, then all modules are accepted. To block all modules of a specific type,
whitelist an empty list.

extmod_whitelist:
 modules:
 - custom_module
 engines:
 - custom_engine
 pillars: []

extmod_blacklist:
 modules:
 - specific_module

Valid options:

	beacons

	clouds

	sdb

	modules

	states

	grains

	renderers

	returners

	proxy

	engines

	output

	utils

	pillar

Top File Settings

state_top

Default: top.sls

The state system uses a "top" file to tell the minions what environment to
use and what modules to use. The state_top file is defined relative to the
root of the base environment.

state_top: top.sls

state_top_saltenv

This option has no default value. Set it to an environment name to ensure that
only the top file from that environment is considered during a
highstate.

Note

Using this value does not change the merging strategy. For instance, if
top_file_merging_strategy is set to merge, and
state_top_saltenv is set to foo, then any sections for
environments other than foo in the top file for the foo environment
will be ignored. With state_top_saltenv set to base, all
states from all environments in the base top file will be applied,
while all other top files are ignored. The only way to set
state_top_saltenv to something other than base and not
have the other environments in the targeted top file ignored, would be to
set top_file_merging_strategy to merge_all.

state_top_saltenv: dev

top_file_merging_strategy

Changed in version 2016.11.0: A merge_all strategy has been added.

Default: merge

When no specific fileserver environment (a.k.a. saltenv) has been specified
for a highstate, all environments' top files are
inspected. This config option determines how the SLS targets in those top files
are handled.

When set to merge, the base environment's top file is evaluated first,
followed by the other environments' top files. The first target expression
(e.g. '*') for a given environment is kept, and when the same target
expression is used in a different top file evaluated later, it is ignored.
Because base is evaluated first, it is authoritative. For example, if there
is a target for '*' for the foo environment in both the base and
foo environment's top files, the one in the foo environment would be
ignored. The environments will be evaluated in no specific order (aside from
base coming first). For greater control over the order in which the
environments are evaluated, use env_order. Note that, aside from
the base environment's top file, any sections in top files that do not
match that top file's environment will be ignored. So, for example, a section
for the qa environment would be ignored if it appears in the dev
environment's top file. To keep use cases like this from being ignored, use the
merge_all strategy.

When set to same, then for each environment, only that environment's top
file is processed, with the others being ignored. For example, only the dev
environment's top file will be processed for the dev environment, and any
SLS targets defined for dev in the base environment's (or any other
environment's) top file will be ignored. If an environment does not have a top
file, then the top file from the default_top config parameter
will be used as a fallback.

When set to merge_all, then all states in all environments in all top files
will be applied. The order in which individual SLS files will be executed will
depend on the order in which the top files were evaluated, and the environments
will be evaluated in no specific order. For greater control over the order in
which the environments are evaluated, use env_order.

top_file_merging_strategy: same

env_order

Default: []

When top_file_merging_strategy is set to merge, and no
environment is specified for a highstate, this
config option allows for the order in which top files are evaluated to be
explicitly defined.

env_order:
 - base
 - dev
 - qa

default_top

Default: base

When top_file_merging_strategy is set to same, and no
environment is specified for a highstate (i.e.
environment is not set for the minion), this config option
specifies a fallback environment in which to look for a top file if an
environment lacks one.

default_top: dev

startup_states

Default: ''

States to run when the minion daemon starts. To enable, set startup_states to:

	highstate: Execute state.highstate

	sls: Read in the sls_list option and execute the named sls files

	top: Read top_file option and execute based on that file on the Master

startup_states: ''

sls_list

Default: []

List of states to run when the minion starts up if startup_states is set to sls.

sls_list:
 - edit.vim
 - hyper

start_event_grains

Default: []

List of grains to pass in start event when minion starts up.

start_event_grains:
 - machine_id
 - uuid

top_file

Default: ''

Top file to execute if startup_states is set to top.

top_file: ''

State Management Settings

renderer

Default: jinja|yaml

The default renderer used for local state executions

renderer: jinja|json

test

Default: False

Set all state calls to only test if they are going to actually make changes
or just post what changes are going to be made.

test: False

state_aggregate

Default: False

Automatically aggregate all states that have support for mod_aggregate by
setting to True.

state_aggregate: True

Or pass a list of state module names to automatically
aggregate just those types.

state_aggregate:
 - pkg

state_queue

Default: False

Instead of failing immediately when another state run is in progress, a value
of True will queue the new state run to begin running once the other has
finished. This option starts a new thread for each queued state run, so use
this option sparingly.

state_queue: True

Additionally, it can be set to an integer representing the maximum queue size
which can be attained before the state runs will fail to be queued. This can
prevent runaway conditions where new threads are started until system
performance is hampered.

state_queue: 2

state_verbose

Default: True

Controls the verbosity of state runs. By default, the results of all states are
returned, but setting this value to False will cause salt to only display
output for states that failed or states that have changes.

state_verbose: True

state_output

Default: full

The state_output setting controls which results will be output full multi line:

	full, terse - each state will be full/terse

	mixed - only states with errors will be full

	changes - states with changes and errors will be full

full_id, mixed_id, changes_id and terse_id are also allowed;
when set, the state ID will be used as name in the output.

state_output: full

state_output_diff

Default: False

The state_output_diff setting changes whether or not the output from
successful states is returned. Useful when even the terse output of these
states is cluttering the logs. Set it to True to ignore them.

state_output_diff: False

state_output_profile

Default: True

The state_output_profile setting changes whether profile information
will be shown for each state run.

state_output_profile: True

state_output_pct

Default: False

The state_output_pct setting changes whether success and failure information
as a percent of total actions will be shown for each state run.

state_output_pct: False

state_compress_ids

Default: False

The state_compress_ids setting aggregates information about states which
have multiple "names" under the same state ID in the highstate output.

state_compress_ids: False

autoload_dynamic_modules

Default: True

autoload_dynamic_modules turns on automatic loading of modules found in the
environments on the master. This is turned on by default. To turn off
auto-loading modules when states run, set this value to False.

autoload_dynamic_modules: True

clean_dynamic_modules

Default: True

clean_dynamic_modules keeps the dynamic modules on the minion in sync with
the dynamic modules on the master. This means that if a dynamic module is
not on the master it will be deleted from the minion. By default this is
enabled and can be disabled by changing this value to False.

clean_dynamic_modules: True

Note

If extmod_whitelist is specified, modules which are not whitelisted will also be cleaned here.

saltenv

Changed in version 2018.3.0: Renamed from environment to saltenv. If environment is used,
saltenv will take its value. If both are used, environment will be
ignored and saltenv will be used.

The default fileserver environment to use when copying files and applying states.

saltenv: dev

lock_saltenv

New in version 2018.3.0.

Default: False

For purposes of running states, this option prevents using the saltenv
argument to manually set the environment. This is useful to keep a minion which
has the saltenv option set to dev from running states from
an environment other than dev.

lock_saltenv: True

snapper_states

Default: False

The snapper_states value is used to enable taking snapper snapshots before
and after salt state runs. This allows for state runs to be rolled back.

For snapper states to function properly snapper needs to be installed and
enabled.

snapper_states: True

snapper_states_config

Default: root

Snapper can execute based on a snapper configuration. The configuration
needs to be set up before snapper can use it. The default configuration
is root, this default makes snapper run on SUSE systems using the
default configuration set up at install time.

snapper_states_config: root

global_state_conditions

Default: None

If set, this parameter expects a dictionary of state module names as keys and a
list of conditions which must be satisfied in order to run any functions in that
state module.

global_state_conditions:
 "*": ["G@global_noop:false"]
 service: ["not G@virtual_subtype:chroot"]

File Directory Settings

file_client

Default: remote

The client defaults to looking on the master server for files, but can be
directed to look on the minion by setting this parameter to local.

file_client: remote

use_master_when_local

Default: False

When using a local file_client, this parameter is used to allow
the client to connect to a master for remote execution.

use_master_when_local: False

file_roots

Default:

base:
 - /srv/salt

When using a local file_client, this parameter is used to setup
the fileserver's environments. This parameter operates identically to the
master config parameter of the same name.

file_roots:
 base:
 - /srv/salt
 dev:
 - /srv/salt/dev/services
 - /srv/salt/dev/states
 prod:
 - /srv/salt/prod/services
 - /srv/salt/prod/states

fileserver_followsymlinks

New in version 2014.1.0.

Default: True

By default, the file_server follows symlinks when walking the filesystem tree.
Currently this only applies to the default roots fileserver_backend.

fileserver_followsymlinks: True

fileserver_ignoresymlinks

New in version 2014.1.0.

Default: False

If you do not want symlinks to be treated as the files they are pointing to,
set fileserver_ignoresymlinks to True. By default this is set to
False. When set to True, any detected symlink while listing files on the
Master will not be returned to the Minion.

fileserver_ignoresymlinks: False

hash_type

Default: sha256

The hash_type is the hash to use when discovering the hash of a file on the
local fileserver. The default is sha256, but md5, sha1, sha224, sha384, and
sha512 are also supported.

hash_type: sha256

Pillar Configuration

pillar_roots

Default:

base:
 - /srv/pillar

When using a local file_client, this parameter is used to setup
the pillar environments.

pillar_roots:
 base:
 - /srv/pillar
 dev:
 - /srv/pillar/dev
 prod:
 - /srv/pillar/prod

on_demand_ext_pillar

New in version 2016.3.6,2016.11.3,2017.7.0.

Default: ['libvirt', 'virtkey']

When using a local file_client, this option controls which
external pillars are permitted to be used on-demand using pillar.ext.

on_demand_ext_pillar:
 - libvirt
 - virtkey
 - git

Warning

This will allow a masterless minion to request specific pillar data via
pillar.ext, and may be considered a
security risk. However, pillar data generated in this way will not affect
the in-memory pillar data, so this risk is
limited to instances in which states/modules/etc. (built-in or custom) rely
upon pillar data generated by pillar.ext.

decrypt_pillar

New in version 2017.7.0.

Default: []

A list of paths to be recursively decrypted during pillar compilation.

decrypt_pillar:
 - 'foo:bar': gpg
 - 'lorem:ipsum:dolor'

Entries in this list can be formatted either as a simple string, or as a
key/value pair, with the key being the pillar location, and the value being the
renderer to use for pillar decryption. If the former is used, the renderer
specified by decrypt_pillar_default will be used.

decrypt_pillar_delimiter

New in version 2017.7.0.

Default: :

The delimiter used to distinguish nested data structures in the
decrypt_pillar option.

decrypt_pillar_delimiter: '|'
decrypt_pillar:
 - 'foo|bar': gpg
 - 'lorem|ipsum|dolor'

decrypt_pillar_default

New in version 2017.7.0.

Default: gpg

The default renderer used for decryption, if one is not specified for a given
pillar key in decrypt_pillar.

decrypt_pillar_default: my_custom_renderer

decrypt_pillar_renderers

New in version 2017.7.0.

Default: ['gpg']

List of renderers which are permitted to be used for pillar decryption.

decrypt_pillar_renderers:
 - gpg
 - my_custom_renderer

gpg_decrypt_must_succeed

New in version 3005.

Default: False

If this is True and the ciphertext could not be decrypted, then an error is
raised.

Sending the ciphertext through basically is never desired, for example if a
state is setting a database password from pillar and gpg rendering fails, then
the state will update the password to the ciphertext, which by definition is
not encrypted.

Warning

The value defaults to False for backwards compatibility. In the
Chlorine release, this option will default to True.

gpg_decrypt_must_succeed: False

pillarenv

Default: None

Isolates the pillar environment on the minion side. This functions the same as
the environment setting, but for pillar instead of states.

pillarenv: dev

pillarenv_from_saltenv

New in version 2017.7.0.

Default: False

When set to True, the pillarenv value will assume the value
of the effective saltenv when running states. This essentially makes salt '*'
state.sls mysls saltenv=dev equivalent to salt '*' state.sls mysls
saltenv=dev pillarenv=dev. If pillarenv is set, either in the
minion config file or via the CLI, it will override this option.

pillarenv_from_saltenv: True

pillar_raise_on_missing

New in version 2015.5.0.

Default: False

Set this option to True to force a KeyError to be raised whenever an
attempt to retrieve a named value from pillar fails. When this option is set
to False, the failed attempt returns an empty string.

minion_pillar_cache

New in version 2016.3.0.

Default: False

The minion can locally cache rendered pillar data under
cachedir/pillar. This allows a temporarily disconnected minion
to access previously cached pillar data by invoking salt-call with the --local
and --pillar_root=:conf_minion:cachedir/pillar options. Before enabling this
setting consider that the rendered pillar may contain security sensitive data.
Appropriate access restrictions should be in place. By default the saved pillar
data will be readable only by the user account running salt. By default this
feature is disabled, to enable set minion_pillar_cache to True.

minion_pillar_cache: False

file_recv_max_size

New in version 2014.7.0.

Default: 100

Set a hard-limit on the size of the files that can be pushed to the master.
It will be interpreted as megabytes.

file_recv_max_size: 100

pass_to_ext_pillars

Specify a list of configuration keys whose values are to be passed to
external pillar functions.

Suboptions can be specified using the ':' notation (i.e. option:suboption)

The values are merged and included in the extra_minion_data optional
parameter of the external pillar function. The extra_minion_data parameter
is passed only to the external pillar functions that have it explicitly
specified in their definition.

If the config contains

opt1: value1
opt2:
 subopt1: value2
 subopt2: value3

pass_to_ext_pillars:
 - opt1
 - opt2: subopt1

the extra_minion_data parameter will be

{"opt1": "value1", "opt2": {"subopt1": "value2"}}

ssh_merge_pillar

New in version 2018.3.2.

Default: True

Merges the compiled pillar data with the pillar data already available globally.
This is useful when using salt-ssh or salt-call --local and overriding the pillar
data in a state file:

apply_showpillar:
 module.run:
 - name: state.apply
 - mods:
 - showpillar
 - kwargs:
 pillar:
 test: "foo bar"

If set to True, the showpillar state will have access to the
global pillar data.

If set to False, only the overriding pillar data will be available
to the showpillar state.

Security Settings

open_mode

Default: False

Open mode can be used to clean out the PKI key received from the Salt master,
turn on open mode, restart the minion, then turn off open mode and restart the
minion to clean the keys.

open_mode: False

master_finger

Default: ''

Fingerprint of the master public key to validate the identity of your Salt master
before the initial key exchange. The master fingerprint can be found as master.pub by running
"salt-key -F master" on the Salt master.

master_finger: 'ba:30:65:2a:d6:9e:20:4f:d8:b2:f3:a7:d4:65:11:13'

keysize

Default: 2048

The size of key that should be generated when creating new keys.

keysize: 2048

permissive_pki_access

Default: False

Enable permissive access to the salt keys. This allows you to run the
master or minion as root, but have a non-root group be given access to
your pki_dir. To make the access explicit, root must belong to the group
you've given access to. This is potentially quite insecure.

permissive_pki_access: False

verify_master_pubkey_sign

Default: False

Enables verification of the master-public-signature returned by the master in
auth-replies. Please see the tutorial on how to configure this properly
Multimaster-PKI with Failover Tutorial [https://docs.saltproject.io/en/latest/topics/tutorials/multimaster_pki.html]

New in version 2014.7.0.

verify_master_pubkey_sign: True

If this is set to True, master_sign_pubkey must be also set
to True in the master configuration file.

master_sign_key_name

Default: master_sign

The filename without the .pub suffix of the public key that should be used
for verifying the signature from the master. The file must be located in the
minion's pki directory.

New in version 2014.7.0.

master_sign_key_name: <filename_without_suffix>

autosign_grains

New in version 2018.3.0.

Default: not defined

The grains that should be sent to the master on authentication to decide if
the minion's key should be accepted automatically.

Please see the Autoaccept Minions from Grains
documentation for more information.

autosign_grains:
 - uuid
 - server_id

always_verify_signature

Default: False

If verify_master_pubkey_sign is enabled, the signature is only verified
if the public-key of the master changes. If the signature should always be verified,
this can be set to True.

New in version 2014.7.0.

always_verify_signature: True

cmd_blacklist_glob

Default: []

If cmd_blacklist_glob is enabled then any shell command called over
remote execution or via salt-call will be checked against the glob matches found in
the cmd_blacklist_glob list and any matched shell command will be blocked.

Note

This blacklist is only applied to direct executions made by the salt and
salt-call commands. This does NOT blacklist commands called from states
or shell commands executed from other modules.

New in version 2016.11.0.

cmd_blacklist_glob:
 - 'rm * '
 - 'cat /etc/* '

cmd_whitelist_glob

Default: []

If cmd_whitelist_glob is enabled then any shell command called over
remote execution or via salt-call will be checked against the glob matches found in
the cmd_whitelist_glob list and any shell command NOT found in the list will be
blocked. If cmd_whitelist_glob is NOT SET, then all shell commands are permitted.

Note

This whitelist is only applied to direct executions made by the salt and
salt-call commands. This does NOT restrict commands called from states
or shell commands executed from other modules.

New in version 2016.11.0.

cmd_whitelist_glob:
 - 'ls * '
 - 'cat /etc/fstab'

ssl

New in version 2016.11.0.

Default: None

TLS/SSL connection options. This could be set to a dictionary containing
arguments corresponding to python ssl.wrap_socket method. For details see
Tornado [http://www.tornadoweb.org/en/stable/tcpserver.html#tornado.tcpserver.TCPServer]
and Python [https://docs.python.org/3/library/ssl.html#ssl.wrap_socket]
documentation.

Note: to set enum arguments values like cert_reqs and ssl_version use
constant names without ssl module prefix: CERT_REQUIRED or PROTOCOL_SSLv23.

ssl:
 keyfile: <path_to_keyfile>
 certfile: <path_to_certfile>
 ssl_version: PROTOCOL_TLSv1_2

encryption_algorithm

New in version 3006.9.

Default: OAEP-SHA1

The RSA encryption algorithm used by this minion when connecting to the
master's request channel. Valid values are OAEP-SHA1 and OAEP-SHA224

signing_algorithm

New in version 3006.9.

Default: PKCS1v15-SHA1

The RSA signing algorithm used by this minion when connecting to the
master's request channel. Valid values are PKCS1v15-SHA1 and
PKCS1v15-SHA224

Reactor Settings

reactor

Default: []

Defines a salt reactor. See the Reactor documentation for more
information.

reactor: []

reactor_refresh_interval

Default: 60

The TTL for the cache of the reactor configuration.

reactor_refresh_interval: 60

reactor_worker_threads

Default: 10

The number of workers for the runner/wheel in the reactor.

reactor_worker_threads: 10

reactor_worker_hwm

Default: 10000

The queue size for workers in the reactor.

reactor_worker_hwm: 10000

Thread Settings

multiprocessing

Default: True

If multiprocessing is enabled when a minion receives a
publication a new process is spawned and the command is executed therein.
Conversely, if multiprocessing is disabled the new publication will be run
executed in a thread.

multiprocessing: True

process_count_max

New in version 2018.3.0.

Default: -1

Limit the maximum amount of processes or threads created by salt-minion.
This is useful to avoid resource exhaustion in case the minion receives more
publications than it is able to handle, as it limits the number of spawned
processes or threads. -1 is the default and disables the limit.

process_count_max: -1

Minion Logging Settings

log_file

Default: /var/log/salt/minion

The minion log can be sent to a regular file, local path name, or network
location. See also log_file.

Examples:

log_file: /var/log/salt/minion

log_file: file:///dev/log

log_file: udp://loghost:10514

log_level

Default: warning

The level of messages to send to the console. See also log_level.

log_level: warning

Any log level below the info level is INSECURE and may log sensitive data. This currently includes:
#. profile
#. debug
#. trace
#. garbage
#. all

log_level_logfile

Default: warning

The level of messages to send to the log file. See also
log_level_logfile. When it is not set explicitly
it will inherit the level set by log_level option.

log_level_logfile: warning

Any log level below the info level is INSECURE and may log sensitive data. This currently includes:
#. profile
#. debug
#. trace
#. garbage
#. all

log_datefmt

Default: %H:%M:%S

The date and time format used in console log messages. See also
log_datefmt.

log_datefmt: '%H:%M:%S'

log_datefmt_logfile

Default: %Y-%m-%d %H:%M:%S

The date and time format used in log file messages. See also
log_datefmt_logfile.

log_datefmt_logfile: '%Y-%m-%d %H:%M:%S'

log_fmt_console

Default: [%(levelname)-8s] %(message)s

The format of the console logging messages. See also
log_fmt_console.

Note

Log colors are enabled in log_fmt_console rather than the
color config since the logging system is loaded before the
minion config.

Console log colors are specified by these additional formatters:

%(colorlevel)s
%(colorname)s
%(colorprocess)s
%(colormsg)s

Since it is desirable to include the surrounding brackets, '[' and ']', in
the coloring of the messages, these color formatters also include padding
as well. Color LogRecord attributes are only available for console
logging.

log_fmt_console: '%(colorlevel)s %(colormsg)s'
log_fmt_console: '[%(levelname)-8s] %(message)s'

log_fmt_logfile

Default: %(asctime)s,%(msecs)03d [%(name)-17s][%(levelname)-8s] %(message)s

The format of the log file logging messages. See also
log_fmt_logfile.

log_fmt_logfile: '%(asctime)s,%(msecs)03d [%(name)-17s][%(levelname)-8s] %(message)s'

log_granular_levels

Default: {}

This can be used to control logging levels more specifically. See also
log_granular_levels.

log_rotate_max_bytes

Default: 0

The maximum number of bytes a single log file may contain before it is rotated.
A value of 0 disables this feature. Currently only supported on Windows. On
other platforms, use an external tool such as 'logrotate' to manage log files.
log_rotate_max_bytes

log_rotate_backup_count

Default: 0

The number of backup files to keep when rotating log files. Only used if
log_rotate_max_bytes is greater than 0. Currently only supported
on Windows. On other platforms, use an external tool such as 'logrotate' to
manage log files.
log_rotate_backup_count

zmq_monitor

Default: False

To diagnose issues with minions disconnecting or missing returns, ZeroMQ
supports the use of monitor sockets to log connection events. This
feature requires ZeroMQ 4.0 or higher.

To enable ZeroMQ monitor sockets, set 'zmq_monitor' to 'True' and log at a
debug level or higher.

A sample log event is as follows:

[DEBUG] ZeroMQ event: {'endpoint': 'tcp://127.0.0.1:4505', 'event': 512,
'value': 27, 'description': 'EVENT_DISCONNECTED'}

All events logged will include the string ZeroMQ event. A connection event
should be logged as the minion starts up and initially connects to the
master. If not, check for debug log level and that the necessary version of
ZeroMQ is installed.

tcp_authentication_retries

Default: 5

The number of times to retry authenticating with the salt master when it comes
back online.

Zeromq does a lot to make sure when connections come back online that they
reauthenticate. The tcp transport should try to connect with a new connection
if the old one times out on reauthenticating.

-1 for infinite tries.

tcp_reconnect_backoff

Default: 1

The time in seconds to wait before attempting another connection with salt master
when the previous connection fails while on TCP transport.

failhard

Default: False

Set the global failhard flag. This informs all states to stop running states
at the moment a single state fails

failhard: False

Include Configuration

Configuration can be loaded from multiple files. The order in which this is
done is:

	The minion config file itself

	The files matching the glob in default_include

	The files matching the glob in include (if defined)

Each successive step overrides any values defined in the previous steps.
Therefore, any config options defined in one of the
default_include files would override the same value in the
minion config file, and any options defined in include would
override both.

default_include

Default: minion.d/*.conf

The minion can include configuration from other files. Per default the
minion will automatically include all config files from minion.d/*.conf
where minion.d is relative to the directory of the minion configuration
file.

Note

Salt creates files in the minion.d directory for its own use. These
files are prefixed with an underscore. A common example of this is the
_schedule.conf file.

include

Default: not defined

The minion can include configuration from other files. To enable this,
pass a list of paths to this option. The paths can be either relative or
absolute; if relative, they are considered to be relative to the directory
the main minion configuration file lives in. Paths can make use of
shell-style globbing. If no files are matched by a path passed to this
option then the minion will log a warning message.

Include files from a minion.d directory in the same
directory as the minion config file
include: minion.d/*.conf

Include a single extra file into the configuration
include: /etc/roles/webserver

Include several files and the minion.d directory
include:
 - extra_config
 - minion.d/*
 - /etc/roles/webserver

Keepalive Settings

tcp_keepalive

Default: True

The tcp keepalive interval to set on TCP ports. This setting can be used to tune Salt
connectivity issues in messy network environments with misbehaving firewalls.

tcp_keepalive: True

tcp_keepalive_cnt

Default: -1

Sets the ZeroMQ TCP keepalive count. May be used to tune issues with minion disconnects.

tcp_keepalive_cnt: -1

tcp_keepalive_idle

Default: 300

Sets ZeroMQ TCP keepalive idle. May be used to tune issues with minion disconnects.

tcp_keepalive_idle: 300

tcp_keepalive_intvl

Default: -1

Sets ZeroMQ TCP keepalive interval. May be used to tune issues with minion disconnects.

tcp_keepalive_intvl': -1

Frozen Build Update Settings

These options control how salt.modules.saltutil.update() works with esky
frozen apps. For more information look at https://github.com/cloudmatrix/esky/.

update_url

Default: False (Update feature is disabled)

The url to use when looking for application updates. Esky depends on directory
listings to search for new versions. A webserver running on your Master is a
good starting point for most setups.

update_url: 'http://salt.example.com/minion-updates'

update_restart_services

Default: [] (service restarting on update is disabled)

A list of services to restart when the minion software is updated. This would
typically just be a list containing the minion's service name, but you may
have other services that need to go with it.

update_restart_services: ['salt-minion']

Windows Software Repo Settings

These settings apply to all minions, whether running in masterless or
master-minion mode.

winrepo_cache_expire_min

New in version 2016.11.0.

Default: 1800

If set to a nonzero integer, then passing refresh=True to functions in the
windows pkg module will not refresh the windows
repo metadata if the age of the metadata is less than this value. The exception
to this is pkg.refresh_db, which
will always refresh the metadata, regardless of age.

winrepo_cache_expire_min: 1800

winrepo_cache_expire_max

New in version 2016.11.0.

Default: 21600

If the windows repo metadata is older than this value, and the metadata is
needed by a function in the windows pkg module,
the metadata will be refreshed.

winrepo_cache_expire_max: 86400

winrepo_source_dir

Default: salt://win/repo-ng/

The source location for the winrepo sls files.

winrepo_source_dir: salt://win/repo-ng/

Standalone Minion Windows Software Repo Settings

The following settings are for configuring the Windows Software Repository
(winrepo) on a masterless minion. To run in masterless minion mode, set the
file_client to local or run salt-call with the
--local option

Important

These config options are only valid for minions running in masterless mode

winrepo_dir

Changed in version 2015.8.0: Renamed from win_repo to winrepo_dir. This option did not have a
default value until this version.

Default: C:\salt\srv\salt\win\repo

Location on the minion file_roots where winrepo files are kept.
This is also where the winrepo_remotes are cloned to by
winrepo.update_git_repos.

winrepo_dir: 'D:\winrepo'

winrepo_dir_ng

New in version 2015.8.0: A new ng repo was added.

Default: C:\salt\srv\salt\win\repo-ng

Location on the minion file_roots where winrepo files are kept
for 2018.8.0 and later minions. This is also where the
winrepo_remotes are cloned to by winrepo.update_git_repos.

winrepo_dir_ng: /srv/salt/win/repo-ng

winrepo_cachefile

Changed in version 2015.8.0: Renamed from win_repo_cachefile to winrepo_cachefile. Also,
this option did not have a default value until this version.

Default: winrepo.p

The name of the winrepo cache file. The file will be created at root of
the directory specified by winrepo_dir_ng.

winrepo_cachefile: winrepo.p

winrepo_remotes

Changed in version 2015.8.0: Renamed from win_gitrepos to winrepo_remotes. Also, this option did
not have a default value until this version.

New in version 2015.8.0.

Default: ['https://github.com/saltstack/salt-winrepo.git']

List of git repositories to checkout and include in the winrepo

winrepo_remotes:
 - https://github.com/saltstack/salt-winrepo.git

To specify a specific revision of the repository, prepend a commit ID to the
URL of the repository:

winrepo_remotes:
 - '<commit_id> https://github.com/saltstack/salt-winrepo.git'

Replace <commit_id> with the SHA1 hash of a commit ID. Specifying a commit
ID is useful in that it allows one to revert back to a previous version in the
event that an error is introduced in the latest revision of the repo.

winrepo_remotes_ng

New in version 2015.8.0: A new ng repo was added.

Default: ['https://github.com/saltstack/salt-winrepo-ng.git']

List of git repositories to checkout and include in the winrepo for
2015.8.0 and later minions.

winrepo_remotes_ng:
 - https://github.com/saltstack/salt-winrepo-ng.git

To specify a specific revision of the repository, prepend a commit ID to the
URL of the repository:

winrepo_remotes_ng:
 - '<commit_id> https://github.com/saltstack/salt-winrepo-ng.git'

Replace <commit_id> with the SHA1 hash of a commit ID. Specifying a commit
ID is useful in that it allows one to revert back to a previous version in the
event that an error is introduced in the latest revision of the repo.

Configuring the Salt Proxy Minion

The Salt system is amazingly simple and easy to configure. The two components
of the Salt system each have a respective configuration file. The
salt-master is configured via the master configuration file, and the
salt-proxy is configured via the proxy configuration file.

See also

example proxy minion configuration file

The Salt Minion configuration is very simple. Typically, the only value that
needs to be set is the master value so the proxy knows where to locate its master.

By default, the salt-proxy configuration will be in /etc/salt/proxy.
A notable exception is FreeBSD, where the configuration will be in
/usr/local/etc/salt/proxy.

With the Salt 3004 release, the ability to configure proxy minions using the delta proxy
was introduced. The delta proxy provides the ability for a single control proxy
minion to manage multiple proxy minions.

See also

Installing and Using Deltaproxy

Proxy-specific Configuration Options

add_proxymodule_to_opts

New in version 2015.8.2.

Changed in version 2016.3.0.

Default: False

Add the proxymodule LazyLoader object to opts.

add_proxymodule_to_opts: True

proxy_merge_grains_in_module

New in version 2016.3.0.

Changed in version 2017.7.0.

Default: True

If a proxymodule has a function called grains, then call it during
regular grains loading and merge the results with the proxy's grains
dictionary. Otherwise it is assumed that the module calls the grains
function in a custom way and returns the data elsewhere.

proxy_merge_grains_in_module: False

proxy_keep_alive

New in version 2017.7.0.

Default: True

Whether the connection with the remote device should be restarted
when dead. The proxy module must implement the alive function,
otherwise the connection is considered alive.

proxy_keep_alive: False

proxy_keep_alive_interval

New in version 2017.7.0.

Default: 1

The frequency of keepalive checks, in minutes. It requires the
proxy_keep_alive option to be enabled
(and the proxy module to implement the alive function).

proxy_keep_alive_interval: 5

proxy_always_alive

New in version 2017.7.0.

Default: True

Whether the proxy should maintain the connection with the remote
device. Similarly to proxy_keep_alive, this option
is very specific to the design of the proxy module.
When proxy_always_alive is set to False,
the connection with the remote device is not maintained and
has to be closed after every command.

proxy_always_alive: False

proxy_merge_pillar_in_opts

New in version 2017.7.3.

Default: False.

Whether the pillar data to be merged into the proxy configuration options.
As multiple proxies can run on the same server, we may need different
configuration options for each, while there's one single configuration file.
The solution is merging the pillar data of each proxy minion into the opts.

proxy_merge_pillar_in_opts: True

proxy_deep_merge_pillar_in_opts

New in version 2017.7.3.

Default: False.

Deep merge of pillar data into configuration opts.
This option is evaluated only when proxy_merge_pillar_in_opts is
enabled.

proxy_merge_pillar_in_opts_strategy

New in version 2017.7.3.

Default: smart.

The strategy used when merging pillar configuration into opts.
This option is evaluated only when proxy_merge_pillar_in_opts is
enabled.

proxy_mines_pillar

New in version 2017.7.3.

Default: True.

Allow enabling mine details using pillar data. This evaluates the mine
configuration under the pillar, for the following regular minion options that
are also equally available on the proxy minion: mine_interval,
and mine_functions.

Delta proxy minions

Welcome to the delta proxy minion installation guide. This installation
guide explains the process for installing and using delta proxy minion
which is available beginning in version 3004.

This guide is intended for system and network administrators with the general
knowledge and experience required in the field. This guide is also intended for
users that have ideally already tested and used standard Salt proxy minions in
their environment before deciding to move to a delta proxy minion environment.
See Salt proxy minions [https://docs.saltproject.io/en/latest/topics/proxyminion/index.html] for more information.

Note

If you have not used standard Salt proxy minions before, consider testing
and deploying standard Salt proxy minions in your environment first.

Proxy minions vs. delta proxy minions

Salt can target network devices through Salt proxy minions [https://docs.saltproject.io/en/latest/topics/proxyminion/index.html],
Proxy minions allow you to control network devices that, for whatever reason,
cannot run the standard Salt minion. Examples include:

	Network gear that has an API but runs a proprietary operating system

	Devices with limited CPU or memory

	Devices that could run a minion but will not for security reasons

A proxy minion acts as an intermediary between the Salt master and the
device it represents. The proxy minion runs on the Salt master and then
translates commands from the Salt master to the device as needed.

By acting as an intermediary for the actual minion, proxy minions eliminate
the need to establish a constant connection from a Salt master to a minion. Proxy
minions generally only open a connection to the actual minion when necessary.

Proxy minions also reduce the amount of CPU or memory the minion must spend
checking for commands from the Salt master. Proxy minions use the Salt master's CPU
or memory to check for commands. The actual minion only needs to use CPU or
memory to run commands when needed.

Note

For more information about Salt proxy minions, see:

	Salt proxy minions [https://docs.saltproject.io/en/latest/topics/proxyminion/index.html]

	Salt proxy modules [https://docs.saltproject.io/en/latest/ref/proxy/all/index.html#all-salt-proxy]

When delta proxy minions are needed

Normally, you would create a separate instance of proxy minion for each device
that needs to be managed. However, this doesn't always scale well if you have
thousands of devices. Running several thousand proxy minions can require a lot
of memory and CPU.

A delta proxy minion can solve this problem: it makes it possible to run one
minion that acts as the intermediary between the Salt master and the many network
devices it can represent. In this scenario, one device (the delta proxy minion
on the Salt master) runs several proxies. This configuration boosts performance and
improves the overall scalability of the network.

Key terms

The following lists some important terminology that is used throughout this
guide:

	Term

	Definition

	Salt master

	The Salt master is a central node running the Salt master server.
The Salt master issues commands to minions.

	minion

	Minions are nodes running the Salt minion service. Minions listen
to commands from a Salt master and perform the requested tasks, then return
data back to the Salt master as needed.

	proxy minion

	A Salt master that is running the proxy-minion service. The proxy minion
acts as an intermediary between the Salt master and the device it represents.
The proxy minion runs on the Salt master and then translates commands from
the Salt master to the device. A separate instance of proxy minion is
needed for each device that is managed.

	delta proxy minion

	A Salt master that is running the delta proxy-minion service. The
delta proxy minion acts as the intermediary between the Salt master and the
many network devices it can represent. Only one instance of the delta
proxy service is needed to run several proxies.

	control proxy

	The control proxy runs on the Salt master. It manages a list of devices and
issues commands to the network devices it represents. The Salt master needs
at least one control proxy, but it is possible to have more than one
control proxy, each managing a different set of devices.

	managed device

	A device (such as Netmiko) that is managed by proxy minions or by a
control proxy minion. The proxy minion or control proxy only creates
a connection to the actual minion it needs to issue a command.

	pillar file

	Pillars are structures of data (files) defined on the Salt master and passed
through to one or more minions when the minion needs access to the
pillar file. Pillars allow confidential, targeted data to be securely sent
only to the relevant minion. Because all configurations for
delta proxy minions are done on the Salt master (not on the minions), you
use pillar files to configure the delta proxy-minion service.

	top file

	The top file is a pillar file that maps which states should be applied to
different minions in certain environments.

Pre-installation

Before you start

Before installing the delta proxy minion, ensure that:

	Your network device and firmware are supported.

	The Salt master that is acting as the control proxy minion has network
access to the devices it is managing.

	You have installed, configured, and tested standard Salt proxy minions in
your environment before introducing delta proxy minions into your
environment.

Install or upgrade Salt

Ensure your Salt masters are running at least Salt version 3004. For instructions
on installing or upgrading Salt, see repo.saltproject.io [http://repo.saltproject.io/]. For RedHat systems, see Install or Upgrade Salt [https://enterprise.saltproject.io/en/latest/docs/install-salt.html].

Installation

Before you begin the delta proxy minion installation process, ensure you
have read and completed the Pre-installation steps.

Overview of the installation process

Similar to proxy minions, all the delta proxy minion configurations are done
on the Salt master rather than on the minions that will be managed. The
installation process has the following phases:

	Configure the master to use delta proxy - Create a
configuration file on the Salt master that defines its proxy settings.

	Create a pillar file for each managed device - Create a
pillar file for each device that will be managed by the delta proxy minion
and reference these minions in the top file.

	Create a control proxy configuration file - Create a control proxy file
that lists the devices that it will manage. Then, reference this file in the
top file.

	Start the delta proxy minion - Start the delta proxy-minion service and
validate that it has been set up correctly.

Configure the master to use delta proxy

In this step, you'll create a configuration file on the Salt master that defines
its proxy settings. This is a general configuration file that tells the Salt master
how to handle all proxy minions.

To create this configuration:

	On the Salt master, navigate to the /etc/salt directory. In this directory,
create a file named proxy if one doesn't already exist.

	Open the file in your preferred editor and add the following configuration
information:

Use delta proxy metaproxy
metaproxy: deltaproxy

Disable the FQDNS grain
enable_fqdns_grains: False

Enabled multprocessing
multiprocessing: True

Note

See the following section about delta proxy configuration options for
a more detailed description of these configuration options.

	Save the file.

Your Salt master is now configured to use delta proxy. Next, you need to
Create a pillar file for each managed device.

Delta proxy configuration options

The following table describes the configuration options used in the delta
proxy configuration file:

	Field

	Description

	metaproxy

	Set this configuration option to deltaproxy. If this option is set to
proxy or if this line is not included in the file, the Salt master will
use the standard proxy service instead of the delta proxy service.

	enable_fqdns_grains

	If your router does not have the ability to use Reverse DNS lookup to
obtain the Fully Qualified Domain Name (fqdn) for an IP address, you'll
need to change the enable_fqdns_grains setting in the pillar
configuration file to False instead.

	multiprocessing

	Multi-processing is the ability to run more than one task or process at
the same time. A delta proxy minion has the ability to run with
multi-processing turned off.

If you plan to run with multi-processing enabled, you should also enable
the skip_connect_on_init setting to True.

	skip_connect_on_init

	This setting tells the control proxy whether or not it should make a
connection to the managed device when it starts. When set to True, the
delta proxy minion will only connect when it needs to issue commands to
the managed devices.

Create a pillar file for each managed device

Each device that needs to be managed by delta proxy needs a separate pillar
file on the Salt master. To create this file:

	Navigate to the /srv/pillar directory.

	In this directory create a new pillar file for a minion. For example,
my_managed_device_pillar_file_01.sls.

	Open the new file in your preferred editor and add the necessary
configuration information for that minion and your environment. The
following is an example pillar file for a Netmiko device:

proxy:
 proxytype: netmiko
 device_type: arista_eos
 host: 192.0.2.1
 username: myusername
 password: mypassword
 always_alive: True

Note

The available configuration options vary depending on the proxy type (in
other words, the type of device it is). To read a detailed explanation of
the configuration options, refer to the proxy module documentation for
the type of device you need to manage. See:

	Salt proxy modules [https://docs.saltproject.io/en/latest/ref/proxy/all/index.html#all-salt-proxy]

	Netmiko Salt proxy module [https://docs.saltproject.io/en/latest/ref/proxy/all/salt.proxy.netmiko_px.html#module-salt.proxy.netmiko_px]

	Save the file.

	In an editor, open the top file: /srv/pillar/top.sls.

	Add a section to the top file that indicates the minion ID of the device
that will be managed. Then, list the name of the pillar file you created in
the previous steps. For example:

my_managed_device_minion_ID:
 - my_managed_device_pillar_file_01

	Repeat the previous steps for each minion that needs to be managed.

You've now created the pillar file for the minions that will be managed by the
delta proxy minion and you have referenced these files in the top file.
Proceed to the next section.

Create a control proxy configuration file

On the Salt master, you'll need to create or edit a control proxy file for each
control proxy. The control proxy manages several devices and issues commands to
the network devices it represents. The Salt master needs at least one control
proxy, but it is possible to have more than one control proxy, each managing a
different set of devices.

To configure a control proxy, you'll create a file that lists the minion IDs
of the minions that it will manage. Then you will reference this control proxy
configuration file in the top file.

To create a control proxy configuration file:

	On the Salt master, navigate to the /srv/pillar directory. In this
directory, create a new proxy configuration file. Give this file a
descriptive name, such as control_proxy_01_configuration.sls.

	Open the file in your preferred editor and add a list of the minion IDs for
each device that needs to be managed. For example:

proxy:
 proxytype: deltaproxy
 ids:
 - my_managed_device_01
 - my_managed_device_02
 - my_managed_device_03

	Save the file.

	In an editor, open the top file: /srv/pillar/top.sls.

	Add a section to the top file that indicates references the delta proxy
control proxy. For example:

base:
 my_managed_device_minion_01:
 - my_managed_device_pillar_file_01
 my_managed_device_minion_02:
 - my_managed_device_pillar_file_02
 my_managed_device_minion_03:
 - my_managed_device_pillar_file_03
 delta_proxy_control:
 - control_proxy_01_configuration

	Repeat the previous steps for each control proxy if needed.

	In an editor, open the proxy config file: /etc/salt/proxy.
Add a section for metaproxy and set it's value to deltaproxy.

metaproxy: deltaproxy

Now that you have created the necessary configurations, proceed to the next
section.

Start the delta proxy minion

After you've successfully configured the delta proxy minion, you need to
start the proxy minion service for each managed device and validate that it is
working correctly.

Note

This step explains the process for starting a single instance of a
delta proxy minion. Because starting each minion individually can
potentially be very time-consuming, most organizations use a script to start
their delta proxy minions since there are typically many devices being
managed. Consider implementing a similar script for your environment to save
time in deployment.

To start a single instance of a delta proxy minion and test that it is
configured correctly:

	In the terminal for the Salt master, run the following command, replacing the
placeholder text with the actual minion ID:

sudo salt-proxy --proxyid=<control_proxy_id>

	To test the delta proxy minion, run the following test.version command
on the Salt master and target a specific minion. For example:

salt my_managed_device_minion_ID test.version

This command returns an output similar to the following:

local:
 3004

After you've successfully started the delta proxy minions and verified that
they are working correctly, you can now use these minions the same as standard
proxy minions.

Additional resources

This reference section includes additional resources for delta proxy minions.

For reference, see:

	Salt proxy minions [https://docs.saltproject.io/en/latest/topics/proxyminion/index.html]

	Salt proxy modules [https://docs.saltproject.io/en/latest/ref/proxy/all/index.html#all-salt-proxy]

	Netmiko Salt proxy module [https://docs.saltproject.io/en/latest/ref/proxy/all/salt.proxy.netmiko_px.html#module-salt.proxy.netmiko_px]

Configuration file examples

	Example master configuration file

	Example minion configuration file

	Example proxy minion configuration file

Example master configuration file

Primary configuration settings
##
This configuration file is used to manage the behavior of the Salt Master.
Values that are commented out but have an empty line after the comment are
defaults that do not need to be set in the config. If there is no blank line
after the comment then the value is presented as an example and is not the
default.

Per default, the master will automatically include all config files
from master.d/*.conf (master.d is a directory in the same directory
as the main master config file).
#default_include: master.d/*.conf

The address of the interface to bind to:
#interface: 0.0.0.0

Whether the master should listen for IPv6 connections. If this is set to True,
the interface option must be adjusted, too. (For example: "interface: '::'")
#ipv6: False

The tcp port used by the publisher:
#publish_port: 4505

The user under which the salt master will run. Salt will update all
permissions to allow the specified user to run the master. The exception is
the job cache, which must be deleted if this user is changed. If the
modified files cause conflicts, set verify_env to False.
#user: root

Tell the master to also use salt-ssh when running commands against minions.
#enable_ssh_minions: False

The port used by the communication interface. The ret (return) port is the
interface used for the file server, authentication, job returns, etc.
#ret_port: 4506

Specify the location of the daemon process ID file:
#pidfile: /var/run/salt-master.pid

The root directory prepended to these options: pki_dir, cachedir,
sock_dir, log_file, autosign_file, autoreject_file, extension_modules,
key_logfile, pidfile, autosign_grains_dir:
#root_dir: /

The path to the master's configuration file.
#conf_file: /etc/salt/master

Directory used to store public key data:
#pki_dir: /etc/salt/pki/master

Key cache. Increases master speed for large numbers of accepted
keys. Available options: 'sched'. (Updates on a fixed schedule.)
Note that enabling this feature means that minions will not be
available to target for up to the length of the maintenance loop
which by default is 60s.
#key_cache: ''

Directory to store job and cache data:
This directory may contain sensitive data and should be protected accordingly.
#
#cachedir: /var/cache/salt/master

Directory where custom modules sync to. This directory can contain
subdirectories for each of Salt's module types such as "runners",
"output", "wheel", "modules", "states", "returners", "engines",
"utils", etc.
#
Note, any directories or files not found in the `module_dirs`
location will be removed from the extension_modules path.

#extension_modules: /var/cache/salt/master/extmods

Directory for custom modules. This directory can contain subdirectories for
each of Salt's module types such as "runners", "output", "wheel", "modules",
"states", "returners", "engines", "utils", etc.
#module_dirs: []

Verify and set permissions on configuration directories at startup:
#verify_env: True

Set the number of hours to keep old job information in the job cache.
This option is deprecated by the keep_jobs_seconds option.
#keep_jobs: 24

Set the number of seconds to keep old job information in the job cache:
#keep_jobs_seconds: 86400

The number of seconds to wait when the client is requesting information
about running jobs.
#gather_job_timeout: 10

Set the default timeout for the salt command and api. The default is 5
seconds.
#timeout: 5

The loop_interval option controls the seconds for the master's maintenance
process check cycle. This process updates file server backends, cleans the
job cache and executes the scheduler.
#loop_interval: 60

Set the default outputter used by the salt command. The default is "nested".
#output: nested

To set a list of additional directories to search for salt outputters, set the
outputter_dirs option.
#outputter_dirs: []

Set the default output file used by the salt command. Default is to output
to the CLI and not to a file. Functions the same way as the "--out-file"
CLI option, only sets this to a single file for all salt commands.
#output_file: None

Return minions that timeout when running commands like test.ping
#show_timeout: True

Tell the client to display the jid when a job is published.
#show_jid: False

By default, output is colored. To disable colored output, set the color value
to False.
#color: True

Do not strip off the colored output from nested results and state outputs
(true by default).
strip_colors: False

To display a summary of the number of minions targeted, the number of
minions returned, and the number of minions that did not return, set the
cli_summary value to True. (False by default.)
#
#cli_summary: False

Set the directory used to hold unix sockets:
#sock_dir: /var/run/salt/master

The master can take a while to start up when lspci and/or dmidecode is used
to populate the grains for the master. Enable if you want to see GPU hardware
data for your master.
enable_gpu_grains: False

The master maintains a job cache. While this is a great addition, it can be
a burden on the master for larger deployments (over 5000 minions).
Disabling the job cache will make previously executed jobs unavailable to
the jobs system and is not generally recommended.
#job_cache: True

Cache minion grains, pillar and mine data via the cache subsystem in the
cachedir or a database.
#minion_data_cache: True

Cache subsystem module to use for minion data cache.
#cache: localfs
Enables a fast in-memory cache booster and sets the expiration time.
#memcache_expire_seconds: 0
Set a memcache limit in items (bank + key) per cache storage (driver + driver_opts).
#memcache_max_items: 1024
Each time a cache storage got full cleanup all the expired items not just the oldest one.
#memcache_full_cleanup: False
Enable collecting the memcache stats and log it on `debug` log level.
#memcache_debug: False

Store all returns in the given returner.
Setting this option requires that any returner-specific configuration also
be set. See various returners in salt/returners for details on required
configuration values. (See also, event_return_queue, and event_return_queue_max_seconds below.)
#
#event_return: mysql

On busy systems, enabling event_returns can cause a considerable load on
the storage system for returners. Events can be queued on the master and
stored in a batched fashion using a single transaction for multiple events.
By default, events are not queued.
#event_return_queue: 0

In some cases enabling event return queueing can be very helpful, but the bus
may not busy enough to flush the queue consistently. Setting this to a reasonable
value (1-30 seconds) will cause the queue to be flushed when the oldest event is older
than `event_return_queue_max_seconds` regardless of how many events are in the queue.
#event_return_queue_max_seconds: 0

Only return events matching tags in a whitelist, supports glob matches.
#event_return_whitelist:
- salt/master/a_tag
- salt/run/*/ret

Store all event returns **except** the tags in a blacklist, supports globs.
#event_return_blacklist:
- salt/master/not_this_tag
- salt/wheel/*/ret

Passing very large events can cause the minion to consume large amounts of
memory. This value tunes the maximum size of a message allowed onto the
master event bus. The value is expressed in bytes.
#max_event_size: 1048576

Windows platforms lack posix IPC and must rely on slower TCP based inter-
process communications. Set ipc_mode to 'tcp' on such systems
#ipc_mode: ipc

Overwrite the default tcp ports used by the minion when ipc_mode is set to 'tcp'
#tcp_master_pub_port: 4510
#tcp_master_pull_port: 4511

By default, the master AES key rotates every 24 hours. The next command
following a key rotation will trigger a key refresh from the minion which may
result in minions which do not respond to the first command after a key refresh.
#
To tell the master to ping all minions immediately after an AES key refresh, set
ping_on_rotate to True. This should mitigate the issue where a minion does not
appear to initially respond after a key is rotated.
#
Note that ping_on_rotate may cause high load on the master immediately after
the key rotation event as minions reconnect. Consider this carefully if this
salt master is managing a large number of minions.
#
If disabled, it is recommended to handle this event by listening for the
'aes_key_rotate' event with the 'key' tag and acting appropriately.
ping_on_rotate: False

By default, the master deletes its cache of minion data when the key for that
minion is removed. To preserve the cache after key deletion, set
'preserve_minion_cache' to True.
#
WARNING: This may have security implications if compromised minions auth with
a previous deleted minion ID.
#preserve_minion_cache: False

Allow or deny minions from requesting their own key revocation
#allow_minion_key_revoke: True

If max_minions is used in large installations, the master might experience
high-load situations because of having to check the number of connected
minions for every authentication. This cache provides the minion-ids of
all connected minions to all MWorker-processes and greatly improves the
performance of max_minions.
con_cache: False

The master can include configuration from other files. To enable this,
pass a list of paths to this option. The paths can be either relative or
absolute; if relative, they are considered to be relative to the directory
the main master configuration file lives in (this file). Paths can make use
of shell-style globbing. If no files are matched by a path passed to this
option, then the master will log a warning message.
#
Include a config file from some other path:
include: /etc/salt/extra_config
#
Include config from several files and directories:
include:
- /etc/salt/extra_config

Large-scale tuning settings
##
Max open files
#
Each minion connecting to the master uses AT LEAST one file descriptor, the
master subscription connection. If enough minions connect you might start
seeing on the console (and then salt-master crashes):
Too many open files (tcp_listener.cpp:335)
Aborted (core dumped)
#
By default this value will be the one of `ulimit -Hn`, ie, the hard limit for
max open files.
#
If you wish to set a different value than the default one, uncomment and
configure this setting. Remember that this value CANNOT be higher than the
hard limit. Raising the hard limit depends on your OS and/or distribution,
a good way to find the limit is to search the internet. For example:
raise max open files hard limit debian
#
#max_open_files: 100000

The number of worker threads to start. These threads are used to manage
return calls made from minions to the master. If the master seems to be
running slowly, increase the number of threads. This setting can not be
set lower than 3.
#worker_threads: 5

Set the ZeroMQ high water marks
http://api.zeromq.org/3-2:zmq-setsockopt

The listen queue size / backlog
#zmq_backlog: 1000

The publisher interface ZeroMQPubServerChannel
#pub_hwm: 1000

The master may allocate memory per-event and not
reclaim it.
To set a high-water mark for memory allocation, use
ipc_write_buffer to set a high-water mark for message
buffering.
Value: In bytes. Set to 'dynamic' to have Salt select
a value for you. Default is disabled.
ipc_write_buffer: 'dynamic'

These two batch settings, batch_safe_limit and batch_safe_size, are used to
automatically switch to a batch mode execution. If a command would have been
sent to more than <batch_safe_limit> minions, then run the command in
batches of <batch_safe_size>. If no batch_safe_size is specified, a default
of 8 will be used. If no batch_safe_limit is specified, then no automatic
batching will occur.
#batch_safe_limit: 100
#batch_safe_size: 8

Master stats enables stats events to be fired from the master at close
to the defined interval
#master_stats: False
#master_stats_event_iter: 60

Security settings
##
Enable passphrase protection of Master private key. Although a string value
is acceptable; passwords should be stored in an external vaulting mechanism
and retrieved via sdb. See https://docs.saltproject.io/en/latest/topics/sdb/.
Passphrase protection is off by default but an example of an sdb profile and
query is as follows.
masterkeyring:
driver: keyring
service: system
#
key_pass: sdb://masterkeyring/key_pass

Enable passphrase protection of the Master signing_key. This only applies if
master_sign_pubkey is set to True. This is disabled by default.
master_sign_pubkey: True
signing_key_pass: sdb://masterkeyring/signing_pass

Enable "open mode", this mode still maintains encryption, but turns off
authentication, this is only intended for highly secure environments or for
the situation where your keys end up in a bad state. If you run in open mode
you do so at your own risk!
#open_mode: False

Enable auto_accept, this setting will automatically accept all incoming
public keys from the minions. Note that this is insecure.
#auto_accept: False

The size of key that should be generated when creating new keys.
#keysize: 2048

Time in minutes that an incoming public key with a matching name found in
pki_dir/minion_autosign/keyid is automatically accepted. Expired autosign keys
are removed when the master checks the minion_autosign directory.
0 equals no timeout
autosign_timeout: 120

If the autosign_file is specified, incoming keys specified in the
autosign_file will be automatically accepted. This is insecure. Regular
expressions as well as globing lines are supported. The file must be readonly
except for the owner. Use permissive_pki_access to allow the group write access.
#autosign_file: /etc/salt/autosign.conf

Works like autosign_file, but instead allows you to specify minion IDs for
which keys will automatically be rejected. Will override both membership in
the autosign_file and the auto_accept setting.
#autoreject_file: /etc/salt/autoreject.conf

If the autosign_grains_dir is specified, incoming keys from minions with grain
values matching those defined in files in this directory will be accepted
automatically. This is insecure. Minions need to be configured to send the grains.
#autosign_grains_dir: /etc/salt/autosign_grains

Enable permissive access to the salt keys. This allows you to run the
master or minion as root, but have a non-root group be given access to
your pki_dir. To make the access explicit, root must belong to the group
you've given access to. This is potentially quite insecure. If an autosign_file
is specified, enabling permissive_pki_access will allow group access to that
specific file.
#permissive_pki_access: False

Allow users on the master access to execute specific commands on minions.
This setting should be treated with care since it opens up execution
capabilities to non root users. By default this capability is completely
disabled.
#publisher_acl:
larry:
- test.ping
- network.*
#
Blacklist any of the following users or modules
#
This example would blacklist all non sudo users, including root from
running any commands. It would also blacklist any use of the "cmd"
module. This is completely disabled by default.
#
#
Check the list of configured users in client ACL against users on the
system and throw errors if they do not exist.
#client_acl_verify: True
#
#publisher_acl_blacklist:
users:
- root
- '^(?!sudo_).*$' # all non sudo users
modules:
- cmd

Enforce publisher_acl & publisher_acl_blacklist when users have sudo
access to the salt command.
#
#sudo_acl: False

The external auth system uses the Salt auth modules to authenticate and
validate users to access areas of the Salt system.
#external_auth:
pam:
fred:
- test.*
#
Time (in seconds) for a newly generated token to live. Default: 12 hours
#token_expire: 43200
#
Allow eauth users to specify the expiry time of the tokens they generate.
A boolean applies to all users or a dictionary of whitelisted eauth backends
and usernames may be given.
token_expire_user_override:
pam:
- fred
- tom
ldap:
- gary
#
#token_expire_user_override: False

Set to True to enable keeping the calculated user's auth list in the token
file. This is disabled by default and the auth list is calculated or requested
from the eauth driver each time.
#
Note: `keep_acl_in_token` will be forced to True when using external authentication
for REST API (`rest` is present under `external_auth`). This is because the REST API
does not store the password, and can therefore not retroactively fetch the ACL, so
the ACL must be stored in the token.
#keep_acl_in_token: False

Auth subsystem module to use to get authorized access list for a user. By default it's
the same module used for external authentication.
#eauth_acl_module: django

Allow minions to push files to the master. This is disabled by default, for
security purposes.
#file_recv: False

Set a hard-limit on the size of the files that can be pushed to the master.
It will be interpreted as megabytes. Default: 100
#file_recv_max_size: 100

Signature verification on messages published from the master.
This causes the master to cryptographically sign all messages published to its event
bus, and minions then verify that signature before acting on the message.
#
This is False by default.
#
Note that to facilitate interoperability with masters and minions that are different
versions, if sign_pub_messages is True but a message is received by a minion with
no signature, it will still be accepted, and a warning message will be logged.
Conversely, if sign_pub_messages is False, but a minion receives a signed
message it will be accepted, the signature will not be checked, and a warning message
will be logged. This behavior went away in Salt 2014.1.0 and these two situations
will cause minion to throw an exception and drop the message.
sign_pub_messages: False

Signature verification on messages published from minions
This requires that minions cryptographically sign the messages they
publish to the master. If minions are not signing, then log this information
at loglevel 'INFO' and drop the message without acting on it.
require_minion_sign_messages: False

The below will drop messages when their signatures do not validate.
Note that when this option is False but `require_minion_sign_messages` is True
minions MUST sign their messages but the validity of their signatures
is ignored.
These two config options exist so a Salt infrastructure can be moved
to signing minion messages gradually.
drop_messages_signature_fail: False

Use TLS/SSL encrypted connection between master and minion.
Can be set to a dictionary containing keyword arguments corresponding to Python's
'ssl.wrap_socket' method.
Default is None.
#ssl:
keyfile: <path_to_keyfile>
certfile: <path_to_certfile>
ssl_version: PROTOCOL_TLSv1_2

Salt-SSH Configuration
##
Define the default salt-ssh roster module to use
#roster: flat

Pass in an alternative location for the salt-ssh `flat` roster file
#roster_file: /etc/salt/roster

Define locations for `flat` roster files so they can be chosen when using Salt API.
An administrator can place roster files into these locations. Then when
calling Salt API, parameter 'roster_file' should contain a relative path to
these locations. That is, "roster_file=/foo/roster" will be resolved as
"/etc/salt/roster.d/foo/roster" etc. This feature prevents passing insecure
custom rosters through the Salt API.
#
#rosters:
- /etc/salt/roster.d
- /opt/salt/some/more/rosters

The ssh password to log in with.
#ssh_passwd: ''

#The target system's ssh port number.
#ssh_port: 22

Comma-separated list of ports to scan.
#ssh_scan_ports: 22

Scanning socket timeout for salt-ssh.
#ssh_scan_timeout: 0.01

Boolean to run command via sudo.
#ssh_sudo: False

Boolean to run ssh_pre_flight script defined in roster. By default
the script will only run if the thin_dir does not exist on the targeted
minion. This forces the script to run regardless of the thin dir existing
or not.
#ssh_run_pre_flight: True

Number of seconds to wait for a response when establishing an SSH connection.
#ssh_timeout: 60

The user to log in as.
#ssh_user: root

The log file of the salt-ssh command:
#ssh_log_file: /var/log/salt/ssh

Pass in minion option overrides that will be inserted into the SHIM for
salt-ssh calls. The local minion config is not used for salt-ssh. Can be
overridden on a per-minion basis in the roster (`minion_opts`)
#ssh_minion_opts:
gpg_keydir: /root/gpg

Set this to True to default to using ~/.ssh/id_rsa for salt-ssh
authentication with minions
#ssh_use_home_key: False

Set this to True to default salt-ssh to run with ``-o IdentitiesOnly=yes``.
This option is intended for situations where the ssh-agent offers many
different identities and allows ssh to ignore those identities and use the
only one specified in options.
#ssh_identities_only: False

List-only nodegroups for salt-ssh. Each group must be formed as either a
comma-separated list, or a YAML list. This option is useful to group minions
into easy-to-target groups when using salt-ssh. These groups can then be
targeted with the normal -N argument to salt-ssh.
#ssh_list_nodegroups: {}

salt-ssh has the ability to update the flat roster file if a minion is not
found in the roster. Set this to True to enable it.
#ssh_update_roster: False

Master Module Management
##
Manage how master side modules are loaded.

Add any additional locations to look for master runners:
#runner_dirs: []

Add any additional locations to look for master utils:
#utils_dirs: []

Enable Cython for master side modules:
#cython_enable: False

State System settings
##
The state system uses a "top" file to tell the minions what environment to
use and what modules to use. The state_top file is defined relative to the
root of the base environment as defined in "File Server settings" below.
#state_top: top.sls

The master_tops option replaces the external_nodes option by creating
a plugable system for the generation of external top data. The external_nodes
option is deprecated by the master_tops option.
#
To gain the capabilities of the classic external_nodes system, use the
following configuration:
master_tops:
ext_nodes: <Shell command which returns yaml>
#
#master_tops: {}

The renderer to use on the minions to render the state data
#renderer: jinja|yaml

Default Jinja environment options for all templates except sls templates
#jinja_env:
block_start_string: '{%'
block_end_string: '%}'
variable_start_string: '{{'
variable_end_string: '}}'
comment_start_string: '{#'
comment_end_string: '#}'
line_statement_prefix:
line_comment_prefix:
trim_blocks: False
lstrip_blocks: False
newline_sequence: '\n'
keep_trailing_newline: False

Jinja environment options for sls templates
#jinja_sls_env:
block_start_string: '{%'
block_end_string: '%}'
variable_start_string: '{{'
variable_end_string: '}}'
comment_start_string: '{#'
comment_end_string: '#}'
line_statement_prefix:
line_comment_prefix:
trim_blocks: False
lstrip_blocks: False
newline_sequence: '\n'
keep_trailing_newline: False

The failhard option tells the minions to stop immediately after the first
failure detected in the state execution, defaults to False
#failhard: False

The state_verbose and state_output settings can be used to change the way
state system data is printed to the display. By default all data is printed.
The state_verbose setting can be set to True or False, when set to False
all data that has a result of True and no changes will be suppressed.
#state_verbose: True

The state_output setting controls which results will be output full multi line
full, terse - each state will be full/terse
mixed - only states with errors will be full
changes - states with changes and errors will be full
full_id, mixed_id, changes_id and terse_id are also allowed;
when set, the state ID will be used as name in the output
#state_output: full

The state_output_diff setting changes whether or not the output from
successful states is returned. Useful when even the terse output of these
states is cluttering the logs. Set it to True to ignore them.
#state_output_diff: False

The state_output_profile setting changes whether profile information
will be shown for each state run.
#state_output_profile: True

The state_output_pct setting changes whether success and failure information
as a percent of total actions will be shown for each state run.
#state_output_pct: False

The state_compress_ids setting aggregates information about states which have
multiple "names" under the same state ID in the highstate output.
#state_compress_ids: False

Automatically aggregate all states that have support for mod_aggregate by
setting to 'True'. Or pass a list of state module names to automatically
aggregate just those types.
#
state_aggregate:
- pkg
#
#state_aggregate: False

Send progress events as each function in a state run completes execution
by setting to 'True'. Progress events are in the format
'salt/job/<JID>/prog/<MID>/<RUN NUM>'.
#state_events: False

File Server settings
##
Salt runs a lightweight file server written in zeromq to deliver files to
minions. This file server is built into the master daemon and does not
require a dedicated port.

The file server works on environments passed to the master, each environment
can have multiple root directories, the subdirectories in the multiple file
roots cannot match, otherwise the downloaded files will not be able to be
reliably ensured. A base environment is required to house the top file.
Example:
file_roots:
base:
- /srv/salt/
dev:
- /srv/salt/dev/services
- /srv/salt/dev/states
prod:
- /srv/salt/prod/services
- /srv/salt/prod/states
#
#file_roots:
base:
- /srv/salt
#

The master_roots setting configures a master-only copy of the file_roots dictionary,
used by the state compiler.
#master_roots:
base:
- /srv/salt-master

When using multiple environments, each with their own top file, the
default behaviour is an unordered merge. To prevent top files from
being merged together and instead to only use the top file from the
requested environment, set this value to 'same'.
#top_file_merging_strategy: merge

To specify the order in which environments are merged, set the ordering
in the env_order option. Given a conflict, the last matching value will
win.
#env_order: ['base', 'dev', 'prod']

If top_file_merging_strategy is set to 'same' and an environment does not
contain a top file, the top file in the environment specified by default_top
will be used instead.
#default_top: base

The hash_type is the hash to use when discovering the hash of a file on
the master server. The default is sha256, but md5, sha1, sha224, sha384 and
sha512 are also supported.
#
WARNING: While md5 and sha1 are also supported, do not use them due to the
high chance of possible collisions and thus security breach.
#
Prior to changing this value, the master should be stopped and all Salt
caches should be cleared.
#hash_type: sha256

The buffer size in the file server can be adjusted here:
#file_buffer_size: 1048576

A regular expression (or a list of expressions) that will be matched
against the file path before syncing the modules and states to the minions.
This includes files affected by the file.recurse state.
For example, if you manage your custom modules and states in subversion
and don't want all the '.svn' folders and content synced to your minions,
you could set this to '/\.svn($|/)'. By default nothing is ignored.
#file_ignore_regex:
- '/\.svn($|/)'
- '/\.git($|/)'

A file glob (or list of file globs) that will be matched against the file
path before syncing the modules and states to the minions. This is similar
to file_ignore_regex above, but works on globs instead of regex. By default
nothing is ignored.
file_ignore_glob:
- '*.pyc'
- '*/somefolder/*.bak'
- '*.swp'

File Server Backend
#
Salt supports a modular fileserver backend system, this system allows
the salt master to link directly to third party systems to gather and
manage the files available to minions. Multiple backends can be
configured and will be searched for the requested file in the order in which
they are defined here. The default setting only enables the standard backend
"roots" which uses the "file_roots" option.
#fileserver_backend:
- roots
#
To use multiple backends list them in the order they are searched:
#fileserver_backend:
- git
- roots
#
Uncomment the line below if you do not want the file_server to follow
symlinks when walking the filesystem tree. This is set to True
by default. Currently this only applies to the default roots
fileserver_backend.
#fileserver_followsymlinks: False
#
Uncomment the line below if you do not want symlinks to be
treated as the files they are pointing to. By default this is set to
False. By uncommenting the line below, any detected symlink while listing
files on the Master will not be returned to the Minion.
#fileserver_ignoresymlinks: True
#
The fileserver can fire events off every time the fileserver is updated,
these are disabled by default, but can be easily turned on by setting this
flag to True
#fileserver_events: False

Git File Server Backend Configuration
#
Optional parameter used to specify the provider to be used for gitfs. Must be
either pygit2 or gitpython. If unset, then both will be tried (in that
order), and the first one with a compatible version installed will be the
provider that is used.
#
#gitfs_provider: pygit2

Along with gitfs_password, is used to authenticate to HTTPS remotes.
gitfs_user: ''

Along with gitfs_user, is used to authenticate to HTTPS remotes.
This parameter is not required if the repository does not use authentication.
#gitfs_password: ''

By default, Salt will not authenticate to an HTTP (non-HTTPS) remote.
This parameter enables authentication over HTTP. Enable this at your own risk.
#gitfs_insecure_auth: False

Along with gitfs_privkey (and optionally gitfs_passphrase), is used to
authenticate to SSH remotes. This parameter (or its per-remote counterpart)
is required for SSH remotes.
#gitfs_pubkey: ''

Along with gitfs_pubkey (and optionally gitfs_passphrase), is used to
authenticate to SSH remotes. This parameter (or its per-remote counterpart)
is required for SSH remotes.
#gitfs_privkey: ''

This parameter is optional, required only when the SSH key being used to
authenticate is protected by a passphrase.
#gitfs_passphrase: ''

When using the git fileserver backend at least one git remote needs to be
defined. The user running the salt master will need read access to the repo.
#
The repos will be searched in order to find the file requested by a client
and the first repo to have the file will return it.
When using the git backend branches and tags are translated into salt
environments.
Note: file:// repos will be treated as a remote, so refs you want used must
exist in that repo as *local* refs.
#gitfs_remotes:
- git://github.com/saltstack/salt-states.git
- file:///var/git/saltmaster
#
The gitfs_ssl_verify option specifies whether to ignore ssl certificate
errors when contacting the gitfs backend. You might want to set this to
false if you're using a git backend that uses a self-signed certificate but
keep in mind that setting this flag to anything other than the default of True
is a security concern, you may want to try using the ssh transport.
#gitfs_ssl_verify: True
#
The gitfs_root option gives the ability to serve files from a subdirectory
within the repository. The path is defined relative to the root of the
repository and defaults to the repository root.
#gitfs_root: somefolder/otherfolder
#
The refspecs fetched by gitfs remotes
#gitfs_refspecs:
- '+refs/heads/*:refs/remotes/origin/*'
- '+refs/tags/*:refs/tags/*'
#
#
Pillar settings
##
Salt Pillars allow for the building of global data that can be made selectively
available to different minions based on minion grain filtering. The Salt
Pillar is laid out in the same fashion as the file server, with environments,
a top file and sls files. However, pillar data does not need to be in the
highstate format, and is generally just key/value pairs.
#pillar_roots:
base:
- /srv/pillar
#
#ext_pillar:
- hiera: /etc/hiera.yaml
- cmd_yaml: cat /etc/salt/yaml

A list of paths to be recursively decrypted during pillar compilation.
Entries in this list can be formatted either as a simple string, or as a
key/value pair, with the key being the pillar location, and the value being
the renderer to use for pillar decryption. If the former is used, the
renderer specified by decrypt_pillar_default will be used.
#decrypt_pillar:
- 'foo:bar': gpg
- 'lorem:ipsum:dolor'

The delimiter used to distinguish nested data structures in the
decrypt_pillar option.
#decrypt_pillar_delimiter: ':'

The default renderer used for decryption, if one is not specified for a given
pillar key in decrypt_pillar.
#decrypt_pillar_default: gpg

List of renderers which are permitted to be used for pillar decryption.
#decrypt_pillar_renderers:
- gpg

If this is `True` and the ciphertext could not be decrypted, then an error is
raised.
#gpg_decrypt_must_succeed: False

The ext_pillar_first option allows for external pillar sources to populate
before file system pillar. This allows for targeting file system pillar from
ext_pillar.
#ext_pillar_first: False

The external pillars permitted to be used on-demand using pillar.ext
#on_demand_ext_pillar:
- libvirt
- virtkey

The pillar_gitfs_ssl_verify option specifies whether to ignore ssl certificate
errors when contacting the pillar gitfs backend. You might want to set this to
false if you're using a git backend that uses a self-signed certificate but
keep in mind that setting this flag to anything other than the default of True
is a security concern, you may want to try using the ssh transport.
#pillar_gitfs_ssl_verify: True

The pillar_opts option adds the master configuration file data to a dict in
the pillar called "master". This is used to set simple configurations in the
master config file that can then be used on minions.
#pillar_opts: False

The pillar_safe_render_error option prevents the master from passing pillar
render errors to the minion. This is set on by default because the error could
contain templating data which would give that minion information it shouldn't
have, like a password! When set true the error message will only show:
Rendering SLS 'my.sls' failed. Please see master log for details.
#pillar_safe_render_error: True

The pillar_source_merging_strategy option allows you to configure merging strategy
between different sources. It accepts five values: none, recurse, aggregate, overwrite,
or smart. None will not do any merging at all. Recurse will merge recursively mapping of data.
Aggregate instructs aggregation of elements between sources that use the #!yamlex renderer. Overwrite
will overwrite elements according the order in which they are processed. This is
behavior of the 2014.1 branch and earlier. Smart guesses the best strategy based
on the "renderer" setting and is the default value.
#pillar_source_merging_strategy: smart

Recursively merge lists by aggregating them instead of replacing them.
#pillar_merge_lists: False

Set this option to True to force the pillarenv to be the same as the effective
saltenv when running states. If pillarenv is specified this option will be
ignored.
#pillarenv_from_saltenv: False

Set this option to 'True' to force a 'KeyError' to be raised whenever an
attempt to retrieve a named value from pillar fails. When this option is set
to 'False', the failed attempt returns an empty string. Default is 'False'.
#pillar_raise_on_missing: False

Git External Pillar (git_pillar) Configuration Options
#
Specify the provider to be used for git_pillar. Must be either pygit2 or
gitpython. If unset, then both will be tried in that same order, and the
first one with a compatible version installed will be the provider that
is used.
#git_pillar_provider: pygit2

If the desired branch matches this value, and the environment is omitted
from the git_pillar configuration, then the environment for that git_pillar
remote will be base.
#git_pillar_base: master

If the branch is omitted from a git_pillar remote, then this branch will
be used instead
#git_pillar_branch: master

Environment to use for git_pillar remotes. This is normally derived from
the branch/tag (or from a per-remote env parameter), but if set this will
override the process of deriving the env from the branch/tag name.
#git_pillar_env: ''

Path relative to the root of the repository where the git_pillar top file
and SLS files are located.
#git_pillar_root: ''

Specifies whether or not to ignore SSL certificate errors when contacting
the remote repository.
#git_pillar_ssl_verify: False

When set to False, if there is an update/checkout lock for a git_pillar
remote and the pid written to it is not running on the master, the lock
file will be automatically cleared and a new lock will be obtained.
#git_pillar_global_lock: True

Git External Pillar Authentication Options
#
Along with git_pillar_password, is used to authenticate to HTTPS remotes.
#git_pillar_user: ''

Along with git_pillar_user, is used to authenticate to HTTPS remotes.
This parameter is not required if the repository does not use authentication.
#git_pillar_password: ''

By default, Salt will not authenticate to an HTTP (non-HTTPS) remote.
This parameter enables authentication over HTTP.
#git_pillar_insecure_auth: False

Along with git_pillar_privkey (and optionally git_pillar_passphrase),
is used to authenticate to SSH remotes.
#git_pillar_pubkey: ''

Along with git_pillar_pubkey (and optionally git_pillar_passphrase),
is used to authenticate to SSH remotes.
#git_pillar_privkey: ''

This parameter is optional, required only when the SSH key being used
to authenticate is protected by a passphrase.
#git_pillar_passphrase: ''

The refspecs fetched by git_pillar remotes
#git_pillar_refspecs:
- '+refs/heads/*:refs/remotes/origin/*'
- '+refs/tags/*:refs/tags/*'

A master can cache pillars locally to bypass the expense of having to render them
for each minion on every request. This feature should only be enabled in cases
where pillar rendering time is known to be unsatisfactory and any attendant security
concerns about storing pillars in a master cache have been addressed.
#
When enabling this feature, be certain to read through the additional ``pillar_cache_*``
configuration options to fully understand the tunable parameters and their implications.
#
Note: setting ``pillar_cache: True`` has no effect on targeting Minions with Pillars.
See https://docs.saltproject.io/en/latest/topics/targeting/pillar.html
#pillar_cache: False

If and only if a master has set ``pillar_cache: True``, the cache TTL controls the amount
of time, in seconds, before the cache is considered invalid by a master and a fresh
pillar is recompiled and stored.
The cache TTL does not prevent pillar cache from being refreshed before its TTL expires.
#pillar_cache_ttl: 3600

If and only if a master has set `pillar_cache: True`, one of several storage providers
can be utilized.
#
`disk`: The default storage backend. This caches rendered pillars to the master cache.
Rendered pillars are serialized and deserialized as msgpack structures for speed.
Note that pillars are stored UNENCRYPTED. Ensure that the master cache
has permissions set appropriately. (Same defaults are provided.)
#
memory: [EXPERIMENTAL] An optional backend for pillar caches which uses a pure-Python
in-memory data structure for maximal performance. There are several caveats,
however. First, because each master worker contains its own in-memory cache,
there is no guarantee of cache consistency between minion requests. This
works best in situations where the pillar rarely if ever changes. Secondly,
and perhaps more importantly, this means that unencrypted pillars will
be accessible to any process which can examine the memory of the ``salt-master``!
This may represent a substantial security risk.
#
#pillar_cache_backend: disk

A master can also cache GPG data locally to bypass the expense of having to render them
for each minion on every request. This feature should only be enabled in cases
where pillar rendering time is known to be unsatisfactory and any attendant security
concerns about storing decrypted GPG data in a master cache have been addressed.
#
When enabling this feature, be certain to read through the additional ``gpg_cache_*``
configuration options to fully understand the tunable parameters and their implications.
#gpg_cache: False

If and only if a master has set ``gpg_cache: True``, the cache TTL controls the amount
of time, in seconds, before the cache is considered invalid by a master and a fresh
pillar is recompiled and stored.
#gpg_cache_ttl: 86400

If and only if a master has set `gpg_cache: True`, one of several storage providers
can be utilized. Available options are the same as ``pillar_cache_backend``.
#gpg_cache_backend: disk

Reactor Settings
###
Define a salt reactor. See https://docs.saltproject.io/en/latest/topics/reactor/
#reactor: []

#Set the TTL for the cache of the reactor configuration.
#reactor_refresh_interval: 60

#Configure the number of workers for the runner/wheel in the reactor.
#reactor_worker_threads: 10

#Define the queue size for workers in the reactor.
#reactor_worker_hwm: 10000

Syndic settings
##
The Salt syndic is used to pass commands through a master from a higher
master. Using the syndic is simple. If this is a master that will have
syndic servers(s) below it, then set the "order_masters" setting to True.
#
If this is a master that will be running a syndic daemon for passthrough, then
the "syndic_master" setting needs to be set to the location of the master server
to receive commands from.

Set the order_masters setting to True if this master will command lower
masters' syndic interfaces.
#order_masters: False

If this master will be running a salt syndic daemon, syndic_master tells
this master where to receive commands from.
#syndic_master: masterofmasters

This is the 'ret_port' of the MasterOfMaster:
#syndic_master_port: 4506

PID file of the syndic daemon:
#syndic_pidfile: /var/run/salt-syndic.pid

The log file of the salt-syndic daemon:
#syndic_log_file: /var/log/salt/syndic

The behaviour of the multi-syndic when connection to a master of masters failed.
Can specify ``random`` (default) or ``ordered``. If set to ``random``, masters
will be iterated in random order. If ``ordered`` is specified, the configured
order will be used.
#syndic_failover: random

The number of seconds for the salt client to wait for additional syndics to
check in with their lists of expected minions before giving up.
#syndic_wait: 5

Peer Publish settings
##
Salt minions can send commands to other minions, but only if the minion is
allowed to. By default "Peer Publication" is disabled, and when enabled it
is enabled for specific minions and specific commands. This allows secure
compartmentalization of commands based on individual minions.

The configuration uses regular expressions to match minions and then a list
of regular expressions to match functions. The following will allow the
minion authenticated as foo.example.com to execute functions from the test
and pkg modules.
#peer:
foo.example.com:
- test.*
- pkg.*
#
This will allow all minions to execute all commands:
#peer:
.*:
- .*
#
This is not recommended, since it would allow anyone who gets root on any
single minion to instantly have root on all of the minions!

Minions can also be allowed to execute runners from the salt master.
Since executing a runner from the minion could be considered a security risk,
it needs to be enabled. This setting functions just like the peer setting
except that it opens up runners instead of module functions.
#
All peer runner support is turned off by default and must be enabled before
using. This will enable all peer runners for all minions:
#peer_run:
.*:
- .*
#
To enable just the manage.up runner for the minion foo.example.com:
#peer_run:
foo.example.com:
- manage.up
#
#
Mine settings
#####################################
Restrict mine.get access from minions. By default any minion has a full access
to get all mine data from master cache. In acl definion below, only pcre matches
are allowed.
mine_get:
.*:
- .*
#
The example below enables minion foo.example.com to get 'network.interfaces' mine
data only, minions web* to get all network.* and disk.* mine data and all other
minions won't get any mine data.
mine_get:
foo.example.com:
- network.interfaces
web.*:
- network.*
- disk.*

Logging settings
##
The location of the master log file
The master log can be sent to a regular file, local path name, or network
location. Remote logging works best when configured to use rsyslogd(8) (e.g.:
``file:///dev/log``), with rsyslogd(8) configured for network logging. The URI
format is: <file|udp|tcp>://<host|socketpath>:<port-if-required>/<log-facility>
#log_file: /var/log/salt/master
#log_file: file:///dev/log
#log_file: udp://loghost:10514

#log_file: /var/log/salt/master
#key_logfile: /var/log/salt/key

The level of messages to send to the console.
One of 'garbage', 'trace', 'debug', info', 'warning', 'error', 'critical'.
#
The following log levels are considered INSECURE and may log sensitive data:
['profile', 'garbage', 'trace', 'debug', 'all']
#
#log_level: warning

The level of messages to send to the log file.
One of 'garbage', 'trace', 'debug', 'info', 'warning', 'error', 'critical'.
If using 'log_granular_levels' this must be set to the highest desired level.
#log_level_logfile: warning

The date and time format used in log messages. Allowed date/time formatting
can be seen here: http://docs.python.org/library/time.html#time.strftime
#log_datefmt: '%H:%M:%S'
#log_datefmt_logfile: '%Y-%m-%d %H:%M:%S'

The format of the console logging messages. Allowed formatting options can
be seen here: http://docs.python.org/library/logging.html#logrecord-attributes
#
Console log colors are specified by these additional formatters:
#
%(colorlevel)s
%(colorname)s
%(colorprocess)s
%(colormsg)s
#
Since it is desirable to include the surrounding brackets, '[' and ']', in
the coloring of the messages, these color formatters also include padding as
well. Color LogRecord attributes are only available for console logging.
#
#log_fmt_console: '%(colorlevel)s %(colormsg)s'
#log_fmt_console: '[%(levelname)-8s] %(message)s'
#
#log_fmt_logfile: '%(asctime)s,%(msecs)03d [%(name)-17s][%(levelname)-8s] %(message)s'

This can be used to control logging levels more specificically. This
example sets the main salt library at the 'warning' level, but sets
'salt.modules' to log at the 'debug' level:
log_granular_levels:
'salt': 'warning'
'salt.modules': 'debug'
#
#log_granular_levels: {}

Node Groups
##
Node groups allow for logical groupings of minion nodes. A group consists of
a group name and a compound target. Nodgroups can reference other nodegroups
with 'N@' classifier. Ensure that you do not have circular references.
#
#nodegroups:
group1: 'L@foo.domain.com,bar.domain.com,baz.domain.com or bl*.domain.com'
group2: 'G@os:Debian and foo.domain.com'
group3: 'G@os:Debian and N@group1'
group4:
- 'G@foo:bar'
- 'or'
- 'G@foo:baz'

Range Cluster settings
##
The range server (and optional port) that serves your cluster information
https://github.com/ytoolshed/range/wiki/%22yamlfile%22-module-file-spec
#
#range_server: range:80

Windows Software Repo settings
###
Location of the repo on the master:
#winrepo_dir_ng: '/srv/salt/win/repo-ng'
#
List of git repositories to include with the local repo:
#winrepo_remotes_ng:
- 'https://github.com/saltstack/salt-winrepo-ng.git'

Windows Software Repo settings - Pre 2015.8
##
Legacy repo settings for pre-2015.8 Windows minions.
#
Location of the repo on the master:
#winrepo_dir: '/srv/salt/win/repo'
#
Location of the master's repo cache file:
#winrepo_mastercachefile: '/srv/salt/win/repo/winrepo.p'
#
List of git repositories to include with the local repo:
#winrepo_remotes:
- 'https://github.com/saltstack/salt-winrepo.git'

The refspecs fetched by winrepo remotes
#winrepo_refspecs:
- '+refs/heads/*:refs/remotes/origin/*'
- '+refs/tags/*:refs/tags/*'
#

Returner settings
##
Which returner(s) will be used for minion's result:
#return: mysql

Miscellaneous settings
##
Default match type for filtering events tags: startswith, endswith, find, regex, fnmatch
#event_match_type: startswith

Save runner returns to the job cache
#runner_returns: True

Permanently include any available Python 3rd party modules into thin and minimal Salt
when they are generated for Salt-SSH or other purposes.
The modules should be named by the names they are actually imported inside the Python.
The value of the parameters can be either one module or a comma separated list of them.
#thin_extra_mods: foo,bar
#min_extra_mods: foo,bar,baz

Keepalive settings
##
Warning: Failure to set TCP keepalives on the salt-master can result in
not detecting the loss of a minion when the connection is lost or when
its host has been terminated without first closing the socket.
Salt's Presence System depends on this connection status to know if a minion
is "present".
ZeroMQ now includes support for configuring SO_KEEPALIVE if supported by
the OS. If connections between the minion and the master pass through
a state tracking device such as a firewall or VPN gateway, there is
the risk that it could tear down the connection the master and minion
without informing either party that their connection has been taken away.
Enabling TCP Keepalives prevents this from happening.

Overall state of TCP Keepalives, enable (1 or True), disable (0 or False)
or leave to the OS defaults (-1), on Linux, typically disabled. Default True, enabled.
#tcp_keepalive: True

How long before the first keepalive should be sent in seconds. Default 300
to send the first keepalive after 5 minutes, OS default (-1) is typically 7200 seconds
on Linux see /proc/sys/net/ipv4/tcp_keepalive_time.
#tcp_keepalive_idle: 300

How many lost probes are needed to consider the connection lost. Default -1
to use OS defaults, typically 9 on Linux, see /proc/sys/net/ipv4/tcp_keepalive_probes.
#tcp_keepalive_cnt: -1

How often, in seconds, to send keepalives after the first one. Default -1 to
use OS defaults, typically 75 seconds on Linux, see
/proc/sys/net/ipv4/tcp_keepalive_intvl.
#tcp_keepalive_intvl: -1

NetAPI settings
##
Allow the raw_shell parameter to be used when calling Salt SSH client via API
#netapi_allow_raw_shell: True

Set a list of clients to enable in in the API
#netapi_enable_clients: []

Example minion configuration file

Primary configuration settings
##
This configuration file is used to manage the behavior of the Salt Minion.
With the exception of the location of the Salt Master Server, values that are
commented out but have an empty line after the comment are defaults that need
not be set in the config. If there is no blank line after the comment, the
value is presented as an example and is not the default.

Per default the minion will automatically include all config files
from minion.d/*.conf (minion.d is a directory in the same directory
as the main minion config file).
#default_include: minion.d/*.conf

Set the location of the salt master server. If the master server cannot be
resolved, then the minion will fail to start.
#master: salt

Set http proxy information for the minion when doing requests
#proxy_host:
#proxy_port:
#proxy_username:
#proxy_password:

List of hosts to bypass HTTP proxy. This key does nothing unless proxy_host etc is
configured, it does not support any kind of wildcards.
#no_proxy: []

If multiple masters are specified in the 'master' setting, the default behavior
is to always try to connect to them in the order they are listed. If random_master
is set to True, the order will be randomized upon Minion startup instead. This can
be helpful in distributing the load of many minions executing salt-call requests,
for example, from a cron job. If only one master is listed, this setting is ignored
and a warning will be logged.
#random_master: False

NOTE: Deprecated in Salt 2019.2.0. Use 'random_master' instead.
#master_shuffle: False

Minions can connect to multiple masters simultaneously (all masters
are "hot"), or can be configured to failover if a master becomes
unavailable. Multiple hot masters are configured by setting this
value to "str". Failover masters can be requested by setting
to "failover". MAKE SURE TO SET master_alive_interval if you are
using failover.
Setting master_type to 'disable' lets you have a running minion (with engines and
beacons) without a master connection
master_type: str

Poll interval in seconds for checking if the master is still there. Only
respected if master_type above is "failover". To disable the interval entirely,
set the value to -1. (This may be necessary on machines which have high numbers
of TCP connections, such as load balancers.)
master_alive_interval: 30

If the minion is in multi-master mode and the master_type configuration option
is set to "failover", this setting can be set to "True" to force the minion
to fail back to the first master in the list if the first master is back online.
#master_failback: False

If the minion is in multi-master mode, the "master_type" configuration is set to
"failover", and the "master_failback" option is enabled, the master failback
interval can be set to ping the top master with this interval, in seconds.
#master_failback_interval: 0

Set whether the minion should connect to the master via IPv6:
#ipv6: False

Set the number of seconds to wait before attempting to resolve
the master hostname if name resolution fails. Defaults to 30 seconds.
Set to zero if the minion should shutdown and not retry.
retry_dns: 30

Set the number of times to attempt to resolve
the master hostname if name resolution fails. Defaults to None,
which will attempt the resolution indefinitely.
retry_dns_count: 3

Set the port used by the master reply and authentication server.
#master_port: 4506

The user to run salt.
#user: root

The user to run salt remote execution commands as via sudo. If this option is
enabled then sudo will be used to change the active user executing the remote
command. If enabled the user will need to be allowed access via the sudoers
file for the user that the salt minion is configured to run as. The most
common option would be to use the root user. If this option is set the user
option should also be set to a non-root user. If migrating from a root minion
to a non root minion the minion cache should be cleared and the minion pki
directory will need to be changed to the ownership of the new user.
#sudo_user: root

Specify the location of the daemon process ID file.
#pidfile: /var/run/salt-minion.pid

The root directory prepended to these options: pki_dir, cachedir, log_file,
sock_dir, pidfile.
#root_dir: /

The path to the minion's configuration file.
#conf_file: /etc/salt/minion

The directory to store the pki information in
#pki_dir: /etc/salt/pki/minion

Explicitly declare the id for this minion to use, if left commented the id
will be the hostname as returned by the python call: socket.getfqdn()
Since salt uses detached ids it is possible to run multiple minions on the
same machine but with different ids, this can be useful for salt compute
clusters.
#id:

Cache the minion id to a file when the minion's id is not statically defined
in the minion config. Defaults to "True". This setting prevents potential
problems when automatic minion id resolution changes, which can cause the
minion to lose connection with the master. To turn off minion id caching,
set this config to ``False``.
#minion_id_caching: True

Convert minion id to lowercase when it is being generated. Helpful when some
hosts get the minion id in uppercase. Cached ids will remain the same and
not converted. For example, Windows minions often have uppercase minion
names when they are set up but not always. To turn on, set this config to
``True``.
#minion_id_lowercase: False

Append a domain to a hostname in the event that it does not exist. This is
useful for systems where socket.getfqdn() does not actually result in a
FQDN (for instance, Solaris).
#append_domain:

Custom static grains for this minion can be specified here and used in SLS
files just like all other grains. This example sets 4 custom grains, with
the 'roles' grain having two values that can be matched against.
#grains:
roles:
- webserver
- memcache
deployment: datacenter4
cabinet: 13
cab_u: 14-15
#
Where cache data goes.
This data may contain sensitive data and should be protected accordingly.
#cachedir: /var/cache/salt/minion

Append minion_id to these directories. Helps with
multiple proxies and minions running on the same machine.
Allowed elements in the list: pki_dir, cachedir, extension_modules
Normally not needed unless running several proxies and/or minions on the same machine
Defaults to ['cachedir'] for proxies, [] (empty list) for regular minions
#append_minionid_config_dirs:

Verify and set permissions on configuration directories at startup.
#verify_env: True

The minion can locally cache the return data from jobs sent to it, this
can be a good way to keep track of jobs the minion has executed
(on the minion side). By default this feature is disabled, to enable, set
cache_jobs to True.
#cache_jobs: False

Set the directory used to hold unix sockets.
#sock_dir: /var/run/salt/minion

In order to calculate the fqdns grain, all the IP addresses from the minion
are processed with underlying calls to `socket.gethostbyaddr` which can take
5 seconds to be released (after reaching `socket.timeout`) when there is no
fqdn for that IP. These calls to `socket.gethostbyaddr` are processed
asynchronously, however, it still adds 5 seconds every time grains are
generated if an IP does not resolve. In Windows grains are regenerated each
time a new process is spawned. Therefore, the default for Windows is `False`.
On macOS, FQDN resolution can be very slow, therefore the default for macOS is
`False` as well. All other OSes default to `True`
enable_fqdns_grains: True

The minion can take a while to start up when lspci and/or dmidecode is used
to populate the grains for the minion. Set this to False if you do not need
GPU hardware grains for your minion.
enable_gpu_grains: True

Set the default outputter used by the salt-call command. The default is
"nested".
#output: nested

To set a list of additional directories to search for salt outputters, set the
outputter_dirs option.
#outputter_dirs: []

By default output is colored. To disable colored output, set the color value
to False.
#color: True

Do not strip off the colored output from nested results and state outputs
(true by default).
strip_colors: False

Backup files that are replaced by file.managed and file.recurse under
'cachedir'/file_backup relative to their original location and appended
with a timestamp. The only valid setting is "minion". Disabled by default.
#
Alternatively this can be specified for each file in state files:
/etc/ssh/sshd_config:
file.managed:
- source: salt://ssh/sshd_config
- backup: minion
#
#backup_mode: minion

When waiting for a master to accept the minion's public key, salt will
continuously attempt to reconnect until successful. This is the time, in
seconds, between those reconnection attempts.
#acceptance_wait_time: 10

If this is nonzero, the time between reconnection attempts will increase by
acceptance_wait_time seconds per iteration, up to this maximum. If this is
set to zero, the time between reconnection attempts will stay constant.
#acceptance_wait_time_max: 0

If the master rejects the minion's public key, retry instead of exiting.
Rejected keys will be handled the same as waiting on acceptance.
#rejected_retry: False

When the master key changes, the minion will try to re-auth itself to receive
the new master key. In larger environments this can cause a SYN flood on the
master because all minions try to re-auth immediately. To prevent this and
have a minion wait for a random amount of time, use this optional parameter.
The wait-time will be a random number of seconds between 0 and the defined value.
#random_reauth_delay: 60

To avoid overloading a master when many minions startup at once, a randomized
delay may be set to tell the minions to wait before connecting to the master.
This value is the number of seconds to choose from for a random number. For
example, setting this value to 60 will choose a random number of seconds to delay
on startup between zero seconds and sixty seconds. Setting to '0' will disable
this feature.
#random_startup_delay: 0

When waiting for a master to accept the minion's public key, salt will
continuously attempt to reconnect until successful. This is the timeout value,
in seconds, for each individual attempt. After this timeout expires, the minion
will wait for acceptance_wait_time seconds before trying again. Unless your master
is under unusually heavy load, this should be left at the default.
#auth_timeout: 60

Number of consecutive SaltReqTimeoutError that are acceptable when trying to
authenticate.
#auth_tries: 7

The number of attempts to connect to a master before giving up.
Set this to -1 for unlimited attempts. This allows for a master to have
downtime and the minion to reconnect to it later when it comes back up.
In 'failover' mode, it is the number of attempts for each set of masters.
In this mode, it will cycle through the list of masters for each attempt.
#
This is different than auth_tries because auth_tries attempts to
retry auth attempts with a single master. auth_tries is under the
assumption that you can connect to the master but not gain
authorization from it. master_tries will still cycle through all
the masters in a given try, so it is appropriate if you expect
occasional downtime from the master(s).
#master_tries: 1

If authentication fails due to SaltReqTimeoutError during a ping_interval,
cause sub minion process to restart.
#auth_safemode: False

Ping Master to ensure connection is alive (minutes).
#ping_interval: 0

To auto recover minions if master changes IP address (DDNS)
master_alive_interval: 10
master_tries: -1
#
Minions won't know master is missing until a ping fails. After the ping fail,
the minion will attempt authentication and likely fails out and cause a restart.
When the minion restarts it will resolve the masters IP and attempt to reconnect.

If you don't have any problems with syn-floods, don't bother with the
three recon_* settings described below, just leave the defaults!
#
The ZeroMQ pull-socket that binds to the masters publishing interface tries
to reconnect immediately, if the socket is disconnected (for example if
the master processes are restarted). In large setups this will have all
minions reconnect immediately which might flood the master (the ZeroMQ-default
is usually a 100ms delay). To prevent this, these three recon_* settings
can be used.
recon_default: the interval in milliseconds that the socket should wait before
trying to reconnect to the master (1000ms = 1 second)
#
recon_max: the maximum time a socket should wait. each interval the time to wait
is calculated by doubling the previous time. if recon_max is reached,
it starts again at recon_default. Short example:
#
reconnect 1: the socket will wait 'recon_default' milliseconds
reconnect 2: 'recon_default' * 2
reconnect 3: ('recon_default' * 2) * 2
reconnect 4: value from previous interval * 2
reconnect 5: value from previous interval * 2
reconnect x: if value >= recon_max, it starts again with recon_default
#
recon_randomize: generate a random wait time on minion start. The wait time will
be a random value between recon_default and recon_default +
recon_max. Having all minions reconnect with the same recon_default
and recon_max value kind of defeats the purpose of being able to
change these settings. If all minions have the same values and your
setup is quite large (several thousand minions), they will still
flood the master. The desired behavior is to have timeframe within
all minions try to reconnect.
#
Example on how to use these settings. The goal: have all minions reconnect within a
60 second timeframe on a disconnect.
recon_default: 1000
recon_max: 59000
recon_randomize: True
#
Each minion will have a randomized reconnect value between 'recon_default'
and 'recon_default + recon_max', which in this example means between 1000ms
60000ms (or between 1 and 60 seconds). The generated random-value will be
doubled after each attempt to reconnect. Lets say the generated random
value is 11 seconds (or 11000ms).
reconnect 1: wait 11 seconds
reconnect 2: wait 22 seconds
reconnect 3: wait 33 seconds
reconnect 4: wait 44 seconds
reconnect 5: wait 55 seconds
reconnect 6: wait time is bigger than 60 seconds (recon_default + recon_max)
reconnect 7: wait 11 seconds
reconnect 8: wait 22 seconds
reconnect 9: wait 33 seconds
reconnect x: etc.
#
In a setup with ~6000 hosts these settings would average the reconnects
to about 100 per second and all hosts would be reconnected within 60 seconds.
recon_default: 100
recon_max: 5000
recon_randomize: False
#
#
The loop_interval sets how long in seconds the minion will wait between
evaluating the scheduler and running cleanup tasks. This defaults to 1
second on the minion scheduler.
#loop_interval: 1

Some installations choose to start all job returns in a cache or a returner
and forgo sending the results back to a master. In this workflow, jobs
are most often executed with --async from the Salt CLI and then results
are evaluated by examining job caches on the minions or any configured returners.
WARNING: Setting this to False will **disable** returns back to the master.
#pub_ret: True

The grains can be merged, instead of overridden, using this option.
This allows custom grains to defined different subvalues of a dictionary
grain. By default this feature is disabled, to enable set grains_deep_merge
to ``True``.
#grains_deep_merge: False

The grains_refresh_every setting allows for a minion to periodically check
its grains to see if they have changed and, if so, to inform the master
of the new grains. This operation is moderately expensive, therefore
care should be taken not to set this value too low.
#
Note: This value is expressed in __minutes__!
#
A value of 10 minutes is a reasonable default.
#
If the value is set to zero, this check is disabled.
#grains_refresh_every: 1

The grains_refresh_pre_exec setting allows for a minion to check its grains
prior to the execution of any operation to see if they have changed and, if
so, to inform the master of the new grains. This operation is moderately
expensive, therefore care should be taken before enabling this behavior.
#grains_refresh_pre_exec: False

Cache grains on the minion. Default is False.
#grains_cache: False

Cache rendered pillar data on the minion. Default is False.
This may cause 'cachedir'/pillar to contain sensitive data that should be
protected accordingly.
#minion_pillar_cache: False

Grains cache expiration, in seconds. If the cache file is older than this
number of seconds then the grains cache will be dumped and fully re-populated
with fresh data. Defaults to 5 minutes. Will have no effect if 'grains_cache'
is not enabled.
grains_cache_expiration: 300

Determines whether or not the salt minion should run scheduled mine updates.
Defaults to "True". Set to "False" to disable the scheduled mine updates
(this essentially just does not add the mine update function to the minion's
scheduler).
#mine_enabled: True

Determines whether or not scheduled mine updates should be accompanied by a job
return for the job cache. Defaults to "False". Set to "True" to include job
returns in the job cache for mine updates.
#mine_return_job: False

Example functions that can be run via the mine facility
NO mine functions are established by default.
Note these can be defined in the minion's pillar as well.
#mine_functions:
test.ping: []
network.ip_addrs:
interface: eth0
cidr: '10.0.0.0/8'

The number of minutes between mine updates.
#mine_interval: 60

Windows platforms lack posix IPC and must rely on slower TCP based inter-
process communications. ipc_mode is set to 'tcp' on such systems.
#ipc_mode: ipc

Overwrite the default tcp ports used by the minion when ipc_mode is set to 'tcp'
#tcp_pub_port: 4510
#tcp_pull_port: 4511

Passing very large events can cause the minion to consume large amounts of
memory. This value tunes the maximum size of a message allowed onto the
minion event bus. The value is expressed in bytes.
#max_event_size: 1048576

When a minion starts up it sends a notification on the event bus with a tag
that looks like this: `salt/minion/<minion_id>/start`. For historical reasons
the minion also sends a similar event with an event tag like this:
`minion_start`. This duplication can cause a lot of clutter on the event bus
when there are many minions. Set `enable_legacy_startup_events: False` in the
minion config to ensure only the `salt/minion/<minion_id>/start` events are
sent. Beginning with the `Sodium` Salt release this option will default to
`False`
#enable_legacy_startup_events: True

To detect failed master(s) and fire events on connect/disconnect, set
master_alive_interval to the number of seconds to poll the masters for
connection events.
#
#master_alive_interval: 30

The minion can include configuration from other files. To enable this,
pass a list of paths to this option. The paths can be either relative or
absolute; if relative, they are considered to be relative to the directory
the main minion configuration file lives in (this file). Paths can make use
of shell-style globbing. If no files are matched by a path passed to this
option then the minion will log a warning message.
#
Include a config file from some other path:
include: /etc/salt/extra_config
#
Include config from several files and directories:
#include:
- /etc/salt/extra_config
- /etc/roles/webserver

The syndic minion can verify that it is talking to the correct master via the
key fingerprint of the higher-level master with the "syndic_finger" config.
#syndic_finger: ''
#
#
#
Minion module management
##
Disable specific modules. This allows the admin to limit the level of
access the master has to the minion. The default here is the empty list,
below is an example of how this needs to be formatted in the config file
#disable_modules:
- cmdmod
- test
#disable_returners: []

This is the reverse of disable_modules. The default, like disable_modules, is the empty list,
but if this option is set to *anything* then *only* those modules will load.
Note that this is a very large hammer and it can be quite difficult to keep the minion working
the way you think it should since Salt uses many modules internally itself. At a bare minimum
you need the following enabled or else the minion won't start.
#whitelist_modules:
- cmdmod
- test
- config

Modules can be loaded from arbitrary paths. This enables the easy deployment
of third party modules. Modules for returners and minions can be loaded.
Specify a list of extra directories to search for minion modules and
returners. These paths must be fully qualified!
#module_dirs: []
#returner_dirs: []
#states_dirs: []
#render_dirs: []
#utils_dirs: []
#
A module provider can be statically overwritten or extended for the minion
via the providers option, in this case the default module will be
overwritten by the specified module. In this example the pkg module will
be provided by the yumpkg5 module instead of the system default.
#providers:
pkg: yumpkg5
#
Enable Cython modules searching and loading. (Default: False)
#cython_enable: False
#
Specify a max size (in bytes) for modules on import. This feature is currently
only supported on *nix operating systems and requires psutil.
modules_max_memory: -1

State Management Settings
###
The default renderer to use in SLS files. This is configured as a
pipe-delimited expression. For example, jinja|yaml will first run jinja
templating on the SLS file, and then load the result as YAML. This syntax is
documented in further depth at the following URL:
#
https://docs.saltproject.io/en/latest/ref/renderers/#composing-renderers
#
NOTE: The "shebang" prefix (e.g. "#!jinja|yaml") described in the
documentation linked above is for use in an SLS file to override the default
renderer, it should not be used when configuring the renderer here.
#
#renderer: jinja|yaml
#
The failhard option tells the minions to stop immediately after the first
failure detected in the state execution. Defaults to False.
#failhard: False
#
Reload the modules prior to a highstate run.
#autoload_dynamic_modules: True
#
clean_dynamic_modules keeps the dynamic modules on the minion in sync with
the dynamic modules on the master, this means that if a dynamic module is
not on the master it will be deleted from the minion. By default, this is
enabled and can be disabled by changing this value to False.
#clean_dynamic_modules: True
#
Renamed from ``environment`` to ``saltenv``. If ``environment`` is used,
``saltenv`` will take its value. If both are used, ``environment`` will be
ignored and ``saltenv`` will be used.
Normally the minion is not isolated to any single environment on the master
when running states, but the environment can be isolated on the minion side
by statically setting it. Remember that the recommended way to manage
environments is to isolate via the top file.
#saltenv: None
#
Isolates the pillar environment on the minion side. This functions the same
as the environment setting, but for pillar instead of states.
#pillarenv: None
#
Set this option to True to force the pillarenv to be the same as the
effective saltenv when running states. Note that if pillarenv is specified,
this option will be ignored.
#pillarenv_from_saltenv: False
#
Set this option to 'True' to force a 'KeyError' to be raised whenever an
attempt to retrieve a named value from pillar fails. When this option is set
to 'False', the failed attempt returns an empty string. Default is 'False'.
#pillar_raise_on_missing: False
#
If using the local file directory, then the state top file name needs to be
defined, by default this is top.sls.
#state_top: top.sls
#
Run states when the minion daemon starts. To enable, set startup_states to:
'highstate' -- Execute state.highstate
'sls' -- Read in the sls_list option and execute the named sls files
'top' -- Read top_file option and execute based on that file on the Master
#startup_states: ''
#
List of states to run when the minion starts up if startup_states is 'sls':
#sls_list:
- edit.vim
- hyper
#
List of grains to pass in start event when minion starts up:
#start_event_grains:
- machine_id
- uuid
#
Top file to execute if startup_states is 'top':
#top_file: ''

Automatically aggregate all states that have support for mod_aggregate by
setting to True. Or pass a list of state module names to automatically
aggregate just those types.
#
state_aggregate:
- pkg
#
#state_aggregate: False

Instead of failing immediately when another state run is in progress, a value
of True will queue the new state run to begin running once the other has
finished. This option starts a new thread for each queued state run, so use
this option sparingly. Additionally, it can be set to an integer representing
the maximum queue size which can be attained before the state runs will fail
to be queued. This can prevent runaway conditions where new threads are
started until system performance is hampered.
#
#state_queue: False

Disable requisites during state runs by specifying a single requisite
or a list of requisites to disable.
#
disabled_requisites: require_in
#
disabled_requisites:
- require
- require_in

If set, this parameter expects a dictionary of state module names as keys
and list of conditions which must be satisfied in order to run any functions
in that state module.
#
#global_state_conditions:
"*": ["G@global_noop:false"]
service: ["not G@virtual_subtype:chroot"]

File Directory Settings
##
The Salt Minion can redirect all file server operations to a local directory,
this allows for the same state tree that is on the master to be used if
copied completely onto the minion. This is a literal copy of the settings on
the master but used to reference a local directory on the minion.

Set the file client. The client defaults to looking on the master server for
files, but can be directed to look at the local file directory setting
defined below by setting it to "local". Setting a local file_client runs the
minion in masterless mode.
#file_client: remote

The file directory works on environments passed to the minion, each environment
can have multiple root directories, the subdirectories in the multiple file
roots cannot match, otherwise the downloaded files will not be able to be
reliably ensured. A base environment is required to house the top file.
Example:
file_roots:
base:
- /srv/salt/
dev:
- /srv/salt/dev/services
- /srv/salt/dev/states
prod:
- /srv/salt/prod/services
- /srv/salt/prod/states
#
#file_roots:
base:
- /srv/salt

Uncomment the line below if you do not want the file_server to follow
symlinks when walking the filesystem tree. This is set to True
by default. Currently this only applies to the default roots
fileserver_backend.
#fileserver_followsymlinks: False
#
Uncomment the line below if you do not want symlinks to be
treated as the files they are pointing to. By default this is set to
False. By uncommenting the line below, any detected symlink while listing
files on the Master will not be returned to the Minion.
#fileserver_ignoresymlinks: True
#
The hash_type is the hash to use when discovering the hash of a file on
the local fileserver. The default is sha256, but md5, sha1, sha224, sha384
and sha512 are also supported.
#
WARNING: While md5 and sha1 are also supported, do not use them due to the
high chance of possible collisions and thus security breach.
#
Warning: Prior to changing this value, the minion should be stopped and all
Salt caches should be cleared.
#hash_type: sha256

The Salt pillar is searched for locally if file_client is set to local. If
this is the case, and pillar data is defined, then the pillar_roots need to
also be configured on the minion:
#pillar_roots:
base:
- /srv/pillar

If this is `True` and the ciphertext could not be decrypted, then an error is
raised.
#gpg_decrypt_must_succeed: False

Set a hard-limit on the size of the files that can be pushed to the master.
It will be interpreted as megabytes. Default: 100
#file_recv_max_size: 100
#
#
Security settings
###
Enable "open mode", this mode still maintains encryption, but turns off
authentication, this is only intended for highly secure environments or for
the situation where your keys end up in a bad state. If you run in open mode
you do so at your own risk!
#open_mode: False

The size of key that should be generated when creating new keys.
#keysize: 2048

Enable permissive access to the salt keys. This allows you to run the
master or minion as root, but have a non-root group be given access to
your pki_dir. To make the access explicit, root must belong to the group
you've given access to. This is potentially quite insecure.
#permissive_pki_access: False

The state_verbose and state_output settings can be used to change the way
state system data is printed to the display. By default all data is printed.
The state_verbose setting can be set to True or False, when set to False
all data that has a result of True and no changes will be suppressed.
#state_verbose: True

The state_output setting controls which results will be output full multi line
full, terse - each state will be full/terse
mixed - only states with errors will be full
changes - states with changes and errors will be full
full_id, mixed_id, changes_id and terse_id are also allowed;
when set, the state ID will be used as name in the output
#state_output: full

The state_output_diff setting changes whether or not the output from
successful states is returned. Useful when even the terse output of these
states is cluttering the logs. Set it to True to ignore them.
#state_output_diff: False

The state_output_profile setting changes whether profile information
will be shown for each state run.
#state_output_profile: True

The state_output_pct setting changes whether success and failure information
as a percent of total actions will be shown for each state run.
#state_output_pct: False

The state_compress_ids setting aggregates information about states which have
multiple "names" under the same state ID in the highstate output.
#state_compress_ids: False

Fingerprint of the master public key to validate the identity of your Salt master
before the initial key exchange. The master fingerprint can be found by running
"salt-key -f master.pub" on the Salt master.
#master_finger: ''

Use TLS/SSL encrypted connection between master and minion.
Can be set to a dictionary containing keyword arguments corresponding to Python's
'ssl.wrap_socket' method.
Default is None.
#ssl:
keyfile: <path_to_keyfile>
certfile: <path_to_certfile>
ssl_version: PROTOCOL_TLSv1_2

Grains to be sent to the master on authentication to check if the minion's key
will be accepted automatically. Needs to be configured on the master.
#autosign_grains:
- uuid
- server_id

Reactor Settings
###
Define a salt reactor. See https://docs.saltproject.io/en/latest/topics/reactor/
#reactor: []

#Set the TTL for the cache of the reactor configuration.
#reactor_refresh_interval: 60

#Configure the number of workers for the runner/wheel in the reactor.
#reactor_worker_threads: 10

#Define the queue size for workers in the reactor.
#reactor_worker_hwm: 10000

Thread settings
###
Disable multiprocessing support, by default when a minion receives a
publication a new process is spawned and the command is executed therein.
#
WARNING: Disabling multiprocessing may result in substantial slowdowns
when processing large pillars. See https://github.com/saltstack/salt/issues/38758
for a full explanation.
#multiprocessing: True

Limit the maximum amount of processes or threads created by salt-minion.
This is useful to avoid resource exhaustion in case the minion receives more
publications than it is able to handle, as it limits the number of spawned
processes or threads. -1 is the default and disables the limit.
#process_count_max: -1

Logging settings
##
The location of the minion log file
The minion log can be sent to a regular file, local path name, or network
location. Remote logging works best when configured to use rsyslogd(8) (e.g.:
``file:///dev/log``), with rsyslogd(8) configured for network logging. The URI
format is: <file|udp|tcp>://<host|socketpath>:<port-if-required>/<log-facility>
#log_file: /var/log/salt/minion
#log_file: file:///dev/log
#log_file: udp://loghost:10514
#
#log_file: /var/log/salt/minion
#key_logfile: /var/log/salt/key

The level of messages to send to the console.
One of 'garbage', 'trace', 'debug', 'info', 'warning', 'error', 'critical'.
#
The following log levels are considered INSECURE and may log sensitive data:
['profile', 'garbage', 'trace', 'debug', 'all']
#
Default: 'warning'
#log_level: warning

The level of messages to send to the log file.
One of 'garbage', 'trace', 'debug', info', 'warning', 'error', 'critical'.
If using 'log_granular_levels' this must be set to the highest desired level.
Default: 'warning'
#log_level_logfile:

The date and time format used in log messages. Allowed date/time formatting
can be seen here: http://docs.python.org/library/time.html#time.strftime
#log_datefmt: '%H:%M:%S'
#log_datefmt_logfile: '%Y-%m-%d %H:%M:%S'

The format of the console logging messages. Allowed formatting options can
be seen here: http://docs.python.org/library/logging.html#logrecord-attributes
#
Console log colors are specified by these additional formatters:
#
%(colorlevel)s
%(colorname)s
%(colorprocess)s
%(colormsg)s
#
Since it is desirable to include the surrounding brackets, '[' and ']', in
the coloring of the messages, these color formatters also include padding as
well. Color LogRecord attributes are only available for console logging.
#
#log_fmt_console: '%(colorlevel)s %(colormsg)s'
#log_fmt_console: '[%(levelname)-8s] %(message)s'
#
#log_fmt_logfile: '%(asctime)s,%(msecs)03d [%(name)-17s][%(levelname)-8s] %(message)s'

This can be used to control logging levels more specificically. This
example sets the main salt library at the 'warning' level, but sets
'salt.modules' to log at the 'debug' level:
log_granular_levels:
'salt': 'warning'
'salt.modules': 'debug'
#
#log_granular_levels: {}

To diagnose issues with minions disconnecting or missing returns, ZeroMQ
supports the use of monitor sockets to log connection events. This
feature requires ZeroMQ 4.0 or higher.
#
To enable ZeroMQ monitor sockets, set 'zmq_monitor' to 'True' and log at a
debug level or higher.
#
A sample log event is as follows:
#
[DEBUG] ZeroMQ event: {'endpoint': 'tcp://127.0.0.1:4505', 'event': 512,
'value': 27, 'description': 'EVENT_DISCONNECTED'}
#
All events logged will include the string 'ZeroMQ event'. A connection event
should be logged as the minion starts up and initially connects to the
master. If not, check for debug log level and that the necessary version of
ZeroMQ is installed.
#
#zmq_monitor: False

Number of times to try to authenticate with the salt master when reconnecting
to the master
#tcp_authentication_retries: 5

Module configuration
###
Salt allows for modules to be passed arbitrary configuration data, any data
passed here in valid yaml format will be passed on to the salt minion modules
for use. It is STRONGLY recommended that a naming convention be used in which
the module name is followed by a . and then the value. Also, all top level
data must be applied via the yaml dict construct, some examples:
#
You can specify that all modules should run in test mode:
#test: True
#
A simple value for the test module:
#test.foo: foo
#
A list for the test module:
#test.bar: [baz,quo]
#
A dict for the test module:
#test.baz: {spam: sausage, cheese: bread}
#
#
Update settings
###
Using the features in Esky, a salt minion can both run as a frozen app and
be updated on the fly. These options control how the update process
(saltutil.update()) behaves.
#
The url for finding and downloading updates. Disabled by default.
#update_url: False
#
The list of services to restart after a successful update. Empty by default.
#update_restart_services: []

Keepalive settings
##
ZeroMQ now includes support for configuring SO_KEEPALIVE if supported by
the OS. If connections between the minion and the master pass through
a state tracking device such as a firewall or VPN gateway, there is
the risk that it could tear down the connection the master and minion
without informing either party that their connection has been taken away.
Enabling TCP Keepalives prevents this from happening.

Overall state of TCP Keepalives, enable (1 or True), disable (0 or False)
or leave to the OS defaults (-1), on Linux, typically disabled. Default True, enabled.
#tcp_keepalive: True

How long before the first keepalive should be sent in seconds. Default 300
to send the first keepalive after 5 minutes, OS default (-1) is typically 7200 seconds
on Linux see /proc/sys/net/ipv4/tcp_keepalive_time.
#tcp_keepalive_idle: 300

How many lost probes are needed to consider the connection lost. Default -1
to use OS defaults, typically 9 on Linux, see /proc/sys/net/ipv4/tcp_keepalive_probes.
#tcp_keepalive_cnt: -1

How often, in seconds, to send keepalives after the first one. Default -1 to
use OS defaults, typically 75 seconds on Linux, see
/proc/sys/net/ipv4/tcp_keepalive_intvl.
#tcp_keepalive_intvl: -1

Windows Software settings
##
Location of the repository cache file on the master:
#win_repo_cachefile: 'salt://win/repo/winrepo.p'

Returner settings
##
Default Minion returners. Can be a comma delimited string or a list:
#
#return: mysql
#
#return: mysql,slack,redis
#
#return:
- mysql
- hipchat
- slack

Miscellaneous settings
##
Default match type for filtering events tags: startswith, endswith, find, regex, fnmatch
#event_match_type: startswith

Example proxy minion configuration file

Primary configuration settings
##
This configuration file is used to manage the behavior of all Salt Proxy
Minions on this host.
With the exception of the location of the Salt Master Server, values that are
commented out but have an empty line after the comment are defaults that need
not be set in the config. If there is no blank line after the comment, the
value is presented as an example and is not the default.

Per default the proxy minion will automatically include all config files
from proxy.d/*.conf (proxy.d is a directory in the same directory
as the main minion config file).
#default_include: proxy.d/*.conf

Backwards compatibility option for proxymodules created before 2015.8.2
This setting will default to 'False' in the 2016.3.0 release
Setting this to True adds proxymodules to the __opts__ dictionary.
This breaks several Salt features (basically anything that serializes
__opts__ over the wire) but retains backwards compatibility.
#add_proxymodule_to_opts: True

Set the location of the salt master server. If the master server cannot be
resolved, then the minion will fail to start.
#master: salt

If a proxymodule has a function called 'grains', then call it during
regular grains loading and merge the results with the proxy's grains
dictionary. Otherwise it is assumed that the module calls the grains
function in a custom way and returns the data elsewhere
#
Default to False for 2016.3 and 2016.11. Switch to True for 2017.7.0.
proxy_merge_grains_in_module: True

If a proxymodule has a function called 'alive' returning a boolean
flag reflecting the state of the connection with the remove device,
when this option is set as True, a scheduled job on the proxy will
try restarting the connection. The polling frequency depends on the
next option, 'proxy_keep_alive_interval'. Added in 2017.7.0.
proxy_keep_alive: True

The polling interval (in minutes) to check if the underlying connection
with the remote device is still alive. This option requires
'proxy_keep_alive' to be configured as True and the proxymodule to
implement the 'alive' function. Added in 2017.7.0.
proxy_keep_alive_interval: 1

By default, any proxy opens the connection with the remote device when
initialized. Some proxymodules allow through this option to open/close
the session per command. This requires the proxymodule to have this
capability. Please consult the documentation to see if the proxy type
used can be that flexible. Added in 2017.7.0.
proxy_always_alive: True

If multiple masters are specified in the 'master' setting, the default behavior
is to always try to connect to them in the order they are listed. If random_master is
set to True, the order will be randomized instead. This can be helpful in distributing
the load of many minions executing salt-call requests, for example, from a cron job.
If only one master is listed, this setting is ignored and a warning will be logged.
#random_master: False

Minions can connect to multiple masters simultaneously (all masters
are "hot"), or can be configured to failover if a master becomes
unavailable. Multiple hot masters are configured by setting this
value to "str". Failover masters can be requested by setting
to "failover". MAKE SURE TO SET master_alive_interval if you are
using failover.
master_type: str

Poll interval in seconds for checking if the master is still there. Only
respected if master_type above is "failover".
master_alive_interval: 30

Set whether the minion should connect to the master via IPv6:
#ipv6: False

Set the number of seconds to wait before attempting to resolve
the master hostname if name resolution fails. Defaults to 30 seconds.
Set to zero if the minion should shutdown and not retry.
retry_dns: 30

Set the port used by the master reply and authentication server.
#master_port: 4506

The user to run salt.
#user: root

Setting sudo_user will cause salt to run all execution modules under an sudo
to the user given in sudo_user. The user under which the salt minion process
itself runs will still be that provided in the user config above, but all
execution modules run by the minion will be rerouted through sudo.
#sudo_user: saltdev

Specify the location of the daemon process ID file.
#pidfile: /var/run/salt-minion.pid

The root directory prepended to these options: pki_dir, cachedir, log_file,
sock_dir, pidfile.
#root_dir: /

The directory to store the pki information in
#pki_dir: /etc/salt/pki/minion

Where cache data goes.
This data may contain sensitive data and should be protected accordingly.
#cachedir: /var/cache/salt/minion

Append minion_id to these directories. Helps with
multiple proxies and minions running on the same machine.
Allowed elements in the list: pki_dir, cachedir, extension_modules
Normally not needed unless running several proxies and/or minions on the same machine
Defaults to ['cachedir'] for proxies, [] (empty list) for regular minions
append_minionid_config_dirs:
- cachedir

Verify and set permissions on configuration directories at startup.
#verify_env: True

The minion can locally cache the return data from jobs sent to it, this
can be a good way to keep track of jobs the minion has executed
(on the minion side). By default this feature is disabled, to enable, set
cache_jobs to True.
#cache_jobs: False

Set the directory used to hold unix sockets.
#sock_dir: /var/run/salt/minion

Set the default outputter used by the salt-call command. The default is
"nested".
#output: nested
#
By default output is colored. To disable colored output, set the color value
to False.
#color: True

Do not strip off the colored output from nested results and state outputs
(true by default).
strip_colors: False

Backup files that are replaced by file.managed and file.recurse under
'cachedir'/file_backup relative to their original location and appended
with a timestamp. The only valid setting is "minion". Disabled by default.
#
Alternatively this can be specified for each file in state files:
/etc/ssh/sshd_config:
file.managed:
- source: salt://ssh/sshd_config
- backup: minion
#
#backup_mode: minion

When waiting for a master to accept the minion's public key, salt will
continuously attempt to reconnect until successful. This is the time, in
seconds, between those reconnection attempts.
#acceptance_wait_time: 10

If this is nonzero, the time between reconnection attempts will increase by
acceptance_wait_time seconds per iteration, up to this maximum. If this is
set to zero, the time between reconnection attempts will stay constant.
#acceptance_wait_time_max: 0

If the master rejects the minion's public key, retry instead of exiting.
Rejected keys will be handled the same as waiting on acceptance.
#rejected_retry: False

When the master key changes, the minion will try to re-auth itself to receive
the new master key. In larger environments this can cause a SYN flood on the
master because all minions try to re-auth immediately. To prevent this and
have a minion wait for a random amount of time, use this optional parameter.
The wait-time will be a random number of seconds between 0 and the defined value.
#random_reauth_delay: 60

When waiting for a master to accept the minion's public key, salt will
continuously attempt to reconnect until successful. This is the timeout value,
in seconds, for each individual attempt. After this timeout expires, the minion
will wait for acceptance_wait_time seconds before trying again. Unless your master
is under unusually heavy load, this should be left at the default.
#auth_timeout: 60

Number of consecutive SaltReqTimeoutError that are acceptable when trying to
authenticate.
#auth_tries: 7

If authentication fails due to SaltReqTimeoutError during a ping_interval,
cause sub minion process to restart.
#auth_safemode: False

Ping Master to ensure connection is alive (minutes).
#ping_interval: 0

To auto recover minions if master changes IP address (DDNS)
auth_tries: 10
auth_safemode: False
ping_interval: 90
#
Minions won't know master is missing until a ping fails. After the ping fail,
the minion will attempt authentication and likely fails out and cause a restart.
When the minion restarts it will resolve the masters IP and attempt to reconnect.

If you don't have any problems with syn-floods, don't bother with the
three recon_* settings described below, just leave the defaults!
#
The ZeroMQ pull-socket that binds to the masters publishing interface tries
to reconnect immediately, if the socket is disconnected (for example if
the master processes are restarted). In large setups this will have all
minions reconnect immediately which might flood the master (the ZeroMQ-default
is usually a 100ms delay). To prevent this, these three recon_* settings
can be used.
recon_default: the interval in milliseconds that the socket should wait before
trying to reconnect to the master (1000ms = 1 second)
#
recon_max: the maximum time a socket should wait. each interval the time to wait
is calculated by doubling the previous time. if recon_max is reached,
it starts again at recon_default. Short example:
#
reconnect 1: the socket will wait 'recon_default' milliseconds
reconnect 2: 'recon_default' * 2
reconnect 3: ('recon_default' * 2) * 2
reconnect 4: value from previous interval * 2
reconnect 5: value from previous interval * 2
reconnect x: if value >= recon_max, it starts again with recon_default
#
recon_randomize: generate a random wait time on minion start. The wait time will
be a random value between recon_default and recon_default +
recon_max. Having all minions reconnect with the same recon_default
and recon_max value kind of defeats the purpose of being able to
change these settings. If all minions have the same values and your
setup is quite large (several thousand minions), they will still
flood the master. The desired behavior is to have timeframe within
all minions try to reconnect.
#
Example on how to use these settings. The goal: have all minions reconnect within a
60 second timeframe on a disconnect.
recon_default: 1000
recon_max: 59000
recon_randomize: True
#
Each minion will have a randomized reconnect value between 'recon_default'
and 'recon_default + recon_max', which in this example means between 1000ms
60000ms (or between 1 and 60 seconds). The generated random-value will be
doubled after each attempt to reconnect. Lets say the generated random
value is 11 seconds (or 11000ms).
reconnect 1: wait 11 seconds
reconnect 2: wait 22 seconds
reconnect 3: wait 33 seconds
reconnect 4: wait 44 seconds
reconnect 5: wait 55 seconds
reconnect 6: wait time is bigger than 60 seconds (recon_default + recon_max)
reconnect 7: wait 11 seconds
reconnect 8: wait 22 seconds
reconnect 9: wait 33 seconds
reconnect x: etc.
#
In a setup with ~6000 thousand hosts these settings would average the reconnects
to about 100 per second and all hosts would be reconnected within 60 seconds.
recon_default: 100
recon_max: 5000
recon_randomize: False
#
#
The loop_interval sets how long in seconds the minion will wait between
evaluating the scheduler and running cleanup tasks. This defaults to a
sane 60 seconds, but if the minion scheduler needs to be evaluated more
often lower this value
#loop_interval: 60

The grains_refresh_every setting allows for a minion to periodically check
its grains to see if they have changed and, if so, to inform the master
of the new grains. This operation is moderately expensive, therefore
care should be taken not to set this value too low.
#
Note: This value is expressed in __minutes__!
#
A value of 10 minutes is a reasonable default.
#
If the value is set to zero, this check is disabled.
#grains_refresh_every: 1

Cache grains on the minion. Default is False.
#grains_cache: False

Grains cache expiration, in seconds. If the cache file is older than this
number of seconds then the grains cache will be dumped and fully re-populated
with fresh data. Defaults to 5 minutes. Will have no effect if 'grains_cache'
is not enabled.
grains_cache_expiration: 300

Windows platforms lack posix IPC and must rely on slower TCP based inter-
process communications. Set ipc_mode to 'tcp' on such systems
#ipc_mode: ipc

Overwrite the default tcp ports used by the minion when in tcp mode
#tcp_pub_port: 4510
#tcp_pull_port: 4511

Passing very large events can cause the minion to consume large amounts of
memory. This value tunes the maximum size of a message allowed onto the
minion event bus. The value is expressed in bytes.
#max_event_size: 1048576

To detect failed master(s) and fire events on connect/disconnect, set
master_alive_interval to the number of seconds to poll the masters for
connection events.
#
#master_alive_interval: 30

The minion can include configuration from other files. To enable this,
pass a list of paths to this option. The paths can be either relative or
absolute; if relative, they are considered to be relative to the directory
the main minion configuration file lives in (this file). Paths can make use
of shell-style globbing. If no files are matched by a path passed to this
option then the minion will log a warning message.
#
Include a config file from some other path:
include: /etc/salt/extra_config
#
Include config from several files and directories:
#include:
- /etc/salt/extra_config
- /etc/roles/webserver
#
#
#
Minion module management
##
Disable specific modules. This allows the admin to limit the level of
access the master has to the minion.
#disable_modules: [cmd,test]
#disable_returners: []
#
Modules can be loaded from arbitrary paths. This enables the easy deployment
of third party modules. Modules for returners and minions can be loaded.
Specify a list of extra directories to search for minion modules and
returners. These paths must be fully qualified!
#module_dirs: []
#returner_dirs: []
#states_dirs: []
#render_dirs: []
#utils_dirs: []
#
A module provider can be statically overwritten or extended for the minion
via the providers option, in this case the default module will be
overwritten by the specified module. In this example the pkg module will
be provided by the yumpkg5 module instead of the system default.
#providers:
pkg: yumpkg5
#
Enable Cython modules searching and loading. (Default: False)
#cython_enable: False
#
Specify a max size (in bytes) for modules on import. This feature is currently
only supported on *nix operating systems and requires psutil.
modules_max_memory: -1

State Management Settings
###
The default renderer to use in SLS files. This is configured as a
pipe-delimited expression. For example, jinja|yaml will first run jinja
templating on the SLS file, and then load the result as YAML. This syntax is
documented in further depth at the following URL:
#
https://docs.saltproject.io/en/latest/ref/renderers/#composing-renderers
#
NOTE: The "shebang" prefix (e.g. "#!jinja|yaml") described in the
documentation linked above is for use in an SLS file to override the default
renderer, it should not be used when configuring the renderer here.
#
#renderer: jinja|yaml
#
The failhard option tells the minions to stop immediately after the first
failure detected in the state execution. Defaults to False.
#failhard: False
#
Reload the modules prior to a highstate run.
#autoload_dynamic_modules: True
#
clean_dynamic_modules keeps the dynamic modules on the minion in sync with
the dynamic modules on the master, this means that if a dynamic module is
not on the master it will be deleted from the minion. By default, this is
enabled and can be disabled by changing this value to False.
#clean_dynamic_modules: True
#
Normally, the minion is not isolated to any single environment on the master
when running states, but the environment can be isolated on the minion side
by statically setting it. Remember that the recommended way to manage
environments is to isolate via the top file.
#environment: None
#
If using the local file directory, then the state top file name needs to be
defined, by default this is top.sls.
#state_top: top.sls
#
Run states when the minion daemon starts. To enable, set startup_states to:
'highstate' -- Execute state.highstate
'sls' -- Read in the sls_list option and execute the named sls files
'top' -- Read top_file option and execute based on that file on the Master
#startup_states: ''
#
List of states to run when the minion starts up if startup_states is 'sls':
#sls_list:
- edit.vim
- hyper
#
Top file to execute if startup_states is 'top':
#top_file: ''

Automatically aggregate all states that have support for mod_aggregate by
setting to True. Or pass a list of state module names to automatically
aggregate just those types.
#
state_aggregate:
- pkg
#
#state_aggregate: False

File Directory Settings
##
The Salt Minion can redirect all file server operations to a local directory,
this allows for the same state tree that is on the master to be used if
copied completely onto the minion. This is a literal copy of the settings on
the master but used to reference a local directory on the minion.

Set the file client. The client defaults to looking on the master server for
files, but can be directed to look at the local file directory setting
defined below by setting it to "local". Setting a local file_client runs the
minion in masterless mode.
#file_client: remote

The file directory works on environments passed to the minion, each environment
can have multiple root directories, the subdirectories in the multiple file
roots cannot match, otherwise the downloaded files will not be able to be
reliably ensured. A base environment is required to house the top file.
Example:
file_roots:
base:
- /srv/salt/
dev:
- /srv/salt/dev/services
- /srv/salt/dev/states
prod:
- /srv/salt/prod/services
- /srv/salt/prod/states
#
#file_roots:
base:
- /srv/salt

The hash_type is the hash to use when discovering the hash of a file in
the local fileserver. The default is sha256 but sha224, sha384 and sha512
are also supported.
#
WARNING: While md5 and sha1 are also supported, do not use it due to the high chance
of possible collisions and thus security breach.
#
WARNING: While md5 is also supported, do not use it due to the high chance
of possible collisions and thus security breach.
#
Warning: Prior to changing this value, the minion should be stopped and all
Salt caches should be cleared.
#hash_type: sha256

The Salt pillar is searched for locally if file_client is set to local. If
this is the case, and pillar data is defined, then the pillar_roots need to
also be configured on the minion:
#pillar_roots:
base:
- /srv/pillar
#
#
Security settings
###
Enable "open mode", this mode still maintains encryption, but turns off
authentication, this is only intended for highly secure environments or for
the situation where your keys end up in a bad state. If you run in open mode
you do so at your own risk!
#open_mode: False

Enable permissive access to the salt keys. This allows you to run the
master or minion as root, but have a non-root group be given access to
your pki_dir. To make the access explicit, root must belong to the group
you've given access to. This is potentially quite insecure.
#permissive_pki_access: False

The state_verbose and state_output settings can be used to change the way
state system data is printed to the display. By default all data is printed.
The state_verbose setting can be set to True or False, when set to False
all data that has a result of True and no changes will be suppressed.
#state_verbose: True

The state_output setting controls which results will be output full multi line
full, terse - each state will be full/terse
mixed - only states with errors will be full
changes - states with changes and errors will be full
full_id, mixed_id, changes_id and terse_id are also allowed;
when set, the state ID will be used as name in the output
#state_output: full

The state_output_diff setting changes whether or not the output from
successful states is returned. Useful when even the terse output of these
states is cluttering the logs. Set it to True to ignore them.
#state_output_diff: False

The state_output_profile setting changes whether profile information
will be shown for each state run.
#state_output_profile: True

The state_output_pct setting changes whether success and failure information
as a percent of total actions will be shown for each state run.
#state_output_pct: False

The state_compress_ids setting aggregates information about states which have
multiple "names" under the same state ID in the highstate output.
#state_compress_ids: False

Fingerprint of the master public key to validate the identity of your Salt master
before the initial key exchange. The master fingerprint can be found by running
"salt-key -F master" on the Salt master.
#master_finger: ''

Thread settings
###
Disable multiprocessing support, by default when a minion receives a
publication a new process is spawned and the command is executed therein.
#multiprocessing: True

Logging settings
##
The location of the minion log file
The minion log can be sent to a regular file, local path name, or network
location. Remote logging works best when configured to use rsyslogd(8) (e.g.:
``file:///dev/log``), with rsyslogd(8) configured for network logging. The URI
format is: <file|udp|tcp>://<host|socketpath>:<port-if-required>/<log-facility>
#log_file: /var/log/salt/minion
#log_file: file:///dev/log
#log_file: udp://loghost:10514
#
#log_file: /var/log/salt/minion
#key_logfile: /var/log/salt/key

The level of messages to send to the console.
One of 'garbage', 'trace', 'debug', 'info', 'warning', 'error', 'critical'.
#
The following log levels are considered INSECURE and may log sensitive data:
['profile', 'garbage', 'trace', 'debug', 'all']
#
Default: 'warning'
#log_level: warning

The level of messages to send to the log file.
One of 'garbage', 'trace', 'debug', info', 'warning', 'error', 'critical'.
If using 'log_granular_levels' this must be set to the highest desired level.
Default: 'warning'
#log_level_logfile:

The date and time format used in log messages. Allowed date/time formatting
can be seen here: http://docs.python.org/library/time.html#time.strftime
#log_datefmt: '%H:%M:%S'
#log_datefmt_logfile: '%Y-%m-%d %H:%M:%S'

The format of the console logging messages. Allowed formatting options can
be seen here: http://docs.python.org/library/logging.html#logrecord-attributes
#
Console log colors are specified by these additional formatters:
#
%(colorlevel)s
%(colorname)s
%(colorprocess)s
%(colormsg)s
#
Since it is desirable to include the surrounding brackets, '[' and ']', in
the coloring of the messages, these color formatters also include padding as
well. Color LogRecord attributes are only available for console logging.
#
#log_fmt_console: '%(colorlevel)s %(colormsg)s'
#log_fmt_console: '[%(levelname)-8s] %(message)s'
#
#log_fmt_logfile: '%(asctime)s,%(msecs)03d [%(name)-17s][%(levelname)-8s] %(message)s'

This can be used to control logging levels more specificically. This
example sets the main salt library at the 'warning' level, but sets
'salt.modules' to log at the 'debug' level:
log_granular_levels:
'salt': 'warning'
'salt.modules': 'debug'
#
#log_granular_levels: {}

To diagnose issues with minions disconnecting or missing returns, ZeroMQ
supports the use of monitor sockets # to log connection events. This
feature requires ZeroMQ 4.0 or higher.
#
To enable ZeroMQ monitor sockets, set 'zmq_monitor' to 'True' and log at a
debug level or higher.
#
A sample log event is as follows:
#
[DEBUG] ZeroMQ event: {'endpoint': 'tcp://127.0.0.1:4505', 'event': 512,
'value': 27, 'description': 'EVENT_DISCONNECTED'}
#
All events logged will include the string 'ZeroMQ event'. A connection event
should be logged on the as the minion starts up and initially connects to the
master. If not, check for debug log level and that the necessary version of
ZeroMQ is installed.
#
#zmq_monitor: False

Module configuration
###
Salt allows for modules to be passed arbitrary configuration data, any data
passed here in valid yaml format will be passed on to the salt minion modules
for use. It is STRONGLY recommended that a naming convention be used in which
the module name is followed by a . and then the value. Also, all top level
data must be applied via the yaml dict construct, some examples:
#
You can specify that all modules should run in test mode:
#test: True
#
A simple value for the test module:
#test.foo: foo
#
A list for the test module:
#test.bar: [baz,quo]
#
A dict for the test module:
#test.baz: {spam: sausage, cheese: bread}
#
#
Update settings
###
Using the features in Esky, a salt minion can both run as a frozen app and
be updated on the fly. These options control how the update process
(saltutil.update()) behaves.
#
The url for finding and downloading updates. Disabled by default.
#update_url: False
#
The list of services to restart after a successful update. Empty by default.
#update_restart_services: []

Keepalive settings
##
ZeroMQ now includes support for configuring SO_KEEPALIVE if supported by
the OS. If connections between the minion and the master pass through
a state tracking device such as a firewall or VPN gateway, there is
the risk that it could tear down the connection the master and minion
without informing either party that their connection has been taken away.
Enabling TCP Keepalives prevents this from happening.

Overall state of TCP Keepalives, enable (1 or True), disable (0 or False)
or leave to the OS defaults (-1), on Linux, typically disabled. Default True, enabled.
#tcp_keepalive: True

How long before the first keepalive should be sent in seconds. Default 300
to send the first keepalive after 5 minutes, OS default (-1) is typically 7200 seconds
on Linux see /proc/sys/net/ipv4/tcp_keepalive_time.
#tcp_keepalive_idle: 300

How many lost probes are needed to consider the connection lost. Default -1
to use OS defaults, typically 9 on Linux, see /proc/sys/net/ipv4/tcp_keepalive_probes.
#tcp_keepalive_cnt: -1

How often, in seconds, to send keepalives after the first one. Default -1 to
use OS defaults, typically 75 seconds on Linux, see
/proc/sys/net/ipv4/tcp_keepalive_intvl.
#tcp_keepalive_intvl: -1

Windows Software settings
##
Location of the repository cache file on the master:
#win_repo_cachefile: 'salt://win/repo/winrepo.p'

Returner settings
##
Which returner(s) will be used for minion's result:
#return: mysql

Minion Blackout Configuration

New in version 2016.3.0.

Salt supports minion blackouts. When a minion is in blackout mode, all remote
execution commands are disabled. This allows production minions to be put
"on hold", eliminating the risk of an untimely configuration change.

Minion blackouts are configured via a special pillar key, minion_blackout.
If this key is set to True, then the minion will reject all incoming
commands, except for saltutil.refresh_pillar. (The exception is important,
so minions can be brought out of blackout mode)

Salt also supports an explicit whitelist of additional functions that will be
allowed during blackout. This is configured with the special pillar key
minion_blackout_whitelist, which is formed as a list:

minion_blackout_whitelist:
 - test.version
 - pillar.get

Access Control System

New in version 0.10.4.

Salt maintains a standard system used to open granular control to non
administrative users to execute Salt commands. The access control system
has been applied to all systems used to configure access to non administrative
control interfaces in Salt.

These interfaces include, the peer system, the
external auth system and the publisher acl system.

The access control system mandated a standard configuration syntax used in
all of the three aforementioned systems. While this adds functionality to the
configuration in 0.10.4, it does not negate the old configuration.

Now specific functions can be opened up to specific minions from specific users
in the case of external auth and publisher ACLs, and for specific minions in the
case of the peer system.

	Publisher ACL system
	Permission Issues

	Whitelist and Blacklist

	External Authentication System
	External Authentication System Configuration
	Matching syntax

	Groups

	Limiting by function arguments

	Usage
	Tokens

	LDAP and Active Directory
	OpenLDAP and similar systems
	Authenticating to the LDAP Server

	Determining Group Memberships (OpenLDAP / non-Active Directory)

	Determining Group Memberships (Active Directory)

	Peer Communication
	Peer Configuration

	Peer Runner Communication

	Using Peer Communication

When to Use Each Authentication System

publisher_acl is useful for allowing local system users to run Salt
commands without giving them root access. If you can log into the Salt
master directly, then publisher_acl allows you to use Salt without
root privileges. If the local system is configured to authenticate against
a remote system, like LDAP or Active Directory, then publisher_acl will
interact with the remote system transparently.

external_auth is useful for salt-api or for making your own scripts
that use Salt's Python API. It can be used at the CLI (with the -a
flag) but it is more cumbersome as there are more steps involved. The only
time it is useful at the CLI is when the local system is not configured
to authenticate against an external service but you still want Salt to
authenticate against an external service.

Examples

The access controls are manifested using matchers in these configurations:

publisher_acl:
 fred:
 - web*:
 - pkg.list_pkgs
 - test.*
 - apache.*

In the above example, fred is able to send commands only to minions which match
the specified glob target. This can be expanded to include other functions for
other minions based on standard targets (all matchers are supported except the compound one).

external_auth:
 pam:
 dave:
 - test.version
 - mongo*:
 - network.*
 - log*:
 - network.*
 - pkg.*
 - 'G@os:RedHat':
 - kmod.*
 steve:
 - .*

The above allows for all minions to be hit by test.version by dave, and adds a
few functions that dave can execute on other minions. It also allows steve
unrestricted access to salt commands.

Note

Functions are matched using regular expressions.

Publisher ACL system

The salt publisher ACL system is a means to allow system users other than root
to have access to execute select salt commands on minions from the master.

Note

publisher_acl is useful for allowing local system users to run Salt
commands without giving them root access. If you can log into the Salt
master directly, then publisher_acl allows you to use Salt without
root privileges. If the local system is configured to authenticate against
a remote system, like LDAP or Active Directory, then publisher_acl will
interact with the remote system transparently.

external_auth is useful for salt-api or for making your own scripts
that use Salt's Python API. It can be used at the CLI (with the -a
flag) but it is more cumbersome as there are more steps involved. The only
time it is useful at the CLI is when the local system is not configured
to authenticate against an external service but you still want Salt to
authenticate against an external service.

For more information and examples, see this Access Control System section.

The publisher ACL system is configured in the master configuration file via the
publisher_acl configuration option. Under the publisher_acl
configuration option the users open to send commands are specified and then a
list of the minion functions which will be made available to specified user.
Both users and functions could be specified by exact match, shell glob or
regular expression. This configuration is much like the external_auth configuration:

publisher_acl:
 # Allow thatch to execute anything.
 thatch:
 - .*
 # Allow fred to use test and pkg, but only on "web*" minions.
 fred:
 - web*:
 - test.*
 - pkg.*
 # Allow admin and managers to use saltutil module functions
 admin|manager_.*:
 - saltutil.*
 # Allow users to use only my_mod functions on "web*" minions with specific arguments.
 user_.*:
 - web*:
 - 'my_mod.*':
 args:
 - 'a.*'
 - 'b.*'
 kwargs:
 'kwa': 'kwa.*'
 'kwb': 'kwb'

Permission Issues

Directories required for publisher_acl must be modified to be readable by
the users specified:

chmod 755 /var/cache/salt /var/cache/salt/master /var/cache/salt/master/jobs /var/run/salt /var/run/salt/master

Note

In addition to the changes above you will also need to modify the
permissions of /var/log/salt and the existing log file to be writable by
the user(s) which will be running the commands. If you do not wish to do
this then you must disable logging or Salt will generate errors as it
cannot write to the logs as the system users.

If you are upgrading from earlier versions of salt you must also remove any
existing user keys and re-start the Salt master:

rm /var/cache/salt/.*key
service salt-master restart

Whitelist and Blacklist

Salt's authentication systems can be configured by specifying what is allowed
using a whitelist, or by specifying what is disallowed using a blacklist. If
you specify a whitelist, only specified operations are allowed. If you specify
a blacklist, all operations are allowed except those that are blacklisted.

See publisher_acl and publisher_acl_blacklist.

External Authentication System

Salt's External Authentication System (eAuth) allows for Salt to pass through
command authorization to any external authentication system, such as PAM or LDAP.

Note

eAuth using the PAM external auth system requires salt-master to be run as
root as this system needs root access to check authentication.

Note

publisher_acl is useful for allowing local system users to run Salt
commands without giving them root access. If you can log into the Salt
master directly, then publisher_acl allows you to use Salt without
root privileges. If the local system is configured to authenticate against
a remote system, like LDAP or Active Directory, then publisher_acl will
interact with the remote system transparently.

external_auth is useful for salt-api or for making your own scripts
that use Salt's Python API. It can be used at the CLI (with the -a
flag) but it is more cumbersome as there are more steps involved. The only
time it is useful at the CLI is when the local system is not configured
to authenticate against an external service but you still want Salt to
authenticate against an external service.

For more information and examples, see this Access Control System section.

External Authentication System Configuration

The external authentication system allows for specific users to be granted
access to execute specific functions on specific minions. Access is configured
in the master configuration file and uses the access control system:

external_auth:
 pam:
 thatch:
 - 'web*':
 - test.*
 - network.*
 steve|admin.*:
 - .*

The above configuration allows the user thatch to execute functions in the
test and network modules on the minions that match the web* target. User
steve and the users whose logins start with admin, are granted
unrestricted access to minion commands.

Salt respects the current PAM configuration in place, and uses the 'login'
service to authenticate.

Note

The PAM module does not allow authenticating as root.

Note

state.sls and state.highstate will return "Failed to authenticate!"
if the request timeout is reached. Use -t flag to increase the timeout

To allow access to wheel modules or runner
modules the following @ syntax must be used:

external_auth:
 pam:
 thatch:
 - '@wheel' # to allow access to all wheel modules
 - '@runner' # to allow access to all runner modules
 - '@jobs' # to allow access to the jobs runner and/or wheel module

Note

The runner/wheel markup is different, since there are no minions to scope the
acl to.

Note

Globs will not match wheel or runners! They must be explicitly
allowed with @wheel or @runner.

Warning

All users that have external authentication privileges are allowed to run
saltutil.findjob. Be aware
that this could inadvertently expose some data such as minion IDs.

Matching syntax

The structure of the external_auth dictionary can take the following
shapes. User and function matches are exact matches, shell glob patterns or
regular expressions; minion matches are compound targets.

By user:

external_auth:
 <eauth backend>:
 <user or group%>:
 - <regex to match function>

By user, by minion:

external_auth:
 <eauth backend>:
 <user or group%>:
 <minion compound target>:
 - <regex to match function>

By user, by runner/wheel:

external_auth:
 <eauth backend>:
 <user or group%>:
 <@runner or @wheel>:
 - <regex to match function>

By user, by runner+wheel module:

external_auth:
 <eauth backend>:
 <user or group%>:
 <@module_name>:
 - <regex to match function without module_name>

Groups

To apply permissions to a group of users in an external authentication system,
append a % to the ID:

external_auth:
 pam:
 admins%:
 - '*':
 - 'pkg.*'

Limiting by function arguments

Positional arguments or keyword arguments to functions can also be whitelisted.

New in version 2016.3.0.

external_auth:
 pam:
 my_user:
 - '*':
 - 'my_mod.*':
 args:
 - 'a.*'
 - 'b.*'
 kwargs:
 'kwa': 'kwa.*'
 'kwb': 'kwb'
 - '@runner':
 - 'runner_mod.*':
 args:
 - 'a.*'
 - 'b.*'
 kwargs:
 'kwa': 'kwa.*'
 'kwb': 'kwb'

The rules:

	The arguments values are matched as regexp.

	If arguments restrictions are specified the only matched are allowed.

	If an argument isn't specified any value is allowed.

	To skip an arg use "everything" regexp .*. I.e. if arg0 and arg2
should be limited but arg1 and other arguments could have any value use:

args:
 - 'value0'
 - '.*'
 - 'value2'

Usage

The external authentication system can then be used from the command-line by
any user on the same system as the master with the -a option:

$ salt -a pam web* test.version

The system will ask the user for the credentials required by the
authentication system and then publish the command.

Tokens

With external authentication alone, the authentication credentials will be
required with every call to Salt. This can be alleviated with Salt tokens.

Tokens are short term authorizations and can be easily created by just
adding a -T option when authenticating:

$ salt -T -a pam web* test.version

Now a token will be created that has an expiration of 12 hours (by default).
This token is stored in a file named salt_token in the active user's home
directory.

Once the token is created, it is sent with all subsequent communications.
User authentication does not need to be entered again until the token expires.

Token expiration time can be set in the Salt master config file.

LDAP and Active Directory

Note

LDAP usage requires that you have installed python-ldap.

Salt supports both user and group authentication for LDAP (and Active Directory
accessed via its LDAP interface)

OpenLDAP and similar systems

LDAP configuration happens in the Salt master configuration file.

Server configuration values and their defaults:

Server to auth against
auth.ldap.server: localhost

Port to connect via
auth.ldap.port: 389

Use TLS when connecting
auth.ldap.tls: False

Use STARTTLS when connecting
auth.ldap.starttls: False

LDAP scope level, almost always 2
auth.ldap.scope: 2

Server specified in URI format
auth.ldap.uri: '' # Overrides .ldap.server, .ldap.port, .ldap.tls above

Verify server's TLS certificate
auth.ldap.no_verify: False

Bind to LDAP anonymously to determine group membership
Active Directory does not allow anonymous binds without special configuration
In addition, if auth.ldap.anonymous is True, empty bind passwords are not permitted.
auth.ldap.anonymous: False

FOR TESTING ONLY, this is a VERY insecure setting.
If this is True, the LDAP bind password will be ignored and
access will be determined by group membership alone with
the group memberships being retrieved via anonymous bind
auth.ldap.auth_by_group_membership_only: False

Require authenticating user to be part of this Organizational Unit
This can be blank if your LDAP schema does not use this kind of OU
auth.ldap.groupou: 'Groups'

Object Class for groups. An LDAP search will be done to find all groups of this
class to which the authenticating user belongs.
auth.ldap.groupclass: 'posixGroup'

Unique ID attribute name for the user
auth.ldap.accountattributename: 'memberUid'

These are only for Active Directory
auth.ldap.activedirectory: False
auth.ldap.persontype: 'person'

auth.ldap.minion_stripdomains: []

Redhat Identity Policy Audit
auth.ldap.freeipa: False

Authenticating to the LDAP Server

There are two phases to LDAP authentication. First, Salt authenticates to search for a users' Distinguished Name
and group membership. The user it authenticates as in this phase is often a special LDAP system user with
read-only access to the LDAP directory. After Salt searches the directory to determine the actual user's DN
and groups, it re-authenticates as the user running the Salt commands.

If you are already aware of the structure of your DNs and permissions in your LDAP store are set such that
users can look up their own group memberships, then the first and second users can be the same. To tell Salt this is
the case, omit the auth.ldap.bindpw parameter. Note this is not the same thing as using an anonymous bind.
Most LDAP servers will not permit anonymous bind, and as mentioned above, if auth.ldap.anonymous is False you
cannot use an empty password.

You can template the binddn like this:

auth.ldap.basedn: dc=saltstack,dc=com
auth.ldap.binddn: uid={{ username }},cn=users,cn=accounts,dc=saltstack,dc=com

Salt will use the password entered on the salt command line in place of the bindpw.

To use two separate users, specify the LDAP lookup user in the binddn directive, and include a bindpw like so

auth.ldap.binddn: uid=ldaplookup,cn=sysaccounts,cn=etc,dc=saltstack,dc=com
auth.ldap.bindpw: mypassword

As mentioned before, Salt uses a filter to find the DN associated with a user. Salt
substitutes the {{ username }} value for the username when querying LDAP

auth.ldap.filter: uid={{ username }}

Determining Group Memberships (OpenLDAP / non-Active Directory)

For OpenLDAP, to determine group membership, one can specify an OU that contains
group data. This is prepended to the basedn to create a search path. Then
the results are filtered against auth.ldap.groupclass, default
posixGroup, and the account's 'name' attribute, memberUid by default.

auth.ldap.groupou: Groups

Note that as of 2017.7, auth.ldap.groupclass can refer to either a groupclass or an objectClass.
For some LDAP servers (notably OpenLDAP without the memberOf overlay enabled) to determine group
membership we need to know both the objectClass and the memberUid attributes. Usually for these
servers you will want a auth.ldap.groupclass of posixGroup and an auth.ldap.groupattribute of
memberUid.

LDAP servers with the memberOf overlay will have entries similar to auth.ldap.groupclass: person and
auth.ldap.groupattribute: memberOf.

When using the ldap('DC=domain,DC=com') eauth operator, sometimes the records returned
from LDAP or Active Directory have fully-qualified domain names attached, while minion IDs
instead are simple hostnames. The parameter below allows the administrator to strip
off a certain set of domain names so the hostnames looked up in the directory service
can match the minion IDs.

auth.ldap.minion_stripdomains: ['.external.bigcorp.com', '.internal.bigcorp.com']

Determining Group Memberships (Active Directory)

Active Directory handles group membership differently, and does not utilize the
groupou configuration variable. AD needs the following options in
the master config:

auth.ldap.activedirectory: True
auth.ldap.filter: sAMAccountName={{username}}
auth.ldap.accountattributename: sAMAccountName
auth.ldap.groupclass: group
auth.ldap.persontype: person

To determine group membership in AD, the username and password that is entered
when LDAP is requested as the eAuth mechanism on the command line is used to
bind to AD's LDAP interface. If this fails, then it doesn't matter what groups
the user belongs to, he or she is denied access. Next, the distinguishedName
of the user is looked up with the following LDAP search:

(&(<value of auth.ldap.accountattributename>={{username}})
 (objectClass=<value of auth.ldap.persontype>)
)

This should return a distinguishedName that we can use to filter for group
membership. Then the following LDAP query is executed:

(&(member=<distinguishedName from search above>)
 (objectClass=<value of auth.ldap.groupclass>)
)

external_auth:
 ldap:
 test_ldap_user:
 - '*':
 - test.ping

To configure a LDAP group, append a % to the ID:

external_auth:
 ldap:
 test_ldap_group%:
 - '*':
 - test.echo

In addition, if there are a set of computers in the directory service that should
be part of the eAuth definition, they can be specified like this:

external_auth:
 ldap:
 test_ldap_group%:
 - ldap('DC=corp,DC=example,DC=com'):
 - test.echo

The string inside ldap() above is any valid LDAP/AD tree limiter. OU= in
particular is permitted as long as it would return a list of computer objects.

Peer Communication

Salt 0.9.0 introduced the capability for Salt minions to publish commands. The
intent of this feature is not for Salt minions to act as independent brokers
one with another, but to allow Salt minions to pass commands to each other.

In Salt 0.10.0 the ability to execute runners from the master was added. This
allows for the master to return collective data from runners back to the
minions via the peer interface.

The peer interface is configured through two options in the master
configuration file. For minions to send commands from the master the peer
configuration is used. To allow for minions to execute runners from the master
the peer_run configuration is used.

Since this presents a viable security risk by allowing minions access to the
master publisher the capability is turned off by default. The minions can be
allowed access to the master publisher on a per minion basis based on regular
expressions. Minions with specific ids can be allowed access to certain Salt
modules and functions.

Peer Configuration

The configuration is done under the peer setting in the Salt master
configuration file, here are a number of configuration possibilities.

The simplest approach is to enable all communication for all minions, this is
only recommended for very secure environments.

peer:
 .*:
 - .*

This configuration allows minions with IDs ending in .example.com access
to the test, ps, and pkg module functions.

peer:
 .*\.example.com:
 - test\..*
 - ps\..*
 - pkg\..*

The configuration logic is simple, a regular expression is passed for matching
minion ids, and then a list of expressions matching minion functions is
associated with the named minion. For instance, this configuration will also
allow minions ending with foo.org access to the publisher.

peer:
 .*\.example.com:
 - test\..*
 - ps\..*
 - pkg\..*
 .*\.foo.org:
 - test\..*
 - ps\..*
 - pkg\..*

Note

Functions are matched using regular expressions as well.

It is also possible to limit target hosts with the Compound Matcher.
You can achieve this by adding another layer in between the source and the
allowed functions:

peer:
 '.*\.example\.com':
 - 'G@role:db':
 - test\..*
 - pkg\..*

Note

Notice that the source hosts are matched by a regular expression
on their minion ID, while target hosts can be matched by any of
the available matchers.

Note that globbing and regex matching on pillar values is not supported. You can only match exact values.

Peer Runner Communication

Configuration to allow minions to execute runners from the master is done via
the peer_run option on the master. The peer_run configuration follows
the same logic as the peer option. The only difference is that access is
granted to runner modules.

To open up access to all minions to all runners:

peer_run:
 .*:
 - .*

This configuration will allow minions with IDs ending in example.com access
to the manage and jobs runner functions.

peer_run:
 .*example.com:
 - manage.*
 - jobs.*

Note

Functions are matched using regular expressions.

Using Peer Communication

The publish module was created to manage peer communication. The publish module
comes with a number of functions to execute peer communication in different
ways. Currently there are three functions in the publish module. These examples
will show how to test the peer system via the salt-call command.

To execute test.version on all minions:

salt-call publish.publish * test.version

To execute the manage.up runner:

salt-call publish.runner manage.up

To match minions using other matchers, use tgt_type:

salt-call publish.publish 'webserv* and not G@os:Ubuntu' test.version tgt_type='compound'

Note

In pre-2017.7.0 releases, use expr_form instead of tgt_type.

Job Management

New in version 0.9.7.

Since Salt executes jobs running on many systems, Salt needs to be able to
manage jobs running on many systems.

The Minion proc System

Salt Minions maintain a proc directory in the Salt cachedir. The proc
directory maintains files named after the executed job ID. These files contain
the information about the current running jobs on the minion and allow for
jobs to be looked up. This is located in the proc directory under the
cachedir, with a default configuration it is under /var/cache/salt/{master|minion}/proc.

Functions in the saltutil Module

Salt 0.9.7 introduced a few new functions to the
saltutil module for managing
jobs. These functions are:

	running
Returns the data of all running jobs that are found in the proc directory.

	find_job
Returns specific data about a certain job based on job id.

	signal_job
Allows for a given jid to be sent a signal.

	term_job
Sends a termination signal (SIGTERM, 15) to the process controlling the
specified job.

	kill_job
Sends a kill signal (SIGKILL, 9) to the process controlling the
specified job.

These functions make up the core of the back end used to manage jobs at the
minion level.

The jobs Runner

A convenience runner front end and reporting system has been added as well.
The jobs runner contains functions to make viewing data easier and cleaner.

The jobs runner contains a number of functions...

active

The active function runs saltutil.running on all minions and formats the
return data about all running jobs in a much more usable and compact format.
The active function will also compare jobs that have returned and jobs that
are still running, making it easier to see what systems have completed a job
and what systems are still being waited on.

salt-run jobs.active

lookup_jid

When jobs are executed the return data is sent back to the master and cached.
By default it is cached for 86400 seconds, but this can be configured via the
keep_jobs_seconds option in the master configuration.
Using the lookup_jid runner will display the same return data that the initial
job invocation with the salt command would display.

salt-run jobs.lookup_jid <job id number>

list_jobs

Before finding a historic job, it may be required to find the job id. list_jobs
will parse the cached execution data and display all of the job data for jobs
that have already, or partially returned.

salt-run jobs.list_jobs

Scheduling Jobs

Salt's scheduling system allows incremental executions on minions or the
master. The schedule system exposes the execution of any execution function on
minions or any runner on the master.

Scheduling can be enabled by multiple methods:

	schedule option in either the master or minion config files. These
require the master or minion application to be restarted in order for the
schedule to be implemented.

	Minion pillar data. Schedule is implemented by refreshing the minion's pillar data,
for example by using saltutil.refresh_pillar.

	The schedule state or
schedule module

Note

The scheduler executes different functions on the master and minions. When
running on the master the functions reference runner functions, when
running on the minion the functions specify execution functions.

A scheduled run has no output on the minion unless the config is set to info level
or higher. Refer to minion-logging-settings.

States are executed on the minion, as all states are. You can pass positional
arguments and provide a YAML dict of named arguments.

schedule:
 job1:
 function: state.sls
 seconds: 3600
 args:
 - httpd
 kwargs:
 test: True

This will schedule the command: state.sls httpd test=True every 3600 seconds
(every hour).

schedule:
 job1:
 function: state.sls
 seconds: 3600
 args:
 - httpd
 kwargs:
 test: True
 splay: 15

This will schedule the command: state.sls httpd test=True every 3600 seconds
(every hour) splaying the time between 0 and 15 seconds.

schedule:
 job1:
 function: state.sls
 seconds: 3600
 args:
 - httpd
 kwargs:
 test: True
 splay:
 start: 10
 end: 15

This will schedule the command: state.sls httpd test=True every 3600 seconds
(every hour) splaying the time between 10 and 15 seconds.

Schedule by Date and Time

New in version 2014.7.0.

Frequency of jobs can also be specified using date strings supported by
the Python dateutil library. This requires the Python dateutil library
to be installed.

schedule:
 job1:
 function: state.sls
 args:
 - httpd
 kwargs:
 test: True
 when: 5:00pm

This will schedule the command: state.sls httpd test=True at 5:00 PM minion
localtime.

schedule:
 job1:
 function: state.sls
 args:
 - httpd
 kwargs:
 test: True
 when:
 - Monday 5:00pm
 - Tuesday 3:00pm
 - Wednesday 5:00pm
 - Thursday 3:00pm
 - Friday 5:00pm

This will schedule the command: state.sls httpd test=True at 5:00 PM on
Monday, Wednesday and Friday, and 3:00 PM on Tuesday and Thursday.

schedule:
 job1:
 function: state.sls
 args:
 - httpd
 kwargs:
 test: True
 when:
 - 'tea time'

whens:
 tea time: 1:40pm
 deployment time: Friday 5:00pm

The Salt scheduler also allows custom phrases to be used for the when
parameter. These whens can be stored as either pillar values or
grain values.

schedule:
 job1:
 function: state.sls
 seconds: 3600
 args:
 - httpd
 kwargs:
 test: True
 range:
 start: 8:00am
 end: 5:00pm

This will schedule the command: state.sls httpd test=True every 3600 seconds
(every hour) between the hours of 8:00 AM and 5:00 PM. The range parameter must
be a dictionary with the date strings using the dateutil format.

schedule:
 job1:
 function: state.sls
 seconds: 3600
 args:
 - httpd
 kwargs:
 test: True
 range:
 invert: True
 start: 8:00am
 end: 5:00pm

Using the invert option for range, this will schedule the command
state.sls httpd test=True every 3600 seconds (every hour) until the current
time is between the hours of 8:00 AM and 5:00 PM. The range parameter must be
a dictionary with the date strings using the dateutil format.

schedule:
 job1:
 function: pkg.install
 kwargs:
 pkgs: [{'bar': '>1.2.3'}]
 refresh: true
 once: '2016-01-07T14:30:00'

This will schedule the function pkg.install to be executed once at the
specified time. The schedule entry job1 will not be removed after the job
completes, therefore use schedule.delete to manually remove it afterwards.

The default date format is ISO 8601 but can be overridden by also specifying the
once_fmt option, like this:

schedule:
 job1:
 function: test.ping
 once: 2015-04-22T20:21:00
 once_fmt: '%Y-%m-%dT%H:%M:%S'

Maximum Parallel Jobs Running

New in version 2014.7.0.

The scheduler also supports ensuring that there are no more than N copies of
a particular routine running. Use this for jobs that may be long-running
and could step on each other or pile up in case of infrastructure outage.

The default for maxrunning is 1.

schedule:
 long_running_job:
 function: big_file_transfer
 jid_include: True
 maxrunning: 1

Cron-like Schedule

New in version 2014.7.0.

schedule:
 job1:
 function: state.sls
 cron: '*/15 * * * *'
 args:
 - httpd
 kwargs:
 test: True

The scheduler also supports scheduling jobs using a cron like format.
This requires the Python croniter library.

Job Data Return

New in version 2015.5.0.

By default, data about jobs runs from the Salt scheduler is returned to the
master. Setting the return_job parameter to False will prevent the data
from being sent back to the Salt master.

schedule:
 job1:
 function: scheduled_job_function
 return_job: False

Job Metadata

New in version 2015.5.0.

It can be useful to include specific data to differentiate a job from other
jobs. Using the metadata parameter special values can be associated with
a scheduled job. These values are not used in the execution of the job,
but can be used to search for specific jobs later if combined with the
return_job parameter. The metadata parameter must be specified as a
dictionary, othewise it will be ignored.

schedule:
 job1:
 function: scheduled_job_function
 metadata:
 foo: bar

Run on Start

New in version 2015.5.0.

By default, any job scheduled based on the startup time of the minion will run
the scheduled job when the minion starts up. Sometimes this is not the desired
situation. Using the run_on_start parameter set to False will cause the
scheduler to skip this first run and wait until the next scheduled run:

schedule:
 job1:
 function: state.sls
 seconds: 3600
 run_on_start: False
 args:
 - httpd
 kwargs:
 test: True

Until and After

New in version 2015.8.0.

schedule:
 job1:
 function: state.sls
 seconds: 15
 until: '12/31/2015 11:59pm'
 args:
 - httpd
 kwargs:
 test: True

Using the until argument, the Salt scheduler allows you to specify
an end time for a scheduled job. If this argument is specified, jobs
will not run once the specified time has passed. Time should be specified
in a format supported by the dateutil library.
This requires the Python dateutil library to be installed.

New in version 2015.8.0.

schedule:
 job1:
 function: state.sls
 seconds: 15
 after: '12/31/2015 11:59pm'
 args:
 - httpd
 kwargs:
 test: True

Using the after argument, the Salt scheduler allows you to specify
an start time for a scheduled job. If this argument is specified, jobs
will not run until the specified time has passed. Time should be specified
in a format supported by the dateutil library.
This requires the Python dateutil library to be installed.

Scheduling States

schedule:
 log-loadavg:
 function: cmd.run
 seconds: 3660
 args:
 - 'logger -t salt < /proc/loadavg'
 kwargs:
 stateful: False
 shell: /bin/sh

Scheduling Highstates

To set up a highstate to run on a minion every 60 minutes set this in the
minion config or pillar:

schedule:
 highstate:
 function: state.highstate
 minutes: 60

Time intervals can be specified as seconds, minutes, hours, or days.

Scheduling Runners

Runner executions can also be specified on the master within the master
configuration file:

schedule:
 run_my_orch:
 function: state.orchestrate
 hours: 6
 splay: 600
 args:
 - orchestration.my_orch

The above configuration is analogous to running
salt-run state.orch orchestration.my_orch every 6 hours.

Scheduler With Returner

The scheduler is also useful for tasks like gathering monitoring data about
a minion, this schedule option will gather status data and send it to a MySQL
returner database:

schedule:
 uptime:
 function: status.uptime
 seconds: 60
 returner: mysql
 meminfo:
 function: status.meminfo
 minutes: 5
 returner: mysql

Since specifying the returner repeatedly can be tiresome, the
schedule_returner option is available to specify one or a list of global
returners to be used by the minions when scheduling.

Managing the Job Cache

The Salt Master maintains a job cache of all job executions which can be
queried via the jobs runner. This job cache is called the Default Job Cache.

Default Job Cache

A number of options are available when configuring the job cache. The default
caching system uses local storage on the Salt Master and can be found in the
job cache directory (on Linux systems this is typically
/var/cache/salt/master/jobs). The default caching system is suitable for most
deployments as it does not typically require any further configuration or
management.

The default job cache is a temporary cache and jobs will be stored for 86400
seconds. If the default cache needs to store jobs for a different period the
time can be easily adjusted by changing the keep_jobs_seconds parameter
in the Salt Master configuration file. The value passed in is measured in seconds:

keep_jobs_seconds: 86400

Reducing the Size of the Default Job Cache

The Default Job Cache can sometimes be a burden on larger deployments (over 5000
minions). Disabling the job cache will make previously executed jobs unavailable
to the jobs system and is not generally recommended. Normally it is wise to make
sure the master has access to a faster IO system or a tmpfs is mounted to the
jobs dir.

However, you can disable the job_cache by setting it to False
in the Salt Master configuration file. Setting this value to False means that
the Salt Master will no longer cache minion returns, but a JID directory and jid
file for each job will still be created. This JID directory is necessary for
checking for and preventing JID collisions.

The default location for the job cache is in the /var/cache/salt/master/jobs/
directory.

Setting the job_cache to False in addition to setting
the keep_jobs_seconds option to a smaller value, such as 3600,
in the Salt Master configuration file will reduce the size of the Default Job Cache,
and thus the burden on the Salt Master.

Note

Changing the keep_jobs_seconds option sets the number of seconds to keep
old job information and defaults to 86400 seconds. Do not set this value
to 0 when trying to make the cache cleaner run more frequently, as this
means the cache cleaner will never run.

Additional Job Cache Options

Many deployments may wish to use an external database to maintain a long term
register of executed jobs. Salt comes with two main mechanisms to do this, the
master job cache and the external job cache.

See Storing Job Results in an External System.

Storing Job Results in an External System

After a job executes, job results are returned
to the Salt Master by each Salt Minion. These results are stored in the
Default Job Cache.

In addition to the Default Job Cache, Salt provides two additional
mechanisms to send job results to other systems (databases, local syslog,
and others):

	External Job Cache

	Master Job Cache

The major difference between these two mechanism is from where results are
returned (from the Salt Master or Salt Minion). Configuring either of these
options will also make the Jobs Runner functions
to automatically query the remote stores for information.

External Job Cache - Minion-Side Returner

When an External Job Cache is configured, data is returned to the Default Job
Cache on the Salt Master like usual, and then results are also sent to an
External Job Cache using a Salt returner module running on the Salt Minion.

[image: ../../_images/external-job-cache.png]

	Advantages: Data is stored without placing additional load on the Salt Master.

	Disadvantages: Each Salt Minion connects to the external job cache, which can
result in a large number of connections. Also requires additional configuration to
get returner module settings on all Salt Minions.

Master Job Cache - Master-Side Returner

New in version 2014.7.0.

Instead of configuring an External Job Cache on each Salt Minion, you can
configure the Master Job Cache to send job results from the Salt Master
instead. In this configuration, Salt Minions send data to the Default Job Cache
as usual, and then the Salt Master sends the data to the external system using
a Salt returner module running on the Salt Master.

[image: ../../_images/master-job-cache.png]

	Advantages: A single connection is required to the external system. This is
preferred for databases and similar systems.

	Disadvantages: Places additional load on your Salt Master.

Configure an External or Master Job Cache

Step 1: Understand Salt Returners

Before you configure a job cache, it is essential to understand Salt returner
modules ("returners"). Returners are pluggable Salt Modules that take the data
returned by jobs, and then perform any necessary steps to send the data to an
external system. For example, a returner might establish a connection,
authenticate, and then format and transfer data.

The Salt Returner system provides the core functionality used by the External
and Master Job Cache systems, and the same returners are used by both systems.

Salt currently provides many different returners that let you connect to a
wide variety of systems. A complete list is available at
all Salt returners.
Each returner is configured differently, so make sure you read and follow the
instructions linked from that page.

For example, the MySQL returner requires:

	A database created using provided schema (structure is available at
MySQL returner)

	A user created with privileges to the database

	Optional SSL configuration

A simpler returner, such as Slack or HipChat, requires:

	An API key/version

	The target channel/room

	The username that should be used to send the message

Step 2: Configure the Returner

After you understand the configuration and have the external system ready, the
configuration requirements must be declared.

External Job Cache

The returner configuration settings can be declared in the Salt Minion
configuration file, the Minion's pillar data, or the Minion's grains.

If external_job_cache configuration settings are specified in more than
one place, the options are retrieved in the following order. The first
configuration location that is found is the one that will be used.

	Minion configuration file

	Minion's grains

	Minion's pillar data

Master Job Cache

The returner configuration settings for the Master Job Cache should be
declared in the Salt Master's configuration file.

Configuration File Examples

MySQL requires:

mysql.host: 'salt'
mysql.user: 'salt'
mysql.pass: 'salt'
mysql.db: 'salt'
mysql.port: 3306

Slack requires:

slack.channel: 'channel'
slack.api_key: 'key'
slack.from_name: 'name'

After you have configured the returner and added settings to the configuration
file, you can enable the External or Master Job Cache.

Step 3: Enable the External or Master Job Cache

Configuration is a single line that specifies an
already-configured returner to use to send all job data to an external system.

External Job Cache

To enable a returner as the External Job Cache (Minion-side), add the following
line to the Salt Master configuration file:

ext_job_cache: <returner>

For example:

ext_job_cache: mysql

Note

When configuring an External Job Cache (Minion-side), the returner settings are
added to the Minion configuration file, but the External Job Cache setting
is configured in the Master configuration file.

Master Job Cache

To enable a returner as a Master Job Cache (Master-side), add the following
line to the Salt Master configuration file:

master_job_cache: <returner>

For example:

master_job_cache: mysql

Verify that the returner configuration settings are in the Master configuration
file, and be sure to restart the salt-master service after you make
configuration changes. (service salt-master restart).

Logging

The Salt Project tries to get the logging to work for you and help us solve any
issues you might find along the way.

If you want to get some more information on the nitty-gritty of salt's logging
system, please head over to the logging development
document, if all you're after is salt's logging
configurations, please continue reading.

Log Levels

The log levels are ordered numerically such that setting the log level to a
specific level will record all log statements at that level and higher. For
example, setting log_level: error will log statements at error,
critical, and quiet levels, although nothing should be logged at
quiet level.

Most of the logging levels are defined by default in Python's logging library
and can be found in the official Python documentation [https://docs.python.org/3/library/logging.html#levels].
Salt uses some more levels in addition to the standard levels. All levels
available in salt are shown in the table below.

Note

Python dependencies used by salt may define and use additional logging
levels. For example, the Python 2 version of the multiprocessing
standard Python library uses the levels [https://docs.python.org/3/library/multiprocessing.html#logging]
subwarning, 25 and subdebug, 5.

	Level

	Numeric value

	Description

	quiet

	1000

	Nothing should be logged at this level

	critical

	50

	Critical errors

	error

	40

	Errors

	warning

	30

	Warnings

	info

	20

	Normal log information

	profile

	15

	Profiling information on salt performance

	debug

	10

	Information useful for debugging both salt implementations and salt code

	trace

	5

	More detailed code debugging information

	garbage

	1

	Even more debugging information

	all

	0

	Everything

Any log level below the info level is INSECURE and may log sensitive data. This currently includes:
#. profile
#. debug
#. trace
#. garbage
#. all

Available Configuration Settings

log_file

The log records can be sent to a regular file, local path name, or network
location. Remote logging works best when configured to use rsyslogd(8) (e.g.:
file:///dev/log), with rsyslogd(8) configured for network logging. The
format for remote addresses is:

<file|udp|tcp>://<host|socketpath>:<port-if-required>/<log-facility>

Where log-facility is the symbolic name of a syslog facility as defined in
the SysLogHandler documentation [https://docs.python.org/3/library/logging.handlers.html#logging.handlers.SysLogHandler.encodePriority]. It defaults to LOG_USER.

Default: Dependent of the binary being executed, for example, for
salt-master, /var/log/salt/master.

Examples:

log_file: /var/log/salt/master

log_file: /var/log/salt/minion

log_file: file:///dev/log

log_file: file:///dev/log/LOG_DAEMON

log_file: udp://loghost:10514

log_level

Default: warning

The level of log record messages to send to the console. One of all,
garbage, trace, debug, profile, info, warning,
error, critical, quiet.

log_level: warning

Note

Add log_level: quiet in salt configuration file to completely disable
logging. In case of running salt in command line use --log-level=quiet
instead.

log_level_logfile

Default: info

The level of messages to send to the log file. One of all, garbage,
trace, debug, profile, info, warning, error,
critical, quiet.

log_level_logfile: warning

log_datefmt

Default: %H:%M:%S

The date and time format used in console log messages. Allowed date/time
formatting matches those used in time.strftime() [https://docs.python.org/3/library/time.html#time.strftime].

log_datefmt: '%H:%M:%S'

log_datefmt_logfile

Default: %Y-%m-%d %H:%M:%S

The date and time format used in log file messages. Allowed date/time
formatting matches those used in time.strftime() [https://docs.python.org/3/library/time.html#time.strftime].

log_datefmt_logfile: '%Y-%m-%d %H:%M:%S'

log_fmt_console

Default: [%(levelname)-8s] %(message)s

The format of the console logging messages. All standard python logging
LogRecord [https://docs.python.org/3/library/logging.html#logging.LogRecord] attributes can be used. Salt also provides these
custom LogRecord attributes to colorize console log output:

"%(colorlevel)s" # log level name colorized by level
"%(colorname)s" # colorized module name
"%(colorprocess)s" # colorized process number
"%(colormsg)s" # log message colorized by level

Note

The %(colorlevel)s, %(colorname)s, and %(colorprocess)
LogRecord attributes also include padding and enclosing brackets, [and
] to match the default values of their collateral non-colorized
LogRecord attributes.

log_fmt_console: '[%(levelname)-8s] %(message)s'

log_fmt_logfile

Default: %(asctime)s,%(msecs)03d [%(name)-17s][%(levelname)-8s] %(message)s

The format of the log file logging messages. All standard python logging
LogRecord [https://docs.python.org/3/library/logging.html#logging.LogRecord] attributes can be used. Salt also provides
these custom LogRecord attributes that include padding and enclosing brackets
[and]:

"%(bracketlevel)s" # equivalent to [%(levelname)-8s]
"%(bracketname)s" # equivalent to [%(name)-17s]
"%(bracketprocess)s" # equivalent to [%(process)5s]

log_fmt_logfile: '%(asctime)s,%(msecs)03d [%(name)-17s][%(levelname)-8s] %(message)s'

log_granular_levels

Default: {}

This can be used to control logging levels more specifically, based on log call name. The example sets
the main salt library at the 'warning' level, sets salt.modules to log
at the debug level, and sets a custom module to the all level:

log_granular_levels:
 'salt': 'warning'
 'salt.modules': 'debug'
 'salt.loader.saltmaster.ext.module.custom_module': 'all'

You can determine what log call name to use here by adding %(module)s to the
log format. Typically, it is the path of the file which generates the log
without the trailing .py and with path separators replaced with .

log_fmt_jid

Default: [JID: %(jid)s]

The format of the JID when added to logging messages.

log_fmt_jid: '[JID: %(jid)s]'

External Logging Handlers

Besides the internal logging handlers used by salt, there are some external
which can be used, see the external logging handlers
document.

External Logging Handlers

	fluent_mod

	Fluent Logging Handler

	log4mongo_mod

	Log4Mongo Logging Handler

	logstash_mod

	Logstash Logging Handler

	sentry_mod

	Sentry Logging Handler

salt.log_handlers.fluent_mod

Fluent Logging Handler

New in version 2015.8.0.

This module provides some fluentd [http://www.fluentd.org] logging handlers.

Fluent Logging Handler

In the fluent configuration file:

<source>
 type forward
 bind localhost
 port 24224
</source>

Then, to send logs via fluent in Logstash format, add the
following to the salt (master and/or minion) configuration file:

fluent_handler:
 host: localhost
 port: 24224

To send logs via fluent in the Graylog raw json format, add the
following to the salt (master and/or minion) configuration file:

fluent_handler:
 host: localhost
 port: 24224
 payload_type: graylog
 tags:
 - salt_master.SALT

The above also illustrates the tags option, which allows
one to set descriptive (or useful) tags on records being
sent. If not provided, this defaults to the single tag:
'salt'. Also note that, via Graylog "magic", the 'facility'
of the logged message is set to 'SALT' (the portion of the
tag after the first period), while the tag itself will be
set to simply 'salt_master'. This is a feature, not a bug :)

Note:
There is a third emitter, for the GELF format, but it is
largely untested, and I don't currently have a setup supporting
this config, so while it runs cleanly and outputs what LOOKS to
be valid GELF, any real-world feedback on its usefulness, and
correctness, will be appreciated.

Log Level

The fluent_handler configuration section accepts an additional setting
log_level. If not set, the logging level used will be the one defined
for log_level in the global configuration file section.

Inspiration

This work was inspired in fluent-logger-python [https://github.com/fluent/fluent-logger-python]

salt.log_handlers.log4mongo_mod

Log4Mongo Logging Handler

This module provides a logging handler for sending salt logs to MongoDB

Configuration

In the salt configuration file (e.g. /etc/salt/{master,minion}):

log4mongo_handler:
 host: mongodb_host
 port: 27017
 database_name: logs
 collection: salt_logs
 username: logging
 password: reindeerflotilla
 write_concern: 0
 log_level: warning

Log Level

If not set, the log_level will be set to the level defined in the global
configuration file setting.

Inspiration

This work was inspired by the Salt logging handlers for LogStash and
Sentry and by the log4mongo Python implementation.

salt.log_handlers.logstash_mod

Logstash Logging Handler

New in version 0.17.0.

This module provides some Logstash [http://logstash.net] logging handlers.

UDP Logging Handler

For versions of Logstash [http://logstash.net] before 1.2.0:

In the salt configuration file:

logstash_udp_handler:
 host: 127.0.0.1
 port: 9999
 version: 0
 msg_type: logstash

In the Logstash [http://logstash.net] configuration file:

input {
 udp {
 type => "udp-type"
 format => "json_event"
 }
}

For version 1.2.0 of Logstash [http://logstash.net] and newer:

In the salt configuration file:

logstash_udp_handler:
 host: 127.0.0.1
 port: 9999
 version: 1
 msg_type: logstash

In the Logstash [http://logstash.net] configuration file:

input {
 udp {
 port => 9999
 codec => json
 }
}

Please read the UDP input [http://logstash.net/docs/latest/inputs/udp] configuration page for additional information.

ZeroMQ Logging Handler

For versions of Logstash [http://logstash.net] before 1.2.0:

In the salt configuration file:

logstash_zmq_handler:
 address: tcp://127.0.0.1:2021
 version: 0

In the Logstash [http://logstash.net] configuration file:

input {
 zeromq {
 type => "zeromq-type"
 mode => "server"
 topology => "pubsub"
 address => "tcp://0.0.0.0:2021"
 charset => "UTF-8"
 format => "json_event"
 }
}

For version 1.2.0 of Logstash [http://logstash.net] and newer:

In the salt configuration file:

logstash_zmq_handler:
 address: tcp://127.0.0.1:2021
 version: 1

In the Logstash [http://logstash.net] configuration file:

input {
 zeromq {
 topology => "pubsub"
 address => "tcp://0.0.0.0:2021"
 codec => json
 }
}

Please read the ZeroMQ input [http://logstash.net/docs/latest/inputs/zeromq] configuration page for additional
information.

Important Logstash Setting

One of the most important settings that you should not forget on your
Logstash [http://logstash.net] configuration file regarding these logging handlers is
format.
Both the UDP and ZeroMQ inputs need to have format as
json_event which is what we send over the wire.

Log Level

Both the logstash_udp_handler and the logstash_zmq_handler
configuration sections accept an additional setting log_level. If not
set, the logging level used will be the one defined for log_level in
the global configuration file section.

HWM

The high water mark [http://api.zeromq.org/3-2:zmq-setsockopt] for the ZMQ socket setting. Only applicable for the
logstash_zmq_handler.

Inspiration

This work was inspired in pylogstash [https://github.com/turtlebender/pylogstash], python-logstash [https://github.com/vklochan/python-logstash], canary [https://github.com/ryanpetrello/canary]
and the PyZMQ logging handler [https://github.com/zeromq/pyzmq/blob/master/zmq/log/handlers.py].

salt.log_handlers.sentry_mod

Sentry Logging Handler

New in version 0.17.0.

This module provides a Sentry [https://getsentry.com] logging handler. Sentry is an open source
error tracking platform that provides deep context about exceptions that
happen in production. Details about stack traces along with the context
variables available at the time of the exception are easily browsable and
filterable from the online interface. For more details please see
Sentry [https://getsentry.com].

Note

The Raven [https://raven.readthedocs.io] library needs to be installed on the system for this
logging handler to be available.

Configuring the python Sentry [https://getsentry.com] client, Raven [https://raven.readthedocs.io], should be done under the
sentry_handler configuration key. Additional context may be provided
for corresponding grain item(s).
At the bare minimum, you need to define the DSN [https://raven.readthedocs.io/en/latest/config/index.html#the-sentry-dsn]. As an example:

sentry_handler:
 dsn: https://pub-key:secret-key@app.getsentry.com/app-id

More complex configurations can be achieved, for example:

sentry_handler:
 servers:
 - https://sentry.example.com
 - http://192.168.1.1
 project: app-id
 public_key: deadbeefdeadbeefdeadbeefdeadbeef
 secret_key: beefdeadbeefdeadbeefdeadbeefdead
 context:
 - os
 - master
 - saltversion
 - cpuarch
 - ec2.tags.environment

Note

The public_key and secret_key variables are not supported with
Sentry > 3.0. The DSN [https://raven.readthedocs.io/en/latest/config/index.html#the-sentry-dsn] key should be used instead.

All the client configuration keys are supported, please see the
Raven client documentation [https://raven.readthedocs.io/en/latest/config/index.html#client-arguments].

The default logging level for the sentry handler is ERROR. If you wish
to define a different one, define log_level under the
sentry_handler configuration key:

sentry_handler:
 dsn: https://pub-key:secret-key@app.getsentry.com/app-id
 log_level: warning

The available log levels are those also available for the salt cli
tools and configuration; salt --help should give you the required
information.

Threaded Transports

Raven's documents rightly suggest using its threaded transport for
critical applications. However, don't forget that if you start having
troubles with Salt after enabling the threaded transport, please try
switching to a non-threaded transport to see if that fixes your problem.

salt.log_handlers.fluent_mod

Fluent Logging Handler

New in version 2015.8.0.

This module provides some fluentd [http://www.fluentd.org] logging handlers.

Fluent Logging Handler

In the fluent configuration file:

<source>
 type forward
 bind localhost
 port 24224
</source>

Then, to send logs via fluent in Logstash format, add the
following to the salt (master and/or minion) configuration file:

fluent_handler:
 host: localhost
 port: 24224

To send logs via fluent in the Graylog raw json format, add the
following to the salt (master and/or minion) configuration file:

fluent_handler:
 host: localhost
 port: 24224
 payload_type: graylog
 tags:
 - salt_master.SALT

The above also illustrates the tags option, which allows
one to set descriptive (or useful) tags on records being
sent. If not provided, this defaults to the single tag:
'salt'. Also note that, via Graylog "magic", the 'facility'
of the logged message is set to 'SALT' (the portion of the
tag after the first period), while the tag itself will be
set to simply 'salt_master'. This is a feature, not a bug :)

Note:
There is a third emitter, for the GELF format, but it is
largely untested, and I don't currently have a setup supporting
this config, so while it runs cleanly and outputs what LOOKS to
be valid GELF, any real-world feedback on its usefulness, and
correctness, will be appreciated.

Log Level

The fluent_handler configuration section accepts an additional setting
log_level. If not set, the logging level used will be the one defined
for log_level in the global configuration file section.

Inspiration

This work was inspired in fluent-logger-python [https://github.com/fluent/fluent-logger-python]

salt.log_handlers.log4mongo_mod

Log4Mongo Logging Handler

This module provides a logging handler for sending salt logs to MongoDB

Configuration

In the salt configuration file (e.g. /etc/salt/{master,minion}):

log4mongo_handler:
 host: mongodb_host
 port: 27017
 database_name: logs
 collection: salt_logs
 username: logging
 password: reindeerflotilla
 write_concern: 0
 log_level: warning

Log Level

If not set, the log_level will be set to the level defined in the global
configuration file setting.

Inspiration

This work was inspired by the Salt logging handlers for LogStash and
Sentry and by the log4mongo Python implementation.

salt.log_handlers.logstash_mod

Logstash Logging Handler

New in version 0.17.0.

This module provides some Logstash [http://logstash.net] logging handlers.

UDP Logging Handler

For versions of Logstash [http://logstash.net] before 1.2.0:

In the salt configuration file:

logstash_udp_handler:
 host: 127.0.0.1
 port: 9999
 version: 0
 msg_type: logstash

In the Logstash [http://logstash.net] configuration file:

input {
 udp {
 type => "udp-type"
 format => "json_event"
 }
}

For version 1.2.0 of Logstash [http://logstash.net] and newer:

In the salt configuration file:

logstash_udp_handler:
 host: 127.0.0.1
 port: 9999
 version: 1
 msg_type: logstash

In the Logstash [http://logstash.net] configuration file:

input {
 udp {
 port => 9999
 codec => json
 }
}

Please read the UDP input [http://logstash.net/docs/latest/inputs/udp] configuration page for additional information.

ZeroMQ Logging Handler

For versions of Logstash [http://logstash.net] before 1.2.0:

In the salt configuration file:

logstash_zmq_handler:
 address: tcp://127.0.0.1:2021
 version: 0

In the Logstash [http://logstash.net] configuration file:

input {
 zeromq {
 type => "zeromq-type"
 mode => "server"
 topology => "pubsub"
 address => "tcp://0.0.0.0:2021"
 charset => "UTF-8"
 format => "json_event"
 }
}

For version 1.2.0 of Logstash [http://logstash.net] and newer:

In the salt configuration file:

logstash_zmq_handler:
 address: tcp://127.0.0.1:2021
 version: 1

In the Logstash [http://logstash.net] configuration file:

input {
 zeromq {
 topology => "pubsub"
 address => "tcp://0.0.0.0:2021"
 codec => json
 }
}

Please read the ZeroMQ input [http://logstash.net/docs/latest/inputs/zeromq] configuration page for additional
information.

Important Logstash Setting

One of the most important settings that you should not forget on your
Logstash [http://logstash.net] configuration file regarding these logging handlers is
format.
Both the UDP and ZeroMQ inputs need to have format as
json_event which is what we send over the wire.

Log Level

Both the logstash_udp_handler and the logstash_zmq_handler
configuration sections accept an additional setting log_level. If not
set, the logging level used will be the one defined for log_level in
the global configuration file section.

HWM

The high water mark [http://api.zeromq.org/3-2:zmq-setsockopt] for the ZMQ socket setting. Only applicable for the
logstash_zmq_handler.

Inspiration

This work was inspired in pylogstash [https://github.com/turtlebender/pylogstash], python-logstash [https://github.com/vklochan/python-logstash], canary [https://github.com/ryanpetrello/canary]
and the PyZMQ logging handler [https://github.com/zeromq/pyzmq/blob/master/zmq/log/handlers.py].

salt.log_handlers.sentry_mod

Sentry Logging Handler

New in version 0.17.0.

This module provides a Sentry [https://getsentry.com] logging handler. Sentry is an open source
error tracking platform that provides deep context about exceptions that
happen in production. Details about stack traces along with the context
variables available at the time of the exception are easily browsable and
filterable from the online interface. For more details please see
Sentry [https://getsentry.com].

Note

The Raven [https://raven.readthedocs.io] library needs to be installed on the system for this
logging handler to be available.

Configuring the python Sentry [https://getsentry.com] client, Raven [https://raven.readthedocs.io], should be done under the
sentry_handler configuration key. Additional context may be provided
for corresponding grain item(s).
At the bare minimum, you need to define the DSN [https://raven.readthedocs.io/en/latest/config/index.html#the-sentry-dsn]. As an example:

sentry_handler:
 dsn: https://pub-key:secret-key@app.getsentry.com/app-id

More complex configurations can be achieved, for example:

sentry_handler:
 servers:
 - https://sentry.example.com
 - http://192.168.1.1
 project: app-id
 public_key: deadbeefdeadbeefdeadbeefdeadbeef
 secret_key: beefdeadbeefdeadbeefdeadbeefdead
 context:
 - os
 - master
 - saltversion
 - cpuarch
 - ec2.tags.environment

Note

The public_key and secret_key variables are not supported with
Sentry > 3.0. The DSN [https://raven.readthedocs.io/en/latest/config/index.html#the-sentry-dsn] key should be used instead.

All the client configuration keys are supported, please see the
Raven client documentation [https://raven.readthedocs.io/en/latest/config/index.html#client-arguments].

The default logging level for the sentry handler is ERROR. If you wish
to define a different one, define log_level under the
sentry_handler configuration key:

sentry_handler:
 dsn: https://pub-key:secret-key@app.getsentry.com/app-id
 log_level: warning

The available log levels are those also available for the salt cli
tools and configuration; salt --help should give you the required
information.

Threaded Transports

Raven's documents rightly suggest using its threaded transport for
critical applications. However, don't forget that if you start having
troubles with Salt after enabling the threaded transport, please try
switching to a non-threaded transport to see if that fixes your problem.

Salt File Server

Salt comes with a simple file server suitable for distributing files to the
Salt minions. The file server is a stateless ZeroMQ server that is built into
the Salt master.

The main intent of the Salt file server is to present files for use in the
Salt state system. With this said, the Salt file server can be used for any
general file transfer from the master to the minions.

	File Server Backends
	Enabling a Fileserver Backend

	Using Multiple Backends

	Defining Environments

	Requesting Files from Specific Environments
	Querystring Syntax

	In States
	Globally

	On a Per-State Basis

	File Server Configuration
	Periodic Restarts

	Environments

	Directory Overlay

	Local File Server

The cp Module

The cp module is the home of minion side file server operations. The cp module
is used by the Salt state system, salt-cp, and can be used to distribute files
presented by the Salt file server.

Escaping Special Characters

The salt:// url format can potentially contain a query string, for example
salt://dir/file.txt?saltenv=base. You can prevent the fileclient/fileserver from
interpreting ? as the initial token of a query string by referencing the file
with salt://| rather than salt://.

/etc/marathon/conf/?checkpoint:
 file.managed:
 - source: salt://|hw/config/?checkpoint
 - makedirs: True

Environments

Since the file server is made to work with the Salt state system, it supports
environments. The environments are defined in the master config file and
when referencing an environment the file specified will be based on the root
directory of the environment.

get_file

The cp.get_file function can be used on the minion to download a file from
the master, the syntax looks like this:

salt '*' cp.get_file salt://vimrc /etc/vimrc

This will instruct all Salt minions to download the vimrc file and copy it
to /etc/vimrc

Template rendering can be enabled on both the source and destination file names
like so:

salt '*' cp.get_file "salt://{{grains.os}}/vimrc" /etc/vimrc template=jinja

This example would instruct all Salt minions to download the vimrc from a
directory with the same name as their OS grain and copy it to /etc/vimrc

For larger files, the cp.get_file module also supports gzip compression.
Because gzip is CPU-intensive, this should only be used in
scenarios where the compression ratio is very high (e.g. pretty-printed JSON
or YAML files).

To use compression, use the gzip named argument. Valid values are integers
from 1 to 9, where 1 is the lightest compression and 9 the heaviest. In other
words, 1 uses the least CPU on the master (and minion), while 9 uses the most.

salt '*' cp.get_file salt://vimrc /etc/vimrc gzip=5

Finally, note that by default cp.get_file does not create new destination
directories if they do not exist. To change this, use the makedirs
argument:

salt '*' cp.get_file salt://vimrc /etc/vim/vimrc makedirs=True

In this example, /etc/vim/ would be created if it didn't already exist.

get_dir

The cp.get_dir function can be used on the minion to download an entire
directory from the master. The syntax is very similar to get_file:

salt '*' cp.get_dir salt://etc/apache2 /etc

cp.get_dir supports template rendering and gzip compression arguments just like
get_file:

salt '*' cp.get_dir salt://etc/{{pillar.webserver}} /etc gzip=5 template=jinja

File Server Client Instance

A client instance is available which allows for modules and applications to be
written which make use of the Salt file server.

The file server uses the same authentication and encryption used by the rest
of the Salt system for network communication.

fileclient Module

The salt/fileclient.py module is used to set up the communication from the
minion to the master. When creating a client instance using the fileclient module,
the minion configuration needs to be passed in. When using the fileclient module
from within a minion module the built in __opts__ data can be passed:

import salt.minion
import salt.fileclient

def get_file(path, dest, saltenv="base"):
 """
 Used to get a single file from the Salt master

 CLI Example:
 salt '*' cp.get_file salt://vimrc /etc/vimrc
 """
 # Get the fileclient object
 client = salt.fileclient.get_file_client(__opts__)
 # Call get_file
 return client.get_file(path, dest, False, saltenv)

Creating a fileclient instance outside of a minion module where the __opts__
data is not available, it needs to be generated:

import salt.fileclient
import salt.config

def get_file(path, dest, saltenv="base"):
 """
 Used to get a single file from the Salt master
 """
 # Get the configuration data
 opts = salt.config.minion_config("/etc/salt/minion")
 # Get the fileclient object
 client = salt.fileclient.get_file_client(opts)
 # Call get_file
 return client.get_file(path, dest, False, saltenv)

File Server Backends

In Salt 0.12.0, the modular fileserver was introduced. This feature added the
ability for the Salt Master to integrate different file server backends. File
server backends allow the Salt file server to act as a transparent bridge to
external resources. A good example of this is the git backend, which allows Salt to serve files sourced from
one or more git repositories, but there are several others as well. Click
here for a full list of Salt's fileserver
backends.

Enabling a Fileserver Backend

Fileserver backends can be enabled with the fileserver_backend
option.

fileserver_backend:
 - git

See the documentation for each backend to find the
correct value to add to fileserver_backend in order to enable
them.

Using Multiple Backends

If fileserver_backend is not defined in the Master config file,
Salt will use the roots backend, but the
fileserver_backend option supports multiple backends. When more
than one backend is in use, the files from the enabled backends are merged into a
single virtual filesystem. When a file is requested, the backends will be
searched in order for that file, and the first backend to match will be the one
which returns the file.

fileserver_backend:
 - roots
 - git

With this configuration, the environments and files defined in the
file_roots parameter will be searched first, and if the file is
not found then the git repositories defined in gitfs_remotes
will be searched.

Defining Environments

Just as the order of the values in fileserver_backend matters,
so too does the order in which different sources are defined within a
fileserver environment. For example, given the below file_roots
configuration, if both /srv/salt/dev/foo.txt and /srv/salt/prod/foo.txt
exist on the Master, then salt://foo.txt would point to
/srv/salt/dev/foo.txt in the dev environment, but it would point to
/srv/salt/prod/foo.txt in the base environment.

file_roots:
 base:
 - /srv/salt/prod
 qa:
 - /srv/salt/qa
 - /srv/salt/prod
 dev:
 - /srv/salt/dev
 - /srv/salt/qa
 - /srv/salt/prod

Similarly, when using the git backend, if both
repositories defined below have a hotfix23 branch/tag, and both of them
also contain the file bar.txt in the root of the repository at that
branch/tag, then salt://bar.txt in the hotfix23 environment would be
served from the first repository.

gitfs_remotes:
 - https://mydomain.tld/repos/first.git
 - https://mydomain.tld/repos/second.git

Note

Environments map differently based on the fileserver backend. For instance,
the mappings are explicitly defined in roots
backend, while in the VCS backends (git,
hg, svn) the
environments are created from branches/tags/bookmarks/etc. For the
minion backend, the files are all in a
single environment, which is specified by the minionfs_env
option.

See the documentation for each backend for a more detailed explanation of
how environments are mapped.

Requesting Files from Specific Environments

The Salt fileserver supports multiple environments, allowing for SLS files and
other files to be isolated for better organization.

For the default backend (called roots),
environments are defined using the roots option.
Other backends (such as gitfs) define
environments in their own ways. For a list of available fileserver backends,
see here.

Querystring Syntax

Any salt:// file URL can specify its fileserver environment using a
querystring syntax, like so:

salt://path/to/file?saltenv=foo

In Reactor configurations, this method must be used to pull
files from an environment other than base.

In States

Minions can be instructed which environment to use both globally, and for a
single state, and multiple methods for each are available:

Globally

A minion can be pinned to an environment using the environment
option in the minion config file.

Additionally, the environment can be set for a single call to the following
functions:

	state.apply

	state.highstate

	state.sls

	state.top

Note

When the saltenv parameter is used to trigger a highstate using either state.apply or state.highstate, only states from that environment will be
applied.

On a Per-State Basis

Within an individual state, there are two ways of specifying the environment.
The first is to add a saltenv argument to the state. This example will pull
the file from the config environment:

/etc/foo/bar.conf:
 file.managed:
 - source: salt://foo/bar.conf
 - user: foo
 - mode: 600
 - saltenv: config

Another way of doing the same thing is to use the querystring syntax described above:

/etc/foo/bar.conf:
 file.managed:
 - source: salt://foo/bar.conf?saltenv=config
 - user: foo
 - mode: 600

Note

Specifying the environment using either of the above methods is only
necessary in cases where a state from one environment needs to access files
from another environment. If the SLS file containing this state was in the
config environment, then it would look in that environment by default.

File Server Configuration

The Salt file server is a high performance file server written in ZeroMQ. It
manages large files quickly and with little overhead, and has been optimized
to handle small files in an extremely efficient manner.

The Salt file server is an environment aware file server. This means that
files can be allocated within many root directories and accessed by
specifying both the file path and the environment to search. The
individual environments can span across multiple directory roots
to create overlays and to allow for files to be organized in many flexible
ways.

Periodic Restarts

The file server will restart periodically. The reason for this is to prevent any
files erver backends which may not properly handle resources from endlessly
consuming memory. A notable example of this is using a git backend with the
pygit2 library. How often the file server restarts can be controlled with the
fileserver_interval in your master's config file.

Environments

The Salt file server defaults to the mandatory base environment. This
environment MUST be defined and is used to download files when no
environment is specified.

Environments allow for files and sls data to be logically separated, but
environments are not isolated from each other. This allows for logical
isolation of environments by the engineer using Salt, but also allows
for information to be used in multiple environments.

Directory Overlay

The environment setting is a list of directories to publish files from.
These directories are searched in order to find the specified file and the
first file found is returned.

This means that directory data is prioritized based on the order in which they
are listed. In the case of this file_roots configuration:

file_roots:
 base:
 - /srv/salt/base
 - /srv/salt/failover

If a file's URI is salt://httpd/httpd.conf, it will first search for the
file at /srv/salt/base/httpd/httpd.conf. If the file is found there it
will be returned. If the file is not found there, then
/srv/salt/failover/httpd/httpd.conf will be used for the source.

This allows for directories to be overlaid and prioritized based on the order
they are defined in the configuration.

It is also possible to have file_roots which supports multiple
environments:

file_roots:
 base:
 - /srv/salt/base
 dev:
 - /srv/salt/dev
 - /srv/salt/base
 prod:
 - /srv/salt/prod
 - /srv/salt/base

This example ensures that each environment will check the associated
environment directory for files first. If a file is not found in the
appropriate directory, the system will default to using the base directory.

Local File Server

New in version 0.9.8.

The file server can be rerouted to run from the minion. This is primarily to
enable running Salt states without a Salt master. To use the local file server
interface, copy the file server data to the minion and set the file_roots
option on the minion to point to the directories copied from the master.
Once the minion file_roots option has been set, change the file_client
option to local to make sure that the local file server interface is used.

Git Fileserver Backend Walkthrough

Note

This walkthrough assumes basic knowledge of Salt. To get up to speed, check
out the Salt Walkthrough.

The gitfs backend allows Salt to serve files from git repositories. It can be
enabled by adding git to the fileserver_backend list, and
configuring one or more repositories in gitfs_remotes.

Branches and tags become Salt fileserver environments.

Note

Branching and tagging can result in a lot of potentially-conflicting
top files, for this reason it may be useful to set
top_file_merging_strategy to same in the minions' config
files if the top files are being managed in a GitFS repo.

Installing Dependencies

Both pygit2 [https://github.com/libgit2/pygit2] and GitPython [https://github.com/gitpython-developers/GitPython] are supported Python interfaces to git. If
compatible versions of both are installed, pygit2 [https://github.com/libgit2/pygit2] will be preferred. In these
cases, GitPython [https://github.com/gitpython-developers/GitPython] can be forced using the gitfs_provider
parameter in the master config file.

Note

It is recommended to always run the most recent version of any the below
dependencies. Certain features of GitFS may not be available without
the most recent version of the chosen library.

pygit2

The minimum supported version of pygit2 [https://github.com/libgit2/pygit2] is 0.20.3. Availability for this
version of pygit2 [https://github.com/libgit2/pygit2] is still limited, though the SaltStack team is working to
get compatible versions available for as many platforms as possible.

For the Fedora/EPEL versions which have a new enough version packaged, the
following command would be used to install pygit2 [https://github.com/libgit2/pygit2]:

yum install python-pygit2

Provided a valid version is packaged for Debian/Ubuntu (which is not currently
the case), the package name would be the same, and the following command would
be used to install it:

apt-get install python-pygit2

If pygit2 [https://github.com/libgit2/pygit2] is not packaged for the platform on which the Master is running, the
pygit2 [https://github.com/libgit2/pygit2] website has installation instructions
here. Keep in mind however that
following these instructions will install libgit2 [https://libgit2.org/] and pygit2 [https://github.com/libgit2/pygit2] without system
packages. Additionally, keep in mind that SSH authentication in pygit2 requires libssh2 [https://www.libssh2.org/] (not libssh) development
libraries to be present before libgit2 [https://libgit2.org/] is built. On some Debian-based distros
pkg-config is also required to link libgit2 [https://libgit2.org/] with libssh2.

Note

If you are receiving the error "Unsupported URL Protocol" in the Salt Master
log when making a connection using SSH, review the libssh2 details listed
above.

Additionally, version 0.21.0 of pygit2 introduced a dependency on python-cffi [https://pypi.org/project/cffi],
which in turn depends on newer releases of libffi [http://sourceware.org/libffi/]. Upgrading libffi [http://sourceware.org/libffi/] is not
advisable as several other applications depend on it, so on older LTS linux
releases pygit2 [https://github.com/libgit2/pygit2] 0.20.3 and libgit2 [https://libgit2.org/] 0.20.0 is the recommended combination.

Warning

pygit2 [https://github.com/libgit2/pygit2] is actively developed and frequently makes non-backwards-compatible
API changes [https://www.pygit2.org/install.html#version-numbers], even in minor releases. It is not uncommon for pygit2 [https://github.com/libgit2/pygit2]
upgrades to result in errors in Salt. Please take care when upgrading
pygit2 [https://github.com/libgit2/pygit2], and pay close attention to the changelog [https://github.com/libgit2/pygit2/blob/master/CHANGELOG.rst], keeping an eye out for
API changes. Errors can be reported on the SaltStack issue tracker [https://github.com/saltstack/salt/issues].

RedHat Pygit2 Issues

The release of RedHat/CentOS 7.3 upgraded both python-cffi and
http-parser, both of which are dependencies for pygit2 [https://github.com/libgit2/pygit2]/libgit2 [https://libgit2.org/]. Both
pygit2 and libgit2 packages (which are from the EPEL repository) should
be upgraded to the most recent versions, at least to 0.24.2.

The below errors will show up in the master log if an incompatible
python-pygit2 package is installed:

2017-02-10 09:07:34,892 [salt.utils.gitfs][ERROR][11211] Import pygit2 failed: CompileError: command 'gcc' failed with exit status 1
2017-02-10 09:07:34,907 [salt.utils.gitfs][ERROR][11211] gitfs is configured but could not be loaded, are pygit2 and libgit2 installed?
2017-02-10 09:07:34,907 [salt.utils.gitfs][CRITICAL][11211] No suitable gitfs provider module is installed.
2017-02-10 09:07:34,912 [salt.master][CRITICAL][11211] Master failed pre flight checks, exiting

The below errors will show up in the master log if an incompatible libgit2
package is installed:

2017-02-15 18:04:45,211 [salt.utils.gitfs][ERROR][6211] Error occurred fetching gitfs remote 'https://foo.com/bar.git': No Content-Type header in response

A restart of the salt-master daemon and gitfs cache directory clean up may
be required to allow http(s) repositories to continue to be fetched.

Debian Pygit2 Issues

The Debian repos currently have older versions of pygit2 (package
python3-pygit2). These older versions may have issues using newer SSH keys
(see [this issue](https://github.com/saltstack/salt/issues/61790)). Instead,
pygit2 can be installed from Pypi, but you will need a version that
matches the libgit2 version from Debian. This is version 1.6.1.

apt-get install libgit2
salt-pip install pygit2==1.6.1 --no-deps

Note that the above instructions assume a onedir installation. The need for
--no-deps is to prevent the CFFI package from mismatching with Salt.

GitPython

GitPython [https://github.com/gitpython-developers/GitPython] 0.3.0 or newer is required to use GitPython for gitfs. For
RHEL-based Linux distros, a compatible version is available in EPEL, and can be
easily installed on the master using yum:

yum install GitPython

Ubuntu 14.04 LTS and Debian Wheezy (7.x) also have a compatible version packaged:

apt-get install python-git

GitPython [https://github.com/gitpython-developers/GitPython] requires the git CLI utility to work. If installed from a system
package, then git should already be installed, but if installed via pip [http://www.pip-installer.org/] then
it may still be necessary to install git separately. For MacOS users,
GitPython [https://github.com/gitpython-developers/GitPython] comes bundled in with the Salt installer, but git must still be
installed for it to work properly. Git can be installed in several ways,
including by installing XCode [https://developer.apple.com/xcode/].

Warning

GitPython advises against the use of its library for long-running processes
(such as a salt-master or salt-minion). Please see their warning on potential
leaks of system resources:
https://github.com/gitpython-developers/GitPython#leakage-of-system-resources.

Warning

Keep in mind that if GitPython has been previously installed on the master
using pip (even if it was subsequently uninstalled), then it may still
exist in the build cache (typically /tmp/pip-build-root/GitPython) if
the cache is not cleared after installation. The package in the build cache
will override any requirement specifiers, so if you try upgrading to
version 0.3.2.RC1 by running pip install 'GitPython==0.3.2.RC1' then it
will ignore this and simply install the version from the cache directory.
Therefore, it may be necessary to delete the GitPython directory from the
build cache in order to ensure that the specified version is installed.

Warning

GitPython [https://github.com/gitpython-developers/GitPython] 2.0.9 and newer is not compatible with Python 2.6. If installing
GitPython [https://github.com/gitpython-developers/GitPython] using pip on a machine running Python 2.6, make sure that a
version earlier than 2.0.9 is installed. This can be done on the CLI by
running pip install 'GitPython<2.0.9', or in a pip.installed state using the following SLS:

GitPython:
 pip.installed:
 - name: 'GitPython < 2.0.9'

Simple Configuration

To use the gitfs backend, only two configuration changes are required on the
master:

	Include gitfs in the fileserver_backend list in the
master config file:

fileserver_backend:
 - gitfs

Note

git also works here. Prior to the 2018.3.0 release, only git
would work.

	Specify one or more git://, https://, file://, or ssh://
URLs in gitfs_remotes to configure which repositories to
cache and search for requested files:

gitfs_remotes:
 - https://github.com/saltstack-formulas/salt-formula.git

SSH remotes can also be configured using scp-like syntax:

gitfs_remotes:
 - git@github.com:user/repo.git
 - ssh://user@domain.tld/path/to/repo.git

Information on how to authenticate to SSH remotes can be found here.

	Restart the master to load the new configuration.

Note

In a master/minion setup, files from a gitfs remote are cached once by the
master, so minions do not need direct access to the git repository.

Multiple Remotes

The gitfs_remotes option accepts an ordered list of git remotes to
cache and search, in listed order, for requested files.

A simple scenario illustrates this cascading lookup behavior:

If the gitfs_remotes option specifies three remotes:

gitfs_remotes:
 - git://github.com/example/first.git
 - https://github.com/example/second.git
 - file:///root/third

And each repository contains some files:

first.git:
 top.sls
 edit/vim.sls
 edit/vimrc
 nginx/init.sls
 shell/init.sls

second.git:
 edit/dev_vimrc
 haproxy/init.sls
 shell.sls

third:
 haproxy/haproxy.conf
 edit/dev_vimrc

Salt will attempt to lookup the requested file from each gitfs remote
repository in the order in which they are defined in the configuration. The
git://github.com/example/first.git remote will be searched first.
If the requested file is found, then it is served and no further searching
is executed. For example:

	A request for the file salt://haproxy/init.sls will be served from
the https://github.com/example/second.git git repo.

	A request for the file salt://haproxy/haproxy.conf will be served from the
file:///root/third repo.

Also a requested state file overrules a directory with an init.sls-file.
For example:

	A request for state.apply shell will be served from the
https://github.com/example/second.git git repo.

Note

This example is purposefully contrived to illustrate the behavior of the
gitfs backend. This example should not be read as a recommended way to lay
out files and git repos.

The file:// prefix denotes a git repository in a local directory.
However, it will still use the given file:// URL as a remote,
rather than copying the git repo to the salt cache. This means that any
refs you want accessible must exist as local refs in the specified repo.

Warning

Salt versions prior to 2014.1.0 are not tolerant of changing the
order of remotes or modifying the URI of existing remotes. In those
versions, when modifying remotes it is a good idea to remove the gitfs
cache directory (/var/cache/salt/master/gitfs) before restarting the
salt-master service.

Per-remote Configuration Parameters

New in version 2014.7.0.

The following master config parameters are global (that is, they apply to all
configured gitfs remotes):

	gitfs_base

	gitfs_root

	gitfs_ssl_verify

	gitfs_mountpoint (new in 2014.7.0)

	gitfs_user (pygit2 only, new in 2014.7.0)

	gitfs_password (pygit2 only, new in 2014.7.0)

	gitfs_insecure_auth (pygit2 only, new in 2014.7.0)

	gitfs_pubkey (pygit2 only, new in 2014.7.0)

	gitfs_privkey (pygit2 only, new in 2014.7.0)

	gitfs_passphrase (pygit2 only, new in 2014.7.0)

	gitfs_refspecs (new in 2017.7.0)

	gitfs_disable_saltenv_mapping (new in 2018.3.0)

	gitfs_ref_types (new in 2018.3.0)

	gitfs_update_interval (new in 2018.3.0)

Note

pygit2 only supports disabling SSL verification in versions 0.23.2 and
newer.

These parameters can now be overridden on a per-remote basis. This allows for a
tremendous amount of customization. Here's some example usage:

gitfs_provider: pygit2
gitfs_base: develop

gitfs_remotes:
 - https://foo.com/foo.git
 - https://foo.com/bar.git:
 - root: salt
 - mountpoint: salt://bar
 - base: salt-base
 - ssl_verify: False
 - update_interval: 120
 - https://foo.com/bar.git:
 - name: second_bar_repo
 - root: other/salt
 - mountpoint: salt://other/bar
 - base: salt-base
 - ref_types:
 - branch
 - http://foo.com/baz.git:
 - root: salt/states
 - user: joe
 - password: mysupersecretpassword
 - insecure_auth: True
 - disable_saltenv_mapping: True
 - saltenv:
 - foo:
 - ref: foo
 - http://foo.com/quux.git:
 - all_saltenvs: master

Important

There are two important distinctions which should be noted for per-remote
configuration:

	The URL of a remote which has per-remote configuration must be suffixed
with a colon.

	Per-remote configuration parameters are named like the global versions,
with the gitfs_ removed from the beginning. The exception being the
name, saltenv, and all_saltenvs parameters, which are only
available to per-remote configurations.

The all_saltenvs parameter is new in the 2018.3.0 release.

In the example configuration above, the following is true:

	The first and fourth gitfs remotes will use the develop branch/tag as the
base environment, while the second and third will use the salt-base
branch/tag as the base environment.

	The first remote will serve all files in the repository. The second
remote will only serve files from the salt directory (and its
subdirectories). The third remote will only server files from the
other/salt directory (and its subdirectories), while the fourth remote
will only serve files from the salt/states directory (and its
subdirectories).

	The third remote will only serve files from branches, and not from tags or
SHAs.

	The fourth remote will only have two saltenvs available: base (pointed
at develop), and foo (pointed at foo).

	The first and fourth remotes will have files located under the root of the
Salt fileserver namespace (salt://). The files from the second remote
will be located under salt://bar, while the files from the third remote
will be located under salt://other/bar.

	The second and third remotes reference the same repository and unique names
need to be declared for duplicate gitfs remotes.

	The fourth remote overrides the default behavior of not authenticating
to insecure (non-HTTPS) remotes.

	Because all_saltenvs is configured for the fifth remote, files from the
branch/tag master will appear in every fileserver environment.

Note

The use of http:// (instead of https://) is permitted here
only because authentication is not being used. Otherwise, the
insecure_auth parameter must be used (as in the fourth remote) to
force Salt to authenticate to an http:// remote.

	The first remote will wait 120 seconds between updates instead of 60.

Per-Saltenv Configuration Parameters

New in version 2016.11.0.

For more granular control, Salt allows the following three things to be
overridden for individual saltenvs within a given repo:

	The mountpoint

	The root

	The branch/tag to be used for a given saltenv

Here is an example:

gitfs_root: salt

gitfs_saltenv:
 - dev:
 - mountpoint: salt://gitfs-dev
 - ref: develop

gitfs_remotes:
 - https://foo.com/bar.git:
 - saltenv:
 - staging:
 - ref: qa
 - mountpoint: salt://bar-staging
 - dev:
 - ref: development
 - https://foo.com/baz.git:
 - saltenv:
 - staging:
 - mountpoint: salt://baz-staging

Given the above configuration, the following is true:

	For all gitfs remotes, files for the dev saltenv will be located under
salt://gitfs-dev.

	For the dev saltenv, files from the first remote will be sourced from
the development branch, while files from the second remote will be
sourced from the develop branch.

	For the staging saltenv, files from the first remote will be located
under salt://bar-staging, while files from the second remote will be
located under salt://baz-staging.

	For all gitfs remotes, and in all saltenvs, files will be served from the
salt directory (and its subdirectories).

Custom Refspecs

New in version 2017.7.0.

GitFS will by default fetch remote branches and tags. However, sometimes it can
be useful to fetch custom refs (such as those created for GitHub pull
requests [https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/checking-out-pull-requests-locally]). To change the refspecs GitFS fetches, use the
gitfs_refspecs config option:

gitfs_refspecs:
 - '+refs/heads/*:refs/remotes/origin/*'
 - '+refs/tags/*:refs/tags/*'
 - '+refs/pull/*/head:refs/remotes/origin/pr/*'
 - '+refs/pull/*/merge:refs/remotes/origin/merge/*'

In the above example, in addition to fetching remote branches and tags,
GitHub's custom refs for pull requests and merged pull requests will also be
fetched. These special head refs represent the head of the branch which is
requesting to be merged, and the merge refs represent the result of the
base branch after the merge.

Important

When using custom refspecs, the destination of the fetched refs must be
under refs/remotes/origin/, preferably in a subdirectory like in the
example above. These custom refspecs will map as environment names using
their relative path underneath refs/remotes/origin/. For example,
assuming the configuration above, the head branch for pull request 12345
would map to fileserver environment pr/12345 (slash included).

Refspecs can be configured on a per-remote basis. For example, the below configuration would only
alter the default refspecs for the second GitFS remote. The first remote
would only fetch branches and tags (the default).

gitfs_remotes:
 - https://domain.tld/foo.git
 - https://domain.tld/bar.git:
 - refspecs:
 - '+refs/heads/*:refs/remotes/origin/*'
 - '+refs/tags/*:refs/tags/*'
 - '+refs/pull/*/head:refs/remotes/origin/pr/*'
 - '+refs/pull/*/merge:refs/remotes/origin/merge/*'

Global Remotes

New in version 2018.3.0: for all_saltenvs, 3001 for fallback

The all_saltenvs per-remote configuration parameter overrides the logic
Salt uses to map branches/tags to fileserver environments (i.e. saltenvs). This
allows a single branch/tag to appear in all GitFS saltenvs.

Note

all_saltenvs only works within GitFS. That is, files in a branch
configured using all_saltenvs will not show up in a fileserver
environment defined via some other fileserver backend (e.g.
file_roots).

The fallback global or per-remote configuration can also be used.

This is very useful in particular when working with salt formulas. Prior to the addition of this feature, it was necessary
to push a branch/tag to the remote repo for each saltenv in which that formula
was to be used. If the formula needed to be updated, this update would need to
be reflected in all of the other branches/tags. This is both inconvenient and
not scalable.

With all_saltenvs, it is now possible to define your formula once, in a
single branch.

gitfs_remotes:
 - http://foo.com/quux.git:
 - all_saltenvs: anything

If you want to also test working branches of the formula repository, use
fallback:

gitfs_remotes:
 - http://foo.com/quux.git:
 - fallback: anything

Update Intervals

Prior to the 2018.3.0 release, GitFS would update its fileserver backends as part
of a dedicated "maintenance" process, in which various routine maintenance
tasks were performed. This tied the update interval to the
loop_interval config option, and also forced all fileservers to
update at the same interval.

Now it is possible to make GitFS update at its own interval, using
gitfs_update_interval:

gitfs_update_interval: 180

gitfs_remotes:
 - https://foo.com/foo.git
 - https://foo.com/bar.git:
 - update_interval: 120

Using the above configuration, the first remote would update every three
minutes, while the second remote would update every two minutes.

Configuration Order of Precedence

The order of precedence for GitFS configuration is as follows (each level
overrides all levels below it):

	Per-saltenv configuration (defined under a per-remote saltenv
param)

gitfs_remotes:
 - https://foo.com/bar.git:
 - saltenv:
 - dev:
 - mountpoint: salt://bar

	Global per-saltenv configuration (defined in gitfs_saltenv)

gitfs_saltenv:
 - dev:
 - mountpoint: salt://bar

	Per-remote configuration parameter

gitfs_remotes:
 - https://foo.com/bar.git:
 - mountpoint: salt://bar

	Global configuration parameter

gitfs_mountpoint: salt://bar

Note

The one exception to the above is when all_saltenvs is used. This value overrides all logic for mapping
branches/tags to fileserver environments. So, even if
gitfs_saltenv is used to globally override the mapping for a
given saltenv, all_saltenvs would take
precedence for any remote which uses it.

It's important to note however that any root and mountpoint values
configured in gitfs_saltenv (or per-saltenv
configuration) would be unaffected by this.

Serving from a Subdirectory

The gitfs_root parameter allows files to be served from a
subdirectory within the repository. This allows for only part of a repository
to be exposed to the Salt fileserver.

Assume the below layout:

.gitignore
README.txt
foo/
foo/bar/
foo/bar/one.txt
foo/bar/two.txt
foo/bar/three.txt
foo/baz/
foo/baz/top.sls
foo/baz/edit/vim.sls
foo/baz/edit/vimrc
foo/baz/nginx/init.sls

The below configuration would serve only the files under foo/baz, ignoring
the other files in the repository:

gitfs_remotes:
 - git://mydomain.com/stuff.git

gitfs_root: foo/baz

The root can also be configured on a per-remote basis.

Mountpoints

New in version 2014.7.0.

The gitfs_mountpoint parameter will prepend the specified path
to the files served from gitfs. This allows an existing repository to be used,
rather than needing to reorganize a repository or design it around the layout
of the Salt fileserver.

Before the addition of this feature, if a file being served up via gitfs was
deeply nested within the root directory (for example,
salt://webapps/foo/files/foo.conf, it would be necessary to ensure that the
file was properly located in the remote repository, and that all of the
parent directories were present (for example, the directories
webapps/foo/files/ would need to exist at the root of the repository).

The below example would allow for a file foo.conf at the root of the
repository to be served up from the Salt fileserver path
salt://webapps/foo/files/foo.conf.

gitfs_remotes:
 - https://mydomain.com/stuff.git

gitfs_mountpoint: salt://webapps/foo/files

Mountpoints can also be configured on a per-remote basis.

Using gitfs in Masterless Mode

Since 2014.7.0, gitfs can be used in masterless mode. To do so, simply add the
gitfs configuration parameters (and set fileserver_backend) in
the _minion_ config file instead of the master config file.

Using gitfs Alongside Other Backends

Sometimes it may make sense to use multiple backends; for instance, if sls
files are stored in git but larger files are stored directly on the master.

The cascading lookup logic used for multiple remotes is also used with multiple
backends. If the fileserver_backend option contains multiple
backends:

fileserver_backend:
 - roots
 - git

Then the roots backend (the default backend of files in /srv/salt) will
be searched first for the requested file; then, if it is not found on the
master, each configured git remote will be searched.

Note

This can be used together with file_roots accepting __env__ as a catch-all
environment, since 2018.3.5 and 2019.2.1:

file_roots:
 base:
 - /srv/salt
 __env__:
 - /srv/salt

Branches, Environments, and Top Files

When using the GitFS backend, branches, and tags will be mapped to environments
using the branch/tag name as an identifier.

There is one exception to this rule: the master branch is implicitly mapped
to the base environment.

So, for a typical base, qa, dev setup, the following branches could
be used:

master
qa
dev

To map a branch other than master as the base environment, use the
gitfs_base parameter.

gitfs_base: salt-base

The base can also be configured on a per-remote basis.

Use Case: Code Promotion (dev -> qa -> base)

When running a highstate, the top.sls files from
all of the different branches and tags will be merged into one. This does not
work well with the use case where changes are tested in development branches
before being merged upstream towards production, because if the same SLS file
from multiple environments is part of the highstate,
it can result in non-unique state IDs, which will cause an error in the state
compiler and not allow the highstate to proceed.

To accomplish this use case, you should do three things:

	Use {{ saltenv }} in place of your environment in your top.sls. This
will let you use the same top file in all branches, because {{ saltenv
}} gets replaced with the effective saltenv of the environment being
processed.

	Set top_file_merging_strategy to same in the minion
configuration. This will keep the base environment from looking at the
top.sls from the dev or qa branches, etc.

	Explicitly define your saltenv. (More on this below.)

Consider the following example top file and SLS file:

top.sls

{{ saltenv }}:
 '*':
 - mystuff

mystuff.sls

manage_mystuff:
 pkg.installed:
 - name: mystuff
 file.managed:
 - name: /etc/mystuff.conf
 - source: salt://mystuff/files/mystuff.conf
 service.running:
 - name: mystuffd
 - enable: True
 - watch:
 - file: /etc/mystuff.conf

Imagine for a moment that you need to change your mystuff.conf. So, you go
to your dev branch, edit mystuff/files/mystuff.conf, and commit and
push.

If you have only done the first two steps recommended above, and you run your
highstate, you will end up with conflicting IDs:

myminion:
 Data failed to compile:

 Detected conflicting IDs, SLS IDs need to be globally unique.
 The conflicting ID is 'manage_mystuff' and is found in SLS 'base:mystuff' and SLS 'dev:mystuff'

 Detected conflicting IDs, SLS IDs need to be globally unique.
 The conflicting ID is 'manage_mystuff' and is found in SLS 'dev:mystuff' and SLS 'qa:mystuff'

This is because, in the absence of an explicit saltenv, all
environments' top files are considered. Each environment looks at only its own
top.sls, but because the mystuff.sls exists in each branch, they all
get pulled into the highstate, resulting in these conflicting IDs. This is why
explicitly setting your saltenv is important for this use case.

There are two ways of explicitly defining the saltenv:

	Set the saltenv in your minion configuration file. This
allows you to isolate which states are run to a specific branch/tag on a
given minion. This also works nicely if you have different salt deployments
for dev, qa, and prod. Boxes in dev can have saltenv set to
dev, boxes in qa can have the saltenv set to qa,
and boxes in prod can have the saltenv set to base.

	At runtime, you can set the saltenv like so:

salt myminion state.apply saltenv=dev

A couple notes about setting the saltenv at runtime:

	It will take precedence over the saltenv setting from the
minion config file, and pairs nicely with cases where you do not have
separate salt deployments for dev/qa/prod. You can have a box with
saltenv set to base, which you can test your dev
changes on by running your state.apply with saltenv=dev.

	If you don't set saltenv in the minion config file, you
must specify it at runtime to avoid conflicting IDs.

If you branched qa off of master, and dev off of qa, you can
merge changes from dev into qa, and then merge qa into master to
promote your changes to from dev to qa to prod.

Environment Whitelist/Blacklist

New in version 2014.7.0.

The gitfs_saltenv_whitelist and
gitfs_saltenv_blacklist parameters allow for greater control
over which branches/tags are exposed as fileserver environments. Exact matches,
globs, and regular expressions are supported, and are evaluated in that order.
If using a regular expression, ^ and $ must be omitted, and the
expression must match the entire branch/tag.

gitfs_saltenv_whitelist:
 - base
 - v1.*
 - 'mybranch\d+'

Note

v1.*, in this example, will match as both a glob and a regular
expression (though it will have been matched as a glob, since globs are
evaluated before regular expressions).

The behavior of the blacklist/whitelist will differ depending on which
combination of the two options is used:

	If only gitfs_saltenv_whitelist is used, then only
branches/tags which match the whitelist will be available as environments

	If only gitfs_saltenv_blacklist is used, then the
branches/tags which match the blacklist will not be available as
environments

	If both are used, then the branches/tags which match the whitelist, but do
not match the blacklist, will be available as environments.

Authentication

pygit2

New in version 2014.7.0.

Both HTTPS and SSH authentication are supported as of version 0.20.3, which is
the earliest version of pygit2 [https://github.com/libgit2/pygit2] supported by Salt for gitfs.

Note

The examples below make use of per-remote configuration parameters, a
feature new to Salt 2014.7.0. More information on these can be found
here.

HTTPS

For HTTPS repositories which require authentication, the username and password
can be provided like so:

gitfs_remotes:
 - https://domain.tld/myrepo.git:
 - user: git
 - password: mypassword

If the repository is served over HTTP instead of HTTPS, then Salt will by
default refuse to authenticate to it. This behavior can be overridden by adding
an insecure_auth parameter:

gitfs_remotes:
 - http://domain.tld/insecure_repo.git:
 - user: git
 - password: mypassword
 - insecure_auth: True

SSH

SSH repositories can be configured using the ssh:// protocol designation,
or using scp-like syntax. So, the following two configurations are equivalent:

	ssh://git@github.com/user/repo.git

	git@github.com:user/repo.git

Both gitfs_pubkey and gitfs_privkey (or their
per-remote counterparts) must be configured in
order to authenticate to SSH-based repos. If the private key is protected with
a passphrase, it can be configured using gitfs_passphrase (or
simply passphrase if being configured per-remote). For example:

gitfs_remotes:
 - git@github.com:user/repo.git:
 - pubkey: /root/.ssh/id_rsa.pub
 - privkey: /root/.ssh/id_rsa
 - passphrase: myawesomepassphrase

Finally, the SSH host key must be added to the known_hosts file.

Note

There is a known issue with public-key SSH authentication to Microsoft
Visual Studio (VSTS) with pygit2. This is due to a bug or lack of support
for VSTS in older libssh2 releases. Known working releases include libssh2
1.7.0 and later, and known incompatible releases include 1.5.0 and older.
At the time of this writing, 1.6.0 has not been tested.

Since upgrading libssh2 would require rebuilding many other packages (curl,
etc.), followed by a rebuild of libgit2 and a reinstall of pygit2, an
easier workaround for systems with older libssh2 is to use GitPython with a
passphraseless key for authentication.

GitPython

HTTPS

For HTTPS repositories which require authentication, the username and password
can be configured in one of two ways. The first way is to include them in the
URL using the format https://<user>:<password>@<url>, like so:

gitfs_remotes:
 - https://git:mypassword@domain.tld/myrepo.git

The other way would be to configure the authentication in /var/lib/salt/.netrc:

machine domain.tld
login git
password mypassword

If the repository is served over HTTP instead of HTTPS, then Salt will by
default refuse to authenticate to it. This behavior can be overridden by adding
an insecure_auth parameter:

gitfs_remotes:
 - http://git:mypassword@domain.tld/insecure_repo.git:
 - insecure_auth: True

SSH

Only passphrase-less SSH public key authentication is supported using
GitPython. The auth parameters (pubkey, privkey, etc.) shown in the pygit2
authentication examples above do not work with GitPython.

gitfs_remotes:
 - ssh://git@github.com/example/salt-states.git

Since GitPython [https://github.com/gitpython-developers/GitPython] wraps the git CLI, the private key must be located in
~/.ssh/id_rsa for the user under which the Master is running, and should
have permissions of 0600. Also, in the absence of a user in the repo URL,
GitPython [https://github.com/gitpython-developers/GitPython] will (just as SSH does) attempt to login as the current user (in
other words, the user under which the Master is running, usually root).

If a key needs to be used, then ~/.ssh/config can be configured to use
the desired key. Information on how to do this can be found by viewing the
manpage for ssh_config. Here's an example entry which can be added to the
~/.ssh/config to use an alternate key for gitfs:

Host github.com
 IdentityFile /root/.ssh/id_rsa_gitfs

The Host parameter should be a hostname (or hostname glob) that matches the
domain name of the git repository.

It is also necessary to add the SSH host key to the known_hosts file. The exception to this would be if strict host key
checking is disabled, which can be done by adding StrictHostKeyChecking no
to the entry in ~/.ssh/config

Host github.com
 IdentityFile /root/.ssh/id_rsa_gitfs
 StrictHostKeyChecking no

However, this is generally regarded as insecure, and is not recommended.

Adding the SSH Host Key to the known_hosts File

To use SSH authentication, it is necessary to have the remote repository's SSH
host key in the ~/.ssh/known_hosts file. If the master is also a minion,
this can be done using the ssh.set_known_host function:

salt mymaster ssh.set_known_host user=root hostname=github.com
mymaster:

 new:

 enc:
 ssh-rsa
 fingerprint:
 16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48
 hostname:
 |1|OiefWWqOD4kwO3BhoIGa0loR5AA=|BIXVtmcTbPER+68HvXmceodDcfI=
 key:
 AAAAB3NzaC1yc2EAAAABIwAAAQEAq2A7hRGmdnm9tUDbO9IDSwBK6TbQa+PXYPCPy6rbTrTtw7PHkccKrpp0yVhp5HdEIcKr6pLlVDBfOLX9QUsyCOV0wzfjIJNlGEYsdlLJizHhbn2mUjvSAHQqZETYP81eFzLQNnPHt4EVVUh7VfDESU84KezmD5QlWpXLmvU31/yMf+Se8xhHTvKSCZIFImWwoG6mbUoWf9nzpIoaSjB+weqqUUmpaaasXVal72J+UX2B+2RPW3RcT0eOzQgqlJL3RKrTJvdsjE3JEAvGq3lGHSZXy28G3skua2SmVi/w4yCE6gbODqnTWlg7+wC604ydGXA8VJiS5ap43JXiUFFAaQ==
 old:
 None
 status:
 updated

If not, then the easiest way to add the key is to su to the user (usually
root) under which the salt-master runs and attempt to login to the
server via SSH:

$ su -
Password:
ssh github.com
The authenticity of host 'github.com (192.30.252.128)' can't be established.
RSA key fingerprint is 16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'github.com,192.30.252.128' (RSA) to the list of known hosts.
Permission denied (publickey).

It doesn't matter if the login was successful, as answering yes will write
the fingerprint to the known_hosts file.

Verifying the Fingerprint

To verify that the correct fingerprint was added, it is a good idea to look it
up. One way to do this is to use nmap:

$ nmap -p 22 github.com --script ssh-hostkey

Starting Nmap 5.51 (http://nmap.org) at 2014-08-18 17:47 CDT
Nmap scan report for github.com (192.30.252.129)
Host is up (0.17s latency).
Not shown: 996 filtered ports
PORT STATE SERVICE
22/tcp open ssh
| ssh-hostkey: 1024 ad:1c:08:a4:40:e3:6f:9c:f5:66:26:5d:4b:33:5d:8c (DSA)
|_2048 16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48 (RSA)
80/tcp open http
443/tcp open https
9418/tcp open git

Nmap done: 1 IP address (1 host up) scanned in 28.78 seconds

Another way is to check one's own known_hosts file, using this one-liner:

$ ssh-keygen -l -f /dev/stdin <<<`ssh-keyscan github.com 2>/dev/null` | awk '{print $2}'
16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48

Warning

AWS tracks usage of nmap and may flag it as abuse. On AWS hosts, the
ssh-keygen method is recommended for host key verification.

Note

As of OpenSSH 6.8 [http://www.openssh.com/txt/release-6.8] the SSH fingerprint is now shown as a base64-encoded
SHA256 checksum of the host key. So, instead of the fingerprint looking
like 16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48, it would look
like SHA256:nThbg6kXUpJWGl7E1IGOCspRomTxdCARLviKw6E5SY8.

Refreshing gitfs Upon Push

By default, Salt updates the remote fileserver backends every 60 seconds.
However, if it is desirable to refresh quicker than that, the Reactor
System can be used to signal the master to update the fileserver on
each push, provided that the git server is also a Salt minion. There are three
steps to this process:

	On the master, create a file /srv/reactor/update_fileserver.sls, with
the following contents:

update_fileserver:
 runner.fileserver.update

	Add the following reactor configuration to the master config file:

reactor:
 - 'salt/fileserver/gitfs/update':
 - /srv/reactor/update_fileserver.sls

	On the git server, add a post-receive hook [https://www.git-scm.com/book/en/v2/Customizing-Git-Git-Hooks#Server-Side-Hooks]

	If the user executing git push is the same as the minion user, use the following hook:

#!/usr/bin/env sh
salt-call event.fire_master update salt/fileserver/gitfs/update

	To enable other git users to run the hook after a push, use sudo in the hook script:

#!/usr/bin/env sh
sudo -u root salt-call event.fire_master update salt/fileserver/gitfs/update

	If using sudo in the git hook (above), the policy must be changed to permit
all users to fire the event. Add the following policy to the sudoers file
on the git server.

Cmnd_Alias SALT_GIT_HOOK = /bin/salt-call event.fire_master update salt/fileserver/gitfs/update
Defaults!SALT_GIT_HOOK !requiretty
ALL ALL=(root) NOPASSWD: SALT_GIT_HOOK

The update argument right after event.fire_master in this example can really be anything, as it
represents the data being passed in the event, and the passed data is ignored
by this reactor.

Similarly, the tag name salt/fileserver/gitfs/update can be replaced by
anything, so long as the usage is consistent.

The root user name in the hook script and sudo policy should be changed to
match the user under which the minion is running.

Using Git as an External Pillar Source

The git external pillar (a.k.a. git_pillar) has been rewritten for the 2015.8.0
release. This rewrite brings with it pygit2 [https://github.com/libgit2/pygit2] support (allowing for access to
authenticated repositories), as well as more granular support for per-remote
configuration. This configuration schema is detailed here.

Why aren't my custom modules/states/etc. syncing to my Minions?

In versions 0.16.3 and older, when using the git fileserver backend, certain versions of GitPython may generate errors
when fetching, which Salt fails to catch. While not fatal to the fetch process,
these interrupt the fileserver update that takes place before custom types are
synced, and thus interrupt the sync itself. Try disabling the git fileserver
backend in the master config, restarting the master, and attempting the sync
again.

This issue is worked around in Salt 0.16.4 and newer.

MinionFS Backend Walkthrough

New in version 2014.1.0.

Note

This walkthrough assumes basic knowledge of Salt and cp.push. To get up to speed, check out the
Salt Walkthrough.

Sometimes it is desirable to deploy a file located on one minion to one or more
other minions. This is supported in Salt, and can be accomplished in two parts:

	Minion support for pushing files to the master (using cp.push)

	The minionfs fileserver backend

This walkthrough will show how to use both of these features.

Enabling File Push

To set the master to accept files pushed from minions, the
file_recv option in the master config file must be set to
True (the default is False).

file_recv: True

Note

This change requires a restart of the salt-master service.

Pushing Files

Once this has been done, files can be pushed to the master using the
cp.push function:

salt 'minion-id' cp.push /path/to/the/file

This command will store the file in a subdirectory named minions under the
master's cachedir. On most masters, this path will be
/var/cache/salt/master/minions. Within this directory will be one directory
for each minion which has pushed a file to the master, and underneath that the
full path to the file on the minion. So, for example, if a minion with an ID of
dev1 pushed a file /var/log/myapp.log to the master, it would be saved
to /var/cache/salt/master/minions/dev1/var/log/myapp.log.

Serving Pushed Files Using MinionFS

While it is certainly possible to add /var/cache/salt/master/minions to the
master's file_roots and serve these files, it may only be
desirable to expose files pushed from certain minions. Adding
/var/cache/salt/master/minions/<minion-id> for each minion that needs to be
exposed can be cumbersome and prone to errors.

Enter minionfs. This fileserver backend will
make files pushed using cp.push available to
the Salt fileserver, and provides an easy mechanism to restrict which minions'
pushed files are made available.

Simple Configuration

To use the minionfs backend, add minionfs
to the list of backends in the fileserver_backend configuration
option on the master:

file_recv: True

fileserver_backend:
 - roots
 - minionfs

Note

minion also works here. Prior to the 2018.3.0 release, only
minion would work.

Also, as described earlier, file_recv: True is needed to enable the
master to receive files pushed from minions. As always, changes to the
master configuration require a restart of the salt-master service.

Files made available via minionfs are by
default located at salt://<minion-id>/path/to/file. Think back to the
earlier example, in which dev1 pushed a file /var/log/myapp.log to the
master. With minionfs enabled, this file
would be addressable in Salt at salt://dev1/var/log/myapp.log.

If many minions have pushed to the master, this will result in many directories
in the root of the Salt fileserver. For this reason, it is recommended to use
the minionfs_mountpoint config option to organize these files
underneath a subdirectory:

minionfs_mountpoint: salt://minionfs

Using the above mountpoint, the file in the example would be located at
salt://minionfs/dev1/var/log/myapp.log.

Restricting Certain Minions' Files from Being Available Via MinionFS

A whitelist and blacklist can be used to restrict the minions whose pushed
files are available via minionfs. These lists
can be managed using the minionfs_whitelist and
minionfs_blacklist config options. Click the links for both of
them for a detailed explanation of how to use them.

A more complex configuration example, which uses both a whitelist and
blacklist, can be found below:

file_recv: True

fileserver_backend:
 - roots
 - minionfs

minionfs_mountpoint: salt://minionfs

minionfs_whitelist:
 - host04
 - web*
 - 'mail\d+\.domain\.tld'

minionfs_blacklist:
 - web21

Potential Concerns

	There is no access control in place to restrict which minions have access to
files served up by minionfs. All minions
will have access to these files.

	Unless the minionfs_whitelist and/or
minionfs_blacklist config options are used, all minions which
push files to the master will have their files made available via
minionfs.

Salt Package Manager

The Salt Package Manager, or SPM, enables Salt formulas to be packaged to simplify
distribution to Salt masters. The design of SPM was influenced by other existing packaging
systems including RPM, Yum, and Pacman.

[image: ../../_images/spm-overview.png]

Note

The previous diagram shows each SPM component as a different system, but this
is not required. You can build packages and host the SPM repo on
a single Salt master if you'd like.

Packaging System

The packaging system is used to package the state, pillar, file templates, and other
files used by your formula into a single file. After a formula package is
created, it is copied to the Repository System where it is made available to
Salt masters.

See Building SPM Packages

Repo System

The Repo system stores the SPM package and metadata files and makes them
available to Salt masters via http(s), ftp, or file URLs. SPM repositories can be
hosted on a Salt Master, a Salt Minion, or on another system.

See Distributing SPM Packages

Salt Master

SPM provides Salt master settings that let you configure the URL of one or more
SPM repos. You can then quickly install packages that contain entire formulas
to your Salt masters using SPM.

See Installing SPM Packages

Contents

	Building SPM Packages
	Package Build Overview

	Package Installation Overview

	Building an SPM Formula Package

	Types of Packages
	formula

	reactor

	conf

	Technical Information

	SPM-Specific Loader Modules
	Package Database

	Package Files

	Distributing SPM Packages
	Setting up a Package Repository

	Adding a Package to the repository

	Generate Repo Metadata

	Installing SPM Packages
	Configuring Remote Repositories
	Repository Configuration Files

	Updating Local Repository Metadata

	Update File Roots

	Installing Packages
	Installing directly from an SPM file

	Pillars

	Removing Packages

	SPM Configuration
	spm_logfile

	spm_repos_config

	spm_cache_dir

	spm_db

	spm_build_dir

	spm_build_exclude
	Types of Packages

	formula

	reactor

	conf

	FORMULA File
	Required Fields
	name

	os

	os_family

	version

	minimum_version

	release

	summary

	description

	Optional Fields
	top_level_dir

	dependencies

	optional

	recommended

	files

	local States

	tgt States

	Templating States

	SPM Development Guide
	SPM-Specific Loader Modules
	Package Database

	Package Files

Building SPM Packages

The first step when using Salt Package Manager is to build packages for each of
of the formulas that you want to distribute. Packages can be built on any
system where you can install Salt.

Package Build Overview

To build a package, all state, pillar, jinja, and file templates used by your
formula are assembled into a folder on the build system. These files can be
cloned from a Git repository, such as those found at the saltstack-formulas [https://github.com/saltstack-formulas] organization on GitHub, or copied
directly to the folder.

The following diagram demonstrates
a typical formula layout on the build system:

[image: ../../_images/spm-package-contents.png]
In this example, all formula files are placed in a myapp-formula folder.
This is the folder that is targeted by the spm build command when this
package is built.

Within this folder, pillar data is placed in
a pillar.example file at the root, and all state, jinja, and template files
are placed within a subfolder that is named after the application being
packaged. State files are typically contained within a subfolder, similar to
how state files are organized in the state tree. Any non-pillar files
in your package that are not contained in a subfolder are placed at the root
of the spm state tree.

Additionally, a FORMULA file is created and placed in the
root of the folder. This file contains package metadata that is used by SPM.

Package Installation Overview

When building packages, it is useful to know where files are installed on the
Salt master. During installation, all files except pillar.example and FORMULA are copied
directly to the spm state tree on the Salt master (located at
\srv\spm\salt).

If a pillar.example file is present in the root, it is renamed to
<formula name>.sls.orig and placed in the pillar_path.

[image: ../../_images/spm-package-extraction.png]

Note

Even though the pillar data file is copied to the pillar root, you still
need to manually assign this pillar data to systems using the pillar top
file. This file can also be duplicated and renamed so the .orig
version is left intact in case you need to restore it later.

Building an SPM Formula Package

	Assemble formula files in a folder on the build system.

	Create a FORMULA file and place it in the root of the package folder.

	Run spm build <folder name>. The package is built and placed in the /srv/spm_build folder.

spm build /path/to/salt-packages-source/myapp-formula

	Copy the .spm file to a folder on the repository system.

Types of Packages

SPM supports different types of packages. The function of each package
is denoted by its name. For instance, packages which end in -formula are
considered to be Salt States (the most common type of formula). Packages which
end in -conf contain configuration which is to be placed in the
/etc/salt/ directory. Packages which do not contain one of these names are
treated as if they have a -formula name.

formula

By default, most files from this type of package live in the /srv/spm/salt/
directory. The exception is the pillar.example file, which will be renamed
to <package_name>.sls and placed in the pillar directory (/srv/spm/pillar/
by default).

reactor

By default, files from this type of package live in the /srv/spm/reactor/
directory.

conf

The files in this type of package are configuration files for Salt, which
normally live in the /etc/salt/ directory. Configuration files for packages
other than Salt can and should be handled with a Salt State (using a formula
type of package).

Technical Information

Packages are built using BZ2-compressed tarballs. By default, the package
database is stored using the sqlite3 driver (see Loader Modules below).

Support for these are built into Python, and so no external dependencies are
needed.

All other files belonging to SPM use YAML, for portability and ease of use and
maintainability.

SPM-Specific Loader Modules

SPM was designed to behave like traditional package managers, which apply files
to the filesystem and store package metadata in a local database. However,
because modern infrastructures often extend beyond those use cases, certain
parts of SPM have been broken out into their own set of modules.

Package Database

By default, the package database is stored using the sqlite3 module. This
module was chosen because support for SQLite3 is built into Python itself.

Please see the SPM Development Guide for information on creating new modules
for package database management.

Package Files

By default, package files are installed using the local module. This module
applies files to the local filesystem, on the machine that the package is
installed on.

Please see the SPM Development Guide for information
on creating new modules for package file management.

Distributing SPM Packages

SPM packages can be distributed to Salt masters over HTTP(S), FTP, or through the
file system. The SPM repo can be hosted on any system where you can install
Salt. Salt is installed so you can run the spm create_repo command when you
update or add a package to the repo. SPM repos do not require the salt-master,
salt-minion, or any other process running on the system.

Note

If you are hosting the SPM repo on a system where you can not or do not
want to install Salt, you can run the spm create_repo command on the
build system and then copy the packages and the generated SPM-METADATA
file to the repo. You can also install SPM files directly on a Salt
master, bypassing the repository completely.

Setting up a Package Repository

After packages are built, the generated SPM files are placed in the
srv/spm_build folder.

Where you place the built SPM files on your repository server depends on how
you plan to make them available to your Salt masters.

You can share the srv/spm_build folder on the network, or copy the files to
your FTP or Web server.

Adding a Package to the repository

New packages are added by simply copying the SPM file to the repo folder, and then
generating repo metadata.

Generate Repo Metadata

Each time you update or add an SPM package to your repository, issue an spm
create_repo command:

spm create_repo /srv/spm_build

SPM generates the repository metadata for all of the packages in that directory
and places it in an SPM-METADATA file at the folder root. This command is
used even if repository metadata already exists in that directory.

Installing SPM Packages

SPM packages are installed to your Salt master, where they are available to Salt minions
using all of Salt's package management functions.

Configuring Remote Repositories

Before SPM can use a repository, two things need to happen. First, the Salt master needs to
know where the repository is through a configuration process. Then it needs to pull down the repository
metadata.

Repository Configuration Files

Repositories are configured by adding each of them to the
/etc/salt/spm.repos.d/spm.repo file on each Salt master. This file contains
the name of the repository, and the link to the repository:

my_repo:
 url: https://spm.example.com/

For HTTP/HTTPS Basic authorization you can define credentials:

my_repo:
 url: https://spm.example.com/
 username: user
 password: pass

Beware of unauthorized access to this file, please set at least 0640 permissions for this configuration file:

The URL can use http, https, ftp, or file.

my_repo:
 url: file:///srv/spm_build

Updating Local Repository Metadata

After the repository is configured on the Salt master, repository metadata is
downloaded using the spm update_repo command:

spm update_repo

Note

A file for each repo is placed in /var/cache/salt/spm on the Salt master
after you run the update_repo command. If you add a repository and it
does not seem to be showing up, check this path to verify that the
repository was found.

Update File Roots

SPM packages are installed to the srv/spm/salt folder on your Salt master.
This path needs to be added to the file roots on your Salt master
manually.

file_roots:
 base:
 - /srv/salt
 - /srv/spm/salt

Restart the salt-master service after updating the file_roots setting.

Installing Packages

To install a package, use the spm install command:

spm install apache

Warning

Currently, SPM does not check to see if files are already in place before
installing them. That means that existing files will be overwritten without
warning.

Installing directly from an SPM file

You can also install SPM packages using a local SPM file using the spm local
install command:

spm local install /srv/spm/apache-201506-1.spm

An SPM repository is not required when using spm local install.

Pillars

If an installed package includes Pillar data, be sure to target the installed
pillar to the necessary systems using the pillar Top file.

Removing Packages

Packages may be removed after they are installed using the spm remove
command.

spm remove apache

If files have been modified, they will not be removed. Empty directories will
also be removed.

SPM Configuration

There are a number of options that are specific to SPM. They may be configured
in the master configuration file, or in SPM's own spm configuration
file (normally located at /etc/salt/spm). If configured in both places, the
spm file takes precedence. In general, these values will not need to be
changed from the defaults.

spm_logfile

Default: /var/log/salt/spm

Where SPM logs messages.

spm_repos_config

Default: /etc/salt/spm.repos

SPM repositories are configured with this file. There is also a directory which
corresponds to it, which ends in .d. For instance, if the filename is
/etc/salt/spm.repos, the directory will be /etc/salt/spm.repos.d/.

spm_cache_dir

Default: /var/cache/salt/spm

When SPM updates package repository metadata and downloads packaged, they will
be placed in this directory. The package database, normally called
packages.db, also lives in this directory.

spm_db

Default: /var/cache/salt/spm/packages.db

The location and name of the package database. This database stores the names of
all of the SPM packages installed on the system, the files that belong to them,
and the metadata for those files.

spm_build_dir

Default: /srv/spm_build

When packages are built, they will be placed in this directory.

spm_build_exclude

Default: ['.git']

When SPM builds a package, it normally adds all files in the formula directory
to the package. Files listed here will be excluded from that package. This
option requires a list to be specified.

spm_build_exclude:
 - .git
 - .svn

Types of Packages

SPM supports different types of formula packages. The function of each package
is denoted by its name. For instance, packages which end in -formula are
considered to be Salt States (the most common type of formula). Packages which
end in -conf contain configuration which is to be placed in the
/etc/salt/ directory. Packages which do not contain one of these names are
treated as if they have a -formula name.

formula

By default, most files from this type of package live in the /srv/spm/salt/
directory. The exception is the pillar.example file, which will be renamed
to <package_name>.sls and placed in the pillar directory (/srv/spm/pillar/
by default).

reactor

By default, files from this type of package live in the /srv/spm/reactor/
directory.

conf

The files in this type of package are configuration files for Salt, which
normally live in the /etc/salt/ directory. Configuration files for packages
other than Salt can and should be handled with a Salt State (using a formula
type of package).

FORMULA File

In addition to the formula itself, a FORMULA file must exist which
describes the package. An example of this file is:

name: apache
os: RedHat, Debian, Ubuntu, SUSE, FreeBSD
os_family: RedHat, Debian, Suse, FreeBSD
version: 201506
release: 2
summary: Formula for installing Apache
description: Formula for installing Apache

Required Fields

This file must contain at least the following fields:

name

The name of the package, as it will appear in the package filename, in the
repository metadata, and the package database. Even if the source formula has
-formula in its name, this name should probably not include that. For
instance, when packaging the apache-formula, the name should be set to
apache.

os

The value of the os grain that this formula supports. This is used to
help users know which operating systems can support this package.

os_family

The value of the os_family grain that this formula supports. This is used to
help users know which operating system families can support this package.

version

The version of the package. While it is up to the organization that manages this
package, it is suggested that this version is specified in a YYYYMM format.
For instance, if this version was released in June 2015, the package version
should be 201506. If multiple releases are made in a month, the release
field should be used.

minimum_version

Minimum recommended version of Salt to use this formula. Not currently enforced.

release

This field refers primarily to a release of a version, but also to multiple
versions within a month. In general, if a version has been made public, and
immediate updates need to be made to it, this field should also be updated.

summary

A one-line description of the package.

description

A more detailed description of the package which can contain more than one line.

Optional Fields

The following fields may also be present.

top_level_dir

This field is optional, but highly recommended. If it is not specified, the
package name will be used.

Formula repositories typically do not store .sls files in the root of the
repository; instead they are stored in a subdirectory. For instance, an
apache-formula repository would contain a directory called apache, which
would contain an init.sls, plus a number of other related files. In this
instance, the top_level_dir should be set to apache.

Files outside the top_level_dir, such as README.rst, FORMULA, and
LICENSE will not be installed. The exceptions to this rule are files that
are already treated specially, such as pillar.example and _modules/.

dependencies

A comma-separated list of packages that must be installed along with this
package. When this package is installed, SPM will attempt to discover and
install these packages as well. If it is unable to, then it will refuse to
install this package.

This is useful for creating packages which tie together other packages. For
instance, a package called wordpress-mariadb-apache would depend upon
wordpress, mariadb, and apache.

optional

A comma-separated list of packages which are related to this package, but are
neither required nor necessarily recommended. This list is displayed in an
informational message when the package is installed to SPM.

recommended

A comma-separated list of optional packages that are recommended to be
installed with the package. This list is displayed in an informational message
when the package is installed to SPM.

files

A files section can be added, to specify a list of files to add to the SPM.
Such a section might look like:

files:
 - _pillar
 - FORMULA
 - _runners
 - d|mymodule/index.rst
 - r|README.rst

When files are specified, then only those files will be added to the SPM,
regardless of what other files exist in the directory. They will also be added
in the order specified, which is useful if you have a need to lay down files in
a specific order.

As can be seen in the example above, you may also tag files as being a specific
type. This is done by pre-pending a filename with its type, followed by a pipe
(|) character. The above example contains a document file and a readme. The
available file types are:

	c: config file

	d: documentation file

	g: ghost file (i.e. the file contents are not included in the package payload)

	l: license file

	r: readme file

	s: SLS file

	m: Salt module

The first 5 of these types (c, d, g, l, r) will be placed in
/usr/share/salt/spm/ by default. This can be changed by setting an
spm_share_dir value in your /etc/salt/spm configuration file.

The last two types (s and m) are currently ignored, but they are
reserved for future use.

Pre and Post States

It is possible to run Salt states before and after installing a package by
using pre and post states. The following sections may be declared in a
FORMULA:

	pre_local_state

	pre_tgt_state

	post_local_state

	post_tgt_state

Sections with pre in their name are evaluated before a package is installed
and sections with post are evaluated after a package is installed. local
states are evaluated before tgt states.

Each of these sections needs to be evaluated as text, rather than as YAML.
Consider the following block:

pre_local_state: >
 echo test > /tmp/spmtest:
 cmd:
 - run

Note that this declaration uses > after pre_local_state. This is a YAML
marker that marks the next multi-line block as text, including newlines. It is
important to use this marker whenever declaring pre or post states, so
that the text following it can be evaluated properly.

local States

local states are evaluated locally; this is analogous to issuing a state
run using a salt-call --local command. These commands will be issued on the
local machine running the spm command, whether that machine is a master or
a minion.

local states do not require any special arguments, but they must still use
the > marker to denote that the state is evaluated as text, not a data
structure.

pre_local_state: >
 echo test > /tmp/spmtest:
 cmd:
 - run

tgt States

tgt states are issued against a remote target. This is analogous to issuing
a state using the salt command. As such it requires that the machine that
the spm command is running on is a master.

Because tgt states require that a target be specified, their code blocks
are a little different. Consider the following state:

pre_tgt_state:
 tgt: '*'
 data: >
 echo test > /tmp/spmtest:
 cmd:
 - run

With tgt states, the state data is placed under a data section, inside
the *_tgt_state code block. The target is of course specified as a tgt
and you may also optionally specify a tgt_type (the default is glob).

You still need to use the > marker, but this time it follows the data
line, rather than the *_tgt_state line.

Templating States

The reason that state data must be evaluated as text rather than a data
structure is because that state data is first processed through the rendering
engine, as it would be with a standard state run.

This means that you can use Jinja or any other supported renderer inside of
Salt. All formula variables are available to the renderer, so you can reference
FORMULA data inside your state if you need to:

pre_tgt_state:
 tgt: '*'
 data: >
 echo {{ name }} > /tmp/spmtest:
 cmd:
 - run

You may also declare your own variables inside the FORMULA. If SPM doesn't
recognize them then it will ignore them, so there are no restrictions on
variable names, outside of avoiding reserved words.

By default the renderer is set to jinja|yaml. You may change this by
changing the renderer setting in the FORMULA itself.

Building a Package

Once a FORMULA file has been created, it is placed into the root of the
formula that is to be turned into a package. The spm build command is
used to turn that formula into a package:

spm build /path/to/saltstack-formulas/apache-formula

The resulting file will be placed in the build directory. By default this
directory is located at /srv/spm/.

Loader Modules

When an execution module is placed in <file_roots>/_modules/ on the master,
it will automatically be synced to minions, the next time a sync operation takes
place. Other modules are also propagated this way: state modules can be placed
in _states/, and so on.

When SPM detects a file in a package which resides in one of these directories,
that directory will be placed in <file_roots> instead of in the formula
directory with the rest of the files.

Removing Packages

Packages may be removed once they are installed using the spm remove
command.

spm remove apache

If files have been modified, they will not be removed. Empty directories will
also be removed.

Technical Information

Packages are built using BZ2-compressed tarballs. By default, the package
database is stored using the sqlite3 driver (see Loader Modules below).

Support for these are built into Python, and so no external dependencies are
needed.

All other files belonging to SPM use YAML, for portability and ease of use and
maintainability.

SPM-Specific Loader Modules

SPM was designed to behave like traditional package managers, which apply files
to the filesystem and store package metadata in a local database. However,
because modern infrastructures often extend beyond those use cases, certain
parts of SPM have been broken out into their own set of modules.

Package Database

By default, the package database is stored using the sqlite3 module. This
module was chosen because support for SQLite3 is built into Python itself.

Please see the SPM Development Guide for information on creating new modules
for package database management.

Package Files

By default, package files are installed using the local module. This module
applies files to the local filesystem, on the machine that the package is
installed on.

Please see the SPM Development Guide for information
on creating new modules for package file management.

Types of Packages

SPM supports different types of formula packages. The function of each package
is denoted by its name. For instance, packages which end in -formula are
considered to be Salt States (the most common type of formula). Packages which
end in -conf contain configuration which is to be placed in the
/etc/salt/ directory. Packages which do not contain one of these names are
treated as if they have a -formula name.

formula

By default, most files from this type of package live in the /srv/spm/salt/
directory. The exception is the pillar.example file, which will be renamed
to <package_name>.sls and placed in the pillar directory (/srv/spm/pillar/
by default).

reactor

By default, files from this type of package live in the /srv/spm/reactor/
directory.

conf

The files in this type of package are configuration files for Salt, which
normally live in the /etc/salt/ directory. Configuration files for packages
other than Salt can and should be handled with a Salt State (using a formula
type of package).

SPM Development Guide

This document discusses developing additional code for SPM.

SPM-Specific Loader Modules

SPM was designed to behave like traditional package managers, which apply files
to the filesystem and store package metadata in a local database. However,
because modern infrastructures often extend beyond those use cases, certain
parts of SPM have been broken out into their own set of modules.

Each function that accepts arguments has a set of required and optional
arguments. Take note that SPM will pass all arguments in, and therefore each
function must accept each of those arguments. However, arguments that are
marked as required are crucial to SPM's core functionality, while arguments that
are marked as optional are provided as a benefit to the module, if it needs to
use them.

Package Database

By default, the package database is stored using the sqlite3 module. This
module was chosen because support for SQLite3 is built into Python itself.

Modules for managing the package database are stored in the salt/spm/pkgdb/
directory. A number of functions must exist to support database management.

init()

Get a database connection, and initialize the package database if necessary.

This function accepts no arguments. If a database is used which supports a
connection object, then that connection object is returned. For instance, the
sqlite3 module returns a connect() object from the sqlite3 library:

def myfunc():
 conn = sqlite3.connect(__opts__["spm_db"], isolation_level=None)
 ...
 return conn

SPM itself will not use this connection object; it will be passed in as-is to
the other functions in the module. Therefore, when you set up this object, make
sure to do so in a way that is easily usable throughout the module.

info()

Return information for a package. This generally consists of the information
that is stored in the FORMULA file in the package.

The arguments that are passed in, in order, are package (required) and
conn (optional).

package is the name of the package, as specified in the FORMULA.
conn is the connection object returned from init().

list_files()

Return a list of files for an installed package. Only the filename should be
returned, and no other information.

The arguments that are passed in, in order, are package (required) and
conn (optional).

package is the name of the package, as specified in the FORMULA.
conn is the connection object returned from init().

register_pkg()

Register a package in the package database. Nothing is expected to be returned
from this function.

The arguments that are passed in, in order, are name (required),
formula_def (required), and conn (optional).

name is the name of the package, as specified in the FORMULA.
formula_def is the contents of the FORMULA file, as a dict. conn
is the connection object returned from init().

register_file()

Register a file in the package database. Nothing is expected to be returned
from this function.

The arguments that are passed in are name (required), member (required),
path (required), digest (optional), and conn (optional).

name is the name of the package.

member is a tarfile object for the
package file. It is included, because it contains most of the information for
the file.

path is the location of the file on the local filesystem.

digest is the SHA1 checksum of the file.

conn is the connection object returned from init().

unregister_pkg()

Unregister a package from the package database. This usually only involves
removing the package's record from the database. Nothing is expected to be
returned from this function.

The arguments that are passed in, in order, are name (required) and
conn (optional).

name is the name of the package, as specified in the FORMULA. conn
is the connection object returned from init().

unregister_file()

Unregister a package from the package database. This usually only involves
removing the package's record from the database. Nothing is expected to be
returned from this function.

The arguments that are passed in, in order, are name (required), pkg
(optional) and conn (optional).

name is the path of the file, as it was installed on the filesystem.

pkg is the name of the package that the file belongs to.

conn is the connection object returned from init().

db_exists()

Check to see whether the package database already exists. This is the path to
the package database file. This function will return True or False.

The only argument that is expected is db_, which is the package database
file.

Package Files

By default, package files are installed using the local module. This module
applies files to the local filesystem, on the machine that the package is
installed on.

Modules for managing the package database are stored in the
salt/spm/pkgfiles/ directory. A number of functions must exist to support
file management.

init()

Initialize the installation location for the package files. Normally these will
be directory paths, but other external destinations such as databases can be
used. For this reason, this function will return a connection object, which can
be a database object. However, in the default local module, this object is a
dict containing the paths. This object will be passed into all other functions.

Three directories are used for the destinations: formula_path,
pillar_path, and reactor_path.

formula_path is the location of most of the files that will be installed.
The default is specific to the operating system, but is normally /srv/salt/.

pillar_path is the location that the pillar.example file will be
installed to. The default is specific to the operating system, but is normally
/srv/pillar/.

reactor_path is the location that reactor files will be installed to. The
default is specific to the operating system, but is normally /srv/reactor/.

check_existing()

Check the filesystem for existing files. All files for the package will be
checked, and if any are existing, then this function will normally state that
SPM will refuse to install the package.

This function returns a list of the files that exist on the system.

The arguments that are passed into this function are, in order: package
(required), pkg_files (required), formula_def (formula_def), and
conn (optional).

package is the name of the package that is to be installed.

pkg_files is a list of the files to be checked.

formula_def is a copy of the information that is stored in the FORMULA
file.

conn is the file connection object.

install_file()

Install a single file to the destination (normally on the filesystem). Nothing
is expected to be returned from this function.

This function returns the final location that the file was installed to.

The arguments that are passed into this function are, in order, package
(required), formula_tar (required), member (required), formula_def
(required), and conn (optional).

package is the name of the package that is to be installed.

formula_tar is the tarfile object for the package. This is passed in so that
the function can call formula_tar.extract() for the file.

member is the tarfile object which represents the individual file. This may
be modified as necessary, before being passed into formula_tar.extract().

formula_def is a copy of the information from the FORMULA file.

conn is the file connection object.

remove_file()

Remove a single file from file system. Normally this will be little more than an
os.remove(). Nothing is expected to be returned from this function.

The arguments that are passed into this function are, in order, path
(required) and conn (optional).

path is the absolute path to the file to be removed.

conn is the file connection object.

hash_file()

Returns the hexdigest hash value of a file.

The arguments that are passed into this function are, in order, path
(required), hashobj (required), and conn (optional).

path is the absolute path to the file.

hashobj is a reference to hashlib.sha1(), which is used to pull the
hexdigest() for the file.

conn is the file connection object.

This function will not generally be more complex than:

def hash_file(path, hashobj, conn=None):
 with salt.utils.files.fopen(path, "r") as f:
 hashobj.update(f.read())
 return hashobj.hexdigest()

path_exists()

Check to see whether the file already exists on the filesystem. Returns True
or False.

This function expects a path argument, which is the absolute path to the
file to be checked.

path_isdir()

Check to see whether the path specified is a directory. Returns True or
False.

This function expects a path argument, which is the absolute path to be
checked.

Storing Data in Other Databases

The SDB interface is designed to store and retrieve data that, unlike pillars
and grains, is not necessarily minion-specific. The initial design goal was to
allow passwords to be stored in a secure database, such as one managed by the
keyring package, rather than as plain-text files. However, as a generic database
interface, it could conceptually be used for a number of other purposes.

SDB was added to Salt in version 2014.7.0.

SDB Configuration

In order to use the SDB interface, a configuration profile must be set up.
To be available for master commands, such as runners, it needs to be
configured in the master configuration. For modules executed on a minion, it
can be set either in the minion configuration file, or as a pillar. The
configuration stanza includes the name/ID that the profile will be referred to
as, a driver setting, and any other arguments that are necessary for the SDB
module that will be used. For instance, a profile called mykeyring, which
uses the system service in the keyring module would look like:

mykeyring:
 driver: keyring
 service: system

It is recommended to keep the name of the profile simple, as it is used in the
SDB URI as well.

SDB URIs

SDB is designed to make small database queries (hence the name, SDB) using a
compact URL. This allows users to reference a database value quickly inside
a number of Salt configuration areas, without a lot of overhead. The basic
format of an SDB URI is:

sdb://<profile>/<args>

The profile refers to the configuration profile defined in either the master or
the minion configuration file. The args are specific to the module referred to
in the profile, but will typically only need to refer to the key of a
key/value pair inside the database. This is because the profile itself should
define as many other parameters as possible.

For example, a profile might be set up to reference credentials for a specific
OpenStack account. The profile might look like:

kevinopenstack:
 driver: keyring
 service: salt.cloud.openstack.kevin

And the URI used to reference the password might look like:

sdb://kevinopenstack/password

Getting, Setting and Deleting SDB Values

Once an SDB driver is configured, you can use the sdb execution module to
get, set and delete values from it. There are two functions that may appear in
most SDB modules: get, set and delete.

Getting a value requires only the SDB URI to be specified. To retrieve a value
from the kevinopenstack profile above, you would use:

salt-call sdb.get sdb://kevinopenstack/password

For SDB sub-keys, ie users['user1']['id']

users:
 user1:
 id: 12345

To get SDB sub-keys from the CLI, use a colon to separate sub key values. For example:

salt-call sdb.get sdb://users:user1:id

To get SDB sub-keys in a state file, use this syntax:

users:
 user1:
 id: sdb.get sdb://users:user1:id

Warning

The vault driver previously only supported splitting the path and key with
a question mark. This has since been deprecated in favor of using the standard
/ to split the path and key. The use of the questions mark will still be supported
to ensure backwards compatibility, but please use the preferred method using /.
The deprecated approach required the full path to where the key is stored,
followed by a question mark, followed by the key to be retrieved. If you were
using a profile called myvault, you would use a URI that looks like:

salt-call sdb.get 'sdb://myvault/secret/salt?saltstack'

Instead of the above please use the preferred URI using / instead:

salt-call sdb.get 'sdb://myvault/secret/salt/saltstack'

Setting a value uses the same URI as would be used to retrieve it, followed
by the value as another argument.

salt-call sdb.set 'sdb://myvault/secret/salt/saltstack' 'super awesome'

Deleting values (if supported by the driver) is done pretty much the same way as
getting them. Provided that you have a profile called mykvstore that uses
a driver allowing to delete values you would delete a value as shown below:

salt-call sdb.delete 'sdb://mykvstore/foobar'

The sdb.get, sdb.set and sdb.delete functions are also available in
the runner system:

salt-run sdb.get 'sdb://myvault/secret/salt/saltstack'
salt-run sdb.set 'sdb://myvault/secret/salt/saltstack' 'super awesome'
salt-run sdb.delete 'sdb://mykvstore/foobar'

Using SDB URIs in Files

SDB URIs can be used in both configuration files, and files that are processed
by the renderer system (jinja, mako, etc.). In a configuration file (such as
/etc/salt/master, /etc/salt/minion, /etc/salt/cloud, etc.), make an
entry as usual, and set the value to the SDB URI. For instance:

mykey: sdb://myetcd/mykey

To retrieve this value using a module, the module in question must use the
config.get function to retrieve configuration values. This would look
something like:

mykey = __salt__["config.get"]("mykey")

Templating renderers use a similar construct. To get the mykey value from
above in Jinja, you would use:

{{ salt['config.get']('mykey') }}

When retrieving data from configuration files using config.get, the SDB
URI need only appear in the configuration file itself.

If you would like to retrieve a key directly from SDB, you would call the
sdb.get function directly, using the SDB URI. For instance, in Jinja:

{{ salt['sdb.get']('sdb://myetcd/mykey') }}

When writing Salt modules, it is not recommended to call sdb.get directly,
as it requires the user to provide values in SDB, using a specific URI. Use
config.get instead.

Writing SDB Modules

There is currently one function that MUST exist in any SDB module (get()),
one that SHOULD exist (set_()) and one that MAY exist (delete()). If
using a (set_()) function, a __func_alias__ dictionary MUST be declared
in the module as well:

__func_alias__ = {
 "set_": "set",
}

This is because set is a Python built-in, and therefore functions should not
be created which are called set(). The __func_alias__ functionality is
provided via Salt's loader interfaces, and allows legally-named functions to be
referred to using names that would otherwise be unwise to use.

The get() function is required, as it will be called via functions in other
areas of the code which make use of the sdb:// URI. For example, the
config.get function in the config execution module uses this function.

The set_() function may be provided, but is not required, as some sources
may be read-only, or may be otherwise unwise to access via a URI (for instance,
because of SQL injection attacks).

The delete() function may be provided as well, but is not required, as many
sources may be read-only or restrict such operations.

A simple example of an SDB module is salt/sdb/keyring_db.py, as it provides
basic examples of most, if not all, of the types of functionality that are
available not only for SDB modules, but for Salt modules in general.

Running the Salt Master/Minion as an Unprivileged User

While the default setup runs the master and minion as the root user, some
may consider it an extra measure of security to run the master as a non-root
user. Keep in mind that doing so does not change the master's capability
to access minions as the user they are running as. Due to this many feel that
running the master as a non-root user does not grant any real security advantage
which is why the master has remained as root by default.

Note

Some of Salt's operations cannot execute correctly when the master is not
running as root, specifically the pam external auth system, as this system
needs root access to check authentication.

As of Salt 0.9.10 it is possible to run Salt as a non-root user. This can be
done by setting the user parameter in the master configuration
file. and restarting the salt-master service.

The minion has its own user parameter as well, but running the
minion as an unprivileged user will keep it from making changes to things like
users, installed packages, etc. unless access controls (sudo, etc.) are setup
on the minion to permit the non-root user to make the needed changes.

In order to allow Salt to successfully run as a non-root user, ownership, and
permissions need to be set such that the desired user can read from and write
to the following directories (and their subdirectories, where applicable):

	/etc/salt

	/var/cache/salt

	/var/log/salt

	/var/run/salt

Ownership can be easily changed with chown, like so:

chown -R user /etc/salt /var/cache/salt /var/log/salt /var/run/salt

Warning

Running either the master or minion with the root_dir
parameter specified will affect these paths, as will setting options like
pki_dir, cachedir, log_file,
and other options that normally live in the above directories.

Using cron with Salt

The Salt Minion can initiate its own highstate using
the salt-call command.

$ salt-call state.apply

This will cause the minion to check in with the master and ensure it is in the
correct "state".

Use cron to initiate a highstate

If you would like the Salt Minion to regularly check in with the master you can
use cron to run the salt-call command:

0 0 * * * salt-call state.apply

The above cron entry will run a highstate every day
at midnight.

Note

When executing Salt using cron, keep in mind that the default PATH for cron
may not include the path for any scripts or commands used by Salt, and it
may be necessary to set the PATH accordingly in the crontab:

PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin:/opt/bin

0 0 * * * salt-call state.apply

Hardening Salt

This topic contains tips you can use to secure and harden your Salt
environment. How you best secure and harden your Salt environment depends
heavily on how you use Salt, where you use Salt, how your team is structured,
where you get data from, and what kinds of access (internal and external) you
require.

Important

The guidance here should be taken in combination with Salt Best Practices.

Important

Refer to the Receiving security announcements documentation in order to stay updated
and secure.

Warning

For historical reasons, Salt requires PyCrypto as a "lowest common
denominator". However, PyCrypto is unmaintained [https://github.com/dlitz/pycrypto/issues/301#issue-551975699] and best practice is to
manually upgrade to use a more maintained library such as PyCryptodome [https://pypi.org/project/pycryptodome/]. See
Issue #52674 [https://github.com/saltstack/salt/issues/52674] and Issue #54115 [https://github.com/saltstack/salt/issues/54115] for more info

General hardening tips

	Restrict who can directly log into your Salt master system.

	Use SSH keys secured with a passphrase to gain access to the Salt master system.

	Track and secure SSH keys and any other login credentials you and your team
need to gain access to the Salt master system.

	Use a hardened bastion server or a VPN to restrict direct access to the Salt
master from the internet.

	Don't expose the Salt master any more than what is required.

	Harden the system as you would with any high-priority target.

	Keep the system patched and up-to-date.

	Use tight firewall rules. Pay particular attention to TCP/4505 and TCP/4506
on the salt master and avoid exposing these ports unnecessarily.

Salt hardening tips

Warning

Grains can be set by users that have access to the minion configuration files on
the local system, making them less secure than other identifiers in Salt. Avoid
storing sensitive data, such as passwords or keys, on minions. Instead, make
use of Storing Static Data in the Pillar and/or Storing Data in Other Databases.

Important

Jinja supports a secure, sandboxed template execution environment [https://jinja.palletsprojects.com/en/2.11.x/sandbox/] that Salt
takes advantage of. Other text Renderers do not support this
functionality, so Salt highly recommends usage of jinja / jinja|yaml.

	Subscribe to salt-users [https://groups.google.com/forum/#!forum/salt-users] or salt-announce [https://groups.google.com/forum/#!forum/salt-announce] so you know when new Salt
releases are available.

	Keep your systems up-to-date with the latest patches.

	Use Salt's Client ACL system to avoid having to give out root
access in order to run Salt commands.

	Use Salt's Client ACL system to restrict which users can run what commands.

	Use external Pillar to pull data into Salt from
external sources so that non-sysadmins (other teams, junior admins,
developers, etc) can provide configuration data without needing access to the
Salt master.

	Make heavy use of SLS files that are version-controlled and go through
a peer-review/code-review process before they're deployed and run in
production. This is good advice even for "one-off" CLI commands because it
helps mitigate typos and mistakes.

	Use salt-api, SSL, and restrict authentication with the external auth system if you need to expose your Salt master to external
services.

	Make use of Salt's event system and reactor to allow minions
to signal the Salt master without requiring direct access.

	Run the salt-master daemon as non-root.

	Disable which modules are loaded onto minions with the
disable_modules setting. (for example, disable the cmd
module if it makes sense in your environment.)

	Look through the fully-commented sample master and minion config files. There are many options for
securing an installation.

	Run masterless-mode minions on
particularly sensitive minions. There is also Salt SSH or the
modules.sudo if you need to further restrict
a minion.

	Monitor specific security related log messages. Salt salt-master logs
attempts to access methods which are not exposed to network clients. These log
messages are logged at the error log level and start with Requested
method not exposed.

Rotating keys

There are several reasons to rotate keys. One example is exposure or a
compromised key. An easy way to rotate a key is to remove the existing keys and
let the salt-master or salt-minion process generate new keys on
restart.

Rotate a minion key

Run the following on the Salt minion:

salt-call saltutil.regen_keys
systemctl stop salt-minion

Run the following on the Salt master:

salt-key -d <minion-id>

Run the following on the Salt minion:

systemctl start salt-minion

Run the following on the Salt master:

salt-key -a <minion-id>

Rotate a master key

Run the following on the Salt master:

systemctl stop salt-master
rm <pki_dir>/master.{pem,pub}
systemctl start salt-master

Run the following on the Salt minion:

systemctl stop salt-minion
rm <pki_dir>/minion_master.pub
systemctl start salt-minion

Hardening of syndic setups

Syndics must be run as the same user as their syndic master process. The master
of master's will include publisher ACL information in jobs sent to downstream
masters via syndics. This means that any minions connected directly to a master
of masters will also receive ACL information in jobs being published. For the
most secure setup, only connect syndics directly to master of masters.

Security disclosure policy

	email:

	saltproject-security.pdl@broadcom.com

	gpg key ID:

	37654A06

	gpg key fingerprint:

	99EF 26F2 6469 2D24 973A 7007 E8BF 76A7 3765 4A06

gpg public key:

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQINBGZpxDsBEACz8yoRBXaJiifaWz3wd4FLSO18mgH7H/+0iNTbV1ZwhgGEtWTF
Z31HfrsbxVgICoMgFYt8WKnc4MHZLIgDfTuCFQpf7PV/VqRBAknZwQKEAjHfrYNz
Q1vy3CeKC1qcKQISEQr7VFf58sOC8GJ54jLLc2rCsg9cXI6yvUFtGwL9Qv7g/NZn
rtLjc4NZIKdIvSt+/PtooQtsz0jfLMdMpMFa41keH3MknIbydBUnGj7eC8ANN/iD
Re2QHAW2KfQh3Ocuh/DpJ0/dwbzXmXfMWHk30E+s31TfdLiFt1Iz5kZDF8iHrDMq
x39/GGmF10y5rfq43V1Ucxm+1tl5Km0JcX6GpPUtgRpfUYAxwxfGfezt4PjYRYH2
mNxXXPLsnVTvdWPTvS0msSrcTHmnU5His38I6goXI7dLZm0saqoWi3sqEQ8TPS6/
DkLtYjpb/+dql+KrXD7erd3j8KKflIXn7AEsv+luNk6czGOKgdG9agkklzOHfEPc
xOGmaFfe/1mu8HxgaCuhNAQWlk79ZC+GAm0sBZIQAQRtABgag5vWr16hVix7BPMG
Fp8+caOVv6qfQ7gBmJ3/aso6OzyOxsluVxQRt94EjPTm0xuwb1aYNJOhEj9cPkjQ
XBjo3KN0rwcAViR/fdUzrIV1sn2hms0v5WZ+TDtz1w0OpLZOwe23BDE1+QARAQAB
tEJTYWx0IFByb2plY3QgU2VjdXJpdHkgVGVhbSA8c2FsdHByb2plY3Qtc2VjdXJp
dHkucGRsQGJyb2FkY29tLmNvbT6JAlcEEwEKAEEWIQSZ7ybyZGktJJc6cAfov3an
N2VKBgUCZmnEOwIbAwUJB4TOAAULCQgHAgIiAgYVCgkICwIEFgIDAQIeBwIXgAAK
CRDov3anN2VKBk7rD/9QdcYdNGfk96W906HlVpb3JCwT0t9T7ElP97Ot0YN6LqMj
vVQpxWYi7riUSyt1FtlCAM+hmghImzILF9LKDRCZ1H5UStI/u9T53cZpUZtVW/8R
bUNBCl495UcgioIZG5DsfZ/GdBOgY+hQfdgh7HC8a8A/owCt2hHbnth970NQ+LHb
/0ERLfOHRxozgPBhze8Vqf939KlteM5ljgTw/IkJJIsxJi4C6pQntSHvB3/Bq/Nw
Kf3vk3XYFtVibeQODSVvc6useo+SNGV/wsK/6kvh/vfP9Trv/GMOn/89Bj2aL1PR
M382E6sDB9d22p4ehVgbcOpkwHtr9DGerK9xzfG4aUjLu9qVD5Ep3gqKSsCe+P8z
bpADdVCnk+Vdp3Bi+KI7buSkqfbZ0m9vCY3ei1fMiDiTTjvNliL5QCO6PvYNYiDw
+LLImrQThv55ZRQsRRT7J6A94kwDoI6zcBEalv/aPws0nQHJtgWRUpmy5RcbVu9Z
QBXlUpCzCB+gGaGRE1u0hCfuvkbcG1pXFFBdSUuAK4o4ktiRALVUndELic/PU1nR
jwo/+j0SGw/jTwqVChUfLDZbiAQ2JICoVpZ+e1zQfsxa/yDu2e4D543SvNFHDsxh
bsBeCsopzJSA0n2HAdYvPxOPoWVvZv+U8ZV3EEVOUgsO5//cRJddCgLU89Q4DrkC
DQRmacQ7ARAAsz8jnpfw3DCRxdCVGiqWAtgj8r2gx5n1wJsKsgvyGQdKUtPwlX04
7w13lIDT2DwoXFozquYsTn9XkIoWbVckqo0NN/V7/QxIZIYTqRcFXouHTbXDJm5C
tsvfDlnTsaplyRawPU2mhYg39/lzIt8zIjvy5zo/pElkRP5m03nG+ItrsHN6CCvf
ZiRxme6EQdn+aoHh2GtICL8+c3HvQzTHYKxFn84Ibt3uNxwt+Mu6YhG9tkYMQQk5
SkYA4CYAaw2Lc/g0ee36iqw/5d79M8YcQtHhy5zzqgdEvExjFPdowV1hhFIEkNkM
uqIAknXVesqLLw2hPeYmyhYQqeBKIrWmBhBKX9c0vMYkDDH3T/sSylVhH0QAXP6E
WmLja3E1ov6pt6j7j/wWzC9LSMFDJI2yWCeOE1oea5D89tH6XvsGRTiog62zF/9a
77197iIa0+o91chp4iLkzDvuK8pVujPx8bNsK8jlJ+OW73NmliCVg+hecoFLNsri
/TsBngFNVcu79Q1XfyvoDdR2C09ItCBEZGt6LOlq/+ATUw1aBz6L1hvLBtiR3Hfu
X31YlbxdvVPjlzg6O6GXSfnokNTWv2mVXWTRIrP0RrKvMyiNPXVW7EunUuXI0Axk
Xg3E5kAjKXkBXzoCTCVz/sXPLjvjI0x3Z7obgPpcTi9h5DIX6PFyK/kAEQEAAYkC
PAQYAQoAJhYhBJnvJvJkaS0klzpwB+i/dqc3ZUoGBQJmacQ7AhsMBQkHhM4AAAoJ
EOi/dqc3ZUoGDeAQAKbyiHA1sl0fnvcZxoZ3mWA/Qesddp7Nv2aEW8I3hAJoTVml
ZvMxk8leZgsQJtSsVDNnxeyW+WCIUkhxmd95UlkTTj5mpyci1YrxAltPJ2TWioLe
F2doP8Y+4iGnaV+ApzWG33sLr95z37RKVdMuGk/O5nLMeWnSPA7HHWJCxECMm0SH
uI8aby8w2aBZ1kOMFB/ToEEzLBu9fk+zCzG3uH8QhdciMENVhsyBSULIrmwKglyI
VQwj2dXHyekQh7QEHV+CdKMfs3ZOANwm52OwjaK0dVb3IMFGvlUf4UXXfcXwLAkj
vW+Ju4kLGxVQpOlh1EBain9WOaHZGh6EGuTpjJO32PyRq8iSMNb8coeonoPFWrE/
A5dy3z5x5CZhJ6kyNwYs/9951r30Ct9qNZo9WZwp8AGQVs+J9XEYnZIWXnO1hdKs
dRStPvY7VqS500t8eWqWRfCLgofZAb9Fv7SwTPQ2G7bOuTXmQKAIEkU9vzo5XACu
AtR/9bC9ghNnlNuH4xiViBclrq2dif/I2ZwItpQHjuCDeMKz9kdADRI0tuNPpRHe
QP1YpURW+I+PYZzNgbnwzl6Bxo7jCHFgG6BQ0ih5sVwEDhlXjSejd8CNMYEy3ElL
xJLUpltwXLZSrJEXYjtJtnh0om71NXes0OyWE1cL4+U6WA9Hho6xedjk2bai
=pPmt
-----END PGP PUBLIC KEY BLOCK-----

The SaltStack Security Team is available at saltproject-security.pdl@broadcom.com for
security-related bug reports or questions.

We request the disclosure of any security-related bugs or issues be reported
non-publicly until such time as the issue can be resolved and a security-fix
release can be prepared. At that time we will release the fix and make a public
announcement with upgrade instructions and download locations.

Security response procedure

SaltStack takes security and the trust of our customers and users very
seriously. Our disclosure policy is intended to resolve security issues as
quickly and safely as is possible.

	A security report sent to saltproject-security.pdl@broadcom.com is assigned to a team
member. This person is the primary contact for questions and will
coordinate the fix, release, and announcement.

	The reported issue is reproduced and confirmed. A list of affected projects
and releases is made.

	Fixes are implemented for all affected projects and releases that are
actively supported. Back-ports of the fix are made to any old releases that
are actively supported.

	Packagers are notified via the salt-packagers [https://groups.google.com/forum/#!forum/salt-packagers] mailing list that an issue
was reported and resolved, and that an announcement is incoming.

	A pre-announcement is sent out to the salt-announce [https://groups.google.com/forum/#!forum/salt-announce] mailing list approximately
a week before the CVE release. This announcement does not include details
of the vulnerability. The pre-announcement will include the date the release
will occur and the vulnerability rating.

	A new release is created and pushed to all affected repositories. The
release documentation provides a full description of the issue, plus any
upgrade instructions or other relevant details.

	An announcement is made to the salt-users [https://groups.google.com/forum/#!forum/salt-users] and salt-announce [https://groups.google.com/forum/#!forum/salt-announce] mailing
lists. The announcement contains a description of the issue and a link to
the full release documentation and download locations.

Receiving security announcements

The following mailing lists, per the previous tasks identified in our response
procedure, will receive security-relevant notifications:

	salt-packagers [https://groups.google.com/forum/#!forum/salt-packagers]

	salt-users [https://groups.google.com/forum/#!forum/salt-users]

	salt-announce [https://groups.google.com/forum/#!forum/salt-announce]

In addition to the mailing lists, SaltStack also provides the following resources:

	SaltStack Security Announcements [https://www.saltstack.com/security-announcements/] landing page

	SaltStack Security RSS Feed [http://www.saltstack.com/feed/?post_type=security]

	SaltStack Community Slack Workspace [http://saltstackcommunity.slack.com/]

Salt Channels

One of the fundamental features of Salt is remote execution. Salt has two basic
"channels" for communicating with minions. Each channel requires a client
(minion) and a server (master) implementation to work within Salt. These pairs
of channels will work together to implement the specific message passing
required by the channel interface. Channels use Transports
for sending and receiving messages.

Pub Channel

The pub (or pubish) channel is how a master sends a job (payload) to a
minion. This is a basic pub/sub paradigm, which has specific targeting semantics.
All data which goes across the publish system should be encrypted such that only
members of the Salt cluster can decrypt the published payloads.

Req Channel

The req channel is how the minions send data to the master. This interface is
primarily used for fetching files and returning job returns. The req channels
have two basic interfaces when talking to the master. send is the basic
method that guarantees the message is encrypted at least so that only minions
attached to the same master can read it-- but no guarantee of minion-master
confidentiality, whereas the crypted_transfer_decode_dictentry method does
guarantee minion-master confidentiality. The req channel is also used by the
salt cli to publish jobs to the master.

Salt Transport

Transports in Salt are used by Channels to send messages between Masters, Minions,
and the Salt CLI. Transports can be brokerless or brokered. There are two types
of server / client implementations needed to implement a channel.

Publish Server

The publish server implements a publish / subscribe paradigm and is used by
Minions to receive jobs from Masters.

Publish Client

The publish client subscribes to, and receives messages from a Publish Server.

Request Server

The request server implements a request / reply paradigm. Every request sent by
the client must receive exactly one reply.

Request Client

The request client sends requests to a Request Server and receives a reply message.

	ZeroMQ Transport
	Publish Server and Client

	Request Server and Client

	TCP Transport
	TLS Support

	Wire Protocol

	Crypto

	Publish Server and Client

	Request Server and Client

	Websocket Transport
	TLS Support

	Publish Server and Client

	Request Server and Client

	Transport TLS Support

ZeroMQ Transport

Note

ZeroMQ is the current default transport within Salt

ZeroMQ is a messaging library with bindings into many languages. ZeroMQ implements
a socket interface for message passing, with specific semantics for the socket type.

Publish Server and Client

The publish server and client are implemented using ZeroMQ's pub/sub sockets. By
default we don't use ZeroMQ's filtering, which means that all publish jobs are
sent to all minions and filtered minion side. ZeroMQ does have publisher side
filtering which can be enabled in salt using zmq_filtering.

Request Server and Client

The request server and client are implemented using ZeroMQ's req/rep sockets.
These sockets enforce a send/recv pattern, which forces salt to serialize
messages through these socket pairs. This means that although the interface is
asynchronous on the minion we cannot send a second message until we have
received the reply of the first message.

TCP Transport

The tcp transport is an implementation of Salt's transport using raw tcp sockets.
Since this isn't using a pre-defined messaging library we will describe the wire
protocol, message semantics, etc. in this document.

The tcp transport is enabled by changing the transport setting
to tcp on each Salt minion and Salt master.

transport: tcp

Warning

We currently recommend that when using Syndics that all Masters and Minions
use the same transport. We're investigating a report of an error when using
mixed transport types at very heavy loads.

TLS Support

The TLS transport supports full encryption and verification using both server
and client certificates. See Transport TLS Support for more details.

Wire Protocol

This implementation over TCP focuses on flexibility over absolute efficiency.
This means we are okay to spend a couple of bytes of wire space for flexibility
in the future. That being said, the wire framing is quite efficient and looks
like:

msgpack({'head': SOMEHEADER, 'body': SOMEBODY})

Since msgpack is an iterably parsed serialization, we can simply write the serialized
payload to the wire. Within that payload we have two items "head" and "body".
Head contains header information (such as "message id"). The Body contains the
actual message that we are sending. With this flexible wire protocol we can
implement any message semantics that we'd like-- including multiplexed message
passing on a single socket.

Crypto

The current implementation uses the same crypto as the zeromq transport.

Publish Server and Client

For the publish server and client we send messages without "message ids" which
the remote end interprets as a one-way send.

Note

As of Salt 2016.3.0 [https://github.com/saltstack/salt/commit/1a395ed7a3e72eac87e81dfa072be9cf049453d3], publishes using list targeting are sent only to relevant minions and not broadcasted.

As of Salt 3005 [https://github.com/saltstack/salt/commit/9db1af7147f7e6176e5f226cfedf1654ca038ec1], publishes using pcre and glob targeting are also sent only to relevant minions and not broadcasted. Other targeting types are always sent to all minions and rely on minion-side filtering.

Note

Salt CLI defaults to glob targeting type, so in order to target specific minions without broadcast, you need to use -L option, such as salt -L my.minion test.ping, for masters before 3005.

Request Server and Client

For the request server and client we send messages with a "message id". This
"message id" allows us to multiplex messages across the socket.

Websocket Transport

The Websocket transport is an implementation of Salt's transport using the websocket protocol.
The Websocket transport is enabled by changing the transport setting
to ws on each Salt minion and Salt master.

TLS Support

The Websocket transport supports full encryption and verification using both server
and client certificates. See Transport TLS Support for more details.

Publish Server and Client

The publish server and client are implemented using aiohttp.

Request Server and Client

The request server and client are implemented using aiohttp.

Transport TLS Support

Whenever possible transports should provide TLS Support. Currently the TCP Transport and
Websocket Transport transports support encryption and verification using TLS.

New in version 2016.11.1.

The TCP transport allows for the master/minion communication to be optionally
wrapped in a TLS connection. Enabling this is simple, the master and minion need
to be using the tcp connection, then the ssl option is enabled. The ssl
option is passed as a dict and roughly corresponds to the options passed to the
Python ssl.wrap_socket [https://docs.python.org/3/library/ssl.html#ssl.wrap_socket]
function for backwards compatability.

New in version 3007.0.

The ssl option accepts verify_locations and verify_flags. The
verify_locations option is a list of strings or dictionaries. Strings are
passed as a single argument to the SSL context's load_verify_locations
method. Dictionary keys are expected to be one of cafile, capath,
cadata. For each corresponding key, the key and value will be passed as a
keyword argument to load_verify_locations. The verify_flags option is
a list of string names of verification flags which will be set on the SSL
context. All paths are assumed to be the full path to the file or directory.

A simple setup looks like this, on the Salt Master add the ssl option to the
master configuration file:

ssl:
 keyfile: <path_to_keyfile>
 certfile: <path_to_certfile>

A more complex setup looks like this, on the Salt Master add the ssl
option to the master's configuration file. In this example the Salt Master will
require valid client side certificates from Minions by setting cert_reqs to
CERT_REQUIRED. The Salt Master will also check a certificate revocation list
if one is provided in verify_locations:

ssl:
 keyfile: <path_to_keyfile>
 certfile: <path_to_certfile>
 cert_reqs: CERT_REQUIRED
 verify_locations:
 - <path_to_ca_cert>
 - capath: <directory_of_certs>
 - cafile: <path_to_crl>
 verify_flags:
 - VERIFY_CRL_CHECK_CHAIN

The minimal ssl option in the minion configuration file looks like this:

ssl: True
Versions below 2016.11.4:
ssl: {}

A Minion can be configured to present a client certificate to the master like this:

ssl:
 keyfile: <path_to_keyfile>
 certfile: <path_to_certfile>

Specific options can be sent to the minion also, as defined in the Python
ssl.wrap_socket function.

Master Tops System

In 0.10.4 the external_nodes system was upgraded to allow for modular
subsystems to be used to generate the top file data for a highstate run on the master.

The old external_nodes option has been removed. The master tops system
provides a pluggable and extendable replacement for it, allowing for multiple
different subsystems to provide top file data.

Changed in version 3007.0: Masterless minions now support master top modules as well.

Using the new master_tops option is simple:

master_tops:
 ext_nodes: cobbler-external-nodes

for Cobbler or:

master_tops:
 reclass:
 inventory_base_uri: /etc/reclass
 classes_uri: roles

for Reclass.

master_tops:
 varstack: /path/to/the/config/file/varstack.yaml

for Varstack.

It's also possible to create custom master_tops modules. Simply place them into
salt://_tops in the Salt fileserver and use the
saltutil.sync_tops runner to sync
them. If this runner function is not available, they can manually be placed
into extmods/tops, relative to the master cachedir (in most cases the full
path will be /var/cache/salt/master/extmods/tops).

Custom tops modules are written like any other execution module, see the source
for the two modules above for examples of fully functional ones. Below is a
bare-bones example:

/etc/salt/master:

master_tops:
 customtop: True

customtop.py: (custom master_tops module)

import logging
import sys

Define the module's virtual name
__virtualname__ = "customtop"

log = logging.getLogger(__name__)

def __virtual__():
 return __virtualname__

def top(**kwargs):
 log.debug("Calling top in customtop")
 return {"base": ["test"]}

salt minion state.show_top should then display something like:

$ salt minion state.show_top

minion

 base:
 - test

Note

If a master_tops module returns top file data for a
given minion, it will be added to the states configured in the top file. It
will not replace it altogether. The 2018.3.0 release adds additional
functionality allowing a minion to treat master_tops as the single source
of truth, irrespective of the top file.

Renderers

The Salt state system operates by gathering information from common data types
such as lists, dictionaries, and strings that would be familiar to any
developer.

Salt Renderers translate input from the format in which it is written into
Python data structures.

The default renderer is set in the master/minion configuration file using the
renderer config option, which defaults to jinja|yaml.

Two Kinds of Renderers

Renderers fall into one of two categories, based on what they output: text or
data. Some exceptions to this would be the pure python and gpg renderers which could be used in either capacity.

Text Renderers

Important

Jinja supports a secure, sandboxed template execution environment [https://jinja.palletsprojects.com/en/2.11.x/sandbox/] that Salt
takes advantage of. Other text Renderers do not support this
functionality, so Salt highly recommends usage of jinja / jinja|yaml.

A text renderer returns text. These include templating engines such as
jinja, mako, and
genshi, as well as the gpg renderer. The following are all text renderers:

	aws_kms

	cheetah

	genshi

	gpg

	jinja

	mako

	nacl

	pass

	py

	wempy

Data Renderers

A data renderer returns a Python data structure (typically a dictionary). The
following are all data renderers:

	dson

	hjson

	json5

	json

	pydsl

	pyobjects

	py

	stateconf

	yamlex

	yaml

	gpg

Overriding the Default Renderer

It can sometimes be beneficial to write an SLS file using a renderer other than
the default one. This can be done by using a "shebang"-like syntax on the first
line of the SLS file:

Here is an example of using the pure python renderer
to install a package:

#!py

def run():
 """
 Install version 1.5-1.el7 of package "python-foo"
 """
 return {
 "include": ["python"],
 "python-foo": {"pkg.installed": [{"version": "1.5-1.el7"}]},
 }

This would be equivalent to the following:

include:
 - python

python-foo:
 pkg.installed:
 - version: '1.5-1.el7'

Composing Renderers (a.k.a. The "Render Pipeline")

A render pipeline can be composed from other renderers by connecting them in a
series of "pipes" (i.e. |). The renderers will be evaluated from left to
right, with each renderer receiving the result of the previous renderer's
execution.

Take for example the default renderer (jinja|yaml). The file is evaluated
first a jinja template, and the result of that template is evaluated as a YAML
document.

Other render pipeline combinations include:

	yaml
	Just YAML, no templating.

	mako|yaml
	This passes the input to the mako renderer, with its output fed into
the yaml renderer.

	jinja|mako|yaml
	This one allows you to use both jinja and mako templating syntax in the
input and then parse the final rendered output as YAML.

The following is a contrived example SLS file using the jinja|mako|yaml
render pipeline:

#!jinja|mako|yaml

An_Example:
 cmd.run:
 - name: |
 echo "Using Salt ${grains['saltversion']}" \
 "from path {{grains['saltpath']}}."
 - cwd: /

<%doc> ${...} is Mako's notation, and so is this comment. </%doc>
{# Similarly, {{...}} is Jinja's notation, and so is this comment. #}

Important

Keep in mind that not all renderers can be used alone or with any other
renderers. For example, text renderers shouldn't be used alone as their
outputs are just strings, which still need to be parsed by another renderer
to turn them into Python data structures.

For example, it would not make sense to use yaml|jinja because the
output of the yaml renderer is a Python data
structure, and the jinja renderer only
accepts text as input.

Therefore, when combining renderers, you should know what each renderer
accepts as input and what it returns as output. One way of thinking about
it is that you can chain together multiple text renderers, but the pipeline
must end in a data renderer. Similarly, since the text renderers in Salt
don't accept data structures as input, a text renderer should usually not
come after a data renderer. It's technically possible to write a renderer
that takes a data structure as input and returns a string, but no such
renderer is distributed with Salt.

Writing Renderers

A custom renderer must be a Python module which implements a render
function. This function must implement three positional arguments:

	data - Can be called whatever you like. This is the input to be
rendered.

	saltenv

	sls

The first is the important one, and the 2nd and 3rd must be included since Salt
needs to pass this info to each render, even though it is only used by template
renderers.

Renderers should be written so that the data argument can accept either
strings or file-like objects as input. For example:

import mycoolmodule
from salt.ext import six

def render(data, saltenv="base", sls="", **kwargs):
 if not isinstance(data, six.string_types):
 # Read from file-like object
 data = data.read()

 return mycoolmodule.do_something(data)

Custom renderers should be placed within salt://_renderers/, so that they
can be synced to minions. They are synced when any of the following are run:

	state.apply

	saltutil.sync_renderers

	saltutil.sync_all

Any custom renderers which have been synced to a minion, that are named the
same as one of Salt's default set of renderers, will take the place of the
default renderer with the same name.

Note

Renderers can also be synced from salt://_renderers/ to the Master
using either the saltutil.sync_renderers or saltutil.sync_all runner function.

Examples

The best place to find examples of renderers is in the Salt source code.

Documentation for renderers included with Salt can be found here:

salt/renderers [https://github.com/saltstack/salt/blob/master/salt/renderers]

Here is a simple YAML renderer example:

import salt.utils.yaml
from salt.utils.yamlloader import SaltYamlSafeLoader
from salt.ext import six

def render(yaml_data, saltenv="", sls="", **kws):
 if not isinstance(yaml_data, six.string_types):
 yaml_data = yaml_data.read()
 data = salt.utils.yaml.safe_load(yaml_data)
 return data if data else {}

Full List of Renderers

	renderer modules
	salt.renderers.aws_kms
	Setup

	render()

	salt.renderers.cheetah
	render()

	salt.renderers.dson
	render()

	salt.renderers.genshi
	render()

	salt.renderers.gpg
	GPG Homedir

	GPG Keys
	New Key Pair

	Export Public Key

	Import Public Key

	Export (Save) Private Key

	Import (Restore) Private Key

	Adjust trust level of imported keys

	Encrypting Data

	Encrypted CLI Pillar Data
	Replacing Newlines

	Encrypting the Entire CLI Pillar Dictionary

	Configuration

	render()

	salt.renderers.hjson
	render()

	salt.renderers.jinja
	render()

	SerializerExtension

	salt.renderers.json
	render()

	salt.renderers.json5
	render()

	salt.renderers.mako
	render()

	salt.renderers.msgpack
	render()

	salt.renderers.nacl
	Setup

	Using encrypted pillar

	render()

	salt.renderers.pass
	Pass Renderer for Salt
	Setup

	render()

	salt.renderers.py
	Pure python state renderer
	Full Example

	render()

	salt.renderers.pydsl
	Special integration with the cmd state

	Implicit ordering of states

	Render time state execution

	Integration with the stateconf renderer

	Importing custom Python modules

	PyDslError

	SaltRenderError

	render()

	salt.renderers.pyobjects
	Creating state data

	Context Managers and requisites

	Including and Extending

	Importing from other state files

	Salt object

	Pillar, grain, mine & config data

	Opts dictionary and SLS name

	Map Data

	PyobjectsModule

	load_states()

	render()

	salt.renderers.stateconf

	salt.renderers.toml
	render()

	salt.renderers.wempy
	render()

	salt.renderers.yaml

	Understanding YAML
	Rule One: Indentation

	Rule Two: Colons

	Rule Three: Dashes

	Reference
	get_yaml_loader()

	render()

	salt.renderers.yamlex
	Reference
	render()

renderer modules

Important

Jinja supports a secure, sandboxed template execution environment [https://jinja.palletsprojects.com/en/2.11.x/sandbox/] that Salt
takes advantage of. Other text Renderers do not support this
functionality, so Salt highly recommends usage of jinja / jinja|yaml.

	aws_kms

	

	cheetah

	Cheetah Renderer for Salt

	dson

	DSON Renderer for Salt

	genshi

	Genshi Renderer for Salt

	gpg

	Renderer that will decrypt GPG ciphers

	hjson

	hjson renderer for Salt

	jinja

	Jinja loading utils to enable a more powerful backend for jinja templates

	json

	JSON Renderer for Salt

	json5

	JSON5 Renderer for Salt

	mako

	Mako Renderer for Salt

	msgpack

	

	nacl

	Renderer that will decrypt NACL ciphers

	pass

	Pass Renderer for Salt

	py

	Pure python state renderer

	pydsl

	A Python-based DSL

	pyobjects

	Python renderer that includes a Pythonic Object based interface

	stateconf

	A flexible renderer that takes a templating engine and a data format

	tomlmod

	

	wempy

	

	yaml

	YAML Renderer for Salt

	yamlex

	

salt.renderers.aws_kms

Renderer that will decrypt ciphers encrypted using AWS KMS Envelope Encryption [https://docs.aws.amazon.com/kms/latest/developerguide/workflow.html].

Any key in the data to be rendered can be a urlsafe_b64encoded string, and this renderer will attempt
to decrypt it before passing it off to Salt. This allows you to safely store secrets in
source control, in such a way that only your Salt master can decrypt them and
distribute them only to the minions that need them.

The typical use-case would be to use ciphers in your pillar data, and keep the encrypted
data key on your master. This way developers with appropriate AWS IAM privileges can add new secrets
quickly and easily.

This renderer requires the boto3 [https://boto3.readthedocs.io/] Python library.

Setup

First, set up your AWS client. For complete instructions on configuration the AWS client,
please read the boto3 configuration documentation [https://boto3.readthedocs.io/en/latest/guide/configuration.html]. By default, this renderer will use
the default AWS profile. You can override the profile name in salt configuration.
For example, if you have a profile in your aws client configuration named "salt",
you can add the following salt configuration:

aws_kms:
 profile_name: salt

The rest of these instructions assume that you will use the default profile for key generation
and setup. If not, export AWS_PROFILE and set it to the desired value.

Once the aws client is configured, generate a KMS customer master key and use that to generate
a local data key.

data_key=$(aws kms generate-data-key --key-id your-key-id --key-spec AES_256
 --query 'CiphertextBlob' --output text)
echo 'aws_kms:'
echo ' data_key: !!binary "%s"\n' "$data_key" >> config/master

To apply the renderer on a file-by-file basis add the following line to the
top of any pillar with gpg data in it:

#!yaml|aws_kms

Now with your renderer configured, you can include your ciphers in your pillar
data like so:

#!yaml|aws_kms

a-secret: gAAAAABaj5uzShPI3PEz6nL5Vhk2eEHxGXSZj8g71B84CZsVjAAtDFY1mfjNRl-1Su9YVvkUzNjI4lHCJJfXqdcTvwczBYtKy0Pa7Ri02s10Wn1tF0tbRwk=

	
salt.renderers.aws_kms.render(data, saltenv='base', sls='', argline='', **kwargs)

	Decrypt the data to be rendered that was encrypted using AWS KMS envelope encryption.

salt.renderers.cheetah

Cheetah Renderer for Salt

	
salt.renderers.cheetah.render(cheetah_data, saltenv='base', sls='', method='xml', **kws)

	Render a Cheetah template.

	Return type:

	A Python data structure

salt.renderers.dson

DSON Renderer for Salt

This renderer is intended for demonstration purposes. Information on the DSON
spec can be found here [http://vpzomtrrfrt.github.io/DSON/].

This renderer requires Dogeon [https://github.com/soasme/dogeon] (installable via pip)

	
salt.renderers.dson.render(dson_input, saltenv='base', sls='', **kwargs)

	Accepts DSON data as a string or as a file object and runs it through the
JSON parser.

	Return type:

	A Python data structure

salt.renderers.genshi

Genshi Renderer for Salt

	
salt.renderers.genshi.render(genshi_data, saltenv='base', sls='', method='xml', **kws)

	Render a Genshi template. A method should be passed in as part of the
kwargs. If no method is passed in, xml is assumed. Valid methods are:

Note that the text method will call NewTextTemplate. If oldtext
is desired, it must be called explicitly

	Return type:

	A Python data structure

salt.renderers.gpg

Renderer that will decrypt GPG ciphers

Any value in the SLS file can be a GPG cipher, and this renderer will decrypt it
before passing it off to Salt. This allows you to safely store secrets in
source control, in such a way that only your Salt master can decrypt them and
distribute them only to the minions that need them.

The typical use-case would be to use ciphers in your pillar data, and keep a
secret key on your master. You can put the public key in source control so that
developers can add new secrets quickly and easily.

This renderer requires the gpg [https://gnupg.org] binary. No python libraries are required as of
the 2015.8.0 release.

GPG Homedir

The default GPG Homedir <gpg-homedir> is ~/.gnupg and needs to be set using
gpg --homedir. Be very careful to not forget this option. It is also important
to run gpg commands as the user that owns the keys directory. If the salt-master
runs as user salt, then use su - salt before running any gpg commands.

In some cases, it's preferable to have gpg keys stored on removable media or
other non-standard locations. This can be done using the gpg_keydir option
on the salt master. This will also require using a different path to --homedir.

The --homedir argument can be configured for the current user using
echo 'homedir /etc/salt/gpgkeys' >> ~/.gnupg, but this should be used with
caution to avoid potential confusion.

gpg_keydir: <path/to/homedir>

GPG Keys

GPG key pairs include both a public and private key. The private key is akin to
a password and should be kept secure by the owner. A public key is used to
encrypt data being sent to the owner of the private key.

This means that the public key will be freely distributed so that others can
encrypt pillar data without access to the secret key.

New Key Pair

To create a new GPG key pair for encrypting data, log in to the master as root
and run the following:

mkdir -p /etc/salt/gpgkeys
chmod 0700 /etc/salt/gpgkeys
gpg --homedir /etc/salt/gpgkeys --gen-key

Do not supply a password for the keypair and use a name that makes sense for
your application.

Note

In some situations, gpg may be starved of entropy and will take an incredibly
long time to finish. Two common tools to generate (less secure) pseudo-random
data are rng-tools and haveged.

The new keys can be seen and verified using --list-secret-keys:

gpg --homedir /etc/salt/gpgkeys --list-secret-keys
/etc/salt/gpgkeys/pubring.kbx

sec rsa4096 2002-05-12 [SC] [expires: 2012-05-10]
 2DC47B416EE8C3484450B450A4D44406274AF44E
uid [ultimate] salt-master (gpg key for salt) <salt@cm.domain.tld>
ssb rsa4096 2002-05-12 [E] [expires: 2012-05-10]

In the example above, our KEY-ID is 2DC47B416EE8C3484450B450A4D44406274AF44E.

Export Public Key

To export a public key suitable for public distribution:

gpg --homedir /etc/salt/gpgkeys --armor --export <KEY-ID> > exported_pubkey.asc

Import Public Key

Users wishing to import the public key into their local keychain may run:

$ gpg --import exported_pubkey.asc

Export (Save) Private Key

This key protects all gpg-encrypted pillar data and should be backed up to a
safe and secure location. This command will generate a backup of secret keys
in the /etc/salt/gpgkeys directory to the gpgkeys.secret file:

gpg --homedir /etc/salt/gpgkeys --export-secret-keys --export-options export-backup -o gpgkeys.secret

Salt does not support password-protected private keys, which means this file
is essentially a clear-text password (just add --armor). Fortunately, it
is trivial to pass this export back to gpg to be encrypted with symmetric key:

gpg --homedir /etc/salt/gpgkeys --export-secret-keys --export-options export-backup | gpg --symmetric -o gpgkeys.gpg

Note

In some cases, particularly when using su/sudo, gpg gets confused and needs
to be told which TTY to use; this can be done with: export GPG_TTY=$(tty).

Import (Restore) Private Key

To import/restore a private key, create a directory with the correct permissions
and import using gpg.

mkdir -p /etc/salt/gpgkeys
chmod 0700 /etc/salt/gpgkeys
gpg --homedir /etc/salt/gpgkeys --import gpgkeys.secret

If the export was encrypted using a symmetric key, then decrypt first with:

gpg --decrypt gpgkeys.gpg | gpg --homedir /etc/salt/gpgkeys --import

Adjust trust level of imported keys

In some cases, importing existing keys may not be enough and the trust level of
the key needs to be adjusted. This can be done by editing the key. The KEY-ID
and the actual trust level of the key can be seen by listing the already imported
keys.

If the trust-level is not ultimate it needs to be changed by running

gpg --homedir /etc/salt/gpgkeys --edit-key <KEY-ID>

This will open an interactive shell for the management of the GPG encryption key.
Type trust to be able to set the trust level for the key and then select 5
(I trust ultimately). Then quit the shell by typing save.

Encrypting Data

In order to encrypt data to a recipient (salt), the public key must be imported
into the local keyring. Importing the public key is described above in the
Import Public Key <gpg-importpubkey:> section.

To generate a cipher from a secret:

$ echo -n 'supersecret' | gpg --trust-model always -ear <KEY-ID>

To apply the renderer on a file-by-file basis add the following line to the
top of any pillar with gpg data in it:

#!yaml|gpg

Now with your renderer configured, you can include your ciphers in your pillar
data like so:

#!yaml|gpg

a-secret: |
 -----BEGIN PGP MESSAGE-----
 Version: GnuPG v1

 hQEMAweRHKaPCfNeAQf9GLTN16hCfXAbPwU6BbBK0unOc7i9/etGuVc5CyU9Q6um
 QuetdvQVLFO/HkrC4lgeNQdM6D9E8PKonMlgJPyUvC8ggxhj0/IPFEKmrsnv2k6+
 cnEfmVexS7o/U1VOVjoyUeliMCJlAz/30RXaME49Cpi6No2+vKD8a4q4nZN1UZcG
 RhkhC0S22zNxOXQ38TBkmtJcqxnqT6YWKTUsjVubW3bVC+u2HGqJHu79wmwuN8tz
 m4wBkfCAd8Eyo2jEnWQcM4TcXiF01XPL4z4g1/9AAxh+Q4d8RIRP4fbw7ct4nCJv
 Gr9v2DTF7HNigIMl4ivMIn9fp+EZurJNiQskLgNbktJGAeEKYkqX5iCuB1b693hJ
 FKlwHiJt5yA8X2dDtfk8/Ph1Jx2TwGS+lGjlZaNqp3R1xuAZzXzZMLyZDe5+i3RJ
 skqmFTbOiA===Eqsm
 -----END PGP MESSAGE-----

Encrypted CLI Pillar Data

New in version 2016.3.0.

Functions like state.highstate and
state.sls allow for pillar data to be
passed on the CLI.

salt myminion state.highstate pillar="{'mypillar': 'foo'}"

Starting with the 2016.3.0 release of Salt, it is now possible for this pillar
data to be GPG-encrypted, and to use the GPG renderer to decrypt it.

Replacing Newlines

To pass encrypted pillar data on the CLI, the ciphertext must have its newlines
replaced with a literal backslash-n (\n), as newlines are not supported
within Salt CLI arguments. There are a number of ways to do this:

With awk or Perl:

awk
ciphertext=`echo -n "supersecret" | gpg --armor --batch --trust-model always --encrypt -r user@domain.com | awk '{printf "%s\\n",$0} END {print ""}'`
Perl
ciphertext=`echo -n "supersecret" | gpg --armor --batch --trust-model always --encrypt -r user@domain.com | perl -pe 's/\n/\\n/g'`

With Python:

import subprocess

secret, stderr = subprocess.Popen(
 ['gpg', '--armor', '--batch', '--trust-model', 'always', '--encrypt',
 '-r', 'user@domain.com'],
 stdin=subprocess.PIPE,
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE).communicate(input='supersecret')

if secret:
 print(secret.replace('\n', r'\n'))
else:
 raise ValueError('No ciphertext found: {0}'.format(stderr))

ciphertext=`python /path/to/script.py`

The ciphertext can be included in the CLI pillar data like so:

salt myminion state.sls secretstuff pillar_enc=gpg pillar="{secret_pillar: '$ciphertext'}"

The pillar_enc=gpg argument tells Salt that there is GPG-encrypted pillar
data, so that the CLI pillar data is passed through the GPG renderer, which
will iterate recursively though the CLI pillar dictionary to decrypt any
encrypted values.

Encrypting the Entire CLI Pillar Dictionary

If several values need to be encrypted, it may be more convenient to encrypt
the entire CLI pillar dictionary. Again, this can be done in several ways:

With awk or Perl:

awk
ciphertext=`echo -n "{'secret_a': 'CorrectHorseBatteryStaple', 'secret_b': 'GPG is fun!'}" | gpg --armor --batch --trust-model always --encrypt -r user@domain.com | awk '{printf "%s\\n",$0} END {print ""}'`
Perl
ciphertext=`echo -n "{'secret_a': 'CorrectHorseBatteryStaple', 'secret_b': 'GPG is fun!'}" | gpg --armor --batch --trust-model always --encrypt -r user@domain.com | perl -pe 's/\n/\\n/g'`

With Python:

import subprocess

pillar_data = {'secret_a': 'CorrectHorseBatteryStaple',
 'secret_b': 'GPG is fun!'}

secret, stderr = subprocess.Popen(
 ['gpg', '--armor', '--batch', '--trust-model', 'always', '--encrypt',
 '-r', 'user@domain.com'],
 stdin=subprocess.PIPE,
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE).communicate(input=repr(pillar_data))

if secret:
 print(secret.replace('\n', r'\n'))
else:
 raise ValueError('No ciphertext found: {0}'.format(stderr))

ciphertext=`python /path/to/script.py`

With the entire pillar dictionary now encrypted, it can be included in the CLI
pillar data like so:

salt myminion state.sls secretstuff pillar_enc=gpg pillar="$ciphertext"

Configuration

The default behaviour of this renderer is to log a warning if a block could not
be decrypted; in other words, it just returns the ciphertext rather than the
encrypted secret.

This behaviour can be changed via the gpg_decrypt_must_succeed configuration
option. If set to True, any gpg block that cannot be decrypted raises a
SaltRenderError exception, which registers an error in _errors during
rendering.

In the Chlorine release, the default behavior will be reversed and an error
message will be added to _errors by default.

	
salt.renderers.gpg.render(gpg_data, saltenv='base', sls='', argline='', **kwargs)

	Create a gpg object given a gpg_keydir, and then use it to try to decrypt
the data to be rendered.

salt.renderers.hjson

hjson renderer for Salt

See the hjson [http://laktak.github.io/hjson/] documentation for more information

	
salt.renderers.hjson.render(hjson_data, saltenv='base', sls='', **kws)

	Accepts HJSON as a string or as a file object and runs it through the HJSON
parser.

	Return type:

	A Python data structure

salt.renderers.jinja

Jinja loading utils to enable a more powerful backend for jinja templates

Important

Jinja supports a secure, sandboxed template execution environment [https://jinja.palletsprojects.com/en/2.11.x/sandbox/] that Salt
takes advantage of. Other text Renderers do not support this
functionality, so Salt highly recommends usage of jinja / jinja|yaml.

	
salt.renderers.jinja.render(template_file, saltenv='base', sls='', argline='', context=None, tmplpath=None, **kws)

	Render the template_file, passing the functions and grains into the
Jinja rendering system.

	Return type:

	string

	
class salt.utils.jinja.SerializerExtension(environment)

	Yaml and Json manipulation.

Format filters

Allows jsonifying or yamlifying any data structure. For example, this dataset:

data = {
 'foo': True,
 'bar': 42,
 'baz': [1, 2, 3],
 'qux': 2.0
}

yaml = {{ data|yaml }}
json = {{ data|json }}
python = {{ data|python }}
xml = {{ {'root_node': data}|xml }}

will be rendered as:

yaml = {bar: 42, baz: [1, 2, 3], foo: true, qux: 2.0}
json = {"baz": [1, 2, 3], "foo": true, "bar": 42, "qux": 2.0}
python = {'bar': 42, 'baz': [1, 2, 3], 'foo': True, 'qux': 2.0}
xml = """<<?xml version="1.0" ?>
 <root_node bar="42" foo="True" qux="2.0">
 <baz>1</baz>
 <baz>2</baz>
 <baz>3</baz>
 </root_node>"""

The yaml filter takes an optional flow_style parameter to control the
default-flow-style parameter of the YAML dumper.

{{ data|yaml(False) }}

will be rendered as:

bar: 42
baz:
 - 1
 - 2
 - 3
foo: true
qux: 2.0

Load filters

Strings and variables can be deserialized with load_yaml and
load_json tags and filters. It allows one to manipulate data directly
in templates, easily:

{%- set yaml_src = "{foo: it works}"|load_yaml %}
{%- set json_src = '{"bar": "for real"}'|load_json %}
Dude, {{ yaml_src.foo }} {{ json_src.bar }}!

will be rendered as:

Dude, it works for real!

Load tags

Salt implements load_yaml and load_json tags. They work like
the import tag [https://jinja.palletsprojects.com/en/2.11.x/templates/#import], except that the document is also deserialized.

Syntaxes are {% load_yaml as [VARIABLE] %}[YOUR DATA]{% endload %}
and {% load_json as [VARIABLE] %}[YOUR DATA]{% endload %}

For example:

{% load_yaml as yaml_src %}
 foo: it works
{% endload %}
{% load_json as json_src %}
 {
 "bar": "for real"
 }
{% endload %}
Dude, {{ yaml_src.foo }} {{ json_src.bar }}!

will be rendered as:

Dude, it works for real!

Import tags

External files can be imported and made available as a Jinja variable.

{% import_yaml "myfile.yml" as myfile %}
{% import_json "defaults.json" as defaults %}
{% import_text "completeworksofshakespeare.txt" as poems %}

Catalog

import_* and load_* tags will automatically expose their
target variable to import. This feature makes catalog of data to
handle.

for example:

doc1.sls
{% load_yaml as var1 %}
 foo: it works
{% endload %}
{% load_yaml as var2 %}
 bar: for real
{% endload %}

doc2.sls
{% from "doc1.sls" import var1, var2 as local2 %}
{{ var1.foo }} {{ local2.bar }}

** Escape Filters **

New in version 2017.7.0.

Allows escaping of strings so they can be interpreted literally by another
function.

For example:

regex_escape = {{ 'https://example.com?foo=bar%20baz' | regex_escape }}

will be rendered as:

regex_escape = https\:\/\/example\.com\?foo\=bar\%20baz

** Set Theory Filters **

New in version 2017.7.0.

Performs set math using Jinja filters.

For example:

unique = {{ ['foo', 'foo', 'bar'] | unique }}

will be rendered as:

unique = ['foo', 'bar']

** Salt State Parameter Format Filters **

New in version 3005.

Renders a formatted multi-line YAML string from a Python dictionary. Each
key/value pair in the dictionary will be added as a single-key dictionary
to a list that will then be sent to the YAML formatter.

For example:

{% set thing_params = {
 "name": "thing",
 "changes": True,
 "warnings": "OMG! Stuff is happening!"
 }
%}

thing:
 test.configurable_test_state:
 {{ thing_params | dict_to_sls_yaml_params | indent }}

will be rendered as:

.. code-block:: yaml

	thing:
	
	test.configurable_test_state:
	
	name: thing

	changes: true

	warnings: OMG! Stuff is happening!

salt.renderers.json

JSON Renderer for Salt

	
salt.renderers.json.render(json_data, saltenv='base', sls='', **kws)

	Accepts JSON as a string or as a file object and runs it through the JSON
parser.

	Return type:

	A Python data structure

salt.renderers.json5

JSON5 Renderer for Salt

New in version 2016.3.0.

JSON5 is an unofficial extension to JSON. See http://json5.org/ for more
information.

This renderer requires the json5 python bindings [https://pypi.python.org/pypi/json5], installable via pip.

	
salt.renderers.json5.render(json_data, saltenv='base', sls='', **kws)

	Accepts JSON as a string or as a file object and runs it through the JSON
parser.

	Return type:

	A Python data structure

salt.renderers.mako

Mako Renderer for Salt

This renderer requires the Mako library.

To install Mako, do the following:

	
salt.renderers.mako.render(template_file, saltenv='base', sls='', context=None, tmplpath=None, **kws)

	Render the template_file, passing the functions and grains into the
Mako rendering system.

	Return type:

	string

salt.renderers.msgpack

	
salt.renderers.msgpack.render(msgpack_data, saltenv='base', sls='', **kws)

	Accepts a message pack string or a file object, renders said data back to
a python dict.

	Return type:

	A Python data structure

salt.renderers.nacl

Renderer that will decrypt NACL ciphers

Any key in the SLS file can be an NACL cipher, and this renderer will decrypt it
before passing it off to Salt. This allows you to safely store secrets in
source control, in such a way that only your Salt master can decrypt them and
distribute them only to the minions that need them.

The typical use-case would be to use ciphers in your pillar data, and keep a
secret key on your master. You can put the public key in source control so that
developers can add new secrets quickly and easily.

This renderer requires the libsodium library binary and PyNacl >= 1.0

Setup

To set things up, first generate a keypair. On the master, run the following:

salt-call --local nacl.keygen sk_file=/root/.nacl

Using encrypted pillar

To encrypt secrets, copy the public key to your local machine and run:

$ salt-call --local nacl.enc datatoenc pk_file=/root/.nacl.pub

To apply the renderer on a file-by-file basis add the following line to the
top of any pillar with nacl encrypted data in it:

#!yaml|nacl

Now with your renderer configured, you can include your ciphers in your pillar
data like so:

#!yaml|nacl

a-secret: "NACL[MRN3cc+fmdxyQbz6WMF+jq1hKdU5X5BBI7OjK+atvHo1ll+w1gZ7XyWtZVfq9gK9rQaMfkDxmidJKwE0Mw==]"

	
salt.renderers.nacl.render(nacl_data, saltenv='base', sls='', argline='', **kwargs)

	Decrypt the data to be rendered using the given nacl key or the one given
in config

salt.renderers.pass

Pass Renderer for Salt

pass [https://www.passwordstore.org/] is an encrypted on-disk password store.

New in version 2017.7.0.

Setup

Note: <user> needs to be replaced with the user salt-master will be
running as.

Have private gpg loaded into user's gpg keyring

load_private_gpg_key:
 cmd.run:
 - name: gpg --import <location_of_private_gpg_key>
 - unless: gpg --list-keys '<gpg_name>'

Said private key's public key should have been used when encrypting pass entries
that are of interest for pillar data.

Fetch and keep local pass git repo up-to-date

update_pass:
 git.latest:
 - force_reset: True
 - name: <git_repo>
 - target: /<user>/.password-store
 - identity: <location_of_ssh_private_key>
 - require:
 - cmd: load_private_gpg_key

Install pass binary

pass:
 pkg.installed

Salt master configuration options

If the prefix is *not* set (default behavior), all template variables are
considered for fetching secrets from Pass. Those that cannot be resolved
to a secret are passed through.
#
If the prefix is set, only the template variables with matching prefix are
considered for fetching the secrets, other variables are passed through.
#
For ease of use it is recommended to set the following options as well:
renderer: 'jinja|yaml|pass'
pass_strict_fetch: true
#
pass_variable_prefix: 'pass:'

If set to 'true', error out when unable to fetch a secret for a template variable.
pass_strict_fetch: true

Set GNUPGHOME env for Pass.
Defaults to: ~/.gnupg
pass_gnupghome: <path>

Set PASSWORD_STORE_DIR env for Pass.
Defaults to: ~/.password-store
pass_dir: <path>

	
salt.renderers.pass.render(pass_info, saltenv='base', sls='', argline='', **kwargs)

	Fetch secret from pass based on pass_path

salt.renderers.py

Pure python state renderer

To use this renderer, the SLS file should contain a function called run
which returns highstate data.

The highstate data is a dictionary containing identifiers as keys, and execution
dictionaries as values. For example the following state declaration in YAML:

common_packages:
 pkg.installed:
 - pkgs:
 - curl
 - vim

translates to:

{'common_packages': {'pkg.installed': [{'pkgs': ['curl', 'vim']}]}}

In this module, a few objects are defined for you, giving access to Salt's
execution functions, grains, pillar, etc. They are:

	__salt__ - Execution functions (i.e.
__salt__['test.echo']('foo'))

	__grains__ - Grains (i.e. __grains__['os'])

	__pillar__ - Pillar data (i.e. __pillar__['foo'])

	__opts__ - Minion configuration options

	__env__ - The effective salt fileserver environment (i.e. base). Also
referred to as a "saltenv". __env__ should not be modified in a pure
python SLS file. To use a different environment, the environment should be
set when executing the state. This can be done in a couple different ways:

	Using the saltenv argument on the salt CLI (i.e. salt '*' state.sls
foo.bar.baz saltenv=env_name).

	By adding a saltenv argument to an individual state within the SLS
file. In other words, adding a line like this to the state's data
structure: {'saltenv': 'env_name'}

	__sls__ - The SLS path of the file. For example, if the root of the base
environment is /srv/salt, and the SLS file is
/srv/salt/foo/bar/baz.sls, then __sls__ in that file will be
foo.bar.baz.

When used in a scenario where additional user-provided context data is supplied
(such as with file.managed), the additional
data will typically be injected into the script as one or more global
variables:

/etc/http/conf/http.conf:
 file.managed:
 - source: salt://apache/generate_http_conf.py
 - template: py
 - context:
 # Will be injected as the global variable "site_name".
 site_name: {{ site_name }}

When writing a reactor SLS file the global context data (same as context
{{ data }} for states written with Jinja + YAML) is available. The
following YAML + Jinja state declaration:

{% if data['id'] == 'mysql1' %}
highstate_run:
 local.state.apply:
 - tgt: mysql1
{% endif %}

translates to:

if data['id'] == 'mysql1':
 return {'highstate_run': {'local.state.apply': [{'tgt': 'mysql1'}]}}

Full Example

 1 #!py
 2
 3 def run():
 4 config = {}
 5
 6 if __grains__['os'] == 'Ubuntu':
 7 user = 'ubuntu'
 8 group = 'ubuntu'
 9 home = '/home/{0}'.format(user)
10 else:
11 user = 'root'
12 group = 'root'
13 home = '/root/'
14
15 config['s3cmd'] = {
16 'pkg': [
17 'installed',
18 {'name': 's3cmd'},
19],
20 }
21
22 config[home + '/.s3cfg'] = {
23 'file.managed': [
24 {'source': 'salt://s3cfg/templates/s3cfg'},
25 {'template': 'jinja'},
26 {'user': user},
27 {'group': group},
28 {'mode': 600},
29 {'context': {
30 'aws_key': __pillar__['AWS_ACCESS_KEY_ID'],
31 'aws_secret_key': __pillar__['AWS_SECRET_ACCESS_KEY'],
32 },
33 },
34],
35 }
36
37 return config

	
salt.renderers.py.render(template, saltenv='base', sls='', tmplpath=None, **kws)

	Render the python module's components

	Return type:

	string

salt.renderers.pydsl

A Python-based DSL

	maintainer:

	Jack Kuan <kjkuan@gmail.com>

	maturity:

	new

	platform:

	all

The pydsl renderer allows one to author salt formulas (.sls files) in pure
Python using a DSL that's easy to write and easy to read. Here's an example:

1#!pydsl
2
3apache = state('apache')
4apache.pkg.installed()
5apache.service.running()
6state('/var/www/index.html') \
7 .file('managed',
8 source='salt://webserver/index.html') \
9 .require(pkg='apache')

Notice that any Python code is allow in the file as it's really a Python
module, so you have the full power of Python at your disposal. In this module,
a few objects are defined for you, including the usual (with __ added)
__salt__ dictionary, __grains__, __pillar__, __opts__,
__env__, and __sls__, plus a few more:

__file__

local file system path to the sls module.

__pydsl__

Salt PyDSL object, useful for configuring DSL behavior per sls rendering.

include

Salt PyDSL function for creating Include declaration's.

extend

Salt PyDSL function for creating Extend declaration's.

state

Salt PyDSL function for creating ID declaration's.

A state ID declaration is created with a state(id) function call.
Subsequent state(id) call with the same id returns the same object. This
singleton access pattern applies to all declaration objects created with the
DSL.

state('example')
assert state('example') is state('example')
assert state('example').cmd is state('example').cmd
assert state('example').cmd.running is state('example').cmd.running

The id argument is optional. If omitted, an UUID will be generated and used as
the id.

state(id) returns an object under which you can create a
State declaration object by accessing an attribute named after any
state module available in Salt.

state('example').cmd
state('example').file
state('example').pkg
...

Then, a Function declaration object can be created from a
State declaration object by one of the following two ways:

	by calling a method named after the state function on the State declaration object.

state('example').file.managed(...)

	by directly calling the attribute named for the State declaration, and
supplying the state function name as the first argument.

state('example').file('managed', ...)

With either way of creating a Function declaration object, any
Function arg declaration's can be passed as keyword arguments to the
call. Subsequent calls of a Function declaration will update the arg
declarations.

state('example').file('managed', source='salt://webserver/index.html')
state('example').file.managed(source='salt://webserver/index.html')

As a shortcut, the special name argument can also be passed as the
first or second positional argument depending on the first or second
way of calling the State declaration object. In the following
two examples ls -la is the name argument.

state('example').cmd.run('ls -la', cwd='/')
state('example').cmd('run', 'ls -la', cwd='/')

Finally, a Requisite declaration object with its
Requisite reference's can be created by invoking one of the
requisite methods (see State Requisites) on either a
Function declaration object or a State declaration object.
The return value of a requisite call is also a Function declaration
object, so you can chain several requisite calls together.

Arguments to a requisite call can be a list of State declaration objects
and/or a set of keyword arguments whose names are state modules and values are
IDs of ID declaration's or names of Name declaration's.

apache2 = state('apache2')
apache2.pkg.installed()
state('libapache2-mod-wsgi').pkg.installed()

you can call requisites on function declaration
apache2.service.running() \
 .require(apache2.pkg,
 pkg='libapache2-mod-wsgi') \
 .watch(file='/etc/apache2/httpd.conf')

or you can call requisites on state declaration.
this actually creates an anonymous function declaration object
to add the requisites.
apache2.service.require(state('libapache2-mod-wsgi').pkg,
 pkg='apache2') \
 .watch(file='/etc/apache2/httpd.conf')

we still need to set the name of the function declaration.
apache2.service.running()

Include declaration objects can be created with the include function,
while Extend declaration objects can be created with the extend function,
whose arguments are just Function declaration objects.

include('edit.vim', 'http.server')
extend(state('apache2').service.watch(file='/etc/httpd/httpd.conf')

The include function, by default, causes the included sls file to be rendered
as soon as the include function is called. It returns a list of rendered module
objects; sls files not rendered with the pydsl renderer return None's.
This behavior creates no Include declaration's in the resulting high state
data structure.

import types

including multiple sls returns a list.
_, mod = include('a-non-pydsl-sls', 'a-pydsl-sls')

assert _ is None
assert isinstance(slsmods[1], types.ModuleType)

including a single sls returns a single object
mod = include('a-pydsl-sls')

myfunc is a function that calls state(...) to create more states.
mod.myfunc(1, 2, "three")

Notice how you can define a reusable function in your pydsl sls module and then
call it via the module returned by include.

It's still possible to do late includes by passing the delayed=True keyword
argument to include.

include('edit.vim', 'http.server', delayed=True)

Above will just create a Include declaration in the rendered result, and
such call always returns None.

Special integration with the cmd state

Taking advantage of rendering a Python module, PyDSL allows you to declare a
state that calls a pre-defined Python function when the state is executed.

greeting = "hello world"
def helper(something, *args, **kws):
 print greeting # hello world
 print something, args, kws # test123 ['a', 'b', 'c'] {'x': 1, 'y': 2}

state().cmd.call(helper, "test123", 'a', 'b', 'c', x=1, y=2)

The cmd.call state function takes care of calling our helper function
with the arguments we specified in the states, and translates the return value
of our function into a structure expected by the state system.
See salt.states.cmd.call() for more information.

Implicit ordering of states

Salt states are explicitly ordered via Requisite declaration's.
However, with pydsl it's possible to let the renderer track the order
of creation for Function declaration objects, and implicitly add
require requisites for your states to enforce the ordering. This feature
is enabled by setting the ordered option on __pydsl__.

Note

this feature is only available if your minions are using Python >= 2.7.

include('some.sls.file')

A = state('A').cmd.run(cwd='/var/tmp')
extend(A)

__pydsl__.set(ordered=True)

for i in range(10):
 i = str(i)
 state(i).cmd.run('echo '+i, cwd='/')
state('1').cmd.run('echo one')
state('2').cmd.run(name='echo two')

Notice that the ordered option needs to be set after any extend calls.
This is to prevent pydsl from tracking the creation of a state function that's
passed to an extend call.

Above example should create states from 0 to 9 that will output 0,
one, two, 3, ... 9, in that order.

It's important to know that pydsl tracks the creations of
Function declaration objects, and automatically adds a require requisite
to a Function declaration object that requires the last
Function declaration object created before it in the sls file.

This means later calls (perhaps to update the function's Function arg declaration) to a previously created function declaration will not change the
order.

Render time state execution

When Salt processes a salt formula file, the file is rendered to salt's
high state data representation by a renderer before the states can be executed.
In the case of the pydsl renderer, the .sls file is executed as a python module
as it is being rendered which makes it easy to execute a state at render time.
In pydsl, executing one or more states at render time can be done by calling a
configured ID declaration object.

#!pydsl

s = state() # save for later invocation

configure it
s.cmd.run('echo at render time', cwd='/')
s.file.managed('target.txt', source='salt://source.txt')

s() # execute the two states now

Once an ID declaration is called at render time it is detached from the
sls module as if it was never defined.

Note

If implicit ordering is enabled (i.e., via __pydsl__.set(ordered=True)) then
the first invocation of a ID declaration object must be done before a
new Function declaration is created.

Integration with the stateconf renderer

The salt.renderers.stateconf renderer offers a few interesting features that
can be leveraged by the pydsl renderer. In particular, when using with the pydsl
renderer, we are interested in stateconf's sls namespacing feature (via dot-prefixed
id declarations), as well as, the automatic start and goal states generation.

Now you can use pydsl with stateconf like this:

#!pydsl|stateconf -ps

include('xxx', 'yyy')

ensure that states in xxx run BEFORE states in this file.
extend(state('.start').stateconf.require(stateconf='xxx::goal'))

ensure that states in yyy run AFTER states in this file.
extend(state('.goal').stateconf.require_in(stateconf='yyy::start'))

__pydsl__.set(ordered=True)

...

-s enables the generation of a stateconf start state, and -p lets us pipe
high state data rendered by pydsl to stateconf. This example shows that by
require-ing or require_in-ing the included sls' start or goal states,
it's possible to ensure that the included sls files can be made to execute before
or after a state in the including sls file.

Importing custom Python modules

To use a custom Python module inside a PyDSL state, place the module somewhere that
it can be loaded by the Salt loader, such as _modules in the /srv/salt directory.

Then, copy it to any minions as necessary by using saltutil.sync_modules.

To import into a PyDSL SLS, one must bypass the Python importer and insert it manually
by getting a reference from Python's sys.modules dictionary.

For example:

#!pydsl|stateconf -ps

def main():
 my_mod = sys.modules['salt.loaded.ext.module.my_mod']

	
exception salt.renderers.pydsl.PyDslError

	

	
exception salt.renderers.pydsl.SaltRenderError(message, line_num=None, buf='', marker=' <======================', trace=None)

	Used when a renderer needs to raise an explicit error. If a line number and
buffer string are passed, get_context will be invoked to get the location
of the error.

	
salt.renderers.pydsl.render(template, saltenv='base', sls='', tmplpath=None, rendered_sls=None, **kws)

	

salt.renderers.pyobjects

Python renderer that includes a Pythonic Object based interface

	maintainer:

	Evan Borgstrom <evan@borgstrom.ca>

Let's take a look at how you use pyobjects in a state file. Here's a quick
example that ensures the /tmp directory is in the correct state.

1 #!pyobjects
2
3 File.managed("/tmp", user='root', group='root', mode='1777')

Nice and Pythonic!

By using the "shebang" syntax to switch to the pyobjects renderer we can now
write our state data using an object based interface that should feel at home
to python developers. You can import any module and do anything that you'd
like (with caution, importing sqlalchemy, django or other large frameworks has
not been tested yet). Using the pyobjects renderer is exactly the same as
using the built-in Python renderer with the exception that pyobjects provides
you with an object based interface for generating state data.

Creating state data

Pyobjects takes care of creating an object for each of the available states on
the minion. Each state is represented by an object that is the CamelCase
version of its name (i.e. File, Service, User, etc), and these
objects expose all of their available state functions (i.e. File.managed,
Service.running, etc).

The name of the state is split based upon underscores (_), then each part
is capitalized and finally the parts are joined back together.

Some examples:

	postgres_user becomes PostgresUser

	ssh_known_hosts becomes SshKnownHosts

Context Managers and requisites

How about something a little more complex. Here we're going to get into the
core of how to use pyobjects to write states.

1 #!pyobjects
2
3 with Pkg.installed("nginx"):
4 Service.running("nginx", enable=True)
5
6 with Service("nginx", "watch_in"):
7 File.managed("/etc/nginx/conf.d/mysite.conf",
8 owner='root', group='root', mode='0444',
9 source='salt://nginx/mysite.conf')

The objects that are returned from each of the magic method calls are setup to
be used a Python context managers (with) and when you use them as such all
declarations made within the scope will automatically use the enclosing
state as a requisite!

The above could have also been written use direct requisite statements as.

1 #!pyobjects
2
3 Pkg.installed("nginx")
4 Service.running("nginx", enable=True, require=Pkg("nginx"))
5 File.managed("/etc/nginx/conf.d/mysite.conf",
6 owner='root', group='root', mode='0444',
7 source='salt://nginx/mysite.conf',
8 watch_in=Service("nginx"))

You can use the direct requisite statement for referencing states that are
generated outside of the current file.

1 #!pyobjects
2
3 # some-other-package is defined in some other state file
4 Pkg.installed("nginx", require=Pkg("some-other-package"))

The last thing that direct requisites provide is the ability to select which
of the SaltStack requisites you want to use (require, require_in, watch,
watch_in, use & use_in) when using the requisite as a context manager.

1 #!pyobjects
2
3 with Service("my-service", "watch_in"):
4 ...

The above example would cause all declarations inside the scope of the context
manager to automatically have their watch_in set to
Service("my-service").

Including and Extending

To include other states use the include() function. It takes one name per
state to include.

To extend another state use the extend() function on the name when creating
a state.

1 #!pyobjects
2
3 include('http', 'ssh')
4
5 Service.running(extend('apache'),
6 watch=[File('/etc/httpd/extra/httpd-vhosts.conf')])

Importing from other state files

Like any Python project that grows you will likely reach a point where you want
to create reusability in your state tree and share objects between state files,
Map Data (described below) is a perfect example of this.

To facilitate this Python's import statement has been augmented to allow
for a special case when working with a Salt state tree. If you specify a Salt
url (salt://...) as the target for importing from then the pyobjects
renderer will take care of fetching the file for you, parsing it with all of
the pyobjects features available and then place the requested objects in the
global scope of the template being rendered.

This works for all types of import statements; import X,
from X import Y, and from X import Y as Z.

1 #!pyobjects
2
3 import salt://myfile.sls
4 from salt://something/data.sls import Object
5 from salt://something/data.sls import Object as Other

See the Map Data section for a more practical use.

Caveats:

	Imported objects are ALWAYS put into the global scope of your template,
regardless of where your import statement is.

Salt object

In the spirit of the object interface for creating state data pyobjects also
provides a simple object interface to the __salt__ object.

A function named salt exists in scope for your sls files and will dispatch
its attributes to the __salt__ dictionary.

The following lines are functionally equivalent:

1 #!pyobjects
2
3 ret = salt.cmd.run(bar)
4 ret = __salt__['cmd.run'](bar)

Pillar, grain, mine & config data

Pyobjects provides shortcut functions for calling pillar.get,
grains.get, mine.get & config.get on the __salt__ object. This
helps maintain the readability of your state files.

Each type of data can be access by a function of the same name: pillar(),
grains(), mine() and config().

The following pairs of lines are functionally equivalent:

 1 #!pyobjects
 2
 3 value = pillar('foo:bar:baz', 'qux')
 4 value = __salt__['pillar.get']('foo:bar:baz', 'qux')
 5
 6 value = grains('pkg:apache')
 7 value = __salt__['grains.get']('pkg:apache')
 8
 9 value = mine('os:Fedora', 'network.interfaces', 'grain')
10 value = __salt__['mine.get']('os:Fedora', 'network.interfaces', 'grain')
11
12 value = config('foo:bar:baz', 'qux')
13 value = __salt__['config.get']('foo:bar:baz', 'qux')

Opts dictionary and SLS name

Pyobjects provides variable access to the minion options dictionary and the SLS
name that the code resides in. These variables are the same as the opts and
sls variables available in the Jinja renderer.

The following lines show how to access that information.

1 #!pyobjects
2
3 test_mode = __opts__["test"]
4 sls_name = __sls__

Map Data

When building complex states or formulas you often need a way of building up a
map of data based on grain data. The most common use of this is tracking the
package and service name differences between distributions.

To build map data using pyobjects we provide a class named Map that you use to
build your own classes with inner classes for each set of values for the
different grain matches.

 1 #!pyobjects
 2
 3 class Samba(Map):
 4 merge = 'samba:lookup'
 5 # NOTE: priority is new to 2017.7.0
 6 priority = ('os_family', 'os')
 7
 8 class Ubuntu:
 9 __grain__ = 'os'
10 service = 'smbd'
11
12 class Debian:
13 server = 'samba'
14 client = 'samba-client'
15 service = 'samba'
16
17 class RHEL:
18 __match__ = 'RedHat'
19 server = 'samba'
20 client = 'samba'
21 service = 'smb'

Note

By default, the os_family grain will be used as the target for
matching. This can be overridden by specifying a __grain__ attribute.

If a __match__ attribute is defined for a given class, then that value
will be matched against the targeted grain, otherwise the class name's
value will be be matched.

Given the above example, the following is true:

	Minions with an os_family of Debian will be assigned the
attributes defined in the Debian class.

	Minions with an os grain of Ubuntu will be assigned the
attributes defined in the Ubuntu class.

	Minions with an os_family grain of RedHat will be assigned the
attributes defined in the RHEL class.

That said, sometimes a minion may match more than one class. For instance,
in the above example, Ubuntu minions will match both the Debian and
Ubuntu classes, since Ubuntu has an os_family grain of Debian
and an os grain of Ubuntu. As of the 2017.7.0 release, the order is
dictated by the order of declaration, with classes defined later overriding
earlier ones. Additionally, 2017.7.0 adds support for explicitly defining
the ordering using an optional attribute called priority.

Given the above example, os_family matches will be processed first,
with os matches processed after. This would have the effect of
assigning smbd as the service attribute on Ubuntu minions. If the
priority item was not defined, or if the order of the items in the
priority tuple were reversed, Ubuntu minions would have a service
attribute of samba, since os_family matches would have been
processed second.

To use this new data you can import it into your state file and then access
your attributes. To access the data in the map you simply access the attribute
name on the base class that is extending Map. Assuming the above Map was in the
file samba/map.sls, you could do the following.

1 #!pyobjects
2
3 from salt://samba/map.sls import Samba
4
5 with Pkg.installed("samba", names=[Samba.server, Samba.client]):
6 Service.running("samba", name=Samba.service)

	
class salt.renderers.pyobjects.PyobjectsModule(name, attrs)

	This provides a wrapper for bare imports.

	
salt.renderers.pyobjects.load_states()

	This loads our states into the salt __context__

	
salt.renderers.pyobjects.render(template, saltenv='base', sls='', salt_data=True, **kwargs)

	

salt.renderers.stateconf

	maintainer:

	Jack Kuan <kjkuan@gmail.com>

	maturity:

	new

	platform:

	all

This module provides a custom renderer that processes a salt file with a
specified templating engine (e.g. Jinja) and a chosen data renderer (e.g. YAML),
extracts arguments for any stateconf.set state, and provides the extracted
arguments (including Salt-specific args, such as require, etc) as template
context. The goal is to make writing reusable/configurable/parameterized
salt files easier and cleaner.

To use this renderer, either set it as the default renderer via the
renderer option in master/minion's config, or use the shebang line in each
individual sls file, like so: #!stateconf. Note, due to the way this
renderer works, it must be specified as the first renderer in a render
pipeline. That is, you cannot specify #!mako|yaml|stateconf, for example.
Instead, you specify them as renderer arguments: #!stateconf mako . yaml.

Here's a list of features enabled by this renderer.

	Prefixes any state id (declaration or reference) that starts with a dot (.)
to avoid duplicated state ids when the salt file is included by other salt
files.

For example, in the salt://some/file.sls, a state id such as .sls_params
will be turned into some.file::sls_params. Example:

#!stateconf yaml . jinja

.vim:
 pkg.installed

Above will be translated into:

some.file::vim:
 pkg.installed:
 - name: vim

Notice how that if a state under a dot-prefixed state id has no name
argument then one will be added automatically by using the state id with
the leading dot stripped off.

The leading dot trick can be used with extending state ids as well,
so you can include relatively and extend relatively. For example, when
extending a state in salt://some/other_file.sls, e.g.:

#!stateconf yaml . jinja

include:
 - .file

extend:
 .file::sls_params:
 stateconf.set:
 - name1: something

Above will be pre-processed into:

include:
 - some.file

extend:
 some.file::sls_params:
 stateconf.set:
 - name1: something

	Adds a sls_dir context variable that expands to the directory containing
the rendering salt file. So, you can write salt://{{sls_dir}}/... to
reference templates files used by your salt file.

	Recognizes the special state function, stateconf.set, that configures a
default list of named arguments usable within the template context of
the salt file. Example:

#!stateconf yaml . jinja

.sls_params:
 stateconf.set:
 - name1: value1
 - name2: value2
 - name3:
 - value1
 - value2
 - value3
 - require_in:
 - cmd: output

--- end of state config ---

.output:
 cmd.run:
 - name: |
 echo 'name1={{sls_params.name1}}
 name2={{sls_params.name2}}
 name3[1]={{sls_params.name3[1]}}
 '

This even works with include + extend so that you can override
the default configured arguments by including the salt file and then
extend the stateconf.set states that come from the included salt
file. (IMPORTANT: Both the included and the extending sls files must use the
stateconf renderer for this ``extend`` to work!)

Notice that the end of configuration marker (# --- end of state config --)
is needed to separate the use of 'stateconf.set' form the rest of your salt
file. The regex that matches such marker can be configured via the
stateconf_end_marker option in your master or minion config file.

Sometimes, it is desirable to set a default argument value that's based on
earlier arguments in the same stateconf.set. For example, it may be
tempting to do something like this:

#!stateconf yaml . jinja

.apache:
 stateconf.set:
 - host: localhost
 - port: 1234
 - url: 'http://{{host}}:{{port}}/'

--- end of state config ---

.test:
 cmd.run:
 - name: echo '{{apache.url}}'
 - cwd: /

However, this won't work. It can however be worked around like so:

#!stateconf yaml . jinja

.apache:
 stateconf.set:
 - host: localhost
 - port: 1234
{# - url: 'http://{{host}}:{{port}}/' #}

--- end of state config ---
{{ apache.setdefault('url', "http://%(host)s:%(port)s/" % apache) }}

.test:
 cmd.run:
 - name: echo '{{apache.url}}'
 - cwd: /

	Adds support for relative include and exclude of .sls files. Example:

#!stateconf yaml . jinja

include:
 - .apache
 - .db.mysql
 - ..app.django

exclude:
 - sls: .users

If the above is written in a salt file at salt://some/where.sls then
it will include salt://some/apache.sls, salt://some/db/mysql.sls and
salt://app/django.sls, and exclude salt://some/users.ssl. Actually,
it does that by rewriting the above include and exclude into:

include:
 - some.apache
 - some.db.mysql
 - app.django

exclude:
 - sls: some.users

	Optionally (enabled by default, disable via the -G renderer option,
e.g. in the shebang line: #!stateconf -G), generates a
stateconf.set goal state (state id named as .goal by default,
configurable via the master/minion config option, stateconf_goal_state)
that requires all other states in the salt file. Note, the .goal
state id is subject to dot-prefix rename rule mentioned earlier.

Such goal state is intended to be required by some state in an including
salt file. For example, in your webapp salt file, if you include a
sls file that is supposed to setup Tomcat, you might want to make sure that
all states in the Tomcat sls file will be executed before some state in
the webapp sls file.

	Optionally (enable via the -o renderer option, e.g. in the shebang line:
#!stateconf -o), orders the states in a sls file by adding a
require requisite to each state such that every state requires the
state defined just before it. The order of the states here is the order
they are defined in the sls file. (Note: this feature is only available
if your minions are using Python >= 2.7. For Python2.6, it should also
work if you install the ordereddict module from PyPI)

By enabling this feature, you are basically agreeing to author your sls
files in a way that gives up the explicit (or implicit?) ordering imposed
by the use of require, watch, require_in or watch_in
requisites, and instead, you rely on the order of states you define in
the sls files. This may or may not be a better way for you. However, if
there are many states defined in a sls file, then it tends to be easier
to see the order they will be executed with this feature.

You are still allowed to use all the requisites, with a few restrictions.
You cannot require or watch a state defined after the current
state. Similarly, in a state, you cannot require_in or watch_in
a state defined before it. Breaking any of the two restrictions above
will result in a state loop. The renderer will check for such incorrect
uses if this feature is enabled.

Additionally, names declarations cannot be used with this feature
because the way they are compiled into low states make it impossible to
guarantee the order in which they will be executed. This is also checked
by the renderer. As a workaround for not being able to use names,
you can achieve the same effect, by generate your states with the
template engine available within your sls file.

Finally, with the use of this feature, it becomes possible to easily make
an included sls file execute all its states after some state (say, with
id X) in the including sls file. All you have to do is to make state,
X, require_in the first state defined in the included sls file.

When writing sls files with this renderer, one should avoid using what can be
defined in a name argument of a state as the state's id. That is, avoid
writing states like this:

/path/to/some/file:
 file.managed:
 - source: salt://some/file

cp /path/to/some/file file2:
 cmd.run:
 - cwd: /
 - require:
 - file: /path/to/some/file

Instead, define the state id and the name argument separately for each
state. Also, the ID should be something meaningful and easy to reference within
a requisite (which is a good habit anyway, and such extra indirection would
also makes the sls file easier to modify later). Thus, the above states should
be written like this:

add-some-file:
 file.managed:
 - name: /path/to/some/file
 - source: salt://some/file

copy-files:
 cmd.run:
 - name: cp /path/to/some/file file2
 - cwd: /
 - require:
 - file: add-some-file

Moreover, when referencing a state from a requisite, you should reference the
state's id plus the state name rather than the state name plus its name
argument. (Yes, in the above example, you can actually require the
file: /path/to/some/file, instead of the file: add-some-file). The
reason is that this renderer will re-write or rename state id's and their
references for state id's prefixed with .. So, if you reference name
then there's no way to reliably rewrite such reference.

salt.renderers.toml

	
salt.renderers.tomlmod.render(sls_data, saltenv='base', sls='', **kws)

	Accepts TOML as a string or as a file object and runs it through the
parser.

	Return type:

	A Python data structure

salt.renderers.wempy

	
salt.renderers.wempy.render(template_file, saltenv='base', sls='', argline='', context=None, **kws)

	Render the data passing the functions and grains into the rendering system

	Return type:

	string

salt.renderers.yaml

Understanding YAML

The default renderer for SLS files is the YAML renderer. YAML is a
markup language with many powerful features. However, Salt uses
a small subset of YAML that maps over very commonly used data structures,
like lists and dictionaries. It is the job of the YAML renderer to take
the YAML data structure and compile it into a Python data structure for
use by Salt.

Though YAML syntax may seem daunting and terse at first, there are only
three very simple rules to remember when writing YAML for SLS files.

Rule One: Indentation

YAML uses a fixed indentation scheme to represent relationships between
data layers. Salt requires that the indentation for each level consists
of exactly two spaces. Do not use tabs.

Rule Two: Colons

Python dictionaries are, of course, simply key-value pairs. Users from other
languages may recognize this data type as hashes or associative arrays.

Dictionary keys are represented in YAML as strings terminated by a trailing colon.
Values are represented by either a string following the colon, separated by a space:

my_key: my_value

In Python, the above maps to:

{"my_key": "my_value"}

Dictionaries can be nested:

first_level_dict_key:
 second_level_dict_key: value_in_second_level_dict

And in Python:

{"first_level_dict_key": {"second_level_dict_key": "value_in_second_level_dict"}}

Rule Three: Dashes

To represent lists of items, a single dash followed by a space is used. Multiple
items are a part of the same list as a function of their having the same level of indentation.

- list_value_one
- list_value_two
- list_value_three

Lists can be the value of a key-value pair. This is quite common in Salt:

my_dictionary:
 - list_value_one
 - list_value_two
 - list_value_three

Reference

YAML Renderer for Salt

For YAML usage information see Understanding YAML.

	
salt.renderers.yaml.get_yaml_loader(argline)

	Return the ordered dict yaml loader

	
salt.renderers.yaml.render(yaml_data, saltenv='base', sls='', argline='', **kws)

	Accepts YAML as a string or as a file object and runs it through the YAML
parser.

	Return type:

	A Python data structure

salt.renderers.yamlex

YAMLEX renderer is a replacement of the YAML renderer.
It's 100% YAML with a pinch of Salt magic:

	All mappings are automatically OrderedDict

	All strings are automatically str obj

	data aggregation with !aggregation yaml tag, based on the salt.utils.aggregation module.

	data aggregation over documents for pillar

Instructed aggregation within the !aggregation and the !reset tags:

#!yamlex
foo: !aggregate first
foo: !aggregate second
bar: !aggregate {first: foo}
bar: !aggregate {second: bar}
baz: !aggregate 42
qux: !aggregate default
!reset qux: !aggregate my custom data

is roughly equivalent to

foo: [first, second]
bar: {first: foo, second: bar}
baz: [42]
qux: [my custom data]

Reference

	
salt.renderers.yamlex.render(sls_data, saltenv='base', sls='', **kws)

	Accepts YAML_EX as a string or as a file object and runs it through the YAML_EX
parser.

	Return type:

	A Python data structure

Using Salt

This section describes the fundamental components and concepts that you need to understand to use Salt.

	Grains

	Storing Static Data in the Pillar

	Targeting Minions

	The Salt Mine

	Runners

	Salt Engines

	What is YAML and How To Use It

	Understanding Jinja

	Tutorials Index

	Troubleshooting

	Frequently Asked Questions

	Salt Best Practices

Grains

Salt comes with an interface to derive information about the underlying system.
This is called the grains interface, because it presents salt with grains of
information. Grains are collected for the operating system, domain name,
IP address, kernel, OS type, memory, and many other system properties.

The grains interface is made available to Salt modules and components so that
the right salt minion commands are automatically available on the right
systems.

Grain data is relatively static, though if system information changes
(for example, if network settings are changed), or if a new value is assigned
to a custom grain, grain data is refreshed.

Note

Grains resolve to lowercase letters. For example, FOO, and foo
target the same grain.

Listing Grains

Available grains can be listed by using the 'grains.ls' module:

salt '*' grains.ls

Grains data can be listed by using the 'grains.items' module:

salt '*' grains.items

Using grains in a state

To use a grain in a state you can access it via {{ grains['key'] }}.

Grains in the Minion Config

Grains can also be statically assigned within the minion configuration file.
Just add the option grains and pass options to it:

grains:
 roles:
 - webserver
 - memcache
 deployment: datacenter4
 cabinet: 13
 cab_u: 14-15

Then status data specific to your servers can be retrieved via Salt, or used
inside of the State system for matching. It also makes it possible to target based on specific data about your deployment, as in the example above.

Grains in /etc/salt/grains

If you do not want to place your custom static grains in the minion config
file, you can also put them in /etc/salt/grains on the minion. They are configured in the
same way as in the above example, only without a top-level grains: key:

roles:
 - webserver
 - memcache
deployment: datacenter4
cabinet: 13
cab_u: 14-15

Note

Grains in /etc/salt/grains are ignored if you specify the same grains in the minion config.

Note

Grains are static, and since they are not often changed, they will need a grains refresh when they are updated. You can do this by calling: salt minion saltutil.refresh_modules

Note

You can equally configure static grains for Proxy Minions.
As multiple Proxy Minion processes can run on the same machine, you need
to index the files using the Minion ID, under /etc/salt/proxy.d/<minion ID>/grains.
For example, the grains for the Proxy Minion router1 can be defined
under /etc/salt/proxy.d/router1/grains, while the grains for the
Proxy Minion switch7 can be put in /etc/salt/proxy.d/switch7/grains.

Matching Grains in the Top File

With correctly configured grains on the Minion, the top file used in
Pillar or during Highstate can be made very efficient. For example, consider
the following configuration:

'roles:webserver':
 - match: grain
 - state0

'roles:memcache':
 - match: grain
 - state1
 - state2

For this example to work, you would need to have defined the grain
role for the minions you wish to match.

Writing Grains

Warning

Grains can be set by users that have access to the minion configuration files on
the local system, making them less secure than other identifiers in Salt. Avoid
storing sensitive data, such as passwords or keys, on minions. Instead, make
use of Storing Static Data in the Pillar and/or Storing Data in Other Databases.

The grains are derived by executing all of the "public" functions (i.e. those
which do not begin with an underscore) found in the modules located in the
Salt's core grains code, followed by those in any custom grains modules. The
functions in a grains module must return a Python dictionary [https://docs.python.org/3/library/stdtypes.html#typesmapping], where the dictionary keys are the names of grains, and
each key's value is that value for that grain.

Custom grains modules should be placed in a subdirectory named _grains
located under the file_roots specified by the master config
file. The default path would be /srv/salt/_grains. Custom grains modules
will be distributed to the minions when state.highstate is run, or by executing the
saltutil.sync_grains or
saltutil.sync_all functions.

Grains modules are easy to write, and (as noted above) only need to return a
dictionary. For example:

def yourfunction():
 # initialize a grains dictionary
 grains = {}
 # Some code for logic that sets grains like
 grains["yourcustomgrain"] = True
 grains["anothergrain"] = "somevalue"
 return grains

The name of the function does not matter and will not factor into the grains
data at all; only the keys/values returned become part of the grains.

When to Use a Custom Grain

Before adding new grains, consider what the data is and remember that grains
should (for the most part) be static data.

If the data is something that is likely to change, consider using Pillar or an execution module instead. If it's a simple set of
key/value pairs, pillar is a good match. If compiling the information requires
that system commands be run, then putting this information in an execution
module is likely a better idea.

Good candidates for grains are data that is useful for targeting minions in the
top file or the Salt CLI. The name and data structure of
the grain should be designed to support many platforms, operating systems or
applications. Also, keep in mind that Jinja templating in Salt supports
referencing pillar data as well as invoking functions from execution modules,
so there's no need to place information in grains to make it available to Jinja
templates. For example:

...
...
{{ salt['module.function_name']('argument_1', 'argument_2') }}
{{ pillar['my_pillar_key'] }}
...
...

Warning

Custom grains will not be available in the top file until after the first
highstate. To make custom grains available on a
minion's first highstate, it is recommended to use this example to ensure that the custom grains are synced when
the minion starts.

Loading Custom Grains

If you have multiple functions specifying grains that are called from a main
function, be sure to prepend grain function names with an underscore. This prevents
Salt from including the loaded grains from the grain functions in the final
grain data structure. For example, consider this custom grain file:

#!/usr/bin/env python
def _my_custom_grain():
 my_grain = {"foo": "bar", "hello": "world"}
 return my_grain

def main():
 # initialize a grains dictionary
 grains = {}
 grains["my_grains"] = _my_custom_grain()
 return grains

The output of this example renders like so:

salt-call --local grains.items
local:

 <Snipped for brevity>
 my_grains:

 foo:
 bar
 hello:
 world

However, if you don't prepend the my_custom_grain function with an underscore,
the function will be rendered twice by Salt in the items output: once for the
my_custom_grain call itself, and again when it is called in the main
function:

salt-call --local grains.items
local:

 <Snipped for brevity>
 foo:
 bar
 <Snipped for brevity>
 hello:
 world
 <Snipped for brevity>
 my_grains:

 foo:
 bar
 hello:
 world

Precedence

Core grains can be overridden by custom grains. As there are several ways of
defining custom grains, there is an order of precedence which should be kept in
mind when defining them. The order of evaluation is as follows:

	Core grains.

	Custom grains in /etc/salt/grains.

	Custom grains in /etc/salt/minion.

	Custom grain modules in _grains directory, synced to minions.

Each successive evaluation overrides the previous ones, so any grains defined
by custom grains modules synced to minions that have the same name as a core
grain will override that core grain. Similarly, grains from
/etc/salt/minion override both core grains and custom grain modules, and
grains in _grains will override any grains of the same name.

For custom grains, if the function takes an argument grains, then the
previously rendered grains will be passed in. Because the rest of the grains
could be rendered in any order, the only grains that can be relied upon to be
passed in are core grains. This was added in the 2019.2.0 release.

Examples of Grains

The core module in the grains package is where the main grains are loaded by
the Salt minion and provides the principal example of how to write grains:

salt/grains/core.py [https://github.com/saltstack/salt/blob/master/salt/grains/core.py]

Syncing Grains

Syncing grains can be done a number of ways. They are automatically synced when
state.highstate is called, or (as noted
above) the grains can be manually synced and reloaded by calling the
saltutil.sync_grains or
saltutil.sync_all functions.

Note

When the grains_cache is set to False, the grains dictionary is built
and stored in memory on the minion. Every time the minion restarts or
saltutil.refresh_grains is run, the grain dictionary is rebuilt from scratch.

Storing Static Data in the Pillar

Pillar is an interface for Salt designed to offer global values that can be
distributed to minions. Pillar data is managed in a similar way as
the Salt State Tree.

Pillar was added to Salt in version 0.9.8

Note

Storing sensitive data

Pillar data is compiled on the master. Additionally, pillar data for a
given minion is only accessible by the minion for which it is targeted in
the pillar configuration. This makes pillar useful for storing sensitive
data specific to a particular minion.

Declaring the Master Pillar

The Salt Master server maintains a pillar_roots setup that
matches the structure of the file_roots used in the Salt file
server. Like file_roots, the pillar_roots option
maps environments to directories. The pillar data is then mapped to minions
based on matchers in a top file which is laid out in the same way as the state
top file. Salt pillars can use the same matcher types as the standard top
file.

conf_master:pillar_roots is configured just like file_roots.
For example:

pillar_roots:
 base:
 - /srv/pillar

This example configuration declares that the base environment will be located
in the /srv/pillar directory. It must not be in a subdirectory of the
state tree.

The top file used matches the name of the top file used for States,
and has the same structure:

/srv/pillar/top.sls

base:
 '*':
 - packages

In the above top file, it is declared that in the base environment, the
glob matching all minions will have the pillar data found in the packages
pillar available to it. Assuming the pillar_roots value of /srv/pillar
taken from above, the packages pillar would be located at
/srv/pillar/packages.sls.

Any number of matchers can be added to the base environment. For example, here
is an expanded version of the Pillar top file stated above:

/srv/pillar/top.sls:

base:
 '*':
 - packages
 'web*':
 - vim

In this expanded top file, minions that match web* will have access to the
/srv/pillar/packages.sls file, as well as the /srv/pillar/vim.sls file.

Another example shows how to use other standard top matching types
to deliver specific salt pillar data to minions with different properties.

Here is an example using the grains matcher to target pillars to minions
by their os grain:

dev:
 'os:Debian':
 - match: grain
 - servers

Pillar definitions can also take a keyword argument ignore_missing.
When the value of ignore_missing is True, all errors for missing
pillar files are ignored. The default value for ignore_missing is
False.

Here is an example using the ignore_missing keyword parameter to ignore
errors for missing pillar files:

base:
 '*':
 - servers
 - systems
 - ignore_missing: True

Assuming that the pillar servers exists in the fileserver backend
and the pillar systems doesn't, all pillar data from servers
pillar is delivered to minions and no error for the missing pillar
systems is noted under the key _errors in the pillar data
delivered to minions.

Should the ignore_missing keyword parameter have the value False,
an error for the missing pillar systems would produce the value
Specified SLS 'servers' in environment 'base' is not available on the salt master
under the key _errors in the pillar data delivered to minions.

/srv/pillar/packages.sls

{% if grains['os'] == 'RedHat' %}
apache: httpd
git: git
{% elif grains['os'] == 'Debian' %}
apache: apache2
git: git-core
{% endif %}

company: Foo Industries

Important

See Is Targeting using Grain Data Secure? for
important security information.

The above pillar sets two key/value pairs. If a minion is running RedHat, then
the apache key is set to httpd and the git key is set to the value
of git. If the minion is running Debian, those values are changed to
apache2 and git-core respectively. All minions that have this pillar
targeting to them via a top file will have the key of company with a value
of Foo Industries.

Consequently this data can be used from within modules, renderers, State SLS
files, and more via the shared pillar dictionary:

apache:
 pkg.installed:
 - name: {{ pillar['apache'] }}

git:
 pkg.installed:
 - name: {{ pillar['git'] }}

Finally, the above states can utilize the values provided to them via Pillar.
All pillar values targeted to a minion are available via the 'pillar'
dictionary. As seen in the above example, Jinja substitution can then be
utilized to access the keys and values in the Pillar dictionary.

Note that you cannot just list key/value-information in top.sls. Instead,
target a minion to a pillar file and then list the keys and values in the
pillar. Here is an example top file that illustrates this point:

base:
 '*':
 - common_pillar

And the actual pillar file at '/srv/pillar/common_pillar.sls':

foo: bar
boo: baz

Note

When working with multiple pillar environments, assuming that each pillar
environment has its own top file, the jinja placeholder {{ saltenv }}
can be used in place of the environment name:

{{ saltenv }}:
 '*':
 - common_pillar

Yes, this is {{ saltenv }}, and not {{ pillarenv }}. The reason for
this is because the Pillar top files are parsed using some of the same code
which parses top files when running states, so
the pillar environment takes the place of {{ saltenv }} in the jinja
context.

Dynamic Pillar Environments

If environment __env__ is specified in pillar_roots, all
environments that are not explicitly specified in pillar_roots
will map to the directories from __env__. This allows one to use dynamic
git branch based environments for state/pillar files with the same file-based
pillar applying to all environments. For example:

pillar_roots:
 __env__:
 - /srv/pillar

ext_pillar:
 - git:
 - __env__ https://example.com/git-pillar.git

New in version 2017.7.5,2018.3.1.

Taking it one step further, __env__ can also be used in the pillar_root
filesystem path. It will be replaced with the actual pillarenv and searched
for Pillar data to provide to the minion. Note this substitution ONLY occurs for
the __env__ environment. For instance, this configuration:

pillar_roots:
 __env__:
 - /srv/__env__/pillar

is equivalent to this static configuration:

pillar_roots:
 dev:
 - /srv/dev/pillar
 test:
 - /srv/test/pillar
 prod:
 - /srv/prod/pillar

New in version 3005.

Pillar Namespace Flattening

The separate pillar SLS files all merge down into a single dictionary of
key-value pairs. When the same key is defined in multiple SLS files, this can
result in unexpected behavior if care is not taken to how the pillar SLS files
are laid out.

For example, given a top.sls containing the following:

base:
 '*':
 - packages
 - services

with packages.sls containing:

bind: bind9

and services.sls containing:

bind: named

Then a request for the bind pillar key will only return named. The
bind9 value will be lost, because services.sls was evaluated later.

Note

Pillar files are applied in the order they are listed in the top file.
Therefore conflicting keys will be overwritten in a 'last one wins' manner!
For example, in the above scenario conflicting key values in services
will overwrite those in packages because it's at the bottom of the list.

It can be better to structure your pillar files with more hierarchy. For
example the package.sls file could be configured like so:

packages:
 bind: bind9

This would make the packages pillar key a nested dictionary containing a
bind key.

Pillar Dictionary Merging

If the same pillar key is defined in multiple pillar SLS files, and the keys in
both files refer to nested dictionaries, then the content from these
dictionaries will be recursively merged.

For example, keeping the top.sls the same, assume the following
modifications to the pillar SLS files:

packages.sls:

bind:
 package-name: bind9
 version: 9.9.5

services.sls:

bind:
 port: 53
 listen-on: any

The resulting pillar dictionary will be:

$ salt-call pillar.get bind
local:

 listen-on:
 any
 package-name:
 bind9
 port:
 53
 version:
 9.9.5

Since both pillar SLS files contained a bind key which contained a nested
dictionary, the pillar dictionary's bind key contains the combined contents
of both SLS files' bind keys.

Including Other Pillars

New in version 0.16.0.

Pillar SLS files may include other pillar files, similar to State files. Two
syntaxes are available for this purpose. The simple form simply includes the
additional pillar as if it were part of the same file:

include:
 - users

The full include form allows two additional options -- passing default values
to the templating engine for the included pillar file as well as an optional
key under which to nest the results of the included pillar:

include:
 - users:
 defaults:
 sudo: ['bob', 'paul']
 key: users

With this form, the included file (users.sls) will be nested within the 'users'
key of the compiled pillar. Additionally, the 'sudo' value will be available
as a template variable to users.sls.

In-Memory Pillar Data vs. On-Demand Pillar Data

Since compiling pillar data is computationally expensive, the minion will
maintain a copy of the pillar data in memory to avoid needing to ask the master
to recompile and send it a copy of the pillar data each time pillar data is
requested. This in-memory pillar data is what is returned by the
pillar.item, pillar.get, and pillar.raw
functions.

Also, for those writing custom execution modules, or contributing to Salt's
existing execution modules, the in-memory pillar data is available as the
__pillar__ dunder dictionary.

The in-memory pillar data is generated on minion start, and can be refreshed
using the saltutil.refresh_pillar function:

salt '*' saltutil.refresh_pillar

This function triggers the minion to asynchronously refresh the in-memory
pillar data and will always return None.

In contrast to in-memory pillar data, certain actions trigger pillar data to be
compiled to ensure that the most up-to-date pillar data is available. These
actions include:

	Running states

	Running pillar.items

Performing these actions will not refresh the in-memory pillar data. So, if
pillar data is modified, and then states are run, the states will see the
updated pillar data, but pillar.item,
pillar.get, and pillar.raw will not see this data unless refreshed using
saltutil.refresh_pillar.

If you are using the Pillar Cache and have set pillar_cache to True,
the pillar cache can be updated either when you run saltutil.refresh_pillar, or using the pillar runner function
pillar.clear_pillar_cache:

salt-run pillar.clear_pillar_cache 'minion'

The pillar will not be updated when running pillar.items or a state for example. If you are
using a Salt version before 3003, you would need to manually delete the cache
file, located in Salt's master cache. For example, on linux the file would be
in this directory: /var/cache/salt/master/pillar_cache/

How Pillar Environments Are Handled

When multiple pillar environments are used, the default behavior is for the
pillar data from all environments to be merged together. The pillar dictionary
will therefore contain keys from all configured environments.

The pillarenv minion config option can be used to force the
minion to only consider pillar configuration from a single environment. This
can be useful in cases where one needs to run states with alternate pillar
data, either in a testing/QA environment or to test changes to the pillar data
before pushing them live.

For example, assume that the following is set in the minion config file:

pillarenv: base

This would cause that minion to ignore all other pillar environments besides
base when compiling the in-memory pillar data. Then, when running states,
the pillarenv CLI argument can be used to override the minion's
pillarenv config value:

salt '*' state.apply mystates pillarenv=testing

The above command will run the states with pillar data sourced exclusively from
the testing environment, without modifying the in-memory pillar data.

Note

When running states, the pillarenv CLI option does not require a
pillarenv option to be set in the minion config file. When
pillarenv is left unset, as mentioned above all configured
environments will be combined. Running states with pillarenv=testing in
this case would still restrict the states' pillar data to just that of the
testing pillar environment.

Starting in the 2017.7.0 release, it is possible to pin the pillarenv to the
effective saltenv, using the pillarenv_from_saltenv minion
config option. When this is set to True, if a specific saltenv is specified
when running states, the pillarenv will be the same. This essentially makes
the following two commands equivalent:

salt '*' state.apply mystates saltenv=dev
salt '*' state.apply mystates saltenv=dev pillarenv=dev

However, if a pillarenv is specified, it will override this behavior. So, the
following command will use the qa pillar environment but source the SLS
files from the dev saltenv:

salt '*' state.apply mystates saltenv=dev pillarenv=qa

So, if a pillarenv is set in the minion config file,
pillarenv_from_saltenv will be ignored, and passing a
pillarenv on the CLI will temporarily override
pillarenv_from_saltenv.

Viewing Pillar Data

To view pillar data, use the pillar execution
module. This module includes several functions, each of them with their own
use. These functions include:

	pillar.item - Retrieves the value of
one or more keys from the in-memory pillar data.

	pillar.items - Compiles a fresh pillar
dictionary and returns it, leaving the in-memory pillar data untouched. If pillar keys are passed to this function
however, this function acts like pillar.item and returns their values from the in-memory
pillar data.

	pillar.raw - Like pillar.items, it returns the entire pillar dictionary, but
from the in-memory pillar data instead of compiling
fresh pillar data.

	pillar.get - Described in detail below.

The pillar.get Function

New in version 0.14.0.

The pillar.get function works much in the same
way as the get method in a python dict, but with an enhancement: nested
dictionaries can be traversed using a colon as a delimiter.

If a structure like this is in pillar:

foo:
 bar:
 baz: qux

Extracting it from the raw pillar in an sls formula or file template is done
this way:

{{ pillar['foo']['bar']['baz'] }}

Now, with the new pillar.get function the data
can be safely gathered and a default can be set, allowing the template to fall
back if the value is not available:

{{ salt['pillar.get']('foo:bar:baz', 'qux') }}

This makes handling nested structures much easier.

Note

pillar.get() vs salt['pillar.get']()

It should be noted that within templating, the pillar variable is just
a dictionary. This means that calling pillar.get() inside of a
template will just use the default dictionary .get() function which
does not include the extra : delimiter functionality. It must be
called using the above syntax (salt['pillar.get']('foo:bar:baz',
'qux')) to get the salt function, instead of the default dictionary
behavior.

Setting Pillar Data at the Command Line

Pillar data can be set at the command line like the following example:

salt '*' state.apply pillar='{"cheese": "spam"}'

This will add a pillar key of cheese with its value set to spam.

Note

Be aware that when sending sensitive data via pillar on the command-line
that the publication containing that data will be received by all minions
and will not be restricted to the targeted minions. This may represent
a security concern in some cases.

Pillar Encryption

Salt's renderer system can be used to decrypt pillar data. This allows for
pillar items to be stored in an encrypted state, and decrypted during pillar
compilation.

Encrypted Pillar SLS

New in version 2017.7.0.

Consider the following pillar SLS file:

secrets:
 vault:
 foo: |
 -----BEGIN PGP MESSAGE-----

 hQEMAw2B674HRhwSAQgAhTrN8NizwUv/VunVrqa4/X8t6EUulrnhKcSeb8sZS4th
 W1Qz3K2NjL4lkUHCQHKZVx/VoZY7zsddBIFvvoGGfj8+2wjkEDwFmFjGE4DEsS74
 ZLRFIFJC1iB/O0AiQ+oU745skQkU6OEKxqavmKMrKo3rvJ8ZCXDC470+i2/Hqrp7
 +KWGmaDOO422JaSKRm5D9bQZr9oX7KqnrPG9I1+UbJyQSJdsdtquPWmeIpamEVHb
 VMDNQRjSezZ1yKC4kCWm3YQbBF76qTHzG1VlLF5qOzuGI9VkyvlMaLfMibriqY73
 zBbPzf6Bkp2+Y9qyzuveYMmwS4sEOuZL/PetqisWe9JGAWD/O+slQ2KRu9hNww06
 KMDPJRdyj5bRuBVE4hHkkP23KrYr7SuhW2vpe7O/MvWEJ9uDNegpMLhTWruGngJh
 iFndxegN9w==
 =bAuo
 -----END PGP MESSAGE-----
 bar: this was unencrypted already
 baz: |
 -----BEGIN PGP MESSAGE-----

 hQEMAw2B674HRhwSAQf+Ne+IfsP2IcPDrUWct8sTJrga47jQvlPCmO+7zJjOVcqz
 gLjUKvMajrbI/jorBWxyAbF+5E7WdG9WHHVnuoywsyTB9rbmzuPqYCJCe+ZVyqWf
 9qgJ+oUjcvYIFmH3h7H68ldqbxaAUkAOQbTRHdr253wwaTIC91ZeX0SCj64HfTg7
 Izwk383CRWonEktXJpientApQFSUWNeLUWagEr/YPNFA3vzpPF5/Ia9X8/z/6oO2
 q+D5W5mVsns3i2HHbg2A8Y+pm4TWnH6mTSh/gdxPqssi9qIrzGQ6H1tEoFFOEq1V
 kJBe0izlfudqMq62XswzuRB4CYT5Iqw1c97T+1RqENJCASG0Wz8AGhinTdlU5iQl
 JkLKqBxcBz4L70LYWyHhYwYROJWjHgKAywX5T67ftq0wi8APuZl9olnOkwSK+wrY
 1OZi
 =7epf
 -----END PGP MESSAGE-----
 qux:
 - foo
 - bar
 - |
 -----BEGIN PGP MESSAGE-----

 hQEMAw2B674HRhwSAQgAg1YCmokrweoOI1c9HO0BLamWBaFPTMblOaTo0WJLZoTS
 ksbQ3OJAMkrkn3BnnM/djJc5C7vNs86ZfSJ+pvE8Sp1Rhtuxh25EKMqGOn/SBedI
 gR6N5vGUNiIpG5Tf3DuYAMNFDUqw8uY0MyDJI+ZW3o3xrMUABzTH0ew+Piz85FDA
 YrVgwZfqyL+9OQuu6T66jOIdwQNRX2NPFZqvon8liZUPus5VzD8E5cAL9OPxQ3sF
 f7/zE91YIXUTimrv3L7eCgU1dSxKhhfvA2bEUi+AskMWFXFuETYVrIhFJAKnkFmE
 uZx+O9R9hADW3hM5hWHKH9/CRtb0/cC84I9oCWIQPdI+AaPtICxtsD2N8Q98hhhd
 4M7I0sLZhV+4ZJqzpUsOnSpaGyfh1Zy/1d3ijJi99/l+uVHuvmMllsNmgR+ZTj0=
 =LrCQ
 -----END PGP MESSAGE-----

When the pillar data is compiled, the results will be decrypted:

salt myminion pillar.items
myminion:

 secrets:

 vault:

 bar:
 this was unencrypted already
 baz:
 rosebud
 foo:
 supersecret
 qux:
 - foo
 - bar
 - baz

Salt must be told what portions of the pillar data to decrypt. This is done
using the decrypt_pillar config option:

decrypt_pillar:
 - 'secrets:vault': gpg

The notation used to specify the pillar item(s) to be decrypted is the same as
the one used in pillar.get function.

If a different delimiter is needed, it can be specified using the
decrypt_pillar_delimiter config option:

decrypt_pillar:
 - 'secrets|vault': gpg

decrypt_pillar_delimiter: '|'

The name of the renderer used to decrypt a given pillar item can be omitted,
and if so it will fall back to the value specified by the
decrypt_pillar_default config option, which defaults to gpg.
So, the first example above could be rewritten as:

decrypt_pillar:
 - 'secrets:vault'

Encrypted Pillar Data on the CLI

New in version 2016.3.0.

The following functions support passing pillar data on the CLI via the
pillar argument:

	pillar.items

	state.apply

	state.highstate

	state.sls

Triggering decryption of this CLI pillar data can be done in one of two ways:

	Using the pillar_enc argument:

salt myminion pillar.items pillar_enc=gpg pillar='{foo: "-----BEGIN PGP MESSAGE-----\n\nhQEMAw2B674HRhwSAQf+OvPqEdDoA2fk15I5dYUTDoj1yf/pVolAma6iU4v8Zixn\nRDgWsaAnFz99FEiFACsAGDEFdZaVOxG80T0Lj+PnW4pVy0OXmXHnY2KjV9zx8FLS\nQxfvmhRR4t23WSFybozfMm0lsN8r1vfBBjbK+A72l0oxN78d1rybJ6PWNZiXi+aC\nmqIeunIbAKQ21w/OvZHhxH7cnIiGQIHc7N9nQH7ibyoKQzQMSZeilSMGr2abAHun\nmLzscr4wKMb+81Z0/fdBfP6g3bLWMJga3hSzSldU9ovu7KR8rDJI1qOlENj3Wm8C\nwTpDOB33kWIKMqiAjY3JFtb5MCHrafyggwQL7cX1+tI+AbSO6kZpbcDfzetb77LZ\nxc5NWnnGK4pGoqq4MAmZshw98RpecSHKMosto2gtiuWCuo9Zn5cV/FbjZ9CTWrQ=\n=0hO/\n-----END PGP MESSAGE-----"}'

The newlines in this example are specified using a literal \n. Newlines
can be replaced with a literal \n using sed:

$ echo -n bar | gpg --armor --trust-model always --encrypt -r user@domain.tld | sed ':a;N;$!ba;s/\n/\\n/g'

Note

Using pillar_enc will perform the decryption minion-side, so for
this to work it will be necessary to set up the keyring in
/etc/salt/gpgkeys on the minion just as one would typically do on
the master. The easiest way to do this is to first export the keys from
the master:

gpg --homedir /etc/salt/gpgkeys --export-secret-key -a user@domain.tld >/tmp/keypair.gpg

Then, copy the file to the minion, setup the keyring, and import:

mkdir -p /etc/salt/gpgkeys
chmod 0700 /etc/salt/gpgkeys
gpg --homedir /etc/salt/gpgkeys --list-keys
gpg --homedir /etc/salt/gpgkeys --import --allow-secret-key-import keypair.gpg

The --list-keys command is run create a keyring in the newly-created
directory.

Pillar data which is decrypted minion-side will still be securely
transferred to the master, since the data sent between minion and master is
encrypted with the master's public key.

	Use the decrypt_pillar option. This is less flexible in that
the pillar key passed on the CLI must be pre-configured on the master, but
it doesn't require a keyring to be setup on the minion. One other caveat to
this method is that pillar decryption on the master happens at the end of
pillar compilation, so if the encrypted pillar data being passed on the CLI
needs to be referenced by pillar or ext_pillar during pillar compilation,
it must be decrypted minion-side.

Adding New Renderers for Decryption

Those looking to add new renderers for decryption should look at the gpg renderer for an example of how to do so. The function
that performs the decryption should be recursive and be able to traverse a
mutable type such as a dictionary, and modify the values in-place.

Once the renderer has been written, decrypt_pillar_renderers
should be modified so that Salt allows it to be used for decryption.

If the renderer is being submitted upstream to the Salt project, the renderer
should be added in salt/renderers/ [https://github.com/saltstack/salt/tree/master/salt/renderers/]. Additionally, the following should be
done:

	Both occurrences of decrypt_pillar_renderers in
salt/config/__init__.py [https://github.com/saltstack/salt/tree/master/salt/config/__init__.py] should be updated to include the name of the new
renderer so that it is included in the default value for this config option.

	The documentation for the decrypt_pillar_renderers config
option in the master config file [https://github.com/saltstack/salt/tree/master/doc/ref/configuration/master.rst] and minion config file [https://github.com/saltstack/salt/tree/master/doc/ref/configuration/minion.rst] should be
updated to show the correct new default value.

	The commented example for the decrypt_pillar_renderers config
option in the master config template [https://github.com/saltstack/salt/tree/master/conf/master] should be updated to show the correct
new default value.

Binary Data in the Pillar

Salt has partial support for binary pillar data.

Note

There are some situations (such as salt-ssh) where only text (ASCII or
Unicode) is allowed.

The simplest way to embed binary data in your pillar is to make use of YAML's
built-in binary data type, which requires base64 encoded data.

salt_pic: !!binary
 iVBORw0KGgoAAAANSUhEUgAAAAoAAAAKCAMAAAC67D+PAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAA

Then you can use it as a contents_pillar in a state:

/tmp/salt.png:
 file.managed:
 - contents_pillar: salt_pic

It is also possible to add ASCII-armored encrypted data to pillars, as
mentioned in the Pillar Encryption section.

Master Config in Pillar

For convenience the data stored in the master configuration file can be made
available in all minion's pillars. This makes global configuration of services
and systems very easy but may not be desired if sensitive data is stored in the
master configuration. This option is disabled by default.

To enable the master config from being added to the pillar set
pillar_opts to True in the minion config file:

pillar_opts: True

Minion Config in Pillar

Minion configuration options can be set on pillars. Any option that you want
to modify, should be in the first level of the pillars, in the same way you set
the options in the config file. For example, to configure the MySQL root
password to be used by MySQL Salt execution module, set the following pillar
variable:

mysql.pass: hardtoguesspassword

Master Provided Pillar Error

By default if there is an error rendering a pillar, the detailed error is
hidden and replaced with:

Rendering SLS 'my.sls' failed. Please see master log for details.

The error is protected because it's possible to contain templating data
which would give that minion information it shouldn't know, like a password!

To have the master provide the detailed error that could potentially carry
protected data set pillar_safe_render_error to False:

pillar_safe_render_error: False

	Pillar Walkthrough
	Setting Up Pillar
	More Complex Data

	Parameterizing States With Pillar

	Pillar Makes Simple States Grow Easily

	Setting Pillar Data on the Command Line

	More On Pillar

	Minion Config in Pillar

Pillar Walkthrough

Note

This walkthrough assumes that the reader has already completed the initial
Salt walkthrough.

Pillars are tree-like structures of data defined on the Salt Master and passed
through to minions. They allow confidential, targeted data to be securely sent
only to the relevant minion.

Note

Grains and Pillar are sometimes confused, just remember that Grains
are data about a minion which is stored or generated from the minion.
This is why information like the OS and CPU type are found in Grains.
Pillar is information about a minion or many minions stored or generated
on the Salt Master.

Pillar data is useful for:

	Highly Sensitive Data:
	Information transferred via pillar is guaranteed to only be presented to
the minions that are targeted, making Pillar suitable
for managing security information, such as cryptographic keys and
passwords.

	Minion Configuration:
	Minion modules such as the execution modules, states, and returners can
often be configured via data stored in pillar.

	Variables:
	Variables which need to be assigned to specific minions or groups of
minions can be defined in pillar and then accessed inside sls formulas
and template files.

	Arbitrary Data:
	Pillar can contain any basic data structure in dictionary format,
so a key/value store can be defined making it easy to iterate over a group
of values in sls formulas.

Pillar is therefore one of the most important systems when using Salt. This
walkthrough is designed to get a simple Pillar up and running in a few minutes
and then to dive into the capabilities of Pillar and where the data is
available.

Setting Up Pillar

The pillar is already running in Salt by default. To see the minion's
pillar data:

salt '*' pillar.items

Note

Prior to version 0.16.2, this function is named pillar.data. This
function name is still supported for backwards compatibility.

By default, the contents of the master configuration file are not loaded into
pillar for all minions. This default is stored in the pillar_opts setting,
which defaults to False.

The contents of the master configuration file can be made available to minion
pillar files. This makes global configuration of services and systems very easy,
but note that this may not be desired or appropriate if sensitive data is stored
in the master's configuration file. To enable the master configuration file to be
available to minion as pillar, set pillar_opts: True in the master
configuration file, and then for appropriate minions also set pillar_opts: True
in the minion(s) configuration file.

Similar to the state tree, the pillar is comprised of sls files and has a top file.
The default location for the pillar is in /srv/pillar.

Note

The pillar location can be configured via the pillar_roots option inside
the master configuration file. It must not be in a subdirectory of the state
tree or file_roots. If the pillar is under file_roots, any pillar targeting
can be bypassed by minions.

To start setting up the pillar, the /srv/pillar directory needs to be present:

mkdir /srv/pillar

Now create a simple top file, following the same format as the top file used for
states:

/srv/pillar/top.sls:

base:
 '*':
 - data

This top file associates the data.sls file to all minions. Now the
/srv/pillar/data.sls file needs to be populated:

/srv/pillar/data.sls:

info: some data

To ensure that the minions have the new pillar data, issue a command
to them asking that they fetch their pillars from the master:

salt '*' saltutil.refresh_pillar

Now that the minions have the new pillar, it can be retrieved:

salt '*' pillar.items

The key info should now appear in the returned pillar data.

More Complex Data

Unlike states, pillar files do not need to define formulas.
This example sets up user data with a UID:

/srv/pillar/users/init.sls:

users:
 thatch: 1000
 shouse: 1001
 utahdave: 1002
 redbeard: 1003

Note

The same directory lookups that exist in states exist in pillar, so the
file users/init.sls can be referenced with users in the top
file.

The top file will need to be updated to include this sls file:

/srv/pillar/top.sls:

base:
 '*':
 - data
 - users

Now the data will be available to the minions. To use the pillar data in a
state, you can use Jinja:

/srv/salt/users/init.sls

{% for user, uid in pillar.get('users', {}).items() %}
{{user}}:
 user.present:
 - uid: {{uid}}
{% endfor %}

This approach allows for users to be safely defined in a pillar and then the
user data is applied in an sls file.

Parameterizing States With Pillar

Pillar data can be accessed in state files to customise behavior for each
minion. All pillar (and grain) data applicable to each minion is substituted
into the state files through templating before being run. Typical uses
include setting directories appropriate for the minion and skipping states
that don't apply.

A simple example is to set up a mapping of package names in pillar for
separate Linux distributions:

/srv/pillar/pkg/init.sls:

pkgs:
 {% if grains['os_family'] == 'RedHat' %}
 apache: httpd
 vim: vim-enhanced
 {% elif grains['os_family'] == 'Debian' %}
 apache: apache2
 vim: vim
 {% elif grains['os'] == 'Arch' %}
 apache: apache
 vim: vim
 {% endif %}

The new pkg sls needs to be added to the top file:

/srv/pillar/top.sls:

base:
 '*':
 - data
 - users
 - pkg

Now the minions will auto map values based on respective operating systems
inside of the pillar, so sls files can be safely parameterized:

/srv/salt/apache/init.sls:

apache:
 pkg.installed:
 - name: {{ pillar['pkgs']['apache'] }}

Or, if no pillar is available a default can be set as well:

Note

The function pillar.get used in this example was added to Salt in
version 0.14.0

/srv/salt/apache/init.sls:

apache:
 pkg.installed:
 - name: {{ salt['pillar.get']('pkgs:apache', 'httpd') }}

In the above example, if the pillar value pillar['pkgs']['apache'] is not
set in the minion's pillar, then the default of httpd will be used.

Note

Under the hood, pillar is just a Python dict, so Python dict methods such
as get and items can be used.

Pillar Makes Simple States Grow Easily

One of the design goals of pillar is to make simple sls formulas easily grow
into more flexible formulas without refactoring or complicating the states.

A simple formula:

/srv/salt/edit/vim.sls:

vim:
 pkg.installed: []

/etc/vimrc:
 file.managed:
 - source: salt://edit/vimrc
 - mode: 644
 - user: root
 - group: root
 - require:
 - pkg: vim

Can be easily transformed into a powerful, parameterized formula:

/srv/salt/edit/vim.sls:

vim:
 pkg.installed:
 - name: {{ pillar['pkgs']['vim'] }}

/etc/vimrc:
 file.managed:
 - source: {{ pillar['vimrc'] }}
 - mode: 644
 - user: root
 - group: root
 - require:
 - pkg: vim

Where the vimrc source location can now be changed via pillar:

/srv/pillar/edit/vim.sls:

{% if grains['id'].startswith('dev') %}
vimrc: salt://edit/dev_vimrc
{% elif grains['id'].startswith('qa') %}
vimrc: salt://edit/qa_vimrc
{% else %}
vimrc: salt://edit/vimrc
{% endif %}

Ensuring that the right vimrc is sent out to the correct minions.

The pillar top file must include a reference to the new sls pillar file:

/srv/pillar/top.sls:

base:
 '*':
 - pkg
 - edit.vim

Setting Pillar Data on the Command Line

Pillar data can be set on the command line when running state.apply
<salt.modules.state.apply_() like so:

salt '*' state.apply pillar='{"foo": "bar"}'
salt '*' state.apply my_sls_file pillar='{"hello": "world"}'

Nested pillar values can also be set via the command line:

salt '*' state.sls my_sls_file pillar='{"foo": {"bar": "baz"}}'

Lists can be passed via command line pillar data as follows:

salt '*' state.sls my_sls_file pillar='{"some_list": ["foo", "bar", "baz"]}'

Note

If a key is passed on the command line that already exists on the minion,
the key that is passed in will overwrite the entire value of that key,
rather than merging only the specified value set via the command line.

The example below will swap the value for vim with telnet in the previously
specified list, notice the nested pillar dict:

salt '*' state.apply edit.vim pillar='{"pkgs": {"vim": "telnet"}}'

This will attempt to install telnet on your minions, feel free to
uninstall the package or replace telnet value with anything else.

Note

Be aware that when sending sensitive data via pillar on the command-line
that the publication containing that data will be received by all minions
and will not be restricted to the targeted minions. This may represent
a security concern in some cases.

More On Pillar

Pillar data is generated on the Salt master and securely distributed to
minions. Salt is not restricted to the pillar sls files when defining the
pillar but can retrieve data from external sources. This can be useful when
information about an infrastructure is stored in a separate location.

Reference information on pillar and the external pillar interface can be found
in the Salt documentation:

Pillar

Minion Config in Pillar

Minion configuration options can be set on pillars. Any option that you want
to modify, should be in the first level of the pillars, in the same way you set
the options in the config file. For example, to configure the MySQL root
password to be used by MySQL Salt execution module:

mysql.pass: hardtoguesspassword

This is very convenient when you need some dynamic configuration change that
you want to be applied on the fly. For example, there is a chicken and the egg
problem if you do this:

mysql-admin-passwd:
 mysql_user.present:
 - name: root
 - password: somepasswd

mydb:
 mysql_db.present

The second state will fail, because you changed the root password and the
minion didn't notice it. Setting mysql.pass in the pillar, will help to sort
out the issue. But always change the root admin password in the first place.

This is very helpful for any module that needs credentials to apply state
changes: mysql, keystone, etc.

Targeting Minions

Targeting minions is specifying which minions should run a command or execute a
state by matching against hostnames, or system information, or defined groups,
or even combinations thereof.

For example the command salt web1 apache.signal restart to restart the
Apache httpd server specifies the machine web1 as the target and the
command will only be run on that one minion.

Similarly when using States, the following top file specifies that only
the web1 minion should execute the contents of webserver.sls:

base:
 'web1':
 - webserver

The simple target specifications, glob, regex, and list will cover many use
cases, and for some will cover all use cases, but more powerful options exist.

Targeting with Grains

The Grains interface was built into Salt to allow minions to be targeted by
system properties. So minions running on a particular operating system can
be called to execute a function, or a specific kernel.

Calling via a grain is done by passing the -G option to salt, specifying
a grain and a glob expression to match the value of the grain. The syntax for
the target is the grain key followed by a glob expression: "os:Arch*".

salt -G 'os:Fedora' test.version

Will return True from all of the minions running Fedora.

To discover what grains are available and what the values are, execute the
grains.item salt function:

salt '*' grains.items

More info on using targeting with grains can be found here.

Compound Targeting

New in version 0.9.5.

Multiple target interfaces can be used in conjunction to determine the command
targets. These targets can then be combined using and or or statements.
This is well defined with an example:

salt -C 'G@os:Debian and webser* or E@db.*' test.version

In this example any minion who's id starts with webser and is running
Debian, or any minion who's id starts with db will be matched.

The type of matcher defaults to glob, but can be specified with the
corresponding letter followed by the @ symbol. In the above example a grain
is used with G@ as well as a regular expression with E@. The
webser* target does not need to be prefaced with a target type specifier
because it is a glob.

More info on using compound targeting can be found here.

Node Group Targeting

New in version 0.9.5.

For certain cases, it can be convenient to have a predefined group of minions
on which to execute commands. This can be accomplished using what are called
nodegroups. Nodegroups allow for predefined
compound targets to be declared in the master configuration file, as a sort of
shorthand for having to type out complicated compound expressions.

nodegroups:
 group1: 'L@foo.domain.com,bar.domain.com,baz.domain.com and bl*.domain.com'
 group2: 'G@os:Debian and foo.domain.com'
 group3: 'G@os:Debian and N@group1'

Advanced Targeting Methods

There are many ways to target individual minions or groups of minions in Salt:

	Matching the minion id
	Globbing

	Regular Expressions

	Lists

	Targeting using Grains

	Targeting using Pillar

	Subnet/IP Address Matching

	Compound matchers
	Precedence Matching

	Alternate Delimiters

	Node groups
	Defining Nodegroups as Lists of Minion IDs

	Batch Size

	SECO Range
	Prerequisites

	Preparing Salt

	Targeting with Range

Loadable Matchers

New in version 2019.2.0.

Internally targeting is implemented with chunks of code called Matchers. As of
the 2019.2.0 release, matchers can be loaded dynamically. Currently new matchers
cannot be created, but existing matchers can have their functionality altered or
extended. For more information on Matchers see

	Loadable Matchers

Matching the minion id

Each minion needs a unique identifier. By default when a minion starts for the
first time it chooses its FQDN as that
identifier. The minion id can be overridden via the minion's id
configuration setting.

Tip

minion id and minion keys

The minion id is used to generate the minion's public/private keys
and if it ever changes the master must then accept the new key as though
the minion was a new host.

Globbing

The default matching that Salt utilizes is shell-style globbing around the minion id. This also works for states
in the top file.

Note

You must wrap salt calls that use globbing in single-quotes to
prevent the shell from expanding the globs before Salt is invoked.

Match all minions:

salt '*' test.version

Match all minions in the example.net domain or any of the example domains:

salt '*.example.net' test.version
salt '*.example.*' test.version

Match all the webN minions in the example.net domain (web1.example.net,
web2.example.net … webN.example.net):

salt 'web?.example.net' test.version

Match the web1 through web5 minions:

salt 'web[1-5]' test.version

Match the web1 and web3 minions:

salt 'web[1,3]' test.version

Match the web-x, web-y, and web-z minions:

salt 'web-[x-z]' test.version

Note

For additional targeting methods please review the
compound matchers documentation.

Regular Expressions

Minions can be matched using Perl-compatible regular expressions (which is globbing on steroids and a ton of caffeine).

Match both web1-prod and web1-devel minions:

salt -E 'web1-(prod|devel)' test.version

When using regular expressions in a State's top file, you must specify
the matcher as the first option. The following example executes the contents of
webserver.sls on the above-mentioned minions.

base:
 'web1-(prod|devel)':
 - match: pcre
 - webserver

Lists

At the most basic level, you can specify a flat list of minion IDs:

salt -L 'web1,web2,web3' test.version

Targeting using Grains

Grain data can be used when targeting minions.

For example, the following matches all CentOS minions:

salt -G 'os:CentOS' test.version

Match all minions with 64-bit CPUs, and return number of CPU cores for each
matching minion:

salt -G 'cpuarch:x86_64' grains.item num_cpus

Additionally, globs can be used in grain matches, and grains that are nested in
a dictionary can be matched by adding a colon for each level that is traversed.
For example, the following will match hosts that have a grain called
ec2_tags, which itself is a dictionary with a key named environment,
which has a value that contains the word production:

salt -G 'ec2_tags:environment:*production*'

Important

See Is Targeting using Grain Data Secure? for
important security information.

Targeting using Pillar

Pillar data can be used when targeting minions. This allows for ultimate
control and flexibility when targeting minions.

Note

To start using Pillar targeting it is required to make a Pillar
data cache on Salt Master for each Minion via following commands:
salt '*' saltutil.refresh_pillar or salt '*' saltutil.sync_all.
Also Pillar data cache will be populated during the
highstate run. Once Pillar data changes, you
must refresh the cache by running above commands for this targeting
method to work correctly.

Example:

salt -I 'somekey:specialvalue' test.version

Like with Grains, it is possible to use globbing
as well as match nested values in Pillar, by adding colons for each level that
is being traversed. The below example would match minions with a pillar named
foo, which is a dict containing a key bar, with a value beginning with
baz:

salt -I 'foo:bar:baz*' test.version

Subnet/IP Address Matching

Minions can easily be matched based on IP address, or by subnet (using CIDR [https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing]
notation).

salt -S 192.168.40.20 test.version
salt -S 2001:db8::/64 test.version

Ipcidr matching can also be used in compound matches

salt -C 'S@10.0.0.0/24 and G@os:Debian' test.version

It is also possible to use in both pillar and state-matching

'172.16.0.0/12':
 - match: ipcidr
 - internal

Compound matchers

Compound matchers allow very granular minion targeting using any of Salt's
matchers. The default matcher is a glob match, just as
with CLI and top file matching. To match using anything other than a
glob, prefix the match string with the appropriate letter from the table below,
followed by an @ sign.

	Letter

	Match Type

	Example

	Alt Delimiter?

	G

	Grains glob

	G@os:Ubuntu

	Yes

	E

	PCRE Minion ID

	E@web\d+\.(dev|qa|prod)\.loc

	No

	P

	Grains PCRE

	P@os:(RedHat|Fedora|CentOS)

	Yes

	L

	List of minions

	L@minion1.example.com,minion3.domain.com or bl*.domain.com

	No

	I

	Pillar glob

	I@pdata:foobar

	Yes

	J

	Pillar PCRE

	J@pdata:^(foo|bar)$

	Yes

	S

	Subnet/IP address

	S@192.168.1.0/24 or S@192.168.1.100

	No

	R

	Range cluster

	R@%foo.bar

	No

	N

	Nodegroups

	N@group1

	No

Matchers can be joined using boolean and, or, and not operators.

For example, the following string matches all Debian minions with a hostname
that begins with webserv, as well as any minions that have a hostname which
matches the regular expression web-dc1-srv.*:

salt -C 'webserv* and G@os:Debian or E@web-dc1-srv.*' test.version

That same example expressed in a top file looks like the following:

base:
 'webserv* and G@os:Debian or E@web-dc1-srv.*':
 - match: compound
 - webserver

New in version 2015.8.0.

Excluding a minion based on its ID is also possible:

salt -C 'not web-dc1-srv' test.version

Versions prior to 2015.8.0 a leading not was not supported in compound
matches. Instead, something like the following was required:

salt -C '* and not G@kernel:Darwin' test.version

Excluding a minion based on its ID was also possible:

salt -C '* and not web-dc1-srv' test.version

Precedence Matching

Matchers can be grouped together with parentheses to explicitly declare precedence amongst groups.

salt -C '(ms-1 or G@id:ms-3) and G@id:ms-3' test.version

Note

Be certain to note that spaces are required between the parentheses and targets. Failing to obey this
rule may result in incorrect targeting!

Alternate Delimiters

New in version 2015.8.0.

Matchers that target based on a key value pair use a colon (:) as
a delimiter. Matchers with a Yes in the Alt Delimiters column
in the previous table support specifying an alternate delimiter character.

This is done by specifying an alternate delimiter character between the leading
matcher character and the @ pattern separator character. This avoids
incorrect interpretation of the pattern in the case that : is part of the
grain or pillar data structure traversal.

salt -C 'J|@foo|bar|^foo:bar$ or J!@gitrepo!https://github.com:example/project.git' test.ping

Node groups

Nodegroups are declared using a compound target specification. The compound
target documentation can be found here.

The nodegroups master config file parameter is used to define
nodegroups. Here's an example nodegroup configuration within
/etc/salt/master:

nodegroups:
 group1: 'L@foo.domain.com,bar.domain.com,baz.domain.com or bl*.domain.com'
 group2: 'G@os:Debian and foo.domain.com'
 group3: 'G@os:Debian and N@group1'
 group4:
 - 'G@foo:bar'
 - 'or'
 - 'G@foo:baz'

Note

The L within group1 is matching a list of minions, while the G in
group2 is matching specific grains. See the compound matchers documentation for more details.

As of the 2017.7.0 release of Salt, group names can also be prepended with
a dash. This brings the usage in line with many other areas of Salt. For
example:

nodegroups:
 - group1: 'L@foo.domain.com,bar.domain.com,baz.domain.com or bl*.domain.com'

New in version 2015.8.0.

Note

Nodegroups can reference other nodegroups as seen in group3. Ensure
that you do not have circular references. Circular references will be
detected and cause partial expansion with a logged error message.

New in version 2015.8.0.

Compound nodegroups can be either string values or lists of string values.
When the nodegroup is A string value will be tokenized by splitting on
whitespace. This may be a problem if whitespace is necessary as part of a
pattern. When a nodegroup is a list of strings then tokenization will
happen for each list element as a whole.

To match a nodegroup on the CLI, use the -N command-line option:

salt -N group1 test.version

New in version 2019.2.0.

Note

The N@ classifier historically could not be used in compound matches
within the CLI or top file, it was only recognized in the
nodegroups master config file parameter. As of the 2019.2.0
release, this limitation no longer exists.

To match a nodegroup in your top file, make sure to put - match:
nodegroup on the line directly following the nodegroup name.

base:
 group1:
 - match: nodegroup
 - webserver

Note

When adding or modifying nodegroups to a master configuration file, the
master must be restarted for those changes to be fully recognized.

A limited amount of functionality, such as targeting with -N from the
command-line may be available without a restart.

Defining Nodegroups as Lists of Minion IDs

A simple list of minion IDs would traditionally be defined like this:

nodegroups:
 group1: L@host1,host2,host3

They can now also be defined as a YAML list, like this:

nodegroups:
 group1:
 - host1
 - host2
 - host3

New in version 2016.11.0.

Batch Size

The -b (or --batch-size) option allows commands to be executed on only
a specified number of minions at a time. Both percentages and finite numbers are
supported.

salt '*' -b 10 test.version

salt -G 'os:RedHat' --batch-size 25% apache.signal restart

This will only run test.version on 10 of the targeted minions at a time and then
restart apache on 25% of the minions matching os:RedHat at a time and work
through them all until the task is complete. This makes jobs like rolling web
server restarts behind a load balancer or doing maintenance on BSD firewalls
using carp much easier with salt.

The batch system maintains a window of running minions, so, if there are a
total of 150 minions targeted and the batch size is 10, then the command is
sent to 10 minions, when one minion returns then the command is sent to one
additional minion, so that the job is constantly running on 10 minions.

New in version 2016.3.

The --batch-wait argument can be used to specify a number of seconds to
wait after a minion returns, before sending the command to a new minion.

SECO Range

SECO range is a cluster-based metadata store developed and maintained by Yahoo!

The Range project is hosted here:

https://github.com/ytoolshed/range

Learn more about range here:

https://github.com/ytoolshed/range/wiki/

Prerequisites

To utilize range support in Salt, a range server is required. Setting up a
range server is outside the scope of this document. Apache modules are included
in the range distribution.

With a working range server, cluster files must be defined. These files are
written in YAML and define hosts contained inside a cluster. Full documentation
on writing YAML range files is here:

https://github.com/ytoolshed/range/wiki/%22yamlfile%22-module-file-spec

Additionally, the Python seco range libraries must be installed on the salt
master. One can verify that they have been installed correctly via the
following command:

python -c 'import seco.range'

If no errors are returned, range is installed successfully on the salt master.

Preparing Salt

Range support must be enabled on the salt master by setting the hostname and
port of the range server inside the master configuration file:

range_server: my.range.server.com:80

Following this, the master must be restarted for the change to have an effect.

Targeting with Range

Once a cluster has been defined, it can be targeted with a salt command by
using the -R or --range flags.

For example, given the following range YAML file being served from a range
server:

$ cat /etc/range/test.yaml
CLUSTER: host1..100.test.com
APPS:
 - frontend
 - backend
 - mysql

One might target host1 through host100 in the test.com domain with Salt as follows:

salt --range %test:CLUSTER test.version

The following salt command would target three hosts: frontend, backend, and mysql:

salt --range %test:APPS test.version

Matchers

New in version 3000.

Matchers are modules that provide Salt's targeting abilities. As of the
3000 release, matchers can be dynamically loaded. Currently new matchers
cannot be created because the required plumbing for the CLI does not exist yet.
Existing matchers may have their functionality altered or extended.

For details of targeting methods, see the Targeting topic.

A matcher module must have a function called match(). This function ends up
becoming a method on the Matcher class. All matcher functions require at least
two arguments, self (because the function will be turned into a method), and
tgt, which is the actual target string. The grains and pillar matchers also
take a delimiter argument and should default to DEFAULT_TARGET_DELIM.

Like other Salt loadable modules, modules that override built-in functionality
can be placed in file_roots in a special directory and then copied to the
minion through the normal sync process. saltutil.sync_all
will transfer all loadable modules, and the 3000 release introduces
saltutil.sync_matchers. For matchers, the directory is
/srv/salt/_matchers (assuming your file_roots is set to the default
/srv/salt).

As an example, let's modify the list matcher to have the separator be a
'/' instead of the default ','.

from __future__ import absolute_import, print_function, unicode_literals
from salt.ext import six # pylint: disable=3rd-party-module-not-gated

def match(self, tgt):
 """
 Determines if this host is on the list
 """
 if isinstance(tgt, six.string_types):
 # The stock matcher splits on `,`. Change to `/` below.
 tgt = tgt.split("/")
 return bool(self.opts["id"] in tgt)

Place this code in a file called list_match.py in a _matchers directory in your
file_roots. Sync this down to your minions with
saltutil.sync_matchers.
Then attempt to match with the following, replacing minionX with three of your minions.

salt -L 'minion1/minion2/minion3' test.ping

Three of your minions should respond.

The current supported matchers and associated filenames are

	Salt CLI Switch

	Match Type

	Filename

	<none>

	Glob

	glob_match.py

	-C

	Compound

	compound_match.py

	-E

	Perl-Compatible
Regular Expressions

	pcre_match.py

	-L

	List

	list_match.py

	-G

	Grain

	grain_match.py

	-P

	Grain Perl-Compatible
Regular Expressions

	grain_pcre_match.py

	-N

	Nodegroup

	nodegroup_match.py

	-R

	Range

	range_match.py

	-I

	Pillar

	pillar_match.py

	-J

	Pillar Perl-Compatible
Regular Expressions

	pillar_pcre.py

	-S

	IP-Classless Internet
Domain Routing

	ipcidr_match.py

The Salt Mine

The Salt Mine is used to collect arbitrary data from Minions and store it on
the Master. This data is then made available to all Minions via the
salt.modules.mine module.

Mine data is gathered on the Minion and sent back to the Master where only the
most recent data is maintained (if long term data is required use returners or
the external job cache).

Mine vs Grains

Mine data is designed to be much more up-to-date than grain data. Grains are
refreshed on a very limited basis and are largely static data. Mines are
designed to replace slow peer publishing calls when Minions need data from
other Minions. Rather than having a Minion reach out to all the other Minions
for a piece of data, the Salt Mine, running on the Master, can collect it from
all the Minions every Mine Interval, resulting in
almost fresh data at any given time, with much less overhead.

Mine Functions

To enable the Salt Mine the mine_functions option needs to be applied to a
Minion. This option can be applied via the Minion's configuration file, or the
Minion's Pillar. The mine_functions option dictates what functions are
being executed and allows for arguments to be passed in. The list of
functions are available in the salt.module. If no arguments
are passed, an empty list must be added like in the test.ping function in
the example below:

mine_functions:
 test.ping: []
 network.ip_addrs:
 interface: eth0
 cidr: 10.0.0.0/8

In the example above salt.modules.network.ip_addrs has additional
filters to help narrow down the results. In the above example IP addresses
are only returned if they are on a eth0 interface and in the 10.0.0.0/8 IP
range.

Changed in version 3000.

The format to define mine_functions has been changed to allow the same format
as used for module.run. The old format (above) will still be supported.

mine_functions:
 test.ping: []
 network.ip_addrs:
 - interface: eth0
 - cidr: 10.0.0.0/8
 test.arg:
 - isn't
 - this
 - fun
 - this: that
 - salt: stack

Minion-side Access Control

New in version 3000.

Mine functions can be targeted to only be available to specific minions. This
uses the same targeting parameters as Targeting Minions but with keywords allow_tgt
and allow_tgt_type. When a minion requests a function from the salt mine that
is not allowed to be requested by that minion (i.e. when looking up the combination
of allow_tgt and allow_tgt_type and the requesting minion is not in the list)
it will get no data, just as if the requested function is not present in the salt mine.

mine_functions:
 network.ip_addrs:
 - interface: eth0
 - cidr: 10.0.0.0/8
 - allow_tgt: 'G@role:master'
 - allow_tgt_type: 'compound'

Mine Functions Aliases

Function aliases can be used to provide friendly names, usage intentions or to
allow multiple calls of the same function with different arguments. There is a
different syntax for passing positional and key-value arguments. Mixing
positional and key-value arguments is not supported.

New in version 2014.7.0.

mine_functions:
 network.ip_addrs: [eth0]
 networkplus.internal_ip_addrs: []
 internal_ip_addrs:
 mine_function: network.ip_addrs
 cidr: 192.168.0.0/16
 ip_list:
 - mine_function: grains.get
 - ip_interfaces

Changed in version 3000.

With the addition of the module.run-like format for defining mine_functions, the
method of adding aliases remains similar. Just add a mine_function kwarg with
the name of the real function to call, making the key below mine_functions
the alias:

mine_functions:
 alias_name:
 - mine_function: network.ip_addrs
 - eth0
 internal_ip_addrs:
 - mine_function: network.ip_addrs
 - cidr: 192.168.0.0/16
 ip_list:
 - mine_function: grains.get
 - ip_interfaces

Mine Interval

The Salt Mine functions are executed when the Minion starts and at a given
interval by the scheduler. The default interval is every 60 minutes and can
be adjusted for the Minion via the mine_interval option in the minion
config:

mine_interval: 60

Mine in Salt-SSH

As of the 2015.5.0 release of salt, salt-ssh supports mine.get.

Because the Minions cannot provide their own mine_functions configuration,
we retrieve the args for specified mine functions in one of three places,
searched in the following order:

	Roster data

	Pillar

	Master config

The mine_functions are formatted exactly the same as in normal salt, just
stored in a different location. Here is an example of a flat roster containing
mine_functions:

test:
 host: 104.237.131.248
 user: root
 mine_functions:
 cmd.run: ['echo "hello!"']
 network.ip_addrs:
 interface: eth0

Note

Because of the differences in the architecture of salt-ssh, mine.get
calls are somewhat inefficient. Salt must make a new salt-ssh call to each
of the Minions in question to retrieve the requested data, much like a
publish call. However, unlike publish, it must run the requested function
as a wrapper function, so we can retrieve the function args from the pillar
of the Minion in question. This results in a non-trivial delay in
retrieving the requested data.

Minions Targeting with Mine

The mine.get function supports various methods of Minions targeting to fetch Mine data from particular hosts, such as glob or regular
expression matching on Minion id (name), grains, pillars and compound
matches. See the salt.modules.mine module
documentation for the reference.

Note

Pillar data needs to be cached on Master for pillar targeting to work with
Mine. Read the note in relevant section.

Example

One way to use data from Salt Mine is in a State. The values can be retrieved
via Jinja and used in the SLS file. The following example is a partial HAProxy
configuration file and pulls IP addresses from all Minions with the "web" grain
to add them to the pool of load balanced servers.

/srv/pillar/top.sls:

base:
 'G@roles:web':
 - web

/srv/pillar/web.sls:

mine_functions:
 network.ip_addrs: [eth0]

Then trigger the minions to refresh their pillar data by running:

salt '*' saltutil.refresh_pillar

Verify that the results are showing up in the pillar on the minions by
executing the following and checking for network.ip_addrs in the output:

salt '*' pillar.items

Which should show that the function is present on the minion, but not include
the output:

minion1.example.com:

 mine_functions:

 network.ip_addrs:
 - eth0

Mine data is typically only updated on the master every 60 minutes, this can
be modified by setting:

/etc/salt/minion.d/mine.conf:

mine_interval: 5

To force the mine data to update immediately run:

salt '*' mine.update

Setup the salt.states.file.managed state in
/srv/salt/haproxy.sls:

haproxy_config:
 file.managed:
 - name: /etc/haproxy/config
 - source: salt://haproxy_config
 - template: jinja

Create the Jinja template in /srv/salt/haproxy_config:

<...file contents snipped...>

{% for server, addrs in salt['mine.get']('roles:web', 'network.ip_addrs', tgt_type='grain') | dictsort() %}
server {{ server }} {{ addrs[0] }}:80 check
{% endfor %}

<...file contents snipped...>

In the above example, server will be expanded to the minion_id.

Note

The expr_form argument will be renamed to tgt_type in the 2017.7.0
release of Salt.

Runners

Salt runners are convenience applications executed with the salt-run command.

Salt runners work similarly to Salt execution modules however they execute on the
Salt master itself instead of remote Salt minions.

A Salt runner can be a simple client call or a complex application.

See also

The full list of runners

Writing Salt Runners

A Salt runner is written in a similar manner to a Salt execution module.
Both are Python modules which contain functions and each public function
is a runner which may be executed via the salt-run command.

For example, if a Python module named test.py is created in the runners
directory and contains a function called foo, the test runner could be
invoked with the following command:

salt-run test.foo

Runners have several options for controlling output.

Any print statement in a runner is automatically also
fired onto the master event bus where. For example:

def a_runner(outputter=None, display_progress=False):
 print("Hello world")
 ...

The above would result in an event fired as follows:

Event fired at Tue Jan 13 15:26:45 2015

Tag: salt/run/20150113152644070246/print
Data:
{'_stamp': '2015-01-13T15:26:45.078707',
 'data': 'hello',
 'outputter': 'pprint'}

A runner may also send a progress event, which is displayed to the user during
runner execution and is also passed across the event bus if the display_progress
argument to a runner is set to True.

A custom runner may send its own progress event by using the
__jid_event_.fire_event() method as shown here:

if display_progress:
 __jid_event__.fire_event({"message": "A progress message"}, "progress")

The above would produce output on the console reading: A progress message
as well as an event on the event similar to:

Event fired at Tue Jan 13 15:21:20 2015

Tag: salt/run/20150113152118341421/progress
Data:
{'_stamp': '2015-01-13T15:21:20.390053',
 'message': "A progress message"}

A runner could use the same approach to send an event with a customized tag
onto the event bus by replacing the second argument (progress) with
whatever tag is desired. However, this will not be shown on the command-line
and will only be fired onto the event bus.

Synchronous vs. Asynchronous

A runner may be fired asynchronously which will immediately return control. In
this case, no output will be display to the user if salt-run is being used
from the command-line. If used programmatically, no results will be returned.
If results are desired, they must be gathered either by firing events on the
bus from the runner and then watching for them or by some other means.

Note

When running a runner in asynchronous mode, the --progress flag will
not deliver output to the salt-run CLI. However, progress events will
still be fired on the bus.

In synchronous mode, which is the default, control will not be returned until
the runner has finished executing.

To add custom runners, put them in a directory and add it to
runner_dirs in the master configuration file.

Examples

Examples of runners can be found in the Salt distribution:

salt/runners [https://github.com/saltstack/salt/blob/master/salt/runners]

A simple runner that returns a well-formatted list of the minions that are
responding to Salt calls could look like this:

Import salt modules
import salt.client

def up():
 """
 Print a list of all of the minions that are up
 """
 client = salt.client.LocalClient(__opts__["conf_file"])
 minions = client.cmd("*", "test.version", timeout=1)
 for minion in sorted(minions):
 print(minion)

Salt Engines

New in version 2015.8.0.

Salt Engines are long-running, external system processes that leverage Salt.

	Engines have access to Salt configuration, execution modules, and runners (__opts__, __salt__, and __runners__).

	Engines are executed in a separate process that is monitored by Salt. If a Salt engine stops, it is restarted automatically.

	Engines can run on the Salt master and on Salt minions.

Salt engines enhance and replace the external processes functionality.

Configuration

Salt engines are configured under an engines top-level section in your Salt master or Salt minion configuration. Provide a list of engines and parameters under this section.

engines:
 - logstash:
 host: log.my_network.com
 port: 5959
 proto: tcp

New in version 3000.

Multiple copies of a particular Salt engine can be configured by including the engine_module parameter in the engine configuration.

engines:
 - production_logstash:
 host: production_log.my_network.com
 port: 5959
 proto: tcp
 engine_module: logstash
 - develop_logstash:
 host: develop_log.my_network.com
 port: 5959
 proto: tcp
 engine_module: logstash

Salt engines must be in the Salt path, or you can add the engines_dirs option in your Salt master configuration with a list of directories under which Salt attempts to find Salt engines. This option should be formatted as a list of directories to search, such as:

engines_dirs:
 - /home/bob/engines

Writing an Engine

An example Salt engine, salt/engines/test.py [https://github.com/saltstack/salt/blob/master/salt/engines/test.py], is available in the Salt source. To develop an engine, the only requirement is that your module implement the start() function.

What is YAML and How To Use It

The default renderer for SLS files is the YAML renderer.

What is YAML

What does YAML stand for? It's an acronym for YAML Ain't Markup Language.

The Official YAML Website [https://yaml.org] defines YAML as:

...a human friendly data serialization
standard for all programming languages.

However, Salt uses a small subset of YAML that maps over very commonly used data
structures, like lists and dictionaries. It is the job of the YAML renderer to
take the YAML data structure and compile it into a Python data structure for use
by Salt.

Defining YAML

Though YAML syntax may seem daunting and terse at first, there are only
three very simple rules to remember when writing YAML for SLS files.

Rule One: Indentation

YAML uses a fixed indentation scheme to represent relationships between
data layers. Salt requires that the indentation for each level consists
of exactly two spaces. Do not use tabs.

Rule Two: Colons

Python dictionaries are, of course, simply key-value pairs. Users from other
languages may recognize this data type as hashes or associative arrays.

Dictionary keys are represented in YAML as strings terminated by a trailing
colon. Values are represented by either a string following the colon,
separated by a space:

my_key: my_value

In Python, the above maps to:

{"my_key": "my_value"}

Alternatively, a value can be associated with a key through indentation.

my_key:
 my_value

Note

The above syntax is valid YAML but is uncommon in SLS files because most often,
the value for a key is not singular but instead is a list of values.

In Python, the above maps to:

{"my_key": "my_value"}

Dictionaries can be nested:

first_level_dict_key:
 second_level_dict_key: value_in_second_level_dict

And in Python:

{"first_level_dict_key": {"second_level_dict_key": "value_in_second_level_dict"}}

Rule Three: Dashes

To represent lists of items, a single dash followed by a space is used. Multiple
items are a part of the same list as a function of their having the same level of indentation.

- list_value_one
- list_value_two
- list_value_three

Lists can be the value of a key-value pair. This is quite common in Salt:

my_dictionary:
 - list_value_one
 - list_value_two
 - list_value_three

In Python, the above maps to:

{"my_dictionary": ["list_value_one", "list_value_two", "list_value_three"]}

Learning more about YAML

One easy way to learn more about how YAML gets rendered into Python data structures is
to use an online YAML parser to see the Python output.

Here are some excellent links for experimenting with and referencing YAML:

	Online YAML Parser [https://yaml-online-parser.appspot.com/]: Convert YAML
to JSON or Python data structures.

	The Official YAML Specification [https://yaml.org/spec/1.2/spec.html]

	The Wikipedia page for YAML [https://en.wikipedia.org/wiki/YAML]

Templating

Jinja statements and expressions are allowed by default in SLS files. See
Understanding Jinja.

Understanding Jinja

Jinja [https://jinja.palletsprojects.com/en/2.11.x/templates/] is the default templating language in SLS files.

Important

Jinja supports a secure, sandboxed template execution environment [https://jinja.palletsprojects.com/en/2.11.x/sandbox/] that Salt
takes advantage of. Other text Renderers do not support this
functionality, so Salt highly recommends usage of jinja / jinja|yaml.

Jinja in States

Jinja is evaluated before YAML, which means it is evaluated before the States
are run.

The most basic usage of Jinja in state files is using control structures to
wrap conditional or redundant state elements:

{% if grains['os'] != 'FreeBSD' %}
tcsh:
 pkg:
 - installed
{% endif %}

motd:
 file.managed:
 {% if grains['os'] == 'FreeBSD' %}
 - name: /etc/motd
 {% elif grains['os'] == 'Debian' %}
 - name: /etc/motd.tail
 {% endif %}
 - source: salt://motd

In this example, the first if block will only be evaluated on minions that
aren't running FreeBSD, and the second block changes the file name based on the
os grain.

Writing if-else blocks can lead to very redundant state files however. In
this case, using pillars, or using a previously
defined variable might be easier:

{% set motd = ['/etc/motd'] %}
{% if grains['os'] == 'Debian' %}
 {% set motd = ['/etc/motd.tail', '/var/run/motd'] %}
{% endif %}

{% for motdfile in motd %}
{{ motdfile }}:
 file.managed:
 - source: salt://motd
{% endfor %}

Using a variable set by the template, the for loop [https://jinja.palletsprojects.com/en/2.11.x/templates/#for] will iterate over the
list of MOTD files to update, adding a state block for each file.

The filter_by function can also be used to set variables based on grains:

{% set auditd = salt['grains.filter_by']({
'RedHat': { 'package': 'audit' },
'Debian': { 'package': 'auditd' },
}) %}

Include and Import

Includes and imports [https://jinja.palletsprojects.com/en/2.11.x/templates/#import] can be used to share common, reusable state configuration
between state files and between files.

{% from 'lib.sls' import test %}

This would import the test template variable or macro, not the test
state element, from the file lib.sls. In the case that the included file
performs checks against grains, or something else that requires context, passing
the context into the included file is required:

{% from 'lib.sls' import test with context %}

Includes must use full paths, like so:

spam/eggs.jinja

 {% include 'spam/foobar.jinja' %}

Including Context During Include/Import

By adding with context to the include/import directive, the
current context can be passed to an included/imported template.

{% import 'openssl/vars.sls' as ssl with context %}

Macros

Macros [https://jinja.palletsprojects.com/en/2.11.x/templates/#macros] are helpful for eliminating redundant code. Macros are most useful as
mini-templates to repeat blocks of strings with a few parameterized variables.
Be aware that stripping whitespace from the template block, as well as
contained blocks, may be necessary to emulate a variable return from the macro.

init.sls
{% from 'lib.sls' import pythonpkg with context %}

python-virtualenv:
 pkg.installed:
 - name: {{ pythonpkg('virtualenv') }}

python-fabric:
 pkg.installed:
 - name: {{ pythonpkg('fabric') }}

lib.sls
{% macro pythonpkg(pkg) -%}
 {%- if grains['os'] == 'FreeBSD' -%}
 py27-{{ pkg }}
 {%- elif grains['os'] == 'Debian' -%}
 python-{{ pkg }}
 {%- endif -%}
{%- endmacro %}

This would define a macro [https://jinja.palletsprojects.com/en/2.11.x/templates/#macros] that would return a string of the full package name,
depending on the packaging system's naming convention. The whitespace of the
macro was eliminated, so that the macro would return a string without line
breaks, using whitespace control [https://jinja.palletsprojects.com/en/2.11.x/templates/#whitespace-control].

Template Inheritance

Template inheritance [https://jinja.palletsprojects.com/en/2.11.x/templates/#template-inheritance] works fine from state files and files. The search path
starts at the root of the state tree or pillar.

Errors

Saltstack allows raising custom errors using the raise jinja function.

{{ raise('Custom Error') }}

When rendering the template containing the above statement, a TemplateError
exception is raised, causing the rendering to fail with the following message:

TemplateError: Custom Error

Filters

Saltstack extends builtin filters [https://jinja.palletsprojects.com/en/2.11.x/templates/#builtin-filters] with these custom filters:

strftime

Converts any time related object into a time based string. It requires valid
strftime directives. An exhaustive list can be found here [https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior] in the Python documentation.

{% set curtime = None | strftime() %}

Fuzzy dates require the timelib [https://github.com/pediapress/timelib/] Python module is installed.

{{ "2002/12/25"|strftime("%y") }}
{{ "1040814000"|strftime("%Y-%m-%d") }}
{{ datetime|strftime("%u") }}
{{ "tomorrow"|strftime }}

sequence

Ensure that parsed data is a sequence.

yaml_encode

Serializes a single object into a YAML scalar with any necessary
handling for escaping special characters. This will work for any
scalar YAML data type: ints, floats, timestamps, booleans, strings,
unicode. It will not work for multi-objects such as sequences or
maps.

{%- set bar = 7 %}
{%- set baz = none %}
{%- set zip = true %}
{%- set zap = 'The word of the day is "salty"' %}

{%- load_yaml as foo %}
bar: {{ bar|yaml_encode }}
baz: {{ baz|yaml_encode }}
zip: {{ zip|yaml_encode }}
zap: {{ zap|yaml_encode }}
{%- endload %}

In the above case {{ bar }} and {{ foo.bar }} should be
identical and {{ baz }} and {{ foo.baz }} should be
identical.

yaml_dquote

Serializes a string into a properly-escaped YAML double-quoted
string. This is useful when the contents of a string are unknown
and may contain quotes or unicode that needs to be preserved. The
resulting string will be emitted with opening and closing double
quotes.

{%- set bar = '"The quick brown fox . . ."' %}
{%- set baz = 'The word of the day is "salty".' %}

{%- load_yaml as foo %}
bar: {{ bar|yaml_dquote }}
baz: {{ baz|yaml_dquote }}
{%- endload %}

In the above case {{ bar }} and {{ foo.bar }} should be
identical and {{ baz }} and {{ foo.baz }} should be
identical. If variable contents are not guaranteed to be a string
then it is better to use yaml_encode which handles all YAML
scalar types.

yaml_squote

Similar to the yaml_dquote filter but with single quotes. Note
that YAML only allows special escapes inside double quotes so
yaml_squote is not nearly as useful (viz. you likely want to
use yaml_encode or yaml_dquote).

dict_to_sls_yaml_params

New in version 3005.

Renders a formatted multi-line YAML string from a Python dictionary. Each
key/value pair in the dictionary will be added as a single-key dictionary
to a list that will then be sent to the YAML formatter.

Example:

{% set thing_params = {
 "name": "thing",
 "changes": True,
 "warnings": "OMG! Stuff is happening!"
 }
%}

thing:
 test.configurable_test_state:
 {{ thing_params | dict_to_sls_yaml_params | indent }}

Returns:

thing:
 test.configurable_test_state:
 - name: thing
 - changes: true
 - warnings: OMG! Stuff is happening!

to_bool

New in version 2017.7.0.

Returns the logical value of an element.

Example:

{{ 'yes' | to_bool }}
{{ 'true' | to_bool }}
{{ 1 | to_bool }}
{{ 'no' | to_bool }}

Will be rendered as:

True
True
True
False

exactly_n_true

New in version 2017.7.0.

Tests that exactly N items in an iterable are "truthy" (neither None, False, nor 0).

Example:

{{ ['yes', 0, False, 'True'] | exactly_n_true(2) }}

Returns:

True

exactly_one_true

New in version 2017.7.0.

Tests that exactly one item in an iterable is "truthy" (neither None, False, nor 0).

Example:

{{ ['yes', False, 0, None] | exactly_one_true }}

Returns:

True

quote

New in version 2017.7.0.

This text will be wrapped in quotes.

regex_search

New in version 2017.7.0.

Scan through string looking for a location where this regular expression
produces a match. Returns None in case there were no matches found

Example:

{{ 'abcdefabcdef' | regex_search('BC(.*)', ignorecase=True) }}

Returns:

("defabcdef",)

regex_match

New in version 2017.7.0.

If zero or more characters at the beginning of string match this regular
expression, otherwise returns None.

Example:

{{ 'abcdefabcdef' | regex_match('BC(.*)', ignorecase=True) }}

Returns:

None

regex_replace

New in version 2017.7.0.

Searches for a pattern and replaces with a sequence of characters.

Example:

{% set my_text = 'yes, this is a TEST' %}
{{ my_text | regex_replace(' ([a-z])', '__\\1', ignorecase=True) }}

Returns:

yes,__this__is__a__TEST

uuid

New in version 2017.7.0.

Return a UUID.

Example:

{{ 'random' | uuid }}

Returns:

3652b285-26ad-588e-a5dc-c2ee65edc804

is_list

New in version 2017.7.0.

Return if an object is list.

Example:

{{ [1, 2, 3] | is_list }}

Returns:

True

is_iter

New in version 2017.7.0.

Return if an object is iterable.

Example:

{{ [1, 2, 3] | is_iter }}

Returns:

True

min

New in version 2017.7.0.

Return the minimum value from a list.

Example:

{{ [1, 2, 3] | min }}

Returns:

1

max

New in version 2017.7.0.

Returns the maximum value from a list.

Example:

{{ [1, 2, 3] | max }}

Returns:

3

avg

New in version 2017.7.0.

Returns the average value of the elements of a list

Example:

{{ [1, 2, 3] | avg }}

Returns:

2

union

New in version 2017.7.0.

Return the union of two lists.

Example:

{{ [1, 2, 3] | union([2, 3, 4]) | join(', ') }}

Returns:

1, 2, 3, 4

intersect

New in version 2017.7.0.

Return the intersection of two lists.

Example:

{{ [1, 2, 3] | intersect([2, 3, 4]) | join(', ') }}

Returns:

2, 3

difference

New in version 2017.7.0.

Return the difference of two lists.

Example:

{{ [1, 2, 3] | difference([2, 3, 4]) | join(', ') }}

Returns:

1

symmetric_difference

New in version 2017.7.0.

Return the symmetric difference of two lists.

Example:

{{ [1, 2, 3] | symmetric_difference([2, 3, 4]) | join(', ') }}

Returns:

1, 4

flatten

New in version 3005.

Flatten a list.

{{ [3, [4, 2]] | flatten }}
=> [3, 4, 2]

Flatten only the first level of a list:

{{ [3, [4, [2]]] | flatten(levels=1) }}
=> [3, 4, [2]]

Preserve nulls in a list, by default flatten removes them.

{{ [3, None, [4, [2]]] | flatten(levels=1, preserve_nulls=True) }}
=> [3, None, 4, [2]]

combinations

New in version 3005.

Invokes the combinations function from the itertools library.

See the itertools documentation [https://docs.python.org/3/library/itertools.html#itertools.zip_longest] for more information.

{% for one, two in "ABCD" | combinations(2) %}{{ one~two }} {% endfor %}
=> AB AC AD BC BD CD

combinations_with_replacement

New in version 3005.

Invokes the combinations_with_replacement function from the itertools library.

See the itertools documentation [https://docs.python.org/3/library/itertools.html#itertools.zip_longest] for more information.

{% for one, two in "ABC" | combinations_with_replacement(2) %}{{ one~two }} {% endfor %}
=> AA AB AC BB BC CC

compress

New in version 3005.

Invokes the compress function from the itertools library.

See the itertools documentation [https://docs.python.org/3/library/itertools.html#itertools.zip_longest] for more information.

{% for val in "ABCDEF" | compress([1,0,1,0,1,1]) %}{{ val }} {% endfor %}
=> A C E F

permutations

New in version 3005.

Invokes the permutations function from the itertools library.

See the itertools documentation [https://docs.python.org/3/library/itertools.html#itertools.zip_longest] for more information.

{% for one, two in "ABCD" | permutations(2) %}{{ one~two }} {% endfor %}
=> AB AC AD BA BC BD CA CB CD DA DB DC

product

New in version 3005.

Invokes the product function from the itertools library.

See the itertools documentation [https://docs.python.org/3/library/itertools.html#itertools.zip_longest] for more information.

{% for one, two in "ABCD" | product("xy") %}{{ one~two }} {% endfor %}
=> Ax Ay Bx By Cx Cy Dx Dy

zip

New in version 3005.

Invokes the native Python zip function.

The zip function returns a zip object, which is an iterator of tuples where
the first item in each passed iterator is paired together, and then the second
item in each passed iterator are paired together etc.

If the passed iterators have different lengths, the iterator with the least
items decides the length of the new iterator.

{% for one, two in "ABCD" | zip("xy") %}{{ one~two }} {% endfor %}
=> Ax By

zip_longest

New in version 3005.

Invokes the zip_longest function from the itertools library.

See the itertools documentation [https://docs.python.org/3/library/itertools.html#itertools.zip_longest] for more information.

{% for one, two in "ABCD" | zip_longest("xy", fillvalue="-") %}{{ one~two }} {% endfor %}
=> Ax By C- D-

method_call

New in version 3001.

Returns a result of object's method call.

Example #1:

{{ [1, 2, 1, 3, 4] | method_call('index', 1, 1, 3) }}

Returns:

2

This filter can be used with the map filter [https://jinja.palletsprojects.com/en/2.11.x/templates/#map] to apply object methods without
using loop constructs or temporary variables.

Example #2:

{% set host_list = ['web01.example.com', 'db01.example.com'] %}
{% set host_list_split = [] %}
{% for item in host_list %}
 {% do host_list_split.append(item.split('.', 1)) %}
{% endfor %}
{{ host_list_split }}

Example #3:

{{ host_list|map('method_call', 'split', '.', 1)|list }}

Return of examples #2 and #3:

[[web01, example.com], [db01, example.com]]

is_sorted

New in version 2017.7.0.

Return True if an iterable object is already sorted.

Example:

{{ [1, 2, 3] | is_sorted }}

Returns:

True

compare_lists

New in version 2017.7.0.

Compare two lists and return a dictionary with the changes.

Example:

{{ [1, 2, 3] | compare_lists([1, 2, 4]) }}

Returns:

{"new": [4], "old": [3]}

compare_dicts

New in version 2017.7.0.

Compare two dictionaries and return a dictionary with the changes.

Example:

{{ {'a': 'b'} | compare_dicts({'a': 'c'}) }}

Returns:

{"a": {"new": "c", "old": "b"}}

is_hex

New in version 2017.7.0.

Return True if the value is hexadecimal.

Example:

{{ '0xabcd' | is_hex }}
{{ 'xyzt' | is_hex }}

Returns:

True
False

contains_whitespace

New in version 2017.7.0.

Return True if a text contains whitespaces.

Example:

{{ 'abcd' | contains_whitespace }}
{{ 'ab cd' | contains_whitespace }}

Returns:

False
True

substring_in_list

New in version 2017.7.0.

Return True if a substring is found in a list of string values.

Example:

{{ 'abcd' | substring_in_list(['this', 'is', 'an abcd example']) }}

Returns:

True

check_whitelist_blacklist

New in version 2017.7.0.

Check a whitelist and/or blacklist to see if the value matches it.

This filter can be used with either a whitelist or a blacklist individually,
or a whitelist and a blacklist can be passed simultaneously.

If whitelist is used alone, value membership is checked against the
whitelist only. If the value is found, the function returns True.
Otherwise, it returns False.

If blacklist is used alone, value membership is checked against the
blacklist only. If the value is found, the function returns False.
Otherwise, it returns True.

If both a whitelist and a blacklist are provided, value membership in the
blacklist will be examined first. If the value is not found in the blacklist,
then the whitelist is checked. If the value isn't found in the whitelist,
the function returns False.

Whitelist Example:

{{ 5 | check_whitelist_blacklist(whitelist=[5, 6, 7]) }}

Returns:

True

Blacklist Example:

{{ 5 | check_whitelist_blacklist(blacklist=[5, 6, 7]) }}

False

date_format

New in version 2017.7.0.

Converts unix timestamp into human-readable string.

Example:

{{ 1457456400 | date_format }}
{{ 1457456400 | date_format('%d.%m.%Y %H:%M') }}

Returns:

2017-03-08
08.03.2017 17:00

to_num

New in version 2017.7.0.

New in version 2018.3.0: Renamed from str_to_num to to_num.

Converts a string to its numerical value.

Example:

{{ '5' | to_num }}

Returns:

5

to_bytes

New in version 2017.7.0.

Converts string-type object to bytes.

Example:

{{ 'wall of text' | to_bytes }}

Note

This option may have adverse effects when using the default renderer,
jinja|yaml. This is due to the fact that YAML requires proper handling
in regard to special characters. Please see the section on YAML ASCII
support in the YAML Idiosyncrasies documentation for more information.

json_encode_list

New in version 2017.7.0.

New in version 2018.3.0: Renamed from json_decode_list to json_encode_list. When you encode
something you get bytes, and when you decode, you get your locale's
encoding (usually a unicode type). This filter was incorrectly-named
when it was added. json_decode_list will be supported until the 3003
release.

Deprecated since version 2018.3.3,2019.2.0: The tojson filter accomplishes what this filter was designed
to do, making this filter redundant.

Recursively encodes all string elements of the list to bytes.

Example:

{{ [1, 2, 3] | json_encode_list }}

Returns:

[1, 2, 3]

json_encode_dict

New in version 2017.7.0.

New in version 2018.3.0: Renamed from json_decode_dict to json_encode_dict. When you encode
something you get bytes, and when you decode, you get your locale's
encoding (usually a unicode type). This filter was incorrectly-named
when it was added. json_decode_dict will be supported until the 3003
release.

Deprecated since version 2018.3.3,2019.2.0: The tojson filter accomplishes what this filter was designed
to do, making this filter redundant.

Recursively encodes all string items in the dictionary to bytes.

Example:

Assuming that pillar['foo'] contains {u'a': u'\u0414'}, and your locale
is en_US.UTF-8:

{{ pillar['foo'] | json_encode_dict }}

Returns:

{"a": "\xd0\x94"}

tojson

New in version 2018.3.3,2019.2.0.

Dumps a data structure to JSON.

This filter was added to provide this functionality to hosts which have a
Jinja release older than version 2.9 installed. If Jinja 2.9 or newer is
installed, then the upstream version of the filter will be used. See the
upstream docs [https://jinja.palletsprojects.com/en/2.11.x/templates/#tojson] for more information.

random_hash

New in version 2017.7.0.

New in version 2018.3.0: Renamed from rand_str to random_hash to more accurately describe
what the filter does. rand_str will be supported to ensure backwards
compatibility but please use the preferred random_hash.

Generates a random number between 1 and the number passed to the filter, and
then hashes it. The default hash type is the one specified by the minion's
hash_type config option, but an alternate hash type can be
passed to the filter as an argument.

Example:

{% set num_range = 99999999 %}
{{ num_range | random_hash }}
{{ num_range | random_hash('sha512') }}

Returns:

43ec517d68b6edd3015b3edc9a11367b
d94a45acd81f8e3107d237dbc0d5d195f6a52a0d188bc0284c0763ece1eac9f9496fb6a531a296074c87b3540398dace1222b42e150e67c9301383fde3d66ae5

random_sample

New in version 3005.

Returns a given sample size from a list. The seed parameter can be used to
return a predictable outcome.

Example:

{% set my_list = ["one", "two", "three", "four"] %}
{{ my_list | random_sample(2) }}

Returns:

["four", "one"]

random_shuffle

New in version 3005.

Returns a shuffled copy of an input list. The seed parameter can be used to
return a predictable outcome.

Example:

{% set my_list = ["one", "two", "three", "four"] %}
{{ my_list | random_shuffle }}

Returns:

["four", "three", "one", "two"]

set_dict_key_value

New in version 3000.

Allows you to set a value in a nested dictionary without having to worry if all the nested keys actually exist.
Missing keys will be automatically created if they do not exist.
The default delimiter for the keys is ':', however, with the delimiter-parameter, a different delimiter can be specified.

Examples:

	Example 1:
	{%- set foo = {} %}
{{ foo | set_dict_key_value('bar:baz', 42) }}

	Example 2:
	{{ {} | set_dict_key_value('bar.baz.qux', 42, delimiter='.') }}

Returns:

	Example 1:
	{'bar': {'baz': 42}}

	Example 2:
	{'bar': {'baz': {'qux': 42}}}

append_dict_key_value

New in version 3000.

Allows you to append to a list nested (deep) in a dictionary without having to worry if all the nested keys (or the list itself) actually exist.
Missing keys will automatically be created if they do not exist.
The default delimiter for the keys is ':', however, with the delimiter-parameter, a different delimiter can be specified.

Examples:

	Example 1:
	{%- set foo = {'bar': {'baz': [1, 2]}} %}
{{ foo | append_dict_key_value('bar:baz', 42) }}

	Example 2:
	{%- set foo = {} %}
{{ foo | append_dict_key_value('bar:baz:qux', 42) }}

Returns:

	Example 1:
	{'bar': {'baz': [1, 2, 42]}}

	Example 2:
	{'bar': {'baz': {'qux': [42]}}}

extend_dict_key_value

New in version 3000.

Allows you to extend a list nested (deep) in a dictionary without having to worry if all the nested keys (or the list itself) actually exist.
Missing keys will automatically be created if they do not exist.
The default delimiter for the keys is ':', however, with the delimiter-parameter, a different delimiter can be specified.

Examples:

	Example 1:
	{%- set foo = {'bar': {'baz': [1, 2]}} %}
{{ foo | extend_dict_key_value('bar:baz', [42, 42]) }}

	Example 2:
	{{ {} | extend_dict_key_value('bar:baz:qux', [42]) }}

Returns:

	Example 1:
	{'bar': {'baz': [1, 2, 42, 42]}}

	Example 2:
	{'bar': {'baz': {'qux': [42]}}}

update_dict_key_value

New in version 3000.

Allows you to update a dictionary nested (deep) in another dictionary without having to worry if all the nested keys actually exist.
Missing keys will automatically be created if they do not exist.
The default delimiter for the keys is ':', however, with the delimiter-parameter, a different delimiter can be specified.

Examples:

	Example 1:
	{%- set foo = {'bar': {'baz': {'qux': 1}}} %}
{{ foo | update_dict_key_value('bar:baz', {'quux': 3}) }}

	Example 2:
	{{ {} | update_dict_key_value('bar:baz:qux', {'quux': 3}) }}

	Example 1:
	{'bar': {'baz': {'qux': 1, 'quux': 3}}}

	Example 2:
	{'bar': {'baz': {'qux': {'quux': 3}}}}

md5

New in version 2017.7.0.

Return the md5 digest of a string.

Example:

{{ 'random' | md5 }}

Returns:

7ddf32e17a6ac5ce04a8ecbf782ca509

sha256

New in version 2017.7.0.

Return the sha256 digest of a string.

Example:

{{ 'random' | sha256 }}

Returns:

a441b15fe9a3cf56661190a0b93b9dec7d04127288cc87250967cf3b52894d11

sha512

New in version 2017.7.0.

Return the sha512 digest of a string.

Example:

{{ 'random' | sha512 }}

Returns:

811a90e1c8e86c7b4c0eef5b2c0bf0ec1b19c4b1b5a242e6455be93787cb473cb7bc9b0fdeb960d00d5c6881c2094dd63c5c900ce9057255e2a4e271fc25fef1

base64_encode

New in version 2017.7.0.

Encode a string as base64.

Example:

{{ 'random' | base64_encode }}

Returns:

cmFuZG9t

base64_decode

New in version 2017.7.0.

Decode a base64-encoded string.

{{ 'Z2V0IHNhbHRlZA==' | base64_decode }}

Returns:

get salted

hmac

New in version 2017.7.0.

Verify a challenging hmac signature against a string / shared-secret. Returns
a boolean value.

Example:

{{ 'get salted' | hmac('shared secret', 'eBWf9bstXg+NiP5AOwppB5HMvZiYMPzEM9W5YMm/AmQ=') }}

Returns:

True

http_query

New in version 2017.7.0.

Return the HTTP reply object from a URL.

Example:

{{ 'http://jsonplaceholder.typicode.com/posts/1' | http_query }}

Returns:

{
 'body': '{
 "userId": 1,
 "id": 1,
 "title": "sunt aut facere repellat provident occaecati excepturi option reprehenderit",
 "body": "quia et suscipit\\nsuscipit recusandae consequuntur expedita et cum\\nreprehenderit molestiae ut ut quas totam\\nnostrum rerum est autem sunt rem eveniet architecto"
 }'
}

traverse

New in version 2018.3.3.

Traverse a dict or list using a colon-delimited target string.
The target 'foo:bar:0' will return data['foo']['bar'][0] if this value exists,
and will otherwise return the provided default value.

Example:

{{ {'a1': {'b1': {'c1': 'foo'}}, 'a2': 'bar'} | traverse('a1:b1', 'default') }}

Returns:

{"c1": "foo"}

{{ {'a1': {'b1': {'c1': 'foo'}}, 'a2': 'bar'} | traverse('a2:b2', 'default') }}

Returns:

"default"

json_query

New in version 3000.

A port of Ansible json_query Jinja filter to make queries against JSON data using JMESPath language [https://jmespath.org/].
Could be used to filter pillar data, yaml maps, and together with http_query.
Depends on the jmespath [https://github.com/jmespath/jmespath.py] Python module.

Examples:

Example 1: {{ [1, 2, 3, 4, [5, 6]] | json_query('[]') }}

Example 2: {{
{"machines": [
 {"name": "a", "state": "running"},
 {"name": "b", "state": "stopped"},
 {"name": "c", "state": "running"}
]} | json_query("machines[?state=='running'].name") }}

Example 3: {{
{"services": [
 {"name": "http", "host": "1.2.3.4", "port": 80},
 {"name": "smtp", "host": "1.2.3.5", "port": 25},
 {"name": "ssh", "host": "1.2.3.6", "port": 22},
]} | json_query("services[].port") }}

Returns:

Example 1: [1, 2, 3, 4, 5, 6]

Example 2: ['a', 'c']

Example 3: [80, 25, 22]

to_entries

New in version 3007.0.

A port of the to_entries function from jq. This function converts between an object and an array of key-value
pairs. If to_entries is passed an object, then for each k: v entry in the input, the output array includes
{"key": k, "value": v}. The from_entries function performs the opposite conversion. from_entries accepts
"key", "Key", "name", "Name", "value", and "Value" as keys.

Example:

{{ {"a": 1, "b": 2} | to_entries }}

Returns:

[{"key":"a", "value":1}, {"key":"b", "value":2}]

from_entries

New in version 3007.0.

A port of the from_entries function from jq. This function converts between an array of key-value pairs and an
object. If from_entries is passed an object, then the input is expected to be an array of dictionaries in the format
of {"key": k, "value": v}. The output will be be key-value pairs k: v. from_entries accepts "key", "Key",
"name", "Name", "value", and "Value" as keys.

Example:

{{ [{"key":"a", "value":1}, {"key":"b", "value":2}] | from_entries }}

Returns:

{"a": 1, "b": 2}

to_snake_case

New in version 3000.

Converts a string from camelCase (or CamelCase) to snake_case.

Example: {{ camelsWillLoveThis | to_snake_case }}

Returns:

Example: camels_will_love_this

to_camelcase

New in version 3000.

Converts a string from snake_case to camelCase (or UpperCamelCase if so indicated).

Example 1: {{ snake_case_for_the_win | to_camelcase }}

Example 2: {{ snake_case_for_the_win | to_camelcase(uppercamel=True) }}

Returns:

Example 1: snakeCaseForTheWin
Example 2: SnakeCaseForTheWin

human_to_bytes

New in version 3005.

Given a human-readable byte string (e.g. 2G, 30MB, 64KiB), return the number of bytes.
Will return 0 if the argument has unexpected form.

Example 1: {{ "32GB" | human_to_bytes }}

Example 2: {{ "32GB" | human_to_bytes(handle_metric=True) }}

Example 3: {{ "32" | human_to_bytes(default_unit="GiB") }}

Returns:

Example 1: 34359738368
Example 2: 32000000000
Example 3: 34359738368

Networking Filters

The following networking-related filters are supported:

is_ip

New in version 2017.7.0.

Return if a string is a valid IP Address.

{{ '192.168.0.1' | is_ip }}

Additionally accepts the following options:

	global

	link-local

	loopback

	multicast

	private

	public

	reserved

	site-local

	unspecified

Example - test if a string is a valid loopback IP address.

{{ '192.168.0.1' | is_ip(options='loopback') }}

is_ipv4

New in version 2017.7.0.

Returns if a string is a valid IPv4 address. Supports the same options
as is_ip.

{{ '192.168.0.1' | is_ipv4 }}

is_ipv6

New in version 2017.7.0.

Returns if a string is a valid IPv6 address. Supports the same options
as is_ip.

{{ 'fe80::' | is_ipv6 }}

ipaddr

New in version 2017.7.0.

From a list, returns only valid IP entries. Supports the same options
as is_ip. The list can contains also IP interfaces/networks.

Example:

{{ ['192.168.0.1', 'foo', 'bar', 'fe80::'] | ipaddr }}

Returns:

["192.168.0.1", "fe80::"]

ipv4

New in version 2017.7.0.

From a list, returns only valid IPv4 entries. Supports the same options
as is_ip. The list can contains also IP interfaces/networks.

Example:

{{ ['192.168.0.1', 'foo', 'bar', 'fe80::'] | ipv4 }}

Returns:

["192.168.0.1"]

ipv6

New in version 2017.7.0.

From a list, returns only valid IPv6 entries. Supports the same options
as is_ip. The list can contains also IP interfaces/networks.

Example:

{{ ['192.168.0.1', 'foo', 'bar', 'fe80::'] | ipv6 }}

Returns:

["fe80::"]

ipwrap

New in version 3006.0.

From a string, list, or tuple, returns any IPv6 addresses wrapped in square brackets([])

Example:

{{ ['192.0.2.1', 'foo', 'bar', 'fe80::', '2001:db8::1/64'] | ipwrap }}

Returns:

["192.0.2.1", "foo", "bar", "[fe80::]", "[2001:db8::1]/64"]

network_hosts

New in version 2017.7.0.

Return the list of hosts within a networks. This utility works for both IPv4 and IPv6.

Note

When running this command with a large IPv6 network, the command will
take a long time to gather all of the hosts.

Example:

{{ '192.168.0.1/30' | network_hosts }}

Returns:

["192.168.0.1", "192.168.0.2"]

network_size

New in version 2017.7.0.

Return the size of the network. This utility works for both IPv4 and IPv6.

Example:

{{ '192.168.0.1/8' | network_size }}

Returns:

16777216

gen_mac

New in version 2017.7.0.

Generates a MAC address with the defined OUI prefix.

Common prefixes:

	00:16:3E -- Xen

	00:18:51 -- OpenVZ

	00:50:56 -- VMware (manually generated)

	52:54:00 -- QEMU/KVM

	AC:DE:48 -- PRIVATE

Example:

{{ '00:50' | gen_mac }}

Returns:

00:50:71:52:1C

mac_str_to_bytes

New in version 2017.7.0.

Converts a string representing a valid MAC address to bytes.

Example:

{{ '00:11:22:33:44:55' | mac_str_to_bytes }}

Note

This option may have adverse effects when using the default renderer,
jinja|yaml. This is due to the fact that YAML requires proper handling
in regard to special characters. Please see the section on YAML ASCII
support in the YAML Idiosyncrasies documentation for more information.

dns_check

New in version 2017.7.0.

Return the ip resolved by dns, but do not exit on failure, only raise an
exception. Obeys system preference for IPv4/6 address resolution.

Example:

{{ 'www.google.com' | dns_check(port=443) }}

Returns:

'172.217.3.196'

File filters

is_text_file

New in version 2017.7.0.

Return if a file is text.

Uses heuristics to guess whether the given file is text or binary,
by reading a single block of bytes from the file.
If more than 30% of the chars in the block are non-text, or there
are NUL ('x00') bytes in the block, assume this is a binary file.

Example:

{{ '/etc/salt/master' | is_text_file }}

Returns:

True

is_binary_file

New in version 2017.7.0.

Return if a file is binary.

Detects if the file is a binary, returns bool. Returns True if the file is
a bin, False if the file is not and None if the file is not available.

Example:

{{ '/etc/salt/master' | is_binary_file }}

Returns:

False

is_empty_file

New in version 2017.7.0.

Return if a file is empty.

Example:

{{ '/etc/salt/master' | is_empty_file }}

Returns:

False

file_hashsum

New in version 2017.7.0.

Return the hashsum of a file.

Example:

{{ '/etc/salt/master' | file_hashsum }}

Returns:

02d4ef135514934759634f10079653252c7ad594ea97bd385480c532bca0fdda

list_files

New in version 2017.7.0.

Return a recursive list of files under a specific path.

Example:

{{ '/etc/salt/' | list_files | join('\n') }}

Returns:

/etc/salt/master
/etc/salt/proxy
/etc/salt/minion
/etc/salt/pillar/top.sls
/etc/salt/pillar/device1.sls

path_join

New in version 2017.7.0.

Joins absolute paths.

Example:

{{ '/etc/salt/' | path_join('pillar', 'device1.sls') }}

Returns:

/etc/salt/pillar/device1.sls

which

New in version 2017.7.0.

Python clone of /usr/bin/which.

Example:

{{ 'salt-master' | which }}

Returns:

/usr/local/salt/virtualenv/bin/salt-master

Tests

Saltstack extends builtin tests [https://jinja.palletsprojects.com/en/2.11.x/templates/#builtin-tests] with these custom tests:

equalto

Tests the equality between two values.

Can be used in an if statement directly:

{% if 1 is equalto(1) %}
 < statements >
{% endif %}

If clause evaluates to True

or with the selectattr filter:

{{ [{'value': 1}, {'value': 2} , {'value': 3}] | selectattr('value', 'equalto', 3) | list }}

Returns:

[{"value": 3}]

match

Tests that a string matches the regex passed as an argument.

Can be used in a if statement directly:

{% if 'a' is match('[a-b]') %}
 < statements >
{% endif %}

If clause evaluates to True

or with the selectattr filter:

{{ [{'value': 'a'}, {'value': 'b'}, {'value': 'c'}] | selectattr('value', 'match', '[b-e]') | list }}

Returns:

[{"value": "b"}, {"value": "c"}]

Test supports additional optional arguments: ignorecase, multiline

Escape filters

regex_escape

New in version 2017.7.0.

Allows escaping of strings so they can be interpreted literally by another function.

Example:

regex_escape = {{ 'https://example.com?foo=bar%20baz' | regex_escape }}

will be rendered as:

regex_escape = https\:\/\/example\.com\?foo\=bar\%20baz

Set Theory Filters

unique

New in version 2017.7.0.

Performs set math using Jinja filters.

Example:

unique = {{ ['foo', 'foo', 'bar'] | unique }}

will be rendered as:

unique = ['foo', 'bar']

Global Functions

Salt Project extends builtin global functions [https://jinja.palletsprojects.com/en/2.11.x/templates/#builtin-globals] with these custom global functions:

ifelse

Evaluate each pair of arguments up to the last one as a (matcher, value)
tuple, returning value if matched. If none match, returns the last
argument.

The ifelse function is like a multi-level if-else statement. It was
inspired by CFEngine's ifelse function which in turn was inspired by
Oracle's DECODE function. It must have an odd number of arguments (from
1 to N). The last argument is the default value, like the else clause in
standard programming languages. Every pair of arguments before the last one
are evaluated as a pair. If the first one evaluates true then the second one
is returned, as if you had used the first one in a compound match
expression. Boolean values can also be used as the first item in a pair, as it
will be translated to a match that will always match ("*") or never match
("SALT_IFELSE_MATCH_NOTHING") a target system.

This is essentially another way to express the match.filter_by functionality
in way that's familiar to CFEngine or Oracle users. Consider using
match.filter_by unless this function fits your workflow.

{{ ifelse('foo*', 'fooval', 'bar*', 'barval', 'defaultval', minion_id='bar03') }}

Jinja in Files

Jinja [https://jinja.palletsprojects.com/en/2.11.x/templates/] can be used in the same way in managed files:

redis.sls
/etc/redis/redis.conf:
 file.managed:
 - source: salt://redis.conf
 - template: jinja
 - context:
 bind: 127.0.0.1

lib.sls
{% set port = 6379 %}

redis.conf
{% from 'lib.sls' import port with context %}
port {{ port }}
bind {{ bind }}

As an example, configuration was pulled from the file context and from an
external template file.

Note

Macros and variables can be shared across templates. They should not start
with one or more underscores, and should be managed by one of the
following tags: macro, set, load_yaml, load_json, import_yaml and
import_json.

Escaping Jinja

Occasionally, it may be necessary to escape Jinja syntax. There are two ways
to do this in Jinja. One is escaping individual variables or strings and the
other is to escape entire blocks.

To escape a string commonly used in Jinja syntax such as {{, you can use the
following syntax:

{{ '{{' }}

For larger blocks that contain Jinja syntax that needs to be escaped, you can use
raw blocks:

{% raw %}
 some text that contains jinja characters that need to be escaped
{% endraw %}

See the Escaping [https://jinja.palletsprojects.com/en/2.11.x/templates/#escaping] section of Jinja's documentation to learn more.

A real-word example of needing to use raw tags to escape a larger block of code
is when using file.managed with the contents_pillar option to manage
files that contain something like consul-template, which shares a syntax subset
with Jinja. Raw blocks are necessary here because the Jinja in the pillar would
be rendered before the file.managed is ever called, so the Jinja syntax must be
escaped:

{% raw %}
- contents_pillar: |
 job "example-job" {
 <snipped>
 task "example" {
 driver = "docker"

 config {
 image = "docker-registry.service.consul:5000/example-job:{{key "nomad/jobs/example-job/version"}}"
 <snipped>
{% endraw %}

Calling Salt Functions

The Jinja renderer provides a shorthand lookup syntax for the salt
dictionary of execution function.

New in version 2014.7.0.

The following two function calls are equivalent.
{{ salt['cmd.run']('whoami') }}
{{ salt.cmd.run('whoami') }}

Debugging

The show_full_context function can be used to output all variables present
in the current Jinja context.

New in version 2014.7.0.

Context is: {{ show_full_context()|yaml(False) }}

Logs

New in version 2017.7.0.

Yes, in Salt, one is able to debug a complex Jinja template using the logs.
For example, making the call:

{%- do salt.log.error('testing jinja logging') -%}

Will insert the following message in the minion logs:

2017-02-01 01:24:40,728 [salt.module.logmod][ERROR][3779] testing jinja logging

Profiling

New in version 3002.

When working with a very large codebase, it becomes increasingly imperative to
trace inefficiencies with state and pillar render times. The profile jinja
block enables the user to get finely detailed information on the most expensive
areas in the codebase.

Profiling blocks

Any block of jinja code can be wrapped in a profile block. The syntax for
a profile block is {% profile as '<name>' %}<jinja code>{% endprofile %},
where <name> can be any string. The <name> token will appear in the
log at the profile level along with the render time of the block.

/srv/salt/example.sls
{%- profile as 'local data' %}
 {%- set local_data = {'counter': 0} %}
 {%- for i in range(313377) %}
 {%- do local_data.update({'counter': i}) %}
 {%- endfor %}
{%- endprofile %}

test:
 cmd.run:
 - name: |-
 printf 'data: %s' '{{ local_data['counter'] }}'

The profile block in the example.sls state will emit the following log
statement:

salt-call --local -l profile state.apply example
[...]
[PROFILE] Time (in seconds) to render profile block 'local data': 0.9385035037994385
[...]

Profiling imports

Using the same logic as the profile block, the import_yaml,
import_json, and import_text blocks will emit similar statements at the
profile log level.

/srv/salt/data.sls
{%- set values = {'counter': 0} %}
{%- for i in range(524288) %}
 {%- do values.update({'counter': i}) %}
{%- endfor %}

data: {{ values['counter'] }}

/srv/salt/example.sls
{%- import_yaml 'data.sls' as imported %}

test:
 cmd.run:
 - name: |-
 printf 'data: %s' '{{ imported['data'] }}'

For import_* blocks, the profile log statement has the following form:

salt-call --local -l profile state.apply example
[...]
[PROFILE] Time (in seconds) to render import_yaml 'data.sls': 1.5500736236572266
[...]

Python Methods

A powerful feature of jinja that is only hinted at in the official jinja
documentation is that you can use the native python methods of the
variable type. Here is the python documentation for string methods [https://docs.python.org/3/library/stdtypes.html#string-methods].

{% set hostname,domain = grains.id.partition('.')[::2] %}{{ hostname }}

{% set strings = grains.id.split('-') %}{{ strings[0] }}

Custom Execution Modules

Custom execution modules can be used to supplement or replace complex Jinja. Many
tasks that require complex looping and logic are trivial when using Python
in a Salt execution module. Salt execution modules are easy to write and
distribute to Salt minions.

Functions in custom execution modules are available in the Salt execution
module dictionary just like the built-in execution modules:

{{ salt['my_custom_module.my_custom_function']() }}

	How to Convert Jinja Logic to an Execution Module

	Writing Execution Modules

Custom Jinja filters

Given that all execution modules are available in the Jinja template,
one can easily define a custom module as in the previous paragraph
and use it as a Jinja filter.
However, please note that it will not be accessible through the pipe.

For example, instead of:

{{ my_variable | my_jinja_filter }}

The user will need to define my_jinja_filter function under an extension
module, say my_filters and use as:

{{ salt.my_filters.my_jinja_filter(my_variable) }}

The greatest benefit is that you are able to access thousands of existing functions, e.g.:

	get the DNS AAAA records for a specific address using the dnsutil:

{{ salt.dnsutil.AAAA('www.google.com') }}

	retrieve a specific field value from a Redis hash:

{{ salt.redis.hget('foo_hash', 'bar_field') }}

	get the routes to 0.0.0.0/0 using the NAPALM route:

{{ salt.route.show('0.0.0.0/0') }}

Tutorials Index

	Autoaccept minions from Grains

	Salt as a Cloud Controller

	Using cron with Salt

	Use cron to initiate a highstate

	Running Salt States and Commands in Docker Containers

	Automatic Updates / Frozen Deployments

	ESXi Proxy Minion

	Opening the Firewall up for Salt

	Whitelist communication to Master

	Git Fileserver Backend Walkthrough

	HTTP Modules

	Using Salt at scale

	How to Convert Jinja Logic to an Execution Module

	Using Apache Libcloud for declarative and procedural multi-cloud orchestration

	LXC Management with Salt

	Master Cluster

	MinionFS Backend Walkthrough

	Remote execution tutorial

	Multi Master Tutorial

	Multi-Master-PKI Tutorial With Failover

	Packaging External Modules for Salt

	Pillar Walkthrough

	Preseed Minion with Accepted Key

	Salt Masterless Quickstart

	running salt as normal user tutorial

	Salt Bootstrap

	Standalone Minion

	How Do I Use Salt States?

	States tutorial, part 1 - Basic Usage

	States tutorial, part 2 - More Complex States, Requisites

	States tutorial, part 3 - Templating, Includes, Extends

	States tutorial, part 4

	States Tutorial, Part 5 - Orchestration with Salt

	Syslog-ng usage

	Salt in 10 Minutes

	The macOS (Maverick) Developer Step By Step Guide To Salt Installation

	Salt's Test Suite: An Introduction

Autoaccept minions from Grains

New in version 2018.3.0.

To automatically accept minions based on certain characteristics, e.g. the uuid
you can specify certain grain values on the salt master. Minions with matching grains
will have their keys automatically accepted.

	Configure the autosign_grains_dir in the master config file:

autosign_grains_dir: /etc/salt/autosign_grains

	Configure the grain values to be accepted

Place a file named like the grain in the autosign_grains_dir and write the values that
should be accepted automatically inside that file. For example to automatically
accept minions based on their uuid create a file named /etc/salt/autosign_grains/uuid:

8f7d68e2-30c5-40c6-b84a-df7e978a03ee
1d3c5473-1fbc-479e-b0c7-877705a0730f

If already running, the master must be restarted for these config changes to take effect.

The master is now setup to accept minions with either of the two specified uuids.
Multiple values must always be written into separate lines.
Lines starting with a # are ignored.

	Configure the minion to send the specific grains to the master in the minion config file:

autosign_grains:
 - uuid

Now you should be able to start salt-minion and run salt-call
state.apply or any other salt commands that require master authentication.

Salt as a Cloud Controller

In Salt 0.14.0, an advanced cloud control system was introduced, allowing
private cloud VMs to be managed directly with Salt. This system is generally
referred to as Salt Virt.

The Salt Virt system already exists and is installed within Salt itself. This
means that besides setting up Salt, no additional salt code needs to be
deployed.

Note

The libvirt python module and the certtool binary are required.

The main goal of Salt Virt is to facilitate a very fast and simple cloud that
can scale and is fully featured. Salt Virt comes with the ability to set up and
manage complex virtual machine networking, powerful image and disk management,
and virtual machine migration with and without shared storage.

This means that Salt Virt can be used to create a cloud from a blade center
and a SAN, but can also create a cloud out of a swarm of Linux Desktops
without a single shared storage system. Salt Virt can make clouds from
truly commodity hardware, but can also stand up the power of specialized
hardware as well.

Setting up Hypervisors

The first step to set up the hypervisors involves getting the correct software
installed and setting up the hypervisor network interfaces.

Installing Hypervisor Software

Salt Virt is made to be hypervisor agnostic but currently, the only fully
implemented hypervisor is KVM via libvirt.

The required software for a hypervisor is libvirt and kvm. For advanced
features, install libguestfs or qemu-nbd.

Note

Libguestfs and qemu-nbd allow for virtual machine images to be mounted
before startup and get pre-seeded with configurations and a salt minion.

This sls will set up the needed software for a hypervisor, and run the routines
to set up the libvirt pki keys.

Note

Package names and setup used is Red Hat specific. Different package names
will be required for different platforms.

libvirt:
 pkg.installed: []
 file.managed:
 - name: /etc/sysconfig/libvirtd
 - contents: 'LIBVIRTD_ARGS="--listen"'
 - require:
 - pkg: libvirt
 virt.keys:
 - require:
 - pkg: libvirt
 service.running:
 - name: libvirtd
 - require:
 - pkg: libvirt
 - network: br0
 - libvirt: libvirt
 - watch:
 - file: libvirt

libvirt-python:
 pkg.installed: []

libguestfs:
 pkg.installed:
 - pkgs:
 - libguestfs
 - libguestfs-tools

Hypervisor Network Setup

The hypervisors will need to be running a network bridge to serve up network
devices for virtual machines. This formula will set up a standard bridge on
a hypervisor connecting the bridge to eth0:

eth0:
 network.managed:
 - enabled: True
 - type: eth
 - bridge: br0

br0:
 network.managed:
 - enabled: True
 - type: bridge
 - proto: dhcp
 - require:
 - network: eth0

Virtual Machine Network Setup

Salt Virt comes with a system to model the network interfaces used by the
deployed virtual machines. By default, a single interface is created for the
deployed virtual machine and is bridged to br0. To get going with the
default networking setup, ensure that the bridge interface named br0 exists
on the hypervisor and is bridged to an active network device.

Note

To use more advanced networking in Salt Virt, read the Salt Virt
Networking document:

Salt Virt Networking

Libvirt State

One of the challenges of deploying a libvirt based cloud is the distribution
of libvirt certificates. These certificates allow for virtual machine
migration. Salt comes with a system used to auto deploy these certificates.
Salt manages the signing authority key and generates keys for libvirt clients
on the master, signs them with the certificate authority, and uses pillar to
distribute them. This is managed via the libvirt state. Simply execute this
formula on the minion to ensure that the certificate is in place and up to
date:

Note

The above formula includes the calls needed to set up libvirt keys.

libvirt_keys:
 virt.keys

Getting Virtual Machine Images Ready

Salt Virt requires that virtual machine images be provided as these are not
generated on the fly. Generating these virtual machine images differs greatly
based on the underlying platform.

Virtual machine images can be manually created using KVM and running through
the installer, but this process is not recommended since it is very manual and
prone to errors.

Virtual Machine generation applications are available for many platforms:

	kiwi: (openSUSE, SLES, RHEL, CentOS)
	https://opensuse.github.io/kiwi/

	vm-builder:
	https://wiki.debian.org/VMBuilder

See also

url vmbuilder-formula [https://github.com/saltstack-formulas/vmbuilder-formula]

Once virtual machine images are available, the easiest way to make them
available to Salt Virt is to place them in the Salt file server. Just copy an
image into /srv/salt and it can now be used by Salt Virt.

For purposes of this demo, the file name centos.img will be used.

Existing Virtual Machine Images

Many existing Linux distributions distribute virtual machine images which
can be used with Salt Virt. Please be advised that NONE OF THESE IMAGES ARE
SUPPORTED BY SALTSTACK.

CentOS

These images have been prepared for OpenNebula but should work without issue with
Salt Virt, only the raw qcow image file is needed:
https://wiki.centos.org/Cloud/OpenNebula

Fedora Linux

Images for Fedora Linux can be found here:
https://alt.fedoraproject.org/cloud

openSUSE

https://download.opensuse.org/distribution/leap/15.1/jeos/openSUSE-Leap-15.1-JeOS.x86_64-15.1.0-kvm-and-xen-Current.qcow2.meta4

SUSE

https://www.suse.com/products/server/jeos

Ubuntu Linux

Images for Ubuntu Linux can be found here:
http://cloud-images.ubuntu.com/

Using Salt Virt

With hypervisors set up and virtual machine images ready, Salt can start
issuing cloud commands using the virt runner.

Start by running a Salt Virt hypervisor info command:

salt-run virt.host_info

This will query the running hypervisor(s) for stats and display useful
information such as the number of CPUs and amount of memory.

You can also list all VMs and their current states on all hypervisor nodes:

salt-run virt.list

Now that hypervisors are available a virtual machine can be provisioned, the
virt.init routine will create a new virtual machine:

salt-run virt.init centos1 2 512 salt://centos.img

The Salt Virt runner will now automatically select a hypervisor to deploy
the new virtual machine on. Using salt:// assumes that the CentOS virtual
machine image is located in the root of the Salt File Server on the master.
When images are cloned (i.e. copied locally after retrieval from the file
server), the destination directory on the hypervisor minion is determined by the
virt:images config option; by default this is /srv/salt-images/.

When a VM is initialized using virt.init, the image is copied to the
hypervisor using cp.cache_file and will be mounted and seeded with a minion.
Seeding includes setting pre-authenticated keys on the new machine. A minion
will only be installed if one can not be found on the image using the default
arguments to seed.apply.

Note

The biggest bottleneck in starting VMs is when the Salt Minion needs to be
installed. Making sure that the source VM images already have Salt
installed will GREATLY speed up virtual machine deployment.

You can also deploy an image on a particular minion by directly calling the
virt execution module with an absolute image path. This can be quite handy for
testing:

salt 'hypervisor*' virt.init centos1 2 512 image=/var/lib/libvirt/images/centos.img

Now that the new VM has been prepared, it can be seen via the virt.query
command:

salt-run virt.query

This command will return data about all of the hypervisors and respective
virtual machines.

Now that the new VM is booted, it should have contacted the Salt Master. A
test.ping will reveal if the new VM is running.

QEMU Copy on Write Support

For fast image cloning, you can use the qcow [https://en.wikipedia.org/wiki/Qcow] disk image format.
Pass the enable_qcow flag and a .qcow2 image path to virt.init:

salt 'hypervisor*' virt.init centos1 2 512 image=/var/lib/libvirt/images/centos.qcow2 enable_qcow=True start=False

Note

Beware that attempting to boot a qcow image too quickly after cloning
can result in a race condition where libvirt may try to boot the machine
before image seeding has completed. For that reason, it is recommended to
also pass start=False to virt.init.

Also know that you must not modify the original base image without
first making a copy and then rebasing all overlay images onto it.
See the qemu-img rebase usage docs.

Migrating Virtual Machines

Salt Virt comes with full support for virtual machine migration. Using
the libvirt state in the above formula makes migration possible.

A few things need to be available to support migration. Many operating systems
turn on firewalls when originally set up; the firewall needs to be opened up
to allow for libvirt and kvm to cross communicate and execution migration
routines. On Red Hat based hypervisors in particular, port 16514 needs to be
opened on hypervisors:

iptables -A INPUT -m state --state NEW -m tcp -p tcp --dport 16514 -j ACCEPT

Note

More in-depth information regarding distribution specific firewall settings can be found in:

Opening the Firewall up for Salt

Salt also needs the virt:tunnel option to be turned on. This flag tells Salt
to run migrations securely via the libvirt TLS tunnel and to use port 16514.
Without virt:tunnel, libvirt tries to bind to random ports when running
migrations.

To turn on virt:tunnel, simply apply it to the master config file:

virt:
 tunnel: True

Once the master config has been updated, restart the master and send out a call
to the minions to refresh the pillar to pick up on the change:

salt * saltutil.refresh_modules

Now, migration routines can be run! To migrate a VM, simply run the Salt Virt
migrate routine:

salt-run virt.migrate centos <new hypervisor>

VNC Consoles

Although not enabled by default, Salt Virt can also set up VNC consoles allowing
for remote visual consoles to be opened up. When creating a new VM using
virt.init, pass the enable_vnc=True parameter to have a console
configured for the new VM.

The information from a virt.query routine will display the VNC console port
for the specific VMs:

centos
 CPU: 2
 Memory: 524288
 State: running
 Graphics: vnc - hyper6:5900
 Disk - vda:
 Size: 2.0G
 File: /srv/salt-images/ubuntu2/system.qcow2
 File Format: qcow2
 Nic - ac:de:48:98:08:77:
 Source: br0
 Type: bridge

The line Graphics: vnc - hyper6:5900 holds the key. First the port named,
in this case 5900, will need to be available in the hypervisor's firewall.
Once the port is open, then the console can be easily opened via vncviewer:

vncviewer hyper6:5900

By default there is no VNC security set up on these ports, which suggests that
keeping them firewalled and mandating that SSH tunnels be used to access these
VNC interfaces. Keep in mind that activity on a VNC interface that is accessed
can be viewed by any other user that accesses that same VNC interface, and any
other user logging in can also operate with the logged in user on the virtual
machine.

Conclusion

Now with Salt Virt running, new hypervisors can be seamlessly added just by
running the above states on new bare metal machines, and these machines will be
instantly available to Salt Virt.

Using cron with Salt

The Salt Minion can initiate its own highstate using
the salt-call command.

$ salt-call state.apply

This will cause the minion to check in with the master and ensure it is in the
correct "state".

Use cron to initiate a highstate

If you would like the Salt Minion to regularly check in with the master you can
use cron to run the salt-call command:

0 0 * * * salt-call state.apply

The above cron entry will run a highstate every day
at midnight.

Note

When executing Salt using cron, keep in mind that the default PATH for cron
may not include the path for any scripts or commands used by Salt, and it
may be necessary to set the PATH accordingly in the crontab:

PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin:/opt/bin

0 0 * * * salt-call state.apply

Running Salt States and Commands in Docker Containers

The 2016.11.0 release of Salt introduces the ability to execute Salt States
and Salt remote execution commands directly inside of Docker containers.

This addition makes it possible to not only deploy fresh containers using
Salt States. This also allows for running containers to be audited and
modified using Salt, but without running a Salt Minion inside the container.
Some of the applications include security audits of running containers as
well as gathering operating data from containers.

This new feature is simple and straightforward, and can be used via a running
Salt Minion, the Salt Call command, or via Salt SSH. For this tutorial we will
use the salt-call command, but like all salt commands these calls are
directly translatable to salt and salt-ssh.

Step 1 - Install Docker

Since setting up Docker is well covered in the Docker documentation we will
make no such effort to describe it here. Please see the Docker Installation
Documentation for installing and setting up Docker:
https://docs.docker.com/engine/installation/

The Docker integration also requires that the docker-py library is installed.
This can easily be done using pip or via your system package manager:

pip install docker-py

Step 2 - Install Salt

For this tutorial we will be using Salt Call, which is available in the
salt-minion package, please follow the
Salt install guide [https://docs.saltproject.io/salt/install-guide/en/latest/].

Step 3 - Create With Salt States

Next some Salt States are needed, for this example a very basic state which
installs vim is used, but anything Salt States can do can be done here,
please see the Salt States Introduction Tutorial to learn more about Salt
States:
https://docs.saltproject.io/en/stage/getstarted/config/

For this tutorial, simply create a small state file in /srv/salt/vim.sls:

vim:
 pkg.installed

Note

The base image you choose will need to have python 2.6 or 2.7 installed.
We are hoping to resolve this constraint in a future release.

If base is omitted the default image used is a minimal openSUSE
image with Python support, maintained by SUSE

Next run the docker.sls_build command:

salt-call --local dockerng.sls_build test base=my_base_image mods=vim

Now we have a fresh image called test to work with and vim has been
installed.

Step 4 - Running Commands Inside the Container

Salt can now run remote execution functions inside the container with another
simple salt-call command:

salt-call --local dockerng.call test test.version
salt-call --local dockerng.call test network.interfaces
salt-call --local dockerng.call test disk.usage
salt-call --local dockerng.call test pkg.list_pkgs
salt-call --local dockerng.call test service.running httpd
salt-call --local dockerng.call test cmd.run 'ls -l /etc'

Automatic Updates / Frozen Deployments

New in version 0.10.3.d.

Salt has support for the
Esky [https://github.com/cloudmatrix/esky] application freezing and update
tool. This tool allows one to build a complete zipfile out of the salt scripts
and all their dependencies - including shared objects / DLLs.

Getting Started

To build frozen applications, suitable build environment will be needed for
each platform. You should probably set up a virtualenv in order to limit the
scope of Q/A.

This process does work on Windows. Directions are available at
https://github.com/saltstack/salt-windows-install for details on
installing Salt in Windows. Only the 32-bit Python and dependencies have been
tested, but they have been tested on 64-bit Windows.

Install bbfreeze, and then esky from PyPI in order to enable the
bdist_esky command in setup.py. Salt itself must also be installed, in
addition to its dependencies.

Building and Freezing

Once you have your tools installed and the environment configured, use
setup.py to prepare the distribution files.

python setup.py sdist
python setup.py bdist

Once the distribution files are in place, Esky can be used traverse the module
tree and pack all the scripts up into a redistributable.

python setup.py bdist_esky

There will be an appropriately versioned salt-VERSION.zip in dist/ if
everything went smoothly.

Windows

C:\Python27\lib\site-packages\zmq will need to be added to the PATH
variable. This helps bbfreeze find the zmq DLL so it can pack it up.

Using the Frozen Build

Unpack the zip file in the desired install location. Scripts like
salt-minion and salt-call will be in the root of the zip file. The
associated libraries and bootstrapping will be in the directories at the same
level. (Check the Esky [https://github.com/cloudmatrix/esky] documentation
for more information)

To support updating your minions in the wild, put the builds on a web server
that the minions can reach. salt.modules.saltutil.update() will
trigger an update and (optionally) a restart of the minion service under the
new version.

Troubleshooting

A Windows minion isn't responding

The process dispatch on Windows is slower than it is on *nix. It may be
necessary to add '-t 15' to salt commands to give minions plenty of time to
return.

Windows and the Visual Studio Redist

The Visual C++ 2008 32-bit redistributable will need to be installed on all
Windows minions. Esky has an option to pack the library into the zipfile,
but OpenSSL does not seem to acknowledge the new location. If a
no OPENSSL_Applink error appears on the console when trying to start a
frozen minion, the redistributable is not installed.

Mixed Linux environments and Yum

The Yum Python module doesn't appear to be available on any of the standard
Python package mirrors. If RHEL/CentOS systems need to be supported, the frozen
build should created on that platform to support all the Linux nodes. Remember
to build the virtualenv with --system-site-packages so that the yum
module is included.

Automatic (Python) module discovery

Automatic (Python) module discovery does not work with the late-loaded scheme
that Salt uses for (Salt) modules. Any misbehaving modules will need to be
explicitly added to the freezer_includes in Salt's setup.py. Always
check the zipped application to make sure that the necessary modules were
included.

ESXi Proxy Minion

New in version 2015.8.4.

Note

This tutorial assumes basic knowledge of Salt. To get up to speed, check
out the Salt Walkthrough.

This tutorial also assumes a basic understanding of Salt Proxy Minions. If
you're unfamiliar with Salt's Proxy Minion system, please read the
Salt Proxy Minion documentation and the
Salt Proxy Minion End-to-End Example
tutorial.

The third assumption that this tutorial makes is that you also have a
basic understanding of ESXi hosts. You can learn more about ESXi hosts on
VMware's various resources [https://www.vmware.com/products/esxi-and-esx.html].

Salt's ESXi Proxy Minion allows a VMware ESXi host to be treated as an individual
Salt Minion, without installing a Salt Minion on the ESXi host.

Since an ESXi host may not necessarily run on an OS capable of hosting a Python
stack, the ESXi host can't run a regular Salt Minion directly. Therefore, Salt's
Proxy Minion functionality enables you to designate another machine to host a
proxy process that "proxies" communication from the Salt Master to the ESXi host.
The master does not know or care that the ESXi target is not a "real" Salt Minion.

More in-depth conceptual reading on Proxy Minions can be found in the
Proxy Minion section of Salt's documentation.

Salt's ESXi Proxy Minion was added in the 2015.8.4 release of Salt.

Note

Be aware that some functionality for the ESXi Proxy Minion may depend on the
type of license attached the ESXi host(s).

For example, certain services are only available to manipulate service state
or policies with a VMware vSphere Enterprise or Enterprise Plus license, while
others are available with a Standard license. The ntpd service is restricted
to an Enterprise Plus license, while ssh is available via the Standard
license.

Please see the vSphere Comparison [https://www.vmware.com/products/vsphere.html#compare] page for more information.

Dependencies

Manipulation of the ESXi host via a Proxy Minion requires the machine running
the Proxy Minion process to have the ESXCLI package (and all of its dependencies)
and the pyVmomi Python Library to be installed.

ESXi Password

The ESXi Proxy Minion uses VMware's API to perform tasks on the host as if it was
a regular Salt Minion. In order to access the API that is already running on the
ESXi host, the ESXi host must have a username and password that is used to log
into the host. The username is usually root. Before Salt can access the ESXi
host via VMware's API, a default password must be set on the host.

pyVmomi

The pyVmomi Python library must be installed on the machine that is running the
proxy process. pyVmomi can be installed via pip:

pip install pyVmomi

Note

Version 6.0 of pyVmomi has some problems with SSL error handling on certain
versions of Python. If using version 6.0 of pyVmomi, the machine that you
are running the proxy minion process from must have either Python 2.6,
Python 2.7.9, or newer. This is due to an upstream dependency in pyVmomi 6.0
that is not supported in Python version 2.7 to 2.7.8. If the
version of Python running the proxy process is not in the supported range, you
will need to install an earlier version of pyVmomi. See Issue #29537 [https://github.com/saltstack/salt/issues/29537] for
more information.

Based on the note above, to install an earlier version of pyVmomi than the
version currently listed in PyPi, run the following:

pip install pyVmomi==5.5.0.2014.1.1

The 5.5.0.2014.1.1 is a known stable version that the original ESXi Proxy Minion
was developed against.

ESXCLI

Currently, about a third of the functions used for the ESXi Proxy Minion require
the ESXCLI package be installed on the machine running the Proxy Minion process.

The ESXCLI package is also referred to as the VMware vSphere CLI, or vCLI. VMware
provides vCLI package installation instructions for vSphere 5.5 [http://pubs.vmware.com/vsphere-55/index.jsp#com.vmware.vcli.getstart.doc/cli_install.4.2.html] and
vSphere 6.0 [http://pubs.vmware.com/vsphere-60/index.jsp#com.vmware.vcli.getstart.doc/cli_install.4.2.html].

Once all of the required dependencies are in place and the vCLI package is
installed, you can check to see if you can connect to your ESXi host by running
the following command:

esxcli -s <host-location> -u <username> -p <password> system syslog config get

If the connection was successful, ESXCLI was successfully installed on your system.
You should see output related to the ESXi host's syslog configuration.

Configuration

There are several places where various configuration values need to be set in
order for the ESXi Proxy Minion to run and connect properly.

Proxy Config File

On the machine that will be running the Proxy Minion process(es), a proxy config
file must be in place. This file should be located in the /etc/salt/ directory
and should be named proxy. If the file is not there by default, create it.

This file should contain the location of your Salt Master that the Salt Proxy
will connect to.

Example Proxy Config File:

/etc/salt/proxy

master: <salt-master-location>

Pillar Profiles

Proxy minions get their configuration from Salt's Pillar. Every proxy must
have a stanza in Pillar and a reference in the Pillar top-file that matches
the Proxy ID. At a minimum for communication with the ESXi host, the pillar
should look like this:

proxy:
 proxytype: esxi
 host: <ip or dns name of esxi host>
 username: <ESXi username>
 passwords:
 - first_password
 - second_password
 - third_password

Some other optional settings are protocol and port. These can be added
to the pillar configuration.

proxytype

The proxytype key and value pair is critical, as it tells Salt which
interface to load from the proxy directory in Salt's install hierarchy,
or from /srv/salt/_proxy on the Salt Master (if you have created your
own proxy module, for example). To use this ESXi Proxy Module, set this to
esxi.

host

The location, or ip/dns, of the ESXi host. Required.

username

The username used to login to the ESXi host, such as root. Required.

passwords

A list of passwords to be used to try and login to the ESXi host. At least
one password in this list is required.

The proxy integration will try the passwords listed in order. It is
configured this way so you can have a regular password and the password you
may be updating for an ESXi host either via the
vsphere.update_host_password
execution module function or via the
esxi.password_present state
function. This way, after the password is changed, you should not need to
restart the proxy minion--it should just pick up the new password
provided in the list. You can then change pillar at will to move that
password to the front and retire the unused ones.

Use-case/reasoning for using a list of passwords: You are setting up an
ESXi host for the first time, and the host comes with a default password.
You know that you'll be changing this password during your initial setup
from the default to a new password. If you only have one password option,
and if you have a state changing the password, any remote execution commands
or states that run after the password change will not be able to run on the
host until the password is updated in Pillar and the Proxy Minion process is
restarted.

This allows you to use any number of potential fallback passwords.

Note

When a password is changed on the host to one in the list of possible
passwords, the further down on the list the password is, the longer
individual commands will take to return. This is due to the nature of
pyVmomi's login system. We have to wait for the first attempt to fail
before trying the next password on the list.

This scenario is especially true, and even slower, when the proxy
minion first starts. If the correct password is not the first password
on the list, it may take up to a minute for test.version to respond
with salt's version installed (Example: 2018.3.4. Once the initial
authorization is complete, the responses for commands will be a little
faster.

To avoid these longer waiting periods, SaltStack recommends moving the
correct password to the top of the list and restarting the proxy minion
at your earliest convenience.

protocol

If the ESXi host is not using the default protocol, set this value to an
alternate protocol. Default is https. For example:

port

If the ESXi host is not using the default port, set this value to an
alternate port. Default is 443.

Example Configuration Files

An example of all of the basic configurations that need to be in place before
starting the Proxy Minion processes includes the Proxy Config File, Pillar
Top File, and any individual Proxy Minion Pillar files.

In this example, we'll assuming there are two ESXi hosts to connect to. Therefore,
we'll be creating two Proxy Minion config files, one config for each ESXi host.

Proxy Config File:

/etc/salt/proxy

master: <salt-master-location>

Pillar Top File:

/srv/pillar/top.sls

base:
 'esxi-1':
 - esxi-1
 'esxi-2':
 - esxi-2

Pillar Config File for the first ESXi host, esxi-1:

/srv/pillar/esxi-1.sls

proxy:
 proxytype: esxi
 host: esxi-1.example.com
 username: 'root'
 passwords:
 - bad-password-1
 - backup-bad-password-1

Pillar Config File for the second ESXi host, esxi-2:

/srv/pillar/esxi-2.sls

proxy:
 proxytype: esxi
 host: esxi-2.example.com
 username: 'root'
 passwords:
 - bad-password-2
 - backup-bad-password-2

Starting the Proxy Minion

Once all of the correct configuration files are in place, it is time to start the
proxy processes!

	First, make sure your Salt Master is running.

	Start the first Salt Proxy, in debug mode, by giving the Proxy Minion process
and ID that matches the config file name created in the Configuration section.

salt-proxy --proxyid='esxi-1' -l debug

	Accept the esxi-1 Proxy Minion's key on the Salt Master:

salt-key -L
Accepted Keys:
Denied Keys:
Unaccepted Keys:
esxi-1
Rejected Keys:
#
salt-key -a esxi-1
The following keys are going to be accepted:
Unaccepted Keys:
esxi-1
Proceed? [n/Y] y
Key for minion esxi-1 accepted.

	Repeat for the second Salt Proxy, this time we'll run the proxy process as a
daemon, as an example.

salt-proxy --proxyid='esxi-2' -d

	Accept the esxi-2 Proxy Minion's key on the Salt Master:

salt-key -L
Accepted Keys:
esxi-1
Denied Keys:
Unaccepted Keys:
esxi-2
Rejected Keys:
#
salt-key -a esxi-1
The following keys are going to be accepted:
Unaccepted Keys:
esxi-2
Proceed? [n/Y] y
Key for minion esxi-1 accepted.

	Check and see if your Proxy Minions are responding:

salt 'esxi-*' test.version
esxi-1:
 True
esxi-3:
 True

Executing Commands

Now that you've configured your Proxy Minions and have them responding successfully
to a test.version, we can start executing commands against the ESXi hosts via Salt.

It's important to understand how this particular proxy works, and there are a couple
of important pieces to be aware of in order to start running remote execution and
state commands against the ESXi host via a Proxy Minion: the
vSphere Execution Module, the ESXi Execution Module, and the ESXi State Module.

vSphere Execution Module

The Salt.modules.vsphere is a
standard Salt execution module that does the bulk of the work for the ESXi Proxy
Minion. If you pull up the docs for it you'll see that almost every function in
the module takes credentials (username and password) and a target host
argument. When credentials and a host aren't passed, Salt runs commands
through pyVmomi or ESXCLI against the local machine. If you wanted,
you could run functions from this module on any machine where an appropriate
version of pyVmomi and ESXCLI are installed, and that machine would reach
out over the network and communicate with the ESXi host.

You'll notice that most of the functions in the vSphere module require a host,
username, and password. These parameters are contained in the Pillar files and
passed through to the function via the proxy process that is already running. You don't
need to provide these parameters when you execute the commands. See the
Running Remote Execution Commands section below for an example.

ESXi Execution Module

In order for the Pillar information set up in the Configuration section above to
be passed to the function call in the vSphere Execution Module, the
salt.modules.esxi execution module acts
as a "shim" between the vSphere execution module functions and the proxy process.

The "shim" takes the authentication credentials specified in the Pillar files and
passes them through to the host, username, password, and optional
protocol and port options required by the vSphere Execution Module functions.

If the function takes more positional, or keyword, arguments you can append them
to the call. It's this shim that speaks to the ESXi host through the proxy, arranging
for the credentials and hostname to be pulled from the Pillar section for the ESXi
Proxy Minion.

Because of the presence of the shim, to lookup documentation for what
functions you can use to interface with the ESXi host, you'll want to
look in salt.modules.vsphere
instead of salt.modules.esxi.

Running Remote Execution Commands

To run commands from the Salt Master to execute, via the ESXi Proxy Minion, against
the ESXi host, you use the esxi.cmd <vsphere-function-name> syntax to call
functions located in the vSphere Execution Module. Both args and kwargs needed
for various vsphere execution module functions must be passed through in a kwarg-
type manor. For example:

salt 'esxi-*' esxi.cmd system_info
salt 'exsi-*' esxi.cmd get_service_running service_name='ssh'

ESXi State Module

The ESXi State Module functions similarly to other state modules. The "shim" provided
by the ESXi Execution Module passes the necessary host, username, and
password credentials through, so those options don't need to be provided in the
state. Other than that, state files are written and executed just like any other
Salt state. See the salt.modules.esxi state
for ESXi state functions.

The follow state file is an example of how to configure various pieces of an ESXi host
including enabling SSH, uploading and SSH key, configuring a coredump network config,
syslog, ntp, enabling VMotion, resetting a host password, and more.

/srv/salt/configure-esxi.sls

configure-host-ssh:
 esxi.ssh_configured:
 - service_running: True
 - ssh_key_file: /etc/salt/ssh_keys/my_key.pub
 - service_policy: 'automatic'
 - service_restart: True
 - certificate_verify: True

configure-host-coredump:
 esxi.coredump_configured:
 - enabled: True
 - dump_ip: 'my-coredump-ip.example.com'

configure-host-syslog:
 esxi.syslog_configured:
 - syslog_configs:
 loghost: ssl://localhost:5432,tcp://10.1.0.1:1514
 default-timeout: 120
 - firewall: True
 - reset_service: True
 - reset_syslog_config: True
 - reset_configs: loghost,default-timeout

configure-host-ntp:
 esxi.ntp_configured:
 - service_running: True
 - ntp_servers:
 - 192.174.1.100
 - 192.174.1.200
 - service_policy: 'automatic'
 - service_restart: True

configure-vmotion:
 esxi.vmotion_configured:
 - enabled: True

configure-host-vsan:
 esxi.vsan_configured:
 - enabled: True
 - add_disks_to_vsan: True

configure-host-password:
 esxi.password_present:
 - password: 'new-bad-password'

States are called via the ESXi Proxy Minion just as they would on a regular minion.
For example:

salt 'esxi-*' state.sls configure-esxi test=true
salt 'esxi-*' state.sls configure-esxi

Relevant Salt Files and Resources

	ESXi Proxy Minion

	ESXi Execution Module

	ESXi State Module

	Salt Proxy Minion Docs

	Salt Proxy Minion End-to-End Example

	vSphere Execution Module

Opening the Firewall up for Salt

The Salt master communicates with the minions using an AES-encrypted ZeroMQ
connection. These communications are done over TCP ports 4505 and 4506,
which need to be accessible on the master only. This document outlines suggested
firewall rules for allowing these incoming connections to the master.

Note

No firewall configuration needs to be done on Salt minions. These changes
refer to the master only.

Fedora 18 and beyond / RHEL 7 / CentOS 7

Starting with Fedora 18 FirewallD [https://fedoraproject.org/wiki/Firewalld] is the tool that is used to dynamically
manage the firewall rules on a host. It has support for IPv4/6 settings and
the separation of runtime and permanent configurations. To interact with
FirewallD use the command line client firewall-cmd.

firewall-cmd example:

firewall-cmd --permanent --zone=<zone> --add-port=4505-4506/tcp

A network zone defines the security level of trust for the network.
The user should choose an appropriate zone value for their setup.
Possible values include: drop, block, public, external, dmz, work, home, internal, trusted.

Don't forget to reload after you made your changes.

firewall-cmd --reload

RHEL 6 / CentOS 6

The lokkit command packaged with some Linux distributions makes opening
iptables firewall ports very simple via the command line. Just be careful
to not lock out access to the server by neglecting to open the ssh port.

lokkit example:

lokkit -p 22:tcp -p 4505:tcp -p 4506:tcp

The system-config-firewall-tui command provides a text-based interface to
modifying the firewall.

system-config-firewall-tui:

system-config-firewall-tui

openSUSE

Salt installs firewall rules in /etc/sysconfig/SuSEfirewall2.d/services/salt [https://github.com/saltstack/salt/blob/master/pkg/suse/salt.SuSEfirewall2].
Enable with:

SuSEfirewall2 open
SuSEfirewall2 start

If you have an older package of Salt where the above configuration file is
not included, the SuSEfirewall2 command makes opening iptables firewall
ports very simple via the command line.

SuSEfirewall example:

SuSEfirewall2 open EXT TCP 4505
SuSEfirewall2 open EXT TCP 4506

The firewall module in YaST2 provides a text-based interface to modifying the
firewall.

YaST2:

yast2 firewall

Windows

Windows Firewall is the default component of Microsoft Windows that provides
firewalling and packet filtering. There are many 3rd party firewalls available
for Windows, some of which use rules from the Windows Firewall. If you are
experiencing problems see the vendor's specific documentation for opening the
required ports.

The Windows Firewall can be configured using the Windows Interface or from the
command line.

Windows Firewall (interface):

	Open the Windows Firewall Interface by typing wf.msc at the command
prompt or in a run dialog (Windows Key + R)

	Navigate to Inbound Rules in the console tree

	Add a new rule by clicking New Rule... in the Actions area

	Change the Rule Type to Port. Click Next

	Set the Protocol to TCP and specify local ports 4505-4506. Click
Next

	Set the Action to Allow the connection. Click Next

	Apply the rule to Domain, Private, and Public. Click Next

	Give the new rule a Name, ie: Salt. You may also add a description. Click
Finish

Windows Firewall (command line):

The Windows Firewall rule can be created by issuing a single command. Run the
following command from the command line or a run prompt:

netsh advfirewall firewall add rule name="Salt" dir=in action=allow protocol=TCP localport=4505-4506

iptables

Different Linux distributions store their iptables (also known as
netfilter [https://netfilter.org/]) rules in different places, which makes it difficult to
standardize firewall documentation. Included are some of the more
common locations, but your mileage may vary.

Fedora / RHEL / CentOS:

/etc/sysconfig/iptables

Arch Linux:

/etc/iptables/iptables.rules

Debian

Follow these instructions: https://wiki.debian.org/iptables

Once you've found your firewall rules, you'll need to add the below line
to allow traffic on tcp/4505 and tcp/4506:

-A INPUT -m state --state new -m tcp -p tcp --dport 4505:4506 -j ACCEPT

Ubuntu

Salt installs firewall rules in /etc/ufw/applications.d/salt.ufw [https://github.com/saltstack/salt/blob/master/pkg/salt.ufw]. Enable with:

ufw allow salt

pf.conf

The BSD-family of operating systems uses packet filter (pf) [http://openbsd.org/faq/pf/]. The following
example describes the addition to pf.conf needed to access the Salt
master.

pass in on $int_if proto tcp from any to $int_if port 4505:4506

Once this addition has been made to the pf.conf the rules will need to
be reloaded. This can be done using the pfctl command.

pfctl -vf /etc/pf.conf

Whitelist communication to Master

There are situations where you want to selectively allow Minion traffic
from specific hosts or networks into your Salt Master. The first
scenario which comes to mind is to prevent unwanted traffic to your
Master out of security concerns, but another scenario is to handle
Minion upgrades when there are backwards incompatible changes between
the installed Salt versions in your environment.

Here is an example Linux iptables ruleset to
be set on the Master:

Allow Minions from these networks
-I INPUT -s 10.1.2.0/24 -p tcp --dports 4505:4506 -j ACCEPT
-I INPUT -s 10.1.3.0/24 -p tcp --dports 4505:4506 -j ACCEPT
Allow Salt to communicate with Master on the loopback interface
-A INPUT -i lo -p tcp --dports 4505:4506 -j ACCEPT
Reject everything else
-A INPUT -p tcp --dports 4505:4506 -j REJECT

Note

The important thing to note here is that the salt command
needs to communicate with the listening network socket of
salt-master on the loopback interface. Without this you will
see no outgoing Salt traffic from the master, even for a simple
salt '*' test.version, because the salt client never reached
the salt-master to tell it to carry out the execution.

Git Fileserver Backend Walkthrough

Note

This walkthrough assumes basic knowledge of Salt. To get up to speed, check
out the Salt Walkthrough.

The gitfs backend allows Salt to serve files from git repositories. It can be
enabled by adding git to the fileserver_backend list, and
configuring one or more repositories in gitfs_remotes.

Branches and tags become Salt fileserver environments.

Note

Branching and tagging can result in a lot of potentially-conflicting
top files, for this reason it may be useful to set
top_file_merging_strategy to same in the minions' config
files if the top files are being managed in a GitFS repo.

Installing Dependencies

Both pygit2 [https://github.com/libgit2/pygit2] and GitPython [https://github.com/gitpython-developers/GitPython] are supported Python interfaces to git. If
compatible versions of both are installed, pygit2 [https://github.com/libgit2/pygit2] will be preferred. In these
cases, GitPython [https://github.com/gitpython-developers/GitPython] can be forced using the gitfs_provider
parameter in the master config file.

Note

It is recommended to always run the most recent version of any the below
dependencies. Certain features of GitFS may not be available without
the most recent version of the chosen library.

pygit2

The minimum supported version of pygit2 [https://github.com/libgit2/pygit2] is 0.20.3. Availability for this
version of pygit2 [https://github.com/libgit2/pygit2] is still limited, though the SaltStack team is working to
get compatible versions available for as many platforms as possible.

For the Fedora/EPEL versions which have a new enough version packaged, the
following command would be used to install pygit2 [https://github.com/libgit2/pygit2]:

yum install python-pygit2

Provided a valid version is packaged for Debian/Ubuntu (which is not currently
the case), the package name would be the same, and the following command would
be used to install it:

apt-get install python-pygit2

If pygit2 [https://github.com/libgit2/pygit2] is not packaged for the platform on which the Master is running, the
pygit2 [https://github.com/libgit2/pygit2] website has installation instructions
here. Keep in mind however that
following these instructions will install libgit2 [https://libgit2.org/] and pygit2 [https://github.com/libgit2/pygit2] without system
packages. Additionally, keep in mind that SSH authentication in pygit2 requires libssh2 [https://www.libssh2.org/] (not libssh) development
libraries to be present before libgit2 [https://libgit2.org/] is built. On some Debian-based distros
pkg-config is also required to link libgit2 [https://libgit2.org/] with libssh2.

Note

If you are receiving the error "Unsupported URL Protocol" in the Salt Master
log when making a connection using SSH, review the libssh2 details listed
above.

Additionally, version 0.21.0 of pygit2 introduced a dependency on python-cffi [https://pypi.org/project/cffi],
which in turn depends on newer releases of libffi [http://sourceware.org/libffi/]. Upgrading libffi [http://sourceware.org/libffi/] is not
advisable as several other applications depend on it, so on older LTS linux
releases pygit2 [https://github.com/libgit2/pygit2] 0.20.3 and libgit2 [https://libgit2.org/] 0.20.0 is the recommended combination.

Warning

pygit2 [https://github.com/libgit2/pygit2] is actively developed and frequently makes non-backwards-compatible
API changes [https://www.pygit2.org/install.html#version-numbers], even in minor releases. It is not uncommon for pygit2 [https://github.com/libgit2/pygit2]
upgrades to result in errors in Salt. Please take care when upgrading
pygit2 [https://github.com/libgit2/pygit2], and pay close attention to the changelog [https://github.com/libgit2/pygit2/blob/master/CHANGELOG.rst], keeping an eye out for
API changes. Errors can be reported on the SaltStack issue tracker [https://github.com/saltstack/salt/issues].

RedHat Pygit2 Issues

The release of RedHat/CentOS 7.3 upgraded both python-cffi and
http-parser, both of which are dependencies for pygit2 [https://github.com/libgit2/pygit2]/libgit2 [https://libgit2.org/]. Both
pygit2 and libgit2 packages (which are from the EPEL repository) should
be upgraded to the most recent versions, at least to 0.24.2.

The below errors will show up in the master log if an incompatible
python-pygit2 package is installed:

2017-02-10 09:07:34,892 [salt.utils.gitfs][ERROR][11211] Import pygit2 failed: CompileError: command 'gcc' failed with exit status 1
2017-02-10 09:07:34,907 [salt.utils.gitfs][ERROR][11211] gitfs is configured but could not be loaded, are pygit2 and libgit2 installed?
2017-02-10 09:07:34,907 [salt.utils.gitfs][CRITICAL][11211] No suitable gitfs provider module is installed.
2017-02-10 09:07:34,912 [salt.master][CRITICAL][11211] Master failed pre flight checks, exiting

The below errors will show up in the master log if an incompatible libgit2
package is installed:

2017-02-15 18:04:45,211 [salt.utils.gitfs][ERROR][6211] Error occurred fetching gitfs remote 'https://foo.com/bar.git': No Content-Type header in response

A restart of the salt-master daemon and gitfs cache directory clean up may
be required to allow http(s) repositories to continue to be fetched.

Debian Pygit2 Issues

The Debian repos currently have older versions of pygit2 (package
python3-pygit2). These older versions may have issues using newer SSH keys
(see [this issue](https://github.com/saltstack/salt/issues/61790)). Instead,
pygit2 can be installed from Pypi, but you will need a version that
matches the libgit2 version from Debian. This is version 1.6.1.

apt-get install libgit2
salt-pip install pygit2==1.6.1 --no-deps

Note that the above instructions assume a onedir installation. The need for
--no-deps is to prevent the CFFI package from mismatching with Salt.

GitPython

GitPython [https://github.com/gitpython-developers/GitPython] 0.3.0 or newer is required to use GitPython for gitfs. For
RHEL-based Linux distros, a compatible version is available in EPEL, and can be
easily installed on the master using yum:

yum install GitPython

Ubuntu 14.04 LTS and Debian Wheezy (7.x) also have a compatible version packaged:

apt-get install python-git

GitPython [https://github.com/gitpython-developers/GitPython] requires the git CLI utility to work. If installed from a system
package, then git should already be installed, but if installed via pip [http://www.pip-installer.org/] then
it may still be necessary to install git separately. For MacOS users,
GitPython [https://github.com/gitpython-developers/GitPython] comes bundled in with the Salt installer, but git must still be
installed for it to work properly. Git can be installed in several ways,
including by installing XCode [https://developer.apple.com/xcode/].

Warning

GitPython advises against the use of its library for long-running processes
(such as a salt-master or salt-minion). Please see their warning on potential
leaks of system resources:
https://github.com/gitpython-developers/GitPython#leakage-of-system-resources.

Warning

Keep in mind that if GitPython has been previously installed on the master
using pip (even if it was subsequently uninstalled), then it may still
exist in the build cache (typically /tmp/pip-build-root/GitPython) if
the cache is not cleared after installation. The package in the build cache
will override any requirement specifiers, so if you try upgrading to
version 0.3.2.RC1 by running pip install 'GitPython==0.3.2.RC1' then it
will ignore this and simply install the version from the cache directory.
Therefore, it may be necessary to delete the GitPython directory from the
build cache in order to ensure that the specified version is installed.

Warning

GitPython [https://github.com/gitpython-developers/GitPython] 2.0.9 and newer is not compatible with Python 2.6. If installing
GitPython [https://github.com/gitpython-developers/GitPython] using pip on a machine running Python 2.6, make sure that a
version earlier than 2.0.9 is installed. This can be done on the CLI by
running pip install 'GitPython<2.0.9', or in a pip.installed state using the following SLS:

GitPython:
 pip.installed:
 - name: 'GitPython < 2.0.9'

Simple Configuration

To use the gitfs backend, only two configuration changes are required on the
master:

	Include gitfs in the fileserver_backend list in the
master config file:

fileserver_backend:
 - gitfs

Note

git also works here. Prior to the 2018.3.0 release, only git
would work.

	Specify one or more git://, https://, file://, or ssh://
URLs in gitfs_remotes to configure which repositories to
cache and search for requested files:

gitfs_remotes:
 - https://github.com/saltstack-formulas/salt-formula.git

SSH remotes can also be configured using scp-like syntax:

gitfs_remotes:
 - git@github.com:user/repo.git
 - ssh://user@domain.tld/path/to/repo.git

Information on how to authenticate to SSH remotes can be found here.

	Restart the master to load the new configuration.

Note

In a master/minion setup, files from a gitfs remote are cached once by the
master, so minions do not need direct access to the git repository.

Multiple Remotes

The gitfs_remotes option accepts an ordered list of git remotes to
cache and search, in listed order, for requested files.

A simple scenario illustrates this cascading lookup behavior:

If the gitfs_remotes option specifies three remotes:

gitfs_remotes:
 - git://github.com/example/first.git
 - https://github.com/example/second.git
 - file:///root/third

And each repository contains some files:

first.git:
 top.sls
 edit/vim.sls
 edit/vimrc
 nginx/init.sls
 shell/init.sls

second.git:
 edit/dev_vimrc
 haproxy/init.sls
 shell.sls

third:
 haproxy/haproxy.conf
 edit/dev_vimrc

Salt will attempt to lookup the requested file from each gitfs remote
repository in the order in which they are defined in the configuration. The
git://github.com/example/first.git remote will be searched first.
If the requested file is found, then it is served and no further searching
is executed. For example:

	A request for the file salt://haproxy/init.sls will be served from
the https://github.com/example/second.git git repo.

	A request for the file salt://haproxy/haproxy.conf will be served from the
file:///root/third repo.

Also a requested state file overrules a directory with an init.sls-file.
For example:

	A request for state.apply shell will be served from the
https://github.com/example/second.git git repo.

Note

This example is purposefully contrived to illustrate the behavior of the
gitfs backend. This example should not be read as a recommended way to lay
out files and git repos.

The file:// prefix denotes a git repository in a local directory.
However, it will still use the given file:// URL as a remote,
rather than copying the git repo to the salt cache. This means that any
refs you want accessible must exist as local refs in the specified repo.

Warning

Salt versions prior to 2014.1.0 are not tolerant of changing the
order of remotes or modifying the URI of existing remotes. In those
versions, when modifying remotes it is a good idea to remove the gitfs
cache directory (/var/cache/salt/master/gitfs) before restarting the
salt-master service.

Per-remote Configuration Parameters

New in version 2014.7.0.

The following master config parameters are global (that is, they apply to all
configured gitfs remotes):

	gitfs_base

	gitfs_root

	gitfs_ssl_verify

	gitfs_mountpoint (new in 2014.7.0)

	gitfs_user (pygit2 only, new in 2014.7.0)

	gitfs_password (pygit2 only, new in 2014.7.0)

	gitfs_insecure_auth (pygit2 only, new in 2014.7.0)

	gitfs_pubkey (pygit2 only, new in 2014.7.0)

	gitfs_privkey (pygit2 only, new in 2014.7.0)

	gitfs_passphrase (pygit2 only, new in 2014.7.0)

	gitfs_refspecs (new in 2017.7.0)

	gitfs_disable_saltenv_mapping (new in 2018.3.0)

	gitfs_ref_types (new in 2018.3.0)

	gitfs_update_interval (new in 2018.3.0)

Note

pygit2 only supports disabling SSL verification in versions 0.23.2 and
newer.

These parameters can now be overridden on a per-remote basis. This allows for a
tremendous amount of customization. Here's some example usage:

gitfs_provider: pygit2
gitfs_base: develop

gitfs_remotes:
 - https://foo.com/foo.git
 - https://foo.com/bar.git:
 - root: salt
 - mountpoint: salt://bar
 - base: salt-base
 - ssl_verify: False
 - update_interval: 120
 - https://foo.com/bar.git:
 - name: second_bar_repo
 - root: other/salt
 - mountpoint: salt://other/bar
 - base: salt-base
 - ref_types:
 - branch
 - http://foo.com/baz.git:
 - root: salt/states
 - user: joe
 - password: mysupersecretpassword
 - insecure_auth: True
 - disable_saltenv_mapping: True
 - saltenv:
 - foo:
 - ref: foo
 - http://foo.com/quux.git:
 - all_saltenvs: master

Important

There are two important distinctions which should be noted for per-remote
configuration:

	The URL of a remote which has per-remote configuration must be suffixed
with a colon.

	Per-remote configuration parameters are named like the global versions,
with the gitfs_ removed from the beginning. The exception being the
name, saltenv, and all_saltenvs parameters, which are only
available to per-remote configurations.

The all_saltenvs parameter is new in the 2018.3.0 release.

In the example configuration above, the following is true:

	The first and fourth gitfs remotes will use the develop branch/tag as the
base environment, while the second and third will use the salt-base
branch/tag as the base environment.

	The first remote will serve all files in the repository. The second
remote will only serve files from the salt directory (and its
subdirectories). The third remote will only server files from the
other/salt directory (and its subdirectories), while the fourth remote
will only serve files from the salt/states directory (and its
subdirectories).

	The third remote will only serve files from branches, and not from tags or
SHAs.

	The fourth remote will only have two saltenvs available: base (pointed
at develop), and foo (pointed at foo).

	The first and fourth remotes will have files located under the root of the
Salt fileserver namespace (salt://). The files from the second remote
will be located under salt://bar, while the files from the third remote
will be located under salt://other/bar.

	The second and third remotes reference the same repository and unique names
need to be declared for duplicate gitfs remotes.

	The fourth remote overrides the default behavior of not authenticating
to insecure (non-HTTPS) remotes.

	Because all_saltenvs is configured for the fifth remote, files from the
branch/tag master will appear in every fileserver environment.

Note

The use of http:// (instead of https://) is permitted here
only because authentication is not being used. Otherwise, the
insecure_auth parameter must be used (as in the fourth remote) to
force Salt to authenticate to an http:// remote.

	The first remote will wait 120 seconds between updates instead of 60.

Per-Saltenv Configuration Parameters

New in version 2016.11.0.

For more granular control, Salt allows the following three things to be
overridden for individual saltenvs within a given repo:

	The mountpoint

	The root

	The branch/tag to be used for a given saltenv

Here is an example:

gitfs_root: salt

gitfs_saltenv:
 - dev:
 - mountpoint: salt://gitfs-dev
 - ref: develop

gitfs_remotes:
 - https://foo.com/bar.git:
 - saltenv:
 - staging:
 - ref: qa
 - mountpoint: salt://bar-staging
 - dev:
 - ref: development
 - https://foo.com/baz.git:
 - saltenv:
 - staging:
 - mountpoint: salt://baz-staging

Given the above configuration, the following is true:

	For all gitfs remotes, files for the dev saltenv will be located under
salt://gitfs-dev.

	For the dev saltenv, files from the first remote will be sourced from
the development branch, while files from the second remote will be
sourced from the develop branch.

	For the staging saltenv, files from the first remote will be located
under salt://bar-staging, while files from the second remote will be
located under salt://baz-staging.

	For all gitfs remotes, and in all saltenvs, files will be served from the
salt directory (and its subdirectories).

Custom Refspecs

New in version 2017.7.0.

GitFS will by default fetch remote branches and tags. However, sometimes it can
be useful to fetch custom refs (such as those created for GitHub pull
requests [https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/checking-out-pull-requests-locally]). To change the refspecs GitFS fetches, use the
gitfs_refspecs config option:

gitfs_refspecs:
 - '+refs/heads/*:refs/remotes/origin/*'
 - '+refs/tags/*:refs/tags/*'
 - '+refs/pull/*/head:refs/remotes/origin/pr/*'
 - '+refs/pull/*/merge:refs/remotes/origin/merge/*'

In the above example, in addition to fetching remote branches and tags,
GitHub's custom refs for pull requests and merged pull requests will also be
fetched. These special head refs represent the head of the branch which is
requesting to be merged, and the merge refs represent the result of the
base branch after the merge.

Important

When using custom refspecs, the destination of the fetched refs must be
under refs/remotes/origin/, preferably in a subdirectory like in the
example above. These custom refspecs will map as environment names using
their relative path underneath refs/remotes/origin/. For example,
assuming the configuration above, the head branch for pull request 12345
would map to fileserver environment pr/12345 (slash included).

Refspecs can be configured on a per-remote basis. For example, the below configuration would only
alter the default refspecs for the second GitFS remote. The first remote
would only fetch branches and tags (the default).

gitfs_remotes:
 - https://domain.tld/foo.git
 - https://domain.tld/bar.git:
 - refspecs:
 - '+refs/heads/*:refs/remotes/origin/*'
 - '+refs/tags/*:refs/tags/*'
 - '+refs/pull/*/head:refs/remotes/origin/pr/*'
 - '+refs/pull/*/merge:refs/remotes/origin/merge/*'

Global Remotes

New in version 2018.3.0: for all_saltenvs, 3001 for fallback

The all_saltenvs per-remote configuration parameter overrides the logic
Salt uses to map branches/tags to fileserver environments (i.e. saltenvs). This
allows a single branch/tag to appear in all GitFS saltenvs.

Note

all_saltenvs only works within GitFS. That is, files in a branch
configured using all_saltenvs will not show up in a fileserver
environment defined via some other fileserver backend (e.g.
file_roots).

The fallback global or per-remote configuration can also be used.

This is very useful in particular when working with salt formulas. Prior to the addition of this feature, it was necessary
to push a branch/tag to the remote repo for each saltenv in which that formula
was to be used. If the formula needed to be updated, this update would need to
be reflected in all of the other branches/tags. This is both inconvenient and
not scalable.

With all_saltenvs, it is now possible to define your formula once, in a
single branch.

gitfs_remotes:
 - http://foo.com/quux.git:
 - all_saltenvs: anything

If you want to also test working branches of the formula repository, use
fallback:

gitfs_remotes:
 - http://foo.com/quux.git:
 - fallback: anything

Update Intervals

Prior to the 2018.3.0 release, GitFS would update its fileserver backends as part
of a dedicated "maintenance" process, in which various routine maintenance
tasks were performed. This tied the update interval to the
loop_interval config option, and also forced all fileservers to
update at the same interval.

Now it is possible to make GitFS update at its own interval, using
gitfs_update_interval:

gitfs_update_interval: 180

gitfs_remotes:
 - https://foo.com/foo.git
 - https://foo.com/bar.git:
 - update_interval: 120

Using the above configuration, the first remote would update every three
minutes, while the second remote would update every two minutes.

Configuration Order of Precedence

The order of precedence for GitFS configuration is as follows (each level
overrides all levels below it):

	Per-saltenv configuration (defined under a per-remote saltenv
param)

gitfs_remotes:
 - https://foo.com/bar.git:
 - saltenv:
 - dev:
 - mountpoint: salt://bar

	Global per-saltenv configuration (defined in gitfs_saltenv)

gitfs_saltenv:
 - dev:
 - mountpoint: salt://bar

	Per-remote configuration parameter

gitfs_remotes:
 - https://foo.com/bar.git:
 - mountpoint: salt://bar

	Global configuration parameter

gitfs_mountpoint: salt://bar

Note

The one exception to the above is when all_saltenvs is used. This value overrides all logic for mapping
branches/tags to fileserver environments. So, even if
gitfs_saltenv is used to globally override the mapping for a
given saltenv, all_saltenvs would take
precedence for any remote which uses it.

It's important to note however that any root and mountpoint values
configured in gitfs_saltenv (or per-saltenv
configuration) would be unaffected by this.

Serving from a Subdirectory

The gitfs_root parameter allows files to be served from a
subdirectory within the repository. This allows for only part of a repository
to be exposed to the Salt fileserver.

Assume the below layout:

.gitignore
README.txt
foo/
foo/bar/
foo/bar/one.txt
foo/bar/two.txt
foo/bar/three.txt
foo/baz/
foo/baz/top.sls
foo/baz/edit/vim.sls
foo/baz/edit/vimrc
foo/baz/nginx/init.sls

The below configuration would serve only the files under foo/baz, ignoring
the other files in the repository:

gitfs_remotes:
 - git://mydomain.com/stuff.git

gitfs_root: foo/baz

The root can also be configured on a per-remote basis.

Mountpoints

New in version 2014.7.0.

The gitfs_mountpoint parameter will prepend the specified path
to the files served from gitfs. This allows an existing repository to be used,
rather than needing to reorganize a repository or design it around the layout
of the Salt fileserver.

Before the addition of this feature, if a file being served up via gitfs was
deeply nested within the root directory (for example,
salt://webapps/foo/files/foo.conf, it would be necessary to ensure that the
file was properly located in the remote repository, and that all of the
parent directories were present (for example, the directories
webapps/foo/files/ would need to exist at the root of the repository).

The below example would allow for a file foo.conf at the root of the
repository to be served up from the Salt fileserver path
salt://webapps/foo/files/foo.conf.

gitfs_remotes:
 - https://mydomain.com/stuff.git

gitfs_mountpoint: salt://webapps/foo/files

Mountpoints can also be configured on a per-remote basis.

Using gitfs in Masterless Mode

Since 2014.7.0, gitfs can be used in masterless mode. To do so, simply add the
gitfs configuration parameters (and set fileserver_backend) in
the _minion_ config file instead of the master config file.

Using gitfs Alongside Other Backends

Sometimes it may make sense to use multiple backends; for instance, if sls
files are stored in git but larger files are stored directly on the master.

The cascading lookup logic used for multiple remotes is also used with multiple
backends. If the fileserver_backend option contains multiple
backends:

fileserver_backend:
 - roots
 - git

Then the roots backend (the default backend of files in /srv/salt) will
be searched first for the requested file; then, if it is not found on the
master, each configured git remote will be searched.

Note

This can be used together with file_roots accepting __env__ as a catch-all
environment, since 2018.3.5 and 2019.2.1:

file_roots:
 base:
 - /srv/salt
 __env__:
 - /srv/salt

Branches, Environments, and Top Files

When using the GitFS backend, branches, and tags will be mapped to environments
using the branch/tag name as an identifier.

There is one exception to this rule: the master branch is implicitly mapped
to the base environment.

So, for a typical base, qa, dev setup, the following branches could
be used:

master
qa
dev

To map a branch other than master as the base environment, use the
gitfs_base parameter.

gitfs_base: salt-base

The base can also be configured on a per-remote basis.

Use Case: Code Promotion (dev -> qa -> base)

When running a highstate, the top.sls files from
all of the different branches and tags will be merged into one. This does not
work well with the use case where changes are tested in development branches
before being merged upstream towards production, because if the same SLS file
from multiple environments is part of the highstate,
it can result in non-unique state IDs, which will cause an error in the state
compiler and not allow the highstate to proceed.

To accomplish this use case, you should do three things:

	Use {{ saltenv }} in place of your environment in your top.sls. This
will let you use the same top file in all branches, because {{ saltenv
}} gets replaced with the effective saltenv of the environment being
processed.

	Set top_file_merging_strategy to same in the minion
configuration. This will keep the base environment from looking at the
top.sls from the dev or qa branches, etc.

	Explicitly define your saltenv. (More on this below.)

Consider the following example top file and SLS file:

top.sls

{{ saltenv }}:
 '*':
 - mystuff

mystuff.sls

manage_mystuff:
 pkg.installed:
 - name: mystuff
 file.managed:
 - name: /etc/mystuff.conf
 - source: salt://mystuff/files/mystuff.conf
 service.running:
 - name: mystuffd
 - enable: True
 - watch:
 - file: /etc/mystuff.conf

Imagine for a moment that you need to change your mystuff.conf. So, you go
to your dev branch, edit mystuff/files/mystuff.conf, and commit and
push.

If you have only done the first two steps recommended above, and you run your
highstate, you will end up with conflicting IDs:

myminion:
 Data failed to compile:

 Detected conflicting IDs, SLS IDs need to be globally unique.
 The conflicting ID is 'manage_mystuff' and is found in SLS 'base:mystuff' and SLS 'dev:mystuff'

 Detected conflicting IDs, SLS IDs need to be globally unique.
 The conflicting ID is 'manage_mystuff' and is found in SLS 'dev:mystuff' and SLS 'qa:mystuff'

This is because, in the absence of an explicit saltenv, all
environments' top files are considered. Each environment looks at only its own
top.sls, but because the mystuff.sls exists in each branch, they all
get pulled into the highstate, resulting in these conflicting IDs. This is why
explicitly setting your saltenv is important for this use case.

There are two ways of explicitly defining the saltenv:

	Set the saltenv in your minion configuration file. This
allows you to isolate which states are run to a specific branch/tag on a
given minion. This also works nicely if you have different salt deployments
for dev, qa, and prod. Boxes in dev can have saltenv set to
dev, boxes in qa can have the saltenv set to qa,
and boxes in prod can have the saltenv set to base.

	At runtime, you can set the saltenv like so:

salt myminion state.apply saltenv=dev

A couple notes about setting the saltenv at runtime:

	It will take precedence over the saltenv setting from the
minion config file, and pairs nicely with cases where you do not have
separate salt deployments for dev/qa/prod. You can have a box with
saltenv set to base, which you can test your dev
changes on by running your state.apply with saltenv=dev.

	If you don't set saltenv in the minion config file, you
must specify it at runtime to avoid conflicting IDs.

If you branched qa off of master, and dev off of qa, you can
merge changes from dev into qa, and then merge qa into master to
promote your changes to from dev to qa to prod.

Environment Whitelist/Blacklist

New in version 2014.7.0.

The gitfs_saltenv_whitelist and
gitfs_saltenv_blacklist parameters allow for greater control
over which branches/tags are exposed as fileserver environments. Exact matches,
globs, and regular expressions are supported, and are evaluated in that order.
If using a regular expression, ^ and $ must be omitted, and the
expression must match the entire branch/tag.

gitfs_saltenv_whitelist:
 - base
 - v1.*
 - 'mybranch\d+'

Note

v1.*, in this example, will match as both a glob and a regular
expression (though it will have been matched as a glob, since globs are
evaluated before regular expressions).

The behavior of the blacklist/whitelist will differ depending on which
combination of the two options is used:

	If only gitfs_saltenv_whitelist is used, then only
branches/tags which match the whitelist will be available as environments

	If only gitfs_saltenv_blacklist is used, then the
branches/tags which match the blacklist will not be available as
environments

	If both are used, then the branches/tags which match the whitelist, but do
not match the blacklist, will be available as environments.

Authentication

pygit2

New in version 2014.7.0.

Both HTTPS and SSH authentication are supported as of version 0.20.3, which is
the earliest version of pygit2 [https://github.com/libgit2/pygit2] supported by Salt for gitfs.

Note

The examples below make use of per-remote configuration parameters, a
feature new to Salt 2014.7.0. More information on these can be found
here.

HTTPS

For HTTPS repositories which require authentication, the username and password
can be provided like so:

gitfs_remotes:
 - https://domain.tld/myrepo.git:
 - user: git
 - password: mypassword

If the repository is served over HTTP instead of HTTPS, then Salt will by
default refuse to authenticate to it. This behavior can be overridden by adding
an insecure_auth parameter:

gitfs_remotes:
 - http://domain.tld/insecure_repo.git:
 - user: git
 - password: mypassword
 - insecure_auth: True

SSH

SSH repositories can be configured using the ssh:// protocol designation,
or using scp-like syntax. So, the following two configurations are equivalent:

	ssh://git@github.com/user/repo.git

	git@github.com:user/repo.git

Both gitfs_pubkey and gitfs_privkey (or their
per-remote counterparts) must be configured in
order to authenticate to SSH-based repos. If the private key is protected with
a passphrase, it can be configured using gitfs_passphrase (or
simply passphrase if being configured per-remote). For example:

gitfs_remotes:
 - git@github.com:user/repo.git:
 - pubkey: /root/.ssh/id_rsa.pub
 - privkey: /root/.ssh/id_rsa
 - passphrase: myawesomepassphrase

Finally, the SSH host key must be added to the known_hosts file.

Note

There is a known issue with public-key SSH authentication to Microsoft
Visual Studio (VSTS) with pygit2. This is due to a bug or lack of support
for VSTS in older libssh2 releases. Known working releases include libssh2
1.7.0 and later, and known incompatible releases include 1.5.0 and older.
At the time of this writing, 1.6.0 has not been tested.

Since upgrading libssh2 would require rebuilding many other packages (curl,
etc.), followed by a rebuild of libgit2 and a reinstall of pygit2, an
easier workaround for systems with older libssh2 is to use GitPython with a
passphraseless key for authentication.

GitPython

HTTPS

For HTTPS repositories which require authentication, the username and password
can be configured in one of two ways. The first way is to include them in the
URL using the format https://<user>:<password>@<url>, like so:

gitfs_remotes:
 - https://git:mypassword@domain.tld/myrepo.git

The other way would be to configure the authentication in /var/lib/salt/.netrc:

machine domain.tld
login git
password mypassword

If the repository is served over HTTP instead of HTTPS, then Salt will by
default refuse to authenticate to it. This behavior can be overridden by adding
an insecure_auth parameter:

gitfs_remotes:
 - http://git:mypassword@domain.tld/insecure_repo.git:
 - insecure_auth: True

SSH

Only passphrase-less SSH public key authentication is supported using
GitPython. The auth parameters (pubkey, privkey, etc.) shown in the pygit2
authentication examples above do not work with GitPython.

gitfs_remotes:
 - ssh://git@github.com/example/salt-states.git

Since GitPython [https://github.com/gitpython-developers/GitPython] wraps the git CLI, the private key must be located in
~/.ssh/id_rsa for the user under which the Master is running, and should
have permissions of 0600. Also, in the absence of a user in the repo URL,
GitPython [https://github.com/gitpython-developers/GitPython] will (just as SSH does) attempt to login as the current user (in
other words, the user under which the Master is running, usually root).

If a key needs to be used, then ~/.ssh/config can be configured to use
the desired key. Information on how to do this can be found by viewing the
manpage for ssh_config. Here's an example entry which can be added to the
~/.ssh/config to use an alternate key for gitfs:

Host github.com
 IdentityFile /root/.ssh/id_rsa_gitfs

The Host parameter should be a hostname (or hostname glob) that matches the
domain name of the git repository.

It is also necessary to add the SSH host key to the known_hosts file. The exception to this would be if strict host key
checking is disabled, which can be done by adding StrictHostKeyChecking no
to the entry in ~/.ssh/config

Host github.com
 IdentityFile /root/.ssh/id_rsa_gitfs
 StrictHostKeyChecking no

However, this is generally regarded as insecure, and is not recommended.

Adding the SSH Host Key to the known_hosts File

To use SSH authentication, it is necessary to have the remote repository's SSH
host key in the ~/.ssh/known_hosts file. If the master is also a minion,
this can be done using the ssh.set_known_host function:

salt mymaster ssh.set_known_host user=root hostname=github.com
mymaster:

 new:

 enc:
 ssh-rsa
 fingerprint:
 16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48
 hostname:
 |1|OiefWWqOD4kwO3BhoIGa0loR5AA=|BIXVtmcTbPER+68HvXmceodDcfI=
 key:
 AAAAB3NzaC1yc2EAAAABIwAAAQEAq2A7hRGmdnm9tUDbO9IDSwBK6TbQa+PXYPCPy6rbTrTtw7PHkccKrpp0yVhp5HdEIcKr6pLlVDBfOLX9QUsyCOV0wzfjIJNlGEYsdlLJizHhbn2mUjvSAHQqZETYP81eFzLQNnPHt4EVVUh7VfDESU84KezmD5QlWpXLmvU31/yMf+Se8xhHTvKSCZIFImWwoG6mbUoWf9nzpIoaSjB+weqqUUmpaaasXVal72J+UX2B+2RPW3RcT0eOzQgqlJL3RKrTJvdsjE3JEAvGq3lGHSZXy28G3skua2SmVi/w4yCE6gbODqnTWlg7+wC604ydGXA8VJiS5ap43JXiUFFAaQ==
 old:
 None
 status:
 updated

If not, then the easiest way to add the key is to su to the user (usually
root) under which the salt-master runs and attempt to login to the
server via SSH:

$ su -
Password:
ssh github.com
The authenticity of host 'github.com (192.30.252.128)' can't be established.
RSA key fingerprint is 16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'github.com,192.30.252.128' (RSA) to the list of known hosts.
Permission denied (publickey).

It doesn't matter if the login was successful, as answering yes will write
the fingerprint to the known_hosts file.

Verifying the Fingerprint

To verify that the correct fingerprint was added, it is a good idea to look it
up. One way to do this is to use nmap:

$ nmap -p 22 github.com --script ssh-hostkey

Starting Nmap 5.51 (http://nmap.org) at 2014-08-18 17:47 CDT
Nmap scan report for github.com (192.30.252.129)
Host is up (0.17s latency).
Not shown: 996 filtered ports
PORT STATE SERVICE
22/tcp open ssh
| ssh-hostkey: 1024 ad:1c:08:a4:40:e3:6f:9c:f5:66:26:5d:4b:33:5d:8c (DSA)
|_2048 16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48 (RSA)
80/tcp open http
443/tcp open https
9418/tcp open git

Nmap done: 1 IP address (1 host up) scanned in 28.78 seconds

Another way is to check one's own known_hosts file, using this one-liner:

$ ssh-keygen -l -f /dev/stdin <<<`ssh-keyscan github.com 2>/dev/null` | awk '{print $2}'
16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48

Warning

AWS tracks usage of nmap and may flag it as abuse. On AWS hosts, the
ssh-keygen method is recommended for host key verification.

Note

As of OpenSSH 6.8 [http://www.openssh.com/txt/release-6.8] the SSH fingerprint is now shown as a base64-encoded
SHA256 checksum of the host key. So, instead of the fingerprint looking
like 16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48, it would look
like SHA256:nThbg6kXUpJWGl7E1IGOCspRomTxdCARLviKw6E5SY8.

Refreshing gitfs Upon Push

By default, Salt updates the remote fileserver backends every 60 seconds.
However, if it is desirable to refresh quicker than that, the Reactor
System can be used to signal the master to update the fileserver on
each push, provided that the git server is also a Salt minion. There are three
steps to this process:

	On the master, create a file /srv/reactor/update_fileserver.sls, with
the following contents:

update_fileserver:
 runner.fileserver.update

	Add the following reactor configuration to the master config file:

reactor:
 - 'salt/fileserver/gitfs/update':
 - /srv/reactor/update_fileserver.sls

	On the git server, add a post-receive hook [https://www.git-scm.com/book/en/v2/Customizing-Git-Git-Hooks#Server-Side-Hooks]

	If the user executing git push is the same as the minion user, use the following hook:

#!/usr/bin/env sh
salt-call event.fire_master update salt/fileserver/gitfs/update

	To enable other git users to run the hook after a push, use sudo in the hook script:

#!/usr/bin/env sh
sudo -u root salt-call event.fire_master update salt/fileserver/gitfs/update

	If using sudo in the git hook (above), the policy must be changed to permit
all users to fire the event. Add the following policy to the sudoers file
on the git server.

Cmnd_Alias SALT_GIT_HOOK = /bin/salt-call event.fire_master update salt/fileserver/gitfs/update
Defaults!SALT_GIT_HOOK !requiretty
ALL ALL=(root) NOPASSWD: SALT_GIT_HOOK

The update argument right after event.fire_master in this example can really be anything, as it
represents the data being passed in the event, and the passed data is ignored
by this reactor.

Similarly, the tag name salt/fileserver/gitfs/update can be replaced by
anything, so long as the usage is consistent.

The root user name in the hook script and sudo policy should be changed to
match the user under which the minion is running.

Using Git as an External Pillar Source

The git external pillar (a.k.a. git_pillar) has been rewritten for the 2015.8.0
release. This rewrite brings with it pygit2 [https://github.com/libgit2/pygit2] support (allowing for access to
authenticated repositories), as well as more granular support for per-remote
configuration. This configuration schema is detailed here.

Why aren't my custom modules/states/etc. syncing to my Minions?

In versions 0.16.3 and older, when using the git fileserver backend, certain versions of GitPython may generate errors
when fetching, which Salt fails to catch. While not fatal to the fetch process,
these interrupt the fileserver update that takes place before custom types are
synced, and thus interrupt the sync itself. Try disabling the git fileserver
backend in the master config, restarting the master, and attempting the sync
again.

This issue is worked around in Salt 0.16.4 and newer.

HTTP Modules

This tutorial demonstrates using the various HTTP modules available in Salt.
These modules wrap the Python tornado, urllib2, and requests
libraries, extending them in a manner that is more consistent with Salt
workflows.

The salt.utils.http Library

This library forms the core of the HTTP modules. Since it is designed to be used
from the minion as an execution module, in addition to the master as a runner,
it was abstracted into this multi-use library. This library can also be imported
by 3rd-party programs wishing to take advantage of its extended functionality.

Core functionality of the execution, state, and runner modules is derived from
this library, so common usages between them are described here. Documentation
specific to each module is described below.

This library can be imported with:

import salt.utils.http

Configuring Libraries

This library can make use of either tornado, which is required by Salt,
urllib2, which ships with Python, or requests, which can be installed
separately. By default, tornado will be used. In order to switch to
urllib2, set the following variable:

backend: urllib2

In order to switch to requests, set the following variable:

backend: requests

This can be set in the master or minion configuration file, or passed as an
option directly to any http.query() functions.

salt.utils.http.query()

This function forms a basic query, but with some add-ons not present in the
tornado, urllib2, and requests libraries. Not all functionality
currently available in these libraries has been added, but can be in future
iterations.

HTTPS Request Methods

A basic query can be performed by calling this function with no more than a
single URL:

salt.utils.http.query("http://example.com")

By default the query will be performed with a GET method. The method can
be overridden with the method argument:

salt.utils.http.query("http://example.com/delete/url", "DELETE")

When using the POST method (and others, such as PUT), extra data is usually
sent as well. This data can be sent directly (would be URL encoded when necessary),
or in whatever format is required by the remote server (XML, JSON, plain text, etc).

salt.utils.http.query(
 "http://example.com/post/url", method="POST", data=json.dumps(mydict)
)

Data Formatting and Templating

Bear in mind that the data must be sent pre-formatted; this function will not
format it for you. However, a templated file stored on the local system may be
passed through, along with variables to populate it with. To pass through only
the file (untemplated):

salt.utils.http.query(
 "http://example.com/post/url", method="POST", data_file="/srv/salt/somefile.xml"
)

To pass through a file that contains jinja + yaml templating (the default):

salt.utils.http.query(
 "http://example.com/post/url",
 method="POST",
 data_file="/srv/salt/somefile.jinja",
 data_render=True,
 template_dict={"key1": "value1", "key2": "value2"},
)

To pass through a file that contains mako templating:

salt.utils.http.query(
 "http://example.com/post/url",
 method="POST",
 data_file="/srv/salt/somefile.mako",
 data_render=True,
 data_renderer="mako",
 template_dict={"key1": "value1", "key2": "value2"},
)

Because this function uses Salt's own rendering system, any Salt renderer can
be used. Because Salt's renderer requires __opts__ to be set, an opts
dictionary should be passed in. If it is not, then the default __opts__
values for the node type (master or minion) will be used. Because this library
is intended primarily for use by minions, the default node type is minion.
However, this can be changed to master if necessary.

salt.utils.http.query(
 "http://example.com/post/url",
 method="POST",
 data_file="/srv/salt/somefile.jinja",
 data_render=True,
 template_dict={"key1": "value1", "key2": "value2"},
 opts=__opts__,
)

salt.utils.http.query(
 "http://example.com/post/url",
 method="POST",
 data_file="/srv/salt/somefile.jinja",
 data_render=True,
 template_dict={"key1": "value1", "key2": "value2"},
 node="master",
)

Headers

Headers may also be passed through, either as a header_list, a
header_dict, or as a header_file. As with the data_file, the
header_file may also be templated. Take note that because HTTP headers are
normally syntactically-correct YAML, they will automatically be imported as an
a Python dict.

salt.utils.http.query(
 "http://example.com/delete/url",
 method="POST",
 header_file="/srv/salt/headers.jinja",
 header_render=True,
 header_renderer="jinja",
 template_dict={"key1": "value1", "key2": "value2"},
)

Because much of the data that would be templated between headers and data may be
the same, the template_dict is the same for both. Correcting possible
variable name collisions is up to the user.

Authentication

The query() function supports basic HTTP authentication. A username and
password may be passed in as username and password, respectively.

salt.utils.http.query("http://example.com", username="larry", password="5700g3543v4r")

Cookies and Sessions

Cookies are also supported, using Python's built-in cookielib. However, they
are turned off by default. To turn cookies on, set cookies to True.

salt.utils.http.query("http://example.com", cookies=True)

By default cookies are stored in Salt's cache directory, normally
/var/cache/salt, as a file called cookies.txt. However, this location
may be changed with the cookie_jar argument:

salt.utils.http.query(
 "http://example.com", cookies=True, cookie_jar="/path/to/cookie_jar.txt"
)

By default, the format of the cookie jar is LWP (aka, lib-www-perl). This
default was chosen because it is a human-readable text file. If desired, the
format of the cookie jar can be set to Mozilla:

salt.utils.http.query(
 "http://example.com",
 cookies=True,
 cookie_jar="/path/to/cookie_jar.txt",
 cookie_format="mozilla",
)

Because Salt commands are normally one-off commands that are piped together,
this library cannot normally behave as a normal browser, with session cookies
that persist across multiple HTTP requests. However, the session can be
persisted in a separate cookie jar. The default filename for this file, inside
Salt's cache directory, is cookies.session.p. This can also be changed.

salt.utils.http.query(
 "http://example.com", persist_session=True, session_cookie_jar="/path/to/jar.p"
)

The format of this file is msgpack, which is consistent with much of the rest
of Salt's internal structure. Historically, the extension for this file is
.p. There are no current plans to make this configurable.

Proxy

If the tornado backend is used (tornado is the default), proxy
information configured in proxy_host, proxy_port, proxy_username,
proxy_password and no_proxy from the __opts__ dictionary will be used. Normally
these are set in the minion configuration file.

proxy_host: proxy.my-domain
proxy_port: 31337
proxy_username: charon
proxy_password: obolus
no_proxy: ['127.0.0.1', 'localhost']

salt.utils.http.query("http://example.com", opts=__opts__, backend="tornado")

Return Data

Note

Return data encoding

If decode is set to True, query() will attempt to decode the
return data. decode_type defaults to auto. Set it to a specific
encoding, xml, for example, to override autodetection.

Because Salt's http library was designed to be used with REST interfaces,
query() will attempt to decode the data received from the remote server
when decode is set to True. First it will check the Content-type
header to try and find references to XML. If it does not find any, it will look
for references to JSON. If it does not find any, it will fall back to plain
text, which will not be decoded.

JSON data is translated into a dict using Python's built-in json library.
XML is translated using salt.utils.xml_util, which will use Python's
built-in XML libraries to attempt to convert the XML into a dict. In order to
force either JSON or XML decoding, the decode_type may be set:

salt.utils.http.query("http://example.com", decode_type="xml")

Once translated, the return dict from query() will include a dict called
dict.

If the data is not to be translated using one of these methods, decoding may be
turned off.

salt.utils.http.query("http://example.com", decode=False)

If decoding is turned on, and references to JSON or XML cannot be found, then
this module will default to plain text, and return the undecoded data as
text (even if text is set to False; see below).

The query() function can return the HTTP status code, headers, and/or text
as required. However, each must individually be turned on.

salt.utils.http.query("http://example.com", status=True, headers=True, text=True)

The return from these will be found in the return dict as status,
headers and text, respectively.

Writing Return Data to Files

It is possible to write either the return data or headers to files, as soon as
the response is received from the server, but specifying file locations via the
text_out or headers_out arguments. text and headers do not need
to be returned to the user in order to do this.

salt.utils.http.query(
 "http://example.com",
 text=False,
 headers=False,
 text_out="/path/to/url_download.txt",
 headers_out="/path/to/headers_download.txt",
)

SSL Verification

By default, this function will verify SSL certificates. However, for testing or
debugging purposes, SSL verification can be turned off.

salt.utils.http.query("https://example.com", verify_ssl=False)

CA Bundles

The requests library has its own method of detecting which CA (certificate
authority) bundle file to use. Usually this is implemented by the packager for
the specific operating system distribution that you are using. However,
urllib2 requires a little more work under the hood. By default, Salt will
try to auto-detect the location of this file. However, if it is not in an
expected location, or a different path needs to be specified, it may be done so
using the ca_bundle variable.

salt.utils.http.query("https://example.com", ca_bundle="/path/to/ca_bundle.pem")

Updating CA Bundles

The update_ca_bundle() function can be used to update the bundle file at a
specified location. If the target location is not specified, then it will
attempt to auto-detect the location of the bundle file. If the URL to download
the bundle from does not exist, a bundle will be downloaded from the cURL
website.

CAUTION: The target and the source should always be specified! Failure
to specify the target may result in the file being written to the wrong
location on the local system. Failure to specify the source may cause the
upstream URL to receive excess unnecessary traffic, and may cause a file to be
download which is hazardous or does not meet the needs of the user.

salt.utils.http.update_ca_bundle(
 target="/path/to/ca-bundle.crt",
 source="https://example.com/path/to/ca-bundle.crt",
 opts=__opts__,
)

The opts parameter should also always be specified. If it is, then the
target and the source may be specified in the relevant configuration
file (master or minion) as ca_bundle and ca_bundle_url, respectively.

ca_bundle: /path/to/ca-bundle.crt
ca_bundle_url: https://example.com/path/to/ca-bundle.crt

If Salt is unable to auto-detect the location of the CA bundle, it will raise
an error.

The update_ca_bundle() function can also be passed a string or a list of
strings which represent files on the local system, which should be appended (in
the specified order) to the end of the CA bundle file. This is useful in
environments where private certs need to be made available, and are not
otherwise reasonable to add to the bundle file.

salt.utils.http.update_ca_bundle(
 opts=__opts__,
 merge_files=[
 "/etc/ssl/private_cert_1.pem",
 "/etc/ssl/private_cert_2.pem",
 "/etc/ssl/private_cert_3.pem",
],
)

Test Mode

This function may be run in test mode. This mode will perform all work up until
the actual HTTP request. By default, instead of performing the request, an empty
dict will be returned. Using this function with TRACE logging turned on will
reveal the contents of the headers and POST data to be sent.

Rather than returning an empty dict, an alternate test_url may be passed in.
If this is detected, then test mode will replace the url with the
test_url, set test to True in the return data, and perform the rest
of the requested operations as usual. This allows a custom, non-destructive URL
to be used for testing when necessary.

Execution Module

The http execution module is a very thin wrapper around the
salt.utils.http library. The opts can be passed through as well, but if
they are not specified, the minion defaults will be used as necessary.

Because passing complete data structures from the command line can be tricky at
best and dangerous (in terms of execution injection attacks) at worse, the
data_file, and header_file are likely to see more use here.

All methods for the library are available in the execution module, as kwargs.

salt myminion http.query http://example.com/restapi method=POST \
 username='larry' password='5700g3543v4r' headers=True text=True \
 status=True decode_type=xml data_render=True \
 header_file=/tmp/headers.txt data_file=/tmp/data.txt \
 header_render=True cookies=True persist_session=True

Runner Module

Like the execution module, the http runner module is a very thin wrapper
around the salt.utils.http library. The only significant difference is that
because runners execute on the master instead of a minion, a target is not
required, and default opts will be derived from the master config, rather than
the minion config.

All methods for the library are available in the runner module, as kwargs.

salt-run http.query http://example.com/restapi method=POST \
 username='larry' password='5700g3543v4r' headers=True text=True \
 status=True decode_type=xml data_render=True \
 header_file=/tmp/headers.txt data_file=/tmp/data.txt \
 header_render=True cookies=True persist_session=True

State Module

The state module is a wrapper around the runner module, which applies stateful
logic to a query. All kwargs as listed above are specified as usual in state
files, but two more kwargs are available to apply stateful logic. A required
parameter is match, which specifies a pattern to look for in the return
text. By default, this will perform a string comparison of looking for the
value of match in the return text. In Python terms this looks like:

def myfunc():
 if match in html_text:
 return True

If more complex pattern matching is required, a regular expression can be used
by specifying a match_type. By default this is set to string, but it
can be manually set to pcre instead. Please note that despite the name, this
will use Python's re.search() rather than re.match().

Therefore, the following states are valid:

http://example.com/restapi:
 http.query:
 - match: 'SUCCESS'
 - username: 'larry'
 - password: '5700g3543v4r'
 - data_render: True
 - header_file: /tmp/headers.txt
 - data_file: /tmp/data.txt
 - header_render: True
 - cookies: True
 - persist_session: True

http://example.com/restapi:
 http.query:
 - match_type: pcre
 - match: '(?i)succe[ss|ed]'
 - username: 'larry'
 - password: '5700g3543v4r'
 - data_render: True
 - header_file: /tmp/headers.txt
 - data_file: /tmp/data.txt
 - header_render: True
 - cookies: True
 - persist_session: True

In addition to, or instead of a match pattern, the status code for a URL can be
checked. This is done using the status argument:

http://example.com/:
 http.query:
 - status: 200

If both are specified, both will be checked, but if only one is True and the
other is False, then False will be returned. In this case, the comments
in the return data will contain information for troubleshooting.

Because this is a monitoring state, it will return extra data to code that
expects it. This data will always include text and status. Optionally,
headers and dict may also be requested by setting the headers and
decode arguments to True, respectively.

Using Salt at scale

The focus of this tutorial will be building a Salt infrastructure for handling
large numbers of minions. This will include tuning, topology, and best practices.

For how to install the Salt Master, see the
Salt install guide [https://docs.saltproject.io/salt/install-guide/en/latest/].

Note

This tutorial is intended for large installations, although these same settings
won't hurt, it may not be worth the complexity to smaller installations.

When used with minions, the term 'many' refers to at least a thousand
and 'a few' always means 500.

For simplicity reasons, this tutorial will default to the standard ports
used by Salt.

The Master

The most common problems on the Salt Master are:

	too many minions authing at once

	too many minions re-authing at once

	too many minions re-connecting at once

	too many minions returning at once

	too few resources (CPU/HDD)

The first three are all "thundering herd" problems. To mitigate these issues
we must configure the minions to back-off appropriately when the Master is
under heavy load.

The fourth is caused by masters with little hardware resources in combination
with a possible bug in ZeroMQ. At least that's what it looks like till today
(Issue 118651 [https://github.com/saltstack/salt/issues/11865],
Issue 5948 [https://github.com/saltstack/salt/issues/5948],
Mail thread [https://groups.google.com/forum/#!searchin/salt-users/lots$20of$20minions/salt-users/WxothArv2Do/t12MigMQDFAJ])

To fully understand each problem, it is important to understand, how Salt works.

Very briefly, the Salt Master offers two services to the minions.

	a job publisher on port 4505

	an open port 4506 to receive the minions returns

All minions are always connected to the publisher on port 4505 and only connect
to the open return port 4506 if necessary. On an idle Master, there will only
be connections on port 4505.

Too many minions authing

When the Minion service is first started up, it will connect to its Master's publisher
on port 4505. If too many minions are started at once, this can cause a "thundering herd".
This can be avoided by not starting too many minions at once.

The connection itself usually isn't the culprit, the more likely cause of master-side
issues is the authentication that the Minion must do with the Master. If the Master
is too heavily loaded to handle the auth request it will time it out. The Minion
will then wait acceptance_wait_time to retry. If acceptance_wait_time_max is
set then the Minion will increase its wait time by the acceptance_wait_time each
subsequent retry until reaching acceptance_wait_time_max.

Too many minions re-authing

This is most likely to happen in the testing phase of a Salt deployment, when
all Minion keys have already been accepted, but the framework is being tested
and parameters are frequently changed in the Salt Master's configuration
file(s).

The Salt Master generates a new AES key to encrypt its publications at certain
events such as a Master restart or the removal of a Minion key. If you are
encountering this problem of too many minions re-authing against the Master,
you will need to recalibrate your setup to reduce the rate of events like a
Master restart or Minion key removal (salt-key -d).

When the Master generates a new AES key, the minions aren't notified of this
but will discover it on the next pub job they receive. When the Minion
receives such a job it will then re-auth with the Master. Since Salt does
minion-side filtering this means that all the minions will re-auth on the next
command published on the master-- causing another "thundering herd". This can
be avoided by setting the

random_reauth_delay: 60

in the minions configuration file to a higher value and stagger the amount
of re-auth attempts. Increasing this value will of course increase the time
it takes until all minions are reachable via Salt commands.

Too many minions re-connecting

By default the zmq socket will re-connect every 100ms which for some larger
installations may be too quick. This will control how quickly the TCP session is
re-established, but has no bearing on the auth load.

To tune the minions sockets reconnect attempts, there are a few values in
the sample configuration file (default values)

recon_default: 1000
recon_max: 5000
recon_randomize: True

	recon_default: the default value the socket should use, i.e. 1000. This value is in
milliseconds. (1000ms = 1 second)

	recon_max: the max value that the socket should use as a delay before trying to reconnect
This value is in milliseconds. (5000ms = 5 seconds)

	recon_randomize: enables randomization between recon_default and recon_max

To tune this values to an existing environment, a few decision have to be made.

	How long can one wait, before the minions should be online and reachable via Salt?

	How many reconnects can the Master handle without a syn flood?

These questions can not be answered generally. Their answers depend on the
hardware and the administrators requirements.

Here is an example scenario with the goal, to have all minions reconnect
within a 60 second time-frame on a Salt Master service restart.

recon_default: 1000
recon_max: 59000
recon_randomize: True

Each Minion will have a randomized reconnect value between 'recon_default'
and 'recon_default + recon_max', which in this example means between 1000ms
and 60000ms (or between 1 and 60 seconds). The generated random-value will
be doubled after each attempt to reconnect (ZeroMQ default behavior).

Lets say the generated random value is 11 seconds (or 11000ms).

reconnect 1: wait 11 seconds
reconnect 2: wait 22 seconds
reconnect 3: wait 33 seconds
reconnect 4: wait 44 seconds
reconnect 5: wait 55 seconds
reconnect 6: wait time is bigger than 60 seconds (recon_default + recon_max)
reconnect 7: wait 11 seconds
reconnect 8: wait 22 seconds
reconnect 9: wait 33 seconds
reconnect x: etc.

With a thousand minions this will mean

1000/60 = ~16

round about 16 connection attempts a second. These values should be altered to
values that match your environment. Keep in mind though, that it may grow over
time and that more minions might raise the problem again.

Too many minions returning at once

This can also happen during the testing phase, if all minions are addressed at
once with

$ salt * disk.usage

it may cause thousands of minions trying to return their data to the Salt Master
open port 4506. Also causing a flood of syn-flood if the Master can't handle that many
returns at once.

This can be easily avoided with Salt's batch mode:

$ salt * disk.usage -b 50

This will only address 50 minions at once while looping through all addressed
minions.

Too few resources

The masters resources always have to match the environment. There is no way
to give good advise without knowing the environment the Master is supposed to
run in. But here are some general tuning tips for different situations:

The Master is CPU bound

In installations with large or with complex pillar files, it is possible
for the master to exhibit poor performance as a result of having to render
many pillar files at once. This exhibit itself in a number of ways, both
as high load on the master and on minions which block on waiting for their
pillar to be delivered to them.

To reduce pillar rendering times, it is possible to cache pillars on the
master. To do this, see the set of master configuration options which
are prefixed with pillar_cache.

If many pillars are encrypted using gpg renderer, it
is possible to cache GPG data. To do this, see the set of master configuration
options which are prefixed with gpg_cache.

Note

Caching pillars or GPG data on the master may introduce security
considerations. Be certain to read caveats outlined in the master
configuration file to understand how pillar caching may affect a master's
ability to protect sensitive data!

The Master is disk IO bound

By default, the Master saves every Minion's return for every job in its
job-cache. The cache can then be used later, to lookup results for previous
jobs. The default directory for this is:

cachedir: /var/cache/salt

and then in the /proc directory.

Each job return for every Minion is saved in a single file. Over time this
directory can grow quite large, depending on the number of published jobs. The
amount of files and directories will scale with the number of jobs published and
the retention time defined by

keep_jobs_seconds: 86400

250 jobs/day * 2000 minions returns = 500,000 files a day

Use and External Job Cache

An external job cache allows for job storage to be placed on an external
system, such as a database.

	ext_job_cache: this will have the minions store their return data directly
into a returner (not sent through the Master)

	master_job_cache (New in 2014.7.0): this will make the Master store the job
data using a returner (instead of the local job cache on disk).

If a master has many accepted keys, it may take a long time to publish a job
because the master must first determine the matching minions and deliver
that information back to the waiting client before the job can be published.

To mitigate this, a key cache may be enabled. This will reduce the load
on the master to a single file open instead of thousands or tens of thousands.

This cache is updated by the maintenance process, however, which means that
minions with keys that are accepted may not be targeted by the master
for up to sixty seconds by default.

To enable the master key cache, set key_cache: 'sched' in the master
configuration file.

Disable The Job Cache

The job cache is a central component of the Salt Master and many aspects of
the Salt Master will not function correctly without a running job cache.

Disabling the job cache is STRONGLY DISCOURAGED and should not be done
unless the master is being used to execute routines that require no history
or reliable feedback!

The job cache can be disabled:

job_cache: False

How to Convert Jinja Logic to an Execution Module

Note

This tutorial assumes a basic knowledge of Salt states and specifically
experience using the maps.jinja idiom.

This tutorial was written by a salt user who was told "if your maps.jinja
is too complicated, write an execution module!". If you are experiencing
over-complicated jinja, read on.

The Problem: Jinja Gone Wild

It is often said in the Salt community that "Jinja is not a Programming Language".
There's an even older saying known as Maslow's hammer.
It goes something like
"if all you have is a hammer, everything looks like a nail".
Jinja is a reliable hammer, and so is the maps.jinja idiom.
Unfortunately, it can lead to code that looks like the following.

storage/maps.yaml

{% import_yaml 'storage/defaults.yaml' as default_settings %}
{% set storage = default_settings.storage %}
{% do storage.update(salt['grains.filter_by']({
 'Debian': {
 },
 'RedHat': {
 }
}, merge=salt['pillar.get']('storage:lookup'))) %}

{% if 'VirtualBox' == grains.get('virtual', None) or 'oracle' == grains.get('virtual', None) %}
{% do storage.update({'depot_ip': '192.168.33.81', 'server_ip': '192.168.33.51'}) %}
{% else %}
{% set colo = pillar.get('inventory', {}).get('colo', 'Unknown') %}
{% set servers_list = pillar.get('storage_servers', {}).get(colo, [storage.depot_ip,]) %}
{% if opts.id.startswith('foo') %}
{% set modulus = servers_list | count %}
{% set integer_id = opts.id | replace('foo', '') | int %}
{% set server_index = integer_id % modulus %}
{% else %}
{% set server_index = 0 %}
{% endif %}
{% do storage.update({'server_ip': servers_list[server_index]}) %}
{% endif %}

{% for network, _ in salt.pillar.get('inventory:networks', {}) | dictsort %}
{% do storage.ipsets.hash_net.foo_networks.append(network) %}
{% endfor %}

This is an example from the author's salt formulae demonstrating misuse of jinja.
Aside from being difficult to read and maintain,
accessing the logic it contains from a non-jinja renderer
while probably possible is a significant barrier!

Refactor

The first step is to reduce the maps.jinja file to something reasonable.
This gives us an idea of what the module we are writing needs to do.
There is a lot of logic around selecting a storage server ip.
Let's move that to an execution module.

storage/maps.yaml

{% import_yaml 'storage/defaults.yaml' as default_settings %}
{% set storage = default_settings.storage %}
{% do storage.update(salt['grains.filter_by']({
 'Debian': {
 },
 'RedHat': {
 }
}, merge=salt['pillar.get']('storage:lookup'))) %}

{% if 'VirtualBox' == grains.get('virtual', None) or 'oracle' == grains.get('virtual', None) %}
{% do storage.update({'depot_ip': '192.168.33.81'}) %}
{% endif %}

{% do storage.update({'server_ip': salt['storage.ip']()}) %}

{% for network, _ in salt.pillar.get('inventory:networks', {}) | dictsort %}
{% do storage.ipsets.hash_net.af_networks.append(network) %}
{% endfor %}

And then, write the module.
Note how the module encapsulates all of the logic around finding the storage server IP.

_modules/storage.py
#!python

"""
Functions related to storage servers.
"""

import re

def ips():
 """
 Provide a list of all local storage server IPs.

 CLI Example::

 salt * storage.ips
 """

 if __grains__.get("virtual", None) in ["VirtualBox", "oracle"]:
 return [
 "192.168.33.51",
]

 colo = __pillar__.get("inventory", {}).get("colo", "Unknown")
 return __pillar__.get("storage_servers", {}).get(colo, ["unknown"])

def ip():
 """
 Select and return a local storage server IP.

 This loadbalances across storage servers by using the modulus of the client's id number.

 :maintainer: Andrew Hammond <ahammond@anchorfree.com>
 :maturity: new
 :depends: None
 :platform: all

 CLI Example::

 salt * storage.ip

 """

 numerical_suffix = re.compile(r"^.*(\d+)$")
 servers_list = ips()

 m = numerical_suffix.match(__grains__["id"])
 if m:
 modulus = len(servers_list)
 server_number = int(m.group(1))
 server_index = server_number % modulus
 else:
 server_index = 0

 return servers_list[server_index]

Conclusion

That was... surprisingly straight-forward.
Now the logic is available in every renderer, instead of just Jinja.
Best of all, it can be maintained in Python,
which is a whole lot easier than Jinja.

Using Apache Libcloud for declarative and procedural multi-cloud orchestration

New in version 2018.3.0.

Note

This walkthrough assumes basic knowledge of Salt and Salt States. To get up to speed, check out the
Salt Walkthrough.

Apache Libcloud is a Python library which hides differences between different cloud provider APIs and allows
you to manage different cloud resources through a unified and easy to use API. Apache Libcloud supports over
60 cloud platforms, including Amazon, Microsoft Azure, DigitalOcean, Google Cloud Platform and OpenStack.

	Execution and state modules are available for Compute, DNS, Storage and Load Balancer drivers from Apache Libcloud in
	SaltStack.

	
	libcloud_compute - Compute -
	services such as OpenStack Nova, Amazon EC2, Microsoft Azure VMs

	
	libcloud_dns - DNS as a Service -
	services such as Amazon Route 53 and Zerigo

	
	libcloud_loadbalancer - Load Balancers as a Service -
	services such as Amazon Elastic Load Balancer and GoGrid LoadBalancers

	
	libcloud_storage - Cloud Object Storage and CDN -
	services such as Amazon S3 and Rackspace CloudFiles, OpenStack Swift

These modules are designed as a way of having a multi-cloud deployment and abstracting simple differences
between platform to design a high-availability architecture.

The Apache Libcloud functionality is available through both execution modules and Salt states.

Configuring Drivers

Drivers can be configured in the Salt Configuration/Minion settings. All libcloud modules expect a list of "profiles" to
be configured with authentication details for each driver.

Each driver will have a string identifier, these can be found in the libcloud.<api>.types.Provider class
for each API, https://libcloud.readthedocs.io/en/latest/supported_providers.html

Some drivers require additional parameters, which are documented in the Apache Libcloud documentation. For example,
GoDaddy DNS expects "shopper_id", which is the customer ID. These additional parameters can be added to the profile settings
and will be passed directly to the driver instantiation method.

libcloud_dns:
 godaddy:
 driver: godaddy
 shopper_id: 90425123
 key: AFDDJFGIjDFVNSDIFNASMC
 secret: FG(#f8vdfgjlkm)

libcloud_storage:
 google:
 driver: google_storage
 key: GOOG4ASDIDFNVIdfnIVW
 secret: R+qYE9hkfdhv89h4invhdfvird4Pq3an8rnK

You can have multiple profiles for a single driver, for example if you wanted 2 DNS profiles for Amazon Route53,
naming them "route53_prod" and "route54_test" would help your
administrators distinguish their purpose.

libcloud_dns:
 route53_prod:
 driver: route53
 key: AFDDJFGIjDFVNSDIFNASMC
 secret: FG(#f8vdfgjlkm)
 route53_test:
 driver: route53
 key: AFDDJFGIjdfgdfgdf
 secret: FG(#f8vdfgjlkm)

Using the execution modules

Amongst over 60 clouds that Apache Libcloud supports, you can add profiles to your Salt configuration to access and control these clouds.
Each of the libcloud execution modules exposes the common API methods for controlling Compute, DNS, Load Balancers and Object Storage.
To see which functions are supported across specific clouds, see the Libcloud supported methods [https://libcloud.readthedocs.io/en/latest/supported_providers.html#supported-methods-block-storage] documentation.

The module documentation explains each of the API methods and how to leverage them.

	
	libcloud_compute - Compute -
	services such as OpenStack Nova, Amazon EC2, Microsoft Azure VMs

	
	libcloud_dns - DNS as a Service -
	services such as Amazon Route 53 and Zerigo

	
	libcloud_loadbalancer - Load Balancers as a Service -
	services such as Amazon Elastic Load Balancer and GoGrid LoadBalancers

	
	libcloud_storage - Cloud Object Storage and CDN -
	services such as Amazon S3 and Rackspace CloudFiles, OpenStack Swift

For example, listing buckets in the Google Storage platform:

$ salt-call libcloud_storage.list_containers google

 local:
 |_

 extra:

 creation_date:
 2017-01-05T05:44:56.324Z
 name:
 anthonypjshaw

The Apache Libcloud storage module can be used to synchronize files between multiple storage clouds,
such as Google Storage, S3 and OpenStack Swift

salt '*' libcloud_storage.download_object DeploymentTools test.sh /tmp/test.sh google_storage

Using the state modules

For each configured profile, the assets available in the API (e.g. storage objects, containers,
DNS records and load balancers) can be deployed via Salt's state system.

The state module documentation explains the specific states that each module supports

	
	libcloud_storage - Cloud Object Storage and CDN
	
	services such as Amazon S3 and Rackspace CloudFiles, OpenStack Swift

	
	libcloud_loadbalancer - Load Balancers as a Service
	
	services such as Amazon Elastic Load Balancer and GoGrid LoadBalancers

	
	libcloud_dns - DNS as a Service
	
	services such as Amazon Route 53 and Zerigo

For DNS, the state modules can be used to provide DNS resilience for multiple nameservers, for example:

libcloud_dns:
 godaddy:
 driver: godaddy
 shopper_id: 12345
 key: 2orgk34kgk34g
 secret: fjgoidhjgoim
 amazon:
 driver: route53
 key: blah
 secret: blah

And then in a state file:

webserver:
 libcloud_dns.zone_present:
 name: mywebsite.com
 profile: godaddy
 libcloud_dns.record_present:
 name: www
 zone: mywebsite.com
 type: A
 data: 12.34.32.3
 profile: godaddy
 libcloud_dns.zone_present:
 name: mywebsite.com
 profile: amazon
 libcloud_dns.record_present:
 name: www
 zone: mywebsite.com
 type: A
 data: 12.34.32.3
 profile: amazon

This could be combined with a multi-cloud load balancer deployment,

webserver:
 libcloud_dns.zone_present:
 - name: mywebsite.com
 - profile: godaddy
 ...
 libcloud_loadbalancer.balancer_present:
 - name: web_main
 - port: 80
 - protocol: http
 - members:
 - ip: 1.2.4.5
 port: 80
 - ip: 2.4.5.6
 port: 80
 - profile: google_gce
 libcloud_loadbalancer.balancer_present:
 - name: web_main
 - port: 80
 - protocol: http
 - members:
 - ip: 1.2.4.5
 port: 80
 - ip: 2.4.5.6
 port: 80
 - profile: amazon_elb

Extended parameters can be passed to the specific cloud, for example you can specify the region with the Google Cloud API, because
create_balancer can accept a ex_region argument. Adding this argument to the state will pass the additional command to the driver.

lb_test:
 libcloud_loadbalancer.balancer_absent:
 - name: example
 - port: 80
 - protocol: http
 - profile: google
 - ex_region: us-east1

Accessing custom arguments in execution modules

Some cloud providers have additional functionality that can be accessed on top of the base API, for example
the Google Cloud Engine load balancer service offers the ability to provision load balancers into a specific region.

Looking at the API documentation [https://libcloud.readthedocs.io/en/latest/loadbalancer/drivers/gce.html#libcloud.loadbalancer.drivers.gce.GCELBDriver.create_balancer],
we can see that it expects an ex_region in the create_balancer method, so when we execute the salt command, we can add this additional parameter like this:

$ salt myminion libcloud_storage.create_balancer my_balancer 80 http profile1 ex_region=us-east1
$ salt myminion libcloud_storage.list_container_objects my_bucket profile1 ex_prefix=me

Accessing custom methods in Libcloud drivers

Some cloud APIs have additional methods that are prefixed with ex_ in Apache Libcloud, these methods
are part of the non-standard API but can still
be accessed from the Salt modules for libcloud_storage, libcloud_loadbalancer and libcloud_dns.
The extra methods are available via the extra command, which expects the name of the method as the
first argument, the profile as the second and then
accepts a list of keyword arguments to pass onto the driver method, for example, accessing permissions in Google Storage objects:

$ salt myminion libcloud_storage.extra ex_get_permissions google container_name=my_container object_name=me.jpg --out=yaml

Example profiles

Google Cloud

Using Service Accounts with GCE, you can provide a path to the JSON file and the project name in the parameters.

google:
 driver: gce
 user_id: 234234-compute@developer.gserviceaccount.com
 key: /path/to/service_account_download.json
 auth_type: SA
 project: project-name

LXC Management with Salt

Note

This walkthrough assumes basic knowledge of Salt. To get up to speed, check
out the Salt Walkthrough.

Dependencies

Manipulation of LXC containers in Salt requires the minion to have an LXC
version of at least 1.0 (an alpha or beta release of LXC 1.0 is acceptable).
The following distributions are known to have new enough versions of LXC
packaged:

	RHEL/CentOS 6 and later (via EPEL [https://fedoraproject.org/wiki/EPEL])

	Fedora (All non-EOL releases)

	Debian 8.0 (Jessie)

	Ubuntu 14.04 LTS and later (LXC templates are packaged separately as
lxc-templates, it is recommended to also install this package)

	openSUSE 13.2 and later

Profiles

Profiles allow for a sort of shorthand for commonly-used
configurations to be defined in the minion config file, grains, pillar, or the master config file. The
profile is retrieved by Salt using the config.get function, which looks in those locations, in that
order. This allows for profiles to be defined centrally in the master config
file, with several options for overriding them (if necessary) on groups of
minions or individual minions.

There are two types of profiles:

	One for defining the parameters used in container creation/clone.

	One for defining the container's network interface(s) settings.

Container Profiles

LXC container profiles are defined underneath the
lxc.container_profile config option:

lxc.container_profile:
 centos:
 template: centos
 backing: lvm
 vgname: vg1
 lvname: lxclv
 size: 10G
 centos_big:
 template: centos
 backing: lvm
 vgname: vg1
 lvname: lxclv
 size: 20G

Profiles are retrieved using the config.get
function, with the recurse merge strategy. This means that a profile can be
defined at a lower level (for example, the master config file) and then parts
of it can be overridden at a higher level (for example, in pillar data).
Consider the following container profile data:

In the Master config file:

lxc.container_profile:
 centos:
 template: centos
 backing: lvm
 vgname: vg1
 lvname: lxclv
 size: 10G

In the Pillar data

lxc.container_profile:
 centos:
 size: 20G

Any minion with the above Pillar data would have the size parameter in the
centos profile overridden to 20G, while those minions without the above
Pillar data would have the 10G size value. This is another way of achieving
the same result as the centos_big profile above, without having to define
another whole profile that differs in just one value.

Note

In the 2014.7.x release cycle and earlier, container profiles are defined
under lxc.profile. This parameter will still work in version 2015.5.0,
but is deprecated and will be removed in a future release. Please note
however that the profile merging feature described above will only work
with profiles defined under lxc.container_profile, and only in versions
2015.5.0 and later.

Additionally, in version 2015.5.0 container profiles have been expanded to
support passing template-specific CLI options to lxc.create. Below is a table describing the parameters which
can be configured in container profiles:

	Parameter

	2015.5.0 and Newer

	2014.7.x and Earlier

	template1

	Yes

	Yes

	options1

	Yes

	No

	image1

	Yes

	Yes

	backing

	Yes

	Yes

	snapshot2

	Yes

	Yes

	lvname1

	Yes

	Yes

	fstype1

	Yes

	Yes

	size

	Yes

	Yes

	Parameter is only supported for container creation, and will be ignored if
the profile is used when cloning a container.

	Parameter is only supported for container cloning, and will be ignored if
the profile is used when not cloning a container.

Network Profiles

LXC network profiles are defined defined underneath the lxc.network_profile
config option.
By default, the module uses a DHCP based configuration and try to guess a bridge to
get connectivity.

Warning

on pre 2015.5.2, you need to specify explicitly the network bridge

lxc.network_profile:
 centos:
 eth0:
 link: br0
 type: veth
 flags: up
 ubuntu:
 eth0:
 link: lxcbr0
 type: veth
 flags: up

As with container profiles, network profiles are retrieved using the
config.get function, with the recurse
merge strategy. Consider the following network profile data:

In the Master config file:

lxc.network_profile:
 centos:
 eth0:
 link: br0
 type: veth
 flags: up

In the Pillar data

lxc.network_profile:
 centos:
 eth0:
 link: lxcbr0

Any minion with the above Pillar data would use the lxcbr0 interface as the
bridge interface for any container configured using the centos network
profile, while those minions without the above Pillar data would use the
br0 interface for the same.

Note

In the 2014.7.x release cycle and earlier, network profiles are defined
under lxc.nic. This parameter will still work in version 2015.5.0, but
is deprecated and will be removed in a future release. Please note however
that the profile merging feature described above will only work with
profiles defined under lxc.network_profile, and only in versions
2015.5.0 and later.

The following are parameters which can be configured in network profiles. These
will directly correspond to a parameter in an LXC configuration file (see man
5 lxc.container.conf).

	type - Corresponds to lxc.network.type

	link - Corresponds to lxc.network.link

	flags - Corresponds to lxc.network.flags

Interface-specific options (MAC address, IPv4/IPv6, etc.) must be passed on a
container-by-container basis, for instance using the nic_opts argument to
lxc.create:

salt myminion lxc.create container1 profile=centos network_profile=centos nic_opts='{eth0: {ipv4: 10.0.0.20/24, gateway: 10.0.0.1}}'

Warning

The ipv4, ipv6, gateway, and link (bridge) settings in
network profiles / nic_opts will only work if the container doesn't redefine
the network configuration (for example in
/etc/sysconfig/network-scripts/ifcfg-<interface_name> on RHEL/CentOS,
or /etc/network/interfaces on Debian/Ubuntu/etc.). Use these with
caution. The container images installed using the download template,
for instance, typically are configured for eth0 to use DHCP, which will
conflict with static IP addresses set at the container level.

Note

For LXC < 1.0.7 and DHCP support, set ipv4.gateway: 'auto' is your
network profile, ie.:

lxc.network_profile.nic:
 debian:
 eth0:
 link: lxcbr0
 ipv4.gateway: 'auto'

Old lxc support (<1.0.7)

With saltstack 2015.5.2 and above, normally the setting is autoselected, but
before, you'll need to teach your network profile to set
lxc.network.ipv4.gateway to auto when using a classic ipv4 configuration.

Thus you'll need

lxc.network_profile.foo:
 etho:
 link: lxcbr0
 ipv4.gateway: auto

Tricky network setups Examples

This example covers how to make a container with both an internal ip and a
public routable ip, wired on two veth pairs.

The another interface which receives directly a public routable ip can't be on
the first interface that we reserve for private inter LXC networking.

lxc.network_profile.foo:
 eth0: {gateway: null, bridge: lxcbr0}
 eth1:
 # replace that by your main interface
 'link': 'br0'
 'mac': '00:16:5b:01:24:e1'
 'gateway': '2.20.9.14'
 'ipv4': '2.20.9.1'

Creating a Container on the CLI

From a Template

LXC is commonly distributed with several template scripts in
/usr/share/lxc/templates. Some distros may package these separately in an
lxc-templates package, so make sure to check if this is the case.

There are LXC template scripts for several different operating systems, but
some of them are designed to use tools specific to a given distribution. For
instance, the ubuntu template uses deb_bootstrap, the centos template
uses yum, etc., making these templates impractical when a container from a
different OS is desired.

The lxc.create function is used to create
containers using a template script. To create a CentOS container named
container1 on a CentOS minion named mycentosminion, using the
centos LXC template, one can simply run the following command:

salt mycentosminion lxc.create container1 template=centos

For these instances, there is a download template which retrieves minimal
container images for several different operating systems. To use this template,
it is necessary to provide an options parameter when creating the
container, with three values:

	dist - the Linux distribution (i.e. ubuntu or centos)

	release - the release name/version (i.e. trusty or 6)

	arch - CPU architecture (i.e. amd64 or i386)

The lxc.images function (new in version
2015.5.0) can be used to list the available images. Alternatively, the releases
can be viewed on http://images.linuxcontainers.org/images/. The images are
organized in such a way that the dist, release, and arch can be
determined using the following URL format:
http://images.linuxcontainers.org/images/dist/release/arch. For example,
http://images.linuxcontainers.org/images/centos/6/amd64 would correspond to
a dist of centos, a release of 6, and an arch of amd64.

Therefore, to use the download template to create a new 64-bit CentOS 6
container, the following command can be used:

salt myminion lxc.create container1 template=download options='{dist: centos, release: 6, arch: amd64}'

Note

These command-line options can be placed into a container profile, like so:

lxc.container_profile.cent6:
 template: download
 options:
 dist: centos
 release: 6
 arch: amd64

The options parameter is not supported in profiles for the 2014.7.x
release cycle and earlier, so it would still need to be provided on the
command-line.

Cloning an Existing Container

To clone a container, use the lxc.clone
function:

salt myminion lxc.clone container2 orig=container1

Using a Container Image

While cloning is a good way to create new containers from a common base
container, the source container that is being cloned needs to already exist on
the minion. This makes deploying a common container across minions difficult.
For this reason, Salt's lxc.create is capable
of installing a container from a tar archive of another container's rootfs. To
create an image of a container named cent6, run the following command as
root:

tar czf cent6.tar.gz -C /var/lib/lxc/cent6 rootfs

Note

Before doing this, it is recommended that the container is stopped.

The resulting tarball can then be placed alongside the files in the salt
fileserver and referenced using a salt:// URL. To create a container using
an image, use the image parameter with lxc.create:

salt myminion lxc.create new-cent6 image=salt://path/to/cent6.tar.gz

Note

Making images of containers with LVM backing

For containers with LVM backing, the rootfs is not mounted, so it is
necessary to mount it first before creating the tar archive. When a
container is created using LVM backing, an empty rootfs dir is handily
created within /var/lib/lxc/container_name, so this can be used as the
mountpoint. The location of the logical volume for the container will be
/dev/vgname/lvname, where vgname is the name of the volume group,
and lvname is the name of the logical volume. Therefore, assuming a
volume group of vg1, a logical volume of lxc-cent6, and a container
name of cent6, the following commands can be used to create a tar
archive of the rootfs:

mount /dev/vg1/lxc-cent6 /var/lib/lxc/cent6/rootfs
tar czf cent6.tar.gz -C /var/lib/lxc/cent6 rootfs
umount /var/lib/lxc/cent6/rootfs

Warning

One caveat of using this method of container creation is that
/etc/hosts is left unmodified. This could cause confusion for some
distros if salt-minion is later installed on the container, as the
functions that determine the hostname take /etc/hosts into account.

Additionally, when creating an rootfs image, be sure to remove
/etc/salt/minion_id and make sure that id is not defined in
/etc/salt/minion, as this will cause similar issues.

Initializing a New Container as a Salt Minion

The above examples illustrate a few ways to create containers on the CLI, but
often it is desirable to also have the new container run as a Minion. To do
this, the lxc.init function can be used. This
function will do the following:

	Create a new container

	Optionally set password and/or DNS

	Bootstrap the minion (using either salt-bootstrap [https://github.com/saltstack/salt-bootstrap] or a custom command)

By default, the new container will be pointed at the same Salt Master as the
host machine on which the container was created. It will then request to
authenticate with the Master like any other bootstrapped Minion, at which point
it can be accepted.

salt myminion lxc.init test1 profile=centos
salt-key -a test1

For even greater convenience, the LXC runner contains
a runner function of the same name (lxc.init),
which creates a keypair, seeds the new minion with it, and pre-accepts the key,
allowing for the new Minion to be created and authorized in a single step:

salt-run lxc.init test1 host=myminion profile=centos

Running Commands Within a Container

For containers which are not running their own Minion, commands can be run
within the container in a manner similar to using (cmd.run
<salt.modules.cmdmod.run). The means of doing this have been changed
significantly in version 2015.5.0 (though the deprecated behavior will still be
supported for a few releases). Both the old and new usage are documented
below.

2015.5.0 and Newer

New functions have been added to mimic the behavior of the functions in the
cmd module. Below is a table with the cmd functions and their lxc module
equivalents:

	Description

	cmd module

	lxc module

	Run a command and get all output

	cmd.run

	lxc.run

	Run a command and get just stdout

	cmd.run_stdout

	lxc.run_stdout

	Run a command and get just stderr

	cmd.run_stderr

	lxc.run_stderr

	Run a command and get just the retcode

	cmd.retcode

	lxc.retcode

	Run a command and get all information

	cmd.run_all

	lxc.run_all

2014.7.x and Earlier

Earlier Salt releases use a single function (lxc.run_cmd) to run commands within containers. Whether stdout,
stderr, etc. are returned depends on how the function is invoked.

To run a command and return the stdout:

salt myminion lxc.run_cmd web1 'tail /var/log/messages'

To run a command and return the stderr:

salt myminion lxc.run_cmd web1 'tail /var/log/messages' stdout=False stderr=True

To run a command and return the retcode:

salt myminion lxc.run_cmd web1 'tail /var/log/messages' stdout=False stderr=False

To run a command and return all information:

salt myminion lxc.run_cmd web1 'tail /var/log/messages' stdout=True stderr=True

Container Management Using salt-cloud

Salt cloud uses under the hood the salt runner and module to manage containers,
Please look at this chapter

Container Management Using States

Several states are being renamed or otherwise modified in version 2015.5.0. The
information in this tutorial refers to the new states. For
2014.7.x and earlier, please refer to the documentation for the LXC
states.

Ensuring a Container Is Present

To ensure the existence of a named container, use the lxc.present state. Here are some examples:

Using a template
web1:
 lxc.present:
 - template: download
 - options:
 dist: centos
 release: 6
 arch: amd64

Cloning
web2:
 lxc.present:
 - clone_from: web-base

Using a rootfs image
web3:
 lxc.present:
 - image: salt://path/to/cent6.tar.gz

Using profiles
web4:
 lxc.present:
 - profile: centos_web
 - network_profile: centos

Warning

The lxc.present state will not modify an
existing container (in other words, it will not re-create the container).
If an lxc.present state is run on an
existing container, there will be no change and the state will return a
True result.

The lxc.present state also includes an
optional running parameter which can be used to ensure that a container is
running/stopped. Note that there are standalone lxc.running and lxc.stopped
states which can be used for this purpose.

Ensuring a Container Does Not Exist

To ensure that a named container is not present, use the lxc.absent state. For example:

web1:
 lxc.absent

Ensuring a Container is Running/Stopped/Frozen

Containers can be in one of three states:

	running - Container is running and active

	frozen - Container is running, but all process are blocked and the
container is essentially non-active until the container is "unfrozen"

	stopped - Container is not running

Salt has three states (lxc.running,
lxc.frozen, and lxc.stopped) which can be used to ensure a container is in one
of these states:

web1:
 lxc.running

Restart the container if it was already running
web2:
 lxc.running:
 - restart: True

web3:
 lxc.stopped

Explicitly kill all tasks in container instead of gracefully stopping
web4:
 lxc.stopped:
 - kill: True

web5:
 lxc.frozen

If container is stopped, do not start it (in which case the state will fail)
web6:
 lxc.frozen:
 - start: False

Master Cluster

A clustered Salt Master has several advantages over Salt's traditional High
Availability options. First, a master cluster is meant to be served behind a
load balancer. Minions only need to know about the load balancer's IP address.
Therefore, masters can be added and removed from a cluster without the need to
re-configure minions. Another major benefit of master clusters over Salt's
older HA implimentations is that Masters in a cluster share the load of all
jobs. This allows Salt administrators to more easily scale their environments
to handle larger numbers of minions and larger jobs.

Minimum Requirements

Running a cluster master requires all nodes in the cluster to have a shared
filesystem. The cluster_pki_dir, cache_dir, file_roots and pillar_roots
must all be on a shared filesystem. Most implementations will also serve the
masters publish and request server ports via a tcp load balancer. All of the
masters in a cluster are assumed to be running on a reliable local area
network.

Each master in a cluster maintains its own public and private key, and an in
memory aes key. Each cluster peer also has access to the cluster_pki_dir
where a cluster wide public and private key are stored. In addition, the cluster
wide aes key is generated and stored in the cluster_pki_dir. Further,
when operating as a cluster, minion keys are stored in the cluster_pki_dir
instead of the master's pki_dir.

Reference Implimentation

Gluster: https://docs.gluster.org/en/main/Quick-Start-Guide/Quickstart/

HAProxy:

frontend salt-master-pub
 mode tcp
 bind 10.27.5.116:4505
 option tcplog
 timeout client 1m
 default_backend salt-master-pub-backend

backend salt-master-pub-backend
 mode tcp
 option tcplog
 #option log-health-checks
 log global
 #balance source
 balance roundrobin
 timeout connect 10s
 timeout server 1m
 server rserve1 10.27.12.13:4505 check
 server rserve2 10.27.7.126:4505 check
 server rserve3 10.27.3.73:4505 check

frontend salt-master-req
 mode tcp
 bind 10.27.5.116:4506
 option tcplog
 timeout client 1m
 default_backend salt-master-req-backend

backend salt-master-req-backend
 mode tcp
 option tcplog
 #option log-health-checks
 log global
 balance roundrobin
 #balance source
 timeout connect 10s
 timeout server 1m
 server rserve1 10.27.12.13:4506 check
 server rserve2 10.27.7.126:4506 check
 server rserve3 10.27.3.73:4506 check

Master Config:

id: 10.27.12.13
cluster_id: master_cluster
cluster_peers:
 - 10.27.7.126
 - 10.27.3.73
cluster_pki_dir: /my/gluster/share/pki
cachedir: /my/gluster/share/cache
file_roots:
 - /my/gluster/share/srv/salt
pillar_roots:
 - /my/gluster/share/srv/pillar

MinionFS Backend Walkthrough

New in version 2014.1.0.

Note

This walkthrough assumes basic knowledge of Salt and cp.push. To get up to speed, check out the
Salt Walkthrough.

Sometimes it is desirable to deploy a file located on one minion to one or more
other minions. This is supported in Salt, and can be accomplished in two parts:

	Minion support for pushing files to the master (using cp.push)

	The minionfs fileserver backend

This walkthrough will show how to use both of these features.

Enabling File Push

To set the master to accept files pushed from minions, the
file_recv option in the master config file must be set to
True (the default is False).

file_recv: True

Note

This change requires a restart of the salt-master service.

Pushing Files

Once this has been done, files can be pushed to the master using the
cp.push function:

salt 'minion-id' cp.push /path/to/the/file

This command will store the file in a subdirectory named minions under the
master's cachedir. On most masters, this path will be
/var/cache/salt/master/minions. Within this directory will be one directory
for each minion which has pushed a file to the master, and underneath that the
full path to the file on the minion. So, for example, if a minion with an ID of
dev1 pushed a file /var/log/myapp.log to the master, it would be saved
to /var/cache/salt/master/minions/dev1/var/log/myapp.log.

Serving Pushed Files Using MinionFS

While it is certainly possible to add /var/cache/salt/master/minions to the
master's file_roots and serve these files, it may only be
desirable to expose files pushed from certain minions. Adding
/var/cache/salt/master/minions/<minion-id> for each minion that needs to be
exposed can be cumbersome and prone to errors.

Enter minionfs. This fileserver backend will
make files pushed using cp.push available to
the Salt fileserver, and provides an easy mechanism to restrict which minions'
pushed files are made available.

Simple Configuration

To use the minionfs backend, add minionfs
to the list of backends in the fileserver_backend configuration
option on the master:

file_recv: True

fileserver_backend:
 - roots
 - minionfs

Note

minion also works here. Prior to the 2018.3.0 release, only
minion would work.

Also, as described earlier, file_recv: True is needed to enable the
master to receive files pushed from minions. As always, changes to the
master configuration require a restart of the salt-master service.

Files made available via minionfs are by
default located at salt://<minion-id>/path/to/file. Think back to the
earlier example, in which dev1 pushed a file /var/log/myapp.log to the
master. With minionfs enabled, this file
would be addressable in Salt at salt://dev1/var/log/myapp.log.

If many minions have pushed to the master, this will result in many directories
in the root of the Salt fileserver. For this reason, it is recommended to use
the minionfs_mountpoint config option to organize these files
underneath a subdirectory:

minionfs_mountpoint: salt://minionfs

Using the above mountpoint, the file in the example would be located at
salt://minionfs/dev1/var/log/myapp.log.

Restricting Certain Minions' Files from Being Available Via MinionFS

A whitelist and blacklist can be used to restrict the minions whose pushed
files are available via minionfs. These lists
can be managed using the minionfs_whitelist and
minionfs_blacklist config options. Click the links for both of
them for a detailed explanation of how to use them.

A more complex configuration example, which uses both a whitelist and
blacklist, can be found below:

file_recv: True

fileserver_backend:
 - roots
 - minionfs

minionfs_mountpoint: salt://minionfs

minionfs_whitelist:
 - host04
 - web*
 - 'mail\d+\.domain\.tld'

minionfs_blacklist:
 - web21

Potential Concerns

	There is no access control in place to restrict which minions have access to
files served up by minionfs. All minions
will have access to these files.

	Unless the minionfs_whitelist and/or
minionfs_blacklist config options are used, all minions which
push files to the master will have their files made available via
minionfs.

Remote execution tutorial

Before continuing make sure you have a working Salt installation by
following the instructions in the
Salt install guide [https://docs.saltproject.io/salt/install-guide/en/latest/].

Stuck?

The Salt Project community can help offer advice and help troubleshoot
technical issues as you're learning about Salt. One of the best places to
talk to the community is on the
Salt Project Slack workspace [https://saltstackcommunity.slack.com/].

Order your minions around

Now that you have a master and at least one minion
communicating with each other you can perform commands on the minion via the
salt command. Salt calls are comprised of three main components:

salt '<target>' <function> [arguments]

See also

salt manpage

target

The target component allows you to filter which minions should run the
following function. The default filter is a glob on the minion id. For example:

salt '*' test.version
salt '*.example.org' test.version

Targets can be based on minion system information using the Grains system:

salt -G 'os:Ubuntu' test.version

See also

Grains system

Targets can be filtered by regular expression:

salt -E 'virtmach[0-9]' test.version

Targets can be explicitly specified in a list:

salt -L 'foo,bar,baz,quo' test.version

Or Multiple target types can be combined in one command:

salt -C 'G@os:Ubuntu and webser* or E@database.*' test.version

function

A function is some functionality provided by a module. Salt ships with a large
collection of available functions. List all available functions on your
minions:

salt '*' sys.doc

Here are some examples:

Show all currently available minions:

salt '*' test.version

Run an arbitrary shell command:

salt '*' cmd.run 'uname -a'

See also

the full list of modules

arguments

Space-delimited arguments to the function:

salt '*' cmd.exec_code python 'import sys; print sys.version'

Optional, keyword arguments are also supported:

salt '*' pip.install salt timeout=5 upgrade=True

They are always in the form of kwarg=argument.

Multi Master Tutorial

As of Salt 0.16.0, the ability to connect minions to multiple masters has been
made available. The multi-master system allows for redundancy of Salt
masters and facilitates multiple points of communication out to minions. When
using a multi-master setup, all masters are running hot, and any active master
can be used to send commands out to the minions.

Note

If you need failover capabilities with multiple masters, there is also a
MultiMaster-PKI setup available, that uses a different topology
MultiMaster-PKI with Failover Tutorial [https://docs.saltproject.io/en/latest/topics/tutorials/multimaster_pki.html]

In 0.16.0, the masters do not share any information, keys need to be accepted
on both masters, and shared files need to be shared manually or use tools like
the git fileserver backend to ensure that the file_roots are
kept consistent.

Beginning with Salt 2016.11.0, the Pluggable Minion Data Cache
was introduced. The minion data cache contains the Salt Mine data, minion grains, and minion
pillar information cached on the Salt Master. By default, Salt uses the localfs cache
module, but other external data stores can be used instead.

Using a pluggable minion cache modules allows for the data stored on a Salt Master about
Salt Minions to be replicated on other Salt Masters the Minion is connected to. Please see
the Minion Data Cache documentation for more information and configuration
examples.

Summary of Steps

	Create a redundant master server

	Copy primary master key to redundant master

	Start redundant master

	Configure minions to connect to redundant master

	Restart minions

	Accept keys on redundant master

Prepping a Redundant Master

The first task is to prepare the redundant master. If the redundant master is
already running, stop it. There is only one requirement when preparing a
redundant master, which is that masters share the same private key. When the
first master was created, the master's identifying key pair was generated and
placed in the master's pki_dir. The default location of the master's key
pair is /etc/salt/pki/master/. Take the private key, master.pem, and
copy it to the same location on the redundant master. Do the same for the
master's public key, master.pub. Assuming that no minions have yet been
connected to the new redundant master, it is safe to delete any existing key
in this location and replace it.

Note

There is no logical limit to the number of redundant masters that can be
used.

Once the new key is in place, the redundant master can be safely started.

Configure Minions

Since minions need to be master-aware, the new master needs to be added to the
minion configurations. Simply update the minion configurations to list all
connected masters:

master:
 - saltmaster1.example.com
 - saltmaster2.example.com

Now the minion can be safely restarted.

Note

If the ipc_mode for the minion is set to TCP (default in Windows), then
each minion in the multi-minion setup (one per master) needs its own
tcp_pub_port and tcp_pull_port.

If these settings are left as the default 4510/4511, each minion object
will receive a port 2 higher than the previous. Thus the first minion will
get 4510/4511, the second will get 4512/4513, and so on. If these port
decisions are unacceptable, you must configure tcp_pub_port and
tcp_pull_port with lists of ports for each master. The length of these
lists should match the number of masters, and there should not be overlap
in the lists.

Now the minions will check into the original master and also check into the new
redundant master. Both masters are first-class and have rights to the minions.

Note

Minions can automatically detect failed masters and attempt to reconnect
to them quickly. To enable this functionality, set
master_alive_interval in the minion config and specify a number of
seconds to poll the masters for connection status.

If this option is not set, minions will still reconnect to failed masters
but the first command sent after a master comes back up may be lost while
the minion authenticates.

Sharing Files Between Masters

Salt does not automatically share files between multiple masters. A number of
files should be shared or sharing of these files should be strongly considered.

Minion Keys

Minion keys can be accepted the normal way using salt-key on both
masters. Keys accepted, deleted, or rejected on one master will NOT be
automatically managed on redundant masters; this needs to be taken care of by
running salt-key on both masters or sharing the
/etc/salt/pki/master/{minions,minions_pre,minions_rejected} directories
between masters.

Note

While sharing the /etc/salt/pki/master directory will work, it is
strongly discouraged, since allowing access to the master.pem key
outside of Salt creates a SERIOUS security risk.

File_Roots

The file_roots contents should be kept consistent between
masters. Otherwise state runs will not always be consistent on minions since
instructions managed by one master will not agree with other masters.

The recommended way to sync these is to use a fileserver backend like gitfs or
to keep these files on shared storage.

Important

If using gitfs/git_pillar with the cachedir shared between masters using
GlusterFS [http://www.gluster.org/], nfs, or another network filesystem, and the masters are
running Salt 2015.5.9 or later, it is strongly recommended not to turn off
gitfs_global_lock/git_pillar_global_lock as
doing so will cause lock files to be removed if they were created by a
different master.

Pillar_Roots

Pillar roots should be given the same considerations as
file_roots.

Master Configurations

While reasons may exist to maintain separate master configurations, it is wise
to remember that each master maintains independent control over minions.
Therefore, access controls should be in sync between masters unless a valid
reason otherwise exists to keep them inconsistent.

These access control options include but are not limited to:

	external_auth

	publisher_acl

	peer

	peer_run

Multi-Master-PKI Tutorial With Failover

This tutorial will explain, how to run a salt-environment where a single
minion can have multiple masters and fail-over between them if its current
master fails.

The individual steps are

	setup the master(s) to sign its auth-replies

	setup minion(s) to verify master-public-keys

	enable multiple masters on minion(s)

	enable master-check on minion(s)

Please note, that it is advised to have good knowledge of the salt-
authentication and communication-process to understand this tutorial.
All of the settings described here, go on top of the default
authentication/communication process.

Motivation

The default behaviour of a salt-minion is to connect to a master and accept
the masters public key. With each publication, the master sends his public-key
for the minion to check and if this public-key ever changes, the minion
complains and exits. Practically this means, that there can only be a single
master at any given time.

Would it not be much nicer, if the minion could have any number of masters
(1:n) and jump to the next master if its current master died because of a
network or hardware failure?

Note

There is also a MultiMaster-Tutorial with a different approach and topology
than this one, that might also suite your needs or might even be better suited
Multi-Master Tutorial [https://docs.saltproject.io/en/latest/topics/tutorials/multimaster.html]

It is also desirable, to add some sort of authenticity-check to the very first
public key a minion receives from a master. Currently a minions takes the
first masters public key for granted.

The Goal

Setup the master to sign the public key it sends to the minions and enable the
minions to verify this signature for authenticity.

Prepping the master to sign its public key

For signing to work, both master and minion must have the signing and/or
verification settings enabled. If the master signs the public key but the
minion does not verify it, the minion will complain and exit. The same
happens, when the master does not sign but the minion tries to verify.

The easiest way to have the master sign its public key is to set

master_sign_pubkey: True

After restarting the salt-master service, the master will automatically
generate a new key-pair

master_sign.pem
master_sign.pub

A custom name can be set for the signing key-pair by setting

master_sign_key_name: <name_without_suffix>

The master will then generate that key-pair upon restart and use it for
creating the public keys signature attached to the auth-reply.

The computation is done for every auth-request of a minion. If many minions
auth very often, it is advised to use conf_master:master_pubkey_signature
and conf_master:master_use_pubkey_signature settings described below.

If multiple masters are in use and should sign their auth-replies, the signing
key-pair master_sign.* has to be copied to each master. Otherwise a minion
will fail to verify the masters public when connecting to a different master
than it did initially. That is because the public keys signature was created
with a different signing key-pair.

Prepping the minion to verify received public keys

The minion must have the public key (and only that one!) available to be
able to verify a signature it receives. That public key (defaults to
master_sign.pub) must be copied from the master to the minions pki-directory.

/etc/salt/pki/minion/master_sign.pub

Important

DO NOT COPY THE master_sign.pem FILE. IT MUST STAY ON THE MASTER AND
ONLY THERE!

When that is done, enable the signature checking in the minions configuration

verify_master_pubkey_sign: True

and restart the minion. For the first try, the minion should be run in manual
debug mode.

salt-minion -l debug

Upon connecting to the master, the following lines should appear on the output:

[DEBUG] Attempting to authenticate with the Salt Master at 172.16.0.10
[DEBUG] Loaded minion key: /etc/salt/pki/minion/minion.pem
[DEBUG] salt.crypt.verify_signature: Loading public key
[DEBUG] salt.crypt.verify_signature: Verifying signature
[DEBUG] Successfully verified signature of master public key with verification public key master_sign.pub
[INFO] Received signed and verified master pubkey from master 172.16.0.10
[DEBUG] Decrypting the current master AES key

If the signature verification fails, something went wrong and it will look
like this

[DEBUG] Attempting to authenticate with the Salt Master at 172.16.0.10
[DEBUG] Loaded minion key: /etc/salt/pki/minion/minion.pem
[DEBUG] salt.crypt.verify_signature: Loading public key
[DEBUG] salt.crypt.verify_signature: Verifying signature
[DEBUG] Failed to verify signature of public key
[CRITICAL] The Salt Master server's public key did not authenticate!

In a case like this, it should be checked, that the verification pubkey
(master_sign.pub) on the minion is the same as the one on the master.

Once the verification is successful, the minion can be started in daemon mode
again.

For the paranoid among us, its also possible to verify the publication whenever
it is received from the master. That is, for every single auth-attempt which
can be quite frequent. For example just the start of the minion will force the
signature to be checked 6 times for various things like auth, mine,
highstate, etc.

If that is desired, enable the setting

always_verify_signature: True

Multiple Masters For A Minion

Configuring multiple masters on a minion is done by specifying two settings:

	a list of masters addresses

	what type of master is defined

master:
 - 172.16.0.10
 - 172.16.0.11
 - 172.16.0.12

master_type: failover

This tells the minion that all the master above are available for it to
connect to. When started with this configuration, it will try the master
in the order they are defined. To randomize that order, set

random_master: True

The master-list will then be shuffled before the first connection attempt.

The first master that accepts the minion, is used by the minion. If the
master does not yet know the minion, that counts as accepted and the minion
stays on that master.

For the minion to be able to detect if its still connected to its current
master enable the check for it

master_alive_interval: <seconds>

If the loss of the connection is detected, the minion will temporarily
remove the failed master from the list and try one of the other masters
defined (again shuffled if that is enabled).

Testing the setup

At least two running masters are needed to test the failover setup.

Both masters should be running and the minion should be running on the command
line in debug mode

salt-minion -l debug

The minion will connect to the first master from its master list

[DEBUG] Attempting to authenticate with the Salt Master at 172.16.0.10
[DEBUG] Loaded minion key: /etc/salt/pki/minion/minion.pem
[DEBUG] salt.crypt.verify_signature: Loading public key
[DEBUG] salt.crypt.verify_signature: Verifying signature
[DEBUG] Successfully verified signature of master public key with verification public key master_sign.pub
[INFO] Received signed and verified master pubkey from master 172.16.0.10
[DEBUG] Decrypting the current master AES key

A test.version on the master the minion is currently connected to should be run to
test connectivity.

If successful, that master should be turned off. A firewall-rule denying the
minions packets will also do the trick.

Depending on the configured conf_minion:master_alive_interval, the minion
will notice the loss of the connection and log it to its logfile.

[INFO] Connection to master 172.16.0.10 lost
[INFO] Trying to tune in to next master from master-list

The minion will then remove the current master from the list and try connecting
to the next master

[INFO] Removing possibly failed master 172.16.0.10 from list of masters
[WARNING] Master ip address changed from 172.16.0.10 to 172.16.0.11
[DEBUG] Attempting to authenticate with the Salt Master at 172.16.0.11

If everything is configured correctly, the new masters public key will be
verified successfully

[DEBUG] Loaded minion key: /etc/salt/pki/minion/minion.pem
[DEBUG] salt.crypt.verify_signature: Loading public key
[DEBUG] salt.crypt.verify_signature: Verifying signature
[DEBUG] Successfully verified signature of master public key with verification public key master_sign.pub

the authentication with the new master is successful

[INFO] Received signed and verified master pubkey from master 172.16.0.11
[DEBUG] Decrypting the current master AES key
[DEBUG] Loaded minion key: /etc/salt/pki/minion/minion.pem
[INFO] Authentication with master successful!

and the minion can be pinged again from its new master.

Performance Tuning

With the setup described above, the master computes a signature for every
auth-request of a minion. With many minions and many auth-requests, that
can chew up quite a bit of CPU-Power.

To avoid that, the master can use a pre-created signature of its public-key.
The signature is saved as a base64 encoded string which the master reads
once when starting and attaches only that string to auth-replies.

Enabling this also gives paranoid users the possibility, to have the signing
key-pair on a different system than the actual salt-master and create the public
keys signature there. Probably on a system with more restrictive firewall rules,
without internet access, less users, etc.

That signature can be created with

salt-key --gen-signature

This will create a default signature file in the master pki-directory

/etc/salt/pki/master/master_pubkey_signature

It is a simple text-file with the binary-signature converted to base64.

If no signing-pair is present yet, this will auto-create the signing pair and
the signature file in one call

salt-key --gen-signature --auto-create

Telling the master to use the pre-created signature is done with

master_use_pubkey_signature: True

That requires the file 'master_pubkey_signature' to be present in the masters
pki-directory with the correct signature.

If the signature file is named differently, its name can be set with

master_pubkey_signature: <filename>

With many masters and many public-keys (default and signing), it is advised to
use the salt-masters hostname for the signature-files name. Signatures can be
easily confused because they do not provide any information about the key the
signature was created from.

Verifying that everything works is done the same way as above.

How the signing and verification works

The default key-pair of the salt-master is

/etc/salt/pki/master/master.pem
/etc/salt/pki/master/master.pub

To be able to create a signature of a message (in this case a public-key),
another key-pair has to be added to the setup. Its default name is:

master_sign.pem
master_sign.pub

The combination of the master.* and master_sign.* key-pairs give the
possibility of generating signatures. The signature of a given message
is unique and can be verified, if the public-key of the signing-key-pair
is available to the recipient (the minion).

The signature of the masters public-key in master.pub is computed with

master_sign.pem
master.pub
M2Crypto.EVP.sign_update()

This results in a binary signature which is converted to base64 and attached
to the auth-reply send to the minion.

With the signing-pairs public-key available to the minion, the attached
signature can be verified with

master_sign.pub
master.pub
M2Cryptos EVP.verify_update().

When running multiple masters, either the signing key-pair has to be present
on all of them, or the master_pubkey_signature has to be pre-computed for
each master individually (because they all have different public-keys).

DO NOT PUT THE SAME master.pub ON ALL MASTERS FOR EASE OF USE.

Packaging External Modules for Salt

External Modules Setuptools Entry-Points Support

The salt loader was enhanced to look for external modules by looking at the
salt.loader entry-point:

https://setuptools.readthedocs.io/en/latest/pkg_resources.html#entry-points

pkg_resources should be installed, which is normally included in setuptools.

https://setuptools.readthedocs.io/en/latest/pkg_resources.html

The package which has custom engines, minion modules, outputters, etc, should
require setuptools and should define the following entry points in its setup
function:

from setuptools import setup, find_packages

setup(
 name=THE_NAME,
 version=THE_VERSION,
 description=THE_DESCRIPTION,
 author=THE_AUTHOR_NAME,
 author_email=THE_AUTHOR_EMAIL,
 url=" ... ",
 packages=find_packages(),
 entry_points="""
 [salt.loader]
 engines_dirs = <package>.<loader-module>:engines_dirs
 fileserver_dirs = <package>.<loader-module>:fileserver_dirs
 pillar_dirs = <package>.<loader-module>:pillar_dirs
 returner_dirs = <package>.<loader-module>:returner_dirs
 roster_dirs = <package>.<loader-module>:roster_dirs
 """,
)

The above setup script example mentions a loader module. here's an example of
how <package>/<loader-module>.py it should look:

-*- coding: utf-8 -*-

Import python libs
import os

PKG_DIR = os.path.abspath(os.path.dirname(__file__))

def engines_dirs():
 """
 yield one path per parent directory of where engines can be found
 """
 yield os.path.join(PKG_DIR, "engines_1")
 yield os.path.join(PKG_DIR, "engines_2")

def fileserver_dirs():
 """
 yield one path per parent directory of where fileserver modules can be found
 """
 yield os.path.join(PKG_DIR, "fileserver")

def pillar_dirs():
 """
 yield one path per parent directory of where external pillar modules can be found
 """
 yield os.path.join(PKG_DIR, "pillar")

def returner_dirs():
 """
 yield one path per parent directory of where returner modules can be found
 """
 yield os.path.join(PKG_DIR, "returners")

def roster_dirs():
 """
 yield one path per parent directory of where roster modules can be found
 """
 yield os.path.join(PKG_DIR, "roster")

Pillar Walkthrough

Note

This walkthrough assumes that the reader has already completed the initial
Salt walkthrough.

Pillars are tree-like structures of data defined on the Salt Master and passed
through to minions. They allow confidential, targeted data to be securely sent
only to the relevant minion.

Note

Grains and Pillar are sometimes confused, just remember that Grains
are data about a minion which is stored or generated from the minion.
This is why information like the OS and CPU type are found in Grains.
Pillar is information about a minion or many minions stored or generated
on the Salt Master.

Pillar data is useful for:

	Highly Sensitive Data:
	Information transferred via pillar is guaranteed to only be presented to
the minions that are targeted, making Pillar suitable
for managing security information, such as cryptographic keys and
passwords.

	Minion Configuration:
	Minion modules such as the execution modules, states, and returners can
often be configured via data stored in pillar.

	Variables:
	Variables which need to be assigned to specific minions or groups of
minions can be defined in pillar and then accessed inside sls formulas
and template files.

	Arbitrary Data:
	Pillar can contain any basic data structure in dictionary format,
so a key/value store can be defined making it easy to iterate over a group
of values in sls formulas.

Pillar is therefore one of the most important systems when using Salt. This
walkthrough is designed to get a simple Pillar up and running in a few minutes
and then to dive into the capabilities of Pillar and where the data is
available.

Setting Up Pillar

The pillar is already running in Salt by default. To see the minion's
pillar data:

salt '*' pillar.items

Note

Prior to version 0.16.2, this function is named pillar.data. This
function name is still supported for backwards compatibility.

By default, the contents of the master configuration file are not loaded into
pillar for all minions. This default is stored in the pillar_opts setting,
which defaults to False.

The contents of the master configuration file can be made available to minion
pillar files. This makes global configuration of services and systems very easy,
but note that this may not be desired or appropriate if sensitive data is stored
in the master's configuration file. To enable the master configuration file to be
available to minion as pillar, set pillar_opts: True in the master
configuration file, and then for appropriate minions also set pillar_opts: True
in the minion(s) configuration file.

Similar to the state tree, the pillar is comprised of sls files and has a top file.
The default location for the pillar is in /srv/pillar.

Note

The pillar location can be configured via the pillar_roots option inside
the master configuration file. It must not be in a subdirectory of the state
tree or file_roots. If the pillar is under file_roots, any pillar targeting
can be bypassed by minions.

To start setting up the pillar, the /srv/pillar directory needs to be present:

mkdir /srv/pillar

Now create a simple top file, following the same format as the top file used for
states:

/srv/pillar/top.sls:

base:
 '*':
 - data

This top file associates the data.sls file to all minions. Now the
/srv/pillar/data.sls file needs to be populated:

/srv/pillar/data.sls:

info: some data

To ensure that the minions have the new pillar data, issue a command
to them asking that they fetch their pillars from the master:

salt '*' saltutil.refresh_pillar

Now that the minions have the new pillar, it can be retrieved:

salt '*' pillar.items

The key info should now appear in the returned pillar data.

More Complex Data

Unlike states, pillar files do not need to define formulas.
This example sets up user data with a UID:

/srv/pillar/users/init.sls:

users:
 thatch: 1000
 shouse: 1001
 utahdave: 1002
 redbeard: 1003

Note

The same directory lookups that exist in states exist in pillar, so the
file users/init.sls can be referenced with users in the top
file.

The top file will need to be updated to include this sls file:

/srv/pillar/top.sls:

base:
 '*':
 - data
 - users

Now the data will be available to the minions. To use the pillar data in a
state, you can use Jinja:

/srv/salt/users/init.sls

{% for user, uid in pillar.get('users', {}).items() %}
{{user}}:
 user.present:
 - uid: {{uid}}
{% endfor %}

This approach allows for users to be safely defined in a pillar and then the
user data is applied in an sls file.

Parameterizing States With Pillar

Pillar data can be accessed in state files to customise behavior for each
minion. All pillar (and grain) data applicable to each minion is substituted
into the state files through templating before being run. Typical uses
include setting directories appropriate for the minion and skipping states
that don't apply.

A simple example is to set up a mapping of package names in pillar for
separate Linux distributions:

/srv/pillar/pkg/init.sls:

pkgs:
 {% if grains['os_family'] == 'RedHat' %}
 apache: httpd
 vim: vim-enhanced
 {% elif grains['os_family'] == 'Debian' %}
 apache: apache2
 vim: vim
 {% elif grains['os'] == 'Arch' %}
 apache: apache
 vim: vim
 {% endif %}

The new pkg sls needs to be added to the top file:

/srv/pillar/top.sls:

base:
 '*':
 - data
 - users
 - pkg

Now the minions will auto map values based on respective operating systems
inside of the pillar, so sls files can be safely parameterized:

/srv/salt/apache/init.sls:

apache:
 pkg.installed:
 - name: {{ pillar['pkgs']['apache'] }}

Or, if no pillar is available a default can be set as well:

Note

The function pillar.get used in this example was added to Salt in
version 0.14.0

/srv/salt/apache/init.sls:

apache:
 pkg.installed:
 - name: {{ salt['pillar.get']('pkgs:apache', 'httpd') }}

In the above example, if the pillar value pillar['pkgs']['apache'] is not
set in the minion's pillar, then the default of httpd will be used.

Note

Under the hood, pillar is just a Python dict, so Python dict methods such
as get and items can be used.

Pillar Makes Simple States Grow Easily

One of the design goals of pillar is to make simple sls formulas easily grow
into more flexible formulas without refactoring or complicating the states.

A simple formula:

/srv/salt/edit/vim.sls:

vim:
 pkg.installed: []

/etc/vimrc:
 file.managed:
 - source: salt://edit/vimrc
 - mode: 644
 - user: root
 - group: root
 - require:
 - pkg: vim

Can be easily transformed into a powerful, parameterized formula:

/srv/salt/edit/vim.sls:

vim:
 pkg.installed:
 - name: {{ pillar['pkgs']['vim'] }}

/etc/vimrc:
 file.managed:
 - source: {{ pillar['vimrc'] }}
 - mode: 644
 - user: root
 - group: root
 - require:
 - pkg: vim

Where the vimrc source location can now be changed via pillar:

/srv/pillar/edit/vim.sls:

{% if grains['id'].startswith('dev') %}
vimrc: salt://edit/dev_vimrc
{% elif grains['id'].startswith('qa') %}
vimrc: salt://edit/qa_vimrc
{% else %}
vimrc: salt://edit/vimrc
{% endif %}

Ensuring that the right vimrc is sent out to the correct minions.

The pillar top file must include a reference to the new sls pillar file:

/srv/pillar/top.sls:

base:
 '*':
 - pkg
 - edit.vim

Setting Pillar Data on the Command Line

Pillar data can be set on the command line when running state.apply
<salt.modules.state.apply_() like so:

salt '*' state.apply pillar='{"foo": "bar"}'
salt '*' state.apply my_sls_file pillar='{"hello": "world"}'

Nested pillar values can also be set via the command line:

salt '*' state.sls my_sls_file pillar='{"foo": {"bar": "baz"}}'

Lists can be passed via command line pillar data as follows:

salt '*' state.sls my_sls_file pillar='{"some_list": ["foo", "bar", "baz"]}'

Note

If a key is passed on the command line that already exists on the minion,
the key that is passed in will overwrite the entire value of that key,
rather than merging only the specified value set via the command line.

The example below will swap the value for vim with telnet in the previously
specified list, notice the nested pillar dict:

salt '*' state.apply edit.vim pillar='{"pkgs": {"vim": "telnet"}}'

This will attempt to install telnet on your minions, feel free to
uninstall the package or replace telnet value with anything else.

Note

Be aware that when sending sensitive data via pillar on the command-line
that the publication containing that data will be received by all minions
and will not be restricted to the targeted minions. This may represent
a security concern in some cases.

More On Pillar

Pillar data is generated on the Salt master and securely distributed to
minions. Salt is not restricted to the pillar sls files when defining the
pillar but can retrieve data from external sources. This can be useful when
information about an infrastructure is stored in a separate location.

Reference information on pillar and the external pillar interface can be found
in the Salt documentation:

Pillar

Minion Config in Pillar

Minion configuration options can be set on pillars. Any option that you want
to modify, should be in the first level of the pillars, in the same way you set
the options in the config file. For example, to configure the MySQL root
password to be used by MySQL Salt execution module:

mysql.pass: hardtoguesspassword

This is very convenient when you need some dynamic configuration change that
you want to be applied on the fly. For example, there is a chicken and the egg
problem if you do this:

mysql-admin-passwd:
 mysql_user.present:
 - name: root
 - password: somepasswd

mydb:
 mysql_db.present

The second state will fail, because you changed the root password and the
minion didn't notice it. Setting mysql.pass in the pillar, will help to sort
out the issue. But always change the root admin password in the first place.

This is very helpful for any module that needs credentials to apply state
changes: mysql, keystone, etc.

Preseed Minion with Accepted Key

In some situations, it is not convenient to wait for a minion to start before
accepting its key on the master. For instance, you may want the minion to
bootstrap itself as soon as it comes online. You may also want to let your
developers provision new development machines on the fly.

See also

Many ways to preseed minion keys

Salt has other ways to generate and pre-accept minion keys in addition to
the manual steps outlined below.

salt-cloud performs these same steps automatically when new cloud VMs are
created (unless instructed not to).

salt-api exposes an HTTP call to Salt's REST API to generate and
download the new minion keys as a tarball.

There is a general four step process to do this:

	Generate the keys on the master:

root@saltmaster# salt-key --gen-keys=[key_name]

Pick a name for the key, such as the minion's id.

	Add the public key to the accepted minion folder:

root@saltmaster# cp key_name.pub /etc/salt/pki/master/minions/[minion_id]

It is necessary that the public key file has the same name as your minion id.
This is how Salt matches minions with their keys. Also note that the pki folder
could be in a different location, depending on your OS or if specified in the
master config file.

	Distribute the minion keys.

There is no single method to get the keypair to your minion. The difficulty is
finding a distribution method which is secure. For Amazon EC2 only, an AWS best
practice is to use IAM Roles to pass credentials. (See blog post,
https://aws.amazon.com/blogs/security/using-iam-roles-to-distribute-non-aws-credentials-to-your-ec2-instances/)

Security Warning

Since the minion key is already accepted on the master, distributing
the private key poses a potential security risk. A malicious party
will have access to your entire state tree and other sensitive data if they
gain access to a preseeded minion key.

	Preseed the Minion with the keys

You will want to place the minion keys before starting the salt-minion daemon:

/etc/salt/pki/minion/minion.pem
/etc/salt/pki/minion/minion.pub

Once in place, you should be able to start salt-minion and run salt-call
state.apply or any other salt commands that require master authentication.

Salt Masterless Quickstart

Running a masterless salt-minion lets you use Salt's configuration management
for a single machine without calling out to a Salt master on another machine.

Since the Salt minion contains such extensive functionality it can be useful
to run it standalone. A standalone minion can be used to do a number of
things:

	Stand up a master server via States (Salting a Salt Master)

	Use salt-call commands on a system without connectivity to a master

	Masterless States, run states entirely from files local to the minion

It is also useful for testing out state trees before deploying to a production setup.

Bootstrap Salt Minion

The salt-bootstrap [https://github.com/saltstack/salt-bootstrap] script makes bootstrapping a server with Salt simple
for any OS with a Bourne shell:

curl -L https://bootstrap.saltstack.com -o bootstrap_salt.sh
sudo sh bootstrap_salt.sh

Before run the script, it is a good practice to verify the checksum of the downloaded
file. You can verify the checksum with SHA256 by running this command:

test $(sha256sum bootstrap_salt.sh | awk '{print $1}') \
 = $(curl -sL https://bootstrap.saltproject.io/sha256 | cat -) \
 && echo "OK" \
 || echo "File does not match checksum"

Note

The previous example is the preferred method because by downloading the script
you can investigate the contents of the bootstrap script or using it again later.
Alternatively, if you want to download the bash script and run it immediately,
use:

curl -L https://bootstrap.saltproject.io | sudo sh -s --

See the salt-bootstrap [https://github.com/saltstack/salt-bootstrap] documentation for other one liners. When using Vagrant [https://www.vagrantup.com/]
to test out salt, the Vagrant salt provisioner [https://www.vagrantup.com/docs/provisioning/salt.html] will provision the VM for you.

Telling Salt to Run Masterless

To instruct the minion to not look for a master, the file_client
configuration option needs to be set in the minion configuration file.
By default the file_client is set to remote so that the
minion gathers file server and pillar data from the salt master.
When setting the file_client option to local the
minion is configured to not gather this data from the master.

file_client: local

Now the salt minion will not look for a master and will assume that the local
system has all of the file and pillar resources.

Configuration which resided in the
master configuration (e.g. /etc/salt/master)
should be moved to the minion configuration
since the minion does not read the master configuration.

Note

When running Salt in masterless mode, do not run the salt-minion daemon.
Otherwise, it will attempt to connect to a master and fail. The salt-call
command stands on its own and does not need the salt-minion daemon.

Create State Tree

Following the successful installation of a salt-minion, the next step is to create
a state tree, which is where the SLS files that comprise the possible states of the
minion are stored.

The following example walks through the steps necessary to create a state tree that
ensures that the server has the Apache webserver installed.

Note

For a complete explanation on Salt States, see the tutorial [https://docs.saltproject.io/en/latest/topics/tutorials/states_pt1.html].

	Create the top.sls file:

/srv/salt/top.sls:

base:
 '*':
 - webserver

	Create the webserver state tree:

/srv/salt/webserver.sls:

apache: # ID declaration
 pkg: # state declaration
 - installed # function declaration

Note

The apache package has different names on different platforms, for
instance on Debian/Ubuntu it is apache2, on Fedora/RHEL it is httpd
and on Arch it is apache

The only thing left is to provision our minion using salt-call.

Salt-call

The salt-call command is used to run remote execution functions locally on a
minion instead of executing them from the master. Normally the salt-call
command checks into the master to retrieve file server and pillar data, but
when running standalone salt-call needs to be instructed to not check the
master for this data:

salt-call --local state.apply

The --local flag tells the salt-minion to look for the state tree in the
local file system and not to contact a Salt Master for instructions.

To provide verbose output, use -l debug:

salt-call --local state.apply -l debug

The minion first examines the top.sls file and determines that it is a part
of the group matched by * glob and that the webserver SLS should be applied.

It then examines the webserver.sls file and finds the apache state, which
installs the Apache package.

The minion should now have Apache installed, and the next step is to begin
learning how to write more complex states.

running salt as normal user tutorial

Before continuing make sure you have a working Salt installation by
following the instructions in the
Salt install guide [https://docs.saltproject.io/salt/install-guide/en/latest/].

Stuck?

The Salt Project community can help offer advice and help troubleshoot
technical issues as you're learning about Salt. One of the best places to
talk to the community is on the
Salt Project Slack workspace [https://saltstackcommunity.slack.com/].

Running Salt functions as non root user

If you don't want to run salt cloud as root or even install it you can
configure it to have a virtual root in your working directory.

The salt system uses the salt.syspath module to find the variables

If you run the salt-build, it will generated in:

./build/lib.linux-x86_64-2.7/salt/_syspaths.py

To generate it, run the command:

python setup.py build

Copy the generated module into your salt directory

cp ./build/lib.linux-x86_64-2.7/salt/_syspaths.py salt/_syspaths.py

Edit it to include needed variables and your new paths

you need to edit this
_your_current_dir_ = ...
ROOT_DIR = _your_current_dir_ + "/salt/root"

you need to edit this
_location_of_source_code_ = ...
INSTALL_DIR = _location_of_source_code_

CONFIG_DIR = ROOT_DIR + "/etc/salt"
CACHE_DIR = ROOT_DIR + "/var/cache/salt"
SOCK_DIR = ROOT_DIR + "/var/run/salt"
SRV_ROOT_DIR = ROOT_DIR + "/srv"
BASE_FILE_ROOTS_DIR = ROOT_DIR + "/srv/salt"
BASE_PILLAR_ROOTS_DIR = ROOT_DIR + "/srv/pillar"
BASE_MASTER_ROOTS_DIR = ROOT_DIR + "/srv/salt-master"
LOGS_DIR = ROOT_DIR + "/var/log/salt"
PIDFILE_DIR = ROOT_DIR + "/var/run"
CLOUD_DIR = INSTALL_DIR + "/cloud"
BOOTSTRAP = CLOUD_DIR + "/deploy/bootstrap-salt.sh"

Create the directory structure

mkdir -p root/etc/salt root/var/cache/run root/run/salt root/srv
root/srv/salt root/srv/pillar root/srv/salt-master root/var/log/salt root/var/run

Populate the configuration files:

cp -r conf/* root/etc/salt/

Edit your root/etc/salt/master configuration that is used by salt-cloud:

user: *your user name*

Run like this:

PYTHONPATH=`pwd` scripts/salt-cloud

Salt Bootstrap

The Salt Bootstrap Script allows a user to install the Salt Minion or Master
on a variety of system distributions and versions.

The Salt Bootstrap Script is a shell script is known as bootstrap-salt.sh.
It runs through a series of checks to determine the operating system type and
version. It then installs the Salt binaries using the appropriate methods.

The Salt Bootstrap Script installs the minimum number of packages required to
run Salt. This means that in the event you run the bootstrap to install via
package, Git will not be installed. Installing the minimum number of packages
helps ensure the script stays as lightweight as possible, assuming the user
will install any other required packages after the Salt binaries are present
on the system.

The Salt Bootstrap Script is maintained in a separate repo from Salt, complete
with its own issues, pull requests, contributing guidelines, release protocol,
etc.

To learn more, please see the Salt Bootstrap repo links:

	Salt Bootstrap repo [https://github.com/saltstack/salt-bootstrap]

	README [https://github.com/saltstack/salt-bootstrap#bootstrapping-salt]: includes supported operating systems, example usage, and more.

	Contributing Guidelines [https://github.com/saltstack/salt-bootstrap/blob/develop/CONTRIBUTING.md]

	Release Process [https://github.com/saltstack/salt-bootstrap/blob/develop/CONTRIBUTING.md#release-information]

Note

The Salt Bootstrap script can be found in the Salt repo under the
salt/cloud/deploy/bootstrap-salt.sh path. Any changes to this file
will be overwritten! Bug fixes and feature additions must be submitted
via the Salt Bootstrap repo [https://github.com/saltstack/salt-bootstrap]. Please see the Salt Bootstrap Script's
Release Process [https://github.com/saltstack/salt-bootstrap/blob/develop/CONTRIBUTING.md#release-information] for more information.

Standalone Minion

Since the Salt minion contains such extensive functionality it can be useful
to run it standalone. A standalone minion can be used to do a number of
things:

	Use salt-call commands on a system without connectivity to a master

	Masterless States, run states entirely from files local to the minion

Note

When running Salt in masterless mode, it is not required to run the
salt-minion daemon. By default the salt-minion daemon will attempt to
connect to a master and fail. The salt-call command stands on its own
and does not need the salt-minion daemon.

As of version 2016.11.0 you can have a running minion (with engines and
beacons) without a master connection. If you wish to run the salt-minion
daemon you will need to set the master_type configuration
setting to be set to 'disable'.

Minion Configuration

Throughout this document there are several references to setting different
options to configure a masterless Minion. Salt Minions are easy to configure
via a configuration file that is located, by default, in /etc/salt/minion.
Note, however, that on FreeBSD systems, the minion configuration file is located
in /usr/local/etc/salt/minion.

You can learn more about minion configuration options in the
Configuring the Salt Minion docs.

Telling Salt Call to Run Masterless

The salt-call command is used to run module functions locally on a minion
instead of executing them from the master. Normally the salt-call command
checks into the master to retrieve file server and pillar data, but when
running standalone salt-call needs to be instructed to not check the master for
this data. To instruct the minion to not look for a master when running
salt-call the file_client configuration option needs to be set.
By default the file_client is set to remote so that the
minion knows that file server and pillar data are to be gathered from the
master. When setting the file_client option to local the
minion is configured to not gather this data from the master.

file_client: local

Now the salt-call command will not look for a master and will assume that the
local system has all of the file and pillar resources.

Running States Masterless

The state system can be easily run without a Salt master, with all needed files
local to the minion. To do this the minion configuration file needs to be set
up to know how to return file_roots information like the master. The file_roots
setting defaults to /srv/salt for the base environment just like on the master:

file_roots:
 base:
 - /srv/salt

Now set up the Salt State Tree, top file, and SLS modules in the same way that
they would be set up on a master. Now, with the file_client
option set to local and an available state tree then calls to functions in
the state module will use the information in the file_roots on the minion
instead of checking in with the master.

Remember that when creating a state tree on a minion there are no syntax or
path changes needed, SLS modules written to be used from a master do not need
to be modified in any way to work with a minion.

This makes it easy to "script" deployments with Salt states without having to
set up a master, and allows for these SLS modules to be easily moved into a
Salt master as the deployment grows.

The declared state can now be executed with:

salt-call state.apply

Or the salt-call command can be executed with the --local flag, this makes
it unnecessary to change the configuration file:

salt-call state.apply --local

External Pillars

External pillars are supported when running in masterless mode.

How Do I Use Salt States?

Simplicity, Simplicity, Simplicity

Many of the most powerful and useful engineering solutions are founded on
simple principles. Salt States strive to do just that: K.I.S.S. (Keep It
Stupidly Simple)

The core of the Salt State system is the SLS, or Structured Layered State.
The SLS is a representation of the state in which
a system should be in, and is set up to contain this data in a simple format.
This is often called configuration management.

Note

This is just the beginning of using states, make sure to read up on pillar
Pillar next.

It is All Just Data

Before delving into the particulars, it will help to understand that the SLS
file is just a data structure under the hood. While understanding that the SLS
is just a data structure isn't critical for understanding and making use of
Salt States, it should help bolster knowledge of where the real power is.

SLS files are therefore, in reality, just dictionaries, lists, strings, and
numbers. By using this approach Salt can be much more flexible. As one writes
more state files, it becomes clearer exactly what is being written. The result
is a system that is easy to understand, yet grows with the needs of the admin
or developer.

The Top File

The example SLS files in the below sections can be assigned to hosts using a
file called top.sls. This file is described in-depth here.

Default Data - YAML

By default Salt represents the SLS data in what is one of the simplest
serialization formats available - YAML [https://yaml.org/spec/1.1/].

A typical SLS file will often look like this in YAML:

Note

These demos use some generic service and package names, different
distributions often use different names for packages and services. For
instance apache should be replaced with httpd on a Red Hat system.
Salt uses the name of the init script, systemd name, upstart name etc.
based on what the underlying service management for the platform. To
get a list of the available service names on a platform execute the
service.get_all salt function.

Information on how to make states work with multiple distributions
is later in the tutorial.

apache:
 pkg.installed: []
 service.running:
 - require:
 - pkg: apache

This SLS data will ensure that the package named apache is installed, and
that the apache service is running. The components can be explained in a
simple way.

The first line is the ID for a set of data, and it is called the ID
Declaration. This ID sets the name of the thing that needs to be manipulated.

The second and third lines contain the state module function to be run, in the
format <state_module>.<function>. The pkg.installed state module
function ensures that a software package is installed via the system's native
package manager. The service.running state module function ensures that a
given system daemon is running.

Finally, on line four, is the word require. This is called a Requisite
Statement, and it makes sure that the Apache service is only started after
a successful installation of the apache package.

Adding Configs and Users

When setting up a service like an Apache web server, many more components may
need to be added. The Apache configuration file will most likely be managed,
and a user and group may need to be set up.

apache:
 pkg.installed: []
 service.running:
 - watch:
 - pkg: apache
 - file: /etc/httpd/conf/httpd.conf
 - user: apache
 user.present:
 - uid: 87
 - gid: 87
 - home: /var/www/html
 - shell: /bin/nologin
 - require:
 - group: apache
 group.present:
 - gid: 87
 - require:
 - pkg: apache

/etc/httpd/conf/httpd.conf:
 file.managed:
 - source: salt://apache/httpd.conf
 - user: root
 - group: root
 - mode: 644

This SLS data greatly extends the first example, and includes a config file,
a user, a group and new requisite statement: watch.

Adding more states is easy, since the new user and group states are under
the Apache ID, the user and group will be the Apache user and group. The
require statements will make sure that the user will only be made after
the group, and that the group will be made only after the Apache package is
installed.

Next, the require statement under service was changed to watch, and is
now watching 3 states instead of just one. The watch statement does the same
thing as require, making sure that the other states run before running the
state with a watch, but it adds an extra component. The watch statement
will run the state's watcher function for any changes to the watched states.
So if the package was updated, the config file changed, or the user
uid modified, then the service state's watcher will be run. The service
state's watcher just restarts the service, so in this case, a change in the
config file will also trigger a restart of the respective service.

Moving Beyond a Single SLS

When setting up Salt States in a scalable manner, more than one SLS will need
to be used. The above examples were in a single SLS file, but two or more
SLS files can be combined to build out a State Tree. The above example also
references a file with a strange source - salt://apache/httpd.conf. That
file will need to be available as well.

The SLS files are laid out in a directory structure on the Salt master; an
SLS is just a file and files to download are just files.

The Apache example would be laid out in the root of the Salt file server like
this:

apache/init.sls
apache/httpd.conf

So the httpd.conf is just a file in the apache directory, and is referenced
directly.

Do not use dots in SLS file names or their directories

The initial implementation of top.sls and
Include declaration followed the python import model where a slash
is represented as a period. This means that a SLS file with a period in
the name (besides the suffix period) can not be referenced. For example,
webserver_1.0.sls is not referenceable because webserver_1.0 would refer
to the directory/file webserver_1/0.sls

The same applies for any subdirectories, this is especially 'tricky' when
git repos are created. Another command that typically can't render its
output is `state.show_sls` of a file in a path that contains a dot.

But when using more than one single SLS file, more components can be added to
the toolkit. Consider this SSH example:

ssh/init.sls:

openssh-client:
 pkg.installed

/etc/ssh/ssh_config:
 file.managed:
 - user: root
 - group: root
 - mode: 644
 - source: salt://ssh/ssh_config
 - require:
 - pkg: openssh-client

ssh/server.sls:

include:
 - ssh

openssh-server:
 pkg.installed

sshd:
 service.running:
 - require:
 - pkg: openssh-client
 - pkg: openssh-server
 - file: /etc/ssh/banner
 - file: /etc/ssh/sshd_config

/etc/ssh/sshd_config:
 file.managed:
 - user: root
 - group: root
 - mode: 644
 - source: salt://ssh/sshd_config
 - require:
 - pkg: openssh-server

/etc/ssh/banner:
 file:
 - managed
 - user: root
 - group: root
 - mode: 644
 - source: salt://ssh/banner
 - require:
 - pkg: openssh-server

Note

Notice that we use two similar ways of denoting that a file
is managed by Salt. In the /etc/ssh/sshd_config state section above,
we use the file.managed state declaration whereas with the
/etc/ssh/banner state section, we use the file state declaration
and add a managed attribute to that state declaration. Both ways
produce an identical result; the first way -- using file.managed --
is merely a shortcut.

Now our State Tree looks like this:

apache/init.sls
apache/httpd.conf
ssh/init.sls
ssh/server.sls
ssh/banner
ssh/ssh_config
ssh/sshd_config

This example now introduces the include statement. The include statement
includes another SLS file so that components found in it can be required,
watched or as will soon be demonstrated - extended.

The include statement allows for states to be cross linked. When an SLS
has an include statement it is literally extended to include the contents of
the included SLS files.

Note that some of the SLS files are called init.sls, while others are not. More
info on what this means can be found in the States Tutorial.

Extending Included SLS Data

Sometimes SLS data needs to be extended. Perhaps the apache service needs to
watch additional resources, or under certain circumstances a different file
needs to be placed.

In these examples, the first will add a custom banner to ssh and the second will
add more watchers to apache to include mod_python.

ssh/custom-server.sls:

include:
 - ssh.server

extend:
 /etc/ssh/banner:
 file:
 - source: salt://ssh/custom-banner

python/mod_python.sls:

include:
 - apache

extend:
 apache:
 service:
 - watch:
 - pkg: mod_python

mod_python:
 pkg.installed

The custom-server.sls file uses the extend statement to overwrite where the
banner is being downloaded from, and therefore changing what file is being used
to configure the banner.

In the new mod_python SLS the mod_python package is added, but more importantly
the apache service was extended to also watch the mod_python package.

Using extend with require or watch

The extend statement works differently for require or watch.
It appends to, rather than replacing the requisite component.

Understanding the Render System

Since SLS data is simply that (data), it does not need to be represented
with YAML. Salt defaults to YAML because it is very straightforward and easy
to learn and use. But the SLS files can be rendered from almost any imaginable
medium, so long as a renderer module is provided.

The default rendering system is the jinja|yaml renderer. The
jinja|yaml renderer will first pass the template through the Jinja2 [https://jinja.palletsprojects.com/en/2.11.x/]
templating system, and then through the YAML parser. The benefit here is that
full programming constructs are available when creating SLS files.

Other renderers available are yaml_mako and yaml_wempy which each use
the Mako [https://www.makotemplates.org/] or Wempy [https://fossil.secution.com/u/gcw/wempy/doc/tip/README.wiki] templating system respectively rather than the jinja
templating system, and more notably, the pure Python or py, pydsl &
pyobjects renderers.
The py renderer allows for SLS files to be written in pure Python,
allowing for the utmost level of flexibility and power when preparing SLS
data; while the pydsl renderer
provides a flexible, domain-specific language for authoring SLS data in Python;
and the pyobjects renderer
gives you a "Pythonic" [https://legacy.python.org/dev/peps/pep-0008/] interface to building state data.

Note

The templating engines described above aren't just available in SLS files.
They can also be used in file.managed
states, making file management much more dynamic and flexible. Some
examples for using templates in managed files can be found in the
documentation for the file state, as well as the
MooseFS example below.

Getting to Know the Default - jinja|yaml

The default renderer - jinja|yaml, allows for use of the jinja
templating system. A guide to the Jinja templating system can be found here:
https://jinja.palletsprojects.com/en/2.11.x/

When working with renderers a few very useful bits of data are passed in. In
the case of templating engine based renderers, three critical components are
available, salt, grains, and pillar. The salt object allows for
any Salt function to be called from within the template, and grains allows
for the Grains to be accessed from within the template. A few examples:

apache/init.sls:

apache:
 pkg.installed:
 {% if grains['os'] == 'RedHat'%}
 - name: httpd
 {% endif %}
 service.running:
 {% if grains['os'] == 'RedHat'%}
 - name: httpd
 {% endif %}
 - watch:
 - pkg: apache
 - file: /etc/httpd/conf/httpd.conf
 - user: apache
 user.present:
 - uid: 87
 - gid: 87
 - home: /var/www/html
 - shell: /bin/nologin
 - require:
 - group: apache
 group.present:
 - gid: 87
 - require:
 - pkg: apache

/etc/httpd/conf/httpd.conf:
 file.managed:
 - source: salt://apache/httpd.conf
 - user: root
 - group: root
 - mode: 644

This example is simple. If the os grain states that the operating system is
Red Hat, then the name of the Apache package and service needs to be httpd.

A more aggressive way to use Jinja can be found here, in a module to set up
a MooseFS distributed filesystem chunkserver:

moosefs/chunk.sls:

include:
 - moosefs

{% for mnt in salt['cmd.run']('ls /dev/data/moose*').split() %}
/mnt/moose{{ mnt[-1] }}:
 mount.mounted:
 - device: {{ mnt }}
 - fstype: xfs
 - mkmnt: True
 file.directory:
 - user: mfs
 - group: mfs
 - require:
 - user: mfs
 - group: mfs
{% endfor %}

/etc/mfshdd.cfg:
 file.managed:
 - source: salt://moosefs/mfshdd.cfg
 - user: root
 - group: root
 - mode: 644
 - template: jinja
 - require:
 - pkg: mfs-chunkserver

/etc/mfschunkserver.cfg:
 file.managed:
 - source: salt://moosefs/mfschunkserver.cfg
 - user: root
 - group: root
 - mode: 644
 - template: jinja
 - require:
 - pkg: mfs-chunkserver

mfs-chunkserver:
 pkg.installed: []
mfschunkserver:
 service.running:
 - require:
{% for mnt in salt['cmd.run']('ls /dev/data/moose*') %}
 - mount: /mnt/moose{{ mnt[-1] }}
 - file: /mnt/moose{{ mnt[-1] }}
{% endfor %}
 - file: /etc/mfschunkserver.cfg
 - file: /etc/mfshdd.cfg
 - file: /var/lib/mfs

This example shows much more of the available power of Jinja.
Multiple for loops are used to dynamically detect available hard drives
and set them up to be mounted, and the salt object is used multiple
times to call shell commands to gather data.

Introducing the Python, PyDSL, and the Pyobjects Renderers

Sometimes the chosen default renderer might not have enough logical power to
accomplish the needed task. When this happens, the Python renderer can be
used. Normally a YAML renderer should be used for the majority of SLS files,
but an SLS file set to use another renderer can be easily added to the tree.

This example shows a very basic Python SLS file:

python/django.sls:

#!py

def run():
 """
 Install the django package
 """
 return {"include": ["python"], "django": {"pkg": ["installed"]}}

This is a very simple example; the first line has an SLS shebang that
tells Salt to not use the default renderer, but to use the py renderer.
Then the run function is defined, the return value from the run function
must be a Salt friendly data structure, or better known as a Salt
HighState data structure.

Alternatively, using the pydsl
renderer, the above example can be written more succinctly as:

#!pydsl

include("python", delayed=True)
state("django").pkg.installed()

The pyobjects renderer
provides an "Pythonic" [https://legacy.python.org/dev/peps/pep-0008/] object based approach for building the state data.
The above example could be written as:

#!pyobjects

include("python")
Pkg.installed("django")

These Python examples would look like this if they were written in YAML:

include:
 - python

django:
 pkg.installed

This example clearly illustrates that; one, using the YAML renderer by default
is a wise decision and two, unbridled power can be obtained where needed by
using a pure Python SLS.

Running and Debugging Salt States

Once the rules in an SLS are ready, they should be tested to ensure they
work properly. To invoke these rules, simply execute
salt '*' state.apply on the command line. If you get back only
hostnames with a : after, but no return, chances are there is a problem with
one or more of the sls files. On the minion, use the salt-call command to
examine the output for errors:

salt-call state.apply -l debug

This should help troubleshoot the issue. The minion can also be started in the
foreground in debug mode by running salt-minion -l debug.

Next Reading

With an understanding of states, the next recommendation is to become familiar
with Salt's pillar interface:

Pillar Walkthrough

States tutorial, part 1 - Basic Usage

The purpose of this tutorial is to demonstrate how quickly you can configure a
system to be managed by Salt States. For detailed information about the state
system please refer to the full states reference.

This tutorial will walk you through using Salt to configure a minion to run the
Apache HTTP server and to ensure the server is running.

Before continuing make sure you have a working Salt installation by
following the instructions in the
Salt install guide [https://docs.saltproject.io/salt/install-guide/en/latest/].

Stuck?

The Salt Project community can help offer advice and help troubleshoot
technical issues as you're learning about Salt. One of the best places to
talk to the community is on the
Salt Project Slack workspace [https://saltstackcommunity.slack.com/].

Setting up the Salt State Tree

States are stored in text files on the master and transferred to the minions on
demand via the master's File Server. The collection of state files make up the
State Tree.

To start using a central state system in Salt, the Salt File Server must first
be set up. Edit the master config file (file_roots) and
uncomment the following lines:

file_roots:
 base:
 - /srv/salt

Note

If you are deploying on FreeBSD via ports, the file_roots path defaults
to /usr/local/etc/salt/states.

Restart the Salt master in order to pick up this change:

pkill salt-master
salt-master -d

Preparing the Top File

On the master, in the directory uncommented in the previous step,
(/srv/salt by default), create a new file called
top.sls and add the following:

base:
 '*':
 - webserver

The top file is separated into environments (discussed
later). The default environment is base. Under the base environment a
collection of minion matches is defined; for now simply specify all hosts
(*).

Targeting minions

The expressions can use any of the targeting mechanisms used by Salt —
minions can be matched by glob, PCRE regular expression, or by grains. For example:

base:
 'os:Fedora':
 - match: grain
 - webserver

Create an sls file

In the same directory as the top file, create a file
named webserver.sls, containing the following:

apache: # ID declaration
 pkg: # state declaration
 - installed # function declaration

The first line, called the ID declaration, is an arbitrary identifier.
In this case it defines the name of the package to be installed.

Note

The package name for the Apache httpd web server may differ depending on
OS or distro — for example, on Fedora it is httpd but on
Debian/Ubuntu it is apache2.

The second line, called the State declaration, defines which of the Salt
States we are using. In this example, we are using the pkg state to ensure that a given package is installed.

The third line, called the Function declaration, defines which function
in the pkg state module to call.

Renderers

States sls files can be written in many formats. Salt requires only
a simple data structure and is not concerned with how that data structure
is built. Templating languages and DSLs [https://en.wikipedia.org/wiki/Domain-specific_language] are a dime-a-dozen and everyone
has a favorite.

Building the expected data structure is the job of Salt Renderers
and they are dead-simple to write.

In this tutorial we will be using YAML in Jinja2 templates, which is the
default format. The default can be changed by editing
renderer in the master configuration file.

Install the package

Next, let's run the state we created. Open a terminal on the master and run:

salt '*' state.apply

Our master is instructing all targeted minions to run state.apply. When this function is executed without any SLS
targets, a minion will download the top file and attempt to
match the expressions within it. When the minion does match an expression the
modules listed for it will be downloaded, compiled, and executed.

Note

This action is referred to as a "highstate", and can be run using the
state.highstate function.
However, to make the usage easier to understand ("highstate" is not
necessarily an intuitive name), a state.apply function was added in version 2015.5.0, which
when invoked without any SLS names will trigger a highstate.
state.highstate still exists and
can be used, but the documentation (as can be seen above) has been updated
to reference state.apply, so keep
the following in mind as you read the documentation:

	state.apply invoked without any
SLS names will run state.highstate

	state.apply invoked with SLS names
will run state.sls

Once completed, the minion will report back with a summary of all actions taken
and all changes made.

Warning

If you have created custom grain modules, they will
not be available in the top file until after the first highstate. To make custom grains available on a minion's first
highstate, it is recommended to use this
example to ensure that the custom grains are synced
when the minion starts.

SLS File Namespace

Note that in the example above, the SLS file
webserver.sls was referred to simply as webserver. The namespace
for SLS files when referenced in top.sls or an Include declaration
follows a few simple rules:

	The .sls is discarded (i.e. webserver.sls becomes
webserver).

	
	Subdirectories can be used for better organization.
	
	Each subdirectory under the configured file_roots (default:
/srv/salt/) is represented with a dot (following the Python
import model) in Salt states and on the command line.
webserver/dev.sls on the filesystem is referred to as
webserver.dev in Salt

	Because slashes are represented as dots, SLS files can not contain
dots in the name (other than the dot for the SLS suffix). The SLS
file webserver_1.0.sls can not be matched, and webserver_1.0
would match the directory/file webserver_1/0.sls

	A file called init.sls in a subdirectory is referred to by the path
of the directory. So, webserver/init.sls is referred to as
webserver.

	If both webserver.sls and webserver/init.sls happen to exist,
webserver/init.sls will be ignored and webserver.sls will be the
file referred to as webserver.

Troubleshooting Salt

If the expected output isn't seen, the following tips can help to
narrow down the problem.

	Turn up logging
	Salt can be quite chatty when you change the logging setting to
debug:

salt-minion -l debug

	Run the minion in the foreground
	By not starting the minion in daemon mode (-d)
one can view any output from the minion as it works:

salt-minion

Increase the default timeout value when running salt. For
example, to change the default timeout to 60 seconds:

salt -t 60

For best results, combine all three:

salt-minion -l debug # On the minion
salt '*' state.apply -t 60 # On the master

Next steps

This tutorial focused on getting a simple Salt States configuration working.
Part 2 will build on this example to cover more advanced
sls syntax and will explore more of the states that ship with Salt.

States tutorial, part 2 - More Complex States, Requisites

Note

This tutorial builds on topics covered in part 1. It is
recommended that you begin there.

In the last part of the Salt States tutorial we covered the
basics of installing a package. We will now modify our webserver.sls file
to have requirements, and use even more Salt States.

Call multiple States

You can specify multiple State declaration under an
ID declaration. For example, a quick modification to our
webserver.sls to also start Apache if it is not running:

1apache:
2 pkg.installed: []
3 service.running:
4 - require:
5 - pkg: apache

Try stopping Apache before running state.apply once again and observe the output.

Note

For those running RedhatOS derivatives (Centos, AWS), you will want to specify the
service name to be httpd. More on state service here, service state. With the example above, just add "- name: httpd"
above the require line and with the same spacing.

Require other states

We now have a working installation of Apache so let's add an HTML file to
customize our website. It isn't exactly useful to have a website without a
webserver so we don't want Salt to install our HTML file until Apache is
installed and running. Include the following at the bottom of your
webserver/init.sls file:

 1apache:
 2 pkg.installed: []
 3 service.running:
 4 - require:
 5 - pkg: apache
 6
 7/var/www/index.html: # ID declaration
 8 file: # state declaration
 9 - managed # function
10 - source: salt://webserver/index.html # function arg
11 - require: # requisite declaration
12 - pkg: apache # requisite reference

line 7 is the ID declaration. In this example it is the location we
want to install our custom HTML file. (Note: the default location that
Apache serves may differ from the above on your OS or distro. /srv/www
could also be a likely place to look.)

Line 8 the State declaration. This example uses the Salt file
state.

Line 9 is the Function declaration. The managed function will download a file from the master and install it
in the location specified.

Line 10 is a Function arg declaration which, in this example, passes
the source argument to the managed function.

Line 11 is a Requisite declaration.

Line 12 is a Requisite reference which refers to a state and an ID.
In this example, it is referring to the ID declaration from our example in
part 1. This declaration tells Salt not to install the HTML
file until Apache is installed.

Next, create the index.html file and save it in the webserver
directory:

<!DOCTYPE html>
<html>
 <head><title>Salt rocks</title></head>
 <body>
 <h1>This file brought to you by Salt</h1>
 </body>
</html>

Last, call state.apply again and the minion
will fetch and execute the highstate as well as our
HTML file from the master using Salt's File Server:

salt '*' state.apply

Verify that Apache is now serving your custom HTML.

require vs. watch

There are two Requisite declaration, “require”, and “watch”. Not
every state supports “watch”. The service state does support “watch” and will restart a service
based on the watch condition.

For example, if you use Salt to install an Apache virtual host
configuration file and want to restart Apache whenever that file is changed
you could modify our Apache example from earlier as follows:

/etc/httpd/extra/httpd-vhosts.conf:
 file.managed:
 - source: salt://webserver/httpd-vhosts.conf

apache:
 pkg.installed: []
 service.running:
 - watch:
 - file: /etc/httpd/extra/httpd-vhosts.conf
 - require:
 - pkg: apache

If the pkg and service names differ on your OS or distro of choice you can
specify each one separately using a Name declaration which explained
in Part 3.

Next steps

In part 3 we will discuss how to use includes, extends, and
templating to make a more complete State Tree configuration.

States tutorial, part 3 - Templating, Includes, Extends

Note

This tutorial builds on topics covered in part 1 and
part 2. It is recommended that you begin there.

This part of the tutorial will cover more advanced templating and
configuration techniques for sls files.

Templating SLS modules

SLS modules may require programming logic or inline execution. This is
accomplished with module templating. The default module templating system used
is Jinja2 [https://jinja.palletsprojects.com/en/2.11.x/] and may be configured by changing the renderer
value in the master config.

All states are passed through a templating system when they are initially read.
To make use of the templating system, simply add some templating markup.
An example of an sls module with templating markup may look like this:

{% for usr in ['moe','larry','curly'] %}
{{ usr }}:
 user.present
{% endfor %}

This templated sls file once generated will look like this:

moe:
 user.present
larry:
 user.present
curly:
 user.present

Here's a more complex example:

Comments in yaml start with a hash symbol.
Since jinja rendering occurs before yaml parsing, if you want to include jinja
in the comments you may need to escape them using 'jinja' comments to prevent
jinja from trying to render something which is not well-defined jinja.
e.g.
{# iterate over the Three Stooges using a {% for %}..{% endfor %} loop
with the iterator variable {{ usr }} becoming the state ID. #}
{% for usr in 'moe','larry','curly' %}
{{ usr }}:
 group:
 - present
 user:
 - present
 - gid_from_name: True
 - require:
 - group: {{ usr }}
{% endfor %}

Using Grains in SLS modules

Often times a state will need to behave differently on different systems.
Salt grains objects are made available in the template
context. The grains can be used from within sls modules:

apache:
 pkg.installed:
 {% if grains['os'] == 'RedHat' %}
 - name: httpd
 {% elif grains['os'] == 'Ubuntu' %}
 - name: apache2
 {% endif %}

Using Environment Variables in SLS modules

You can use salt['environ.get']('VARNAME') to use an environment
variable in a Salt state.

MYENVVAR="world" salt-call state.template test.sls

Create a file with contents from an environment variable:
 file.managed:
 - name: /tmp/hello
 - contents: {{ salt['environ.get']('MYENVVAR') }}

Error checking:

{% set myenvvar = salt['environ.get']('MYENVVAR') %}
{% if myenvvar %}

Create a file with contents from an environment variable:
 file.managed:
 - name: /tmp/hello
 - contents: {{ salt['environ.get']('MYENVVAR') }}

{% else %}

Fail - no environment passed in:
 test.fail_without_changes

{% endif %}

Calling Salt modules from templates

All of the Salt modules loaded by the minion are available within the
templating system. This allows data to be gathered in real time on the target
system. It also allows for shell commands to be run easily from within the sls
modules.

The Salt module functions are also made available in the template context as
salt:

The following example illustrates calling the group_to_gid function in the
file execution module with a single positional argument called
some_group_that_exists.

moe:
 user.present:
 - gid: {{ salt['file.group_to_gid']('some_group_that_exists') }}

One way to think about this might be that the gid key is being assigned
a value equivalent to the following python pseudo-code:

import salt.modules.file

file.group_to_gid("some_group_that_exists")

Note that for the above example to work, some_group_that_exists must exist
before the state file is processed by the templating engine.

Below is an example that uses the network.hw_addr function to retrieve the
MAC address for eth0:

salt["network.hw_addr"]("eth0")

To examine the possible arguments to each execution module function,
one can examine the module reference documentation:

Advanced SLS module syntax

Lastly, we will cover some incredibly useful techniques for more complex State
trees.

Include declaration

A previous example showed how to spread a Salt tree across several files.
Similarly, Requisites and Other Global State Arguments span multiple files by
using an Include declaration. For example:

python/python-libs.sls:

python-dateutil:
 pkg.installed

python/django.sls:

include:
 - python.python-libs

django:
 pkg.installed:
 - require:
 - pkg: python-dateutil

Extend declaration

You can modify previous declarations by using an Extend declaration. For
example the following modifies the Apache tree to also restart Apache when the
vhosts file is changed:

apache/apache.sls:

apache:
 pkg.installed

apache/mywebsite.sls:

include:
 - apache.apache

extend:
 apache:
 service:
 - running
 - watch:
 - file: /etc/httpd/extra/httpd-vhosts.conf

/etc/httpd/extra/httpd-vhosts.conf:
 file.managed:
 - source: salt://apache/httpd-vhosts.conf

Using extend with require or watch

The extend statement works differently for require or watch.
It appends to, rather than replacing the requisite component.

Name declaration

You can override the ID declaration by using a Name declaration.
For example, the previous example is a bit more maintainable if rewritten as
follows:

apache/mywebsite.sls:

include:
 - apache.apache

extend:
 apache:
 service:
 - running
 - watch:
 - file: mywebsite

mywebsite:
 file.managed:
 - name: /etc/httpd/extra/httpd-vhosts.conf
 - source: salt://apache/httpd-vhosts.conf

Names declaration

Even more powerful is using a Names declaration to override the
ID declaration for multiple states at once. This often can remove the
need for looping in a template. For example, the first example in this tutorial
can be rewritten without the loop:

stooges:
 user.present:
 - names:
 - moe
 - larry
 - curly

Next steps

In part 4 we will discuss how to use salt's
file_roots to set up a workflow in which states can be
"promoted" from dev, to QA, to production.

States tutorial, part 4

Note

This tutorial builds on topics covered in part 1,
part 2, and part 3.
It is recommended that you begin there.

This part of the tutorial will show how to use salt's file_roots
to set up a workflow in which states can be "promoted" from dev, to QA, to
production.

Salt fileserver path inheritance

Salt's fileserver allows for more than one root directory per environment, like
in the below example, which uses both a local directory and a secondary
location shared to the salt master via NFS:

In the master config file (/etc/salt/master)
file_roots:
 base:
 - /srv/salt
 - /mnt/salt-nfs/base

Salt's fileserver collapses the list of root directories into a single virtual
environment containing all files from each root. If the same file exists at the
same relative path in more than one root, then the top-most match "wins". For
example, if /srv/salt/foo.txt and /mnt/salt-nfs/base/foo.txt both
exist, then salt://foo.txt will point to /srv/salt/foo.txt.

Note

When using multiple fileserver backends, the order in which they are listed
in the fileserver_backend parameter also matters. If both
roots and git backends contain a file with the same relative path,
and roots appears before git in the
fileserver_backend list, then the file in roots will
"win", and the file in gitfs will be ignored.

A more thorough explanation of how Salt's modular fileserver works can be
found here. We recommend reading this.

Environment configuration

Configure a multiple-environment setup like so:

file_roots:
 base:
 - /srv/salt/prod
 qa:
 - /srv/salt/qa
 - /srv/salt/prod
 dev:
 - /srv/salt/dev
 - /srv/salt/qa
 - /srv/salt/prod

Given the path inheritance described above, files within /srv/salt/prod
would be available in all environments. Files within /srv/salt/qa would be
available in both qa, and dev. Finally, the files within
/srv/salt/dev would only be available within the dev environment.

Based on the order in which the roots are defined, new files/states can be
placed within /srv/salt/dev, and pushed out to the dev hosts for testing.

Those files/states can then be moved to the same relative path within
/srv/salt/qa, and they are now available only in the dev and qa
environments, allowing them to be pushed to QA hosts and tested.

Finally, if moved to the same relative path within /srv/salt/prod, the
files are now available in all three environments.

Requesting files from specific fileserver environments

See here for documentation on how to request
files from specific environments.

Practical Example

As an example, consider a simple website, installed to /var/www/foobarcom.
Below is a top.sls that can be used to deploy the website:

/srv/salt/prod/top.sls:

base:
 'web*prod*':
 - webserver.foobarcom
qa:
 'web*qa*':
 - webserver.foobarcom
dev:
 'web*dev*':
 - webserver.foobarcom

Using pillar, roles can be assigned to the hosts:

/srv/pillar/top.sls:

base:
 'web*prod*':
 - webserver.prod
 'web*qa*':
 - webserver.qa
 'web*dev*':
 - webserver.dev

/srv/pillar/webserver/prod.sls:

webserver_role: prod

/srv/pillar/webserver/qa.sls:

webserver_role: qa

/srv/pillar/webserver/dev.sls:

webserver_role: dev

And finally, the SLS to deploy the website:

/srv/salt/prod/webserver/foobarcom.sls:

{% if pillar.get('webserver_role', '') %}
/var/www/foobarcom:
 file.recurse:
 - source: salt://webserver/src/foobarcom
 - env: {{ pillar['webserver_role'] }}
 - user: www
 - group: www
 - dir_mode: 755
 - file_mode: 644
{% endif %}

Given the above SLS, the source for the website should initially be placed in
/srv/salt/dev/webserver/src/foobarcom.

First, let's deploy to dev. Given the configuration in the top file, this can
be done using state.apply:

salt --pillar 'webserver_role:dev' state.apply

However, in the event that it is not desirable to apply all states configured
in the top file (which could be likely in more complex setups), it is possible
to apply just the states for the foobarcom website, by invoking
state.apply with the desired SLS target
as an argument:

salt --pillar 'webserver_role:dev' state.apply webserver.foobarcom

Once the site has been tested in dev, then the files can be moved from
/srv/salt/dev/webserver/src/foobarcom to
/srv/salt/qa/webserver/src/foobarcom, and deployed using the following:

salt --pillar 'webserver_role:qa' state.apply webserver.foobarcom

Finally, once the site has been tested in qa, then the files can be moved from
/srv/salt/qa/webserver/src/foobarcom to
/srv/salt/prod/webserver/src/foobarcom, and deployed using the following:

salt --pillar 'webserver_role:prod' state.apply webserver.foobarcom

Thanks to Salt's fileserver inheritance, even though the files have been moved
to within /srv/salt/prod, they are still available from the same
salt:// URI in both the qa and dev environments.

Continue Learning

The best way to continue learning about Salt States is to read through the
reference documentation and to look through examples
of existing state trees. Many pre-configured state trees
can be found on GitHub in the saltstack-formulas [https://github.com/saltstack-formulas] collection of repositories.

If you have any questions, suggestions, or just want to chat with other people
who are using Salt, we have a very active community and we'd love to hear from
you. One of the best places to talk to the community is on the
Salt Project Slack workspace [https://saltstackcommunity.slack.com/].

In addition, by continuing to the Orchestrate Runner docs,
you can learn about the powerful orchestration of which Salt is capable.

States Tutorial, Part 5 - Orchestration with Salt

This was moved to Orchestrate Runner.

Syslog-ng usage

Overview

Syslog_ng state module is for generating syslog-ng
configurations. You can do the following things:

	generate syslog-ng configuration from YAML,

	use non-YAML configuration,

	start, stop or reload syslog-ng.

There is also an execution module, which can check the syntax of the
configuration, get the version and other information about syslog-ng.

Configuration

Users can create syslog-ng configuration statements with the
syslog_ng.config function. It requires
a name and a config parameter. The name parameter determines the name of
the generated statement and the config parameter holds a parsed YAML structure.

A statement can be declared in the following forms (both are equivalent):

source.s_localhost:
 syslog_ng.config:
 - config:
 - tcp:
 - ip: "127.0.0.1"
 - port: 1233

s_localhost:
 syslog_ng.config:
 - config:
 source:
 - tcp:
 - ip: "127.0.0.1"
 - port: 1233

The first one is called short form, because it needs less typing. Users can use lists
and dictionaries to specify their configuration. The format is quite self describing and
there are more examples [at the end](#examples) of this document.

Quotation

	The quotation can be tricky sometimes but here are some rules to follow:
	
	when a string meant to be "string" in the generated configuration, it should be like '"string"' in the YAML document

	similarly, users should write "'string'" to get 'string' in the generated configuration

Full example

The following configuration is an example, how a complete syslog-ng configuration looks like:

Set the location of the configuration file
set_location:
 module.run:
 - name: syslog_ng.set_config_file
 - m_name: "/home/tibi/install/syslog-ng/etc/syslog-ng.conf"

The syslog-ng and syslog-ng-ctl binaries are here. You needn't use
this method if these binaries can be found in a directory in your PATH.
set_bin_path:
 module.run:
 - name: syslog_ng.set_binary_path
 - m_name: "/home/tibi/install/syslog-ng/sbin"

Writes the first lines into the config file, also erases its previous
content
write_version:
 module.run:
 - name: syslog_ng.write_version
 - m_name: "3.6"

There is a shorter form to set the above variables
set_variables:
 module.run:
 - name: syslog_ng.set_parameters
 - version: "3.6"
 - binary_path: "/home/tibi/install/syslog-ng/sbin"
 - config_file: "/home/tibi/install/syslog-ng/etc/syslog-ng.conf"

Some global options
options.global_options:
 syslog_ng.config:
 - config:
 - time_reap: 30
 - mark_freq: 10
 - keep_hostname: "yes"

source.s_localhost:
 syslog_ng.config:
 - config:
 - tcp:
 - ip: "127.0.0.1"
 - port: 1233

destination.d_log_server:
 syslog_ng.config:
 - config:
 - tcp:
 - "127.0.0.1"
 - port: 1234

log.l_log_to_central_server:
 syslog_ng.config:
 - config:
 - source: s_localhost
 - destination: d_log_server

some_comment:
 module.run:
 - name: syslog_ng.write_config
 - config: |
 # Multi line
 # comment

Another mode to use comments or existing configuration snippets
config.other_comment_form:
 syslog_ng.config:
 - config: |
 # Multi line
 # comment

The syslog_ng.reloaded function can generate syslog-ng configuration from YAML. If the statement (source, destination, parser,
etc.) has a name, this function uses the id as the name, otherwise (log
statement) its purpose is like a mandatory comment.

After execution this example the syslog_ng state will generate this
file:

#Generated by Salt on 2014-08-18 00:11:11
@version: 3.6

options {
 time_reap(
 30
);
 mark_freq(
 10
);
 keep_hostname(
 yes
);
};

source s_localhost {
 tcp(
 ip(
 127.0.0.1
),
 port(
 1233
)
);
};

destination d_log_server {
 tcp(
 127.0.0.1,
 port(
 1234
)
);
};

log {
 source(
 s_localhost
);
 destination(
 d_log_server
);
};

Multi line
comment

Multi line
comment

Users can include arbitrary texts in the generated configuration with
using the config statement (see the example above).

Syslog_ng module functions

You can use syslog_ng.set_binary_path
to set the directory which contains the
syslog-ng and syslog-ng-ctl binaries. If this directory is in your PATH,
you don't need to use this function. There is also a syslog_ng.set_config_file
function to set the location of the configuration file.

Examples

Simple source

source s_tail {
 file(
 "/var/log/apache/access.log",
 follow_freq(1),
 flags(no-parse, validate-utf8)
);
};

s_tail:
 # Salt will call the source function of syslog_ng module
 syslog_ng.config:
 - config:
 source:
 - file:
 - file: ''"/var/log/apache/access.log"''
 - follow_freq : 1
 - flags:
 - no-parse
 - validate-utf8

OR

s_tail:
 syslog_ng.config:
 - config:
 source:
 - file:
 - ''"/var/log/apache/access.log"''
 - follow_freq : 1
 - flags:
 - no-parse
 - validate-utf8

OR

source.s_tail:
 syslog_ng.config:
 - config:
 - file:
 - ''"/var/log/apache/access.log"''
 - follow_freq : 1
 - flags:
 - no-parse
 - validate-utf8

Complex source

source s_gsoc2014 {
 tcp(
 ip("0.0.0.0"),
 port(1234),
 flags(no-parse)
);
};

s_gsoc2014:
 syslog_ng.config:
 - config:
 source:
 - tcp:
 - ip: 0.0.0.0
 - port: 1234
 - flags: no-parse

Filter

filter f_json {
 match(
 "@json:"
);
};

f_json:
 syslog_ng.config:
 - config:
 filter:
 - match:
 - ''"@json:"''

Template

template t_demo_filetemplate {
 template(
 "$ISODATE $HOST $MSG "
);
 template_escape(
 no
);
};

t_demo_filetemplate:
 syslog_ng.config:
 -config:
 template:
 - template:
 - '"$ISODATE $HOST $MSG\n"'
 - template_escape:
 - "no"

Rewrite

rewrite r_set_message_to_MESSAGE {
 set(
 "${.json.message}",
 value("$MESSAGE")
);
};

r_set_message_to_MESSAGE:
 syslog_ng.config:
 - config:
 rewrite:
 - set:
 - '"${.json.message}"'
 - value : '"$MESSAGE"'

Global options

options {
 time_reap(30);
 mark_freq(10);
 keep_hostname(yes);
};

global_options:
 syslog_ng.config:
 - config:
 options:
 - time_reap: 30
 - mark_freq: 10
 - keep_hostname: "yes"

Log

log {
 source(s_gsoc2014);
 junction {
 channel {
 filter(f_json);
 parser(p_json);
 rewrite(r_set_json_tag);
 rewrite(r_set_message_to_MESSAGE);
 destination {
 file(
 "/tmp/json-input.log",
 template(t_gsoc2014)
);
 };
 flags(final);
 };
 channel {
 filter(f_not_json);
 parser {
 syslog-parser(

);
 };
 rewrite(r_set_syslog_tag);
 flags(final);
 };
 };
 destination {
 file(
 "/tmp/all.log",
 template(t_gsoc2014)
);
 };
};

l_gsoc2014:
 syslog_ng.config:
 - config:
 log:
 - source: s_gsoc2014
 - junction:
 - channel:
 - filter: f_json
 - parser: p_json
 - rewrite: r_set_json_tag
 - rewrite: r_set_message_to_MESSAGE
 - destination:
 - file:
 - '"/tmp/json-input.log"'
 - template: t_gsoc2014
 - flags: final
 - channel:
 - filter: f_not_json
 - parser:
 - syslog-parser: []
 - rewrite: r_set_syslog_tag
 - flags: final
 - destination:
 - file:
 - "/tmp/all.log"
 - template: t_gsoc2014

Salt in 10 Minutes

Note

Welcome to Salt Project! I am excited that you are interested in Salt and
starting down the path to better infrastructure management. I developed
(and am continuing to develop) Salt with the goal of making the best
software available to manage computers of almost any kind. I hope you enjoy
working with Salt and that the software can solve your real world needs!

	Thomas S Hatch

	Salt Project creator and Chief Developer of Salt Project

Getting Started

What is Salt?

Salt is a different approach to infrastructure management, founded on
the idea that high-speed communication with large numbers of systems can open
up new capabilities. This approach makes Salt a powerful multitasking system
that can solve many specific problems in an infrastructure.

The backbone of Salt is the remote execution engine, which creates a high-speed,
secure and bi-directional communication net for groups of systems. On top of this
communication system, Salt provides an extremely fast, flexible, and easy-to-use
configuration management system called Salt States.

Installing Salt

SaltStack has been made to be very easy to install and get started. The
Salt install guide [https://docs.saltproject.io/salt/install-guide/en/latest/]
provides instructions for all supported platforms.

Starting Salt

Salt functions on a master/minion topology. A master server acts as a
central control bus for the clients, which are called minions. The minions
connect back to the master.

Setting Up the Salt Master

Turning on the Salt Master is easy -- just turn it on! The default configuration
is suitable for the vast majority of installations. The Salt Master can be
controlled by the local Linux/Unix service manager:

On Systemd based platforms (newer Debian, openSUSE, Fedora):

systemctl start salt-master

On Upstart based systems (Ubuntu, older Fedora/RHEL):

service salt-master start

On SysV Init systems (Gentoo, older Debian etc.):

/etc/init.d/salt-master start

Alternatively, the Master can be started directly on the command-line:

salt-master -d

The Salt Master can also be started in the foreground in debug mode, thus
greatly increasing the command output:

salt-master -l debug

The Salt Master needs to bind to two TCP network ports on the system. These ports
are 4505 and 4506. For more in depth information on firewalling these ports,
the firewall tutorial is available here.

Finding the Salt Master

When a minion starts, by default it searches for a system that resolves to the salt hostname on the network.
If found, the minion initiates the handshake and key authentication process with the Salt master.
This means that the easiest configuration approach is to set internal DNS to resolve the name salt back to the Salt Master IP.

Otherwise, the minion configuration file will need to be edited so that the
configuration option master points to the DNS name or the IP of the Salt Master:

Note

The default location of the configuration files is /etc/salt. Most
platforms adhere to this convention, but platforms such as FreeBSD and
Microsoft Windows place this file in different locations.

/etc/salt/minion:

master: saltmaster.example.com

Setting up a Salt Minion

Note

The Salt Minion can operate with or without a Salt Master. This walk-through
assumes that the minion will be connected to the master, for information on
how to run a master-less minion please see the master-less quick-start guide:

Masterless Minion Quickstart

Now that the master can be found, start the minion in the same way as the
master; with the platform init system or via the command line directly:

As a daemon:

salt-minion -d

In the foreground in debug mode:

salt-minion -l debug

When the minion is started, it will generate an id value, unless it has
been generated on a previous run and cached (in /etc/salt/minion_id by
default). This is the name by which the minion will attempt
to authenticate to the master. The following steps are attempted, in order to
try to find a value that is not localhost:

	The Python function socket.getfqdn() is run

	/etc/hostname is checked (non-Windows only)

	/etc/hosts (%WINDIR%\system32\drivers\etc\hosts on Windows hosts) is
checked for hostnames that map to anything within 127.0.0.0/8.

If none of the above are able to produce an id which is not localhost, then
a sorted list of IP addresses on the minion (excluding any within
127.0.0.0/8) is inspected. The first publicly-routable IP address is
used, if there is one. Otherwise, the first privately-routable IP address is
used.

If all else fails, then localhost is used as a fallback.

Note

Overriding the id

The minion id can be manually specified using the id
parameter in the minion config file. If this configuration value is
specified, it will override all other sources for the id.

Now that the minion is started, it will generate cryptographic keys and attempt
to connect to the master. The next step is to venture back to the master server
and accept the new minion's public key.

Using salt-key

Salt authenticates minions using public-key encryption and authentication. For
a minion to start accepting commands from the master, the minion keys need to be
accepted by the master.

The salt-key command is used to manage all of the keys on the
master. To list the keys that are on the master:

salt-key -L

The keys that have been rejected, accepted, and pending acceptance are listed.
The easiest way to accept the minion key is to accept all pending keys:

salt-key -A

Note

Keys should be verified! Print the master key fingerprint by running salt-key -F master
on the Salt master. Copy the master.pub fingerprint from the Local Keys section,
and then set this value as the master_finger in the minion configuration
file. Restart the Salt minion.

On the master, run salt-key -f minion-id to print the fingerprint of the
minion's public key that was received by the master. On the minion, run
salt-call key.finger --local to print the fingerprint of the minion key.

On the master:

salt-key -f foo.domain.com
Unaccepted Keys:
foo.domain.com: 39:f9:e4:8a:aa:74:8d:52:1a:ec:92:03:82:09:c8:f9

On the minion:

salt-call key.finger --local
local:
 39:f9:e4:8a:aa:74:8d:52:1a:ec:92:03:82:09:c8:f9

If they match, approve the key with salt-key -a foo.domain.com.

Sending the First Commands

Now that the minion is connected to the master and authenticated, the master
can start to command the minion.

Salt commands allow for a vast set of functions to be executed and for
specific minions and groups of minions to be targeted for execution.

The salt command is comprised of command options, target specification,
the function to execute, and arguments to the function.

A simple command to
start with looks like this:

salt '*' test.version

The * is the target, which specifies all minions.

test.version tells the minion to run the test.version function.

In the case of test.version, test refers to a execution module. version refers to the version function contained in the aforementioned test
module.

Note

Execution modules are the workhorses of Salt. They do the work on the
system to perform various tasks, such as manipulating files and restarting
services.

The result of running this command will be the master instructing all of the
minions to execute test.version in parallel
and return the result. Using test.version
is a good way of confirming that a minion is connected, and reaffirm to the user
the salt version(s) they have installed on the minions.

Note

Each minion registers itself with a unique minion ID. This ID defaults to
the minion's hostname, but can be explicitly defined in the minion config as
well by using the id parameter.

Of course, there are hundreds of other modules that can be called just as
test.version can. For example, the following would return disk usage on all
targeted minions:

salt '*' disk.usage

Getting to Know the Functions

Salt comes with a vast library of functions available for execution, and Salt
functions are self-documenting. To see what functions are available on the
minions execute the sys.doc function:

salt '*' sys.doc

This will display a very large list of available functions and documentation on
them.

Note

Module documentation is also available on the web.

These functions cover everything from shelling out to package management to
manipulating database servers. They comprise a powerful system management API
which is the backbone to Salt configuration management and many other aspects
of Salt.

Note

Salt comes with many plugin systems. The functions that are available via
the salt command are called Execution Modules.

Helpful Functions to Know

The cmd module contains
functions to shell out on minions, such as cmd.run and cmd.run_all:

salt '*' cmd.run 'ls -l /etc'

The pkg functions automatically map local system package managers to the
same salt functions. This means that pkg.install will install packages via
yum on Red Hat based systems, apt on Debian systems, etc.:

salt '*' pkg.install vim

Note

Some custom Linux spins and derivatives of other distributions are not properly
detected by Salt. If the above command returns an error message saying that
pkg.install is not available, then you may need to override the pkg
provider. This process is explained here.

The network.interfaces function will
list all interfaces on a minion, along with their IP addresses, netmasks, MAC
addresses, etc:

salt '*' network.interfaces

Changing the Output Format

The default output format used for most Salt commands is called the nested
outputter, but there are several other outputters that can be used to change
the way the output is displayed. For instance, the pprint outputter can be
used to display the return data using Python's pprint module:

root@saltmaster:~# salt myminion grains.item pythonpath --out=pprint
{'myminion': {'pythonpath': ['/usr/lib64/python2.7',
 '/usr/lib/python2.7/plat-linux2',
 '/usr/lib64/python2.7/lib-tk',
 '/usr/lib/python2.7/lib-tk',
 '/usr/lib/python2.7/site-packages',
 '/usr/lib/python2.7/site-packages/gst-0.10',
 '/usr/lib/python2.7/site-packages/gtk-2.0']}}

The full list of Salt outputters, as well as example output, can be found
here.

salt-call

The examples so far have described running commands from the Master using the
salt command, but when troubleshooting it can be more beneficial to login
to the minion directly and use salt-call.

Doing so allows you to see the minion log messages specific to the command you
are running (which are not part of the return data you see when running the
command from the Master using salt), making it unnecessary to tail the
minion log. More information on salt-call and how to use it can be found
here.

Grains

Salt uses a system called Grains to build up
static data about minions. This data includes information about the operating
system that is running, CPU architecture and much more. The grains system is
used throughout Salt to deliver platform data to many components and to users.

Grains can also be statically set, this makes it easy to assign values to
minions for grouping and managing.

A common practice is to assign grains to minions to specify what the role or
roles a minion might be. These static grains can be set in the minion
configuration file or via the grains.setval
function.

Targeting

Salt allows for minions to be targeted based on a wide range of criteria. The
default targeting system uses globular expressions to match minions, hence if
there are minions named larry1, larry2, curly1, and curly2, a
glob of larry* will match larry1 and larry2, and a glob of *1
will match larry1 and curly1.

Many other targeting systems can be used other than globs, these systems
include:

	Regular Expressions
	Target using PCRE-compliant regular expressions

	Grains
	Target based on grains data:
Targeting with Grains

	Pillar
	Target based on pillar data:
Targeting with Pillar

	IP
	Target based on IP address/subnet/range

	Compound
	Create logic to target based on multiple targets:
Targeting with Compound

	Nodegroup
	Target with nodegroups:
Targeting with Nodegroup

The concepts of targets are used on the command line with Salt, but also
function in many other areas as well, including the state system and the
systems used for ACLs and user permissions.

Passing in Arguments

Many of the functions available accept arguments which can be passed in on
the command line:

salt '*' pkg.install vim

This example passes the argument vim to the pkg.install function. Since
many functions can accept more complex input than just a string, the arguments
are parsed through YAML, allowing for more complex data to be sent on the
command line:

salt '*' test.echo 'foo: bar'

In this case Salt translates the string 'foo: bar' into the dictionary
"{'foo': 'bar'}"

Note

Any line that contains a newline will not be parsed by YAML.

Salt States

Now that the basics are covered the time has come to evaluate States. Salt
States, or the State System is the component of Salt made for
configuration management.

The state system is already available with a basic Salt setup, no additional
configuration is required. States can be set up immediately.

Note

Before diving into the state system, a brief overview of how states are
constructed will make many of the concepts clearer. Salt states are based
on data modeling and build on a low level data structure that is used to
execute each state function. Then more logical layers are built on top of
each other.

The high layers of the state system which this tutorial will
cover consists of everything that needs to be known to use states, the two
high layers covered here are the sls layer and the highest layer
highstate.

Understanding the layers of data management in the State System will help with
understanding states, but they never need to be used. Just as understanding
how a compiler functions assists when learning a programming language,
understanding what is going on under the hood of a configuration management
system will also prove to be a valuable asset.

The First SLS Formula

The state system is built on SLS (SaLt State) formulas. These formulas are built out in
files on Salt's file server. To make a very basic SLS formula open up a file
under /srv/salt named vim.sls. The following state ensures that vim is installed
on a system to which that state has been applied.

/srv/salt/vim.sls:

vim:
 pkg.installed

Now install vim on the minions by calling the SLS directly:

salt '*' state.apply vim

This command will invoke the state system and run the vim SLS.

Now, to beef up the vim SLS formula, a vimrc can be added:

/srv/salt/vim.sls:

vim:
 pkg.installed: []

/etc/vimrc:
 file.managed:
 - source: salt://vimrc
 - mode: 644
 - user: root
 - group: root

Now the desired vimrc needs to be copied into the Salt file server to
/srv/salt/vimrc. In Salt, everything is a file, so no path redirection needs
to be accounted for. The vimrc file is placed right next to the vim.sls file.
The same command as above can be executed to all the vim SLS formulas and now
include managing the file.

Note

Salt does not need to be restarted/reloaded or have the master manipulated
in any way when changing SLS formulas. They are instantly available.

Adding Some Depth

Obviously maintaining SLS formulas right in a single directory at the root of
the file server will not scale out to reasonably sized deployments. This is
why more depth is required. Start by making an nginx formula a better way,
make an nginx subdirectory and add an init.sls file:

/srv/salt/nginx/init.sls:

nginx:
 pkg.installed: []
 service.running:
 - require:
 - pkg: nginx

A few concepts are introduced in this SLS formula.

First is the service statement which ensures that the nginx service is running.

Of course, the nginx service can't be started unless the package is installed --
hence the require statement which sets up a dependency between the two.

The require statement makes sure that the required component is executed before
and that it results in success.

Note

The require option belongs to a family of options called requisites.
Requisites are a powerful component of Salt States, for more information
on how requisites work and what is available see:
Requisites

Also evaluation ordering is available in Salt as well:
Ordering States

This new sls formula has a special name -- init.sls. When an SLS formula is
named init.sls it inherits the name of the directory path that contains it.
This formula can be referenced via the following command:

salt '*' state.apply nginx

Note

state.apply is just another remote
execution function, just like test.version
or disk.usage. It simply takes the
name of an SLS file as an argument.

Now that subdirectories can be used, the vim.sls formula can be cleaned up.
To make things more flexible, move the vim.sls and vimrc into a new subdirectory
called edit and change the vim.sls file to reflect the change:

/srv/salt/edit/vim.sls:

vim:
 pkg.installed

/etc/vimrc:
 file.managed:
 - source: salt://edit/vimrc
 - mode: 644
 - user: root
 - group: root

Only the source path to the vimrc file has changed. Now the formula is
referenced as edit.vim because it resides in the edit subdirectory.
Now the edit subdirectory can contain formulas for emacs, nano, joe or any other
editor that may need to be deployed.

Next Reading

Two walk-throughs are specifically recommended at this point. First, a deeper
run through States, followed by an explanation of Pillar.

	Starting States

	Pillar Walkthrough

An understanding of Pillar is extremely helpful in using States.

Getting Deeper Into States

Two more in-depth States tutorials exist, which delve much more deeply into States
functionality.

	How Do I Use Salt States?, covers much
more to get off the ground with States.

	The States Tutorial also provides a
fantastic introduction.

These tutorials include much more in-depth information including templating
SLS formulas etc.

So Much More!

This concludes the initial Salt walk-through, but there are many more things still
to learn! These documents will cover important core aspects of Salt:

	Pillar

	Job Management

A few more tutorials are also available:

	Remote Execution Tutorial

	Standalone Minion

This still is only scratching the surface, many components such as the reactor
and event systems, extending Salt, modular components and more are not covered
here. For an overview of all Salt features and documentation, look at the
Table of Contents.

The macOS (Maverick) Developer Step By Step Guide To Salt Installation

This document provides a step-by-step guide to installing a Salt cluster
consisting of one master, and one minion running on a local VM hosted on macOS.

Note

This guide is aimed at developers who wish to run Salt in a virtual machine.
The official (Linux) walkthrough can be found
here [https://docs.saltproject.io/topics/tutorials/walkthrough.html].

The 5 Cent Salt Intro

Since you're here you've probably already heard about Salt, so you already
know Salt lets you configure and run commands on hordes of servers easily.
Here's a brief overview of a Salt cluster:

	Salt works by having a "master" server sending commands to one or multiple
"minion" servers. The master server is the "command center". It is
going to be the place where you store your configuration files, aka: "which
server is the db, which is the web server, and what libraries and software
they should have installed". The minions receive orders from the master.
Minions are the servers actually performing work for your business.

	Salt has two types of configuration files:

1. the "salt communication channels" or "meta" or "config" configuration
files (not official names): one for the master (usually is /etc/salt/master
, on the master server), and one for minions (default is
/etc/salt/minion or /etc/salt/minion.conf, on the minion servers). Those
files are used to determine things like the Salt Master IP, port, Salt
folder locations, etc.. If these are configured incorrectly, your minions
will probably be unable to receive orders from the master, or the master
will not know which software a given minion should install.

2. the "business" or "service" configuration files (once again, not an
official name): these are configuration files, ending with ".sls" extension,
that describe which software should run on which server, along with
particular configuration properties for the software that is being
installed. These files should be created in the /srv/salt folder by default,
but their location can be changed using ... /etc/salt/master configuration file!

Note

This tutorial contains a third important configuration file, not to
be confused with the previous two: the virtual machine provisioning
configuration file. This in itself is not specifically tied to Salt, but
it also contains some Salt configuration. More on that in step 3. Also
note that all configuration files are YAML files. So indentation matters.

Note

Salt also works with "masterless" configuration where a minion is
autonomous (in which case salt can be seen as a local configuration tool),
or in "multiple master" configuration. See the documentation for more on
that.

Before Digging In, The Architecture Of The Salt Cluster

Salt Master

The "Salt master" server is going to be the Mac OS machine, directly. Commands
will be run from a terminal app, so Salt will need to be installed on the Mac.
This is going to be more convenient for toying around with configuration files.

Salt Minion

We'll only have one "Salt minion" server. It is going to be running on a
Virtual Machine running on the Mac, using VirtualBox. It will run an Ubuntu
distribution.

Step 1 - Configuring The Salt Master On Your Mac

See the Salt install guide [https://docs.saltproject.io/salt/install-guide/en/latest/]
for macOS installation instructions.

Because Salt has a lot of dependencies that are not built in macOS, we will use
Homebrew to install Salt. Homebrew is a package manager for Mac, it's great, use
it (for this tutorial at least!). Some people spend a lot of time installing
libs by hand to better understand dependencies, and then realize how useful a
package manager is once they're configuring a brand new machine and have to do
it all over again. It also lets you uninstall things easily.

Note

Brew is a Ruby program (Ruby is installed by default with your Mac). Brew
downloads, compiles, and links software. The linking phase is when compiled
software is deployed on your machine. It may conflict with manually
installed software, especially in the /usr/local directory. It's ok,
remove the manually installed version then refresh the link by typing
brew link 'packageName'. Brew has a brew doctor command that can
help you troubleshoot. It's a great command, use it often. Brew requires
xcode command line tools. When you run brew the first time it asks you to
install them if they're not already on your system. Brew installs
software in /usr/local/bin (system bins are in /usr/bin). In order to use
those bins you need your $PATH to search there first. Brew tells you if
your $PATH needs to be fixed.

Tip

Use the keyboard shortcut cmd + shift + period in the "open" macOS
dialog box to display hidden files and folders, such as .profile.

Install Homebrew

Install Homebrew here https://brew.sh/

Or just type

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

Now type the following commands in your terminal (you may want to type brew
doctor after each to make sure everything's fine):

brew install python
brew install swig
brew install zmq

Note

zmq is ZeroMQ. It's a fantastic library used for server to server network
communication and is at the core of Salt efficiency.

Install Salt

You should now have everything ready to launch this command:

pip install salt

Note

There should be no need for sudo pip install salt. Brew installed
Python for your user, so you should have all the access. In case you
would like to check, type which python to ensure that it's
/usr/local/bin/python, and which pip which should be
/usr/local/bin/pip.

Now type python in a terminal then, import salt. There should be no
errors. Now exit the Python terminal using exit().

Create The Master Configuration

If the default /etc/salt/master configuration file was not created,
copy-paste it from here:
https://docs.saltproject.io/en/latest/ref/configuration/examples.html#configuration-examples-master

Note

/etc/salt/master is a file, not a folder.

Salt Master configuration changes. The Salt master needs a few customization
to be able to run on macOS:

sudo launchctl limit maxfiles 4096 8192

In the /etc/salt/master file, change max_open_files to 8192 (or just add the
line: max_open_files: 8192 (no quote) if it doesn't already exists).

You should now be able to launch the Salt master:

sudo salt-master --log-level=all

There should be no errors when running the above command.

Note

This command is supposed to be a daemon, but for toying around, we'll keep
it running on a terminal to monitor the activity.

Now that the master is set, let's configure a minion on a VM.

Step 2 - Configuring The Minion VM

The Salt minion is going to run on a Virtual Machine. There are a lot of
software options that let you run virtual machines on a mac, But for this
tutorial we're going to use VirtualBox. In addition to virtualBox, we will use
Vagrant, which allows you to create the base VM configuration.

Vagrant lets you build ready to use VM images, starting from an OS image and
customizing it using "provisioners". In our case, we'll use it to:

	Download the base Ubuntu image

	Install salt on that Ubuntu image (Salt is going to be the "provisioner"
for the VM).

	Launch the VM

	SSH into the VM to debug

	Stop the VM once you're done.

Install VirtualBox

Go get it here: https://www.virtualbox.org/wiki/Downloads (click on VirtualBox
for macOS hosts => x86/amd64)

Install Vagrant

Go get it here: https://www.vagrantup.com/downloads.html and choose the latest version
(1.3.5 at time of writing), then the .dmg file. Double-click to install it.
Make sure the vagrant command is found when run in the terminal. Type
vagrant. It should display a list of commands.

Create The Minion VM Folder

Create a folder in which you will store your minion's VM. In this tutorial,
it's going to be a minion folder in the $home directory.

cd $home
mkdir minion

Initialize Vagrant

From the minion folder, type

vagrant init ubuntu/focal64

This command creates a default Vagrantfile configuration file and import focal64 virtualbox image file to configuration, so it could be used. This
configuration file will be used to pass configuration parameters to the Salt
provisioner in Step 3.

Modify the Vagrantfile

Modify Vagrantfile to use th private_ip in local network.

config.vm.network :private_network, ip: "192.168.33.10"

At this point you should have a VM that can run, although there won't be much
in it. Let's check that.

Checking The VM

From the $home/minion folder type:

vagrant up

A log showing the VM booting should be present. Once it's done you'll be back
to the terminal:

ping 192.168.33.10

The VM should respond to your ping request.

Now log into the VM in ssh using Vagrant again:

vagrant ssh

You should see the shell prompt change to something similar to
vagrant@focal64:~$ meaning you're inside the VM. From there, enter the
following:

ping 10.0.2.2

Note

That ip is the ip of your VM host (the macOS host). The number is a
VirtualBox default and is displayed in the log after the Vagrant ssh
command. We'll use that IP to tell the minion where the Salt master is.
Once you're done, end the ssh session by typing exit.

It's now time to connect the VM to the salt master

Step 3 - Connecting Master and Minion

Creating The Minion Configuration File

Create the /etc/salt/minion file. In that file, put the
following lines, giving the ID for this minion, and the IP of the master:

master: 10.0.2.2
id: 'minion1'
file_client: remote

Minions authenticate with the master using keys. Keys are generated
automatically if you don't provide one and can accept them later on. However,
this requires accepting the minion key every time the minion is destroyed or
created (which could be quite often). A better way is to create those keys in
advance, feed them to the minion, and authorize them once.

Preseed minion keys

From the minion folder on your Mac run:

sudo salt-key --gen-keys=minion1

This should create two files: minion1.pem, and minion1.pub.
Since those files have been created using sudo, but will be used by vagrant,
you need to change ownership:

sudo chown youruser:yourgroup minion1.pem
sudo chown youruser:yourgroup minion1.pub

Then copy the .pub file into the list of accepted minions:

sudo cp minion1.pub /etc/salt/pki/master/minions/minion1

Modify Vagrantfile to Use Salt Provisioner

Let's now modify the Vagrantfile used to provision the Salt VM. Add the
following section in the Vagrantfile (note: it should be at the same
indentation level as the other properties):

salt-vagrant config
config.vm.provision :salt do |salt|
 salt.run_highstate = true
 salt.minion_config = "/etc/salt/minion"
 salt.minion_key = "./minion1.pem"
 salt.minion_pub = "./minion1.pub"
end

Now destroy the vm and recreate it from the /minion folder:

vagrant destroy
vagrant up

If everything is fine you should see the following message:

"Bootstrapping Salt... (this may take a while)
Salt successfully configured and installed!"

Checking Master-Minion Communication

To make sure the master and minion are talking to each other, enter the
following:

sudo salt '*' test.version

You should see your minion answering with its salt version. It's now time to do some
configuration.

Step 4 - Configure Services to Install On the Minion

In this step we'll use the Salt master to instruct our minion to install
Nginx.

Checking the system's original state

First, make sure that an HTTP server is not installed on our minion.
When opening a browser directed at http://192.168.33.10/ You should get an
error saying the site cannot be reached.

Initialize the top.sls file

System configuration is done in /srv/salt/top.sls (and subfiles/folders),
and then applied by running the state.apply function to have the Salt master order its minions
to update their instructions and run the associated commands.

First Create an empty file on your Salt master (macOS machine):

touch /srv/salt/top.sls

When the file is empty, or if no configuration is found for our minion
an error is reported:

sudo salt 'minion1' state.apply

This should return an error stating: No Top file or external nodes data
matches found.

Create The Nginx Configuration

Now is finally the time to enter the real meat of our server's configuration.
For this tutorial our minion will be treated as a web server that needs to
have Nginx installed.

Insert the following lines into /srv/salt/top.sls (which should current be
empty).

base:
 'minion1':
 - bin.nginx

Now create /srv/salt/bin/nginx.sls containing the following:

nginx:
 pkg.installed:
 - name: nginx
 service.running:
 - enable: True
 - reload: True

Check Minion State

Finally, run the state.apply function
again:

sudo salt 'minion1' state.apply

You should see a log showing that the Nginx package has been installed
and the service configured. To prove it, open your browser and navigate to
http://192.168.33.10/, you should see the standard Nginx welcome page.

Congratulations!

Where To Go From Here

A full description of configuration management within Salt (sls files among
other things) is available here:
https://docs.saltproject.io/en/latest/index.html#configuration-management

Salt's Test Suite: An Introduction

Note

This tutorial makes a couple of assumptions. The first assumption is that
you have a basic knowledge of Salt. To get up to speed, check out the
Salt Walkthrough.

The second assumption is that your Salt development environment is already
configured and that you have a basic understanding of contributing to the
Salt codebase. If you're unfamiliar with either of these topics, please refer
to the Installing Salt for Development
and the Contributing pages, respectively.

Salt comes with a powerful integration and unit test suite. The test suite
allows for the fully automated run of integration and/or unit tests from a
single interface.

Salt's test suite is located under the tests directory in the root of Salt's
code base and is divided into two main types of tests:
unit tests and integration tests. The unit and
integration sub-test-suites are located in the tests directory, which is
where the majority of Salt's test cases are housed.

Getting Set Up For Tests

First of all you will need to ensure you install nox.

pip install nox

Test Directory Structure

As noted in the introduction to this tutorial, Salt's test suite is located in the
tests directory in the root of Salt's code base. From there, the tests are divided
into two groups integration and unit. Within each of these directories, the
directory structure roughly mirrors the directory structure of Salt's own codebase.
For example, the files inside tests/integration/modules contains tests for the
files located within salt/modules.

Note

tests/integration and tests/unit are the only directories discussed in
this tutorial. With the exception of the tests/runtests.py file, which is
used below in the Running the Test Suite section, the other directories and
files located in tests are outside the scope of this tutorial.

Integration vs. Unit

Given that Salt's test suite contains two powerful, though very different, testing
approaches, when should you write integration tests and when should you write unit
tests?

Integration tests use Salt masters, minions, and a syndic to test salt functionality
directly and focus on testing the interaction of these components. Salt's integration
test runner includes functionality to run Salt execution modules, runners, states,
shell commands, salt-ssh commands, salt-api commands, and more. This provides a
tremendous ability to use Salt to test itself and makes writing such tests a breeze.
Integration tests are the preferred method of testing Salt functionality when
possible.

Unit tests do not spin up any Salt daemons, but instead find their value in testing
singular implementations of individual functions. Instead of testing against specific
interactions, unit tests should be used to test a function's logic. Unit tests should
be used to test a function's exit point(s) such as any return or raises
statements.

Unit tests are also useful in cases where writing an integration test might not be
possible. While the integration test suite is extremely powerful, unfortunately at
this time, it does not cover all functional areas of Salt's ecosystem. For example,
at the time of this writing, there is not a way to write integration tests for Proxy
Minions. Since the test runner will need to be adjusted to account for Proxy Minion
processes, unit tests can still provide some testing support in the interim by
testing the logic contained inside Proxy Minion functions.

Running the Test Suite

Once all of the requirements are installed, the
nox command is used to instantiate Salt's test suite:

nox -e 'test-3(coverage=False)'

The command above, if executed without any options, will run the entire suite of
integration and unit tests. Some tests require certain flags to run, such as
destructive tests. If these flags are not included, then the test suite will only
perform the tests that don't require special attention.

At the end of the test run, you will see a summary output of the tests that passed,
failed, or were skipped.

You can pass any pytest options after the nox command like so:

nox -e 'test-3(coverage=False)' -- tests/unit/modules/test_ps.py

The above command will run the test_ps.py test with the zeromq transport, python3,
and pytest. Pass any pytest options after --

Running Integration Tests

Salt's set of integration tests use Salt to test itself. The integration portion
of the test suite includes some built-in Salt daemons that will spin up in preparation
of the test run. This list of Salt daemon processes includes:

	2 Salt Masters

	2 Salt Minions

	1 Salt Syndic

These various daemons are used to execute Salt commands and functionality within
the test suite, allowing you to write tests to assert against expected or
unexpected behaviors.

A simple example of a test utilizing a typical master/minion execution module command
is the test for the test_ping function in the
tests/integration/modules/test_test.py
file:

def test_ping(self):
 """
 test.ping
 """
 self.assertTrue(self.run_function("test.ping"))

The test above is a very simple example where the test.ping function is
executed by Salt's test suite runner and is asserting that the minion returned
with a True response.

Test Selection Options

If you want to run only a subset of tests, this is easily done with pytest. You only
need to point the test runner to the directory. For example if you want to run all
integration module tests:

nox -e 'test-3(coverage=False)' -- tests/integration/modules/

Running Unit Tests

If you want to run only the unit tests, you can just pass the unit test directory
as an option to the test runner.

The unit tests do not spin up any Salt testing daemons as the integration tests
do and execute very quickly compared to the integration tests.

nox -e 'test-3(coverage=False)' -- tests/unit/

Running Specific Tests

There are times when a specific test file, test class, or even a single,
individual test need to be executed, such as when writing new tests. In these
situations, you should use the pytest syntax [https://docs.pytest.org/en/latest/usage.html#specifying-tests-selecting-tests] to select the specific tests.

For running a single test file, such as the pillar module test file in the
integration test directory, you must provide the file path.

nox -e 'test-3(coverage=False)' -- tests/pytests/integration/modules/test_pillar.py

Some test files contain only one test class while other test files contain multiple
test classes. To run a specific test class within the file, append the name of
the test class to the end of the file path:

nox -e 'test-3(coverage=False)' -- tests/pytests/integration/modules/test_pillar.py::PillarModuleTest

To run a single test within a file, append both the name of the test class the
individual test belongs to, as well as the name of the test itself:

nox -e 'test-3(coverage=False)' -- tests/pytests/integration/modules/test_pillar.py::PillarModuleTest::test_data

The following command is an example of how to execute a single test found in
the tests/unit/modules/test_cp.py file:

nox -e 'test-3(coverage=False)' -- tests/pytests/unit/modules/test_cp.py::CpTestCase::test_get_file_not_found

Writing Tests for Salt

Once you're comfortable running tests, you can now start writing them! Be sure
to review the Integration vs. Unit section of this tutorial to determine what
type of test makes the most sense for the code you're testing.

Note

There are many decorators, naming conventions, and code specifications
required for Salt test files. We will not be covering all of the these specifics
in this tutorial. Please refer to the testing documentation links listed below
in the Additional Testing Documentation section to learn more about these
requirements.

In the following sections, the test examples assume the "new" test is added to
a test file that is already present and regularly running in the test suite and
is written with the correct requirements.

Writing Integration Tests

Since integration tests validate against a running environment, as explained in the
Running Integration Tests section of this tutorial, integration tests are very
easy to write and are generally the preferred method of writing Salt tests.

The following integration test is an example taken from the test.py file in the
tests/integration/modules directory. This test uses the run_function method
to test the functionality of a traditional execution module command.

The run_function method uses the integration test daemons to execute a
module.function command as you would with Salt. The minion runs the function and
returns. The test also uses Python's Assert Functions [https://docs.python.org/3/library/unittest.html#assert-methods] to test that the
minion's return is expected.

def test_ping(self):
 """
 test.ping
 """
 self.assertTrue(self.run_function("test.ping"))

Args can be passed in to the run_function method as well:

def test_echo(self):
 """
 test.echo
 """
 self.assertEqual(self.run_function("test.echo", ["text"]), "text")

The next example is taken from the
tests/integration/modules/test_aliases.py file and
demonstrates how to pass kwargs to the run_function call. Also note that this
test uses another salt function to ensure the correct data is present (via the
aliases.set_target call) before attempting to assert what the aliases.get_target
call should return.

def test_set_target(self):
 """
 aliases.set_target and aliases.get_target
 """
 set_ret = self.run_function("aliases.set_target", alias="fred", target="bob")
 self.assertTrue(set_ret)
 tgt_ret = self.run_function("aliases.get_target", alias="fred")
 self.assertEqual(tgt_ret, "bob")

Using multiple Salt commands in this manner provides two useful benefits. The first is
that it provides some additional coverage for the aliases.set_target function.
The second benefit is the call to aliases.get_target is not dependent on the
presence of any aliases set outside of this test. Tests should not be dependent on
the previous execution, success, or failure of other tests. They should be isolated
from other tests as much as possible.

While it might be tempting to build out a test file where tests depend on one another
before running, this should be avoided. SaltStack recommends that each test should
test a single functionality and not rely on other tests. Therefore, when possible,
individual tests should also be broken up into singular pieces. These are not
hard-and-fast rules, but serve more as recommendations to keep the test suite simple.
This helps with debugging code and related tests when failures occur and problems
are exposed. There may be instances where large tests use many asserts to set up a
use case that protects against potential regressions.

Note

The examples above all use the run_function option to test execution module
functions in a traditional master/minion environment. To see examples of how to
test other common Salt components such as runners, salt-api, and more, please
refer to the Integration Test Class Examples
documentation.

Destructive vs Non-destructive Tests

Since Salt is used to change the settings and behavior of systems, often, the
best approach to run tests is to make actual changes to an underlying system.
This is where the concept of destructive integration tests comes into play.
Tests can be written to alter the system they are running on. This capability
is what fills in the gap needed to properly test aspects of system management
like package installation.

To write a destructive test, decorate the test function with the
destructive_test:

@pytest.mark.destructive_test
def test_pkg_install(salt_cli):
 ret = salt_cli.run("pkg.install", "finch")
 assert ret

Writing Unit Tests

As explained in the Integration vs. Unit section above, unit tests should be
written to test the logic of a function. This includes focusing on testing
return and raises statements. Substantial effort should be made to mock
external resources that are used in the code being tested.

External resources that should be mocked include, but are not limited to, APIs,
function calls, external data either globally available or passed in through
function arguments, file data, etc. This practice helps to isolate unit tests to
test Salt logic. One handy way to think about writing unit tests is to "block
all of the exits". More information about how to properly mock external resources
can be found in Salt's Unit Test documentation.

Salt's unit tests utilize Python's mock class as well as MagicMock [https://docs.python.org/3/library/unittest.mock.html]. The
@patch decorator is also heavily used when "blocking all the exits".

A simple example of a unit test currently in use in Salt is the
test_get_file_not_found test in the tests/pytests/unit/modules/test_cp.py file.
This test uses the @patch decorator and MagicMock to mock the return
of the call to Salt's cp.hash_file execution module function. This ensures
that we're testing the cp.get_file function directly, instead of inadvertently
testing the call to cp.hash_file, which is used in cp.get_file.

def test_get_file_not_found(self):
 """
 Test if get_file can't find the file.
 """
 with patch("salt.modules.cp.hash_file", MagicMock(return_value=False)):
 path = "salt://saltines"
 dest = "/srv/salt/cheese"
 ret = ""
 assert cp.get_file(path, dest) == ret

Note that Salt's cp module is imported at the top of the file, along with all
of the other necessary testing imports. The get_file function is then called
directed in the testing function, instead of using the run_function method as
the integration test examples do above.

The call to cp.get_file returns an empty string when a hash_file isn't found.
Therefore, the example above is a good illustration of a unit test "blocking
the exits" via the @patch decorator, as well as testing logic via asserting
against the return statement in the if clause. In this example we used the
python assert to verify the return from cp.get_file. Pytest allows you to use
these asserts [https://docs.pytest.org/en/latest/assert.html] when writing your tests and, in fact, plain asserts [https://docs.pytest.org/en/latest/assert.html] is the preferred
way to assert anything in your tests. As Salt dives deeper into Pytest, the use of
unittest.TestClass will be replaced by plain test functions, or test functions grouped
in a class, which does not subclass unittest.TestClass, which, of course, doesn't
work with unittest assert functions.

There are more examples of writing unit tests of varying complexities available
in the following docs:

	Simple Unit Test Example

	Complete Unit Test Example

	Complex Unit Test Example

Note

Considerable care should be made to ensure that you're testing something
useful in your test functions. It is very easy to fall into a situation
where you have mocked so much of the original function that the test
results in only asserting against the data you have provided. This results
in a poor and fragile unit test.

Add a python module dependency to the test run

The test dependencies for python modules are managed under the requirements/static/ci
directory. You will need to add your module to the appropriate file under requirements/static/ci.
When pre-commit is run it will create all of the needed requirement files
under requirements/static/ci/py3{6,7,8,9}. Nox will then use these files to install
the requirements for the tests.

Add a system dependency to the test run

If you need to add a system dependency for the test run, this will need to be added in
the salt-ci-images [https://github.com/saltstack/salt-ci-images] repo. This repo uses salt states to install system dependencies.
You need to update the state-tree/golden-images-provision.sls file with
your dependency to ensure it is installed. Once your PR is merged the core team
will need to promote the new images with your new dependency installed.

Checking for Log Messages

To test to see if a given log message has been emitted, the following pattern
can be used

def test_issue_58763_a(tmp_path, modules, state_tree, caplog):

 venv_dir = tmp_path / "issue-2028-pip-installed"

 sls_contents = """
 test.random_hash:
 module.run:
 - size: 10
 - hash_type: md5
 """
 with pytest.helpers.temp_file("issue-58763.sls", sls_contents, state_tree):
 with caplog.at_level(logging.DEBUG):
 ret = modules.state.sls(
 mods="issue-58763",
)
 assert len(ret.raw) == 1
 for k in ret.raw:
 assert ret.raw[k]["result"] is True
 assert (
 "Detected legacy module.run syntax: test.random_hash" in caplog.messages
)

Test Groups

Salt has four groups

	fast - Tests that are ~10s or faster. Fast tests make up ~75% of tests and can run in 10 to 20 minutes.

	slow - Tests that are ~10s or slower.

	core - Tests of any speed that test the root parts of salt.

	flaky-jail - Test that need to be temporarily skipped.

Pytest Decorators

	@pytest.mark.slow_test

	@pytest.mark.core_test

	@pytest.mark.flaky_jail

@pytest.mark.core_test
def test_ping(self):
 """
 test.ping
 """
 self.assertTrue(self.run_function("test.ping"))

You can also mark all the tests in file.

pytestmark = [
 pytest.mark.core_test,
]

def test_ping(self):
 """
 test.ping
 """
 self.assertTrue(self.run_function("test.ping"))

def test_ping2(self):
 """
 test.ping
 """
 for _ in range(10):
 self.assertTrue(self.run_function("test.ping"))

You can enable or disable test groups locally by passing there respected flag:

	--no-fast-tests

	--slow-tests

	--core-tests

	--flaky-jail

In your PR you can enable or disable test groups by setting a label.
All thought the fast, slow and core tests specified in the change file will always run.

	test:no-fast

	test:slow

	test:core

	test:flaky-jail

Additional Testing Documentation

In addition to this tutorial, there are some other helpful resources and documentation
that go into more depth on Salt's test runner, writing tests for Salt code, and general
Python testing documentation. Please see the follow references for more information:

	Salt's Test Suite Documentation

	Integration Tests

	Unit Tests

	MagicMock [https://docs.python.org/3/library/unittest.mock.html]

	Python Unittest [https://docs.python.org/3/library/unittest.html]

	Python's Assert Functions [https://docs.python.org/3/library/unittest.html#assert-methods]

Troubleshooting

The intent of the troubleshooting section is to introduce solutions to a
number of common issues encountered by users and the tools that are available
to aid in developing States and Salt code.

Troubleshooting the Salt Master

If your Salt master is having issues such as minions not returning data, slow
execution times, or a variety of other issues, the following links contain
details on troubleshooting the most common issues encountered:

	Troubleshooting the Salt Master
	Running in the Foreground

	What Ports does the Master Need Open?

	Too many open files

	Salt Master Stops Responding

	Live Python Debug Output

	Live Salt-Master Profiling

	Commands Time Out or Do Not Return Output

	Passing the -c Option to Salt Returns a Permissions Error

	Salt Master Doesn't Return Anything While Running jobs

	Salt Master Auth Flooding

	Running states locally

	Salt Master Umask

Troubleshooting the Salt Minion

In the event that your Salt minion is having issues, a variety of solutions
and suggestions are available. Please refer to the following links for more information:

	Troubleshooting the Salt Minion
	Running in the Foreground

	What Ports does the Minion Need Open?

	Using salt-call

	Live Python Debug Output

	Multiprocessing in Execution Modules

	Salt Minion Doesn't Return Anything While Running Jobs Locally

Running in the Foreground

A great deal of information is available via the debug logging system, if you
are having issues with minions connecting or not starting run the minion and/or
master in the foreground:

salt-master -l debug
salt-minion -l debug

Anyone wanting to run Salt daemons via a process supervisor such as monit [https://mmonit.com/monit/],
runit [http://smarden.org/runit/], or supervisord [http://supervisord.org/], should omit the -d argument to the daemons and
run them in the foreground.

What Ports do the Master and Minion Need Open?

No ports need to be opened up on each minion. For the master, TCP ports 4505
and 4506 need to be open. If you've put both your Salt master and minion in
debug mode and don't see an acknowledgment that your minion has connected,
it could very well be a firewall.

You can check port connectivity from the minion with the nc command:

nc -v -z salt.master.ip 4505
nc -v -z salt.master.ip 4506

There is also a firewall configuration
document that might help as well.

If you've enabled the right TCP ports on your operating system or Linux
distribution's firewall and still aren't seeing connections, check that no
additional access control system such as SELinux [https://en.wikipedia.org/wiki/Security-Enhanced_Linux] or AppArmor [https://gitlab.com/apparmor/apparmor/-/wikis/home] is blocking
Salt.

Using salt-call

The salt-call command was originally developed for aiding in the development
of new Salt modules. Since then, many applications have been developed for
running any Salt module locally on a minion. These range from the original
intent of salt-call, development assistance, to gathering more verbose output
from calls like state.apply.

When initially creating your state tree, it is generally recommended to invoke
state.apply directly from the minion with
salt-call, rather than remotely from the master. This displays far more
information about the execution than calling it remotely. For even more
verbosity, increase the loglevel using the -l argument:

salt-call -l debug state.apply

The main difference between using salt and using salt-call is that
salt-call is run from the minion, and it only runs the selected function on
that minion. By contrast, salt is run from the master, and requires you to
specify the minions on which to run the command using salt's targeting
system.

Too many open files

The salt-master needs at least 2 sockets per host that connects to it, one for
the Publisher and one for response port. Thus, large installations may, upon
scaling up the number of minions accessing a given master, encounter:

12:45:29,289 [salt.master][INFO] Starting Salt worker process 38
Too many open files
sock != -1 (tcp_listener.cpp:335)

The solution to this would be to check the number of files allowed to be
opened by the user running salt-master (root by default):

[root@salt-master ~]# ulimit -n
1024

And modify that value to be at least equal to the number of minions x 2.
This setting can be changed in limits.conf as the nofile value(s),
and activated upon new a login of the specified user.

So, an environment with 1800 minions, would need 1800 x 2 = 3600 as a minimum.

Salt Master Stops Responding

There are known bugs with ZeroMQ versions less than 2.1.11 which can cause the
Salt master to not respond properly. If you're running a ZeroMQ version greater
than or equal to 2.1.9, you can work around the bug by setting the sysctls
net.core.rmem_max and net.core.wmem_max to 16777216. Next, set the third
field in net.ipv4.tcp_rmem and net.ipv4.tcp_wmem to at least 16777216.

You can do it manually with something like:

echo 16777216 > /proc/sys/net/core/rmem_max
echo 16777216 > /proc/sys/net/core/wmem_max
echo "4096 87380 16777216" > /proc/sys/net/ipv4/tcp_rmem
echo "4096 87380 16777216" > /proc/sys/net/ipv4/tcp_wmem

Or with the following Salt state:

 1net.core.rmem_max:
 2 sysctl:
 3 - present
 4 - value: 16777216
 5
 6net.core.wmem_max:
 7 sysctl:
 8 - present
 9 - value: 16777216
10
11net.ipv4.tcp_rmem:
12 sysctl:
13 - present
14 - value: 4096 87380 16777216
15
16net.ipv4.tcp_wmem:
17 sysctl:
18 - present
19 - value: 4096 87380 16777216

Salt and SELinux

Currently there are no SELinux policies for Salt. For the most part Salt runs
without issue when SELinux is running in Enforcing mode. This is because when
the minion executes as a daemon the type context is changed to initrc_t.
The problem with SELinux arises when using salt-call or running the minion in
the foreground, since the type context stays unconfined_t.

This problem is generally manifest in the rpm install scripts when using the
pkg module. Until a full SELinux Policy is available for Salt the solution
to this issue is to set the execution context of salt-call and
salt-minion to rpm_exec_t:

CentOS 5 and RHEL 5:
chcon -t system_u:system_r:rpm_exec_t:s0 /usr/bin/salt-minion
chcon -t system_u:system_r:rpm_exec_t:s0 /usr/bin/salt-call

CentOS 6 and RHEL 6:
chcon system_u:object_r:rpm_exec_t:s0 /usr/bin/salt-minion
chcon system_u:object_r:rpm_exec_t:s0 /usr/bin/salt-call

This works well, because the rpm_exec_t context has very broad control over
other types.

Red Hat Enterprise Linux 5

Salt requires Python 2.6 or 2.7. Red Hat Enterprise Linux 5 and its variants
come with Python 2.4 installed by default. When installing on RHEL 5 from the
EPEL repository [https://fedoraproject.org/wiki/EPEL] this is handled for you. But, if you run Salt from git, be
advised that its dependencies need to be installed from EPEL and that Salt
needs to be run with the python26 executable.

Common YAML Gotchas

An extensive list of YAML idiosyncrasies has been compiled:

	YAML Idiosyncrasies
	Spaces vs Tabs

	Indentation

	True/False, Yes/No, On/Off

	The '%' Sign

	Time Expressions

	YAML does not like "Double Short Decs"

	YAML supports only plain ASCII

	Underscores stripped in Integer Definitions

	Automatic datetime conversion

	Keys Limited to 1024 Characters

Live Python Debug Output

If the minion or master seems to be unresponsive, a SIGUSR1 can be passed to
the processes to display where in the code they are running. If encountering a
situation like this, this debug information can be invaluable. First make
sure the master of minion are running in the foreground:

salt-master -l debug
salt-minion -l debug

Then pass the signal to the master or minion when it seems to be unresponsive:

killall -SIGUSR1 salt-master
killall -SIGUSR1 salt-minion

Also under BSD and macOS in addition to SIGUSR1 signal, debug subroutine set
up for SIGINFO which has an advantage of being sent by Ctrl+T shortcut.

When filing an issue or sending questions to the mailing list for a problem
with an unresponsive daemon this information can be invaluable.

Salt 0.16.x minions cannot communicate with a 0.17.x master

As of release 0.17.1 you can no longer run different versions of Salt on your
Master and Minion servers. This is due to a protocol change for security
purposes. The Salt team will continue to attempt to ensure versions are as
backwards compatible as possible.

Debugging the Master and Minion

A list of common master and
minion troubleshooting steps provide a
starting point for resolving issues you may encounter.

Troubleshooting the Salt Master

Running in the Foreground

A great deal of information is available via the debug logging system, if you
are having issues with minions connecting or not starting run the master in
the foreground:

salt-master -l debug

Anyone wanting to run Salt daemons via a process supervisor such as monit [https://mmonit.com/monit/],
runit [http://smarden.org/runit/], or supervisord [http://supervisord.org/], should omit the -d argument to the daemons and
run them in the foreground.

What Ports does the Master Need Open?

For the master, TCP ports 4505 and 4506 need to be open. If you've put both
your Salt master and minion in debug mode and don't see an acknowledgment
that your minion has connected, it could very well be a firewall interfering
with the connection. See our firewall configuration page for help opening the firewall on various
platforms.

If you've opened the correct TCP ports and still aren't seeing connections,
check that no additional access control system such as SELinux [https://en.wikipedia.org/wiki/Security-Enhanced_Linux] or
AppArmor [https://gitlab.com/apparmor/apparmor/-/wikis/home] is blocking Salt.

Too many open files

The salt-master needs at least 2 sockets per host that connects to it, one for
the Publisher and one for response port. Thus, large installations may, upon
scaling up the number of minions accessing a given master, encounter:

12:45:29,289 [salt.master][INFO] Starting Salt worker process 38
Too many open files
sock != -1 (tcp_listener.cpp:335)

The solution to this would be to check the number of files allowed to be
opened by the user running salt-master (root by default):

[root@salt-master ~]# ulimit -n
1024

If this value is not equal to at least twice the number of minions, then it
will need to be raised. For example, in an environment with 1800 minions, the
nofile limit should be set to no less than 3600. This can be done by
creating the file /etc/security/limits.d/99-salt.conf, with the following
contents:

root hard nofile 4096
root soft nofile 4096

Replace root with the user under which the master runs, if different.

If your master does not have an /etc/security/limits.d directory, the lines
can simply be appended to /etc/security/limits.conf.

As with any change to resource limits, it is best to stay logged into your
current shell and open another shell to run ulimit -n again and verify that
the changes were applied correctly. Additionally, if your master is running
upstart, it may be necessary to specify the nofile limit in
/etc/default/salt-master if upstart isn't respecting your resource limits:

limit nofile 4096 4096

Note

The above is simply an example of how to set these values, and you may
wish to increase them even further if your Salt master is doing more than
just running Salt.

Salt Master Stops Responding

There are known bugs with ZeroMQ versions less than 2.1.11 which can cause the
Salt master to not respond properly. If you're running a ZeroMQ version greater
than or equal to 2.1.9, you can work around the bug by setting the sysctls
net.core.rmem_max and net.core.wmem_max to 16777216. Next, set the third
field in net.ipv4.tcp_rmem and net.ipv4.tcp_wmem to at least 16777216.

You can do it manually with something like:

echo 16777216 > /proc/sys/net/core/rmem_max
echo 16777216 > /proc/sys/net/core/wmem_max
echo "4096 87380 16777216" > /proc/sys/net/ipv4/tcp_rmem
echo "4096 87380 16777216" > /proc/sys/net/ipv4/tcp_wmem

Or with the following Salt state:

 1net.core.rmem_max:
 2 sysctl:
 3 - present
 4 - value: 16777216
 5
 6net.core.wmem_max:
 7 sysctl:
 8 - present
 9 - value: 16777216
10
11net.ipv4.tcp_rmem:
12 sysctl:
13 - present
14 - value: 4096 87380 16777216
15
16net.ipv4.tcp_wmem:
17 sysctl:
18 - present
19 - value: 4096 87380 16777216

Live Python Debug Output

If the master seems to be unresponsive, a SIGUSR1 can be passed to the
salt-master threads to display what piece of code is executing. This debug
information can be invaluable in tracking down bugs.

To pass a SIGUSR1 to the master, first make sure the master is running in the
foreground. Stop the service if it is running as a daemon, and start it in the
foreground like so:

salt-master -l debug

Then pass the signal to the master when it seems to be unresponsive:

killall -SIGUSR1 salt-master

When filing an issue or sending questions to the mailing list for a problem
with an unresponsive daemon, be sure to include this information if possible.

Live Salt-Master Profiling

When faced with performance problems one can turn on master process profiling by
sending it SIGUSR2.

killall -SIGUSR2 salt-master

This will activate yappi profiler inside salt-master code, then after some
time one must send SIGUSR2 again to stop profiling and save results to file. If
run in foreground salt-master will report filename for the results, which are
usually located under /tmp on Unix-based OSes and c:\temp on windows.

Make sure you have yappi installed.

Results can then be analyzed with kcachegrind [http://kcachegrind.sourceforge.net/html/Home.html] or similar tool.

Make sure you have yappi installed.

On Windows, in the absence of kcachegrind, a simple file-based workflow to create
profiling graphs could use gprof2dot [https://pypi.org/project/gprof2dot], graphviz [https://graphviz.gitlab.io] and this batch file:

::
:: Converts callgrind* profiler output to *.pdf, via *.dot
::
@echo off
del *.dot.pdf
for /r %%f in (callgrind*) do (
echo "%%f"
 gprof2dot.exe -f callgrind --show-samples "%%f" -o "%%f.dot"
 dot.exe "%%f.dot" -Tpdf -O
 del "%%f.dot"
)

Commands Time Out or Do Not Return Output

Depending on your OS (this is most common on Ubuntu due to apt-get) you may
sometimes encounter times where a state.apply, or other long running commands do not return
output.

By default the timeout is set to 5 seconds. The timeout value can easily be
increased by modifying the timeout line within your /etc/salt/master
configuration file.

Having keys accepted for Salt minions that no longer exist or are not reachable
also increases the possibility of timeouts, since the Salt master waits for
those systems to return command results.

Passing the -c Option to Salt Returns a Permissions Error

Using the -c option with the Salt command modifies the configuration
directory. When the configuration file is read it will still base data off of
the root_dir setting. This can result in unintended behavior if you are
expecting files such as /etc/salt/pki to be pulled from the location
specified with -c. Modify the root_dir setting to address this
behavior.

Salt Master Doesn't Return Anything While Running jobs

When a command being run via Salt takes a very long time to return
(package installations, certain scripts, etc.) the master may drop you back
to the shell. In most situations the job is still running but Salt has
exceeded the set timeout before returning. Querying the job queue will
provide the data of the job but is inconvenient. This can be resolved by
either manually using the -t option to set a longer timeout when running
commands (by default it is 5 seconds) or by modifying the master
configuration file: /etc/salt/master and setting the timeout value to
change the default timeout for all commands, and then restarting the
salt-master service.

If a state.apply run takes too long, you can find a bottleneck by adding the
--out=profile option.

Salt Master Auth Flooding

In large installations, care must be taken not to overwhealm the master with
authentication requests. Several options can be set on the master which
mitigate the chances of an authentication flood from causing an interruption in
service.

Note

recon_default:

The average number of seconds to wait between reconnection attempts.

	recon_max:
	The maximum number of seconds to wait between reconnection attempts.

	recon_randomize:
	A flag to indicate whether the recon_default value should be randomized.

	acceptance_wait_time:
	The number of seconds to wait for a reply to each authentication request.

	random_reauth_delay:
	The range of seconds across which the minions should attempt to randomize
authentication attempts.

	auth_timeout:
	The total time to wait for the authentication process to complete, regardless
of the number of attempts.

Running states locally

To debug the states, you can use call locally.

salt-call -l trace --local state.highstate

The top.sls file is used to map what SLS modules get loaded onto what minions via the state system.

It is located in the file defined in the file_roots variable of the salt master
configuration file which is defined by found in CONFIG_DIR/master, normally /etc/salt/master

The default configuration for the file_roots is:

file_roots:
 base:
 - /srv/salt

So the top file is defaulted to the location /srv/salt/top.sls

Salt Master Umask

The salt master uses a cache to track jobs as they are published and returns come back.
The recommended umask for a salt-master is 022, which is the default for most users
on a system. Incorrect umasks can result in permission-denied errors when the master
tries to access files in its cache.

Troubleshooting the Salt Minion

Running in the Foreground

A great deal of information is available via the debug logging system, if you
are having issues with minions connecting or not starting run the minion in
the foreground:

salt-minion -l debug

Anyone wanting to run Salt daemons via a process supervisor such as monit [https://mmonit.com/monit/],
runit [http://smarden.org/runit/], or supervisord [http://supervisord.org/], should omit the -d argument to the daemons and
run them in the foreground.

What Ports does the Minion Need Open?

No ports need to be opened on the minion, as it makes outbound connections to
the master. If you've put both your Salt master and minion in debug mode and
don't see an acknowledgment that your minion has connected, it could very well
be a firewall interfering with the connection. See our firewall
configuration page for help opening the firewall
on various platforms.

If you have netcat installed, you can check port connectivity from the minion
with the nc command:

$ nc -v -z salt.master.ip.addr 4505
Connection to salt.master.ip.addr 4505 port [tcp/unknown] succeeded!
$ nc -v -z salt.master.ip.addr 4506
Connection to salt.master.ip.addr 4506 port [tcp/unknown] succeeded!

The Nmap [https://nmap.org/] utility can also be used to check if these ports are open:

nmap -sS -q -p 4505-4506 salt.master.ip.addr

Starting Nmap 6.40 (http://nmap.org) at 2013-12-29 19:44 CST
Nmap scan report for salt.master.ip.addr (10.0.0.10)
Host is up (0.0026s latency).
PORT STATE SERVICE
4505/tcp open unknown
4506/tcp open unknown
MAC Address: 00:11:22:AA:BB:CC (Intel)

Nmap done: 1 IP address (1 host up) scanned in 1.64 seconds

If you've opened the correct TCP ports and still aren't seeing connections,
check that no additional access control system such as SELinux [https://en.wikipedia.org/wiki/Security-Enhanced_Linux] or
AppArmor [https://gitlab.com/apparmor/apparmor/-/wikis/home] is blocking Salt. Tools like tcptraceroute [https://linux.die.net/man/1/tcptraceroute] can also be used
to determine if an intermediate device or firewall is blocking the needed
TCP ports.

Using salt-call

The salt-call command was originally developed for aiding in the
development of new Salt modules. Since then, many applications have been
developed for running any Salt module locally on a minion. These range from the
original intent of salt-call (development assistance), to gathering more
verbose output from calls like state.apply.

When initially creating your state tree, it is generally recommended to invoke
highstates by running state.apply directly
from the minion with salt-call, rather than remotely from the master. This
displays far more information about the execution than calling it remotely. For
even more verbosity, increase the loglevel using the -l argument:

salt-call -l debug state.apply

The main difference between using salt and using salt-call is that
salt-call is run from the minion, and it only runs the selected function on
that minion. By contrast, salt is run from the master, and requires you to
specify the minions on which to run the command using salt's targeting
system.

Live Python Debug Output

If the minion seems to be unresponsive, a SIGUSR1 can be passed to the process
to display what piece of code is executing. This debug information can be
invaluable in tracking down bugs.

To pass a SIGUSR1 to the minion, first make sure the minion is running in the
foreground. Stop the service if it is running as a daemon, and start it in the
foreground like so:

salt-minion -l debug

Then pass the signal to the minion when it seems to be unresponsive:

killall -SIGUSR1 salt-minion

When filing an issue or sending questions to the mailing list for a problem
with an unresponsive daemon, be sure to include this information if possible.

Multiprocessing in Execution Modules

As is outlined in github issue #6300, Salt cannot use python's multiprocessing
pipes and queues from execution modules. Multiprocessing from the execution
modules is perfectly viable, it is just necessary to use Salt's event system
to communicate back with the process.

The reason for this difficulty is that python attempts to pickle all objects in
memory when communicating, and it cannot pickle function objects. Since the
Salt loader system creates and manages function objects this causes the pickle
operation to fail.

Salt Minion Doesn't Return Anything While Running Jobs Locally

When a command being run via Salt takes a very long time to return
(package installations, certain scripts, etc.) the minion may drop you back
to the shell. In most situations the job is still running but Salt has
exceeded the set timeout before returning. Querying the job queue will
provide the data of the job but is inconvenient. This can be resolved by
either manually using the -t option to set a longer timeout when running
commands (by default it is 5 seconds) or by modifying the minion
configuration file: /etc/salt/minion and setting the timeout value to
change the default timeout for all commands, and then restarting the
salt-minion service.

Note

Modifying the minion timeout value is not required when running commands
from a Salt Master. It is only required when running commands locally on
the minion.

If a state.apply run takes too long, you can find a bottleneck by adding the
--out=profile option.

YAML Idiosyncrasies

One of Salt's strengths, the use of existing serialization systems for
representing SLS data, can also backfire. YAML [https://yaml.org/spec/1.1/] is a general purpose system
and there are a number of things that would seem to make sense in an sls
file that cause YAML issues. It is wise to be aware of these issues. While
reports or running into them are generally rare they can still crop up at
unexpected times.

Spaces vs Tabs

YAML uses spaces [https://yaml.org/spec/1.1/#id871998], period. Do not use tabs in your SLS files! If strange
errors are coming up in rendering SLS files, make sure to check that
no tabs have crept in! In Vim, after enabling search highlighting
with: :set hlsearch, you can check with the following key sequence in
normal mode(you can hit ESC twice to be sure): /, Ctrl-v, Tab, then
hit Enter. Also, you can convert tabs to 2 spaces by these commands in Vim:
:set tabstop=2 expandtab and then :retab.

Indentation

The suggested syntax for YAML files is to use 2 spaces for indentation,
but YAML will follow whatever indentation system that the individual file
uses. Indentation of two spaces works very well for SLS files given the
fact that the data is uniform and not deeply nested.

Nested Dictionaries

When dictionaries are nested within other data structures (particularly lists),
the indentation logic sometimes changes. Examples of where this might happen
include context and default options from the file.managed state:

/etc/http/conf/http.conf:
 file:
 - managed
 - source: salt://apache/http.conf
 - user: root
 - group: root
 - mode: 644
 - template: jinja
 - context:
 custom_var: "override"
 - defaults:
 custom_var: "default value"
 other_var: 123

Notice that while the indentation is two spaces per level, for the values under
the context and defaults options there is a four-space indent. If only
two spaces are used to indent, then those keys will be considered part of the
same dictionary that contains the context key, and so the data will not be
loaded correctly. If using a double indent is not desirable, then a
deeply-nested dict can be declared with curly braces:

/etc/http/conf/http.conf:
 file:
 - managed
 - source: salt://apache/http.conf
 - user: root
 - group: root
 - mode: 644
 - template: jinja
 - context: {
 custom_var: "override" }
 - defaults: {
 custom_var: "default value",
 other_var: 123 }

Here is a more concrete example of how YAML actually handles these
indentations, using the Python interpreter on the command line:

>>> import yaml
>>> yaml.safe_load(
... """mystate:
... file.managed:
... - context:
... some: var"""
...)
{'mystate': {'file.managed': [{'context': {'some': 'var'}}]}}
>>> yaml.safe_load(
... """mystate:
... file.managed:
... - context:
... some: var"""
...)
{'mystate': {'file.managed': [{'some': 'var', 'context': None}]}}

Note that in the second example, some is added as another key in the same
dictionary, whereas in the first example, it's the start of a new dictionary.
That's the distinction. context is a common example because it is a keyword
arg for many functions, and should contain a dictionary.

Multi-line Strings

Similarly, when a multi-line string is nested within a list item (such as when
using the contents argument for a file.managed state), the indentation must be doubled. Take for
example the following state:

/tmp/foo.txt:
 file.managed:
 - contents: |
 foo
 bar
 baz

This is invalid YAML, and will result in a rather cryptic error when you try to
run the state:

myminion:
 Data failed to compile:

 Rendering SLS 'base:test' failed: could not find expected ':'; line 5

/tmp/foo.txt:
 file.managed:
 - contents: |
 foo
 bar <======================
 baz

The correct indentation would be as follows:

/tmp/foo.txt:
 file.managed:
 - contents: |
 foo
 bar
 baz

True/False, Yes/No, On/Off

PyYAML will load these values as boolean True or False. Un-capitalized
versions will also be loaded as booleans (true, false, yes, no,
on, and off). This can be especially problematic when constructing
Pillar data. Make sure that your Pillars which need to use the string versions
of these values are enclosed in quotes. Pillars will be parsed twice by salt,
so you'll need to wrap your values in multiple quotes, including double quotation
marks (" ") and single quotation marks (' '). Note that spaces are included
in the quotation type examples for clarity.

Multiple quoting examples looks like this:

- '"false"'
- "'True'"
- "'YES'"
- '"No"'

Note

When using multiple quotes in this manner, they must be different. Using "" ""
or '' '' won't work in this case (spaces are included in examples for clarity).

The '%' Sign

The % symbol has a special meaning in YAML, it needs to be passed as a
string literal:

cheese:
 ssh_auth.present:
 - user: tbortels
 - source: salt://ssh_keys/chease.pub
 - config: '%h/.ssh/authorized_keys'

Time Expressions

PyYAML will load a time expression as the integer value of that, assuming
HH:MM. So for example, 12:00 is loaded by PyYAML as 720. An
excellent explanation for why can be found here [https://stackoverflow.com/questions/23812676/pyyaml-parses-900-as-int/31007425#31007425].

To keep time expressions like this from being loaded as integers, always quote
them.

Note

When using a jinja load_yaml map, items must be quoted twice. For
example:

{% load_yaml as wsus_schedule %}

FRI_10:
 time: '"23:00"'
 day: 6 - Every Friday
SAT_10:
 time: '"06:00"'
 day: 7 - Every Saturday
SAT_20:
 time: '"14:00"'
 day: 7 - Every Saturday
SAT_30:
 time: '"22:00"'
 day: 7 - Every Saturday
SUN_10:
 time: '"06:00"'
 day: 1 - Every Sunday
{% endload %}

YAML does not like "Double Short Decs"

If I can find a way to make YAML accept "Double Short Decs" then I will, since
I think that double short decs would be awesome. So what is a "Double Short
Dec"? It is when you declare a multiple short decs in one ID. Here is a
standard short dec, it works great:

vim:
 pkg.installed

The short dec means that there are no arguments to pass, so it is not required
to add any arguments, and it can save space.

YAML though, gets upset when declaring multiple short decs, for the record...

THIS DOES NOT WORK:

vim:
 pkg.installed
 user.present

Similarly declaring a short dec in the same ID dec as a standard dec does not
work either...

ALSO DOES NOT WORK:

fred:
 user.present
 ssh_auth.present:
 - name: AAAAB3NzaC...
 - user: fred
 - enc: ssh-dss
 - require:
 - user: fred

The correct way is to define them like this:

vim:
 pkg.installed: []
 user.present: []

fred:
 user.present: []
 ssh_auth.present:
 - name: AAAAB3NzaC...
 - user: fred
 - enc: ssh-dss
 - require:
 - user: fred

Alternatively, they can be defined the "old way", or with multiple
"full decs":

vim:
 pkg:
 - installed
 user:
 - present

fred:
 user:
 - present
 ssh_auth:
 - present
 - name: AAAAB3NzaC...
 - user: fred
 - enc: ssh-dss
 - require:
 - user: fred

YAML supports only plain ASCII

According to YAML specification, only ASCII characters can be used.

Within double-quotes, special characters may be represented with C-style
escape sequences starting with a backslash (\).

Examples:

- micro: "\u00b5"
- copyright: "\u00A9"
- A: "\x41"
- alpha: "\u0251"
- Alef: "\u05d0"

List of usable Unicode characters [https://en.wikipedia.org/wiki/List_of_Unicode_characters] will help you to identify correct numbers.

Python can also be used to discover the Unicode number for a character:

repr("Text with wrong characters i need to figure out")

This shell command can find wrong characters in your SLS files:

find . -name '*.sls' -exec grep --color='auto' -P -n '[^\x00-\x7F]' \{} \;

Alternatively you can toggle the yaml_utf8 setting in your master configuration
file. This is still an experimental setting but it should manage the right
encoding conversion in salt after yaml states compilations.

Underscores stripped in Integer Definitions

If a definition only includes numbers and underscores, it is parsed by YAML as
an integer and all underscores are stripped. To ensure the object becomes a
string, it should be surrounded by quotes. More information here [https://stackoverflow.com/questions/2723321/snakeyaml-how-to-disable-underscore-stripping-when-parsing].

Here's an example:

>>> import yaml
>>> yaml.safe_load("2013_05_10")
20130510
>>> yaml.safe_load('"2013_05_10"')
'2013_05_10'

Automatic datetime conversion

If there is a value in a YAML file formatted 2014-01-20 14:23:23 or
similar, YAML will automatically convert this to a Python datetime object.
These objects are not msgpack serializable, and so may break core salt
functionality. If values such as these are needed in a salt YAML file
(specifically a configuration file), they should be formatted with surrounding
strings to force YAML to serialize them as strings:

>>> import yaml
>>> yaml.safe_load("2014-01-20 14:23:23")
datetime.datetime(2014, 1, 20, 14, 23, 23)
>>> yaml.safe_load('"2014-01-20 14:23:23"')
'2014-01-20 14:23:23'

Additionally, numbers formatted like XXXX-XX-XX will also be converted (or
YAML will attempt to convert them, and error out if it doesn't think the date
is a real one). Thus, for example, if a minion were to have an ID of
4017-16-20 the minion would not start because YAML would complain that the
date was out of range. The workaround is the same, surround the offending
string with quotes:

>>> import yaml
>>> yaml.safe_load("4017-16-20")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/local/lib/python2.7/site-packages/yaml/__init__.py", line 93, in safe_load
 return load(stream, SafeLoader)
 File "/usr/local/lib/python2.7/site-packages/yaml/__init__.py", line 71, in load
 return loader.get_single_data()
 File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 39, in get_single_data
 return self.construct_document(node)
 File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 43, in construct_document
 data = self.construct_object(node)
 File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 88, in construct_object
 data = constructor(self, node)
 File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 312, in construct_yaml_timestamp
 return datetime.date(year, month, day)
ValueError: month must be in 1..12
>>> yaml.safe_load('"4017-16-20"')
'4017-16-20'

Keys Limited to 1024 Characters

Simple keys are limited by the YAML Spec [https://yaml.org/spec/1.2/spec.html#id2792424] to a single line, and cannot be
longer that 1024 characters. PyYAML enforces these limitations (see here [https://github.com/yaml/pyyaml/blob/eb459f8/lib/yaml/scanner.py#L279-L293]),
and therefore anything parsed as YAML in Salt is subject to them.

Frequently Asked Questions

FAQ

	Frequently Asked Questions

	Is Salt open-core?

	I think I found a bug! What should I do?

	What ports should I open on my firewall?

	I'm seeing weird behavior (including but not limited to packages not installing their users properly)

	My script runs every time I run a state.apply. Why?

	When I run test.ping, why don't the Minions that aren't responding return anything? Returning False would be helpful.

	How does Salt determine the Minion's id?

	I'm trying to manage packages/services but I get an error saying that the state is not available. Why?

	Why aren't my custom modules/states/etc. available on my Minions?

	Module X isn't available, even though the shell command it uses is installed. Why?

	Can I run different versions of Salt on my Master and Minion?

	Does Salt support backing up managed files?

	Is it possible to deploy a file to a specific minion, without other minions having access to it?

	What is the best way to restart a Salt Minion daemon using Salt after upgrade?

	Upgrade without automatic restart

	Restart using states

	Restart using remote executions

	Waiting for minions to come back online

	Salting the Salt Master

	Is Targeting using Grain Data Secure?

	Why Did the Value for a Grain Change on Its Own?

Is Salt open-core?

No. Salt is 100% committed to being open-source, including all of our APIs. It
is developed under the Apache 2.0 license [http://www.apache.org/licenses/LICENSE-2.0.html], allowing it to be used in both
open and proprietary projects.

To expand on this a little:

There is much argument over the actual definition of "open core". From our standpoint, Salt is open source because

	It is a standalone product that anyone is free to use.

	It is developed in the open with contributions accepted from the community for the good of the project.

	There are no features of Salt itself that are restricted to separate proprietary products distributed by VMware, Inc.

	Because of our Apache 2.0 license, Salt can be used as the foundation for a project or even a proprietary tool.

	Our APIs are open and documented (any lack of documentation is an oversight as opposed to an intentional decision by SaltStack the company) and available for use by anyone.

SaltStack the company does make proprietary products which use Salt and its libraries, like company is free to do, but we do so via the APIs, NOT by forking Salt and creating a different, closed-source version of it for paying customers.

I think I found a bug! What should I do?

The salt-users mailing list as well as the salt IRC channel can both be helpful
resources to confirm if others are seeing the issue and to assist with
immediate debugging.

To report a bug to the Salt project, please follow the instructions in
reporting a bug.

What ports should I open on my firewall?

Minions need to be able to connect to the Master on TCP ports 4505 and 4506.
Minions do not need any inbound ports open. More detailed information on
firewall settings can be found here.

I'm seeing weird behavior (including but not limited to packages not installing their users properly)

This is often caused by SELinux. Try disabling SELinux or putting it in
permissive mode and see if the weird behavior goes away.

My script runs every time I run a state.apply. Why?

You are probably using cmd.run rather than
cmd.wait. A cmd.wait state will only run when there has been a change in a
state that it is watching.

A cmd.run state will run the corresponding command
every time (unless it is prevented from running by the unless or onlyif
arguments).

More details can be found in the documentation for the cmd states.

When I run test.ping, why don't the Minions that aren't responding return anything? Returning False would be helpful.

When you run test.ping the Master tells Minions to run commands/functions,
and listens for the return data, printing it to the screen when it is received.
If it doesn't receive anything back, it doesn't have anything to display for
that Minion.

There are a couple options for getting information on Minions that are not
responding. One is to use the verbose (-v) option when you run salt
commands, as it will display "Minion did not return" for any Minions which time
out.

salt -v '*' pkg.install zsh

Another option is to use the manage.down
runner:

salt-run manage.down

Also, if the Master is under heavy load, it is possible that the CLI will exit
without displaying return data for all targeted Minions. However, this doesn't
mean that the Minions did not return; this only means that the Salt CLI timed
out waiting for a response. Minions will still send their return data back to
the Master once the job completes. If any expected Minions are missing from the
CLI output, the jobs.list_jobs runner can
be used to show the job IDs of the jobs that have been run, and the
jobs.lookup_jid runner can be used to get
the return data for that job.

salt-run jobs.list_jobs
salt-run jobs.lookup_jid 20130916125524463507

If you find that you are often missing Minion return data on the CLI, only to
find it with the jobs runners, then this may be a sign that the
worker_threads value may need to be increased in the master
config file. Additionally, running your Salt CLI commands with the -t
option will make Salt wait longer for the return data before the CLI command
exits. For instance, the below command will wait up to 60 seconds for the
Minions to return:

salt -t 60 '*' test.ping

How does Salt determine the Minion's id?

If the Minion id is not configured explicitly (using the id
parameter), Salt will determine the id based on the hostname. Exactly how this
is determined varies a little between operating systems and is described in
detail here.

I'm trying to manage packages/services but I get an error saying that the state is not available. Why?

Salt detects the Minion's operating system and assigns the correct package or
service management module based on what is detected. However, for certain custom
spins and OS derivatives this detection fails. In cases like this, an issue
should be opened on our tracker [https://github.com/saltstack/salt/issues], with the following information:

	The output of the following command:

salt <minion_id> grains.items | grep os

	The contents of /etc/lsb-release, if present on the Minion.

Why aren't my custom modules/states/etc. available on my Minions?

Custom modules are synced to Minions when
saltutil.sync_modules,
or saltutil.sync_all is run.

Similarly, custom states are synced to Minions when saltutil.sync_states, or saltutil.sync_all is run.

They are both also synced when a highstate is
triggered.

As of the 2019.2.0 release, as well as 2017.7.7 and 2018.3.2 in their
respective release cycles, the sync argument to state.apply/state.sls can
be used to sync custom types when running individual SLS files.

Other custom types (renderers, outputters, etc.) have similar behavior, see the
documentation for the saltutil module for more
information.

This reactor example can be used to automatically
sync custom types when the minion connects to the master, to help with this
chicken-and-egg issue.

Module X isn't available, even though the shell command it uses is installed. Why?

This is most likely a PATH issue. Did you custom-compile the software which the
module requires? RHEL/CentOS/etc. in particular override the root user's path
in /etc/init.d/functions, setting it to /sbin:/usr/sbin:/bin:/usr/bin,
making software installed into /usr/local/bin unavailable to Salt when the
Minion is started using the initscript. In version 2014.1.0, Salt will have a
better solution for these sort of PATH-related issues, but recompiling the
software to install it into a location within the PATH should resolve the
issue in the meantime. Alternatively, you can create a symbolic link within the
PATH using a file.symlink state.

/usr/bin/foo:
 file.symlink:
 - target: /usr/local/bin/foo

Can I run different versions of Salt on my Master and Minion?

This depends on the versions. In general, it is recommended that Master and
Minion versions match.

When upgrading Salt, the master(s) should always be upgraded first. Backwards
compatibility for minions running newer versions of salt than their masters is
not guaranteed.

Whenever possible, backwards compatibility between new masters
and old minions will be preserved. Generally, the only exception to this
policy is in case of a security vulnerability.

Recent examples of backwards compatibility breakage include the 0.17.1 release
(where all backwards compatibility was broken due to a security fix), and the
2014.1.0 release (which retained compatibility between 2014.1.0 masters and
0.17 minions, but broke compatibility for 2014.1.0 minions and older masters).

Does Salt support backing up managed files?

Yes. Salt provides an easy to use addition to your file.managed states that
allow you to back up files via backup_mode,
backup_mode can be configured on a per state basis, or in the minion config
(note that if set in the minion config this would simply be the default
method to use, you still need to specify that the file should be backed up!).

Is it possible to deploy a file to a specific minion, without other minions having access to it?

The Salt fileserver does not yet support access control, but it is still
possible to do this. As of Salt 2015.5.0, the
file_tree external pillar is available, and
allows the contents of a file to be loaded as Pillar data. This external pillar
is capable of assigning Pillar values both to individual minions, and to
nodegroups. See the documentation for details on how to set this up.

Once the external pillar has been set up, the data can be pushed to a minion
via a file.managed state, using the
contents_pillar argument:

/etc/my_super_secret_file:
 file.managed:
 - user: secret
 - group: secret
 - mode: 600
 - contents_pillar: secret_files:my_super_secret_file

In this example, the source file would be located in a directory called
secret_files underneath the file_tree path for the minion. The syntax for
specifying the pillar variable is the same one used for pillar.get, with a colon representing a nested dictionary.

Warning

Deploying binary contents using the file.managed state is only supported in Salt 2015.8.4 and
newer.

What is the best way to restart a Salt Minion daemon using Salt after upgrade?

Updating the salt-minion package requires a restart of the salt-minion
service. But restarting the service while in the middle of a state run
interrupts the process of the Minion running states and sending results back to
the Master. A common way to workaround that is to schedule restarting the
Minion service in the background by issuing a salt-call command calling
service.restart function. This prevents the Minion being disconnected from
the Master immediately. Otherwise you would get
Minion did not return. [Not connected] message as the result of a state run.

Upgrade without automatic restart

Doing the Minion upgrade seems to be a simplest state in your SLS file at
first. But the operating systems such as Debian GNU/Linux, Ubuntu and their
derivatives start the service after the package installation by default.
To prevent this, we need to create policy layer which will prevent the Minion
service to restart right after the upgrade:

{%- if grains['os_family'] == 'Debian' %}

Disable starting services:
 file.managed:
 - name: /usr/sbin/policy-rc.d
 - user: root
 - group: root
 - mode: 0755
 - contents:
 - '#!/bin/sh'
 - exit 101
 # do not touch if already exists
 - replace: False
 - prereq:
 - pkg: Upgrade Salt Minion

{%- endif %}

Upgrade Salt Minion:
 pkg.installed:
 - name: salt-minion
 - version: 2016.11.3{% if grains['os_family'] == 'Debian' %}+ds-1{% endif %}
 - order: last

Enable Salt Minion:
 service.enabled:
 - name: salt-minion
 - require:
 - pkg: Upgrade Salt Minion

{%- if grains['os_family'] == 'Debian' %}

Enable starting services:
 file.absent:
 - name: /usr/sbin/policy-rc.d
 - onchanges:
 - pkg: Upgrade Salt Minion

{%- endif %}

Restart using states

Now we can apply the workaround to restart the Minion in reliable way.
The following example works on UNIX-like operating systems:

{%- if grains['os'] != 'Windows' %}
Restart Salt Minion:
 cmd.run:
 - name: 'salt-call service.restart salt-minion'
 - bg: True
 - onchanges:
 - pkg: Upgrade Salt Minion
{%- endif %}

Note that restarting the salt-minion service on Windows operating systems is
not always necessary when performing an upgrade. The installer stops the
salt-minion service, removes it, deletes the contents of the \salt\bin
directory, installs the new code, re-creates the salt-minion service, and
starts it (by default). The restart step would be necessary during the
upgrade process, however, if the minion config was edited after the upgrade or
installation. If a minion restart is necessary, the state above can be edited
as follows:

Restart Salt Minion:
 cmd.run:
{%- if grains['kernel'] == 'Windows' %}
 - name: 'C:\salt\salt-call.bat service.restart salt-minion'
{%- else %}
 - name: 'salt-call service.restart salt-minion'
{%- endif %}
 - bg: True
 - onchanges:
 - pkg: Upgrade Salt Minion

However, it requires more advanced tricks to upgrade from legacy version of
Salt (before 2016.3.0) on UNIX-like operating systems, where executing
commands in the background is not supported. You also may need to schedule
restarting the Minion service using masterless mode after all other states have been applied for Salt
versions earlier than 2016.11.0. This allows the Minion to keep the
connection to the Master alive for being able to report the final results back
to the Master, while the service is restarting in the background. This state
should run last or watch for the pkg state changes:

Restart Salt Minion:
 cmd.run:
{%- if grains['kernel'] == 'Windows' %}
 - name: 'start powershell "Restart-Service -Name salt-minion"'
{%- else %}
 # fork and disown the process
 - name: |-
 exec 0>&- # close stdin
 exec 1>&- # close stdout
 exec 2>&- # close stderr
 nohup salt-call --local service.restart salt-minion &
{%- endif %}

Restart using remote executions

Restart the Minion from the command line:

salt -G kernel:Windows cmd.run_bg 'C:\salt\salt-call.bat service.restart salt-minion'
salt -C 'not G@kernel:Windows' cmd.run_bg 'salt-call service.restart salt-minion'

Waiting for minions to come back online

A common issue in performing automated restarts of a salt minion, for example during
an orchestration run, is that it will break the orchestration since the next statement
is likely to be attempted before the minion is back online. This can be remedied
by inserting a blocking waiting state that only returns when the selected minions
are back up (note: this will only work in orchestration states since manage.up
needs to run on the master):

Wait for salt minion:
 loop.until_no_eval:
 - name: saltutil.runner
 - expected:
 - my_minion
 - args:
 - manage.up
 - kwargs:
 tgt: my_minion
 - period: 3
 - init_wait: 3

This will, after an initial delay of 3 seconds, execute the manage.up-runner
targeted specifically for my_minion. It will do this every period seconds
until the expected data is returned. The default timeout is 60s but can be configured
as well.

Salting the Salt Master

In order to configure a master server via states, the Salt master can also be
"salted" in order to enforce state on the Salt master as well as the Salt
minions. Salting the Salt master requires a Salt minion to be installed on
the same machine as the Salt master. Once the Salt minion is installed, the
minion configuration file must be pointed to the local Salt master:

master: 127.0.0.1

Once the Salt master has been "salted" with a Salt minion, it can be targeted
just like any other minion. If the minion on the salted master is running, the
minion can be targeted via any usual salt command. Additionally, the
salt-call command can execute operations to enforce state on the salted
master without requiring the minion to be running.

More information about salting the Salt master can be found in the salt-formula
for salt itself:

https://github.com/saltstack-formulas/salt-formula

Restarting the salt-master service using execution module or application of
state could be done the same way as for the Salt minion described above.

Is Targeting using Grain Data Secure?

Warning

Grains can be set by users that have access to the minion configuration files on
the local system, making them less secure than other identifiers in Salt. Avoid
storing sensitive data, such as passwords or keys, on minions. Instead, make
use of Storing Static Data in the Pillar and/or Storing Data in Other Databases.

Because grains can be set by users that have access to the minion configuration
files on the local system, grains are considered less secure than other
identifiers in Salt. Use caution when targeting sensitive operations or setting
pillar values based on grain data.

The only grain which can be safely used is grains['id'] which contains the Minion ID.

When possible, you should target sensitive operations and data using the Minion
ID. If the Minion ID of a system changes, the Salt Minion's public key must be
re-accepted by an administrator on the Salt Master, making it less vulnerable
to impersonation attacks.

Why Did the Value for a Grain Change on Its Own?

This is usually the result of an upstream change in an OS distribution that
replaces or removes something that Salt was using to detect the grain.
Fortunately, when this occurs, you can use Salt to fix it with a command
similar to the following:

salt -G 'grain:ChangedValue' grains.setvals "{'grain': 'OldValue'}"

(Replacing grain, ChangedValue, and OldValue with
the grain and values that you want to change / set.)

You should also file an issue [https://github.com/saltstack/salt/issues]
describing the change so it can be fixed in Salt.

Salt Best Practices

Salt's extreme flexibility leads to many questions concerning the structure of
configuration files.

This document exists to clarify these points through examples and code.

Important

The guidance here should be taken in combination with Hardening Salt.

General rules

	Modularity and clarity should be emphasized whenever possible.

	Create clear relations between pillars and states.

	Use variables when it makes sense but don't overuse them.

	Store sensitive data in pillar.

	Don't use grains for matching in your pillar top file for any sensitive
pillars.

Warning

Grains can be set by users that have access to the minion configuration files on
the local system, making them less secure than other identifiers in Salt. Avoid
storing sensitive data, such as passwords or keys, on minions. Instead, make
use of Storing Static Data in the Pillar and/or Storing Data in Other Databases.

Structuring States and Formulas

When structuring Salt States and Formulas it is important to begin with the
directory structure. A proper directory structure clearly defines the
functionality of each state to the user via visual inspection of the state's
name.

Reviewing the MySQL Salt Formula [https://github.com/saltstack-formulas/mysql-formula]
it is clear to see the benefits to the end-user when reviewing a sample of the
available states:

/srv/salt/mysql/files/
/srv/salt/mysql/client.sls
/srv/salt/mysql/map.jinja
/srv/salt/mysql/python.sls
/srv/salt/mysql/server.sls

This directory structure would lead to these states being referenced in a top
file in the following way:

base:
 'web*':
 - mysql.client
 - mysql.python
 'db*':
 - mysql.server

This clear definition ensures that the user is properly informed of what each
state will do.

Another example comes from the url vim-formula [https://github.com/saltstack-formulas/vim-formula]:

/srv/salt/vim/files/
/srv/salt/vim/absent.sls
/srv/salt/vim/init.sls
/srv/salt/vim/map.jinja
/srv/salt/vim/nerdtree.sls
/srv/salt/vim/pyflakes.sls
/srv/salt/vim/salt.sls

Once again viewing how this would look in a top file:

/srv/salt/top.sls:

base:
 'web*':
 - vim
 - vim.nerdtree
 - vim.pyflakes
 - vim.salt
 'db*':
 - vim.absent

The usage of a clear top-level directory as well as properly named states
reduces the overall complexity and leads a user to both understand what will
be included at a glance and where it is located.

In addition Formulas should
be used as often as possible.

Note

Formulas repositories on the saltstack-formulas GitHub organization should
not be pointed to directly from systems that automatically fetch new
updates such as GitFS or similar tooling. Instead formulas repositories
should be forked on GitHub or cloned locally, where unintended, automatic
changes will not take place.

Structuring Pillar Files

Pillars are used to store
secure and insecure data pertaining to minions. When designing the structure
of the /srv/pillar directory, the pillars contained within
should once again be focused on clear and concise data which users can easily
review, modify, and understand.

The /srv/pillar/ directory is primarily controlled by top.sls. It
should be noted that the pillar top.sls is not used as a location to
declare variables and their values. The top.sls is used as a way to
include other pillar files and organize the way they are matched based on
environments or grains.

An example top.sls may be as simple as the following:

/srv/pillar/top.sls:

base:
 '*':
 - packages

Any number of matchers can be added to the base environment. For example, here
is an expanded version of the Pillar top file stated above:

/srv/pillar/top.sls:

base:
 '*':
 - packages
 'web*':
 - apache
 - vim

Or an even more complicated example, using a variety of matchers in numerous
environments:

/srv/pillar/top.sls:

base:
 '*':
 - apache
dev:
 'os:Debian':
 - match: grain
 - vim
test:
 '* and not G@os: Debian':
 - match: compound
 - emacs

It is clear to see through these examples how the top file provides users with
power but when used incorrectly it can lead to confusing configurations. This
is why it is important to understand that the top file for pillar is not used
for variable definitions.

Each SLS file within the /srv/pillar/ directory should correspond to the
states which it matches.

This would mean that the apache pillar file should contain data relevant to
Apache. Structuring files in this way once again ensures modularity, and
creates a consistent understanding throughout our Salt environment. Users can
expect that pillar variables found in an Apache state will live inside of an
Apache pillar:

/srv/pillar/apache.sls:

apache:
 lookup:
 name: httpd
 config:
 tmpl: /etc/httpd/httpd.conf

While this pillar file is simple, it shows how a pillar file explicitly
relates to the state it is associated with.

Variable Flexibility

Salt allows users to define variables in SLS files. When creating a state
variables should provide users with as much flexibility as possible. This
means that variables should be clearly defined and easy to manipulate, and
that sane defaults should exist in the event a variable is not properly
defined. Looking at several examples shows how these different items can
lead to extensive flexibility.

Although it is possible to set variables locally, this is generally not
preferred:

/srv/salt/apache/conf.sls:

{% set name = 'httpd' %}
{% set tmpl = 'salt://apache/files/httpd.conf' %}

include:
 - apache

apache_conf:
 file.managed:
 - name: {{ name }}
 - source: {{ tmpl }}
 - template: jinja
 - user: root
 - watch_in:
 - service: apache

When generating this information it can be easily transitioned to the pillar
where data can be overwritten, modified, and applied to multiple states, or
locations within a single state:

/srv/pillar/apache.sls:

apache:
 lookup:
 name: httpd
 config:
 tmpl: salt://apache/files/httpd.conf

/srv/salt/apache/conf.sls:

{% from "apache/map.jinja" import apache with context %}

include:
 - apache

apache_conf:
 file.managed:
 - name: {{ salt['pillar.get']('apache:lookup:name') }}
 - source: {{ salt['pillar.get']('apache:lookup:config:tmpl') }}
 - template: jinja
 - user: root
 - watch_in:
 - service: apache

This flexibility provides users with a centralized location to modify
variables, which is extremely important as an environment grows.

Modularity Within States

Ensuring that states are modular is one of the key concepts to understand
within Salt. When creating a state a user must consider how many times the
state could be re-used, and what it relies on to operate. Below are several
examples which will iteratively explain how a user can go from a state which
is not very modular to one that is:

/srv/salt/apache/init.sls:

httpd:
 pkg:
 - installed
 service.running:
 - enable: True

/etc/httpd/httpd.conf:
 file.managed:
 - source: salt://apache/files/httpd.conf
 - template: jinja
 - watch_in:
 - service: httpd

The example above is probably the worst-case scenario when writing a state.
There is a clear lack of focus by naming both the pkg/service, and managed
file directly as the state ID. This would lead to changing multiple requires
within this state, as well as others that may depend upon the state.

Imagine if a require was used for the httpd package in another state, and
then suddenly it's a custom package. Now changes need to be made in multiple
locations which increases the complexity and leads to a more error prone
configuration.

There is also the issue of having the configuration file located in the init,
as a user would be unable to simply install the service and use the default
conf file.

Our second revision begins to address the referencing by using - name, as
opposed to direct ID references:

/srv/salt/apache/init.sls:

apache:
 pkg.installed:
 - name: httpd
 service.running:
 - name: httpd
 - enable: True

apache_conf:
 file.managed:
 - name: /etc/httpd/httpd.conf
 - source: salt://apache/files/httpd.conf
 - template: jinja
 - watch_in:
 - service: apache

The above init file is better than our original, yet it has several issues
which lead to a lack of modularity. The first of these problems is the usage
of static values for items such as the name of the service, the name of the
managed file, and the source of the managed file. When these items are hard
coded they become difficult to modify and the opportunity to make mistakes
arises. It also leads to multiple edits that need to occur when changing
these items (imagine if there were dozens of these occurrences throughout the
state!). There is also still the concern of the configuration file data living
in the same state as the service and package.

In the next example steps will be taken to begin addressing these issues.
Starting with the addition of a map.jinja file (as noted in the
Formula documentation), and
modification of static values:

/srv/salt/apache/map.jinja:

{% set apache = salt['grains.filter_by']({
 'Debian': {
 'server': 'apache2',
 'service': 'apache2',
 'conf': '/etc/apache2/apache.conf',
 },
 'RedHat': {
 'server': 'httpd',
 'service': 'httpd',
 'conf': '/etc/httpd/httpd.conf',
 },
}, merge=salt['pillar.get']('apache:lookup')) %}

/srv/pillar/apache.sls:

apache:
 lookup:
 config:
 tmpl: salt://apache/files/httpd.conf

/srv/salt/apache/init.sls:

{% from "apache/map.jinja" import apache with context %}

apache:
 pkg.installed:
 - name: {{ apache.server }}
 service.running:
 - name: {{ apache.service }}
 - enable: True

apache_conf:
 file.managed:
 - name: {{ apache.conf }}
 - source: {{ salt['pillar.get']('apache:lookup:config:tmpl') }}
 - template: jinja
 - user: root
 - watch_in:
 - service: apache

The changes to this state now allow us to easily identify the location of the
variables, as well as ensuring they are flexible and easy to modify.
While this takes another step in the right direction, it is not yet complete.
Suppose the user did not want to use the provided conf file, or even their own
configuration file, but the default apache conf. With the current state setup
this is not possible. To attain this level of modularity this state will need
to be broken into two states.

/srv/salt/apache/map.jinja:

{% set apache = salt['grains.filter_by']({
 'Debian': {
 'server': 'apache2',
 'service': 'apache2',
 'conf': '/etc/apache2/apache.conf',
 },
 'RedHat': {
 'server': 'httpd',
 'service': 'httpd',
 'conf': '/etc/httpd/httpd.conf',
 },
}, merge=salt['pillar.get']('apache:lookup')) %}

/srv/pillar/apache.sls:

apache:
 lookup:
 config:
 tmpl: salt://apache/files/httpd.conf

/srv/salt/apache/init.sls:

{% from "apache/map.jinja" import apache with context %}

apache:
 pkg.installed:
 - name: {{ apache.server }}
 service.running:
 - name: {{ apache.service }}
 - enable: True

/srv/salt/apache/conf.sls:

{% from "apache/map.jinja" import apache with context %}

include:
 - apache

apache_conf:
 file.managed:
 - name: {{ apache.conf }}
 - source: {{ salt['pillar.get']('apache:lookup:config:tmpl') }}
 - template: jinja
 - user: root
 - watch_in:
 - service: apache

This new structure now allows users to choose whether they only wish to
install the default Apache, or if they wish, overwrite the default package,
service, configuration file location, or the configuration file itself. In
addition to this the data has been broken between multiple files allowing for
users to identify where they need to change the associated data.

Storing Secure Data

Secure data refers to any information that you would not wish to share with
anyone accessing a server. This could include data such as passwords,
keys, or other information.

As all data within a state is accessible by EVERY server that is connected
it is important to store secure data within pillar. This will ensure that only
those servers which require this secure data have access to it. In this
example a use can go from an insecure configuration to one which is only
accessible by the appropriate hosts:

/srv/salt/mysql/testerdb.sls:

testdb:
 mysql_database.present:
 - name: testerdb

/srv/salt/mysql/user.sls:

include:
 - mysql.testerdb

testdb_user:
 mysql_user.present:
 - name: frank
 - password: "test3rdb"
 - host: localhost
 - require:
 - sls: mysql.testerdb

Many users would review this state and see that the password is there in plain
text, which is quite problematic. It results in several issues which may not
be immediately visible.

The first of these issues is clear to most users -- the password being visible
in this state. This means that any minion will have a copy of this, and
therefore the password which is a major security concern as minions may not
be locked down as tightly as the master server.

The other issue that can be encountered is access by users on the master. If
everyone has access to the states (or their repository), then they are able to
review this password. Keeping your password data accessible by only a few
users is critical for both security and peace of mind.

There is also the issue of portability. When a state is configured this way
it results in multiple changes needing to be made. This was discussed in the
sections above but it is a critical idea to drive home. If states are not
portable it may result in more work later!

Fixing this issue is relatively simple, the content just needs to be moved to
the associated pillar:

/srv/pillar/mysql.sls:

mysql:
 lookup:
 name: testerdb
 password: test3rdb
 user: frank
 host: localhost

/srv/salt/mysql/testerdb.sls:

testdb:
 mysql_database.present:
 - name: {{ salt['pillar.get']('mysql:lookup:name') }}

/srv/salt/mysql/user.sls:

include:
 - mysql.testerdb

testdb_user:
 mysql_user.present:
 - name: {{ salt['pillar.get']('mysql:lookup:user') }}
 - password: {{ salt['pillar.get']('mysql:lookup:password') }}
 - host: {{ salt['pillar.get']('mysql:lookup:host') }}
 - require:
 - sls: mysql.testerdb

Now that the database details have been moved to the associated pillar file,
only machines which are targeted via pillar will have access to these details.
Access to users who should not be able to review these details can also be
prevented while ensuring that they are still able to write states which take
advantage of this information.

Remote Execution

Running pre-defined or arbitrary commands on remote hosts, also known as
remote execution, is the core function of Salt. The following links explore
modules and returners, which are two key elements of remote execution.

Salt Execution Modules

Salt execution modules are called by the remote execution system to perform
a wide variety of tasks. These modules provide functionality such as installing
packages, restarting a service, running a remote command, transferring files,
and so on.

	Full list of execution modules
	Contains: a list of core modules that ship with Salt.

	Writing execution modules
	Contains: a guide on how to write Salt modules.

	Remote execution tutorial
	Order your minions around
	target

	function

	arguments

	Running Commands on Salt Minions
	Using the Salt Command
	Defining the Target Minions

	More Powerful Targets

	Calling the Function
	Finding available minion functions

	Compound Command Execution

	CLI Completion

	Writing Execution Modules
	Modules Are Easy to Write!

	Zip Archives as Modules
	Creating a Zip Archive Module

	Cross Calling Execution Modules

	Calling Execution Modules on the Salt Master

	Preloaded Execution Module Data
	Grains Data

	Module Configuration

	__init__ Function

	Strings and Unicode

	Outputter Configuration

	Virtual Modules

	__virtual__ Function
	Returning Error Information from __virtual__

	Examples

	Overriding Virtual Module Providers

	Logging Restrictions

	__virtualname__

	Documentation
	Adding Documentation to Salt Modules

	Add Execution Module Metadata

	Log Output

	Aliasing Functions

	Private Functions
	Objects Loaded Into the Salt Minion

	Objects NOT Loaded into the Salt Minion

	Useful Decorators for Modules
	Depends Decorator

	Returners
	Using Returners

	Writing a Returner
	Returners Are Easy To Write!

	Using Custom Returner Modules

	Naming the Returner

	Master Job Cache Support

	External Job Cache Support

	Event Support

	Testing the Returner

	Event Returners

	Full List of Returners
	returner modules
	salt.returners.appoptics_return
	returner()

	salt.returners.carbon_return
	event_return()

	prep_jid()

	returner()

	salt.returners.cassandra_cql_return
	event_return()

	get_fun()

	get_jid()

	get_jids()

	get_load()

	get_minions()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.couchbase_return
	JID

	JID/MINION_ID

	get_jid()

	get_jids()

	get_load()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.couchdb_return
	On concurrent database access

	ensure_views()

	get_fun()

	get_jid()

	get_jids()

	get_minions()

	get_valid_salt_views()

	prep_jid()

	returner()

	save_minions()

	set_salt_view()

	salt.returners.elasticsearch_return
	event_return()

	get_load()

	prep_jid()

	returner()

	save_load()

	salt.returners.etcd_return
	clean_old_jobs()

	get_fun()

	get_jid()

	get_jids()

	get_load()

	get_minions()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.highstate_return
	returner()

	salt.returners.influxdb_return
	get_fun()

	get_jid()

	get_jids()

	get_load()

	get_minions()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.kafka_return
	returner()

	salt.returners.librato_return
	returner()

	salt.returners.local
	event_return()

	returner()

	salt.returners.local_cache
	clean_old_jobs()

	get_endtime()

	get_jid()

	get_jids()

	get_jids_filter()

	get_load()

	load_reg()

	prep_jid()

	returner()

	save_load()

	save_minions()

	save_reg()

	update_endtime()

	salt.returners.mattermost_returner
	event_return()

	post_message()

	returner()

	salt.returners.memcache_return
	get_fun()

	get_jid()

	get_jids()

	get_load()

	get_minions()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.mongo_future_return
	event_return()

	get_fun()

	get_jid()

	get_jids()

	get_load()

	get_minions()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.mongo_return
	get_fun()

	get_jid()

	prep_jid()

	returner()

	save_minions()

	salt.returners.multi_returner
	clean_old_jobs()

	get_jid()

	get_jids()

	get_load()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.mysql
	clean_old_jobs()

	event_return()

	get_fun()

	get_jid()

	get_jids()

	get_jids_filter()

	get_load()

	get_minions()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.nagios_nrdp_return
	returner()

	salt.returners.odbc
	get_fun()

	get_jid()

	get_jids()

	get_load()

	get_minions()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.pgjsonb
	clean_old_jobs()

	event_return()

	get_fun()

	get_jid()

	get_jids()

	get_load()

	get_minions()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.postgres
	event_return()

	get_fun()

	get_jid()

	get_jids()

	get_load()

	get_minions()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.postgres_local_cache
	clean_old_jobs()

	event_return()

	get_jid()

	get_jids()

	get_load()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.pushover_returner
	returner()

	salt.returners.rawfile_json
	event_return()

	returner()

	salt.returners.redis_return
	clean_old_jobs()

	get_fun()

	get_jid()

	get_jids()

	get_load()

	get_minions()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.sentry_return
	prep_jid()

	returner()

	salt.returners.slack_returner
	returner()

	salt.returners.slack_webhook_return
	event_return()

	returner()

	salt.returners.sms_return
	returner()

	salt.returners.smtp_return
	event_return()

	prep_jid()

	returner()

	salt.returners.splunk
	event_return()

	http_event_collector
	http_event_collector.sendEvent()

	returner()

	salt.returners.sqlite3
	get_fun()

	get_jid()

	get_jids()

	get_load()

	get_minions()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.syslog_return
	prep_jid()

	returner()

	salt.returners.telegram_return
	returner()

	salt.returners.xmpp_return
	SendMsgBot
	SendMsgBot.start()

	returner()

	salt.returners.zabbix_return
	returner()

	save_load()

	zabbix_send()

	zbx()

	Executors
	Writing Salt Executors

Remote execution tutorial

Before continuing make sure you have a working Salt installation by
following the instructions in the
Salt install guide [https://docs.saltproject.io/salt/install-guide/en/latest/].

Stuck?

The Salt Project community can help offer advice and help troubleshoot
technical issues as you're learning about Salt. One of the best places to
talk to the community is on the
Salt Project Slack workspace [https://saltstackcommunity.slack.com/].

Order your minions around

Now that you have a master and at least one minion
communicating with each other you can perform commands on the minion via the
salt command. Salt calls are comprised of three main components:

salt '<target>' <function> [arguments]

See also

salt manpage

target

The target component allows you to filter which minions should run the
following function. The default filter is a glob on the minion id. For example:

salt '*' test.version
salt '*.example.org' test.version

Targets can be based on minion system information using the Grains system:

salt -G 'os:Ubuntu' test.version

See also

Grains system

Targets can be filtered by regular expression:

salt -E 'virtmach[0-9]' test.version

Targets can be explicitly specified in a list:

salt -L 'foo,bar,baz,quo' test.version

Or Multiple target types can be combined in one command:

salt -C 'G@os:Ubuntu and webser* or E@database.*' test.version

function

A function is some functionality provided by a module. Salt ships with a large
collection of available functions. List all available functions on your
minions:

salt '*' sys.doc

Here are some examples:

Show all currently available minions:

salt '*' test.version

Run an arbitrary shell command:

salt '*' cmd.run 'uname -a'

See also

the full list of modules

arguments

Space-delimited arguments to the function:

salt '*' cmd.exec_code python 'import sys; print sys.version'

Optional, keyword arguments are also supported:

salt '*' pip.install salt timeout=5 upgrade=True

They are always in the form of kwarg=argument.

Running Commands on Salt Minions

Salt can be controlled by a command line client by the root user on the Salt
master. The Salt command line client uses the Salt client API to communicate
with the Salt master server. The Salt client is straightforward and simple
to use.

Using the Salt client commands can be easily sent to the minions.

Each of these commands accepts an explicit --config option to point to either
the master or minion configuration file. If this option is not provided and
the default configuration file does not exist then Salt falls back to use the
environment variables SALT_MASTER_CONFIG and SALT_MINION_CONFIG.

See also

Configuration

Using the Salt Command

The Salt command needs a few components to send information to the Salt
minions. The target minions need to be defined, the function to call and any
arguments the function requires.

Defining the Target Minions

The first argument passed to salt, defines the target minions, the target
minions are accessed via their hostname. The default target type is a bash
glob:

salt '*foo.com' sys.doc

Salt can also define the target minions with regular expressions:

salt -E '.*' cmd.run 'ls -l | grep foo'

Or to explicitly list hosts, salt can take a list:

salt -L foo.bar.baz,quo.qux cmd.run 'ps aux | grep foo'

More Powerful Targets

See Targeting.

Calling the Function

The function to call on the specified target is placed after the target
specification.

New in version 0.9.8.

Functions may also accept arguments, space-delimited:

salt '*' cmd.exec_code python 'import sys; print sys.version'

Optional, keyword arguments are also supported:

salt '*' pip.install salt timeout=5 upgrade=True

They are always in the form of kwarg=argument.

Arguments are formatted as YAML:

salt '*' cmd.run 'echo "Hello: $FIRST_NAME"' env='{FIRST_NAME: "Joe"}'

Note: dictionaries must have curly braces around them (like the env
keyword argument above). This was changed in 0.15.1: in the above example,
the first argument used to be parsed as the dictionary
{'echo "Hello': '$FIRST_NAME"'}. This was generally not the expected
behavior.

If you want to test what parameters are actually passed to a module, use the
test.arg_repr command:

salt '*' test.arg_repr 'echo "Hello: $FIRST_NAME"' env='{FIRST_NAME: "Joe"}'

Finding available minion functions

The Salt functions are self documenting, all of the function documentation can
be retried from the minions via the sys.doc() function:

salt '*' sys.doc

Compound Command Execution

If a series of commands needs to be sent to a single target specification then
the commands can be sent in a single publish. This can make gathering
groups of information faster, and lowers the stress on the network for repeated
commands.

Compound command execution works by sending a list of functions and arguments
instead of sending a single function and argument. The functions are executed
on the minion in the order they are defined on the command line, and then the
data from all of the commands are returned in a dictionary. This means that
the set of commands are called in a predictable way, and the returned data can
be easily interpreted.

Executing compound commands if done by passing a comma delimited list of
functions, followed by a comma delimited list of arguments:

salt '*' cmd.run,test.ping,test.echo 'cat /proc/cpuinfo',,foo

The trick to look out for here, is that if a function is being passed no
arguments, then there needs to be a placeholder for the absent arguments. This
is why in the above example, there are two commas right next to each other.
test.ping takes no arguments, so we need to add another comma, otherwise
Salt would attempt to pass "foo" to test.ping.

If you need to pass arguments that include commas, then make sure you add
spaces around the commas that separate arguments. For example:

salt '*' cmd.run,test.ping,test.echo 'echo "1,2,3"' , , foo

You may change the arguments separator using the --args-separator option:

salt --args-separator=:: '*' some.fun,test.echo params with , comma :: foo

CLI Completion

Shell completion scripts for the Salt CLI are available in the pkg Salt
source directory [https://github.com/saltstack/salt/tree/develop/pkg].

Writing Execution Modules

Salt execution modules are the functions called by the salt command.

Modules Are Easy to Write!

Writing Salt execution modules is straightforward.

A Salt execution module is a Python or Cython [https://cython.org/] module placed in a directory
called _modules/ at the root of the Salt fileserver. When using the default
fileserver backend (i.e. roots), unless
environments are otherwise defined in the file_roots config
option, the _modules/ directory would be located in /srv/salt/_modules
on most systems.

Modules placed in _modules/ will be synced to the minions when any of the
following Salt functions are called:

	state.highstate (or state.apply with no state argument)

	saltutil.sync_modules

	saltutil.sync_all

Modules placed in _modules/ will be synced to masters when any of the
following Salt runners are called:

	saltutil.sync_modules

	saltutil.sync_all

Note that a module's default name is its filename
(i.e. foo.py becomes module foo), but that its name can be overridden
by using a __virtual__ function.

If a Salt module has errors and cannot be imported, the Salt minion will continue
to load without issue and the module with errors will simply be omitted.

If adding a Cython module the file must be named <modulename>.pyx so that
the loader knows that the module needs to be imported as a Cython module. The
compilation of the Cython module is automatic and happens when the minion
starts, so only the *.pyx file is required.

Zip Archives as Modules

Python 2.3 and higher allows developers to directly import zip archives
containing Python code. By setting enable_zip_modules to
True in the minion config, the Salt loader will be able to import .zip
files in this fashion. This allows Salt module developers to package
dependencies with their modules for ease of deployment, isolation, etc.

For a user, Zip Archive modules behave just like other modules. When executing
a function from a module provided as the file my_module.zip, a user would
call a function within that module as my_module.<function>.

Creating a Zip Archive Module

A Zip Archive module is structured similarly to a simple Python package [https://docs.python.org/3/tutorial/modules.html#packages].
The .zip file contains a single directory with the same name as the module.
The module code traditionally in <module_name>.py goes in
<module_name>/__init__.py. The dependency packages are subdirectories of
<module_name>/.

Here is an example directory structure for the lumberjack module, which has
two library dependencies (sleep and work) to be included.

modules $ ls -R lumberjack
__init__.py sleep work

lumberjack/sleep:
__init__.py

lumberjack/work:
__init__.py

The contents of lumberjack/__init__.py show how to import and use these
included libraries.

Libraries included in lumberjack.zip
from lumberjack import sleep, work

def is_ok(person):
 """Checks whether a person is really a lumberjack"""
 return sleep.all_night(person) and work.all_day(person)

Then, create the zip:

modules $ zip -r lumberjack lumberjack
 adding: lumberjack/ (stored 0%)
 adding: lumberjack/__init__.py (deflated 39%)
 adding: lumberjack/sleep/ (stored 0%)
 adding: lumberjack/sleep/__init__.py (deflated 7%)
 adding: lumberjack/work/ (stored 0%)
 adding: lumberjack/work/__init__.py (deflated 7%)
modules $ unzip -l lumberjack.zip
Archive: lumberjack.zip
 Length Date Time Name
 -------- ---- ---- ----
 0 08-21-15 20:08 lumberjack/
 348 08-21-15 20:08 lumberjack/__init__.py
 0 08-21-15 19:53 lumberjack/sleep/
 83 08-21-15 19:53 lumberjack/sleep/__init__.py
 0 08-21-15 19:53 lumberjack/work/
 81 08-21-15 19:21 lumberjack/work/__init__.py
 -------- -------
 512 6 files

Once placed in file_roots, Salt users can distribute and use
lumberjack.zip like any other module.

$ sudo salt minion1 saltutil.sync_modules
minion1:
 - modules.lumberjack
$ sudo salt minion1 lumberjack.is_ok 'Michael Palin'
minion1:
 True

Cross Calling Execution Modules

All of the Salt execution modules are available to each other and modules can
call functions available in other execution modules.

The variable __salt__ is packed into the modules after they are loaded into
the Salt minion.

The __salt__ variable is a Python dictionary [https://docs.python.org/3/library/stdtypes.html#typesmapping]
containing all of the Salt functions. Dictionary keys are strings representing
the names of the modules and the values are the functions themselves.

Salt modules can be cross-called by accessing the value in the __salt__
dict:

def foo(bar):
 return __salt__["cmd.run"](bar)

This code will call the run function in the cmd
module and pass the argument bar to it.

Calling Execution Modules on the Salt Master

New in version 2016.11.0.

Execution modules can now also be called via the salt-run command
using the salt runner.

Preloaded Execution Module Data

When interacting with execution modules often it is nice to be able to read
information dynamically about the minion or to load in configuration parameters
for a module.

Salt allows for different types of data to be loaded into the modules by the
minion.

Grains Data

The values detected by the Salt Grains on the minion are available in a
Python dictionary [https://docs.python.org/3/library/stdtypes.html#typesmapping] named __grains__ and can be
accessed from within callable objects in the Python modules.

To see the contents of the grains dictionary for a given system in your
deployment run the grains.items() function:

salt 'hostname' grains.items --output=pprint

Any value in a grains dictionary can be accessed as any other Python
dictionary. For example, the grain representing the minion ID is stored in the
id key and from an execution module, the value would be stored in
__grains__['id'].

Module Configuration

Since parameters for configuring a module may be desired, Salt allows for
configuration information from the minion configuration file to be passed to
execution modules.

Since the minion configuration file is a YAML document, arbitrary configuration
data can be passed in the minion config that is read by the modules. It is
therefore strongly recommended that the values passed in the configuration
file match the module name. A value intended for the test execution module
should be named test.<value>.

The test execution module contains usage of the module configuration and the
default configuration file for the minion contains the information and format
used to pass data to the modules. salt.modules.test,
conf/minion.

__init__ Function

If you want your module to have different execution modes based on minion
configuration, you can use the __init__(opts) function to perform initial
module setup. The parameter opts is the complete minion configuration,
as also available in the __opts__ dict.

"""
Cheese module initialization example
"""

def __init__(opts):
 """
 Allow foreign imports if configured to do so
 """
 if opts.get("cheese.allow_foreign", False):
 _enable_foreign_products()

Strings and Unicode

An execution module author should always assume that strings fed to the module
have already decoded from strings into Unicode. In Python 2, these will
be of type 'Unicode' and in Python 3 they will be of type str. Calling
from a state to other Salt sub-systems, should pass Unicode (or bytes if passing binary data). In the
rare event that a state needs to write directly to disk, Unicode should be
encoded to a string immediately before writing to disk. An author may use
__salt_system_encoding__ to learn what the encoding type of the system is.
For example, 'my_string'.encode(__salt_system_encoding__').

Outputter Configuration

Since execution module functions can return different data, and the way the
data is printed can greatly change the presentation, Salt allows for a specific
outputter to be set on a function-by-function basis.

This is done be declaring an __outputter__ dictionary in the global scope
of the module. The __outputter__ dictionary contains a mapping of function
names to Salt outputters.

__outputter__ = {"run": "txt"}

This will ensure that the txt outputter is used to display output from the
run function.

Virtual Modules

Virtual modules let you override the name of a module in order to use the same
name to refer to one of several similar modules. The specific module that is
loaded for a virtual name is selected based on the current platform or
environment.

For example, packages are managed across platforms using the pkg module.
pkg is a virtual module name that is an alias for the specific package
manager module that is loaded on a specific system (for example, yumpkg on RHEL/CentOS systems , and aptpkg on Ubuntu).

Virtual module names are set using the __virtual__ function and the
virtual name.

__virtual__ Function

The __virtual__ function returns either a string [https://docs.python.org/3/library/stdtypes.html#typesseq],
True [https://docs.python.org/3/library/constants.html#True], False [https://docs.python.org/3/library/constants.html#False], or False [https://docs.python.org/3/library/constants.html#False] with an error
string. If a string is returned then the module is loaded
using the name of the string as the virtual name. If True is returned the
module is loaded using the current module name. If False is returned the
module is not loaded. False lets the module perform system checks and
prevent loading if dependencies are not met.

Since __virtual__ is called before the module is loaded, __salt__ will
be unreliable as not all modules will be available at this point in time. The
__pillar__ and __grains__ "dunder" dictionaries
are available however.

Note

Modules which return a string from __virtual__ that is already used by
a module that ships with Salt will _override_ the stock module.

Returning Error Information from __virtual__

Optionally, Salt plugin modules, such as execution, state, returner, beacon,
etc. modules may additionally return a string containing the reason that a
module could not be loaded. For example, an execution module called cheese
and a corresponding state module also called cheese, both depending on a
utility called enzymes should have __virtual__ functions that handle
the case when the dependency is unavailable.

"""
Cheese execution (or returner/beacon/etc.) module
"""

try:
 import enzymes

 HAS_ENZYMES = True
except ImportError:
 HAS_ENZYMES = False

def __virtual__():
 """
 only load cheese if enzymes are available
 """
 if HAS_ENZYMES:
 return "cheese"
 else:
 return (
 False,
 "The cheese execution module cannot be loaded: enzymes unavailable.",
)

def slice():
 pass

"""
Cheese state module. Note that this works in state modules because it is
guaranteed that execution modules are loaded first
"""

def __virtual__():
 """
 only load cheese if enzymes are available
 """
 # predicate loading of the cheese state on the corresponding execution module
 if "cheese.slice" in __salt__:
 return "cheese"
 else:
 return False, "The cheese state module cannot be loaded: enzymes unavailable."

Examples

The package manager modules are among the best examples of using the
__virtual__ function. A table of all the virtual pkg modules can be
found here.

Overriding Virtual Module Providers

Salt often uses OS grains (os, osrelease, os_family, etc.) to
determine which module should be loaded as the virtual module for pkg,
service, etc. Sometimes this OS detection is incomplete, with new distros
popping up, existing distros changing init systems, etc. The virtual modules
likely to be affected by this are in the list below (click each item for more
information):

	pkg

	service

	user

	shadow

	group

If Salt is using the wrong module for one of these, first of all, please
report it on the issue tracker [https://github.com/saltstack/salt/issues/new], so that this issue can be resolved for a
future release. To make it easier to troubleshoot, please also provide the
grains.items output, taking care to
redact any sensitive information.

Then, while waiting for the SaltStack development team to fix the issue, Salt
can be made to use the correct module using the providers option
in the minion config file:

providers:
 service: systemd
 pkg: aptpkg

The above example will force the minion to use the systemd module to provide service management, and the
aptpkg module to provide package management.

For per-state provider overrides, see documentation on state providers.

Logging Restrictions

As a rule, logging should not be done anywhere in a Salt module before it is
loaded. This rule apples to all code that would run before the __virtual__()
function, as well as the code within the __virtual__() function itself.

If logging statements are made before the virtual function determines if
the module should be loaded, then those logging statements will be called
repeatedly. This clutters up log files unnecessarily.

Exceptions may be considered for logging statements made at the trace level.
However, it is better to provide the necessary information by another means.
One method is to return error information in the
__virtual__() function.

__virtualname__

__virtualname__ is a variable that is used by the documentation build
system to know the virtual name of a module without calling the __virtual__
function. Modules that return a string from the __virtual__ function
must also set the __virtualname__ variable.

To avoid setting the virtual name string twice, you can implement
__virtual__ to return the value set for __virtualname__ using a pattern
similar to the following:

Define the module's virtual name
__virtualname__ = "pkg"

def __virtual__():
 """
 Confine this module to Mac OS with Homebrew.
 """

 if salt.utils.path.which("brew") and __grains__["os"] == "MacOS":
 return __virtualname__
 return False

The __virtual__() function can return a True or False boolean, a tuple,
or a string. If it returns a True value, this __virtualname__ module-level
attribute can be set as seen in the above example. This is the string that the module
should be referred to as.

When __virtual__() returns a tuple, the first item should be a boolean and the
second should be a string. This is typically done when the module should not load. The
first value of the tuple is False and the second is the error message to display
for why the module did not load.

For example:

def __virtual__():
 """
 Only load if git exists on the system
 """
 if salt.utils.path.which("git") is None:
 return (False, "The git execution module cannot be loaded: git unavailable.")
 else:
 return True

Documentation

Salt execution modules are documented. The sys.doc() function will return
the documentation for all available modules:

salt '*' sys.doc

The sys.doc function simply prints out the docstrings found in the modules;
when writing Salt execution modules, please follow the formatting conventions
for docstrings as they appear in the other modules.

Adding Documentation to Salt Modules

It is strongly suggested that all Salt modules have documentation added.

To add documentation add a Python docstring [https://docs.python.org/3/glossary.html#term-docstring] to the function.

def spam(eggs):
 """
 A function to make some spam with eggs!

 CLI Example::

 salt '*' test.spam eggs
 """
 return eggs

Now when the sys.doc call is executed the docstring will be cleanly returned
to the calling terminal.

Documentation added to execution modules in docstrings will automatically be
added to the online web-based documentation.

Add Execution Module Metadata

When writing a Python docstring for an execution module, add information about
the module using the following field lists:

:maintainer: Thomas Hatch <thatch@saltstack.com, Seth House <shouse@saltstack.com>
:maturity: new
:depends: python-mysqldb
:platform: all

The maintainer field is a comma-delimited list of developers who help maintain
this module.

The maturity field indicates the level of quality and testing for this module.
Standard labels will be determined.

The depends field is a comma-delimited list of modules that this module depends
on.

The platform field is a comma-delimited list of platforms that this module is
known to run on.

Log Output

You can call the logger from custom modules to write messages to the minion
logs. The following code snippet demonstrates writing log messages:

import logging

log = logging.getLogger(__name__)

log.info("Here is Some Information")
log.warning("You Should Not Do That")
log.error("It Is Busted")

Aliasing Functions

Sometimes one wishes to use a function name that would shadow a python built-in.
A common example would be set(). To support this, append an underscore to
the function definition, def set_():, and use the __func_alias__ feature
to provide an alias to the function.

__func_alias__ is a dictionary where each key is the name of a function in
the module, and each value is a string representing the alias for that function.
When calling an aliased function from a different execution module, state
module, or from the cli, the alias name should be used.

__func_alias__ = {
 "set_": "set",
 "list_": "list",
}

Private Functions

In Salt, Python callable objects contained within an execution module are made
available to the Salt minion for use. The only exception to this rule is a
callable object with a name starting with an underscore _.

Objects Loaded Into the Salt Minion

def foo(bar):
 return bar

Objects NOT Loaded into the Salt Minion

def _foobar(baz): # Preceded with an _
 return baz

cheese = {} # Not a callable Python object

Useful Decorators for Modules

Depends Decorator

When writing execution modules there are many times where some of the module
will work on all hosts but some functions have an external dependency, such as
a service that needs to be installed or a binary that needs to be present on
the system.

Instead of trying to wrap much of the code in large try/except blocks, a
decorator can be used.

If the dependencies passed to the decorator don't exist, then the salt minion
will remove those functions from the module on that host.

If a fallback_function is defined, it will replace the function instead of
removing it

import logging

from salt.utils.decorators import depends

log = logging.getLogger(__name__)

try:
 import dependency_that_sometimes_exists
except ImportError as e:
 log.trace("Failed to import dependency_that_sometimes_exists: {0}".format(e))

@depends("dependency_that_sometimes_exists")
def foo():
 """
 Function with a dependency on the "dependency_that_sometimes_exists" module,
 if the "dependency_that_sometimes_exists" is missing this function will not exist
 """
 return True

def _fallback():
 """
 Fallback function for the depends decorator to replace a function with
 """
 return '"dependency_that_sometimes_exists" needs to be installed for this function to exist'

@depends("dependency_that_sometimes_exists", fallback_function=_fallback)
def foo():
 """
 Function with a dependency on the "dependency_that_sometimes_exists" module.
 If the "dependency_that_sometimes_exists" is missing this function will be
 replaced with "_fallback"
 """
 return True

In addition to global dependencies the depends decorator also supports raw
booleans.

from salt.utils.decorators import depends

HAS_DEP = False
try:
 import dependency_that_sometimes_exists

 HAS_DEP = True
except ImportError:
 pass

@depends(HAS_DEP)
def foo():
 return True

Returners

By default the return values of the commands sent to the Salt minions are
returned to the Salt master, however anything at all can be done with the results
data.

By using a Salt returner, results data can be redirected to external data-stores
for analysis and archival.

Returners pull their configuration values from the Salt minions. Returners are only
configured once, which is generally at load time.

The returner interface allows the return data to be sent to any system that
can receive data. This means that return data can be sent to a Redis server,
a MongoDB server, a MySQL server, or any system.

See also

Full list of builtin returners

Using Returners

All Salt commands will return the command data back to the master. Specifying
returners will ensure that the data is _also_ sent to the specified returner
interfaces.

Specifying what returners to use is done when the command is invoked:

salt '*' test.version --return redis_return

This command will ensure that the redis_return returner is used.

It is also possible to specify multiple returners:

salt '*' test.version --return mongo_return,redis_return,cassandra_return

In this scenario all three returners will be called and the data from the
test.version command will be sent out to the three named returners.

Writing a Returner

Returners are Salt modules that allow the redirection of results data to targets other than the Salt Master.

Returners Are Easy To Write!

Writing a Salt returner is straightforward.

A returner is a Python module containing at minimum a returner function.
Other optional functions can be included to add support for
master_job_cache, Storing Job Results in an External System, and Event Returners.

	returner
	The returner function must accept a single argument. The argument
contains return data from the called minion function. If the minion
function test.version is called, the value of the argument will be a
dictionary. Run the following command from a Salt master to get a sample
of the dictionary:

salt-call --local --metadata test.version --out=pprint

import redis
import salt.utils.json

def returner(ret):
 """
 Return information to a redis server
 """
 # Get a redis connection
 serv = redis.Redis(host="redis-serv.example.com", port=6379, db="0")
 serv.sadd("%(id)s:jobs" % ret, ret["jid"])
 serv.set("%(jid)s:%(id)s" % ret, salt.utils.json.dumps(ret["return"]))
 serv.sadd("jobs", ret["jid"])
 serv.sadd(ret["jid"], ret["id"])

The above example of a returner set to send the data to a Redis server
serializes the data as JSON and sets it in redis.

Using Custom Returner Modules

Place custom returners in a _returners/ directory within the
file_roots specified by the master config file.

Like all custom modules, these must be synced to the relevant master or minion
before they can be used. See Modular Systems for details.

Any custom returners which have been synced to a minion that are named the
same as one of Salt's default set of returners will take the place of the
default returner with the same name.

Naming the Returner

Note that a returner's default name is its filename (i.e. foo.py becomes
returner foo), but that its name can be overridden by using a
__virtual__ function. A good example of this can be
found in the redis [https://github.com/saltstack/salt/tree/master/salt/returners/redis_return.py] returner, which is named redis_return.py but is
loaded as simply redis:

try:
 import redis

 HAS_REDIS = True
except ImportError:
 HAS_REDIS = False

__virtualname__ = "redis"

def __virtual__():
 if not HAS_REDIS:
 return False
 return __virtualname__

Master Job Cache Support

master_job_cache, Storing Job Results in an External System, and Event Returners.
Salt's master_job_cache allows returners to be used as a pluggable
replacement for the Default Job Cache. In order to do so, a returner
must implement the following functions:

Note

The code samples contained in this section were taken from the cassandra_cql
returner.

	prep_jid
	Ensures that job ids (jid) don't collide, unless passed_jid is provided.

nocache is an optional boolean that indicates if return data
should be cached. passed_jid is a caller provided jid which should be
returned unconditionally.

def prep_jid(nocache, passed_jid=None): # pylint: disable=unused-argument
 """
 Do any work necessary to prepare a JID, including sending a custom id
 """
 return passed_jid if passed_jid is not None else salt.utils.jid.gen_jid()

	save_load
	Save job information. The jid is generated by prep_jid and should
be considered a unique identifier for the job. The jid, for example, could
be used as the primary/unique key in a database. The load is what is
returned to a Salt master by a minion. minions is a list of minions
that the job was run against. The following code example stores the load as
a JSON string in the salt.jids table.

import salt.utils.json

def save_load(jid, load, minions=None):
 """
 Save the load to the specified jid id
 """
 query = """INSERT INTO salt.jids (
 jid, load
) VALUES (
 '{0}', '{1}'
);""".format(
 jid, salt.utils.json.dumps(load)
)

 # cassandra_cql.cql_query may raise a CommandExecutionError
 try:
 __salt__["cassandra_cql.cql_query"](query)
 except CommandExecutionError:
 log.critical("Could not save load in jids table.")
 raise
 except Exception as e:
 log.critical("Unexpected error while inserting into jids: {0}".format(e))
 raise

	get_load
	must accept a job id (jid) and return the job load stored by save_load,
or an empty dictionary when not found.

def get_load(jid):
 """
 Return the load data that marks a specified jid
 """
 query = """SELECT load FROM salt.jids WHERE jid = '{0}';""".format(jid)

 ret = {}

 # cassandra_cql.cql_query may raise a CommandExecutionError
 try:
 data = __salt__["cassandra_cql.cql_query"](query)
 if data:
 load = data[0].get("load")
 if load:
 ret = json.loads(load)
 except CommandExecutionError:
 log.critical("Could not get load from jids table.")
 raise
 except Exception as e:
 log.critical(
 """Unexpected error while getting load from
 jids: {0}""".format(
 str(e)
)
)
 raise

 return ret

External Job Cache Support

Salt's Storing Job Results in an External System extends the master_job_cache. External
Job Cache support requires the following functions in addition to what is
required for Master Job Cache support:

	get_jid
	Return a dictionary containing the information (load) returned by each
minion when the specified job id was executed.

Sample:

{
 "local": {
 "master_minion": {
 "fun_args": [],
 "jid": "20150330121011408195",
 "return": "2018.3.4",
 "retcode": 0,
 "success": true,
 "cmd": "_return",
 "_stamp": "2015-03-30T12:10:12.708663",
 "fun": "test.version",
 "id": "master_minion"
 }
 }
}

	get_fun
	Return a dictionary of minions that called a given Salt function as their
last function call.

Sample:

{
 "local": {
 "minion1": "test.version",
 "minion3": "test.version",
 "minion2": "test.version"
 }
}

	get_jids
	Return a list of all job ids.

Sample:

{
 "local": [
 "20150330121011408195",
 "20150330195922139916"
]
}

	get_minions
	Returns a list of minions

Sample:

{
 "local": [
 "minion3",
 "minion2",
 "minion1",
 "master_minion"
]
}

Please refer to one or more of the existing returners (i.e. mysql,
cassandra_cql) if you need further clarification.

Event Support

An event_return function must be added to the returner module to allow
events to be logged from a master via the returner. A list of events are passed
to the function by the master.

The following example was taken from the MySQL returner. In this example, each
event is inserted into the salt_events table keyed on the event tag. The tag
contains the jid and therefore is guaranteed to be unique.

import salt.utils.json

def event_return(events):
 """
 Return event to mysql server

 Requires that configuration be enabled via 'event_return'
 option in master config.
 """
 with _get_serv(events, commit=True) as cur:
 for event in events:
 tag = event.get("tag", "")
 data = event.get("data", "")
 sql = """INSERT INTO `salt_events` (`tag`, `data`, `master_id`)
 VALUES (%s, %s, %s)"""
 cur.execute(sql, (tag, salt.utils.json.dumps(data), __opts__["id"]))

Testing the Returner

The returner, prep_jid, save_load, get_load, and
event_return functions can be tested by configuring the
master_job_cache and Event Returners in the master config
file and submitting a job to test.version each minion from the master.

Once you have successfully exercised the Master Job Cache functions, test the
External Job Cache functions using the ret execution module.

salt-call ret.get_jids cassandra_cql --output=json
salt-call ret.get_fun cassandra_cql test.version --output=json
salt-call ret.get_minions cassandra_cql --output=json
salt-call ret.get_jid cassandra_cql 20150330121011408195 --output=json

Event Returners

For maximum visibility into the history of events across a Salt
infrastructure, all events seen by a salt master may be logged to one or
more returners.

To enable event logging, set the event_return configuration option in the
master config to the returner(s) which should be designated as the handler
for event returns.

Note

Not all returners support event returns. Verify a returner has an
event_return() function before using.

Note

On larger installations, many hundreds of events may be generated on a
busy master every second. Be certain to closely monitor the storage of
a given returner as Salt can easily overwhelm an underpowered server
with thousands of returns.

Full List of Returners

	returner modules
	salt.returners.appoptics_return
	returner()

	salt.returners.carbon_return
	event_return()

	prep_jid()

	returner()

	salt.returners.cassandra_cql_return
	event_return()

	get_fun()

	get_jid()

	get_jids()

	get_load()

	get_minions()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.couchbase_return
	JID

	JID/MINION_ID

	get_jid()

	get_jids()

	get_load()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.couchdb_return
	On concurrent database access

	ensure_views()

	get_fun()

	get_jid()

	get_jids()

	get_minions()

	get_valid_salt_views()

	prep_jid()

	returner()

	save_minions()

	set_salt_view()

	salt.returners.elasticsearch_return
	event_return()

	get_load()

	prep_jid()

	returner()

	save_load()

	salt.returners.etcd_return
	clean_old_jobs()

	get_fun()

	get_jid()

	get_jids()

	get_load()

	get_minions()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.highstate_return
	returner()

	salt.returners.influxdb_return
	get_fun()

	get_jid()

	get_jids()

	get_load()

	get_minions()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.kafka_return
	returner()

	salt.returners.librato_return
	returner()

	salt.returners.local
	event_return()

	returner()

	salt.returners.local_cache
	clean_old_jobs()

	get_endtime()

	get_jid()

	get_jids()

	get_jids_filter()

	get_load()

	load_reg()

	prep_jid()

	returner()

	save_load()

	save_minions()

	save_reg()

	update_endtime()

	salt.returners.mattermost_returner
	event_return()

	post_message()

	returner()

	salt.returners.memcache_return
	get_fun()

	get_jid()

	get_jids()

	get_load()

	get_minions()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.mongo_future_return
	event_return()

	get_fun()

	get_jid()

	get_jids()

	get_load()

	get_minions()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.mongo_return
	get_fun()

	get_jid()

	prep_jid()

	returner()

	save_minions()

	salt.returners.multi_returner
	clean_old_jobs()

	get_jid()

	get_jids()

	get_load()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.mysql
	clean_old_jobs()

	event_return()

	get_fun()

	get_jid()

	get_jids()

	get_jids_filter()

	get_load()

	get_minions()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.nagios_nrdp_return
	returner()

	salt.returners.odbc
	get_fun()

	get_jid()

	get_jids()

	get_load()

	get_minions()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.pgjsonb
	clean_old_jobs()

	event_return()

	get_fun()

	get_jid()

	get_jids()

	get_load()

	get_minions()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.postgres
	event_return()

	get_fun()

	get_jid()

	get_jids()

	get_load()

	get_minions()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.postgres_local_cache
	clean_old_jobs()

	event_return()

	get_jid()

	get_jids()

	get_load()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.pushover_returner
	returner()

	salt.returners.rawfile_json
	event_return()

	returner()

	salt.returners.redis_return
	clean_old_jobs()

	get_fun()

	get_jid()

	get_jids()

	get_load()

	get_minions()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.sentry_return
	prep_jid()

	returner()

	salt.returners.slack_returner
	returner()

	salt.returners.slack_webhook_return
	event_return()

	returner()

	salt.returners.sms_return
	returner()

	salt.returners.smtp_return
	event_return()

	prep_jid()

	returner()

	salt.returners.splunk
	event_return()

	http_event_collector
	http_event_collector.sendEvent()

	returner()

	salt.returners.sqlite3
	get_fun()

	get_jid()

	get_jids()

	get_load()

	get_minions()

	prep_jid()

	returner()

	save_load()

	save_minions()

	salt.returners.syslog_return
	prep_jid()

	returner()

	salt.returners.telegram_return
	returner()

	salt.returners.xmpp_return
	SendMsgBot
	SendMsgBot.start()

	returner()

	salt.returners.zabbix_return
	returner()

	save_load()

	zabbix_send()

	zbx()

returner modules

	appoptics_return

	Salt returner to return highstate stats to AppOptics Metrics

	carbon_return

	Take data from salt and "return" it into a carbon receiver

	cassandra_cql_return

	Return data to a cassandra server

	couchbase_return

	Simple returner for Couchbase.

	couchdb_return

	Simple returner for CouchDB.

	elasticsearch_return

	Return data to an elasticsearch server for indexing.

	etcd_return

	Return data to an etcd server or cluster

	highstate_return

	Return the results of a highstate (or any other state function that returns data in a compatible format) via an HTML email or HTML file.

	influxdb_return

	Return data to an influxdb server.

	kafka_return

	Return data to a Kafka topic

	librato_return

	Salt returner to return highstate stats to Librato

	local

	The local returner is used to test the returner interface, it just prints the return data to the console to verify that it is being passed properly

	local_cache

	Return data to local job cache

	mattermost_returner

	Return salt data via mattermost

	memcache_return

	Return data to a memcache server

	mongo_future_return

	Return data to a mongodb server

	mongo_return

	Return data to a mongodb server

	multi_returner

	Read/Write multiple returners

	mysql

	Return data to a mysql server

	nagios_nrdp_return

	Return salt data to Nagios

	odbc

	Return data to an ODBC compliant server.

	pgjsonb

	Return data to a PostgreSQL server with json data stored in Pg's jsonb data type

	postgres

	Return data to a postgresql server

	postgres_local_cache

	Use a postgresql server for the master job cache.

	pushover_returner

	

	rawfile_json

	Take data from salt and "return" it into a raw file containing the json, with one line per event.

	redis_return

	Return data to a redis server

	sentry_return

	Salt returner that reports execution results back to sentry.

	slack_returner

	Return salt data via slack

	slack_webhook_return

	Return salt data via Slack using Incoming Webhooks

	sms_return

	Return data by SMS.

	smtp_return

	Return salt data via email

	splunk

	Send json response data to Splunk via the HTTP Event Collector Requires the following config values to be specified in config or pillar:

	sqlite3_return

	Insert minion return data into a sqlite3 database

	syslog_return

	Return data to the host operating system's syslog facility

	telegram_return

	Return salt data via Telegram.

	xmpp_return

	Return salt data via xmpp

	zabbix_return

	

salt.returners.appoptics_return

Salt returner to return highstate stats to AppOptics Metrics

To enable this returner the minion will need the AppOptics Metrics
client importable on the Python path and the following
values configured in the minion or master config.

The AppOptics python client can be found at:

https://github.com/appoptics/python-appoptics-metrics

appoptics.api_token: abc12345def

An example configuration that returns the total number of successes
and failures for your salt highstate runs (the default) would look
like this:

return: appoptics
appoptics.api_token: <token string here>

The returner publishes the following metrics to AppOptics:

	saltstack.failed

	saltstack.passed

	saltstack.retcode

	saltstack.runtime

	saltstack.total

You can add a tags section to specify which tags should be attached to
all metrics created by the returner.

appoptics.tags:
 host_hostname_alias: <the minion ID - matches @host>
 tier: <the tier/etc. of this node>
 cluster: <the cluster name, etc.>

If no tags are explicitly configured, then the tag key host_hostname_alias
will be set, with the minion's id grain being the value.

In addition to the requested tags, for a highstate run each of these
will be tagged with the key:value of state_type: highstate.

In order to return metrics for state.sls runs (distinct from highstates), you can
specify a list of state names to the key appoptics.sls_states like so:

appoptics.sls_states:
 - role_salt_master.netapi
 - role_redis.config
 - role_smarty.dummy

This will report success and failure counts on runs of the
role_salt_master.netapi, role_redis.config, and
role_smarty.dummy states in addition to highstates.

This will report the same metrics as above, but for these runs the
metrics will be tagged with state_type: sls and state_name set to
the name of the state that was invoked, e.g. role_salt_master.netapi.

	
salt.returners.appoptics_return.returner(ret)

	Parse the return data and return metrics to AppOptics.

For each state that's provided in the configuration, return tagged metrics for
the result of that state if it's present.

salt.returners.carbon_return

Take data from salt and "return" it into a carbon receiver

Add the following configuration to the minion configuration file:

carbon.host: <server ip address>
carbon.port: 2003

Errors when trying to convert data to numbers may be ignored by setting
carbon.skip_on_error to True:

carbon.skip_on_error: True

By default, data will be sent to carbon using the plaintext protocol. To use
the pickle protocol, set carbon.mode to pickle:

carbon.mode: pickle

	You can also specify the pattern used for the metric base path (except for virt modules metrics):
	carbon.metric_base_pattern: carbon.[minion_id].[module].[function]

	These tokens can used :
	[module]: salt module
[function]: salt function
[minion_id]: minion id

	Default is :
	carbon.metric_base_pattern: [module].[function].[minion_id]

Carbon settings may also be configured as:

carbon:
 host: <server IP or hostname>
 port: <carbon port>
 skip_on_error: True
 mode: (pickle|text)
 metric_base_pattern: <pattern> | [module].[function].[minion_id]

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

alternative.carbon:
 host: <server IP or hostname>
 port: <carbon port>
 skip_on_error: True
 mode: (pickle|text)

To use the carbon returner, append '--return carbon' to the salt command.

salt '*' test.ping --return carbon

To use the alternative configuration, append '--return_config alternative' to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return carbon --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return carbon --return_kwargs '{"skip_on_error": False}'

	
salt.returners.carbon_return.event_return(events)

	Return event data to remote carbon server

Provide a list of events to be stored in carbon

	
salt.returners.carbon_return.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.carbon_return.returner(ret)

	Return data to a remote carbon server using the text metric protocol

Each metric will look like:

[module].[function].[minion_id].[metric path [...]].[metric name]

salt.returners.cassandra_cql_return

Return data to a cassandra server

New in version 2015.5.0.

	maintainer:

	Corin Kochenower<ckochenower@saltstack.com>

	maturity:

	new as of 2015.2

	depends:

	salt.modules.cassandra_cql

	depends:

	DataStax Python Driver for Apache Cassandra
https://github.com/datastax/python-driver
pip install cassandra-driver

	platform:

	all

	configuration:

	To enable this returner, the minion will need the DataStax Python Driver
for Apache Cassandra (https://github.com/datastax/python-driver)
installed and the following values configured in the minion or master
config. The list of cluster IPs must include at least one cassandra node
IP address. No assumption or default will be used for the cluster IPs.
The cluster IPs will be tried in the order listed. The port, username,
and password values shown below will be the assumed defaults if you do
not provide values.:

cassandra:
 cluster:
 - 192.168.50.11
 - 192.168.50.12
 - 192.168.50.13
 port: 9042
 username: salt
 password: salt

Use the following cassandra database schema:

CREATE KEYSPACE IF NOT EXISTS salt
 WITH replication = {'class': 'SimpleStrategy', 'replication_factor' : 1};

CREATE USER IF NOT EXISTS salt WITH PASSWORD 'salt' NOSUPERUSER;

GRANT ALL ON KEYSPACE salt TO salt;

USE salt;

CREATE TABLE IF NOT EXISTS salt.salt_returns (
 jid text,
 minion_id text,
 fun text,
 alter_time timestamp,
 full_ret text,
 return text,
 success boolean,
 PRIMARY KEY (jid, minion_id, fun)
) WITH CLUSTERING ORDER BY (minion_id ASC, fun ASC);
CREATE INDEX IF NOT EXISTS salt_returns_minion_id ON salt.salt_returns (minion_id);
CREATE INDEX IF NOT EXISTS salt_returns_fun ON salt.salt_returns (fun);

CREATE TABLE IF NOT EXISTS salt.jids (
 jid text PRIMARY KEY,
 load text
);

CREATE TABLE IF NOT EXISTS salt.minions (
 minion_id text PRIMARY KEY,
 last_fun text
);
CREATE INDEX IF NOT EXISTS minions_last_fun ON salt.minions (last_fun);

CREATE TABLE IF NOT EXISTS salt.salt_events (
 id timeuuid,
 tag text,
 alter_time timestamp,
 data text,
 master_id text,
 PRIMARY KEY (id, tag)
) WITH CLUSTERING ORDER BY (tag ASC);
CREATE INDEX tag ON salt.salt_events (tag);

Required python modules: cassandra-driver

To use the cassandra returner, append '--return cassandra_cql' to the salt command. ex:

salt '*' test.ping --return_cql cassandra

Note: if your Cassandra instance has not been tuned much you may benefit from
altering some timeouts in cassandra.yaml like so:

How long the coordinator should wait for read operations to complete
read_request_timeout_in_ms: 5000
How long the coordinator should wait for seq or index scans to complete
range_request_timeout_in_ms: 20000
How long the coordinator should wait for writes to complete
write_request_timeout_in_ms: 20000
How long the coordinator should wait for counter writes to complete
counter_write_request_timeout_in_ms: 10000
How long a coordinator should continue to retry a CAS operation
that contends with other proposals for the same row
cas_contention_timeout_in_ms: 5000
How long the coordinator should wait for truncates to complete
(This can be much longer, because unless auto_snapshot is disabled
we need to flush first so we can snapshot before removing the data.)
truncate_request_timeout_in_ms: 60000
The default timeout for other, miscellaneous operations
request_timeout_in_ms: 20000

As always, your mileage may vary and your Cassandra cluster may have different
needs. SaltStack has seen situations where these timeouts can resolve
some stacktraces that appear to come from the Datastax Python driver.

	
salt.returners.cassandra_cql_return.event_return(events)

	Return event to one of potentially many clustered cassandra nodes

Requires that configuration be enabled via 'event_return'
option in master config.

Cassandra does not support an auto-increment feature due to the
highly inefficient nature of creating a monotonically increasing
number across all nodes in a distributed database. Each event
will be assigned a uuid by the connecting client.

	
salt.returners.cassandra_cql_return.get_fun(fun)

	Return a dict of the last function called for all minions

	
salt.returners.cassandra_cql_return.get_jid(jid)

	Return the information returned when the specified job id was executed

	
salt.returners.cassandra_cql_return.get_jids()

	Return a list of all job ids

	
salt.returners.cassandra_cql_return.get_load(jid)

	Return the load data that marks a specified jid

	
salt.returners.cassandra_cql_return.get_minions()

	Return a list of minions

	
salt.returners.cassandra_cql_return.prep_jid(nocache, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.cassandra_cql_return.returner(ret)

	Return data to one of potentially many clustered cassandra nodes

	
salt.returners.cassandra_cql_return.save_load(jid, load, minions=None)

	Save the load to the specified jid id

	
salt.returners.cassandra_cql_return.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.couchbase_return

Simple returner for Couchbase. Optional configuration
settings are listed below, along with sane defaults.

couchbase.host: 'salt'
couchbase.port: 8091
couchbase.bucket: 'salt'
couchbase.ttl: 86400
couchbase.password: 'password'
couchbase.skip_verify_views: False

To use the couchbase returner, append '--return couchbase' to the salt command. ex:

salt '*' test.ping --return couchbase

To use the alternative configuration, append '--return_config alternative' to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return couchbase --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return couchbase --return_kwargs '{"bucket": "another-salt"}'

All of the return data will be stored in documents as follows:

JID

load: load obj
tgt_minions: list of minions targeted
nocache: should we not cache the return data

JID/MINION_ID

return: return_data
full_ret: full load of job return

	
salt.returners.couchbase_return.get_jid(jid)

	Return the information returned when the specified job id was executed

	
salt.returners.couchbase_return.get_jids()

	Return a list of all job ids

	
salt.returners.couchbase_return.get_load(jid)

	Return the load data that marks a specified jid

	
salt.returners.couchbase_return.prep_jid(nocache=False, passed_jid=None)

	Return a job id and prepare the job id directory
This is the function responsible for making sure jids don't collide (unless
its passed a jid)
So do what you have to do to make sure that stays the case

	
salt.returners.couchbase_return.returner(load)

	Return data to couchbase bucket

	
salt.returners.couchbase_return.save_load(jid, clear_load, minion=None)

	Save the load to the specified jid

	
salt.returners.couchbase_return.save_minions(jid, minions, syndic_id=None)

	Save/update the minion list for a given jid. The syndic_id argument is
included for API compatibility only.

salt.returners.couchdb_return

Simple returner for CouchDB. Optional configuration
settings are listed below, along with sane defaults:

couchdb.db: 'salt'
couchdb.url: 'http://salt:5984/'

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

alternative.couchdb.db: 'salt'
alternative.couchdb.url: 'http://salt:5984/'

To use the couchdb returner, append --return couchdb to the salt command. Example:

salt '*' test.ping --return couchdb

To use the alternative configuration, append --return_config alternative to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return couchdb --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return couchdb --return_kwargs '{"db": "another-salt"}'

On concurrent database access

As this returner creates a couchdb document with the salt job id as document id
and as only one document with a given id can exist in a given couchdb database,
it is advised for most setups that every minion be configured to write to it own
database (the value of couchdb.db may be suffixed with the minion id),
otherwise multi-minion targeting can lead to losing output:

	the first returning minion is able to create a document in the database

	other minions fail with {'error': 'HTTP Error 409: Conflict'}

	
salt.returners.couchdb_return.ensure_views()

	This function makes sure that all the views that should
exist in the design document do exist.

	
salt.returners.couchdb_return.get_fun(fun)

	Return a dict with key being minion and value
being the job details of the last run of function 'fun'.

	
salt.returners.couchdb_return.get_jid(jid)

	Get the document with a given JID.

	
salt.returners.couchdb_return.get_jids()

	List all the jobs that we have..

	
salt.returners.couchdb_return.get_minions()

	Return a list of minion identifiers from a request of the view.

	
salt.returners.couchdb_return.get_valid_salt_views()

	Returns a dict object of views that should be
part of the salt design document.

	
salt.returners.couchdb_return.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.couchdb_return.returner(ret)

	Take in the return and shove it into the couchdb database.

	
salt.returners.couchdb_return.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

	
salt.returners.couchdb_return.set_salt_view()

	Helper function that sets the salt design
document. Uses get_valid_salt_views and some hardcoded values.

salt.returners.elasticsearch_return

Return data to an elasticsearch server for indexing.

	maintainer:

	Jurnell Cockhren <jurnell.cockhren@sophicware.com>, Arnold Bechtoldt <mail@arnoldbechtoldt.com>

	maturity:

	New

	depends:

	elasticsearch-py [https://elasticsearch-py.readthedocs.io/en/latest/]

	platform:

	all

To enable this returner the elasticsearch python client must be installed
on the desired minions (all or some subset).

Please see documentation of elasticsearch execution module
for a valid connection configuration.

Warning

The index that you wish to store documents will be created by Elasticsearch automatically if
doesn't exist yet. It is highly recommended to create predefined index templates with appropriate mapping(s)
that will be used by Elasticsearch upon index creation. Otherwise you will have problems as described in #20826.

To use the returner per salt call:

salt '*' test.ping --return elasticsearch

In order to have the returner apply to all minions:

ext_job_cache: elasticsearch

	Minion configuration:
	
	debug_returner_payload': False
	Output the payload being posted to the log file in debug mode

	doc_type: 'default'
	Document type to use for normal return messages

	functions_blacklist
	Optional list of functions that should not be returned to elasticsearch

	index_date: False
	Use a dated index (e.g. <index>-2016.11.29)

	master_event_index: 'salt-master-event-cache'
	Index to use when returning master events

	master_event_doc_type: 'efault'
	Document type to use got master events

	master_job_cache_index: 'salt-master-job-cache'
	Index to use for master job cache

	master_job_cache_doc_type: 'default'
	Document type to use for master job cache

	number_of_shards: 1
	Number of shards to use for the indexes

	number_of_replicas: 0
	Number of replicas to use for the indexes

NOTE: The following options are valid for 'state.apply', 'state.sls' and 'state.highstate' functions only.

	states_count: False
	Count the number of states which succeeded or failed and return it in top-level item called 'counts'.
States reporting None (i.e. changes would be made but it ran in test mode) are counted as successes.

	states_order_output: False
	Prefix the state UID (e.g. file_|-yum_configured_|-/etc/yum.conf_|-managed) with a zero-padded version
of the '__run_num__' value to allow for easier sorting. Also store the state function (i.e. file.managed)
into a new key '_func'. Change the index to be '<index>-ordered' (e.g. salt-state_apply-ordered).

	states_single_index: False
	Store results for state.apply, state.sls and state.highstate in the salt-state_apply index
(or -ordered/-<date>) indexes if enabled

elasticsearch:
 hosts:
 - "10.10.10.10:9200"
 - "10.10.10.11:9200"
 - "10.10.10.12:9200"
 index_date: True
 number_of_shards: 5
 number_of_replicas: 1
 debug_returner_payload: True
 states_count: True
 states_order_output: True
 states_single_index: True
 functions_blacklist:
 - test.ping
 - saltutil.find_job

	
salt.returners.elasticsearch_return.event_return(events)

	Return events to Elasticsearch

Requires that the event_return configuration be set in master config.

	
salt.returners.elasticsearch_return.get_load(jid)

	Return the load data that marks a specified jid

New in version 2015.8.1.

	
salt.returners.elasticsearch_return.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.elasticsearch_return.returner(ret)

	Process the return from Salt

	
salt.returners.elasticsearch_return.save_load(jid, load, minions=None)

	Save the load to the specified jid id

New in version 2015.8.1.

salt.returners.etcd_return

Return data to an etcd server or cluster

	depends:

	
	python-etcd or etcd3-py

In order to return to an etcd server, a profile should be created in the master
configuration file:

my_etcd_config:
 etcd.host: 127.0.0.1
 etcd.port: 2379

It is technically possible to configure etcd without using a profile, but this
is not considered to be a best practice, especially when multiple etcd servers
or clusters are available.

etcd.host: 127.0.0.1
etcd.port: 2379

In order to choose whether to use etcd API v2 or v3, you can put the following
configuration option in the same place as your etcd configuration. This option
defaults to true, meaning you will use v2 unless you specify otherwise.

etcd.require_v2: True

When using API v3, there are some specific options available to be configured
within your etcd profile. They are defaulted to the following...

etcd.encode_keys: False
etcd.encode_values: True
etcd.raw_keys: False
etcd.raw_values: False
etcd.unicode_errors: "surrogateescape"

etcd.encode_keys indicates whether you want to pre-encode keys using msgpack before
adding them to etcd.

Note

If you set etcd.encode_keys to True, all recursive functionality will no longer work.
This includes tree and ls and all other methods if you set recurse/recursive to True.
This is due to the fact that when encoding with msgpack, keys like /salt and /salt/stack will have
differing byte prefixes, and etcd v3 searches recursively using prefixes.

etcd.encode_values indicates whether you want to pre-encode values using msgpack before
adding them to etcd. This defaults to True to avoid data loss on non-string values wherever possible.

etcd.raw_keys determines whether you want the raw key or a string returned.

etcd.raw_values determines whether you want the raw value or a string returned.

etcd.unicode_errors determines what you policy to follow when there are encoding/decoding errors.

Additionally, two more options must be specified in the top-level configuration
in order to use the etcd returner:

etcd.returner: my_etcd_config
etcd.returner_root: /salt/return

The etcd.returner option specifies which configuration profile to use. The
etcd.returner_root option specifies the path inside etcd to use as the root
of the returner system.

Once the etcd options are configured, the returner may be used:

CLI Example:

salt '*' test.ping --return etcd

A username and password can be set:

etcd.username: larry # Optional; requires etcd.password to be set
etcd.password: 123pass # Optional; requires etcd.username to be set

You can also set a TTL (time to live) value for the returner:

etcd.ttl: 5

Authentication with username and password, and ttl, currently requires the
master branch of python-etcd.

You may also specify different roles for read and write operations. First,
create the profiles as specified above. Then add:

etcd.returner_read_profile: my_etcd_read
etcd.returner_write_profile: my_etcd_write

	
salt.returners.etcd_return.clean_old_jobs()

	Included for API consistency

	
salt.returners.etcd_return.get_fun(fun)

	Return a dict of the last function called for all minions

	
salt.returners.etcd_return.get_jid(jid)

	Return the information returned when the specified job id was executed

	
salt.returners.etcd_return.get_jids()

	Return a list of all job ids

	
salt.returners.etcd_return.get_load(jid)

	Return the load data that marks a specified jid

	
salt.returners.etcd_return.get_minions()

	Return a list of minions

	
salt.returners.etcd_return.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.etcd_return.returner(ret)

	Return data to an etcd server or cluster

	
salt.returners.etcd_return.save_load(jid, load, minions=None)

	Save the load to the specified jid

	
salt.returners.etcd_return.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.highstate_return

Return the results of a highstate (or any other state function that returns
data in a compatible format) via an HTML email or HTML file.

New in version 2017.7.0.

Similar results can be achieved by using the smtp returner with a custom template,
except an attempt at writing such a template for the complex data structure
returned by highstate function had proven to be a challenge, not to mention
that the smtp module doesn't support sending HTML mail at the moment.

The main goal of this returner was to produce an easy to read email similar
to the output of highstate outputter used by the CLI.

This returner could be very useful during scheduled executions,
but could also be useful for communicating the results of a manual execution.

Returner configuration is controlled in a standard fashion either via
highstate group or an alternatively named group.

salt '*' state.highstate --return highstate

To use the alternative configuration, append '--return_config config-name'

salt '*' state.highstate --return highstate --return_config simple

Here is an example of what the configuration might look like:

simple.highstate:
 report_failures: True
 report_changes: True
 report_everything: False
 failure_function: pillar.items
 success_function: pillar.items
 report_format: html
 report_delivery: smtp
 smtp_success_subject: 'success minion {id} on host {host}'
 smtp_failure_subject: 'failure minion {id} on host {host}'
 smtp_server: smtp.example.com
 smtp_recipients: saltusers@example.com, devops@example.com
 smtp_sender: salt@example.com

The report_failures, report_changes, and report_everything flags provide
filtering of the results. If you want an email to be sent every time, then
report_everything is your choice. If you want to be notified only when
changes were successfully made use report_changes. And report_failures will
generate an email if there were failures.

The configuration allows you to run a salt module function in case of
success (success_function) or failure (failure_function).

Any salt function, including ones defined in the _module folder of your salt
repo, could be used here and its output will be displayed under the 'extra'
heading of the email.

Supported values for report_format are html, json, and yaml. The latter two
are typically used for debugging purposes, but could be used for applying
a template at some later stage.

The values for report_delivery are smtp or file. In case of file delivery
the only other applicable option is file_output.

In case of smtp delivery, smtp_* options demonstrated by the example above
could be used to customize the email.

As you might have noticed, the success and failure subjects contain {id} and {host}
values. Any other grain name could be used. As opposed to using
{{grains['id']}}, which will be rendered by the master and contain master's
values at the time of pillar generation, these will contain minion values at
the time of execution.

	
salt.returners.highstate_return.returner(ret)

	Check highstate return information and possibly fire off an email
or save a file.

salt.returners.influxdb_return

Return data to an influxdb server.

New in version 2015.8.0.

To enable this returner the minion will need the python client for influxdb
installed and the following values configured in the minion or master
config, these are the defaults:

influxdb.db: 'salt'
influxdb.user: 'salt'
influxdb.password: 'salt'
influxdb.host: 'localhost'
influxdb.port: 8086

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

alternative.influxdb.db: 'salt'
alternative.influxdb.user: 'salt'
alternative.influxdb.password: 'salt'
alternative.influxdb.host: 'localhost'
alternative.influxdb.port: 6379

To use the influxdb returner, append '--return influxdb' to the salt command.

salt '*' test.ping --return influxdb

To use the alternative configuration, append '--return_config alternative' to the salt command.

salt '*' test.ping --return influxdb --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return influxdb --return_kwargs '{"db": "another-salt"}'

	
salt.returners.influxdb_return.get_fun(fun)

	Return a dict of the last function called for all minions

	
salt.returners.influxdb_return.get_jid(jid)

	Return the information returned when the specified job id was executed

	
salt.returners.influxdb_return.get_jids()

	Return a list of all job ids

	
salt.returners.influxdb_return.get_load(jid)

	Return the load data that marks a specified jid

	
salt.returners.influxdb_return.get_minions()

	Return a list of minions

	
salt.returners.influxdb_return.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.influxdb_return.returner(ret)

	Return data to a influxdb data store

	
salt.returners.influxdb_return.save_load(jid, load, minions=None)

	Save the load to the specified jid

	
salt.returners.influxdb_return.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.kafka_return

Return data to a Kafka topic

	maintainer:

	Justin Desilets (justin.desilets@gmail.com)

	maturity:

	20181119

	depends:

	confluent-kafka

	platform:

	all

To enable this returner install confluent-kafka and enable the following
settings in the minion config:

	returner.kafka.bootstrap:
	
	"server1:9092"

	"server2:9092"

	"server3:9092"

returner.kafka.topic: 'topic'

To use the kafka returner, append --return kafka to the Salt command, eg;

salt '*' test.ping --return kafka

	
salt.returners.kafka_return.returner(ret)

	Return information to a Kafka server

salt.returners.librato_return

Salt returner to return highstate stats to Librato

To enable this returner the minion will need the Librato
client importable on the Python path and the following
values configured in the minion or master config.

The Librato python client can be found at:
https://github.com/librato/python-librato

librato.email: example@librato.com
librato.api_token: abc12345def

This return supports multi-dimension metrics for Librato. To enable
support for more metrics, the tags JSON object can be modified to include
other tags.

Adding EC2 Tags example:
If ec2_tags:region were desired within the tags for multi-dimension. The tags
could be modified to include the ec2 tags. Multiple dimensions are added simply
by adding more tags to the submission.

pillar_data = __salt__['pillar.raw']()
q.add(metric.name, value, tags={'Name': ret['id'],'Region': pillar_data['ec2_tags']['Name']})

	
salt.returners.librato_return.returner(ret)

	Parse the return data and return metrics to Librato.

salt.returners.local

The local returner is used to test the returner interface, it just prints the
return data to the console to verify that it is being passed properly

To use the local returner, append '--return local' to the salt command. ex:

salt '*' test.ping --return local

	
salt.returners.local.event_return(event)

	Print event return data to the terminal to verify functionality

	
salt.returners.local.returner(ret)

	Print the return data to the terminal to verify functionality

salt.returners.local_cache

Return data to local job cache

	
salt.returners.local_cache.clean_old_jobs()

	Clean out the old jobs from the job cache

	
salt.returners.local_cache.get_endtime(jid)

	Retrieve the stored endtime for a given job

Returns False if no endtime is present

	
salt.returners.local_cache.get_jid(jid)

	Return the information returned when the specified job id was executed

	
salt.returners.local_cache.get_jids()

	Return a dict mapping all job ids to job information

	
salt.returners.local_cache.get_jids_filter(count, filter_find_job=True)

	Return a list of all jobs information filtered by the given criteria.
:param int count: show not more than the count of most recent jobs
:param bool filter_find_jobs: filter out 'saltutil.find_job' jobs

	
salt.returners.local_cache.get_load(jid)

	Return the load data that marks a specified jid

	
salt.returners.local_cache.load_reg()

	Load the register from msgpack files

	
salt.returners.local_cache.prep_jid(nocache=False, passed_jid=None, recurse_count=0)

	Return a job id and prepare the job id directory.

This is the function responsible for making sure jids don't collide (unless
it is passed a jid).
So do what you have to do to make sure that stays the case

	
salt.returners.local_cache.returner(load)

	Return data to the local job cache

	
salt.returners.local_cache.save_load(jid, clear_load, minions=None, recurse_count=0)

	Save the load to the specified jid

minions argument is to provide a pre-computed list of matched minions for
the job, for cases when this function can't compute that list itself (such
as for salt-ssh)

	
salt.returners.local_cache.save_minions(jid, minions, syndic_id=None)

	Save/update the serialized list of minions for a given job

	
salt.returners.local_cache.save_reg(data)

	Save the register to msgpack files

	
salt.returners.local_cache.update_endtime(jid, time)

	Update (or store) the end time for a given job

Endtime is stored as a plain text string

salt.returners.mattermost_returner

Return salt data via mattermost

New in version 2017.7.0.

The following fields can be set in the minion conf file:

mattermost.hook (required)
mattermost.username (optional)
mattermost.channel (optional)

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

mattermost.channel
mattermost.hook
mattermost.username

mattermost settings may also be configured as:

mattermost:
 channel: RoomName
 hook: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 username: user

To use the mattermost returner, append '--return mattermost' to the salt command.

salt '*' test.ping --return mattermost

To override individual configuration items, append --return_kwargs '{'key:': 'value'}' to the salt command.

salt '*' test.ping --return mattermost --return_kwargs '{'channel': '#random'}'

	
salt.returners.mattermost_returner.event_return(events)

	Send the events to a mattermost room.

	Parameters:

	events -- List of events

	Returns:

	Boolean if messages were sent successfully.

	
salt.returners.mattermost_returner.post_message(channel, message, username, api_url, hook)

	Send a message to a mattermost room.

	Parameters:

	
	channel -- The room name.

	message -- The message to send to the mattermost room.

	username -- Specify who the message is from.

	hook -- The mattermost hook, if not specified in the configuration.

	Returns:

	Boolean if message was sent successfully.

	
salt.returners.mattermost_returner.returner(ret)

	Send an mattermost message with the data

salt.returners.memcache_return

Return data to a memcache server

To enable this returner the minion will need the python client for memcache
installed and the following values configured in the minion or master
config, these are the defaults.

memcache.host: 'localhost'
memcache.port: '11211'

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location.

alternative.memcache.host: 'localhost'
alternative.memcache.port: '11211'

python2-memcache uses 'localhost' and '11211' as syntax on connection.

To use the memcache returner, append '--return memcache' to the salt command.

salt '*' test.ping --return memcache

To use the alternative configuration, append '--return_config alternative' to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return memcache --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return memcache --return_kwargs '{"host": "hostname.domain.com"}'

	
salt.returners.memcache_return.get_fun(fun)

	Return a dict of the last function called for all minions

	
salt.returners.memcache_return.get_jid(jid)

	Return the information returned when the specified job id was executed

	
salt.returners.memcache_return.get_jids()

	Return a list of all job ids

	
salt.returners.memcache_return.get_load(jid)

	Return the load data that marks a specified jid

	
salt.returners.memcache_return.get_minions()

	Return a list of minions

	
salt.returners.memcache_return.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.memcache_return.returner(ret)

	Return data to a memcache data store

	
salt.returners.memcache_return.save_load(jid, load, minions=None)

	Save the load to the specified jid

	
salt.returners.memcache_return.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.mongo_future_return

Return data to a mongodb server

Required python modules: pymongo

This returner will send data from the minions to a MongoDB server. MongoDB
server can be configured by using host, port, db, user and password settings
or by connection string URI (for pymongo > 2.3). To configure the settings
for your MongoDB server, add the following lines to the minion config files:

mongo.db: <database name>
mongo.host: <server ip address>
mongo.user: <MongoDB username>
mongo.password: <MongoDB user password>
mongo.port: 27017

Or single URI:

mongo.uri: URI

where uri is in the format:

mongodb://[username:password@]host1[:port1][,host2[:port2],...[,hostN[:portN]]][/[database][?options]]

Example:

mongodb://db1.example.net:27017/mydatabase
mongodb://db1.example.net:27017,db2.example.net:2500/?replicaSet=test
mongodb://db1.example.net:27017,db2.example.net:2500/?replicaSet=test&connectTimeoutMS=300000

More information on URI format can be found in
https://docs.mongodb.com/manual/reference/connection-string/

You can also ask for indexes creation on the most common used fields, which
should greatly improve performance. Indexes are not created by default.

mongo.indexes: true

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

alternative.mongo.db: <database name>
alternative.mongo.host: <server ip address>
alternative.mongo.user: <MongoDB username>
alternative.mongo.password: <MongoDB user password>
alternative.mongo.port: 27017

Or single URI:

alternative.mongo.uri: URI

This mongo returner is being developed to replace the default mongodb returner
in the future and should not be considered API stable yet.

To use the mongo returner, append '--return mongo' to the salt command.

salt '*' test.ping --return mongo

To use the alternative configuration, append '--return_config alternative' to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return mongo --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return mongo --return_kwargs '{"db": "another-salt"}'

	
salt.returners.mongo_future_return.event_return(events)

	Return events to Mongodb server

	
salt.returners.mongo_future_return.get_fun(fun)

	Return the most recent jobs that have executed the named function

	
salt.returners.mongo_future_return.get_jid(jid)

	Return the return information associated with a jid

	
salt.returners.mongo_future_return.get_jids()

	Return a list of job ids

	
salt.returners.mongo_future_return.get_load(jid)

	Return the load associated with a given job id

	
salt.returners.mongo_future_return.get_minions()

	Return a list of minions

	
salt.returners.mongo_future_return.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.mongo_future_return.returner(ret)

	Return data to a mongodb server

	
salt.returners.mongo_future_return.save_load(jid, load, minions=None)

	Save the load for a given job id

	
salt.returners.mongo_future_return.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.mongo_return

Return data to a mongodb server

Required python modules: pymongo

This returner will send data from the minions to a MongoDB server. To
configure the settings for your MongoDB server, add the following lines
to the minion config files.

mongo.db: <database name>
mongo.host: <server ip address>
mongo.user: <MongoDB username>
mongo.password: <MongoDB user password>
mongo.port: 27017

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location.

alternative.mongo.db: <database name>
alternative.mongo.host: <server ip address>
alternative.mongo.user: <MongoDB username>
alternative.mongo.password: <MongoDB user password>
alternative.mongo.port: 27017

To use the mongo returner, append '--return mongo' to the salt command.

salt '*' test.ping --return mongo_return

To use the alternative configuration, append '--return_config alternative' to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return mongo_return --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return mongo --return_kwargs '{"db": "another-salt"}'

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return mongo --return_kwargs '{"db": "another-salt"}'

	
salt.returners.mongo_return.get_fun(fun)

	Return the most recent jobs that have executed the named function

	
salt.returners.mongo_return.get_jid(jid)

	Return the return information associated with a jid

	
salt.returners.mongo_return.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.mongo_return.returner(ret)

	Return data to a mongodb server

	
salt.returners.mongo_return.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.multi_returner

Read/Write multiple returners

	
salt.returners.multi_returner.clean_old_jobs()

	Clean out the old jobs from all returners (if you have it)

	
salt.returners.multi_returner.get_jid(jid)

	Merge the return data from all returners

	
salt.returners.multi_returner.get_jids()

	Return all job data from all returners

	
salt.returners.multi_returner.get_load(jid)

	Merge the load data from all returners

	
salt.returners.multi_returner.prep_jid(nocache=False, passed_jid=None)

	Call both with prep_jid on all returners in multi_returner

TODO: finish this, what do do when you get different jids from 2 returners...
since our jids are time based, this make this problem hard, because they
aren't unique, meaning that we have to make sure that no one else got the jid
and if they did we spin to get a new one, which means "locking" the jid in 2
returners is non-trivial

	
salt.returners.multi_returner.returner(load)

	Write return to all returners in multi_returner

	
salt.returners.multi_returner.save_load(jid, clear_load, minions=None)

	Write load to all returners in multi_returner

	
salt.returners.multi_returner.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.mysql

Return data to a mysql server

	maintainer:

	Dave Boucha <dave@saltstack.com>, Seth House <shouse@saltstack.com>

	maturity:

	mature

	depends:

	python-mysqldb

	platform:

	all

To enable this returner, the minion will need the python client for mysql
installed and the following values configured in the minion or master
config. These are the defaults:

mysql.host: 'salt'
mysql.user: 'salt'
mysql.pass: 'salt'
mysql.db: 'salt'
mysql.port: 3306

SSL is optional. The defaults are set to None. If you do not want to use SSL,
either exclude these options or set them to None.

mysql.ssl_ca: None
mysql.ssl_cert: None
mysql.ssl_key: None

Alternative configuration values can be used by prefacing the configuration
with alternative.. Any values not found in the alternative configuration will
be pulled from the default location. As stated above, SSL configuration is
optional. The following ssl options are simply for illustration purposes:

alternative.mysql.host: 'salt'
alternative.mysql.user: 'salt'
alternative.mysql.pass: 'salt'
alternative.mysql.db: 'salt'
alternative.mysql.port: 3306
alternative.mysql.ssl_ca: '/etc/pki/mysql/certs/localhost.pem'
alternative.mysql.ssl_cert: '/etc/pki/mysql/certs/localhost.crt'
alternative.mysql.ssl_key: '/etc/pki/mysql/certs/localhost.key'

Should you wish the returner data to be cleaned out every so often, set
keep_jobs_seconds to the number of hours for the jobs to live in the
tables. Setting it to 0 will cause the data to stay in the tables. The
default setting for keep_jobs_seconds is set to 86400.

Should you wish to archive jobs in a different table for later processing,
set archive_jobs to True. Salt will create 3 archive tables

	jids_archive

	salt_returns_archive

	salt_events_archive

and move the contents of jids, salt_returns, and salt_events that are
more than keep_jobs_seconds seconds old to these tables.

Use the following mysql database schema:

CREATE DATABASE `salt`
 DEFAULT CHARACTER SET utf8
 DEFAULT COLLATE utf8_general_ci;

USE `salt`;

--
-- Table structure for table `jids`
--

DROP TABLE IF EXISTS `jids`;
CREATE TABLE `jids` (
 `jid` varchar(255) NOT NULL,
 `load` mediumtext NOT NULL,
 UNIQUE KEY `jid` (`jid`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

--
-- Table structure for table `salt_returns`
--

DROP TABLE IF EXISTS `salt_returns`;
CREATE TABLE `salt_returns` (
 `fun` varchar(50) NOT NULL,
 `jid` varchar(255) NOT NULL,
 `return` mediumtext NOT NULL,
 `id` varchar(255) NOT NULL,
 `success` varchar(10) NOT NULL,
 `full_ret` mediumtext NOT NULL,
 `alter_time` TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 KEY `id` (`id`),
 KEY `jid` (`jid`),
 KEY `fun` (`fun`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

--
-- Table structure for table `salt_events`
--

DROP TABLE IF EXISTS `salt_events`;
CREATE TABLE `salt_events` (
`id` BIGINT NOT NULL AUTO_INCREMENT,
`tag` varchar(255) NOT NULL,
`data` mediumtext NOT NULL,
`alter_time` TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
`master_id` varchar(255) NOT NULL,
PRIMARY KEY (`id`),
KEY `tag` (`tag`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Required python modules: MySQLdb

To use the mysql returner, append '--return mysql' to the salt command.

salt '*' test.ping --return mysql

To use the alternative configuration, append '--return_config alternative' to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return mysql --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return mysql --return_kwargs '{"db": "another-salt"}'

	
salt.returners.mysql.clean_old_jobs()

	Called in the master's event loop every loop_interval. Archives and/or
deletes the events and job details from the database.
:return:

	
salt.returners.mysql.event_return(events)

	Return event to mysql server

Requires that configuration be enabled via 'event_return'
option in master config.

	
salt.returners.mysql.get_fun(fun)

	Return a dict of the last function called for all minions

	
salt.returners.mysql.get_jid(jid)

	Return the information returned when the specified job id was executed

	
salt.returners.mysql.get_jids()

	Return a list of all job ids

	
salt.returners.mysql.get_jids_filter(count, filter_find_job=True)

	Return a list of all job ids
:param int count: show not more than the count of most recent jobs
:param bool filter_find_jobs: filter out 'saltutil.find_job' jobs

	
salt.returners.mysql.get_load(jid)

	Return the load data that marks a specified jid

	
salt.returners.mysql.get_minions()

	Return a list of minions

	
salt.returners.mysql.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.mysql.returner(ret)

	Return data to a mysql server

	
salt.returners.mysql.save_load(jid, load, minions=None)

	Save the load to the specified jid id

	
salt.returners.mysql.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.nagios_nrdp_return

Return salt data to Nagios

The following fields can be set in the minion conf file:

nagios.url (required)
nagios.token (required)
nagios.service (optional)
nagios.check_type (optional)

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

nagios.url
nagios.token
nagios.service

Nagios settings may also be configured as:

 nagios:
 url: http://localhost/nrdp
 token: r4nd0mt0k3n
 service: service-check

 alternative.nagios:
 url: http://localhost/nrdp
 token: r4nd0mt0k3n
 service: another-service-check

To use the Nagios returner, append '--return nagios' to the salt command. ex:

.. code-block:: bash

 salt '*' test.ping --return nagios

To use the alternative configuration, append '--return_config alternative' to the salt command. ex:

 salt '*' test.ping --return nagios --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return nagios --return_kwargs '{"service": "service-name"}'

	
salt.returners.nagios_nrdp_return.returner(ret)

	Send a message to Nagios with the data

salt.returners.odbc

Return data to an ODBC compliant server. This driver was
developed with Microsoft SQL Server in mind, but theoretically
could be used to return data to any compliant ODBC database
as long as there is a working ODBC driver for it on your
minion platform.

	maintainer:

	
	
	Oldham (cr@saltstack.com)

	maturity:

	New

	depends:

	unixodbc, pyodbc, freetds (for SQL Server)

	platform:

	all

To enable this returner the minion will need

On Linux:

unixodbc (http://www.unixodbc.org)
pyodbc (pip install pyodbc)
The FreeTDS ODBC driver for SQL Server (http://www.freetds.org)
or another compatible ODBC driver

On Windows:

TBD

unixODBC and FreeTDS need to be configured via /etc/odbcinst.ini and
/etc/odbc.ini.

/etc/odbcinst.ini:

[TDS]
Description=TDS
Driver=/usr/lib/x86_64-linux-gnu/odbc/libtdsodbc.so

(Note the above Driver line needs to point to the location of the FreeTDS
shared library. This example is for Ubuntu 14.04.)

/etc/odbc.ini:

[TS]
Description = "Salt Returner"
Driver=TDS
Server = <your server ip or fqdn>
Port = 1433
Database = salt
Trace = No

Also you need the following values configured in the minion or master config.
Configure as you see fit:

returner.odbc.dsn: 'TS'
returner.odbc.user: 'salt'
returner.odbc.passwd: 'salt'

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

alternative.returner.odbc.dsn: 'TS'
alternative.returner.odbc.user: 'salt'
alternative.returner.odbc.passwd: 'salt'

Running the following commands against Microsoft SQL Server in the desired
database as the appropriate user should create the database tables
correctly. Replace with equivalent SQL for other ODBC-compliant servers

 --
 -- Table structure for table 'jids'
 --

 if OBJECT_ID('dbo.jids', 'U') is not null
 DROP TABLE dbo.jids

 CREATE TABLE dbo.jids (
 jid varchar(255) PRIMARY KEY,
 load varchar(MAX) NOT NULL
);

 --
 -- Table structure for table 'salt_returns'
 --
 IF OBJECT_ID('dbo.salt_returns', 'U') IS NOT NULL
 DROP TABLE dbo.salt_returns;

 CREATE TABLE dbo.salt_returns (
 added datetime not null default (getdate()),
 fun varchar(100) NOT NULL,
 jid varchar(255) NOT NULL,
 retval varchar(MAX) NOT NULL,
 id varchar(255) NOT NULL,
 success bit default(0) NOT NULL,
 full_ret varchar(MAX)
);

 CREATE INDEX salt_returns_added on dbo.salt_returns(added);
 CREATE INDEX salt_returns_id on dbo.salt_returns(id);
 CREATE INDEX salt_returns_jid on dbo.salt_returns(jid);
 CREATE INDEX salt_returns_fun on dbo.salt_returns(fun);

To use this returner, append '--return odbc' to the salt command.

.. code-block:: bash

 salt '*' status.diskusage --return odbc

To use the alternative configuration, append '--return_config alternative' to the salt command.

.. versionadded:: 2015.5.0

.. code-block:: bash

 salt '*' test.ping --return odbc --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return odbc --return_kwargs '{"dsn": "dsn-name"}'

	
salt.returners.odbc.get_fun(fun)

	Return a dict of the last function called for all minions

	
salt.returners.odbc.get_jid(jid)

	Return the information returned when the specified job id was executed

	
salt.returners.odbc.get_jids()

	Return a list of all job ids

	
salt.returners.odbc.get_load(jid)

	Return the load data that marks a specified jid

	
salt.returners.odbc.get_minions()

	Return a list of minions

	
salt.returners.odbc.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.odbc.returner(ret)

	Return data to an odbc server

	
salt.returners.odbc.save_load(jid, load, minions=None)

	Save the load to the specified jid id

	
salt.returners.odbc.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.pgjsonb

Return data to a PostgreSQL server with json data stored in Pg's jsonb data type

	maintainer:

	Dave Boucha <dave@saltstack.com>, Seth House <shouse@saltstack.com>, C. R. Oldham <cr@saltstack.com>

	maturity:

	Stable

	depends:

	python-psycopg2

	platform:

	all

Note

There are three PostgreSQL returners. Any can function as an external
master job cache. but each has different
features. SaltStack recommends
returners.pgjsonb if you are working with
a version of PostgreSQL that has the appropriate native binary JSON types.
Otherwise, review
returners.postgres and
returners.postgres_local_cache
to see which module best suits your particular needs.

To enable this returner, the minion will need the python client for PostgreSQL
installed and the following values configured in the minion or master
config. These are the defaults:

returner.pgjsonb.host: 'salt'
returner.pgjsonb.user: 'salt'
returner.pgjsonb.pass: 'salt'
returner.pgjsonb.db: 'salt'
returner.pgjsonb.port: 5432

SSL is optional. The defaults are set to None. If you do not want to use SSL,
either exclude these options or set them to None.

returner.pgjsonb.sslmode: None
returner.pgjsonb.sslcert: None
returner.pgjsonb.sslkey: None
returner.pgjsonb.sslrootcert: None
returner.pgjsonb.sslcrl: None

New in version 2017.5.0.

Alternative configuration values can be used by prefacing the configuration
with alternative.. Any values not found in the alternative configuration will
be pulled from the default location. As stated above, SSL configuration is
optional. The following ssl options are simply for illustration purposes:

alternative.pgjsonb.host: 'salt'
alternative.pgjsonb.user: 'salt'
alternative.pgjsonb.pass: 'salt'
alternative.pgjsonb.db: 'salt'
alternative.pgjsonb.port: 5432
alternative.pgjsonb.ssl_ca: '/etc/pki/mysql/certs/localhost.pem'
alternative.pgjsonb.ssl_cert: '/etc/pki/mysql/certs/localhost.crt'
alternative.pgjsonb.ssl_key: '/etc/pki/mysql/certs/localhost.key'

Should you wish the returner data to be cleaned out every so often, set
keep_jobs_seconds to the number of seconds for the jobs to live in the tables.
Setting it to 0 or leaving it unset will cause the data to stay in the tables.

Should you wish to archive jobs in a different table for later processing,
set archive_jobs to True. Salt will create 3 archive tables;

	jids_archive

	salt_returns_archive

	salt_events_archive

and move the contents of jids, salt_returns, and salt_events that are
more than keep_jobs_seconds seconds old to these tables.

New in version 2019.2.0.

Use the following Pg database schema:

CREATE DATABASE salt
 WITH ENCODING 'utf-8';

--
-- Table structure for table `jids`
--
DROP TABLE IF EXISTS jids;
CREATE TABLE jids (
 jid varchar(255) NOT NULL primary key,
 load jsonb NOT NULL
);
CREATE INDEX idx_jids_jsonb on jids
 USING gin (load)
 WITH (fastupdate=on);

--
-- Table structure for table `salt_returns`
--

DROP TABLE IF EXISTS salt_returns;
CREATE TABLE salt_returns (
 fun varchar(50) NOT NULL,
 jid varchar(255) NOT NULL,
 return jsonb NOT NULL,
 id varchar(255) NOT NULL,
 success varchar(10) NOT NULL,
 full_ret jsonb NOT NULL,
 alter_time TIMESTAMP WITH TIME ZONE DEFAULT NOW());

CREATE INDEX idx_salt_returns_id ON salt_returns (id);
CREATE INDEX idx_salt_returns_jid ON salt_returns (jid);
CREATE INDEX idx_salt_returns_fun ON salt_returns (fun);
CREATE INDEX idx_salt_returns_return ON salt_returns
 USING gin (return) with (fastupdate=on);
CREATE INDEX idx_salt_returns_full_ret ON salt_returns
 USING gin (full_ret) with (fastupdate=on);

--
-- Table structure for table `salt_events`
--

DROP TABLE IF EXISTS salt_events;
DROP SEQUENCE IF EXISTS seq_salt_events_id;
CREATE SEQUENCE seq_salt_events_id;
CREATE TABLE salt_events (
 id BIGINT NOT NULL UNIQUE DEFAULT nextval('seq_salt_events_id'),
 tag varchar(255) NOT NULL,
 data jsonb NOT NULL,
 alter_time TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
 master_id varchar(255) NOT NULL);

CREATE INDEX idx_salt_events_tag on
 salt_events (tag);
CREATE INDEX idx_salt_events_data ON salt_events
 USING gin (data) with (fastupdate=on);

Required python modules: Psycopg2

To use this returner, append '--return pgjsonb' to the salt command.

salt '*' test.ping --return pgjsonb

To use the alternative configuration, append '--return_config alternative' to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return pgjsonb --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return pgjsonb --return_kwargs '{"db": "another-salt"}'

	
salt.returners.pgjsonb.clean_old_jobs()

	Called in the master's event loop every loop_interval. Archives and/or
deletes the events and job details from the database.
:return:

	
salt.returners.pgjsonb.event_return(events)

	Return event to Pg server

Requires that configuration be enabled via 'event_return'
option in master config.

	
salt.returners.pgjsonb.get_fun(fun)

	Return a dict of the last function called for all minions

	
salt.returners.pgjsonb.get_jid(jid)

	Return the information returned when the specified job id was executed

	
salt.returners.pgjsonb.get_jids()

	Return a list of all job ids

	
salt.returners.pgjsonb.get_load(jid)

	Return the load data that marks a specified jid

	
salt.returners.pgjsonb.get_minions()

	Return a list of minions

	
salt.returners.pgjsonb.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.pgjsonb.returner(ret)

	Return data to a Pg server

	
salt.returners.pgjsonb.save_load(jid, load, minions=None)

	Save the load to the specified jid id

	
salt.returners.pgjsonb.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.postgres

Return data to a postgresql server

Note

There are three PostgreSQL returners. Any can function as an external
master job cache. but each has different
features. SaltStack recommends
returners.pgjsonb if you are working with
a version of PostgreSQL that has the appropriate native binary JSON types.
Otherwise, review
returners.postgres and
returners.postgres_local_cache
to see which module best suits your particular needs.

	maintainer:

	None

	maturity:

	New

	depends:

	psycopg2

	platform:

	all

To enable this returner the minion will need the psycopg2 installed and
the following values configured in the minion or master config:

returner.postgres.host: 'salt'
returner.postgres.user: 'salt'
returner.postgres.passwd: 'salt'
returner.postgres.db: 'salt'
returner.postgres.port: 5432

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

alternative.returner.postgres.host: 'salt'
alternative.returner.postgres.user: 'salt'
alternative.returner.postgres.passwd: 'salt'
alternative.returner.postgres.db: 'salt'
alternative.returner.postgres.port: 5432

Running the following commands as the postgres user should create the database
correctly:

psql << EOF
CREATE ROLE salt WITH PASSWORD 'salt';
CREATE DATABASE salt WITH OWNER salt;
EOF

psql -h localhost -U salt << EOF
--
-- Table structure for table 'jids'
--

DROP TABLE IF EXISTS jids;
CREATE TABLE jids (
 jid varchar(20) PRIMARY KEY,
 load text NOT NULL
);

--
-- Table structure for table 'salt_returns'
--

DROP TABLE IF EXISTS salt_returns;
CREATE TABLE salt_returns (
 fun varchar(50) NOT NULL,
 jid varchar(255) NOT NULL,
 return text NOT NULL,
 full_ret text,
 id varchar(255) NOT NULL,
 success varchar(10) NOT NULL,
 alter_time TIMESTAMP WITH TIME ZONE DEFAULT now()
);

CREATE INDEX idx_salt_returns_id ON salt_returns (id);
CREATE INDEX idx_salt_returns_jid ON salt_returns (jid);
CREATE INDEX idx_salt_returns_fun ON salt_returns (fun);
CREATE INDEX idx_salt_returns_updated ON salt_returns (alter_time);

--
-- Table structure for table `salt_events`
--

DROP TABLE IF EXISTS salt_events;
DROP SEQUENCE IF EXISTS seq_salt_events_id;
CREATE SEQUENCE seq_salt_events_id;
CREATE TABLE salt_events (
 id BIGINT NOT NULL UNIQUE DEFAULT nextval('seq_salt_events_id'),
 tag varchar(255) NOT NULL,
 data text NOT NULL,
 alter_time TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
 master_id varchar(255) NOT NULL
);

CREATE INDEX idx_salt_events_tag on salt_events (tag);

EOF

Required python modules: psycopg2

To use the postgres returner, append '--return postgres' to the salt command.

salt '*' test.ping --return postgres

To use the alternative configuration, append '--return_config alternative' to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return postgres --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return postgres --return_kwargs '{"db": "another-salt"}'

	
salt.returners.postgres.event_return(events)

	Return event to Pg server

Requires that configuration be enabled via 'event_return'
option in master config.

	
salt.returners.postgres.get_fun(fun)

	Return a dict of the last function called for all minions

	
salt.returners.postgres.get_jid(jid)

	Return the information returned when the specified job id was executed

	
salt.returners.postgres.get_jids()

	Return a list of all job ids

	
salt.returners.postgres.get_load(jid)

	Return the load data that marks a specified jid

	
salt.returners.postgres.get_minions()

	Return a list of minions

	
salt.returners.postgres.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.postgres.returner(ret)

	Return data to a postgres server

	
salt.returners.postgres.save_load(jid, load, minions=None)

	Save the load to the specified jid id

	
salt.returners.postgres.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.postgres_local_cache

Use a postgresql server for the master job cache. This helps the job cache to
cope with scale.

Note

There are three PostgreSQL returners. Any can function as an external
master job cache. but each has different
features. SaltStack recommends
returners.pgjsonb if you are working with
a version of PostgreSQL that has the appropriate native binary JSON types.
Otherwise, review
returners.postgres and
returners.postgres_local_cache
to see which module best suits your particular needs.

	maintainer:

	gjredelinghuys@gmail.com

	maturity:

	Stable

	depends:

	psycopg2

	platform:

	all

To enable this returner the minion will need the psycopg2 installed and
the following values configured in the master config:

master_job_cache: postgres_local_cache
master_job_cache.postgres.host: 'salt'
master_job_cache.postgres.user: 'salt'
master_job_cache.postgres.passwd: 'salt'
master_job_cache.postgres.db: 'salt'
master_job_cache.postgres.port: 5432

Running the following command as the postgres user should create the database
correctly:

psql << EOF
CREATE ROLE salt WITH PASSWORD 'salt';
CREATE DATABASE salt WITH OWNER salt;
EOF

In case the postgres database is a remote host, you'll need this command also:

ALTER ROLE salt WITH LOGIN;

and then:

psql -h localhost -U salt << EOF
--
-- Table structure for table 'jids'
--

DROP TABLE IF EXISTS jids;
CREATE TABLE jids (
 jid varchar(20) PRIMARY KEY,
 started TIMESTAMP WITH TIME ZONE DEFAULT now(),
 tgt_type text NOT NULL,
 cmd text NOT NULL,
 tgt text NOT NULL,
 kwargs text NOT NULL,
 ret text NOT NULL,
 username text NOT NULL,
 arg text NOT NULL,
 fun text NOT NULL
);

--
-- Table structure for table 'salt_returns'
--
-- note that 'success' must not have NOT NULL constraint, since
-- some functions don't provide it.

DROP TABLE IF EXISTS salt_returns;
CREATE TABLE salt_returns (
 added TIMESTAMP WITH TIME ZONE DEFAULT now(),
 fun text NOT NULL,
 jid varchar(20) NOT NULL,
 return text NOT NULL,
 id text NOT NULL,
 success boolean
);
CREATE INDEX ON salt_returns (added);
CREATE INDEX ON salt_returns (id);
CREATE INDEX ON salt_returns (jid);
CREATE INDEX ON salt_returns (fun);

DROP TABLE IF EXISTS salt_events;
CREATE TABLE salt_events (
 id SERIAL,
 tag text NOT NULL,
 data text NOT NULL,
 alter_time TIMESTAMP WITH TIME ZONE DEFAULT now(),
 master_id text NOT NULL
);
CREATE INDEX ON salt_events (tag);
CREATE INDEX ON salt_events (data);
CREATE INDEX ON salt_events (id);
CREATE INDEX ON salt_events (master_id);
EOF

Required python modules: psycopg2

	
salt.returners.postgres_local_cache.clean_old_jobs()

	Clean out the old jobs from the job cache

	
salt.returners.postgres_local_cache.event_return(events)

	Return event to a postgres server

Require that configuration be enabled via 'event_return'
option in master config.

	
salt.returners.postgres_local_cache.get_jid(jid)

	Return the information returned when the specified job id was executed

	
salt.returners.postgres_local_cache.get_jids()

	Return a list of all job ids
For master job cache this also formats the output and returns a string

	
salt.returners.postgres_local_cache.get_load(jid)

	Return the load data that marks a specified jid

	
salt.returners.postgres_local_cache.prep_jid(nocache=False, passed_jid=None)

	Return a job id and prepare the job id directory
This is the function responsible for making sure jids don't collide
(unless its passed a jid). So do what you have to do to make sure that
stays the case

	
salt.returners.postgres_local_cache.returner(load)

	Return data to a postgres server

	
salt.returners.postgres_local_cache.save_load(jid, clear_load, minions=None)

	Save the load to the specified jid id

	
salt.returners.postgres_local_cache.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.pushover_returner

Warning

This module will be removed from Salt in version 3009 in favor of
the pushover Salt Extension [https://github.com/salt-extensions/saltext-pushover].

Return salt data via pushover (http://www.pushover.net)

New in version 2016.3.0.

The following fields can be set in the minion conf file:

pushover.user (required)
pushover.token (required)
pushover.title (optional)
pushover.device (optional)
pushover.priority (optional)
pushover.expire (optional)
pushover.retry (optional)
pushover.profile (optional)

Note

The user here is your user key, not the email address you use to
login to pushover.net.

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

alternative.pushover.user
alternative.pushover.token
alternative.pushover.title
alternative.pushover.device
alternative.pushover.priority
alternative.pushover.expire
alternative.pushover.retry

PushOver settings may also be configured as:

 pushover:
 user: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 token: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 title: Salt Returner
 device: phone
 priority: -1
 expire: 3600
 retry: 5

 alternative.pushover:
 user: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 token: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 title: Salt Returner
 device: phone
 priority: 1
 expire: 4800
 retry: 2

 pushover_profile:
 pushover.token: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 pushover:
 user: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 profile: pushover_profile

 alternative.pushover:
 user: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 profile: pushover_profile

To use the PushOver returner, append '--return pushover' to the salt command. ex:

.. code-block:: bash

 salt '*' test.ping --return pushover

To use the alternative configuration, append '--return_config alternative' to the salt command. ex:

 salt '*' test.ping --return pushover --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

salt '*' test.ping --return pushover --return_kwargs '{"title": "Salt is awesome!"}'

	
salt.returners.pushover_returner.returner(ret)

	Send an PushOver message with the data

salt.returners.rawfile_json

Take data from salt and "return" it into a raw file containing the json, with
one line per event.

Add the following to the minion or master configuration file.

rawfile_json.filename: <path_to_output_file>

Default is /var/log/salt/events.

Common use is to log all events on the master. This can generate a lot of
noise, so you may wish to configure batch processing and/or configure the
event_return_whitelist or event_return_blacklist
to restrict the events that are written.

	
salt.returners.rawfile_json.event_return(events)

	Write event data (return data and non-return data) to file on the master.

	
salt.returners.rawfile_json.returner(ret)

	Write the return data to a file on the minion.

salt.returners.redis_return

Return data to a redis server

To enable this returner the minion will need the python client for redis
installed and the following values configured in the minion or master
config, these are the defaults:

redis.db: '0'
redis.host: 'salt'
redis.port: 6379
redis.password: ''

New in version 2018.3.1: Alternatively a UNIX socket can be specified by unix_socket_path:

redis.db: '0'
redis.unix_socket_path: /var/run/redis/redis.sock

Cluster Mode Example:

redis.db: '0'
redis.cluster_mode: true
redis.cluster.skip_full_coverage_check: true
redis.cluster.startup_nodes:
 - host: redis-member-1
 port: 6379
 - host: redis-member-2
 port: 6379

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

alternative.redis.db: '0'
alternative.redis.host: 'salt'
alternative.redis.port: 6379
alternative.redis.password: ''

To use the redis returner, append '--return redis' to the salt command.

salt '*' test.ping --return redis

To use the alternative configuration, append '--return_config alternative' to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return redis --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return redis --return_kwargs '{"db": "another-salt"}'

Redis Cluster Mode Options:

	cluster_mode: False
	Whether cluster_mode is enabled or not

	cluster.startup_nodes:
	A list of host, port dictionaries pointing to cluster members. At least one is required
but multiple nodes are better

redis.cluster.startup_nodes
 - host: redis-member-1
 port: 6379
 - host: redis-member-2
 port: 6379

	cluster.skip_full_coverage_check: False
	Some cluster providers restrict certain redis commands such as CONFIG for enhanced security.
Set this option to true to skip checks that required advanced privileges.

Note

Most cloud hosted redis clusters will require this to be set to True

	
salt.returners.redis_return.clean_old_jobs()

	Clean out minions's return data for old jobs.

Normally, hset 'ret:<jid>' are saved with a TTL, and will eventually
get cleaned by redis.But for jobs with some very late minion return, the
corresponding hset's TTL will be refreshed to a too late timestamp, we'll
do manually cleaning here.

	
salt.returners.redis_return.get_fun(fun)

	Return a dict of the last function called for all minions

	
salt.returners.redis_return.get_jid(jid)

	Return the information returned when the specified job id was executed

	
salt.returners.redis_return.get_jids()

	Return a dict mapping all job ids to job information

	
salt.returners.redis_return.get_load(jid)

	Return the load data that marks a specified jid

	
salt.returners.redis_return.get_minions()

	Return a list of minions

	
salt.returners.redis_return.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.redis_return.returner(ret)

	Return data to a redis data store

	
salt.returners.redis_return.save_load(jid, load, minions=None)

	Save the load to the specified jid

	
salt.returners.redis_return.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.sentry_return

Salt returner that reports execution results back to sentry. The returner will
inspect the payload to identify errors and flag them as such.

Pillar needs something like:

raven:
 servers:
 - http://192.168.1.1
 - https://sentry.example.com
 public_key: deadbeefdeadbeefdeadbeefdeadbeef
 secret_key: beefdeadbeefdeadbeefdeadbeefdead
 project: 1
 tags:
 - os
 - master
 - saltversion
 - cpuarch

or using a dsn:

raven:
 dsn: https://aaaa:bbbb@app.getsentry.com/12345
 tags:
 - os
 - master
 - saltversion
 - cpuarch

https://pypi.python.org/pypi/raven must be installed.

The pillar can be hidden on sentry return by setting hide_pillar: true.

The tags list (optional) specifies grains items that will be used as sentry
tags, allowing tagging of events in the sentry ui.

To report only errors to sentry, set report_errors_only: true.

	
salt.returners.sentry_return.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.sentry_return.returner(ret)

	Log outcome to sentry. The returner tries to identify errors and report
them as such. All other messages will be reported at info level.
Failed states will be appended as separate list for convenience.

salt.returners.slack_returner

Return salt data via slack

New in version 2015.5.0.

The following fields can be set in the minion conf file:

slack.channel (required)
slack.api_key (required)
slack.username (required)
slack.as_user (required to see the profile picture of your bot)
slack.profile (optional)
slack.changes(optional, only show changes and failed states)
slack.only_show_failed(optional, only show failed states)
slack.yaml_format(optional, format the json in yaml format)

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

slack.channel
slack.api_key
slack.username
slack.as_user

Slack settings may also be configured as:

slack:
 channel: RoomName
 api_key: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 username: user
 as_user: true

alternative.slack:
 room_id: RoomName
 api_key: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 from_name: user@email.com

slack_profile:
 slack.api_key: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 slack.from_name: user@email.com

slack:
 profile: slack_profile
 channel: RoomName

alternative.slack:
 profile: slack_profile
 channel: RoomName

To use the Slack returner, append '--return slack' to the salt command.

salt '*' test.ping --return slack

To use the alternative configuration, append '--return_config alternative' to the salt command.

salt '*' test.ping --return slack --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return slack --return_kwargs '{"channel": "#random"}'

	
salt.returners.slack_returner.returner(ret)

	Send an slack message with the data

salt.returners.slack_webhook_return

Return salt data via Slack using Incoming Webhooks

	codeauthor:

	Carlos D. Álvaro <github@cdalvaro.io>

The following fields can be set in the minion conf file:

slack_webhook.webhook (required, the webhook id. Just the part after: 'https://hooks.slack.com/services/')
slack_webhook.success_title (optional, short title for succeeded states. By default: '{id} | Succeeded')
slack_webhook.failure_title (optional, short title for failed states. By default: '{id} | Failed')
slack_webhook.author_icon (optional, a URL that with a small 16x16px image. Must be of type: GIF, JPEG, PNG, and BMP)
slack_webhook.show_tasks (optional, show identifiers for changed and failed tasks. By default: False)

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

slack_webhook.webhook
slack_webhook.success_title
slack_webhook.failure_title
slack_webhook.author_icon
slack_webhook.show_tasks

Slack settings may also be configured as:

slack_webhook:
 webhook: T00000000/B00000000/XXXXXXXXXXXXXXXXXXXXXXXX
 success_title: '[{id}] | Success'
 failure_title: '[{id}] | Failure'
 author_icon: https://platform.slack-edge.com/img/default_application_icon.png
 show_tasks: true

alternative.slack_webhook:
 webhook: T00000000/C00000000/YYYYYYYYYYYYYYYYYYYYYYYY
 show_tasks: false

To use the Slack returner,
append '--return slack_webhook' to the salt command.

salt '*' test.ping --return slack_webhook

To use the alternative configuration,
append '--return_config alternative' to the salt command.

salt '*' test.ping --return slack_webhook --return_config alternative

	
salt.returners.slack_webhook_return.event_return(events)

	Send event data to returner function
:param events: The Salt event return
:return: The result of the post

	
salt.returners.slack_webhook_return.returner(ret, **kwargs)

	Send a slack message with the data through a webhook
:param ret: The Salt return
:return: The result of the post

salt.returners.sms_return

Return data by SMS.

New in version 2015.5.0.

	maintainer:

	Damian Myerscough

	maturity:

	new

	depends:

	twilio

	platform:

	all

To enable this returner the minion will need the python twilio library
installed and the following values configured in the minion or master
config:

twilio.sid: 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
twilio.token: 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
twilio.to: '+1415XXXXXXX'
twilio.from: '+1650XXXXXXX'

To use the sms returner, append '--return sms' to the salt command.

salt '*' test.ping --return sms

	
salt.returners.sms_return.returner(ret)

	Return a response in an SMS message

salt.returners.smtp_return

Return salt data via email

The following fields can be set in the minion conf file. Fields are optional
unless noted otherwise.

	from (required) The name/address of the email sender.

	
	to (required) The names/addresses of the email recipients;
	comma-delimited. For example: you@example.com,someoneelse@example.com.

	host (required) The SMTP server hostname or address.

	port The SMTP server port; defaults to 25.

	
	username The username used to authenticate to the server. If specified a
	password is also required. It is recommended but not required to also use
TLS with this option.

	password The password used to authenticate to the server.

	tls Whether to secure the connection using TLS; defaults to False

	subject The email subject line.

	
	fields Which fields from the returned data to include in the subject line
	of the email; comma-delimited. For example: id,fun. Please note, the
subject line is not encrypted.

	
	gpgowner A user's ~/.gpg directory. This must contain a gpg
	public key matching the address the mail is sent to. If left unset, no
encryption will be used. Requires python-gnupg to be installed.

	template The path to a file to be used as a template for the email body.

	
	renderer A Salt renderer, or render-pipe, to use to render the email
	template. Default jinja.

Below is an example of the above settings in a Salt Minion configuration file:

smtp.from: me@example.net
smtp.to: you@example.com
smtp.host: localhost
smtp.port: 1025

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location. For example:

alternative.smtp.username: saltdev
alternative.smtp.password: saltdev
alternative.smtp.tls: True

To use the SMTP returner, append '--return smtp' to the salt command.

salt '*' test.ping --return smtp

To use the alternative configuration, append '--return_config alternative' to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return smtp --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the
salt command.

New in version 2016.3.0.

salt '*' test.ping --return smtp --return_kwargs '{"to": "user@domain.com"}'

An easy way to test the SMTP returner is to use the development SMTP server
built into Python. The command below will start a single-threaded SMTP server
that prints any email it receives to the console.

python -m smtpd -n -c DebuggingServer localhost:1025

New in version 2016.11.0.

It is possible to send emails with selected Salt events by configuring event_return option
for Salt Master. For example:

event_return: smtp

event_return_whitelist:
 - salt/key

smtp.from: me@example.net
smtp.to: you@example.com
smtp.host: localhost
smtp.subject: 'Salt Master {{act}}ed key from Minion ID: {{id}}'
smtp.template: /srv/salt/templates/email.j2

Also you need to create additional file /srv/salt/templates/email.j2 with email body template:

act: {{act}}
id: {{id}}
result: {{result}}

This configuration enables Salt Master to send an email when accepting or rejecting minions keys.

	
salt.returners.smtp_return.event_return(events)

	Return event data via SMTP

	
salt.returners.smtp_return.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.smtp_return.returner(ret)

	Send an email with the data

salt.returners.splunk

Send json response data to Splunk via the HTTP Event Collector
Requires the following config values to be specified in config or pillar:

splunk_http_forwarder:
 token: <splunk_http_forwarder_token>
 indexer: <hostname/IP of Splunk indexer>
 sourcetype: <Destination sourcetype for data>
 index: <Destination index for data>
 verify_ssl: true

Run a test by using salt-call test.ping --return splunk

Written by Scott Pack (github.com/scottjpack)

	
salt.returners.splunk.event_return(events)

	Return events to Splunk via the HTTP Event Collector.
Requires the Splunk HTTP Event Collector running on port 8088.
This is available on Splunk Enterprise version 6.3 or higher.

	
class salt.returners.splunk.http_event_collector(token, http_event_server, host='', http_event_port='8088', http_event_server_ssl=True, max_bytes=100000, verify_ssl=True)

	
	
sendEvent(payload, eventtime='')

	

	
salt.returners.splunk.returner(ret)

	Send a message to Splunk via the HTTP Event Collector.
Requires the Splunk HTTP Event Collector running on port 8088.
This is available on Splunk Enterprise version 6.3 or higher.

salt.returners.sqlite3

Insert minion return data into a sqlite3 database

	maintainer:

	Mickey Malone <mickey.malone@gmail.com>

	maturity:

	New

	depends:

	None

	platform:

	All

Sqlite3 is a serverless database that lives in a single file.
In order to use this returner the database file must exist,
have the appropriate schema defined, and be accessible to the
user whom the minion process is running as. This returner
requires the following values configured in the master or
minion config:

sqlite3.database: /usr/lib/salt/salt.db
sqlite3.timeout: 5.0

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

alternative.sqlite3.database: /usr/lib/salt/salt.db
alternative.sqlite3.timeout: 5.0

Use the commands to create the sqlite3 database and tables:

sqlite3 /usr/lib/salt/salt.db << EOF
--
-- Table structure for table 'jids'
--

CREATE TABLE jids (
 jid TEXT PRIMARY KEY,
 load TEXT NOT NULL
);

--
-- Table structure for table 'salt_returns'
--

CREATE TABLE salt_returns (
 fun TEXT KEY,
 jid TEXT KEY,
 id TEXT KEY,
 fun_args TEXT,
 date TEXT NOT NULL,
 full_ret TEXT NOT NULL,
 success TEXT NOT NULL
);
EOF

To use the sqlite returner, append '--return sqlite3' to the salt command.

salt '*' test.ping --return sqlite3

To use the alternative configuration, append '--return_config alternative' to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return sqlite3 --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return sqlite3 --return_kwargs '{"db": "/var/lib/salt/another-salt.db"}'

	
salt.returners.sqlite3_return.get_fun(fun)

	Return a dict of the last function called for all minions

	
salt.returners.sqlite3_return.get_jid(jid)

	Return the information returned from a specified jid

	
salt.returners.sqlite3_return.get_jids()

	Return a list of all job ids

	
salt.returners.sqlite3_return.get_load(jid)

	Return the load from a specified jid

	
salt.returners.sqlite3_return.get_minions()

	Return a list of minions

	
salt.returners.sqlite3_return.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.sqlite3_return.returner(ret)

	Insert minion return data into the sqlite3 database

	
salt.returners.sqlite3_return.save_load(jid, load, minions=None)

	Save the load to the specified jid

	
salt.returners.sqlite3_return.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.syslog_return

Return data to the host operating system's syslog facility

To use the syslog returner, append '--return syslog' to the
salt command.

salt '*' test.ping --return syslog

The following fields can be set in the minion conf file:

syslog.level (optional, Default: LOG_INFO)
syslog.facility (optional, Default: LOG_USER)
syslog.tag (optional, Default: salt-minion)
syslog.options (list, optional, Default: [])

Available levels, facilities, and options can be found in the
syslog docs for your python version.

Note

The default tag comes from sys.argv[0] which is
usually "salt-minion" but could be different based on
the specific environment.

Configuration example:

syslog.level: 'LOG_ERR'
syslog.facility: 'LOG_DAEMON'
syslog.tag: 'mysalt'
syslog.options:
 - LOG_PID

Of course you can also nest the options:

syslog:
 level: 'LOG_ERR'
 facility: 'LOG_DAEMON'
 tag: 'mysalt'
 options:
 - LOG_PID

Alternative configuration values can be used by
prefacing the configuration. Any values not found
in the alternative configuration will be pulled from
the default location:

alternative.syslog.level: 'LOG_WARN'
alternative.syslog.facility: 'LOG_NEWS'

To use the alternative configuration, append
--return_config alternative to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return syslog --return_config alternative

To override individual configuration items, append
--return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return syslog --return_kwargs '{"level": "LOG_DEBUG"}'

Note

Syslog server implementations may have limits on the maximum
record size received by the client. This may lead to job
return data being truncated in the syslog server's logs. For
example, for rsyslog on RHEL-based systems, the default
maximum record size is approximately 2KB (which return data
can easily exceed). This is configurable in rsyslog.conf via
the $MaxMessageSize config parameter. Please consult your syslog
implmentation's documentation to determine how to adjust this limit.

	
salt.returners.syslog_return.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.syslog_return.returner(ret)

	Return data to the local syslog

salt.returners.telegram_return

Return salt data via Telegram.

The following fields can be set in the minion conf file:

telegram.chat_id (required)
telegram.token (required)

Telegram settings may also be configured as:

telegram:
 chat_id: 000000000
 token: 000000000:xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

To use the Telegram return, append '--return telegram' to the salt command.

salt '*' test.ping --return telegram

	
salt.returners.telegram_return.returner(ret)

	Send a Telegram message with the data.

	Parameters:

	ret -- The data to be sent.

	Returns:

	Boolean if message was sent successfully.

salt.returners.xmpp_return

Return salt data via xmpp

	depends:

	sleekxmpp >= 1.3.1

The following fields can be set in the minion conf file:

xmpp.jid (required)
xmpp.password (required)
xmpp.recipient (required)
xmpp.profile (optional)

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

xmpp.jid
xmpp.password
xmpp.recipient
xmpp.profile

XMPP settings may also be configured as:

xmpp:
 jid: user@xmpp.domain.com/resource
 password: password
 recipient: user@xmpp.example.com

alternative.xmpp:
 jid: user@xmpp.domain.com/resource
 password: password
 recipient: someone@xmpp.example.com

xmpp_profile:
 xmpp.jid: user@xmpp.domain.com/resource
 xmpp.password: password

xmpp:
 profile: xmpp_profile
 recipient: user@xmpp.example.com

alternative.xmpp:
 profile: xmpp_profile
 recipient: someone-else@xmpp.example.com

To use the XMPP returner, append '--return xmpp' to the salt command.

salt '*' test.ping --return xmpp

To use the alternative configuration, append '--return_config alternative' to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return xmpp --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return xmpp --return_kwargs '{"recipient": "someone-else@xmpp.example.com"}'

	
class salt.returners.xmpp_return.SendMsgBot(jid, password, recipient, msg)

	
	
start(event)

	

	
salt.returners.xmpp_return.returner(ret)

	Send an xmpp message with the data

salt.returners.zabbix_return

Warning

This module will be removed from Salt in version 3009 in favor of
the zabbix Salt Extension [https://github.com/salt-extensions/saltext-zabbix].

Return salt data to Zabbix

The following Type: "Zabbix trapper" with "Type of information" Text items are required:

Key: salt.trap.info
Key: salt.trap.warning
Key: salt.trap.high

To use the Zabbix returner, append '--return zabbix' to the salt command. ex:

salt '*' test.ping --return zabbix

	
salt.returners.zabbix_return.returner(ret)

	

	
salt.returners.zabbix_return.save_load(jid, load, minions=None)

	Included for API consistency

	
salt.returners.zabbix_return.zabbix_send(key, output)

	

	
salt.returners.zabbix_return.zbx()

	

Executors

Executors are used by minion to execute module functions. Executors can be used
to modify the functions behavior, do any pre-execution steps or execute in a
specific way like sudo executor.

Executors could be passed as a list and they will be used one-by-one in the
order. If an executor returns None the next one will be called. If an
executor returns non-None the execution sequence is terminated and the
returned value is used as a result. It's a way executor could control modules
execution working as a filter. Note that executor could actually not execute
the function but just do something else and return None like splay
executor does. In this case some other executor have to be used as a final
executor that will actually execute the function. See examples below.

Executors list could be passed by minion config file in the following way:

module_executors:
 - splay
 - direct_call
splaytime: 30

The same could be done by command line:

salt -t 40 --module-executors='[splay, direct_call]' --executor-opts='{splaytime: 30}' '*' test.version

And the same command called via netapi will look like this:

curl -sSk https://localhost:8000 \
 -H 'Accept: application/x-yaml' \
 -H 'X-Auth-Token: 697adbdc8fe971d09ae4c2a3add7248859c87079' \
 -H 'Content-type: application/json' \
 -d '[{
 "client": "local",
 "tgt": "*",
 "fun": "test.version",
 "module_executors": ["splay", "direct_call"],
 "executor_opts": {"splaytime": 10}
 }]'

See also

The full list of executors

Writing Salt Executors

A Salt executor is written in a similar manner to a Salt execution module.
Executor is a python module placed into the executors folder and containing
the execute function with the following signature:

def execute(opts, data, func, args, kwargs): ...

Where the args are:

	opts:
	Dictionary containing the minion configuration options

	data:
	Dictionary containing the load data including executor_opts passed via
cmdline/API.

	func, args, kwargs:
	Execution module function to be executed and its arguments. For instance the
simplest direct_call executor just runs it as func(*args, **kwargs).

	Returns:
	None if the execution sequence must be continued with the next executor.
Error string or execution result if the job is done and execution must be
stopped.

Specific options could be passed to the executor via minion config or via
executor_opts argument. For instance to access splaytime option set by
minion config executor should access opts.get('splaytime'). To access the
option set by commandline or API data.get('executor_opts',
{}).get('splaytime') should be used. So if an option is safe and must be
accessible by user executor should check it in both places, but if an option is
unsafe it should be read from the only config ignoring the passed request data.

There is also a function named all_missing_func which the name of the
func is passed, which can be used to verify if the command should still be
run, even if it is not loaded in minion_mods.

Configuration Management

Salt contains a robust and flexible configuration management framework, which
is built on the remote execution core. This framework executes on the minions,
allowing effortless, simultaneous configuration of tens of thousands of hosts,
by rendering language specific state files. The following links provide
resources to learn more about state and renderers.

	States
	Express the state of a host using small, easy to read, easy to
understand configuration files. No programming required.

	Full list of states
	Contains: list of install packages, create users, transfer files, start
services, and so on.

	Pillar System
	Contains: description of Salt's Pillar system.

	Highstate data structure
	Contains: a dry vocabulary and technical representation of the
configuration format that states represent.

	Writing states
	Contains: a guide on how to write Salt state modules, easily extending
Salt to directly manage more software.

Note

Salt execution modules are different from state modules and cannot be
called as a state in an SLS file. In other words, this will not work:

moe:
 user.rename:
 - new_name: larry
 - onlyif: id moe

You must use the module states to call
execution modules directly. Here's an example:

rename_moe:
 module.run:
 - name: user.rename
 - m_name: moe
 - new_name: larry
 - onlyif: id moe

	Renderers
	Renderers use state configuration files written in a variety of languages,
templating engines, or files. Salt's configuration management system is,
under the hood, language agnostic.

	Full list of renderers
	Contains: a list of renderers.
YAML is one choice, but many systems are available, from
alternative templating engines to the PyDSL language for rendering
sls formulas.

	Renderers
	Contains: more information about renderers. Salt states are only
concerned with the ultimate highstate data structure, not how the
data structure was created.

	How Do I Use Salt States?

	States tutorial, part 1 - Basic Usage

	States tutorial, part 2 - More Complex States, Requisites

	States tutorial, part 3 - Templating, Includes, Extends

	States tutorial, part 4

	State System Reference

How Do I Use Salt States?

Simplicity, Simplicity, Simplicity

Many of the most powerful and useful engineering solutions are founded on
simple principles. Salt States strive to do just that: K.I.S.S. (Keep It
Stupidly Simple)

The core of the Salt State system is the SLS, or Structured Layered State.
The SLS is a representation of the state in which
a system should be in, and is set up to contain this data in a simple format.
This is often called configuration management.

Note

This is just the beginning of using states, make sure to read up on pillar
Pillar next.

It is All Just Data

Before delving into the particulars, it will help to understand that the SLS
file is just a data structure under the hood. While understanding that the SLS
is just a data structure isn't critical for understanding and making use of
Salt States, it should help bolster knowledge of where the real power is.

SLS files are therefore, in reality, just dictionaries, lists, strings, and
numbers. By using this approach Salt can be much more flexible. As one writes
more state files, it becomes clearer exactly what is being written. The result
is a system that is easy to understand, yet grows with the needs of the admin
or developer.

The Top File

The example SLS files in the below sections can be assigned to hosts using a
file called top.sls. This file is described in-depth here.

Default Data - YAML

By default Salt represents the SLS data in what is one of the simplest
serialization formats available - YAML [https://yaml.org/spec/1.1/].

A typical SLS file will often look like this in YAML:

Note

These demos use some generic service and package names, different
distributions often use different names for packages and services. For
instance apache should be replaced with httpd on a Red Hat system.
Salt uses the name of the init script, systemd name, upstart name etc.
based on what the underlying service management for the platform. To
get a list of the available service names on a platform execute the
service.get_all salt function.

Information on how to make states work with multiple distributions
is later in the tutorial.

apache:
 pkg.installed: []
 service.running:
 - require:
 - pkg: apache

This SLS data will ensure that the package named apache is installed, and
that the apache service is running. The components can be explained in a
simple way.

The first line is the ID for a set of data, and it is called the ID
Declaration. This ID sets the name of the thing that needs to be manipulated.

The second and third lines contain the state module function to be run, in the
format <state_module>.<function>. The pkg.installed state module
function ensures that a software package is installed via the system's native
package manager. The service.running state module function ensures that a
given system daemon is running.

Finally, on line four, is the word require. This is called a Requisite
Statement, and it makes sure that the Apache service is only started after
a successful installation of the apache package.

Adding Configs and Users

When setting up a service like an Apache web server, many more components may
need to be added. The Apache configuration file will most likely be managed,
and a user and group may need to be set up.

apache:
 pkg.installed: []
 service.running:
 - watch:
 - pkg: apache
 - file: /etc/httpd/conf/httpd.conf
 - user: apache
 user.present:
 - uid: 87
 - gid: 87
 - home: /var/www/html
 - shell: /bin/nologin
 - require:
 - group: apache
 group.present:
 - gid: 87
 - require:
 - pkg: apache

/etc/httpd/conf/httpd.conf:
 file.managed:
 - source: salt://apache/httpd.conf
 - user: root
 - group: root
 - mode: 644

This SLS data greatly extends the first example, and includes a config file,
a user, a group and new requisite statement: watch.

Adding more states is easy, since the new user and group states are under
the Apache ID, the user and group will be the Apache user and group. The
require statements will make sure that the user will only be made after
the group, and that the group will be made only after the Apache package is
installed.

Next, the require statement under service was changed to watch, and is
now watching 3 states instead of just one. The watch statement does the same
thing as require, making sure that the other states run before running the
state with a watch, but it adds an extra component. The watch statement
will run the state's watcher function for any changes to the watched states.
So if the package was updated, the config file changed, or the user
uid modified, then the service state's watcher will be run. The service
state's watcher just restarts the service, so in this case, a change in the
config file will also trigger a restart of the respective service.

Moving Beyond a Single SLS

When setting up Salt States in a scalable manner, more than one SLS will need
to be used. The above examples were in a single SLS file, but two or more
SLS files can be combined to build out a State Tree. The above example also
references a file with a strange source - salt://apache/httpd.conf. That
file will need to be available as well.

The SLS files are laid out in a directory structure on the Salt master; an
SLS is just a file and files to download are just files.

The Apache example would be laid out in the root of the Salt file server like
this:

apache/init.sls
apache/httpd.conf

So the httpd.conf is just a file in the apache directory, and is referenced
directly.

Do not use dots in SLS file names or their directories

The initial implementation of top.sls and
Include declaration followed the python import model where a slash
is represented as a period. This means that a SLS file with a period in
the name (besides the suffix period) can not be referenced. For example,
webserver_1.0.sls is not referenceable because webserver_1.0 would refer
to the directory/file webserver_1/0.sls

The same applies for any subdirectories, this is especially 'tricky' when
git repos are created. Another command that typically can't render its
output is `state.show_sls` of a file in a path that contains a dot.

But when using more than one single SLS file, more components can be added to
the toolkit. Consider this SSH example:

ssh/init.sls:

openssh-client:
 pkg.installed

/etc/ssh/ssh_config:
 file.managed:
 - user: root
 - group: root
 - mode: 644
 - source: salt://ssh/ssh_config
 - require:
 - pkg: openssh-client

ssh/server.sls:

include:
 - ssh

openssh-server:
 pkg.installed

sshd:
 service.running:
 - require:
 - pkg: openssh-client
 - pkg: openssh-server
 - file: /etc/ssh/banner
 - file: /etc/ssh/sshd_config

/etc/ssh/sshd_config:
 file.managed:
 - user: root
 - group: root
 - mode: 644
 - source: salt://ssh/sshd_config
 - require:
 - pkg: openssh-server

/etc/ssh/banner:
 file:
 - managed
 - user: root
 - group: root
 - mode: 644
 - source: salt://ssh/banner
 - require:
 - pkg: openssh-server

Note

Notice that we use two similar ways of denoting that a file
is managed by Salt. In the /etc/ssh/sshd_config state section above,
we use the file.managed state declaration whereas with the
/etc/ssh/banner state section, we use the file state declaration
and add a managed attribute to that state declaration. Both ways
produce an identical result; the first way -- using file.managed --
is merely a shortcut.

Now our State Tree looks like this:

apache/init.sls
apache/httpd.conf
ssh/init.sls
ssh/server.sls
ssh/banner
ssh/ssh_config
ssh/sshd_config

This example now introduces the include statement. The include statement
includes another SLS file so that components found in it can be required,
watched or as will soon be demonstrated - extended.

The include statement allows for states to be cross linked. When an SLS
has an include statement it is literally extended to include the contents of
the included SLS files.

Note that some of the SLS files are called init.sls, while others are not. More
info on what this means can be found in the States Tutorial.

Extending Included SLS Data

Sometimes SLS data needs to be extended. Perhaps the apache service needs to
watch additional resources, or under certain circumstances a different file
needs to be placed.

In these examples, the first will add a custom banner to ssh and the second will
add more watchers to apache to include mod_python.

ssh/custom-server.sls:

include:
 - ssh.server

extend:
 /etc/ssh/banner:
 file:
 - source: salt://ssh/custom-banner

python/mod_python.sls:

include:
 - apache

extend:
 apache:
 service:
 - watch:
 - pkg: mod_python

mod_python:
 pkg.installed

The custom-server.sls file uses the extend statement to overwrite where the
banner is being downloaded from, and therefore changing what file is being used
to configure the banner.

In the new mod_python SLS the mod_python package is added, but more importantly
the apache service was extended to also watch the mod_python package.

Using extend with require or watch

The extend statement works differently for require or watch.
It appends to, rather than replacing the requisite component.

Understanding the Render System

Since SLS data is simply that (data), it does not need to be represented
with YAML. Salt defaults to YAML because it is very straightforward and easy
to learn and use. But the SLS files can be rendered from almost any imaginable
medium, so long as a renderer module is provided.

The default rendering system is the jinja|yaml renderer. The
jinja|yaml renderer will first pass the template through the Jinja2 [https://jinja.palletsprojects.com/en/2.11.x/]
templating system, and then through the YAML parser. The benefit here is that
full programming constructs are available when creating SLS files.

Other renderers available are yaml_mako and yaml_wempy which each use
the Mako [https://www.makotemplates.org/] or Wempy [https://fossil.secution.com/u/gcw/wempy/doc/tip/README.wiki] templating system respectively rather than the jinja
templating system, and more notably, the pure Python or py, pydsl &
pyobjects renderers.
The py renderer allows for SLS files to be written in pure Python,
allowing for the utmost level of flexibility and power when preparing SLS
data; while the pydsl renderer
provides a flexible, domain-specific language for authoring SLS data in Python;
and the pyobjects renderer
gives you a "Pythonic" [https://legacy.python.org/dev/peps/pep-0008/] interface to building state data.

Note

The templating engines described above aren't just available in SLS files.
They can also be used in file.managed
states, making file management much more dynamic and flexible. Some
examples for using templates in managed files can be found in the
documentation for the file state, as well as the
MooseFS example below.

Getting to Know the Default - jinja|yaml

The default renderer - jinja|yaml, allows for use of the jinja
templating system. A guide to the Jinja templating system can be found here:
https://jinja.palletsprojects.com/en/2.11.x/

When working with renderers a few very useful bits of data are passed in. In
the case of templating engine based renderers, three critical components are
available, salt, grains, and pillar. The salt object allows for
any Salt function to be called from within the template, and grains allows
for the Grains to be accessed from within the template. A few examples:

apache/init.sls:

apache:
 pkg.installed:
 {% if grains['os'] == 'RedHat'%}
 - name: httpd
 {% endif %}
 service.running:
 {% if grains['os'] == 'RedHat'%}
 - name: httpd
 {% endif %}
 - watch:
 - pkg: apache
 - file: /etc/httpd/conf/httpd.conf
 - user: apache
 user.present:
 - uid: 87
 - gid: 87
 - home: /var/www/html
 - shell: /bin/nologin
 - require:
 - group: apache
 group.present:
 - gid: 87
 - require:
 - pkg: apache

/etc/httpd/conf/httpd.conf:
 file.managed:
 - source: salt://apache/httpd.conf
 - user: root
 - group: root
 - mode: 644

This example is simple. If the os grain states that the operating system is
Red Hat, then the name of the Apache package and service needs to be httpd.

A more aggressive way to use Jinja can be found here, in a module to set up
a MooseFS distributed filesystem chunkserver:

moosefs/chunk.sls:

include:
 - moosefs

{% for mnt in salt['cmd.run']('ls /dev/data/moose*').split() %}
/mnt/moose{{ mnt[-1] }}:
 mount.mounted:
 - device: {{ mnt }}
 - fstype: xfs
 - mkmnt: True
 file.directory:
 - user: mfs
 - group: mfs
 - require:
 - user: mfs
 - group: mfs
{% endfor %}

/etc/mfshdd.cfg:
 file.managed:
 - source: salt://moosefs/mfshdd.cfg
 - user: root
 - group: root
 - mode: 644
 - template: jinja
 - require:
 - pkg: mfs-chunkserver

/etc/mfschunkserver.cfg:
 file.managed:
 - source: salt://moosefs/mfschunkserver.cfg
 - user: root
 - group: root
 - mode: 644
 - template: jinja
 - require:
 - pkg: mfs-chunkserver

mfs-chunkserver:
 pkg.installed: []
mfschunkserver:
 service.running:
 - require:
{% for mnt in salt['cmd.run']('ls /dev/data/moose*') %}
 - mount: /mnt/moose{{ mnt[-1] }}
 - file: /mnt/moose{{ mnt[-1] }}
{% endfor %}
 - file: /etc/mfschunkserver.cfg
 - file: /etc/mfshdd.cfg
 - file: /var/lib/mfs

This example shows much more of the available power of Jinja.
Multiple for loops are used to dynamically detect available hard drives
and set them up to be mounted, and the salt object is used multiple
times to call shell commands to gather data.

Introducing the Python, PyDSL, and the Pyobjects Renderers

Sometimes the chosen default renderer might not have enough logical power to
accomplish the needed task. When this happens, the Python renderer can be
used. Normally a YAML renderer should be used for the majority of SLS files,
but an SLS file set to use another renderer can be easily added to the tree.

This example shows a very basic Python SLS file:

python/django.sls:

#!py

def run():
 """
 Install the django package
 """
 return {"include": ["python"], "django": {"pkg": ["installed"]}}

This is a very simple example; the first line has an SLS shebang that
tells Salt to not use the default renderer, but to use the py renderer.
Then the run function is defined, the return value from the run function
must be a Salt friendly data structure, or better known as a Salt
HighState data structure.

Alternatively, using the pydsl
renderer, the above example can be written more succinctly as:

#!pydsl

include("python", delayed=True)
state("django").pkg.installed()

The pyobjects renderer
provides an "Pythonic" [https://legacy.python.org/dev/peps/pep-0008/] object based approach for building the state data.
The above example could be written as:

#!pyobjects

include("python")
Pkg.installed("django")

These Python examples would look like this if they were written in YAML:

include:
 - python

django:
 pkg.installed

This example clearly illustrates that; one, using the YAML renderer by default
is a wise decision and two, unbridled power can be obtained where needed by
using a pure Python SLS.

Running and Debugging Salt States

Once the rules in an SLS are ready, they should be tested to ensure they
work properly. To invoke these rules, simply execute
salt '*' state.apply on the command line. If you get back only
hostnames with a : after, but no return, chances are there is a problem with
one or more of the sls files. On the minion, use the salt-call command to
examine the output for errors:

salt-call state.apply -l debug

This should help troubleshoot the issue. The minion can also be started in the
foreground in debug mode by running salt-minion -l debug.

Next Reading

With an understanding of states, the next recommendation is to become familiar
with Salt's pillar interface:

Pillar Walkthrough

States tutorial, part 1 - Basic Usage

The purpose of this tutorial is to demonstrate how quickly you can configure a
system to be managed by Salt States. For detailed information about the state
system please refer to the full states reference.

This tutorial will walk you through using Salt to configure a minion to run the
Apache HTTP server and to ensure the server is running.

Before continuing make sure you have a working Salt installation by
following the instructions in the
Salt install guide [https://docs.saltproject.io/salt/install-guide/en/latest/].

Stuck?

The Salt Project community can help offer advice and help troubleshoot
technical issues as you're learning about Salt. One of the best places to
talk to the community is on the
Salt Project Slack workspace [https://saltstackcommunity.slack.com/].

Setting up the Salt State Tree

States are stored in text files on the master and transferred to the minions on
demand via the master's File Server. The collection of state files make up the
State Tree.

To start using a central state system in Salt, the Salt File Server must first
be set up. Edit the master config file (file_roots) and
uncomment the following lines:

file_roots:
 base:
 - /srv/salt

Note

If you are deploying on FreeBSD via ports, the file_roots path defaults
to /usr/local/etc/salt/states.

Restart the Salt master in order to pick up this change:

pkill salt-master
salt-master -d

Preparing the Top File

On the master, in the directory uncommented in the previous step,
(/srv/salt by default), create a new file called
top.sls and add the following:

base:
 '*':
 - webserver

The top file is separated into environments (discussed
later). The default environment is base. Under the base environment a
collection of minion matches is defined; for now simply specify all hosts
(*).

Targeting minions

The expressions can use any of the targeting mechanisms used by Salt —
minions can be matched by glob, PCRE regular expression, or by grains. For example:

base:
 'os:Fedora':
 - match: grain
 - webserver

Create an sls file

In the same directory as the top file, create a file
named webserver.sls, containing the following:

apache: # ID declaration
 pkg: # state declaration
 - installed # function declaration

The first line, called the ID declaration, is an arbitrary identifier.
In this case it defines the name of the package to be installed.

Note

The package name for the Apache httpd web server may differ depending on
OS or distro — for example, on Fedora it is httpd but on
Debian/Ubuntu it is apache2.

The second line, called the State declaration, defines which of the Salt
States we are using. In this example, we are using the pkg state to ensure that a given package is installed.

The third line, called the Function declaration, defines which function
in the pkg state module to call.

Renderers

States sls files can be written in many formats. Salt requires only
a simple data structure and is not concerned with how that data structure
is built. Templating languages and DSLs [https://en.wikipedia.org/wiki/Domain-specific_language] are a dime-a-dozen and everyone
has a favorite.

Building the expected data structure is the job of Salt Renderers
and they are dead-simple to write.

In this tutorial we will be using YAML in Jinja2 templates, which is the
default format. The default can be changed by editing
renderer in the master configuration file.

Install the package

Next, let's run the state we created. Open a terminal on the master and run:

salt '*' state.apply

Our master is instructing all targeted minions to run state.apply. When this function is executed without any SLS
targets, a minion will download the top file and attempt to
match the expressions within it. When the minion does match an expression the
modules listed for it will be downloaded, compiled, and executed.

Note

This action is referred to as a "highstate", and can be run using the
state.highstate function.
However, to make the usage easier to understand ("highstate" is not
necessarily an intuitive name), a state.apply function was added in version 2015.5.0, which
when invoked without any SLS names will trigger a highstate.
state.highstate still exists and
can be used, but the documentation (as can be seen above) has been updated
to reference state.apply, so keep
the following in mind as you read the documentation:

	state.apply invoked without any
SLS names will run state.highstate

	state.apply invoked with SLS names
will run state.sls

Once completed, the minion will report back with a summary of all actions taken
and all changes made.

Warning

If you have created custom grain modules, they will
not be available in the top file until after the first highstate. To make custom grains available on a minion's first
highstate, it is recommended to use this
example to ensure that the custom grains are synced
when the minion starts.

SLS File Namespace

Note that in the example above, the SLS file
webserver.sls was referred to simply as webserver. The namespace
for SLS files when referenced in top.sls or an Include declaration
follows a few simple rules:

	The .sls is discarded (i.e. webserver.sls becomes
webserver).

	
	Subdirectories can be used for better organization.
	
	Each subdirectory under the configured file_roots (default:
/srv/salt/) is represented with a dot (following the Python
import model) in Salt states and on the command line.
webserver/dev.sls on the filesystem is referred to as
webserver.dev in Salt

	Because slashes are represented as dots, SLS files can not contain
dots in the name (other than the dot for the SLS suffix). The SLS
file webserver_1.0.sls can not be matched, and webserver_1.0
would match the directory/file webserver_1/0.sls

	A file called init.sls in a subdirectory is referred to by the path
of the directory. So, webserver/init.sls is referred to as
webserver.

	If both webserver.sls and webserver/init.sls happen to exist,
webserver/init.sls will be ignored and webserver.sls will be the
file referred to as webserver.

Troubleshooting Salt

If the expected output isn't seen, the following tips can help to
narrow down the problem.

	Turn up logging
	Salt can be quite chatty when you change the logging setting to
debug:

salt-minion -l debug

	Run the minion in the foreground
	By not starting the minion in daemon mode (-d)
one can view any output from the minion as it works:

salt-minion

Increase the default timeout value when running salt. For
example, to change the default timeout to 60 seconds:

salt -t 60

For best results, combine all three:

salt-minion -l debug # On the minion
salt '*' state.apply -t 60 # On the master

Next steps

This tutorial focused on getting a simple Salt States configuration working.
Part 2 will build on this example to cover more advanced
sls syntax and will explore more of the states that ship with Salt.

States tutorial, part 2 - More Complex States, Requisites

Note

This tutorial builds on topics covered in part 1. It is
recommended that you begin there.

In the last part of the Salt States tutorial we covered the
basics of installing a package. We will now modify our webserver.sls file
to have requirements, and use even more Salt States.

Call multiple States

You can specify multiple State declaration under an
ID declaration. For example, a quick modification to our
webserver.sls to also start Apache if it is not running:

1apache:
2 pkg.installed: []
3 service.running:
4 - require:
5 - pkg: apache

Try stopping Apache before running state.apply once again and observe the output.

Note

For those running RedhatOS derivatives (Centos, AWS), you will want to specify the
service name to be httpd. More on state service here, service state. With the example above, just add "- name: httpd"
above the require line and with the same spacing.

Require other states

We now have a working installation of Apache so let's add an HTML file to
customize our website. It isn't exactly useful to have a website without a
webserver so we don't want Salt to install our HTML file until Apache is
installed and running. Include the following at the bottom of your
webserver/init.sls file:

 1apache:
 2 pkg.installed: []
 3 service.running:
 4 - require:
 5 - pkg: apache
 6
 7/var/www/index.html: # ID declaration
 8 file: # state declaration
 9 - managed # function
10 - source: salt://webserver/index.html # function arg
11 - require: # requisite declaration
12 - pkg: apache # requisite reference

line 7 is the ID declaration. In this example it is the location we
want to install our custom HTML file. (Note: the default location that
Apache serves may differ from the above on your OS or distro. /srv/www
could also be a likely place to look.)

Line 8 the State declaration. This example uses the Salt file
state.

Line 9 is the Function declaration. The managed function will download a file from the master and install it
in the location specified.

Line 10 is a Function arg declaration which, in this example, passes
the source argument to the managed function.

Line 11 is a Requisite declaration.

Line 12 is a Requisite reference which refers to a state and an ID.
In this example, it is referring to the ID declaration from our example in
part 1. This declaration tells Salt not to install the HTML
file until Apache is installed.

Next, create the index.html file and save it in the webserver
directory:

<!DOCTYPE html>
<html>
 <head><title>Salt rocks</title></head>
 <body>
 <h1>This file brought to you by Salt</h1>
 </body>
</html>

Last, call state.apply again and the minion
will fetch and execute the highstate as well as our
HTML file from the master using Salt's File Server:

salt '*' state.apply

Verify that Apache is now serving your custom HTML.

require vs. watch

There are two Requisite declaration, “require”, and “watch”. Not
every state supports “watch”. The service state does support “watch” and will restart a service
based on the watch condition.

For example, if you use Salt to install an Apache virtual host
configuration file and want to restart Apache whenever that file is changed
you could modify our Apache example from earlier as follows:

/etc/httpd/extra/httpd-vhosts.conf:
 file.managed:
 - source: salt://webserver/httpd-vhosts.conf

apache:
 pkg.installed: []
 service.running:
 - watch:
 - file: /etc/httpd/extra/httpd-vhosts.conf
 - require:
 - pkg: apache

If the pkg and service names differ on your OS or distro of choice you can
specify each one separately using a Name declaration which explained
in Part 3.

Next steps

In part 3 we will discuss how to use includes, extends, and
templating to make a more complete State Tree configuration.

States tutorial, part 3 - Templating, Includes, Extends

Note

This tutorial builds on topics covered in part 1 and
part 2. It is recommended that you begin there.

This part of the tutorial will cover more advanced templating and
configuration techniques for sls files.

Templating SLS modules

SLS modules may require programming logic or inline execution. This is
accomplished with module templating. The default module templating system used
is Jinja2 [https://jinja.palletsprojects.com/en/2.11.x/] and may be configured by changing the renderer
value in the master config.

All states are passed through a templating system when they are initially read.
To make use of the templating system, simply add some templating markup.
An example of an sls module with templating markup may look like this:

{% for usr in ['moe','larry','curly'] %}
{{ usr }}:
 user.present
{% endfor %}

This templated sls file once generated will look like this:

moe:
 user.present
larry:
 user.present
curly:
 user.present

Here's a more complex example:

Comments in yaml start with a hash symbol.
Since jinja rendering occurs before yaml parsing, if you want to include jinja
in the comments you may need to escape them using 'jinja' comments to prevent
jinja from trying to render something which is not well-defined jinja.
e.g.
{# iterate over the Three Stooges using a {% for %}..{% endfor %} loop
with the iterator variable {{ usr }} becoming the state ID. #}
{% for usr in 'moe','larry','curly' %}
{{ usr }}:
 group:
 - present
 user:
 - present
 - gid_from_name: True
 - require:
 - group: {{ usr }}
{% endfor %}

Using Grains in SLS modules

Often times a state will need to behave differently on different systems.
Salt grains objects are made available in the template
context. The grains can be used from within sls modules:

apache:
 pkg.installed:
 {% if grains['os'] == 'RedHat' %}
 - name: httpd
 {% elif grains['os'] == 'Ubuntu' %}
 - name: apache2
 {% endif %}

Using Environment Variables in SLS modules

You can use salt['environ.get']('VARNAME') to use an environment
variable in a Salt state.

MYENVVAR="world" salt-call state.template test.sls

Create a file with contents from an environment variable:
 file.managed:
 - name: /tmp/hello
 - contents: {{ salt['environ.get']('MYENVVAR') }}

Error checking:

{% set myenvvar = salt['environ.get']('MYENVVAR') %}
{% if myenvvar %}

Create a file with contents from an environment variable:
 file.managed:
 - name: /tmp/hello
 - contents: {{ salt['environ.get']('MYENVVAR') }}

{% else %}

Fail - no environment passed in:
 test.fail_without_changes

{% endif %}

Calling Salt modules from templates

All of the Salt modules loaded by the minion are available within the
templating system. This allows data to be gathered in real time on the target
system. It also allows for shell commands to be run easily from within the sls
modules.

The Salt module functions are also made available in the template context as
salt:

The following example illustrates calling the group_to_gid function in the
file execution module with a single positional argument called
some_group_that_exists.

moe:
 user.present:
 - gid: {{ salt['file.group_to_gid']('some_group_that_exists') }}

One way to think about this might be that the gid key is being assigned
a value equivalent to the following python pseudo-code:

import salt.modules.file

file.group_to_gid("some_group_that_exists")

Note that for the above example to work, some_group_that_exists must exist
before the state file is processed by the templating engine.

Below is an example that uses the network.hw_addr function to retrieve the
MAC address for eth0:

salt["network.hw_addr"]("eth0")

To examine the possible arguments to each execution module function,
one can examine the module reference documentation:

Advanced SLS module syntax

Lastly, we will cover some incredibly useful techniques for more complex State
trees.

Include declaration

A previous example showed how to spread a Salt tree across several files.
Similarly, Requisites and Other Global State Arguments span multiple files by
using an Include declaration. For example:

python/python-libs.sls:

python-dateutil:
 pkg.installed

python/django.sls:

include:
 - python.python-libs

django:
 pkg.installed:
 - require:
 - pkg: python-dateutil

Extend declaration

You can modify previous declarations by using an Extend declaration. For
example the following modifies the Apache tree to also restart Apache when the
vhosts file is changed:

apache/apache.sls:

apache:
 pkg.installed

apache/mywebsite.sls:

include:
 - apache.apache

extend:
 apache:
 service:
 - running
 - watch:
 - file: /etc/httpd/extra/httpd-vhosts.conf

/etc/httpd/extra/httpd-vhosts.conf:
 file.managed:
 - source: salt://apache/httpd-vhosts.conf

Using extend with require or watch

The extend statement works differently for require or watch.
It appends to, rather than replacing the requisite component.

Name declaration

You can override the ID declaration by using a Name declaration.
For example, the previous example is a bit more maintainable if rewritten as
follows:

apache/mywebsite.sls:

include:
 - apache.apache

extend:
 apache:
 service:
 - running
 - watch:
 - file: mywebsite

mywebsite:
 file.managed:
 - name: /etc/httpd/extra/httpd-vhosts.conf
 - source: salt://apache/httpd-vhosts.conf

Names declaration

Even more powerful is using a Names declaration to override the
ID declaration for multiple states at once. This often can remove the
need for looping in a template. For example, the first example in this tutorial
can be rewritten without the loop:

stooges:
 user.present:
 - names:
 - moe
 - larry
 - curly

Next steps

In part 4 we will discuss how to use salt's
file_roots to set up a workflow in which states can be
"promoted" from dev, to QA, to production.

States tutorial, part 4

Note

This tutorial builds on topics covered in part 1,
part 2, and part 3.
It is recommended that you begin there.

This part of the tutorial will show how to use salt's file_roots
to set up a workflow in which states can be "promoted" from dev, to QA, to
production.

Salt fileserver path inheritance

Salt's fileserver allows for more than one root directory per environment, like
in the below example, which uses both a local directory and a secondary
location shared to the salt master via NFS:

In the master config file (/etc/salt/master)
file_roots:
 base:
 - /srv/salt
 - /mnt/salt-nfs/base

Salt's fileserver collapses the list of root directories into a single virtual
environment containing all files from each root. If the same file exists at the
same relative path in more than one root, then the top-most match "wins". For
example, if /srv/salt/foo.txt and /mnt/salt-nfs/base/foo.txt both
exist, then salt://foo.txt will point to /srv/salt/foo.txt.

Note

When using multiple fileserver backends, the order in which they are listed
in the fileserver_backend parameter also matters. If both
roots and git backends contain a file with the same relative path,
and roots appears before git in the
fileserver_backend list, then the file in roots will
"win", and the file in gitfs will be ignored.

A more thorough explanation of how Salt's modular fileserver works can be
found here. We recommend reading this.

Environment configuration

Configure a multiple-environment setup like so:

file_roots:
 base:
 - /srv/salt/prod
 qa:
 - /srv/salt/qa
 - /srv/salt/prod
 dev:
 - /srv/salt/dev
 - /srv/salt/qa
 - /srv/salt/prod

Given the path inheritance described above, files within /srv/salt/prod
would be available in all environments. Files within /srv/salt/qa would be
available in both qa, and dev. Finally, the files within
/srv/salt/dev would only be available within the dev environment.

Based on the order in which the roots are defined, new files/states can be
placed within /srv/salt/dev, and pushed out to the dev hosts for testing.

Those files/states can then be moved to the same relative path within
/srv/salt/qa, and they are now available only in the dev and qa
environments, allowing them to be pushed to QA hosts and tested.

Finally, if moved to the same relative path within /srv/salt/prod, the
files are now available in all three environments.

Requesting files from specific fileserver environments

See here for documentation on how to request
files from specific environments.

Practical Example

As an example, consider a simple website, installed to /var/www/foobarcom.
Below is a top.sls that can be used to deploy the website:

/srv/salt/prod/top.sls:

base:
 'web*prod*':
 - webserver.foobarcom
qa:
 'web*qa*':
 - webserver.foobarcom
dev:
 'web*dev*':
 - webserver.foobarcom

Using pillar, roles can be assigned to the hosts:

/srv/pillar/top.sls:

base:
 'web*prod*':
 - webserver.prod
 'web*qa*':
 - webserver.qa
 'web*dev*':
 - webserver.dev

/srv/pillar/webserver/prod.sls:

webserver_role: prod

/srv/pillar/webserver/qa.sls:

webserver_role: qa

/srv/pillar/webserver/dev.sls:

webserver_role: dev

And finally, the SLS to deploy the website:

/srv/salt/prod/webserver/foobarcom.sls:

{% if pillar.get('webserver_role', '') %}
/var/www/foobarcom:
 file.recurse:
 - source: salt://webserver/src/foobarcom
 - env: {{ pillar['webserver_role'] }}
 - user: www
 - group: www
 - dir_mode: 755
 - file_mode: 644
{% endif %}

Given the above SLS, the source for the website should initially be placed in
/srv/salt/dev/webserver/src/foobarcom.

First, let's deploy to dev. Given the configuration in the top file, this can
be done using state.apply:

salt --pillar 'webserver_role:dev' state.apply

However, in the event that it is not desirable to apply all states configured
in the top file (which could be likely in more complex setups), it is possible
to apply just the states for the foobarcom website, by invoking
state.apply with the desired SLS target
as an argument:

salt --pillar 'webserver_role:dev' state.apply webserver.foobarcom

Once the site has been tested in dev, then the files can be moved from
/srv/salt/dev/webserver/src/foobarcom to
/srv/salt/qa/webserver/src/foobarcom, and deployed using the following:

salt --pillar 'webserver_role:qa' state.apply webserver.foobarcom

Finally, once the site has been tested in qa, then the files can be moved from
/srv/salt/qa/webserver/src/foobarcom to
/srv/salt/prod/webserver/src/foobarcom, and deployed using the following:

salt --pillar 'webserver_role:prod' state.apply webserver.foobarcom

Thanks to Salt's fileserver inheritance, even though the files have been moved
to within /srv/salt/prod, they are still available from the same
salt:// URI in both the qa and dev environments.

Continue Learning

The best way to continue learning about Salt States is to read through the
reference documentation and to look through examples
of existing state trees. Many pre-configured state trees
can be found on GitHub in the saltstack-formulas [https://github.com/saltstack-formulas] collection of repositories.

If you have any questions, suggestions, or just want to chat with other people
who are using Salt, we have a very active community and we'd love to hear from
you. One of the best places to talk to the community is on the
Salt Project Slack workspace [https://saltstackcommunity.slack.com/].

In addition, by continuing to the Orchestrate Runner docs,
you can learn about the powerful orchestration of which Salt is capable.

State System Reference

Salt offers an interface to manage the configuration or "state" of the
Salt minions. This interface is a fully capable mechanism used to enforce the
state of systems from a central manager.

	Mod Aggregate State Runtime Modifications
	How it Works

	How to Use it
	In config files

	In states

	Adding mod_aggregate to a State Module

	Altering States

	File State Backups
	Backed-up Files

	Interacting with Backups
	Listing

	Restoring

	Deleting

	Understanding State Compiler Ordering
	Compiler Basics
	High Data and Low Data

	Ordering Layers
	Definition Order
	The Include Statement

	The order Flag

	Lexicographical Fall-back

	Requisite Ordering

	Runtime Requisite Evaluation

	Simple Runtime Evaluation Example

	Best Practice

	Extending External SLS Data
	The Extend Declaration

	Extend is a Top Level Declaration

	The Requisite "in" Statement

	Rules to Extend By

	Failhard Global Option
	State Level Failhard

	Global Failhard

	Global State Arguments

	Highstate data structure definitions
	The Salt State Tree
	Top file

	Include declaration

	Module reference

	ID declaration

	Extend declaration

	State declaration

	Requisite declaration

	Requisite reference

	Function declaration

	Function arg declaration

	Name declaration

	Names declaration

	Large example

	Include and Exclude
	Include

	Relative Include

	Exclude

	State System Layers
	Function Call

	Low Chunk

	Low State

	High Data

	SLS

	HighState

	Orchestrate

	The Orchestrate Runner

	Ordering States
	State Auto Ordering

	Requisite Statements
	Multiple Requisites

	Requisite Documentation

	The Order Option

	Running States in Parallel
	Parallel States and Requisites

	Things to be Careful of

	State Providers
	Arbitrary Module Redirects

	Requisites and Other Global State Arguments
	Requisites
	Requisite matching
	Identifier matching

	Wildcard matching in requisites

	Omitting state module

	Requisites Types
	require
	Require SLS File

	onchanges

	watch

	listen

	prereq

	onfail

	use

	The _in version of requisites

	The _any version of requisites

	Altering States
	reload

	unless

	onlyif

	creates

	runas

	runas_password

	check_cmd

	Overriding Checks

	Fire Event Notifications

	Retrying States
	Return data from a retried state

	Run State With a Different Umask

	Startup States
	Examples:

	State Testing
	Default Test

	The Top File
	Introduction

	A Basic Example

	Environments

	Getting Started with Top Files

	Multiple Environments

	Choosing an Environment to Target

	Shorthand

	Advanced Minion Targeting

	How Top Files Are Compiled

	Top File Compilation Examples
	Scenario 1 - dev Environment Specified

	Scenario 2 - No Environment Specified, top_file_merging_strategy is "merge"

	Scenario 3 - No Environment Specified, top_file_merging_strategy is "same"

	Scenario 4 - No Environment Specified, top_file_merging_strategy is "merge_all"

	SLS Template Variable Reference
	Salt

	Opts

	Pillar

	Grains

	saltenv

	SLS Only Variables
	sls

	slspath

	sls_path

	slsdotpath

	slscolonpath

	tplpath

	tplfile

	tpldir

	tpldot

	State Modules
	States are Easy to Write!

	Best Practices

	Using Custom State Modules

	Cross Calling Execution Modules from States

	Cross Calling State Modules

	Return Data
	Sub State Runs

	Test State

	Watcher Function

	Mod_init Interface

	Log Output

	Strings and Unicode

	Full State Module Example
	Example state module

State Management

State management, also frequently called Software Configuration Management
(SCM), is a program that puts and keeps a system into a predetermined state. It
installs software packages, starts or restarts services or puts configuration
files in place and watches them for changes.

Having a state management system in place allows one to easily and reliably
configure and manage a few servers or a few thousand servers. It allows
configurations to be kept under version control.

Salt States is an extension of the Salt Modules that we discussed in the
previous remote execution tutorial. Instead
of calling one-off executions the state of a system can be easily defined and
then enforced.

Understanding the Salt State System Components

The Salt state system is comprised of a number of components. As a user, an
understanding of the SLS and renderer systems are needed. But as a developer,
an understanding of Salt states and how to write the states is needed as well.

Note

States are compiled and executed only on minions that have been targeted.
To execute functions directly on masters, see runners.

Salt SLS System

The primary system used by the Salt state system is the SLS system. SLS stands
for SaLt State.

The Salt States are files which contain the information about how to configure
Salt minions. The states are laid out in a directory tree and can be written in
many different formats.

The contents of the files and the way they are laid out is intended to be as
simple as possible while allowing for maximum flexibility. The files are laid
out in states and contains information about how the minion needs to be
configured.

SLS File Layout

SLS files are laid out in the Salt file server.

A simple layout can look like this:

top.sls
ssh.sls
sshd_config
users/init.sls
users/admin.sls
salt/master.sls
web/init.sls

The top.sls file is a key component. The top.sls files
is used to determine which SLS files should be applied to which minions.

The rest of the files with the .sls extension in the above example are
state files.

Files without a .sls extensions are seen by the Salt master as
files that can be downloaded to a Salt minion.

States are translated into dot notation. For example, the ssh.sls file is
seen as the ssh state and the users/admin.sls file is seen as the
users.admin state.

Files named init.sls are translated to be the state name of the parent
directory, so the web/init.sls file translates to the web state.

In Salt, everything is a file; there is no "magic translation" of files and file
types. This means that a state file can be distributed to minions just like a
plain text or binary file.

SLS Files

The Salt state files are simple sets of data. Since SLS files are just data
they can be represented in a number of different ways.

The default format is YAML generated from a Jinja template. This allows for the
states files to have all the language constructs of Python and the simplicity of YAML.

State files can then be complicated Jinja templates that translate down to YAML, or just
plain and simple YAML files.

The State files are simply common data structures such as dictionaries and lists, constructed
using a templating language such as YAML.

Here is an example of a Salt State:

vim:
 pkg.installed: []

salt:
 pkg.latest:
 - name: salt
 service.running:
 - names:
 - salt-master
 - salt-minion
 - require:
 - pkg: salt
 - watch:
 - file: /etc/salt/minion

/etc/salt/minion:
 file.managed:
 - source: salt://salt/minion
 - user: root
 - group: root
 - mode: 644
 - require:
 - pkg: salt

This short stanza will ensure that vim is installed, Salt is installed and up
to date, the salt-master and salt-minion daemons are running and the Salt
minion configuration file is in place. It will also ensure everything is
deployed in the right order and that the Salt services are restarted when the
watched file updated.

The Top File

The top file controls the mapping between minions and the states which should
be applied to them.

The top file specifies which minions should have which SLS files applied and
which environments they should draw those SLS files from.

The top file works by specifying environments on the top-level.

Each environment contains target expressions to match
minions. Finally, each target expression contains a list of Salt states to
apply to matching minions:

base:
 '*':
 - salt
 - users
 - users.admin
 'saltmaster.*':
 - match: pcre
 - salt.master

This above example uses the base environment which is built into the default
Salt setup.

The base environment has target expressions. The first one matches all minions,
and the SLS files below it apply to all minions.

The second expression is a regular expression that will match all minions
with an ID matching saltmaster.* and specifies that for those minions, the
salt.master state should be applied.

Important

Since version 2014.7.0, the default matcher (when one is not explicitly
defined as in the second expression in the above example) is the
compound matcher. Since this matcher parses
individual words in the expression, minion IDs containing spaces will not
match properly using this matcher. Therefore, if your target expression is
designed to match a minion ID containing spaces, it will be necessary to
specify a different match type (such as glob). For example:

base:
 'test minion':
 - match: glob
 - foo
 - bar
 - baz

A full table of match types available in the top file can be found here.

Reloading Modules

Some Salt states require that specific packages be installed in order for the
module to load. As an example the pip state
module requires the pip [https://pypi.org/project/pip/] package for proper name and version parsing.

In most of the common cases, Salt is clever enough to transparently reload the
modules. For example, if you install a package, Salt reloads modules because
some other module or state might require just that package which was installed.

On some edge-cases salt might need to be told to reload the modules. Consider
the following state file which we'll call pep8.sls:

python-pip:
 cmd.run:
 - name: |
 easy_install --script-dir=/usr/bin -U pip
 - cwd: /

pep8:
 pip.installed:
 - require:
 - cmd: python-pip

The above example installs pip [https://pypi.org/project/pip/] using easy_install from setuptools [https://pypi.org/project/setuptools/] and
installs pep8 [https://pypi.org/project/pep8/] using pip, which, as told
earlier, requires pip [https://pypi.org/project/pip/] to be installed system-wide. Let's execute this state:

salt-call state.apply pep8

The execution output would be something like:

 State: - pip
 Name: pep8
 Function: installed
 Result: False
 Comment: State pip.installed found in sls pep8 is unavailable

 Changes:

Summary

Succeeded: 1
Failed: 1

Total: 2

If we executed the state again the output would be:

 State: - pip
 Name: pep8
 Function: installed
 Result: True
 Comment: Package was successfully installed
 Changes: pep8==1.4.6: Installed

Summary

Succeeded: 2
Failed: 0

Total: 2

Since we installed pip [https://pypi.org/project/pip/] using cmd, Salt has no way
to know that a system-wide package was installed.

On the second execution, since the required pip [https://pypi.org/project/pip/] package was installed, the
state executed correctly.

Note

Salt does not reload modules on every state run because doing so would greatly
slow down state execution.

So how do we solve this edge-case? reload_modules!

reload_modules is a boolean option recognized by salt on all available
states which forces salt to reload its modules once a given state finishes.

The modified state file would now be:

python-pip:
 cmd.run:
 - name: |
 easy_install --script-dir=/usr/bin -U pip
 - cwd: /
 - reload_modules: true

pep8:
 pip.installed:
 - require:
 - cmd: python-pip

Let's run it, once:

salt-call state.apply pep8

The output is:

 State: - pip
 Name: pep8
 Function: installed
 Result: True
 Comment: Package was successfully installed
 Changes: pep8==1.4.6: Installed

Summary

Succeeded: 2
Failed: 0

Total: 2

Mod Aggregate State Runtime Modifications

New in version 2014.7.0.

The mod_aggregate system was added in the 2014.7.0 release of Salt and allows for
runtime modification of the executing state data. Simply put, it allows for the
data used by Salt's state system to be changed on the fly at runtime, kind of
like a configuration management JIT compiler or a runtime import system. All in
all, it makes Salt much more dynamic.

How it Works

The best example is the pkg state. One of the major requests in Salt has long
been adding the ability to install all packages defined at the same time. The
mod_aggregate system makes this a reality. While executing Salt's state system,
when a pkg state is reached the mod_aggregate function in the state module
is called. For pkg this function scans all of the other states that are slated
to run, and picks up the references to name and pkgs, then adds them to
pkgs in the first state. The result is a single call to yum, apt-get,
pacman, etc as part of the first package install.

How to Use it

Note

Since this option changes the basic behavior of the state runtime, after
it is enabled states should be executed using test=True to ensure that
the desired behavior is preserved.

In config files

The first way to enable aggregation is with a configuration option in either
the master or minion configuration files. Salt will invoke mod_aggregate
the first time it encounters a state module that has aggregate support.

If this option is set in the master config it will apply to all state runs on
all minions, if set in the minion config it will only apply to said minion.

Enable for all states:

state_aggregate: True

Enable for only specific state modules:

state_aggregate:
 - pkg

In states

The second way to enable aggregation is with the state-level aggregate
keyword. In this configuration, Salt will invoke the mod_aggregate function
the first time it encounters this keyword. Any additional occurrences of the
keyword will be ignored as the aggregation has already taken place.

The following example will trigger mod_aggregate when the lamp_stack
state is processed resulting in a single call to the underlying package
manager.

lamp_stack:
 pkg.installed:
 - pkgs:
 - php
 - mysql-client
 - aggregate: True

memcached:
 pkg.installed:
 - name: memcached

Adding mod_aggregate to a State Module

Adding a mod_aggregate routine to an existing state module only requires adding
an additional function to the state module called mod_aggregate.

The mod_aggregate function just needs to accept three parameters and return the
low data to use. Since mod_aggregate is working on the state runtime level it
does need to manipulate low data.

The three parameters are low, chunks, and running. The low option is the
low data for the state execution which is about to be called. The chunks is
the list of all of the low data dictionaries which are being executed by the
runtime and the running dictionary is the return data from all of the state
executions which have already be executed.

This example, simplified from the pkg state, shows how to create mod_aggregate functions:

def mod_aggregate(low, chunks, running):
 """
 The mod_aggregate function which looks up all packages in the available
 low chunks and merges them into a single pkgs ref in the present low data
 """
 pkgs = []
 # What functions should we aggregate?
 agg_enabled = [
 "installed",
 "latest",
 "removed",
 "purged",
]
 # The `low` data is just a dict with the state, function (fun) and
 # arguments passed in from the sls
 if low.get("fun") not in agg_enabled:
 return low
 # Now look into what other things are set to execute
 for chunk in chunks:
 # The state runtime uses "tags" to track completed jobs, it may
 # look familiar with the _|-
 tag = __utils__["state.gen_tag"](chunk)
 if tag in running:
 # Already ran the pkg state, skip aggregation
 continue
 if chunk.get("state") == "pkg":
 if "__agg__" in chunk:
 continue
 # Check for the same function
 if chunk.get("fun") != low.get("fun"):
 continue
 # Pull out the pkg names!
 if "pkgs" in chunk:
 pkgs.extend(chunk["pkgs"])
 chunk["__agg__"] = True
 elif "name" in chunk:
 pkgs.append(chunk["name"])
 chunk["__agg__"] = True
 if pkgs:
 if "pkgs" in low:
 low["pkgs"].extend(pkgs)
 else:
 low["pkgs"] = pkgs
 # The low has been modified and needs to be returned to the state
 # runtime for execution
 return low

Altering States

Note

This documentation has been moved here.

File State Backups

In 0.10.2 a new feature was added for backing up files that are replaced by
the file.managed and file.recurse states. The new feature is called the backup
mode. Setting the backup mode is easy, but it can be set in a number of
places.

The backup_mode can be set in the minion config file:

backup_mode: minion

Or it can be set for each file:

/etc/ssh/sshd_config:
 file.managed:
 - source: salt://ssh/sshd_config
 - backup: minion

The backup_mode can be set to any of the following options:

	minion: backup to the minion.

	master: backup to the master, a planned mode that has not yet been implemented, so does nothing.

	both: backup to both. a combination of both master and minion.

Backed-up Files

The files will be saved in the minion cachedir under the directory named
file_backup. The files will be in the location relative to where they
were under the root filesystem and be appended with a timestamp. This should
make them easy to browse.

Interacting with Backups

Starting with version 0.17.0, it will be possible to list, restore, and delete
previously-created backups.

Listing

The backups for a given file can be listed using file.list_backups:

salt foo.bar.com file.list_backups /tmp/foo.txt
foo.bar.com:

 0:

 Backup Time:
 Sat Jul 27 2013 17:48:41.738027
 Location:
 /var/cache/salt/minion/file_backup/tmp/foo.txt_Sat_Jul_27_17:48:41_738027_2013
 Size:
 13
 1:

 Backup Time:
 Sat Jul 27 2013 17:48:28.369804
 Location:
 /var/cache/salt/minion/file_backup/tmp/foo.txt_Sat_Jul_27_17:48:28_369804_2013
 Size:
 35

Restoring

Restoring is easy using file.restore_backup, just pass the path and the numeric id
found with file.list_backups:

salt foo.bar.com file.restore_backup /tmp/foo.txt 1
foo.bar.com:

 comment:
 Successfully restored /var/cache/salt/minion/file_backup/tmp/foo.txt_Sat_Jul_27_17:48:28_369804_2013 to /tmp/foo.txt
 result:
 True

The existing file will be backed up, just in case, as can be seen if
file.list_backups is run again:

salt foo.bar.com file.list_backups /tmp/foo.txt
foo.bar.com:

 0:

 Backup Time:
 Sat Jul 27 2013 18:00:19.822550
 Location:
 /var/cache/salt/minion/file_backup/tmp/foo.txt_Sat_Jul_27_18:00:19_822550_2013
 Size:
 53
 1:

 Backup Time:
 Sat Jul 27 2013 17:48:41.738027
 Location:
 /var/cache/salt/minion/file_backup/tmp/foo.txt_Sat_Jul_27_17:48:41_738027_2013
 Size:
 13
 2:

 Backup Time:
 Sat Jul 27 2013 17:48:28.369804
 Location:
 /var/cache/salt/minion/file_backup/tmp/foo.txt_Sat_Jul_27_17:48:28_369804_2013
 Size:
 35

Note

Since no state is being run, restoring a file will not trigger any watches
for the file. So, if you are restoring a config file for a service, it will
likely still be necessary to run a service.restart.

Deleting

Deleting backups can be done using file.delete_backup:

salt foo.bar.com file.delete_backup /tmp/foo.txt 0
foo.bar.com:

 comment:
 Successfully removed /var/cache/salt/minion/file_backup/tmp/foo.txt_Sat_Jul_27_18:00:19_822550_2013
 result:
 True

Understanding State Compiler Ordering

Note

This tutorial is an intermediate level tutorial. Some basic understanding
of the state system and writing Salt Formulas is assumed.

Salt's state system is built to deliver all of the power of configuration
management systems without sacrificing simplicity. This tutorial is made to
help users understand in detail just how the order is defined for state
executions in Salt.

This tutorial is written to represent the behavior of Salt as of version
0.17.0.

Compiler Basics

To understand ordering in depth some very basic knowledge about the state
compiler is very helpful. No need to worry though, this is very high level!

High Data and Low Data

When defining Salt Formulas in YAML the data that is being represented is
referred to by the compiler as High Data. When the data is initially
loaded into the compiler it is a single large python dictionary, this
dictionary can be viewed raw by running:

salt '*' state.show_highstate

This "High Data" structure is then compiled down to "Low Data". The Low
Data is what is matched up to create individual executions in Salt's
configuration management system. The
low data is an ordered list of single state calls to execute. Once the
low data is compiled the evaluation order can be seen.

The low data can be viewed by running:

salt '*' state.show_lowstate

Note

The state execution module contains MANY functions for evaluating the
state system and is well worth a read! These routines can be very useful
when debugging states or to help deepen one's understanding of Salt's
state system.

As an example, a state written thusly:

apache:
 pkg.installed:
 - name: httpd
 service.running:
 - name: httpd
 - watch:
 - file: apache_conf
 - pkg: apache

apache_conf:
 file.managed:
 - name: /etc/httpd/conf.d/httpd.conf
 - source: salt://apache/httpd.conf

Will have High Data which looks like this represented in json:

{
 "apache": {
 "pkg": [
 {
 "name": "httpd"
 },
 "installed",
 {
 "order": 10000
 }
],
 "service": [
 {
 "name": "httpd"
 },
 {
 "watch": [
 {
 "file": "apache_conf"
 },
 {
 "pkg": "apache"
 }
]
 },
 "running",
 {
 "order": 10001
 }
],
 "__sls__": "blah",
 "__env__": "base"
 },
 "apache_conf": {
 "file": [
 {
 "name": "/etc/httpd/conf.d/httpd.conf"
 },
 {
 "source": "salt://apache/httpd.conf"
 },
 "managed",
 {
 "order": 10002
 }
],
 "__sls__": "blah",
 "__env__": "base"
 }
}

The subsequent Low Data will look like this:

[
 {
 "name": "httpd",
 "state": "pkg",
 "__id__": "apache",
 "fun": "installed",
 "__env__": "base",
 "__sls__": "blah",
 "order": 10000
 },
 {
 "name": "httpd",
 "watch": [
 {
 "file": "apache_conf"
 },
 {
 "pkg": "apache"
 }
],
 "state": "service",
 "__id__": "apache",
 "fun": "running",
 "__env__": "base",
 "__sls__": "blah",
 "order": 10001
 },
 {
 "name": "/etc/httpd/conf.d/httpd.conf",
 "source": "salt://apache/httpd.conf",
 "state": "file",
 "__id__": "apache_conf",
 "fun": "managed",
 "__env__": "base",
 "__sls__": "blah",
 "order": 10002
 }
]

This tutorial discusses the Low Data evaluation and the state runtime.

Ordering Layers

Salt defines 2 order interfaces which are evaluated in the state runtime and
defines these orders in a number of passes.

Definition Order

Note

The Definition Order system can be disabled by turning the option
state_auto_order to False in the master configuration file.

The top level of ordering is the Definition Order. The Definition Order
is the order in which states are defined in salt formulas. This is very
straightforward on basic states which do not contain include statements
or a top file, as the states are just ordered from the top of the file,
but the include system starts to bring in some simple rules for how the
Definition Order is defined.

Looking back at the "Low Data" and "High Data" shown above, the order key has
been transparently added to the data to enable the Definition Order.

The Include Statement

Basically, if there is an include statement in a formula, then the formulas
which are included will be run BEFORE the contents of the formula which
is including them. Also, the include statement is a list, so they will be
loaded in the order in which they are included.

In the following case:

foo.sls

include:
 - bar
 - baz

bar.sls

include:
 - quo

baz.sls

include:
 - qux

In the above case if state.apply foo were called then the formulas will be
loaded in the following order:

	quo

	bar

	qux

	baz

	foo

The order Flag

The Definition Order happens transparently in the background, but the
ordering can be explicitly overridden using the order flag in states:

apache:
 pkg.installed:
 - name: httpd
 - order: 1

This order flag will over ride the definition order, this makes it very
simple to create states that are always executed first, last or in specific
stages, a great example is defining a number of package repositories that
need to be set up before anything else, or final checks that need to be
run at the end of a state run by using order: last or order: -1.

When the order flag is explicitly set the Definition Order system will omit
setting an order for that state and directly use the order flag defined.

Lexicographical Fall-back

Salt states were written to ALWAYS execute in the same order. Before the
introduction of Definition Order in version 0.17.0 everything was ordered
lexicographically according to the name of the state, then function then id.

This is the way Salt has always ensured that states always run in the same
order regardless of where they are deployed, the addition of the
Definition Order method mealy makes this finite ordering easier to follow.

The lexicographical ordering is still applied but it only has any effect when
two order statements collide. This means that if multiple states are assigned
the same order number that they will fall back to lexicographical ordering
to ensure that every execution still happens in a finite order.

Note

If running with state_auto_order: False the order key is not
set automatically, since the Lexicographical order can be derived
from other keys.

Requisite Ordering

Salt states are fully declarative, in that they are written to declare the
state in which a system should be. This means that components can require that
other components have been set up successfully. Unlike the other ordering
systems, the Requisite system in Salt is evaluated at runtime.

The requisite system is also built to ensure that the ordering of execution
never changes, but is always the same for a given set of states. This is
accomplished by using a runtime that processes states in a completely
predictable order instead of using an event loop based system like other
declarative configuration management systems.

Runtime Requisite Evaluation

The requisite system is evaluated as the components are found, and the
requisites are always evaluated in the same order. This explanation will
be followed by an example, as the raw explanation may be a little dizzying
at first as it creates a linear dependency evaluation sequence.

The "Low Data" is an ordered list or dictionaries, the state runtime evaluates
each dictionary in the order in which they are arranged in the list. When
evaluating a single dictionary it is checked for requisites, requisites are
evaluated in order, require then watch then prereq.

Note

If using requisite in statements like require_in and watch_in these will
be compiled down to require and watch statements before runtime evaluation.

Each requisite contains an ordered list of requisites, these requisites are
looked up in the list of dictionaries and then executed. Once all requisites
have been evaluated and executed then the requiring state can safely be run
(or not run if requisites have not been met).

This means that the requisites are always evaluated in the same order, again
ensuring one of the core design principals of Salt's State system to ensure
that execution is always finite is intact.

Simple Runtime Evaluation Example

Given the above "Low Data" the states will be evaluated in the following order:

	The pkg.installed is executed ensuring that the apache package is
installed, it contains no requisites and is therefore the first defined
state to execute.

	The service.running state is evaluated but NOT executed, a watch requisite
is found, therefore they are read in order, the runtime first checks for
the file, sees that it has not been executed and calls for the file state
to be evaluated.

	The file state is evaluated AND executed, since it, like the pkg state does
not contain any requisites.

	The evaluation of the service state continues, it next checks the pkg
requisite and sees that it is met, with all requisites met the service
state is now executed.

Best Practice

The best practice in Salt is to choose a method and stick with it, official
states are written using requisites for all associations since requisites
create clean, traceable dependency trails and make for the most portable
formulas. To accomplish something similar to how classical imperative
systems function all requisites can be omitted and the failhard option
then set to True in the master configuration, this will stop all state runs at
the first instance of a failure.

In the end, using requisites creates very tight and fine grained states,
not using requisites makes full sequence runs and while slightly easier
to write, and gives much less control over the executions.

Extending External SLS Data

Sometimes a state defined in one SLS file will need to be modified from a
separate SLS file. A good example of this is when an argument needs to be
overwritten or when a service needs to watch an additional state.

The Extend Declaration

The standard way to extend is via the extend declaration. The extend
declaration is a top level declaration like include and encapsulates ID
declaration data included from other SLS files. A standard extend looks like
this:

include:
 - http
 - ssh

extend:
 apache:
 file:
 - name: /etc/httpd/conf/httpd.conf
 - source: salt://http/httpd2.conf
 ssh-server:
 service:
 - watch:
 - file: /etc/ssh/banner

/etc/ssh/banner:
 file.managed:
 - source: salt://ssh/banner

A few critical things happened here, first off the SLS files that are going to
be extended are included, then the extend dec is defined. Under the extend dec
2 IDs are extended, the apache ID's file state is overwritten with a new name
and source. Then the ssh server is extended to watch the banner file in
addition to anything it is already watching.

Extend is a Top Level Declaration

This means that extend can only be called once in an sls, if it is used
twice then only one of the extend blocks will be read. So this is WRONG:

include:
 - http
 - ssh

extend:
 apache:
 file:
 - name: /etc/httpd/conf/httpd.conf
 - source: salt://http/httpd2.conf
Second extend will overwrite the first!! Only make one
extend:
 ssh-server:
 service:
 - watch:
 - file: /etc/ssh/banner

The Requisite "in" Statement

Since one of the most common things to do when extending another SLS is to add
states for a service to watch, or anything for a watcher to watch, the
requisite in statement was added to 0.9.8 to make extending the watch and
require lists easier. The ssh-server extend statement above could be more
cleanly defined like so:

include:
 - ssh

/etc/ssh/banner:
 file.managed:
 - source: salt://ssh/banner
 - watch_in:
 - service: ssh-server

Rules to Extend By

There are a few rules to remember when extending states:

	Always include the SLS being extended with an include declaration

	Requisites (watch and require) are appended to, everything else is
overwritten

	extend is a top level declaration, like an ID declaration, cannot be
declared twice in a single SLS

	Many IDs can be extended under the extend declaration

Failhard Global Option

Normally, when a state fails Salt continues to execute the remainder of the
defined states and will only refuse to execute states that require the failed
state.

But the situation may exist, where you would want all state execution to stop
if a single state execution fails. The capability to do this is called
failing hard.

State Level Failhard

A single state can have a failhard set, this means that if this individual
state fails that all state execution will immediately stop. This is a great
thing to do if there is a state that sets up a critical config file and
setting a require for each state that reads the config would be cumbersome.
A good example of this would be setting up a package manager early on:

/etc/yum.repos.d/company.repo:
 file.managed:
 - source: salt://company/yumrepo.conf
 - user: root
 - group: root
 - mode: 644
 - order: 1
 - failhard: True

In this situation, the yum repo is going to be configured before other states,
and if it fails to lay down the config file, than no other states will be
executed.
It is possible to override a Global Failhard (see below) by explicitly setting
it to False in the state.

Global Failhard

It may be desired to have failhard be applied to every state that is executed,
if this is the case, then failhard can be set in the master configuration
file. Setting failhard in the master configuration file will result in failing
hard when any minion gathering states from the master have a state fail.

This is NOT the default behavior, normally Salt will only fail states that
require a failed state.

Using the global failhard is generally not recommended, since it can result
in states not being executed or even checked. It can also be confusing to
see states failhard if an admin is not actively aware that the failhard has
been set.

To use the global failhard set failhard to True in the
master configuration file.

Global State Arguments

Note

This documentation has been moved here.

Highstate data structure definitions

The Salt State Tree

A state tree is a collection of SLS files and directories that live under the directory
specified in file_roots.

Note

Directory names or filenames in the state tree cannot contain a period, with the
exception of the period in the .sls file suffix.

Top file

The main state file that instructs minions what environment and modules to use
during state execution.

Configurable via state_top.

See also

A detailed description of the top file

Include declaration

Defines a list of Module reference strings to include in this SLS.

Occurs only in the top level of the SLS data structure.

Example:

include:
 - edit.vim
 - http.server

Module reference

The name of a SLS module defined by a separate SLS file and residing on
the Salt Master. A module named edit.vim is a reference to the SLS
file salt://edit/vim.sls.

ID declaration

Defines an individual highstate component. Always
references a value of a dictionary containing keys referencing
State declaration and Requisite declaration. Can be overridden by
a Name declaration or a Names declaration.

Occurs on the top level or under the Extend declaration.

Must be unique across entire state tree. If the same ID declaration is
used twice, only the first one matched will be used. All subsequent
ID declarations with the same name will be ignored.

Note

Naming gotchas

In Salt versions earlier than 0.9.7, ID declarations containing dots would
result in unpredictable output.

Extend declaration

Extends a Name declaration from an included SLS module. The
keys of the extend declaration always refer to an existing
ID declaration which have been defined in included SLS modules.

Occurs only in the top level and defines a dictionary.

States cannot be extended more than once in a single state run.

Extend declarations are useful for adding-to or overriding parts of a
State declaration that is defined in another SLS file. In the
following contrived example, the shown mywebsite.sls file is include
-ing and extend -ing the apache.sls module in order to add a watch
declaration that will restart Apache whenever the Apache configuration file,
mywebsite changes.

include:
 - apache

extend:
 apache:
 service:
 - watch:
 - file: mywebsite

mywebsite:
 file.managed:
 - name: /var/www/mysite

See also

watch_in and require_in

Sometimes it is more convenient to use the watch_in or require_in syntax
instead of extending another SLS file.

State Requisites

State declaration

A list which contains one string defining the Function declaration and
any number of Function arg declaration dictionaries.

Can, optionally, contain a number of additional components like the
name override components — name and
names. Can also contain requisite
declarations.

Occurs under an ID declaration.

Requisite declaration

A list containing requisite references.

Used to build the action dependency tree. While Salt states are made to
execute in a deterministic order, this order is managed by requiring
and watching other Salt states.

Occurs as a list component under a State declaration or as a
key under an ID declaration.

Requisite reference

A single key dictionary. The key is the name of the referenced
State declaration and the value is the ID of the referenced
ID declaration.

Occurs as a single index in a Requisite declaration list.

Function declaration

The name of the function to call within the state. A state declaration
can contain only a single function declaration.

For example, the following state declaration calls the installed function in the pkg state module:

httpd:
 pkg.installed: []

The function can be declared inline with the state as a shortcut.
The actual data structure is compiled to this form:

httpd:
 pkg:
 - installed

Where the function is a string in the body of the state declaration.
Technically when the function is declared in dot notation the compiler
converts it to be a string in the state declaration list. Note that the
use of the first example more than once in an ID declaration is invalid
yaml.

INVALID:

httpd:
 pkg.installed
 service.running

When passing a function without arguments and another state declaration
within a single ID declaration, then the long or "standard" format
needs to be used since otherwise it does not represent a valid data
structure.

VALID:

httpd:
 pkg.installed: []
 service.running: []

Occurs as the only index in the State declaration list.

Function arg declaration

A single key dictionary referencing a Python type which is to be passed
to the named Function declaration as a parameter. The type must
be the data type expected by the function.

Occurs under a Function declaration.

For example in the following state declaration user, group, and
mode are passed as arguments to the managed function in the file state module:

/etc/http/conf/http.conf:
 file.managed:
 - user: root
 - group: root
 - mode: 644

Name declaration

Overrides the name argument of a State declaration. If
name is not specified the ID declaration satisfies the
name argument.

The name is always a single key dictionary referencing a string.

Overriding name is useful for a variety of scenarios.

For example, avoiding clashing ID declarations. The following two state
declarations cannot both have /etc/motd as the ID declaration:

motd_perms:
 file.managed:
 - name: /etc/motd
 - mode: 644

motd_quote:
 file.append:
 - name: /etc/motd
 - text: "Of all smells, bread; of all tastes, salt."

Another common reason to override name is if the ID declaration is long and
needs to be referenced in multiple places. In the example below it is much
easier to specify mywebsite than to specify
/etc/apache2/sites-available/mywebsite.com multiple times:

mywebsite:
 file.managed:
 - name: /etc/apache2/sites-available/mywebsite.com
 - source: salt://mywebsite.com

a2ensite mywebsite.com:
 cmd.wait:
 - unless: test -L /etc/apache2/sites-enabled/mywebsite.com
 - watch:
 - file: mywebsite

apache2:
 service.running:
 - watch:
 - file: mywebsite

Names declaration

Expands the contents of the containing State declaration into
multiple state declarations, each with its own name.

For example, given the following state declaration:

python-pkgs:
 pkg.installed:
 - names:
 - python-django
 - python-crypto
 - python-yaml

Once converted into the lowstate data structure the above state
declaration will be expanded into the following three state declarations:

python-django:
 pkg.installed

python-crypto:
 pkg.installed

python-yaml:
 pkg.installed

Other values can be overridden during the expansion by providing an additional
dictionary level.

New in version 2014.7.0.

ius:
 pkgrepo.managed:
 - humanname: IUS Community Packages for Enterprise Linux 6 - $basearch
 - gpgcheck: 1
 - baseurl: http://mirror.rackspace.com/ius/stable/CentOS/6/$basearch
 - gpgkey: http://dl.iuscommunity.org/pub/ius/IUS-COMMUNITY-GPG-KEY
 - names:
 - ius
 - ius-devel:
 - baseurl: http://mirror.rackspace.com/ius/development/CentOS/6/$basearch

Large example

Here is the layout in yaml using the names of the highdata structure
components.

<Include Declaration>:
 - <Module Reference>
 - <Module Reference>

<Extend Declaration>:
 <ID Declaration>:
 [<overrides>]

standard declaration

<ID Declaration>:
 <State Module>:
 - <Function>
 - <Function Arg>
 - <Function Arg>
 - <Function Arg>
 - <Name>: <name>
 - <Requisite Declaration>:
 - <Requisite Reference>
 - <Requisite Reference>

inline function and names

<ID Declaration>:
 <State Module>.<Function>:
 - <Function Arg>
 - <Function Arg>
 - <Function Arg>
 - <Names>:
 - <name>
 - <name>
 - <name>
 - <Requisite Declaration>:
 - <Requisite Reference>
 - <Requisite Reference>

multiple states for single id

<ID Declaration>:
 <State Module>:
 - <Function>
 - <Function Arg>
 - <Name>: <name>
 - <Requisite Declaration>:
 - <Requisite Reference>
 <State Module>:
 - <Function>
 - <Function Arg>
 - <Names>:
 - <name>
 - <name>
 - <Requisite Declaration>:
 - <Requisite Reference>

Include and Exclude

Salt SLS files can include other SLS files and exclude SLS files that have been
otherwise included. This allows for an SLS file to easily extend or manipulate
other SLS files.

Include

When other SLS files are included, everything defined in the included SLS file
will be added to the state run. When including define a list of SLS formulas
to include:

include:
 - http
 - libvirt

The include statement will include SLS formulas from the same environment
that the including SLS formula is in. But the environment can be explicitly
defined in the configuration to override the running environment, therefore
if an SLS formula needs to be included from an external environment named "dev"
the following syntax is used:

include:
 - dev: http

NOTE: include does not simply inject the states where you place it
in the SLS file. If you need to guarantee order of execution, consider using
requisites.

Do not use dots in SLS file names or their directories

The initial implementation of top.sls and
Include declaration followed the python import model where a slash
is represented as a period. This means that a SLS file with a period in
the name (besides the suffix period) can not be referenced. For example,
webserver_1.0.sls is not referenceable because webserver_1.0 would refer
to the directory/file webserver_1/0.sls

The same applies for any subdirectories, this is especially 'tricky' when
git repos are created. Another command that typically can't render its
output is `state.show_sls` of a file in a path that contains a dot.

Relative Include

In Salt 0.16.0, the capability to include SLS formulas which are relative to
the running SLS formula was added. Simply precede the formula name with a
.:

include:
 - .virt
 - .virt.hyper

In Salt 2015.8, the ability to include SLS formulas which are relative to the
parents of the running SLS formula was added. In order to achieve this,
precede the formula name with more than one . (dot). Much like Python's
relative import abilities, two or more leading dots represent a relative
include of the parent or parents of the current package, with each .
representing one level after the first.

The following SLS configuration, if placed within example.dev.virtual,
would result in example.http and base being included respectively:

include:
 - ..http
 - ...base

Exclude

The exclude statement, added in Salt 0.10.3, allows an SLS to hard exclude
another SLS file or a specific id. The component is excluded after the
high data has been compiled, so nothing should be able to override an
exclude.

Since the exclude can remove an id or an sls the type of component to exclude
needs to be defined. An exclude statement that verifies that the running
highstate does not contain the http sls and the
/etc/vimrc id would look like this:

exclude:
 - sls: http
 - id: /etc/vimrc

Note

The current state processing flow checks for duplicate IDs before
processing excludes. An error occurs if duplicate IDs are present even if
one of the IDs is targeted by an exclude.

State System Layers

The Salt state system is comprised of multiple layers. While using Salt does
not require an understanding of the state layers, a deeper understanding of
how Salt compiles and manages states can be very beneficial.

Function Call

The lowest layer of functionality in the state system is the direct state
function call. State executions are executions of single state functions at
the core. These individual functions are defined in state modules and can
be called directly via the state.single command.

salt '*' state.single pkg.installed name='vim'

Low Chunk

The low chunk is the bottom of the Salt state compiler. This is a data
representation of a single function call. The low chunk is sent to the state
caller and used to execute a single state function.

A single low chunk can be executed manually via the state.low command.

salt '*' state.low '{name: vim, state: pkg, fun: installed}'

The passed data reflects what the state execution system gets after compiling
the data down from sls formulas.

Low State

The Low State layer is the list of low chunks "evaluated" in order. To see
what the low state looks like for a highstate, run:

salt '*' state.show_lowstate

This will display the raw lowstate in the order which each low chunk will be
evaluated. The order of evaluation is not necessarily the order of execution,
since requisites are evaluated at runtime. Requisite execution and evaluation
is finite; this means that the order of execution can be ascertained with 100%
certainty based on the order of the low state.

High Data

High data is the data structure represented in YAML via SLS files. The High
data structure is created by merging the data components rendered inside sls
files (or other render systems). The High data can be easily viewed by
executing the state.show_highstate or state.show_sls functions. Since
this data is a somewhat complex data structure, it may be easier to read using
the json, yaml, or pprint outputters:

salt '*' state.show_highstate --out yaml
salt '*' state.show_sls edit.vim --out pprint

SLS

Above "High Data", the logical layers are no longer technically required to be
executed, or to be executed in a hierarchy. This means that how the High data
is generated is optional and very flexible. The SLS layer allows for many
mechanisms to be used to render sls data from files or to use the fileserver
backend to generate sls and file data from external systems.

The SLS layer can be called directly to execute individual sls formulas.

Note

SLS Formulas have historically been called "SLS files". This is because a
single SLS was only constituted in a single file. Now the term
"SLS Formula" better expresses how a compartmentalized SLS can be expressed
in a much more dynamic way by combining pillar and other sources, and the
SLS can be dynamically generated.

To call a single SLS formula named edit.vim, execute state.apply and pass edit.vim as an argument:

salt '*' state.apply edit.vim

HighState

Calling SLS directly logically assigns what states should be executed from the
context of the calling minion. The Highstate layer is used to allow for full
contextual assignment of what is executed where to be tied to groups of, or
individual, minions entirely from the master. This means that the environment of
a minion, and all associated execution data pertinent to said minion, can be
assigned from the master without needing to execute or configure anything on
the target minion. This also means that the minion can independently retrieve
information about its complete configuration from the master.

To execute the highstate use state.apply:

salt '*' state.apply

Orchestrate

The orchestrate layer expresses the highest functional layer of Salt's automated
logic systems. The Overstate allows for stateful and functional orchestration
of routines from the master. The orchestrate defines in data execution stages
which minions should execute states, or functions, and in what order using
requisite logic.

The Orchestrate Runner

Note

This documentation has been moved here.

Ordering States

The way in which configuration management systems are executed is a hotly
debated topic in the configuration management world. Two major philosophies
exist on the subject, to either execute in an imperative fashion where things
are executed in the order in which they are defined, or in a declarative
fashion where dependencies need to be mapped between objects.

Imperative ordering is deterministic and generally considered easier to write, but
declarative ordering is much more powerful and flexible but generally considered
more difficult to create.

Salt has been created to get the best of both worlds. States are evaluated in
a deterministic order, which guarantees that states are always executed in the same
order, and the states runtime is declarative, making Salt fully aware of
dependencies via the requisite system.

State Auto Ordering

Salt always executes states in a deterministic manner, meaning that they will always
execute in the same order regardless of the system that is executing them. This
evaluation order makes it easy to know what order the states will be executed in,
but it is important to note that the requisite system will override the ordering
defined in the files, and the order option, described below, will also
override the order in which states are executed.

This ordering system can be disabled in preference of lexicographic (classic)
ordering by setting the state_auto_order option to False in the master
configuration file. Otherwise, state_auto_order defaults to True.

How compiler ordering is managed is described further in Understanding State Compiler Ordering.

Requisite Statements

Note

The behavior of requisites changed in version 0.9.7 of Salt. This
documentation applies to requisites in version 0.9.7 and later.

Often when setting up states any single action will require or depend on
another action. Salt allows for the building of relationships between states
with requisite statements. A requisite statement ensures that the named state
is evaluated before the state requiring it. There are three types of requisite
statements in Salt, require, watch, and prereq.

These requisite statements are applied to a specific state declaration:

httpd:
 pkg.installed: []
 file.managed:
 - name: /etc/httpd/conf/httpd.conf
 - source: salt://httpd/httpd.conf
 - require:
 - pkg: httpd

In this example, the require requisite is used to declare that the file
/etc/httpd/conf/httpd.conf should only be set up if the pkg state executes
successfully.

The requisite system works by finding the states that are required and
executing them before the state that requires them. Then the required states
can be evaluated to see if they have executed correctly.

Require statements can refer to any state defined in Salt. The basic examples
are pkg, service, and file, but any used state can be referenced.

In addition to state declarations such as pkg, file, etc., sls type requisites
are also recognized, and essentially allow 'chaining' of states. This provides a
mechanism to ensure the proper sequence for complex state formulas, especially when
the discrete states are split or groups into separate sls files:

include:
 - network

httpd:
 pkg.installed: []
 service.running:
 - require:
 - pkg: httpd
 - sls: network

In this example, the httpd service running state will not be applied
(i.e., the httpd service will not be started) unless both the httpd package is
installed AND the network state is satisfied.

Note

Requisite matching

Requisites match on both the ID Declaration and the name parameter.
Therefore, if using the pkgs or sources argument to install
a list of packages in a pkg state, it's important to note that it is
impossible to match an individual package in the list, since all packages
are installed as a single state.

Multiple Requisites

The requisite statement is passed as a list, allowing for the easy addition of
more requisites. Both requisite types can also be separately declared:

httpd:
 pkg.installed: []
 service.running:
 - enable: True
 - watch:
 - file: /etc/httpd/conf/httpd.conf
 - require:
 - pkg: httpd
 - user: httpd
 - group: httpd
 file.managed:
 - name: /etc/httpd/conf/httpd.conf
 - source: salt://httpd/httpd.conf
 - require:
 - pkg: httpd
 user.present: []
 group.present: []

In this example, the httpd service is only going to be started if the package,
user, group, and file are executed successfully.

Requisite Documentation

For detailed information on each of the individual requisites, please
look here.

The Order Option

Before using the order option, remember that the majority of state ordering
should be done with a Requisite declaration, and that a requisite
declaration will override an order option, so a state with order option
should not require or required by other states.

The order option is used by adding an order number to a state declaration
with the option order:

vim:
 pkg.installed:
 - order: 1

By adding the order option to 1 this ensures that the vim package will be
installed in tandem with any other state declaration set to the order 1.

Any state declared without an order option will be executed after all states
with order options are executed.

But this construct can only handle ordering states from the beginning.
Certain circumstances will present a situation where it is desirable to send
a state to the end of the line. To do this, set the order to last:

vim:
 pkg.installed:
 - order: last

Running States in Parallel

Introduced in Salt version 2017.7.0 it is now possible to run select states
in parallel. This is accomplished very easily by adding the parallel: True
option to your state declaration:

nginx:
 service.running:
 - parallel: True

Now nginx will be started in a separate process from the normal state run
and will therefore not block additional states.

Parallel States and Requisites

Parallel States still honor requisites. If a given state requires another state
that has been run in parallel then the state runtime will wait for the required
state to finish.

Given this example:

sleep 10:
 cmd.run:
 - parallel: True

nginx:
 service.running:
 - parallel: True
 - require:
 - cmd: sleep 10

sleep 5:
 cmd.run:
 - parallel: True

The sleep 10 will be started first, then the state system will block on
starting nginx until the sleep 10 completes. Once nginx has been ensured to
be running then the sleep 5 will start.

This means that the order of evaluation of Salt States and requisites are
still honored, and given that in the above case, parallel: True does not
actually speed things up.

To run the above state much faster make sure that the sleep 5 is evaluated
before the nginx state

sleep 10:
 cmd.run:
 - parallel: True

sleep 5:
 cmd.run:
 - parallel: True

nginx:
 service.running:
 - parallel: True
 - require:
 - cmd: sleep 10

Now both of the sleep calls will be started in parallel and nginx will still
wait for the state it requires, but while it waits the sleep 5 state will
also complete.

Things to be Careful of

Parallel States do not prevent you from creating parallel conflicts on your
system. This means that if you start multiple package installs using Salt then
the package manager will block or fail. If you attempt to manage the same file
with multiple states in parallel then the result can produce an unexpected
file.

Make sure that the states you choose to run in parallel do not conflict, or
else, like in any parallel programming environment, the outcome may not be
what you expect. Doing things like just making all states run in parallel
will almost certainly result in unexpected behavior.

With that said, running states in parallel should be safe the vast majority
of the time and the most likely culprit for unexpected behavior is running
multiple package installs in parallel.

State Providers

New in version 0.9.8.

Salt predetermines what modules should be mapped to what uses based on the
properties of a system. These determinations are generally made for modules
that provide things like package and service management.

Sometimes in states, it may be necessary to use an alternative module to
provide the needed functionality. For instance, an very old Arch Linux system
may not be running systemd, so instead of using the systemd service module, you
can revert to the default service module:

httpd:
 service.running:
 - enable: True
 - provider: service

In this instance, the basic service module (which
manages sysvinit-based services) will replace the
systemd module which is used by default on Arch Linux.

This change only affects this one state though. If it is necessary to make this
override for most or every service, it is better to just override the provider
in the minion config file, as described here.

Also, keep in mind that this only works for states with an identically-named
virtual module (pkg, service,
etc.).

Arbitrary Module Redirects

The provider statement can also be used for more powerful means, instead of
overwriting or extending the module used for the named service an arbitrary
module can be used to provide certain functionality.

emacs:
 pkg.installed:
 - provider:
 - cmd: customcmd

In this example, the state is being instructed to use a custom module to invoke
commands.

Arbitrary module redirects can be used to dramatically change the behavior of a
given state.

Requisites and Other Global State Arguments

Requisites

The Salt requisite system is used to create relationships between states. This
provides a method to easily define inter-dependencies between states. These
dependencies are expressed by declaring the relationships using state names
and IDs or names. The generalized form of a requisite target is <state name>:
<ID or name>. The specific form is defined as a Requisite Reference.

A common use-case for requisites is ensuring a package has been installed before
trying to ensure the service is running. In the following example, Salt will
ensure nginx has been installed before trying to manage the service. If the
package could not be installed, Salt will not try to manage the service.

nginx:
 pkg.installed:
 - name: nginx-light
 service.running:
 - enable: True
 - require:
 - pkg: nginx

Without the requisite defined, salt would attempt to install the package and
then attempt to manage the service even if the installation failed.

These requisites always form dependencies in a predictable single direction.
Each requisite has an alternate <requisite>_in form that
can be used to establish a "reverse" dependency--useful in for loops.

In the end, a single dependency map is created and everything is executed in a
finite and predictable order.

Requisite matching

Requisites typically need two pieces of information for matching:

	The state module name (e.g. pkg or service)

	The state identifier (e.g. nginx or /etc/nginx/nginx.conf)

nginx:
 pkg.installed: []
 file.managed:
 - name: /etc/nginx/nginx.conf
 service.running:
 - require:
 - pkg: nginx
 - file: /etc/nginx/nginx.conf

Identifier matching

Requisites match on both the ID Declaration and the name parameter.
This means that, in the "Deploy server package" example above, a require
requisite would match with Deploy server package or /usr/local/share/myapp.tar.xz,
so either of the following versions for "Extract server package" is correct:

(Archive arguments omitted for simplicity)

Match by ID declaration
Extract server package:
 archive.extracted:
 - onchanges:
 - file: Deploy server package

Match by name parameter
Extract server package:
 archive.extracted:
 - onchanges:
 - file: /usr/local/share/myapp.tar.xz

Wildcard matching in requisites

New in version 0.9.8.

Wildcard matching is supported for state identifiers.

	* matches zero or more characters

	? matches a single character

	[] matches a single character from the enclosed set

Note that this does not follow glob rules - dots and slashes are not special,
and it is matching against state identifiers, not file paths.

In the example below, a change in any state managing an apache config file
will reload/restart the service:

apache2:
 service.running:
 - watch:
 - file: /etc/apache2/*

A leading or bare * must be quoted to avoid confusion with YAML references:

/etc/letsencrypt/renewal-hooks/deploy/install.sh:
 cmd.run:
 - onchanges:
 - acme: '*'

Omitting state module

New in version 2016.3.0.

In version 2016.3.0, the state module name was made optional. If the state module
is omitted, all states matching the identifier will be required, regardless of which
module they are using.

- require:
 - vim

Requisites Types

All requisite types have a corresponding _in form:

	require: Requires that a list of target states succeed before execution

	onchanges: Execute if any target states succeed with changes

	watch: Similar to onchanges; modifies state behavior using mod_watch

	listen: Similar to onchanges; delays execution to end of state run using mod_watch

	prereq: Execute prior to target state if target state expects to produce changes

	onfail: Execute only if a target state fails

	use: Copy arguments from another state

Several requisite types have a corresponding requisite_any form:

	require_any

	watch_any

	onchanges_any

	onfail_any

There is no combined form of _any and _in requisites, such as require_any_in!

Lastly, onfail has one special onfail_all form to account for when AND
logic is desired instead of the default OR logic of onfail/onfail_any (which
are equivalent).

All requisites define specific relationships and always work with the dependency
logic defined above.

require

The use of require builds a dependency that prevents a state from executing
until all required states execute successfully. If any required state fails,
then the state will fail due to requisites.

In the following example, the service state will not be checked unless both
file states execute without failure.

nginx:
 service.running:
 - require:
 - file: /etc/nginx/nginx.conf
 - file: /etc/nginx/conf.d/ssl.conf

Require SLS File

As of Salt 0.16.0, it is possible to require an entire sls file. Do this by first
including the sls file and then setting a state to require the included sls
file:

include:
 - foo

bar:
 pkg.installed:
 - require:
 - sls: foo

This will add a require to all of the state declarations found in the given
sls file. This means that bar will require every state within foo.
This makes it very easy to batch large groups of states easily in any requisite
statement.

onchanges

New in version 2014.7.0.

The onchanges requisite makes a state only apply if the required states
generate changes, and if the watched state's "result" is True (does not fail).
This can be a useful way to execute a post hook after changing aspects of a system.

If a state has multiple onchanges requisites then the state will trigger
if any of the watched states changes.

myservice:
 file.managed:
 - name: /etc/myservice/myservice.conf
 - source: salt://myservice/files/myservice.conf
 cmd.run:
 - name: /usr/local/sbin/run-build
 - onchanges:
 - file: /etc/myservice/myservice.conf

In the example above, cmd.run will run only if there are changes in the
file.managed state.

An easy mistake to make is using onchanges_in when onchanges is the
correct choice, as seen in this next example.

myservice:
 file.managed:
 - name: /etc/myservice/myservice.conf
 - source: salt://myservice/files/myservice.conf
 cmd.run:
 - name: /usr/local/sbin/run-build
 - onchanges_in: # <-- broken logic
 - file: /etc/myservice/myservice.conf

This will set up a requisite relationship in which the cmd.run state
always executes, and the file.managed state only executes if the
cmd.run state has changes (which it always will, since the cmd.run
state includes the command results as changes).

It may semantically seem like the cmd.run state should only run
when there are changes in the file state, but remember that requisite
relationships involve one state watching another state, and a
requisite_in does the opposite: it forces
the specified state to watch the state with the requisite_in.

Note

An onchanges requisite has no effect on SLS requisites (monitoring for
changes in an included SLS). Only the individual state IDs from an included
SLS can be monitored.

watch

A watch requisite is used to add additional behavior when there are changes
in other states. This is done using the mod_watch function available from
the execution module and will execute any time a watched state changes.

Note

If a state should only execute when another state has changes, and
otherwise do nothing, the onchanges requisite should be used instead
of watch. watch is designed to add additional behavior when
there are changes, but otherwise the state executes normally.

Note

A watch requisite has no effect on SLS requisites (watching for changes
in an included SLS). Only the individual state IDs from an included SLS can
be watched.

A good example of using watch is with a service.running state. When a service watches a state, then
the service is reloaded/restarted when the watched state changes, in addition
to Salt ensuring that the service is running.

ntpd:
 service.running:
 - watch:
 - file: /etc/ntp.conf
 file.managed:
 - name: /etc/ntp.conf
 - source: salt://ntp/files/ntp.conf

Another useful example of watch is using salt to ensure a configuration file
is present and in a correct state, ensure the service is running, and trigger
service nginx reload instead of service nginx restart in order to avoid
dropping any connections.

nginx:
 service.running:
 - reload: True
 - watch:
 - file: nginx
 file.managed:
 - name: /etc/nginx/conf.d/tls-settings.conf
 - source: salt://nginx/files/tls-settings.conf

Note

Not all state modules contain mod_watch. If mod_watch is absent
from the watching state module, the watch requisite behaves exactly
like a require requisite.

The state containing the watch requisite is defined as the watching
state. The state specified in the watch statement is defined as the watched
state. When the watched state executes, it will return a dictionary containing
a key named "changes". Here are two examples of state return dictionaries,
shown in json for clarity:

{
 "local": {
 "file_|-/tmp/foo_|-/tmp/foo_|-directory": {
 "comment": "Directory /tmp/foo updated",
 "__run_num__": 0,
 "changes": {
 "user": "bar"
 },
 "name": "/tmp/foo",
 "result": true
 }
 }
}

{
 "local": {
 "pkgrepo_|-salt-minion_|-salt-minion_|-managed": {
 "comment": "Package repo 'salt-minion' already configured",
 "__run_num__": 0,
 "changes": {},
 "name": "salt-minion",
 "result": true
 }
 }
}

If the "result" of the watched state is True, the watching state will
execute normally, and if it is False, the watching state will never run.
This part of watch mirrors the functionality of the require requisite.

If the "result" of the watched state is True and the "changes"
key contains a populated dictionary (changes occurred in the watched state),
then the watch requisite can add additional behavior. This additional
behavior is defined by the mod_watch function within the watching state
module. If the mod_watch function exists in the watching state module, it
will be called in addition to the normal watching state. The return data
from the mod_watch function is what will be returned to the master in this
case; the return data from the main watching function is discarded.

If the "changes" key contains an empty dictionary, the watch requisite acts
exactly like the require requisite (the watching state will execute if
"result" is True, and fail if "result" is False in the watched state).

Note

If the watching state changes key contains values, then mod_watch
will not be called. If you're using watch or watch_in then it's a
good idea to have a state that only enforces one attribute - such as
splitting out service.running into its own state and have
service.enabled in another.

One common source of confusion is expecting mod_watch to be called for
every necessary change. You might be tempted to write something like this:

httpd:
 service.running:
 - enable: True
 - watch:
 - file: httpd-config

httpd-config:
 file.managed:
 - name: /etc/httpd/conf/httpd.conf
 - source: salt://httpd/files/apache.conf

If your service is already running but not enabled, you might expect that Salt
will be able to tell that since the config file changed your service needs to
be restarted. This is not the case. Because the service needs to be enabled,
that change will be made and mod_watch will never be triggered. In this
case, changes to your apache.conf will fail to be loaded. If you want to
ensure that your service always reloads the correct way to handle this is
either ensure that your service is not running before applying your state, or
simply make sure that service.running is in a state on its own:

enable-httpd:
 service.enabled:
 - name: httpd

start-httpd:
 service.running:
 - name: httpd
 - watch:
 - file: httpd-config

httpd-config:
 file.managed:
 - name: /etc/httpd/conf/httpd.conf
 - source: salt://httpd/files/apache.conf

Now that service.running is its own state, changes to service.enabled
will no longer prevent mod_watch from getting triggered, so your httpd
service will get restarted like you want.

listen

New in version 2014.7.0.

A listen requisite is used to trigger the mod_watch function of a
state module. Rather than modifying execution order, the mod_watch state
created by listen will execute at the end of the state run.

restart-apache2:
 service.running:
 - name: apache2
 - listen:
 - file: /etc/apache2/apache2.conf

configure-apache2:
 file.managed:
 - name: /etc/apache2/apache2.conf
 - source: salt://apache2/apache2.conf

This example will cause apache2 to restart when the apache2.conf file is
changed, but the apache2 restart will happen at the end of the state run.

restart-apache2:
 service.running:
 - name: apache2

configure-apache2:
 file.managed:
 - name: /etc/apache2/apache2.conf
 - source: salt://apache2/apache2.conf
 - listen_in:
 - service: apache2

This example does the same as the above example, but puts the state argument
on the file resource, rather than the service resource.

prereq

New in version 0.16.0.

The prereq requisite works similar to onchanges except that it uses the
result from test=True on the observed state to determine if it should run
prior to the observed state being run.

The best way to define how prereq operates is displayed in the following
practical example: When a service should be shut down because underlying code
is going to change, the service should be off-line while the update occurs. In
this example, graceful-down is the pre-requiring state and site-code
is the pre-required state.

graceful-down:
 cmd.run:
 - name: service apache graceful
 - prereq:
 - file: site-code

site-code:
 file.recurse:
 - name: /opt/site_code
 - source: salt://site/code

In this case, the apache server will only be shut down if the site-code state
expects to deploy fresh code via the file.recurse call. The site-code deployment
will only be executed if the graceful-down run completes successfully.

When a prereq requisite is evaluated, the pre-required state reports if it
expects to have any changes. It does this by running the pre-required single
state as a test-run by enabling test=True. This test-run will return a
dictionary containing a key named "changes". (See the watch section above
for examples of "changes" dictionaries.)

If the "changes" key contains a populated dictionary, it means that the
pre-required state expects changes to occur when the state is actually
executed, as opposed to the test-run. The pre-requiring state will now
run. If the pre-requiring state executes successfully, the pre-required
state will then execute. If the pre-requiring state fails, the pre-required
state will not execute.

If the "changes" key contains an empty dictionary, this means that changes are
not expected by the pre-required state. Neither the pre-required state nor the
pre-requiring state will run.

onfail

New in version 2014.7.0.

The onfail requisite allows for reactions to happen strictly as a response
to the failure of another state. This can be used in a number of ways, such as
sending a notification or attempting an alternate task or thread of tasks when
an important state fails.

The onfail requisite is applied in the same way as require and watch:

primary_mount:
 mount.mounted:
 - name: /mnt/share
 - device: 10.0.0.45:/share
 - fstype: nfs

backup_mount:
 mount.mounted:
 - name: /mnt/share
 - device: 192.168.40.34:/share
 - fstype: nfs
 - onfail:
 - mount: primary_mount

build_site:
 cmd.run:
 - name: /srv/web/app/build_site

notify-build_failure:
 hipchat.send_message:
 - room_id: 123456
 - message: "Building website fail on {{ salt.grains.get('id') }}"

The default behavior of the onfail when multiple requisites are listed is
the opposite of other requisites in the salt state engine, it acts by default
like any() instead of all(). This means that when you list multiple
onfail requisites on a state, if any fail the requisite will be satisfied.
If you instead need all logic to be applied, you can use onfail_all
form:

test_site_a:
 cmd.run:
 - name: ping -c1 10.0.0.1

test_site_b:
 cmd.run:
 - name: ping -c1 10.0.0.2

notify_site_down:
 hipchat.send_message:
 - room_id: 123456
 - message: "Both primary and backup sites are down!"
 - onfail_all:
 - cmd: test_site_a
 - cmd: test_site_b

In this contrived example notify_site_down will run when both 10.0.0.1 and
10.0.0.2 fail to respond to ping.

Note

Setting failhard (globally or in
the failing state) to True will cause
onfail, onfail_in and onfail_any requisites to be ignored.
If you want to combine a global failhard set to True with onfail,
onfail_in or onfail_any, you will have to explicitly set failhard
to False (overriding the global setting) in the state that could fail.

Note

Beginning in the 2016.11.0 release of Salt, onfail uses OR logic for
multiple listed onfail requisites. Prior to the 2016.11.0 release,
onfail used AND logic. See Issue #22370 [https://github.com/saltstack/salt/issues/22370] for more information.
Beginning in the Neon release of Salt, a new onfail_all requisite
form is available if AND logic is desired.

use

The use requisite is used to inherit the arguments passed in another
id declaration. This is useful when many files need to have the same defaults.

/etc/foo.conf:
 file.managed:
 - source: salt://foo.conf
 - template: jinja
 - mkdirs: True
 - user: apache
 - group: apache
 - mode: 755

/etc/bar.conf:
 file.managed:
 - source: salt://bar.conf
 - use:
 - file: /etc/foo.conf

The use statement was developed primarily for the networking states but
can be used on any states in Salt. This makes sense for the networking state
because it can define a long list of options that need to be applied to
multiple network interfaces.

The use statement does not inherit the requisites arguments of the
targeted state. This means also a chain of use requisites would not
inherit inherited options.

The _in version of requisites

Direct requisites form a dependency in a single direction. This makes it possible
for Salt to detect cyclical dependencies and helps prevent faulty logic. In some
cases, often in loops, it is desirable to establish a dependency in the opposite
direction.

All direct requisites have an _in counterpart that behaves the same but forms
the dependency in the opposite direction. The following sls examples will produce
the exact same dependency mapping.

httpd:
 pkg.installed: []
 service.running:
 - require:
 - pkg: httpd

httpd:
 pkg.installed:
 - require_in:
 - service: httpd
 service.running: []

In the following example, Salt will not try to manage the nginx service or any
configuration files unless the nginx package is installed because of the pkg:
nginx requisite.

nginx:
 pkg.installed: []
 service.running:
 - enable: True
 - reload: True
 - require:
 - pkg: nginx

php.sls

include:
 - http

php:
 pkg.installed:
 - require_in:
 - service: httpd

mod_python.sls

include:
 - http

mod_python:
 pkg.installed:
 - require_in:
 - service: httpd

Now the httpd server will only start if both php and mod_python are first verified to
be installed. Thus allowing for a requisite to be defined "after the fact".

{% for cfile in salt.pillar.get('nginx:config_files') %}
/etc/nginx/conf.d/{{ cfile }}:
 file.managed:
 - source: salt://nginx/configs/{{ cfile }}
 - require:
 - pkg: nginx
 - listen_in:
 - service: nginx
{% endfor %}

In this scenario, listen_in is a better choice than require_in because the
listen requisite will trigger mod_watch behavior which will wait until the
end of state execution and then reload the service.

The _any version of requisites

New in version 2018.3.0.

Some requisites have an _any counterpart that changes the requisite behavior
from all() to any().

A:
 cmd.run:
 - name: echo A
 - require_any:
 - cmd: B
 - cmd: C

B:
 cmd.run:
 - name: echo B

C:
 cmd.run:
 - name: /bin/false

In this example A will run because at least one of the requirements specified,
B or C, will succeed.

myservice:
 pkg.installed

/etc/myservice/myservice.conf:
 file.managed:
 - source: salt://myservice/files/myservice.conf

/etc/yourservice/yourservice.conf:
 file.managed:
 - source: salt://yourservice/files/yourservice.conf

/usr/local/sbin/myservice/post-changes-hook.sh
 cmd.run:
 - onchanges_any:
 - file: /etc/myservice/myservice.conf
 - file: /etc/your_service/yourservice.conf
 - require:
 - pkg: myservice

In this example, cmd.run would be run only if either of the file.managed
states generated changes and at least one of the watched state's "result" is
True.

Altering States

The state altering system is used to make sure that states are evaluated exactly
as the user expects. It can be used to double check that a state preformed
exactly how it was expected to, or to make 100% sure that a state only runs
under certain conditions. The use of unless or onlyif options help make states
even more stateful. The check_cmd option helps ensure that the result of a
state is evaluated correctly.

reload

reload_modules is a boolean option that forces salt to reload its modules
after a state finishes. reload_pillar and reload_grains can also be set.
See Reloading Modules.

grains_refresh:
 module.run:
 - name: saltutil.refresh_grains
 - reload_grains: true

grains_read:
 module.run:
 - name: grains.items

unless

New in version 2014.7.0.

The unless requisite specifies that a state should only run when any of
the specified commands return False. The unless requisite operates
as NAND and is useful in giving more granular control over when a state should
execute.

NOTE: Under the hood unless calls cmd.retcode with
python_shell=True. This means the commands referenced by unless will be
parsed by a shell, so beware of side-effects as this shell will be run with the
same privileges as the salt-minion. Also be aware that the boolean value is
determined by the shell's concept of True and False, rather than Python's
concept of True and False.

vim:
 pkg.installed:
 - unless:
 - rpm -q vim-enhanced
 - ls /usr/bin/vim

In the example above, the state will only run if either the vim-enhanced
package is not installed (returns False) or if /usr/bin/vim does not
exist (returns False). The state will run if both commands return
False.

However, the state will not run if both commands return True.

Unless checks are resolved for each name to which they are associated.

For example:

deploy_app:
 cmd.run:
 - names:
 - first_deploy_cmd
 - second_deploy_cmd
 - unless: some_check

In the above case, some_check will be run prior to _each_ name -- once for
first_deploy_cmd and a second time for second_deploy_cmd.

Changed in version 3000: The unless requisite can take a module as a dictionary field in unless.
The dictionary must contain an argument fun which is the module that is
being run, and everything else must be passed in under the args key or will
be passed as individual kwargs to the module function.

install apache on debian based distros:
 cmd.run:
 - name: make install
 - cwd: /path/to/dir/whatever-2.1.5/
 - unless:
 - fun: file.file_exists
 path: /usr/local/bin/whatever

set mysql root password:
 debconf.set:
 - name: mysql-server-5.7
 - data:
 'mysql-server/root_password': {'type': 'password', 'value': {{pillar['mysql.pass']}} }
 - unless:
 - fun: pkg.version
 args:
 - mysql-server-5.7

Changed in version sodium: For modules which return a deeper data structure, the get_return key can
be used to access results.

test:
 test.nop:
 - name: foo
 - unless:
 - fun: consul.get
 consul_url: http://127.0.0.1:8500
 key: not-existing
 get_return: res

Changed in version 3006.0: Since the unless requisite utilizes cmd.retcode, certain parameters
included in the state are passed along to cmd.retcode. On occasion this
can cause issues, particularly if the shell option in a user.present
is set to /sbin/nologin and this shell is passed along to cmd.retcode.
This would cause cmd.retcode to run the command using that shell which
would fail regardless of the result of the command.

By including shell in cmd_opts_exclude, that parameter would not be
passed along to the call to cmd.retcode.

jim_nologin:
 user.present:
 - name: jim
 - shell: /sbin/nologin
 - unless:
 - echo hello world
 - cmd_opts_exclude:
 - shell

onlyif

New in version 2014.7.0.

The onlyif requisite specifies that if each command listed in onlyif
returns True, then the state is run. If any of the specified commands
return False, the state will not run.

NOTE: Under the hood onlyif calls cmd.retcode with
python_shell=True. This means the commands referenced by onlyif will be
parsed by a shell, so beware of side-effects as this shell will be run with the
same privileges as the salt-minion. Also be aware that the boolean value is
determined by the shell's concept of True and False, rather than Python's
concept of True and False.

stop-volume:
 module.run:
 - name: glusterfs.stop_volume
 - m_name: work
 - onlyif:
 - gluster volume status work
 - order: 1

remove-volume:
 module.run:
 - name: glusterfs.delete
 - m_name: work
 - onlyif:
 - gluster volume info work
 - watch:
 - cmd: stop-volume

The above example ensures that the stop_volume and delete modules only run
if the gluster commands return a 0 ret value.

Changed in version 3000: The onlyif requisite can take a module as a dictionary field in onlyif.
The dictionary must contain an argument fun which is the module that is
being run, and everything else must be passed in under the args key or will
be passed as individual kwargs to the module function.

install apache on redhat based distros:
 pkg.latest:
 - name: httpd
 - onlyif:
 - fun: match.grain
 tgt: 'os_family:RedHat'

install apache on debian based distros:
 pkg.latest:
 - name: apache2
 - onlyif:
 - fun: match.grain
 tgt: 'os_family:Debian'

arbitrary file example:
 file.touch:
 - name: /path/to/file
 - onlyif:
 - fun: file.search
 args:
 - /etc/crontab
 - 'entry1'

Changed in version sodium: For modules which return a deeper data structure, the get_return key can
be used to access results.

test:
 test.nop:
 - name: foo
 - onlyif:
 - fun: consul.get
 consul_url: http://127.0.0.1:8500
 key: does-exist
 get_return: res

Changed in version 3006.0: Since the onlyif requisite utilizes cmd.retcode, certain parameters
included in the state are passed along to cmd.retcode. On occasion this
can cause issues, particularly if the shell option in a user.present
is set to /sbin/nologin and this shell is passed along to cmd.retcode.
This would cause cmd.retcode to run the command using that shell which
would fail regardless of the result of the command.

By including shell in cmd_opts_exclude, that parameter would not be
passed along to the call to cmd.retcode.

jim_nologin:
 user.present:
 - name: jim
 - shell: /sbin/nologin
 - onlyif:
 - echo hello world
 - cmd_opts_exclude:
 - shell

creates

New in version 3001.

The creates requisite specifies that a state should only run when any of
the specified files do not already exist. Like unless, creates requisite
operates as NAND and is useful in giving more granular control over when a state
should execute. This was previously used by the cmd and
docker_container states.

contrived creates example:
 file.touch:
 - name: /path/to/file
 - creates: /path/to/file

creates also accepts a list of files, in which case this state will
run if any of the files do not exist:

creates list:
 file.cmd:
 - name: /path/to/command
 - creates:
 - /path/file
 - /path/file2

runas

New in version 2017.7.0.

The runas global option is used to set the user which will be used to run
the command in the cmd.run module.

django:
 pip.installed:
 - name: django >= 1.6, <= 1.7
 - runas: daniel
 - require:
 - pkg: python-pip

In the above state, the pip command run by cmd.run will be run by the daniel user.

runas_password

New in version 2017.7.2.

The runas_password global option is used to set the password used by the
runas global option. This is required by cmd.run on Windows when runas
is specified. It will be set when runas_password is defined in the state.

run_script:
 cmd.run:
 - name: Powershell -NonInteractive -ExecutionPolicy Bypass -File C:\\Temp\\script.ps1
 - runas: frank
 - runas_password: supersecret

In the above state, the Powershell script run by cmd.run will be run by the
frank user with the password supersecret.

check_cmd

New in version 2014.7.0.

Check Command is used for determining that a state did or did not run as
expected.

NOTE: Under the hood check_cmd calls cmd.retcode with
python_shell=True. This means the command will be parsed by a shell, so
beware of side-effects as this shell will be run with the same privileges as
the salt-minion.

comment-repo:
 file.replace:
 - name: /etc/yum.repos.d/fedora.repo
 - pattern: '^enabled=0'
 - repl: enabled=1
 - check_cmd:
 - "! grep 'enabled=0' /etc/yum.repos.d/fedora.repo"

This will attempt to do a replace on all enabled=0 in the .repo file, and
replace them with enabled=1. The check_cmd is just a bash command. It
will do a grep for enabled=0 in the file, and if it finds any, it will
return a 0, which will be inverted by the leading !, causing check_cmd
to set the state as failed. If it returns a 1, meaning it didn't find any
enabled=0, it will be inverted by the leading !, returning a 0, and
declaring the function succeeded.

NOTE: This requisite check_cmd functions differently than the check_cmd
of the file.managed state.

Overriding Checks

There are two commands used for the above checks.

mod_run_check is used to check for onlyif and unless. If the goal is to
override the global check for these to variables, include a mod_run_check in the
salt/states/ file.

mod_run_check_cmd is used to check for the check_cmd options. To override
this one, include a mod_run_check_cmd in the states file for the state.

Fire Event Notifications

New in version 2015.8.0.

The fire_event option in a state will cause the minion to send an event to
the Salt Master upon completion of that individual state.

The following example will cause the minion to send an event to the Salt Master
with a tag of salt/state_result/20150505121517276431/dasalt/nano and the
result of the state will be the data field of the event. Notice that the name
of the state gets added to the tag.

nano_stuff:
 pkg.installed:
 - name: nano
 - fire_event: True

In the following example instead of setting fire_event to True,
fire_event is set to an arbitrary string, which will cause the event to be
sent with this tag:
salt/state_result/20150505121725642845/dasalt/custom/tag/nano/finished

nano_stuff:
 pkg.installed:
 - name: nano
 - fire_event: custom/tag/nano/finished

Retrying States

New in version 2017.7.0.

The retry option in a state allows it to be executed multiple times until a desired
result is obtained or the maximum number of attempts have been made.

The retry option can be configured by the attempts, until, interval, and
splay parameters.

The attempts parameter controls the maximum number of times the state will be
run. If not specified or if an invalid value is specified, attempts will default
to 2.

The until parameter defines the result that is required to stop retrying the state.
If not specified or if an invalid value is specified, until will default to True

The interval parameter defines the amount of time, in seconds, that the system
will wait between attempts. If not specified or if an invalid value is specified,
interval will default to 30.

The splay parameter allows the interval to be additionally spread out. If not
specified or if an invalid value is specified, splay defaults to 0 (i.e. no
splaying will occur).

The following example will run the pkg.installed state until it returns True or it has
been run 5 times. Each attempt will be 60 seconds apart and the interval will be splayed
up to an additional 10 seconds:

my_retried_state:
 pkg.installed:
 - name: nano
 - retry:
 attempts: 5
 until: True
 interval: 60
 splay: 10

The following example will run the pkg.installed state with all the defaults for retry.
The state will run up to 2 times, each attempt being 30 seconds apart, or until it
returns True.

install_nano:
 pkg.installed:
 - name: nano
 - retry: True

The following example will run the file.exists state every 30 seconds up to 15 times
or until the file exists (i.e. the state returns True).

wait_for_file:
 file.exists:
 - name: /path/to/file
 - retry:
 attempts: 15
 interval: 30

Return data from a retried state

When a state is retried, the returned output is as follows:

The result return value is the result from the final run. For example, imagine a state set
to retry up to three times or until True. If the state returns False on the first run
and then True on the second, the result of the state will be True.

The started return value is the started from the first run.

The duration return value is the total duration of all attempts plus the retry intervals.

The comment return value will include the result and comment from all previous attempts.

For example:

wait_for_file:
 file.exists:
 - name: /path/to/file
 - retry:
 attempts: 10
 interval: 2
 splay: 5

Would return similar to the following. The state result in this case is False (file.exist was run 10
times with a 2 second interval, but the file specified did not exist on any run).

 ID: wait_for_file
Function: file.exists
 Result: False
 Comment: Attempt 1: Returned a result of "False", with the following comment: "Specified path /path/to/file does not exist"
 Attempt 2: Returned a result of "False", with the following comment: "Specified path /path/to/file does not exist"
 Attempt 3: Returned a result of "False", with the following comment: "Specified path /path/to/file does not exist"
 Attempt 4: Returned a result of "False", with the following comment: "Specified path /path/to/file does not exist"
 Attempt 5: Returned a result of "False", with the following comment: "Specified path /path/to/file does not exist"
 Attempt 6: Returned a result of "False", with the following comment: "Specified path /path/to/file does not exist"
 Attempt 7: Returned a result of "False", with the following comment: "Specified path /path/to/file does not exist"
 Attempt 8: Returned a result of "False", with the following comment: "Specified path /path/to/file does not exist"
 Attempt 9: Returned a result of "False", with the following comment: "Specified path /path/to/file does not exist"
 Specified path /path/to/file does not exist
 Started: 09:08:12.903000
Duration: 47000.0 ms
 Changes:

Run State With a Different Umask

New in version 3002: NOTE: not available on Windows

The umask state argument can be used to run a state with a different umask.
Prior to version 3002 this was available to cmd
states, but it is now a global state argument that can be applied to any state.

cleanup_script:
 cmd.script:
 - name: salt://myapp/files/my_script.sh
 - umask: "077"
 - onchanges:
 - file: /some/file

Startup States

Sometimes it may be desired that the salt minion execute a state run when it is
started. This alleviates the need for the master to initiate a state run on a
new minion and can make provisioning much easier.

As of Salt 0.10.3 the minion config reads options that allow for states to be
executed at startup. The options are startup_states, sls_list, and
top_file.

The startup_states option can be passed one of a number of arguments to
define how to execute states. The available options are:

	highstate
	Execute state.apply

	sls
	Read in the sls_list option and execute the named sls files

	top
	Read in the top_file option and execute states based on that top file
on the Salt Master

Examples:

Execute state.apply to run the
highstate when starting the minion:

startup_states: highstate

Execute the sls files edit.vim and hyper:

startup_states: sls

sls_list:
 - edit.vim
 - hyper

State Testing

Executing a Salt state run can potentially change many aspects of a system and
it may be desirable to first see what a state run is going to change before
applying the run.

Salt has a test interface to report on exactly what will be changed, this
interface can be invoked on any of the major state run functions:

salt '*' state.apply test=True
salt '*' state.apply mysls test=True
salt '*' state.single test=True

The test run is mandated by adding the test=True option to the states. The
return information will show states that will be applied in yellow and the
result is reported as None.

Default Test

If the value test is set to True in the minion configuration file then
states will default to being executed in test mode. If this value is set then
states can still be run by calling test=False:

salt '*' state.apply test=False
salt '*' state.apply mysls test=False
salt '*' state.single test=False

The Top File

Introduction

Most infrastructures are made up of groups of machines, each machine in the
group performing a role similar to others. Those groups of machines work
in concert with each other to create an application stack.

To effectively manage those groups of machines, an administrator needs to
be able to create roles for those groups. For example, a group of machines
that serve front-end web traffic might have roles which indicate that
those machines should all have the Apache webserver package installed and
that the Apache service should always be running.

In Salt, the file which contains a mapping between groups of machines on a
network and the configuration roles that should be applied to them is
called a top file.

Top files are named top.sls by default and they are so-named because they
always exist in the "top" of a directory hierarchy that contains state files.
That directory hierarchy is called a state tree.

A Basic Example

Top files have three components:

	Environment: A state tree directory containing a set of state files to
configure systems.

	Target: A grouping of machines which will have a set of states applied to
them.

	State files: A list of state files to apply to a target. Each state file
describes one or more states to be configured and enforced on the targeted
machines.

The relationship between these three components is nested as follows:

	Environments contain targets

	Targets contain states

Putting these concepts together, we can describe a scenario in which all
minions with an ID that begins with web have an apache state applied
to them:

base: # Apply SLS files from the directory root for the 'base' environment
 'web*': # All minions with a minion_id that begins with 'web'
 - apache # Apply the state file named 'apache.sls'

Environments

Environments are directory hierarchies which contain a top file and a set
of state files.

Environments can be used in many ways, however there is no requirement that
they be used at all. In fact, the most common way to deploy Salt is with
a single environment, called base. It is recommended that users only
create multiple environments if they have a use case which specifically
calls for multiple versions of state trees.

Getting Started with Top Files

Each environment is defined inside a salt master configuration variable
called, file_roots .

In the most common single-environment setup, only the base environment is
defined in file_roots along with only one directory path for
the state tree.

file_roots:
 base:
 - /srv/salt

In the above example, the top file will only have a single environment to pull
from.

Next is a simple single-environment top file placed in /srv/salt/top.sls,
illustrating that for the environment called base, all minions will have the
state files named core.sls and edit.sls applied to them.

base:
 '*':
 - core
 - edit

Assuming the file_roots configuration from above, Salt will look in the
/srv/salt directory for core.sls and edit.sls.

Multiple Environments

In some cases, teams may wish to create versioned state trees which can be
used to test Salt configurations in isolated sets of systems such as a staging
environment before deploying states into production.

For this case, multiple environments can be used to accomplish this task.

To create multiple environments, the file_roots option can be
expanded:

file_roots:
 dev:
 - /srv/salt/dev
 qa:
 - /srv/salt/qa
 prod:
 - /srv/salt/prod

In the above, we declare three environments: dev, qa and prod.
Each environment has a single directory assigned to it.

Our top file references the environments:

dev:
 'webserver*':
 - webserver
 'db*':
 - db
qa:
 'webserver*':
 - webserver
 'db*':
 - db
prod:
 'webserver*':
 - webserver
 'db*':
 - db

As seen above, the top file now declares the three environments and for each,
target expressions are defined to map minions to state files. For example, all
minions which have an ID beginning with the string webserver will have the
webserver state from the requested environment assigned to it.

In this manner, a proposed change to a state could first be made in a state
file in /srv/salt/dev and then be applied to development webservers before
moving the state into QA by copying the state file into /srv/salt/qa.

Choosing an Environment to Target

The top file is used to assign a minion to an environment unless overridden
using the methods described below. The environment in the top file must match
valid fileserver environment (a.k.a. saltenv) in order for any states to be
applied to that minion. When using the default fileserver backend, environments
are defined in file_roots.

The states that will be applied to a minion in a given environment can be
viewed using the state.show_top
function.

Minions may be pinned to a particular environment by setting the
environment value in the minion configuration file. In doing so,
a minion will only request files from the environment to which it is assigned.

The environment may also be dynamically selected at runtime by passing it to
the salt, salt-call or salt-ssh command. This is most commonly done
with functions in the state module by using the saltenv argument. For
example, to run a highstate on all minions, using only the top file and SLS
files in the prod environment, run: salt '*' state.highstate
saltenv=prod.

Note

Not all functions accept saltenv as an argument, see the documentation
for an individual function documentation to verify.

Shorthand

If you assign only one SLS to a system, as in this example, a shorthand is
also available:

base:
 '*': global
dev:
 'webserver*': webserver
 'db*': db
qa:
 'webserver*': webserver
 'db*': db
prod:
 'webserver*': webserver
 'db*': db

Advanced Minion Targeting

In the examples above, notice that all of the target expressions are globs. The
default match type in top files (since version 2014.7.0) is actually the
compound matcher, not the glob matcher as in the
CLI.

A single glob, when passed through the compound matcher, acts the same way as
matching by glob, so in most cases the two are indistinguishable. However,
there is an edge case in which a minion ID contains whitespace. While it is not
recommended to include spaces in a minion ID, Salt will not stop you from doing
so. However, since compound expressions are parsed word-by-word, if a minion ID
contains spaces it will fail to match. In this edge case, it will be necessary
to explicitly use the glob matcher:

base:
 'minion 1':
 - match: glob
 - foo

The available match types which can be set for a target expression in the top
file are:

	Match Type

	Description

	glob

	Full minion ID or glob expression to match multiple minions (e.g. minion123 or minion*)

	pcre

	Perl-compatible regular expression (PCRE) matching a minion ID (e.g. web[0-3].domain.com)

	grain

	Match a grain, optionally using globbing (e.g. kernel:Linux or kernel:*BSD)

	grain_pcre

	Match a grain using PCRE (e.g. kernel:(Free|Open)BSD)

	list

	Comma-separated list of minions (e.g. minion1,minion2,minion3)

	pillar

	Pillar match, optionally using globbing (e.g. role:webserver or role:web*)

	pillar_pcre

	Pillar match using PCRE (e.g. role:web(server|proxy)

	pillar_exact

	Pillar match with no globbing or PCRE (e.g. role:webserver)

	ipcidr

	Subnet or IP address (e.g. 172.17.0.0/16 or 10.2.9.80)

	data

	Match values kept in the minion's datastore (created using the data execution module)

	range

	Range cluster

	compound

	Complex expression combining multiple match types (see here)

	nodegroup

	Pre-defined compound expressions in the master config file (see here)

Below is a slightly more complex top file example, showing some of the above
match types:

All files will be taken from the file path specified in the base
environment in the ``file_roots`` configuration value.

base:
 # All minions which begin with the strings 'nag1' or any minion with
 # a grain set called 'role' with the value of 'monitoring' will have
 # the 'server.sls' state file applied from the 'nagios/' directory.

 'nag1* or G@role:monitoring':
 - nagios.server

 # All minions get the following three state files applied

 '*':
 - ldap-client
 - networking
 - salt.minion

 # All minions which have an ID that begins with the phrase
 # 'salt-master' will have an SLS file applied that is named
 # 'master.sls' and is in the 'salt' directory, underneath
 # the root specified in the ``base`` environment in the
 # configuration value for ``file_roots``.

 'salt-master*':
 - salt.master

 # Minions that have an ID matching the following regular
 # expression will have the state file called 'web.sls' in the
 # nagios/mon directory applied. Additionally, minions matching
 # the regular expression will also have the 'server.sls' file
 # in the apache/ directory applied.

 # NOTE!
 #
 # Take note of the 'match' directive here, which tells Salt
 # to treat the target string as a regex to be matched!

 '^(memcache|web).(qa|prod).loc$':
 - match: pcre
 - nagios.mon.web
 - apache.server

 # Minions that have a grain set indicating that they are running
 # the Ubuntu operating system will have the state file called
 # 'ubuntu.sls' in the 'repos' directory applied.
 #
 # Again take note of the 'match' directive here which tells
 # Salt to match against a grain instead of a minion ID.

 'os:Ubuntu':
 - match: grain
 - repos.ubuntu

 # Minions that are either RedHat or CentOS should have the 'epel.sls'
 # state applied, from the 'repos/' directory.

 'os:(RedHat|CentOS)':
 - match: grain_pcre
 - repos.epel

 # The three minions with the IDs of 'foo', 'bar' and 'baz' should
 # have 'database.sls' applied.

 'foo,bar,baz':
 - match: list
 - database

 # Any minion for which the pillar key 'somekey' is set and has a value
 # of that key matching 'abc' will have the 'xyz.sls' state applied.

 'somekey:abc':
 - match: pillar
 - xyz

How Top Files Are Compiled

When a highstate is executed and an environment is
specified (either using the environment config option or by
passing the saltenv when executing the highstate),
then that environment's top file is the only top file used to assign states to
minions, and only states from the specified environment will be run.

The remainder of this section applies to cases in which a highstate is executed without an environment specified.

With no environment specified, the minion will look for a top file in each
environment, and each top file will be processed to determine the SLS files to
run on the minions. By default, the top files from each environment will be
merged together. In configurations with many environments, such as with
GitFS where each branch and tag is treated as a
distinct environment, this may cause unexpected results as SLS files from older
tags cause defunct SLS files to be included in the highstate. In cases like
this, it can be helpful to set top_file_merging_strategy to
same to force each environment to use its own top file.

top_file_merging_strategy: same

Another option would be to set state_top_saltenv to a specific
environment, to ensure that any top files in other environments are
disregarded:

state_top_saltenv: base

With GitFS, it can also be helpful to simply manage
each environment's top file separately, and/or manually specify the environment
when executing the highstate to avoid any complicated merging scenarios.
gitfs_saltenv_whitelist and gitfs_saltenv_blacklist can
also be used to hide unneeded branches and tags from GitFS to reduce the number
of top files in play.

When using multiple environments, it is not necessary to create a top file for
each environment. The easiest-to-maintain approach is to use a single top file
placed in the base environment. This is often infeasible with GitFS though, since branching/tagging can easily result in extra
top files. However, when only the default (roots) fileserver backend is
used, a single top file in the base environment is the most common way of
configuring a highstate.

The following minion configuration options affect how top files are compiled
when no environment is specified, it is recommended to follow the below four
links to learn more about how these options work:

	state_top_saltenv

	top_file_merging_strategy

	env_order

	default_top

Top File Compilation Examples

For the scenarios below, assume the following configuration:

/etc/salt/master:

file_roots:
 base:
 - /srv/salt/base
 dev:
 - /srv/salt/dev
 qa:
 - /srv/salt/qa

/srv/salt/base/top.sls:

base:
 '*':
 - base1
dev:
 '*':
 - dev1
qa:
 '*':
 - qa1

/srv/salt/dev/top.sls:

base:
 'minion1':
 - base2
dev:
 'minion2':
 - dev2
qa:
 '*':
 - qa1
 - qa2

Note

For the purposes of these examples, there is no top file in the qa
environment.

Scenario 1 - dev Environment Specified

In this scenario, the highstate was either invoked
with saltenv=dev or the minion has environment: dev set in the minion
config file. The result will be that only the dev2 SLS from the dev
environment will be part of the highstate, and it
will be applied to minion2, while minion1 will have no states applied to it.

If the base environment were specified, the result would be that only the
base1 SLS from the base environment would be part of the
highstate, and it would be applied to all minions.

If the qa environment were specified, the highstate would exit with an error.

Scenario 2 - No Environment Specified, top_file_merging_strategy is "merge"

In this scenario, assuming that the base environment's top file was
evaluated first, the base1, dev1, and qa1 states would be applied
to all minions. If, for instance, the qa environment is not defined in
/srv/salt/base/top.sls, then because there is no top file for the qa
environment, no states from the qa environment would be applied.

Scenario 3 - No Environment Specified, top_file_merging_strategy is "same"

Changed in version 2016.11.0: In prior versions, "same" did not quite work as described below (see
here [https://github.com/saltstack/salt/issues/35045]). This has now been corrected. It was decided that changing
something like top file handling in a point release had the potential to
unexpectedly impact users' top files too much, and it would be better to
make this correction in a feature release.

In this scenario, base1 from the base environment is applied to all
minions. Additionally, dev2 from the dev environment is applied to
minion2.

If default_top is unset (or set to base, which happens to be
the default), then qa1 from the qa environment will be applied to all
minions. If default_top were set to dev, then both qa1
and qa2 from the qa environment would be applied to all minions.

Scenario 4 - No Environment Specified, top_file_merging_strategy is "merge_all"

New in version 2016.11.0.

In this scenario, all configured states in all top files are applied. From the
base environment, base1 would be applied to all minions, with base2
being applied only to minion1. From the dev environment, dev1 would
be applied to all minions, with dev2 being applied only to minion2.
Finally, from the qa environment, both the qa1 and qa2 states will
be applied to all minions. Note that the qa1 states would not be applied
twice, even though qa1 appears twice.

SLS Template Variable Reference

Warning

In the 3005 release sls_path, tplfile, and tpldir have had some significant
improvements which have the potential to break states that rely on old and
broken functionality.

The template engines available to sls files and file templates come loaded
with a number of context variables. These variables contain information and
functions to assist in the generation of templates. See each variable below
for its availability -- not all variables are available in all templating
contexts.

Salt

The salt variable is available to abstract the salt library functions. This
variable is a python dictionary containing all of the functions available to
the running salt minion. It is available in all salt templates.

{% for file in salt['cmd.run']('ls -1 /opt/to_remove').splitlines() %}
/opt/to_remove/{{ file }}:
 file.absent
{% endfor %}

Opts

The opts variable abstracts the contents of the minion's configuration file
directly to the template. The opts variable is a dictionary. It is available
in all templates.

{{ opts['cachedir'] }}

The config.get function also searches for values in the opts dictionary.

Pillar

The pillar dictionary can be referenced directly, and is available in all
templates:

{{ pillar['key'] }}

Using the pillar.get function via the salt variable is generally
recommended since a default can be safely set in the event that the value
is not available in pillar and dictionaries can be traversed directly:

{{ salt['pillar.get']('key', 'failover_value') }}
{{ salt['pillar.get']('stuff:more:deeper') }}

Grains

The grains dictionary makes the minion's grains directly available, and is
available in all templates:

{{ grains['os'] }}

The grains.get function can be used to traverse deeper grains and set
defaults:

{{ salt['grains.get']('os') }}

saltenv

The saltenv variable is available in only in sls files when gathering the sls
from an environment.

{{ saltenv }}

SLS Only Variables

The following are only available when processing sls files. If you need these
in other templates, you can usually pass them in as template context.

sls

The sls variable contains the sls reference value, and is only available in
the actual SLS file (not in any files referenced in that SLS). The sls
reference value is the value used to include the sls in top files or via the
include option.

{{ sls }}

slspath

The slspath variable contains the path to the directory of the current sls
file. The value of slspath in files referenced in the current sls depends on
the reference method. For jinja includes slspath is the path to the current
directory of the file. For salt includes slspath is the path to the directory
of the included file. If current sls file is in root of the file roots, this
will return ""

{{ slspath }}

sls_path

A version of slspath with underscores as path separators instead of slashes.
So, if slspath is path/to/state then sls_path is path_to_state

{{ sls_path }}

slsdotpath

A version of slspath with dots as path separators instead of slashes. So, if
slspath is path/to/state then slsdotpath is path.to.state. This is same
as sls if sls points to a directory instead if a file.

{{ slsdotpath }}

slscolonpath

A version of slspath with colons (:) as path separators instead of slashes.
So, if slspath is path/to/state then slscolonpath is path:to:state.

{{ slscolonpath }}

tplpath

Full path to sls template file being process on local disk. This is usually
pointing to a copy of the sls file in a cache directory. This will be in OS
specific format (Windows vs POSIX). (It is probably best not to use this.)

{{ tplpath }}

tplfile

Relative path to exact sls template file being processed relative to file
roots.

{{ tplfile }}

tpldir

Directory, relative to file roots, of the current sls file. If current sls file
is in root of the file roots, this will return ".". This is usually identical
to slspath except in case of root-level sls, where this will return a ".".

A Common use case for this variable is to generate relative salt urls like:

my-file:
 file.managed:
 source: salt://{{ tpldir }}/files/my-template

tpldot

A version of tpldir with dots as path separators instead of slashes. So, if
tpldir is path/to/state then tpldot is path.to.state. NOTE: if tpldir
is ., this will be set to ""

{{ tpldot }}

State Modules

State Modules are the components that map to actual enforcement and management
of Salt states.

States are Easy to Write!

State Modules should be easy to write and straightforward. The information
passed to the SLS data structures will map directly to the states modules.

Mapping the information from the SLS data is simple, this example should
illustrate:

/etc/salt/master: # maps to "name", unless a "name" argument is specified below
 file.managed: # maps to <filename>.<function> - e.g. "managed" in https://github.com/saltstack/salt/tree/master/salt/states/file.py
 - user: root # one of many options passed to the manage function
 - group: root
 - mode: 644
 - source: salt://salt/master

Therefore this SLS data can be directly linked to a module, function, and
arguments passed to that function.

This does issue the burden, that function names, state names and function
arguments should be very human readable inside state modules, since they
directly define the user interface.

Keyword Arguments

Salt passes a number of keyword arguments to states when rendering them,
including the environment, a unique identifier for the state, and more.
Additionally, keep in mind that the requisites for a state are part of the
keyword arguments. Therefore, if you need to iterate through the keyword
arguments in a state, these must be considered and handled appropriately.
One such example is in the pkgrepo.managed state, which needs to be able to handle
arbitrary keyword arguments and pass them to module execution functions.
An example of how these keyword arguments can be handled can be found
here [https://github.com/saltstack/salt/blob/v0.16.2/salt/states/pkgrepo.py#L163-183].

Best Practices

A well-written state function will follow these steps:

Note

This is an extremely simplified example. Feel free to browse the source
code [https://github.com/saltstack/salt/tree/master/salt/states] for Salt's state modules to see other examples.

	Set up the return dictionary and perform any necessary input validation
(type checking, looking for use of mutually-exclusive arguments, etc.).

def myfunc():
 ret = {"name": name, "result": False, "changes": {}, "comment": ""}

 if foo and bar:
 ret["comment"] = "Only one of foo and bar is permitted"
 return ret

	Check if changes need to be made. This is best done with an
information-gathering function in an accompanying execution module. The state should be able to use the return
from this function to tell whether or not the minion is already in the
desired state.

result = __salt__["modname.check"](name)

	If step 2 found that the minion is already in the desired state, then exit
immediately with a True result and without making any changes.

def myfunc():
 if result:
 ret["result"] = True
 ret["comment"] = "{0} is already installed".format(name)
 return ret

	If step 2 found that changes do need to be made, then check to see if the
state was being run in test mode (i.e. with test=True). If so, then exit
with a None result, a relevant comment, and (if possible) a changes
entry describing what changes would be made.

def myfunc():
 if __opts__["test"]:
 ret["result"] = None
 ret["comment"] = "{0} would be installed".format(name)
 ret["changes"] = result
 return ret

	Make the desired changes. This should again be done using a function from an
accompanying execution module. If the result of that function is enough to
tell you whether or not an error occurred, then you can exit with a
False result and a relevant comment to explain what happened.

result = __salt__["modname.install"](name)

	Perform the same check from step 2 again to confirm whether or not the
minion is in the desired state. Just as in step 2, this function should be
able to tell you by its return data whether or not changes need to be made.

ret["changes"] = __salt__["modname.check"](name)

As you can see here, we are setting the changes key in the return
dictionary to the result of the modname.check function (just as we did
in step 4). The assumption here is that the information-gathering function
will return a dictionary explaining what changes need to be made. This may
or may not fit your use case.

	Set the return data and return!

def myfunc():
 if ret["changes"]:
 ret["comment"] = "{0} failed to install".format(name)
 else:
 ret["result"] = True
 ret["comment"] = "{0} was installed".format(name)

 return ret

Using Custom State Modules

Before the state module can be used, it must be distributed to minions. This
can be done by placing them into salt://_states/. They can then be
distributed manually to minions by running saltutil.sync_states or saltutil.sync_all. Alternatively, when running a
highstate custom types will automatically be synced.

NOTE: Writing state modules with hyphens in the filename will cause issues
with !pyobjects routines. Best practice to stick to underscores.

Any custom states which have been synced to a minion, that are named the same
as one of Salt's default set of states, will take the place of the default
state with the same name. Note that a state module's name defaults to one based
on its filename (i.e. foo.py becomes state module foo), but that its
name can be overridden by using a __virtual__ function.

Cross Calling Execution Modules from States

As with Execution Modules, State Modules can also make use of the __salt__
and __grains__ data. See cross calling execution modules.

It is important to note that the real work of state management should not be
done in the state module unless it is needed. A good example is the pkg state
module. This module does not do any package management work, it just calls the
pkg execution module. This makes the pkg state module completely generic, which
is why there is only one pkg state module and many backend pkg execution
modules.

On the other hand some modules will require that the logic be placed in the
state module, a good example of this is the file module. But in the vast
majority of cases this is not the best approach, and writing specific
execution modules to do the backend work will be the optimal solution.

Cross Calling State Modules

All of the Salt state modules are available to each other and state modules can call
functions available in other state modules.

The variable __states__ is packed into the modules after they are loaded into
the Salt minion.

The __states__ variable is a Python dictionary [https://docs.python.org/3/library/stdtypes.html#typesmapping]
containing all of the state modules. Dictionary keys are strings representing
the names of the modules and the values are the functions themselves.

Salt state modules can be cross-called by accessing the value in the
__states__ dict:

ret = __states__["file.managed"](name="/tmp/myfile", source="salt://myfile")

This code will call the managed function in the file state module and pass the arguments name and source
to it.

Return Data

A State Module must return a dict containing the following keys/values:

	name: The same value passed to the state as "name".

	changes: A dict describing the changes made. Each thing changed should
be a key, with its value being another dict with keys called "old" and "new"
containing the old/new values. For example, the pkg state's changes dict
has one key for each package changed, with the "old" and "new" keys in its
sub-dict containing the old and new versions of the package. For example,
the final changes dictionary for this scenario would look something like this:

ret["changes"].update({"my_pkg_name": {"old": "", "new": "my_pkg_name-1.0"}})

	result: A tristate value. True if the action was successful,
False if it was not, or None if the state was run in test mode,
test=True, and changes would have been made if the state was not run in
test mode.

	
	live mode

	test mode

	no changes

	True

	True

	successful changes

	True

	None

	failed changes

	False

	False or None

Note

Test mode does not predict if the changes will be successful or not,
and hence the result for pending changes is usually None.

However, if a state is going to fail and this can be determined
in test mode without applying the change, False can be returned.

	comment: A list of strings or a single string summarizing the result.
Note that support for lists of strings is available as of Salt 2018.3.0.
Lists of strings will be joined with newlines to form the final comment;
this is useful to allow multiple comments from subparts of a state.
Prefer to keep line lengths short (use multiple lines as needed),
and end with punctuation (e.g. a period) to delimit multiple comments.

Note

States should not return data which cannot be serialized such as frozensets.

Sub State Runs

Some states can return multiple state runs from an external engine.
State modules that extend tools like Puppet, Chef, Ansible, and idem can run multiple external
states and then return their results individually in the "sub_state_run" portion of their return
as long as their individual state runs are formatted like salt states with low and high data.

For example, the idem state module can execute multiple idem states
via it's runtime and report the status of all those runs by attaching them to "sub_state_run" in it's state return.
These sub_state_runs will be formatted and printed alongside other salt states.

Example:

state_return = {
 "name": None, # The parent state name
 "result": None, # The overall status of the external state engine run
 "comment": None, # Comments on the overall external state engine run
 "changes": {}, # An empty dictionary, each sub state run has it's own changes to report
 "sub_state_run": [
 {
 "changes": {}, # A dictionary describing the changes made in the external state run
 "result": None, # The external state run name
 "comment": None, # Comment on the external state run
 "duration": None, # Optional, the duration in seconds of the external state run
 "start_time": None, # Optional, the timestamp of the external state run's start time
 "low": {
 "name": None, # The name of the state from the external state run
 "state": None, # Name of the external state run
 "__id__": None, # ID of the external state run
 "fun": None, # The Function name from the external state run
 },
 }
],
}

Test State

All states should check for and support test being passed in the options.
This will return data about what changes would occur if the state were actually
run. An example of such a check could look like this:

def myfunc():
 # Return comment of changes if test.
 if __opts__["test"]:
 ret["result"] = None
 ret["comment"] = "State Foo will execute with param {0}".format(bar)
 return ret

Make sure to test and return before performing any real actions on the minion.

Note

Be sure to refer to the result table listed above and displaying any
possible changes when writing support for test. Looking for changes in
a state is essential to test=true functionality. If a state is predicted
to have no changes when test=true (or test: true in a config file)
is used, then the result of the final state should not be None.

Watcher Function

If the state being written should support the watch requisite then a watcher
function needs to be declared. The watcher function is called whenever the
watch requisite is invoked and should be generic to the behavior of the state
itself.

The watcher function should accept all of the options that the normal state
functions accept (as they will be passed into the watcher function).

A watcher function typically is used to execute state specific reactive
behavior, for instance, the watcher for the service module restarts the
named service and makes it useful for the watcher to make the service
react to changes in the environment.

The watcher function also needs to return the same data that a normal state
function returns.

Mod_init Interface

Some states need to execute something only once to ensure that an environment
has been set up, or certain conditions global to the state behavior can be
predefined. This is the realm of the mod_init interface.

A state module can have a function called mod_init which executes when the
first state of this type is called. This interface was created primarily to
improve the pkg state. When packages are installed the package metadata needs
to be refreshed, but refreshing the package metadata every time a package is
installed is wasteful. The mod_init function for the pkg state sets a flag down
so that the first, and only the first, package installation attempt will refresh
the package database (the package database can of course be manually called to
refresh via the refresh option in the pkg state).

The mod_init function must accept the Low State Data for the given
executing state as an argument. The low state data is a dict and can be seen by
executing the state.show_lowstate function. Then the mod_init function must
return a bool. If the return value is True, then the mod_init function will not
be executed again, meaning that the needed behavior has been set up. Otherwise,
if the mod_init function returns False, then the function will be called the
next time.

A good example of the mod_init function is found in the pkg state module:

def mod_init(low):
 """
 Refresh the package database here so that it only needs to happen once
 """
 if low["fun"] == "installed" or low["fun"] == "latest":
 rtag = __gen_rtag()
 if not os.path.exists(rtag):
 open(rtag, "w+").write("")
 return True
 else:
 return False

The mod_init function in the pkg state accepts the low state data as low
and then checks to see if the function being called is going to install
packages, if the function is not going to install packages then there is no
need to refresh the package database. Therefore if the package database is
prepared to refresh, then return True and the mod_init will not be called
the next time a pkg state is evaluated, otherwise return False and the mod_init
will be called next time a pkg state is evaluated.

Log Output

You can call the logger from custom modules to write messages to the minion
logs. The following code snippet demonstrates writing log messages:

import logging

log = logging.getLogger(__name__)

log.info("Here is Some Information")
log.warning("You Should Not Do That")
log.error("It Is Busted")

Strings and Unicode

A state module author should always assume that strings fed to the module
have already decoded from strings into Unicode. In Python 2, these will
be of type 'Unicode' and in Python 3 they will be of type str. Calling
from a state to other Salt sub-systems, such as execution modules should
pass Unicode (or bytes if passing binary data). In the rare event that a state needs to write directly
to disk, Unicode should be encoded to a string immediately before writing
to disk. An author may use __salt_system_encoding__ to learn what the
encoding type of the system is. For example,
'my_string'.encode(__salt_system_encoding__').

Full State Module Example

The following is a simplistic example of a full state module and function.
Remember to call out to execution modules to perform all the real work. The
state module should only perform "before" and "after" checks.

	Make a custom state module by putting the code into a file at the following
path: /srv/salt/_states/my_custom_state.py.

	Distribute the custom state module to the minions:

salt '*' saltutil.sync_states

	Write a new state to use the custom state by making a new state file, for
instance /srv/salt/my_custom_state.sls.

	Add the following SLS configuration to the file created in Step 3:

human_friendly_state_id: # An arbitrary state ID declaration.
 my_custom_state: # The custom state module name.
 - enforce_custom_thing # The function in the custom state module.
 - name: a_value # Maps to the ``name`` parameter in the custom function.
 - foo: Foo # Specify the required ``foo`` parameter.
 - bar: False # Override the default value for the ``bar`` parameter.

Example state module

import salt.exceptions

def enforce_custom_thing(name, foo, bar=True):
 """
 Enforce the state of a custom thing

 This state module does a custom thing. It calls out to the execution module
 ``my_custom_module`` in order to check the current system and perform any
 needed changes.

 name
 The thing to do something to
 foo
 A required argument
 bar : True
 An argument with a default value
 """
 ret = {
 "name": name,
 "changes": {},
 "result": False,
 "comment": "",
 }

 # Start with basic error-checking. Do all the passed parameters make sense
 # and agree with each-other?
 if bar == True and foo.startswith("Foo"):
 raise salt.exceptions.SaltInvocationError(
 'Argument "foo" cannot start with "Foo" if argument "bar" is True.'
)

 # Check the current state of the system. Does anything need to change?
 current_state = __salt__["my_custom_module.current_state"](name)

 if current_state == foo:
 ret["result"] = True
 ret["comment"] = "System already in the correct state"
 return ret

 # The state of the system does need to be changed. Check if we're running
 # in ``test=true`` mode.
 if __opts__["test"] == True:
 ret["comment"] = 'The state of "{0}" will be changed.'.format(name)
 ret["changes"] = {
 "old": current_state,
 "new": "Description, diff, whatever of the new state",
 }

 # Return ``None`` when running with ``test=true``.
 ret["result"] = None

 return ret

 # Finally, make the actual change and return the result.
 new_state = __salt__["my_custom_module.change_state"](name, foo)

 ret["comment"] = 'The state of "{0}" was changed!'.format(name)

 ret["changes"] = {
 "old": current_state,
 "new": new_state,
 }

 ret["result"] = True

 return ret

Return Codes

When the salt or salt-call CLI commands result in an error, the command
will exit with a return code of 1. Error cases consist of the following:

	Errors are encountered while running States, or any state returns a False result

	Any exception is raised

	In the case of remote-execution functions, when the return data is a
Python dictionary [https://docs.python.org/3/library/stdtypes.html#typesmapping] with a key named either result
or success, which has a value of False

Retcode Passthrough

In addition to the cases listed above, if a state or remote-execution function
sets a nonzero value in the retcode key of the __context__ dictionary, the command will exit with a return code of
1. For those developing custom states and execution modules, using
__context__['retcode'] can be a useful way of signaling that an error has
occurred:

if something_went_wrong:
 __context__["retcode"] = 42

This is actually how states signal that they have failed. Different cases
result in different codes being set in the __context__
dictionary:

	1 is set when any error is encountered in the state compiler (missing SLS
file, etc.)

	2 is set when any state returns a False result

	5 is set when Pillar data fails to be compiled before running the
state(s)

When the --retcode-passthrough flag is used with salt-call, then
salt-call will exit with whichever retcode was set in the __context__ dictionary, rather than the default behavior which simply
exits with 1 for any error condition.

Utility Modules - Code Reuse in Custom Modules

New in version 2015.5.0.

Changed in version 2016.11.0: These can now be synced to the Master for use in custom Runners, and in
custom execution modules called within Pillar SLS files.

When extending Salt by writing custom (state modules), execution modules, etc., sometimes there is a need for a function to
be available to more than just one kind of custom module. For these cases, Salt
supports what are called "utility modules". These modules are like normal
execution modules, but instead of being invoked in Salt code using
__salt__, the __utils__ prefix is used instead.

For example, assuming the following simple utility module, saved to
salt://_utils/foo.py

-*- coding: utf-8 -*-
"""
My utils module

This module contains common functions for use in my other custom types.
"""

def bar():
 return "baz"

Once synced to a minion, this function would be available to other custom Salt
types like so:

-*- coding: utf-8 -*-
"""
My awesome execution module

"""

def observe_the_awesomeness():
 """
 Prints information from my utility module

 CLI Example:

 .. code-block:: bash

 salt '*' mymodule.observe_the_awesomeness
 """
 return __utils__["foo.bar"]()

Utility modules, like any other kind of Salt extension, support using a
__virtual__ function to conditionally load them,
or load them under a different namespace. For instance, if the utility module
above were named salt://_utils/mymodule.py it could be made to be loaded as
the foo utility module with a __virtual__ function.

-*- coding: utf-8 -*-
"""
My utils module

This module contains common functions for use in my other custom types.
"""

def __virtual__():
 """
 Load as a different name
 """
 return "foo"

def bar():
 return "baz"

New in version 2018.3.0: Instantiating objects from classes declared in util modules works with
Master side modules, such as Runners, Outputters, etc.

Also you could even write your utility modules in object oriented fashion:

-*- coding: utf-8 -*-
"""
My OOP-style utils module

This module contains common functions for use in my other custom types.
"""

class Foo(object):
 def __init__(self):
 pass

 def bar(self):
 return "baz"

And import them into other custom modules:

-*- coding: utf-8 -*-
"""
My awesome execution module

"""

import mymodule

def observe_the_awesomeness():
 """
 Prints information from my utility module

 CLI Example:

 .. code-block:: bash

 salt '*' mymodule.observe_the_awesomeness
 """
 foo = mymodule.Foo()
 return foo.bar()

These are, of course, contrived examples, but they should serve to show some of
the possibilities opened up by writing utility modules. Keep in mind though
that states still have access to all of the execution modules, so it is not
necessary to write a utility module to make a function available to both a
state and an execution module. One good use case for utility modules is one
where it is necessary to invoke the same function from a custom outputter/returner, as well as an execution module.

Utility modules placed in salt://_utils/ will be synced to the minions when
a highstate is run, as well as when any of the
following Salt functions are called:

	saltutil.sync_utils

	saltutil.sync_all

As of the 2019.2.0 release, as well as 2017.7.7 and 2018.3.2 in their
respective release cycles, the sync argument to state.apply/state.sls can
be used to sync custom types when running individual SLS files.

To sync to the Master, use either of the following:

	saltutil.sync_utils

	saltutil.sync_all

Events & Reactor

	Event System
	Event Bus

	Event types
	Salt Master Events
	Authentication events

	Start events

	Key events

	Job events

	Runner Events

	Presence Events

	Cloud Events

	Listening for Events
	From the CLI

	Remotely via the REST API

	From Python

	Firing Events

	Firing Events from Python
	From Salt execution modules

	From Custom Python Scripts

	Beacons
	Configuring Beacons
	Beacon Monitoring Interval

	Avoiding Event Loops

	Beacon Example
	Create Watched File

	Add Beacon Configs to Minion

	View Events on the Master

	Create a Reactor
	Reactor SLS

	State SLS

	Master Config

	Start the Salt Master in Debug Mode

	Trigger the Reactor

	Writing Beacon Plugins
	The beacon Function

	The Beacon Return

	Calling Execution Modules

	Distributing Custom Beacons

	Reactor System
	Event System

	Mapping Events to Reactor SLS Files

	Types of Reactions

	Where to Put Reactor SLS Files

	Writing Reactor SLS
	Local Reactions

	Runner Reactions

	Wheel Reactions

	Caller Reactions

	Best Practices for Writing Reactor SLS Files

	Jinja Context

	Advanced State System Capabilities

	Beacons and Reactors

	Manually Firing an Event
	From the Master

	From the Minion

	Referencing Data Passed in Events

	Getting Information About Events

	Debugging the Reactor
	Passing Event Data to Minions or Orchestration as Pillar

	A Complete Example

	Syncing Custom Types on Minion Start

	Reactor Tuning for Large-Scale Installations

Event System

The Salt Event System is used to fire off events enabling third party
applications or external processes to react to behavior within Salt.
The event system uses a publish-subscribe pattern, otherwise know as pub/sub.

Event Bus

The event system is comprised of a two primary components, which make up the
concept of an Event Bus:

	The event sockets, which publish events

	The event library, which can listen to events and send events into the salt system

Events are published onto the event bus and event bus subscribers listen for the
published events.

The event bus is used for both inter-process communication as well as network transport
in Salt. Inter-process communication is provided through UNIX domain sockets (UDX).

The Salt Master and each Salt Minion has their own event bus.

Event types

	Salt Master Events
	Authentication events

	Start events

	Key events

	Job events

	Runner Events

	Presence Events

	Cloud Events

Listening for Events

Salt's event system is used heavily within Salt and it is also written to
integrate heavily with existing tooling and scripts. There is a variety of
ways to consume it.

From the CLI

The quickest way to watch the event bus is by calling the state.event
runner:

salt-run state.event pretty=True

That runner is designed to interact with the event bus from external tools and
shell scripts. See the documentation for more examples.

Remotely via the REST API

Salt's event bus can be consumed
salt.netapi.rest_cherrypy.app.Events as an HTTP stream from
external tools or services.

curl -SsNk https://salt-api.example.com:8000/events?token=05A3

From Python

Python scripts can access the event bus only as the same system user that Salt
is running as.

The event system is accessed via the event library and can only be accessed
by the same system user that Salt is running as. To listen to events a
SaltEvent object needs to be created and then the get_event function needs to
be run. The SaltEvent object needs to know the location that the Salt Unix
sockets are kept. In the configuration this is the sock_dir option. The
sock_dir option defaults to "/var/run/salt/master" on most systems.

The following code will check for a single event:

import salt.config
import salt.utils.event

opts = salt.config.client_config("/etc/salt/master")

event = salt.utils.event.get_event("master", sock_dir=opts["sock_dir"], opts=opts)

data = event.get_event()

Events will also use a "tag". Tags allow for events to be filtered by prefix.
By default all events will be returned. If only authentication events are
desired, then pass the tag "salt/auth".

The get_event method has a default poll time assigned of 5 seconds. To
change this time set the "wait" option.

The following example will only listen for auth events and will wait for 10 seconds
instead of the default 5.

data = event.get_event(wait=10, tag="salt/auth")

To retrieve the tag as well as the event data, pass full=True:

evdata = event.get_event(wait=10, tag="salt/job", full=True)

tag, data = evdata["tag"], evdata["data"]

Instead of looking for a single event, the iter_events method can be used to
make a generator which will continually yield salt events.

The iter_events method also accepts a tag but not a wait time:

for data in event.iter_events(tag="salt/auth"):
 print(data)

And finally event tags can be globbed, such as they can be in the Reactor,
using the fnmatch library.

import fnmatch

import salt.config
import salt.utils.event

opts = salt.config.client_config("/etc/salt/master")

sevent = salt.utils.event.get_event("master", sock_dir=opts["sock_dir"], opts=opts)

while True:
 ret = sevent.get_event(full=True)
 if ret is None:
 continue

 if fnmatch.fnmatch(ret["tag"], "salt/job/*/ret/*"):
 do_something_with_job_return(ret["data"])

Firing Events

It is possible to fire events on either the minion's local bus or to fire
events intended for the master.

To fire a local event from the minion on the command line call the
event.fire execution function:

salt-call event.fire '{"data": "message to be sent in the event"}' 'tag'

To fire an event to be sent up to the master from the minion call the
event.send execution function. Remember
YAML can be used at the CLI in function arguments:

salt-call event.send 'myco/mytag/success' '{success: True, message: "It works!"}'

If a process is listening on the minion, it may be useful for a user on the
master to fire an event to it. An example of listening local events on
a minion on a non-Windows system:

Job on minion
import salt.utils.event

opts = salt.config.minion_config("/etc/salt/minion")
event = salt.utils.event.MinionEvent(opts)

for evdata in event.iter_events(match_type="regex", tag="custom/.*"):
 # do your processing here...
 ...

And an example of listening local events on a Windows system:

Job on minion
import salt.utils.event

opts = salt.config.minion_config(salt.minion.DEFAULT_MINION_OPTS)
event = salt.utils.event.MinionEvent(opts)

for evdata in event.iter_events(match_type="regex", tag="custom/.*"):
 # do your processing here...
 ...

salt minionname event.fire '{"data": "message for the minion"}' 'customtag/african/unladen'

Firing Events from Python

From Salt execution modules

Events can be very useful when writing execution modules, in order to inform
various processes on the master when a certain task has taken place. This is
easily done using the normal cross-calling syntax:

/srv/salt/_modules/my_custom_module.py

def do_something():
 """
 Do something and fire an event to the master when finished

 CLI Example::

 salt '*' my_custom_module:do_something
 """
 # do something!
 __salt__["event.send"](
 "myco/my_custom_module/finished",
 {"finished": True, "message": "The something is finished!"},
)

From Custom Python Scripts

Firing events from custom Python code is quite simple and mirrors how it is
done at the CLI:

import salt.client

caller = salt.client.Caller()

ret = caller.cmd(
 "event.send", "myco/event/success", {"success": True, "message": "It works!"}
)

if not ret:
 # the event could not be sent, process the error here
 ...

Salt Master Events

These events are fired on the Salt Master event bus. This list is not
comprehensive.

Authentication events

	
salt/auth

	Fired when a minion performs an authentication check with the master.

	Variables:

	
	id -- The minion ID.

	act -- The current status of the minion key: accept, pend,
reject.

	pub -- The minion public key.

Note

Minions fire auth events on fairly regular basis for a number
of reasons. Writing reactors to respond to events through
the auth cycle can lead to infinite reactor event loops
(minion tries to auth, reactor responds by doing something
that generates another auth event, minion sends auth event,
etc.). Consider reacting to salt/key or salt/minion/<MID>/start
or firing a custom event tag instead.

Start events

	
salt/minion/<MID>/start

	Fired every time a minion connects to the Salt master.

	Variables:

	id -- The minion ID.

Key events

	
salt/key

	Fired when accepting and rejecting minions keys on the Salt master.
These happen as a result of actions undertaken by the salt-key command.

	Variables:

	
	id -- The minion ID.

	act -- The new status of the minion key: accept, delete,

Warning

If a master is in auto_accept mode, salt/key events
will not be fired when the keys are accepted. In addition, pre-seeding
keys (like happens through Salt-Cloud) will not cause
firing of these events.

Job events

	
salt/job/<JID>/new

	Fired as a new job is sent out to minions.

	Variables:

	
	jid -- The job ID.

	tgt -- The target of the job: *, a minion ID,
G@os_family:RedHat, etc.

	tgt_type -- The type of targeting used: glob, grain,
compound, etc.

	fun -- The function to run on minions: test.version,
network.interfaces, etc.

	arg -- A list of arguments to pass to the function that will be
called.

	minions -- A list of minion IDs that Salt expects will return data for
this job.

	user -- The name of the user that ran the command as defined in Salt's
Publisher ACL or external auth.

	
salt/job/<JID>/ret/<MID>

	Fired each time a minion returns data for a job.

	Variables:

	
	id -- The minion ID.

	jid -- The job ID.

	retcode -- The return code for the job.

	fun -- The function the minion ran. E.g., test.version.

	return -- The data returned from the execution module.

	
salt/job/<JID>/prog/<MID>/<RUN NUM>

	Fired each time a each function in a state run completes execution. Can
also be fired on individual state if the fire_event
option is set on that state.

Can be enabled for all state runs in the Salt master config with the
state_events option. To enable for an individual state
run, pass state_events=True to the state
function being used.

	Variables:

	
	data -- The data returned from the state module function.

	id -- The minion ID.

	jid -- The job ID.

Runner Events

	
salt/run/<JID>/new

	Fired as a runner begins execution

	Variables:

	
	jid -- The job ID.

	fun -- The name of the runner function, with runner. prepended to it
(e.g. runner.jobs.lookup_jid)

	fun_args -- The arguments passed to the runner function (e.g.
['20160829225914848058'])

	user -- The user who executed the runner (e.g. root)

	
salt/run/<JID>/ret

	Fired when a runner function returns

	Variables:

	
	jid -- The job ID.

	fun -- The name of the runner function, with runner. prepended to it
(e.g. runner.jobs.lookup_jid)

	fun_args -- The arguments passed to the runner function (e.g.
['20160829225914848058'])

	return -- The data returned by the runner function

	
salt/run/<JID>/args

	
New in version 2016.11.0.

Fired by the state.orchestrate
runner

	Variables:

	
	name -- The ID declaration for the orchestration job (i.e. the line
above salt.state, salt.function, salt.runner, etc.)

	type -- The type of orchestration job being run (e.g. state)

	tgt -- The target expression (e.g. *). Included for state and
function types only.

	args -- The args passed to the orchestration job. Note: for
state and function types, also includes a tgt_type value
which shows what kind of match (glob, pcre, etc.) was used.
This value was named expr_form in the 2016.11 release cycle but has
been renamed to tgt_type in 2017.7.0 for consistency with other
events.

Presence Events

	
salt/presence/present

	Events fired on a regular interval about currently connected, newly
connected, or recently disconnected minions. Requires the
presence_events setting to be enabled.

	Variables:

	present -- A list of minions that are currently connected to the Salt
master.

	
salt/presence/change

	Fired when the Presence system detects new minions connect or disconnect.

	Variables:

	
	new -- A list of minions that have connected since the last presence
event.

	lost -- A list of minions that have disconnected since the last
presence event.

Cloud Events

Unlike other Master events, salt-cloud events are not fired on behalf of a
Salt Minion. Instead, salt-cloud events are fired on behalf of a VM. This
is because the minion-to-be may not yet exist to fire events to or also may have
been destroyed.

This behavior is reflected by the name variable in the event data for
salt-cloud events as compared to the id variable for Salt
Minion-triggered events.

	
salt/cloud/<VM NAME>/creating

	Fired when salt-cloud starts the VM creation process.

	Variables:

	
	name -- the name of the VM being created.

	event -- description of the event.

	provider -- the cloud provider of the VM being created.

	profile -- the cloud profile for the VM being created.

	
salt/cloud/<VM NAME>/deploying

	Fired when the VM is available and salt-cloud begins deploying Salt to the
new VM.

	Variables:

	
	name -- the name of the VM being created.

	event -- description of the event.

	kwargs -- options available as the deploy script is invoked:
conf_file, deploy_command, display_ssh_output, host,
keep_tmp, key_filename, make_minion, minion_conf,
name, parallel, preseed_minion_keys, script,
script_args, script_env, sock_dir, start_action,
sudo, tmp_dir, tty, username

	
salt/cloud/<VM NAME>/requesting

	Fired when salt-cloud sends the request to create a new VM.

	Variables:

	
	event -- description of the event.

	location -- the location of the VM being requested.

	kwargs -- options available as the VM is being requested:
Action, ImageId, InstanceType, KeyName, MaxCount,
MinCount, SecurityGroup.1

	
salt/cloud/<VM NAME>/querying

	Fired when salt-cloud queries data for a new instance.

	Variables:

	
	event -- description of the event.

	instance_id -- the ID of the new VM.

	
salt/cloud/<VM NAME>/tagging

	Fired when salt-cloud tags a new instance.

	Variables:

	
	event -- description of the event.

	tags -- tags being set on the new instance.

	
salt/cloud/<VM NAME>/waiting_for_ssh

	Fired while the salt-cloud deploy process is waiting for ssh to become
available on the new instance.

	Variables:

	
	event -- description of the event.

	ip_address -- IP address of the new instance.

	
salt/cloud/<VM NAME>/deploy_script

	Fired once the deploy script is finished.

	Variables:

	event -- description of the event.

	
salt/cloud/<VM NAME>/created

	Fired once the new instance has been fully created.

	Variables:

	
	name -- the name of the VM being created.

	event -- description of the event.

	instance_id -- the ID of the new instance.

	provider -- the cloud provider of the VM being created.

	profile -- the cloud profile for the VM being created.

	
salt/cloud/<VM NAME>/destroying

	Fired when salt-cloud requests the destruction of an instance.

	Variables:

	
	name -- the name of the VM being created.

	event -- description of the event.

	instance_id -- the ID of the new instance.

	
salt/cloud/<VM NAME>/destroyed

	Fired when an instance has been destroyed.

	Variables:

	
	name -- the name of the VM being created.

	event -- description of the event.

	instance_id -- the ID of the new instance.

Beacons

Beacons let you use the Salt event system to monitor non-Salt processes. The
beacon system allows the minion to hook into a variety of system processes and
continually monitor these processes. When monitored activity occurs in a system
process, an event is sent on the Salt event bus that can be used to trigger a
reactor.

Salt beacons can currently monitor and send Salt events for many system
activities, including:

	file system changes

	system load

	service status

	shell activity, such as user login

	network and disk usage

See beacon modules for a current list.

Note

Salt beacons are an event generation mechanism. Beacons leverage the Salt
reactor system to make changes when beacon events occur.

Configuring Beacons

Salt beacons do not require any changes to the system components that are being
monitored, everything is configured using Salt.

Beacons are typically enabled by placing a beacons: top level block in
/etc/salt/minion or any file in /etc/salt/minion.d/ such as
/etc/salt/minion.d/beacons.conf or add it to pillars for that minion:

beacons:
 inotify:
 - files:
 /etc/important_file:
 mask:
 - modify
 /opt:
 mask:
 - modify

The beacon system, like many others in Salt, can also be configured via the
minion pillar, grains, or local config file.

Note

The inotify beacon only works on OSes that have inotify kernel support.
Currently this excludes FreeBSD, macOS, and Windows.

All beacon configuration is done using list based configuration.

New in version Neon.

Multiple copies of a particular Salt beacon can be configured by including the beacon_module parameter in the beacon configuration.

beacons:
 watch_important_file:
 - files:
 /etc/important_file:
 mask:
 - modify
 - beacon_module: inotify
 watch_another_file:
 - files:
 /etc/another_file:
 mask:
 - modify
 - beacon_module: inotify

Beacon Monitoring Interval

Beacons monitor on a 1-second interval by default. To set a different interval,
provide an interval argument to a beacon. The following beacons run on 5-
and 10-second intervals:

beacons:
 inotify:
 - files:
 /etc/important_file:
 mask:
 - modify
 /opt:
 mask:
 - modify
 - interval: 5
 - disable_during_state_run: True
 load:
 - averages:
 1m:
 - 0.0
 - 2.0
 5m:
 - 0.0
 - 1.5
 15m:
 - 0.1
 - 1.0
 - interval: 10

Avoiding Event Loops

It is important to carefully consider the possibility of creating a loop
between a reactor and a beacon. For example, one might set up a beacon which
monitors whether a file is read which in turn fires a reactor to run a state
which in turn reads the file and re-fires the beacon.

To avoid these types of scenarios, the disable_during_state_run argument
may be set. If a state run is in progress, the beacon will not be run on its
regular interval until the minion detects that the state run has completed, at
which point the normal beacon interval will resume.

beacons:
 inotify:
 - files:
 /etc/important_file: {}
 mask:
 - modify
 - disable_during_state_run: True

Note

For beacon writers: If you need extra stuff to happen, like closing file
handles for the disable_during_state_run to actually work, you can add
a close() function to the beacon to run those extra things. See the
inotify beacon.

Beacon Example

This example demonstrates configuring the inotify
beacon to monitor a file for changes, and then restores the file to its
original contents if a change was made.

Note

The inotify beacon requires Pyinotify on the minion, install it using
salt myminion pkg.install python-inotify.

Create Watched File

Create the file named /etc/important_file and add some simple content:

important_config: True

Add Beacon Configs to Minion

On the Salt minion, add the following configuration to
/etc/salt/minion.d/beacons.conf:

beacons:
 inotify:
 - files:
 /etc/important_file:
 mask:
 - modify
 - disable_during_state_run: True

Save the configuration file and restart the minion service. The beacon is now
set up to notify salt upon modifications made to the file.

Note

The disable_during_state_run: True parameter prevents the inotify beacon from generating reactor
events due to salt itself modifying the file.

View Events on the Master

On your Salt master, start the event runner using the following command:

salt-run state.event pretty=true

This runner displays events as they are received by the master on the Salt
event bus. To test the beacon you set up in the previous section, make and save
a modification to /etc/important_file. You'll see an event similar to the
following on the event bus:

{
 "_stamp": "2015-09-09T15:59:37.972753",
 "data": {
 "change": "IN_IGNORED",
 "id": "larry",
 "path": "/etc/important_file"
 },
 "tag": "salt/beacon/larry/inotify//etc/important_file"
}

This indicates that the event is being captured and sent correctly. Now you can
create a reactor to take action when this event occurs.

Create a Reactor

This reactor reverts the file named /etc/important_file to the contents
provided by salt each time it is modified.

Reactor SLS

On your Salt master, create a file named /srv/reactor/revert.sls.

Note

If the /srv/reactor directory doesn't exist, create it.

mkdir -p /srv/reactor

Add the following to /srv/reactor/revert.sls:

revert-file:
 local.state.apply:
 - tgt: {{ data['id'] }}
 - arg:
 - maintain_important_file

Note

In addition to setting
disable_during_state_run: True for an inotify beacon whose reaction is
to modify the watched file, it is important to ensure the state applied is
also idempotent.

State SLS

Create the state sls file referenced by the reactor sls file. This state file
will be located at /srv/salt/maintain_important_file.sls.

important_file:
 file.managed:
 - name: /etc/important_file
 - contents: |
 important_config: True

Master Config

Configure the master to map the inotify beacon event to the revert reaction
in /etc/salt/master.d/reactor.conf:

reactor:
 - salt/beacon/*/inotify//etc/important_file:
 - /srv/reactor/revert.sls

Note

You can have only one top level reactor section, so if one already
exists, add this code to the existing section. See here to learn more about reactor SLS syntax.

Start the Salt Master in Debug Mode

To help with troubleshooting, start the Salt master in debug mode:

service salt-master stop
salt-master -l debug

When debug logging is enabled, event and reactor data are displayed so you can
discover syntax and other issues.

Trigger the Reactor

On your minion, make and save another change to /etc/important_file. On the
Salt master, you'll see debug messages that indicate the event was received and
the state.apply job was sent. When you inspect the file on the minion,
you'll see that the file contents have been restored to important_config:
True.

All beacons are configured using a similar process of enabling the beacon,
writing a reactor SLS (and state SLS if needed), and mapping a beacon event to
the reactor SLS.

Writing Beacon Plugins

Beacon plugins use the standard Salt loader system, meaning that many of the
constructs from other plugin systems holds true, such as the __virtual__
function.

The important function in the Beacon Plugin is the beacon function. When
the beacon is configured to run, this function will be executed repeatedly by
the minion. The beacon function therefore cannot block and should be as
lightweight as possible. The beacon also must return a list of dicts, each
dict in the list will be translated into an event on the master.

Beacons may also choose to implement a validate function which
takes the beacon configuration as an argument and ensures that it
is valid prior to continuing. This function is called automatically
by the Salt loader when a beacon is loaded.

Please see the inotify beacon as an example.

The beacon Function

The beacons system will look for a function named beacon in the module. If
this function is not present then the beacon will not be fired. This function
is called on a regular basis and defaults to being called on every iteration of
the minion, which can be tens to hundreds of times a second. This means that
the beacon function cannot block and should not be CPU or IO intensive.

The beacon function will be passed in the configuration for the executed
beacon. This makes it easy to establish a flexible configuration for each
called beacon. This is also the preferred way to ingest the beacon's
configuration as it allows for the configuration to be dynamically updated
while the minion is running by configuring the beacon in the minion's pillar.

The Beacon Return

The information returned from the beacon is expected to follow a predefined
structure. The returned value needs to be a list of dictionaries (standard
python dictionaries are preferred, no ordered dicts are needed).

The dictionaries represent individual events to be fired on the minion and
master event buses. Each dict is a single event. The dict can contain any
arbitrary keys but the 'tag' key will be extracted and added to the tag of the
fired event.

The return data structure would look something like this:

[{"changes": ["/foo/bar"], "tag": "foo"}, {"changes": ["/foo/baz"], "tag": "bar"}]

Calling Execution Modules

Execution modules are still the preferred location for all work and system
interaction to happen in Salt. For this reason the __salt__ variable is
available inside the beacon.

Please be careful when calling functions in __salt__, while this is the
preferred means of executing complicated routines in Salt not all of the
execution modules have been written with beacons in mind. Watch out for
execution modules that may be CPU intense or IO bound. Please feel free to add
new execution modules and functions to back specific beacons.

Distributing Custom Beacons

Custom beacons can be distributed to minions via the standard methods, see
Modular Systems.

Reactor System

Salt's Reactor system gives Salt the ability to trigger actions in response to
an event. It is a simple interface to watching Salt's event bus for event tags
that match a given pattern and then running one or more commands in response.

This system binds sls files to event tags on the master. These sls files then
define reactions. This means that the reactor system has two parts. First, the
reactor option needs to be set in the master configuration file. The reactor
option allows for event tags to be associated with sls reaction files. Second,
these reaction files use highdata (like the state system) to define reactions
to be executed.

Event System

A basic understanding of the event system is required to understand reactors.
The event system is a local ZeroMQ PUB interface which fires salt events. This
event bus is an open system used for sending information notifying Salt and
other systems about operations.

The event system fires events with a very specific criteria. Every event has a
tag. Event tags allow for fast top-level filtering of events. In addition
to the tag, each event has a data structure. This data structure is a
dictionary, which contains information about the event.

Mapping Events to Reactor SLS Files

Reactor SLS files and event tags are associated in the master config file.
By default this is /etc/salt/master, or /etc/salt/master.d/reactor.conf.

New in version 2014.7.0: Added Reactor support for salt:// file paths.

In the master config section 'reactor:' is a list of event tags to be matched
and each event tag has a list of reactor SLS files to be run.

reactor: # Master config section "reactor"

 - 'salt/minion/*/start': # Match tag "salt/minion/*/start"
 - /srv/reactor/start.sls # Things to do when a minion starts
 - /srv/reactor/monitor.sls # Other things to do

 - 'salt/cloud/*/destroyed': # Globs can be used to match tags
 - /srv/reactor/destroy/*.sls # Globs can be used to match file names

 - 'myco/custom/event/tag': # React to custom event tags
 - salt://reactor/mycustom.sls # Reactor files can come from the salt fileserver

Note

In the above example, salt://reactor/mycustom.sls refers to the
base environment. To pull this file from a different environment, use
the querystring syntax (e.g.
salt://reactor/mycustom.sls?saltenv=reactor).

Reactor SLS files are similar to State and Pillar SLS files. They are by
default YAML + Jinja templates and are passed familiar context variables.
Click here for more detailed information on the
variables available in Jinja templating.

Here is the SLS for a simple reaction:

{% if data['id'] == 'mysql1' %}
highstate_run:
 local.state.apply:
 - tgt: mysql1
{% endif %}

This simple reactor file uses Jinja to further refine the reaction to be made.
If the id in the event data is mysql1 (in other words, if the name of
the minion is mysql1) then the following reaction is defined. The same
data structure and compiler used for the state system is used for the reactor
system. The only difference is that the data is matched up to the salt command
API and the runner system. In this example, a command is published to the
mysql1 minion with a function of state.apply, which performs a highstate. Similarly, a runner can be called:

{% if data['data']['custom_var'] == 'runit' %}
call_runit_orch:
 runner.state.orchestrate:
 - args:
 - mods: orchestrate.runit
{% endif %}

This example will execute the state.orchestrate runner and initiate an execution
of the runit orchestrator located at /srv/salt/orchestrate/runit.sls.

Types of Reactions

	Name

	Description

	local

	Runs a remote-execution function on targeted minions

	runner

	Executes a runner function

	wheel

	Executes a wheel function on the master

	caller

	Runs a remote-execution function on a masterless minion

Note

The local and caller reaction types will likely be renamed in a
future release. These reaction types were named after Salt's internal
client interfaces, and are not intuitively named. Both local and
caller will continue to work in Reactor SLS files, however.

Where to Put Reactor SLS Files

Reactor SLS files can come both from files local to the master, and from any of
backends enabled via the fileserver_backend config option. Files
placed in the Salt fileserver can be referenced using a salt:// URL, just
like they can in State SLS files.

It is recommended to place reactor and orchestrator SLS files in their own
uniquely-named subdirectories such as orch/, orchestrate/, react/,
reactor/, etc., to keep them organized.

Writing Reactor SLS

The different reaction types were developed separately and have historically
had different methods for passing arguments. For the 2017.7.2 release a new,
unified configuration schema has been introduced, which applies to all reaction
types.

The old config schema will continue to be supported, and there is no plan to
deprecate it at this time.

Local Reactions

A local reaction runs a remote-execution function
on the targeted minions.

The old config schema required the positional and keyword arguments to be
manually separated by the user under arg and kwarg parameters. However,
this is not very user-friendly, as it forces the user to distinguish which type
of argument is which, and make sure that positional arguments are ordered
properly. Therefore, the new config schema is recommended if the master is
running a supported release.

The below two examples are equivalent:

	Supported in 2017.7.2 and later

	Supported in all releases

	install_zsh:
 local.state.single:
 - tgt: 'kernel:Linux'
 - tgt_type: grain
 - args:
 - fun: pkg.installed
 - name: zsh
 - fromrepo: updates

	install_zsh:
 local.state.single:
 - tgt: 'kernel:Linux'
 - tgt_type: grain
 - arg:
 - pkg.installed
 - zsh
 - kwarg:
 fromrepo: updates

This reaction would be equivalent to running the following Salt command:

salt -G 'kernel:Linux' state.single pkg.installed name=zsh fromrepo=updates

Note

Any other parameters in the LocalClient().cmd_async() method can be passed at the same
indentation level as tgt.

Note

tgt_type is only required when the target expression defined in tgt
uses a target type other than a minion ID glob.

The tgt_type argument was named expr_form in releases prior to
2017.7.0.

Runner Reactions

Runner reactions execute runner functions locally on
the master.

The old config schema called for passing arguments to the reaction directly
under the name of the runner function. However, this can cause unpredictable
interactions with the Reactor system's internal arguments. It is also possible
to pass positional and keyword arguments under arg and kwarg like above
in local reactions, but as noted above this is not very
user-friendly. Therefore, the new config schema is recommended if the master
is running a supported release.

Note

State ids of reactors for runners and wheels should all be unique. They can
overwrite each other when added to the async queue causing lost reactions.

The below two examples are equivalent:

	Supported in 2017.7.2 and later

	Supported in all releases

	deploy_app:
 runner.state.orchestrate:
 - args:
 - mods: orchestrate.deploy_app
 - pillar:
 event_tag: {{ tag }}
 event_data: {{ data['data']|json }}

	deploy_app:
 runner.state.orchestrate:
 - mods: orchestrate.deploy_app
 - kwarg:
 pillar:
 event_tag: {{ tag }}
 event_data: {{ data['data']|json }}

Assuming that the event tag is foo, and the data passed to the event is
{'bar': 'baz'}, then this reaction is equivalent to running the following
Salt command:

salt-run state.orchestrate mods=orchestrate.deploy_app pillar='{"event_tag": "foo", "event_data": {"bar": "baz"}}'

Wheel Reactions

Wheel reactions run wheel functions locally on the
master.

Like runner reactions, the old config schema called for
wheel reactions to have arguments passed directly under the name of the
wheel function (or in arg or kwarg parameters).

Note

State ids of reactors for runners and wheels should all be unique. They can
overwrite each other when added to the async queue causing lost reactions.

The below two examples are equivalent:

	Supported in 2017.7.2 and later

	Supported in all releases

	remove_key:
 wheel.key.delete:
 - args:
 - match: {{ data['id'] }}

	remove_key:
 wheel.key.delete:
 - match: {{ data['id'] }}

Caller Reactions

Caller reactions run remote-execution functions on a
minion daemon's Reactor system. To run a Reactor on the minion, it is necessary
to configure the Reactor Engine in the minion
config file, and then setup your watched events in a reactor section in the
minion config file as well.

Note

Masterless Minions use this Reactor

This is the only way to run the Reactor if you use masterless minions.

Both the old and new config schemas involve passing arguments under an args
parameter. However, the old config schema only supports positional arguments.
Therefore, the new config schema is recommended if the masterless minion is
running a supported release.

The below two examples are equivalent:

	Supported in 2017.7.2 and later

	Supported in all releases

	touch_file:
 caller.file.touch:
 - args:
 - name: /tmp/foo

	touch_file:
 caller.file.touch:
 - args:
 - /tmp/foo

This reaction is equivalent to running the following Salt command:

salt-call file.touch name=/tmp/foo

Best Practices for Writing Reactor SLS Files

The Reactor works as follows:

	The Salt Reactor watches Salt's event bus for new events.

	Each event's tag is matched against the list of event tags configured under
the reactor section in the Salt Master config.

	The SLS files for any matches are rendered into a data structure that
represents one or more function calls.

	That data structure is given to a pool of worker threads for execution.

Matching and rendering Reactor SLS files is done sequentially in a single
process. For that reason, reactor SLS files should contain few individual
reactions (one, if at all possible). Also, keep in mind that reactions are
fired asynchronously (with the exception of caller) and
do not support requisites.

Complex Jinja templating that calls out to slow remote-execution or runner functions slows down
the rendering and causes other reactions to pile up behind the current one. The
worker pool is designed to handle complex and long-running processes like
orchestration jobs.

Therefore, when complex tasks are in order, orchestration is a natural fit. Orchestration SLS files can be more
complex, and use requisites. Performing a complex task using orchestration lets
the Reactor system fire off the orchestration job and proceed with processing
other reactions.

Jinja Context

Reactor SLS files only have access to a minimal Jinja context. grains and
pillar are not available. The salt object is available for calling
remote-execution or runner
functions, but it should be used sparingly and only for quick tasks for the
reasons mentioned above.

In addition to the salt object, the following variables are available in
the Jinja context:

	tag - the tag from the event that triggered execution of the Reactor SLS
file

	data - the event's data dictionary

The data dict will contain an id key containing the minion ID, if the
event was fired from a minion, and a data key containing the data passed to
the event.

Advanced State System Capabilities

Reactor SLS files, by design, do not support requisites,
ordering, onlyif/unless conditionals and most other powerful constructs
from Salt's State system.

Complex Master-side operations are best performed by Salt's Orchestrate system
so using the Reactor to kick off an Orchestrate run is a very common pairing.

For example:

/etc/salt/master.d/reactor.conf
A custom event containing: {"foo": "Foo!", "bar: "bar*", "baz": "Baz!"}
reactor:
 - my/custom/event:
 - /srv/reactor/some_event.sls

/srv/reactor/some_event.sls
invoke_orchestrate_file:
 runner.state.orchestrate:
 - args:
 - mods: orchestrate.do_complex_thing
 - pillar:
 event_tag: {{ tag }}
 event_data: {{ data|json }}

/srv/salt/orchestrate/do_complex_thing.sls
{% set tag = salt.pillar.get('event_tag') %}
{% set data = salt.pillar.get('event_data') %}

Pass data from the event to a custom runner function.
The function expects a 'foo' argument.
do_first_thing:
 salt.runner:
 - name: custom_runner.custom_function
 - foo: {{ data.foo }}

Wait for the runner to finish then send an execution to minions.
Forward some data from the event down to the minion's state run.
do_second_thing:
 salt.state:
 - tgt: {{ data.bar }}
 - sls:
 - do_thing_on_minion
 - kwarg:
 pillar:
 baz: {{ data.baz }}
 - require:
 - salt: do_first_thing

Beacons and Reactors

An event initiated by a beacon, when it arrives at the master will be wrapped
inside a second event, such that the data object containing the beacon
information will be data['data'], rather than data.

For example, to access the id field of the beacon event in a reactor file,
you will need to reference {{ data['data']['id'] }} rather than {{
data['id'] }} as for events initiated directly on the event bus.

Similarly, the data dictionary attached to the event would be located in
{{ data['data']['data'] }} instead of {{ data['data'] }}.

See the beacon documentation for examples.

Manually Firing an Event

From the Master

Use the event.send runner:

salt-run event.send foo '{orchestrate: refresh}'

From the Minion

To fire an event to the master from a minion, call event.send:

salt-call event.send foo '{orchestrate: refresh}'

To fire an event to the minion's local event bus, call event.fire:

salt-call event.fire '{orchestrate: refresh}' foo

Referencing Data Passed in Events

Assuming any of the above examples, any reactor SLS files triggered by watching
the event tag foo will execute with {{ data['data']['orchestrate'] }}
equal to 'refresh'.

Getting Information About Events

The best way to see exactly what events have been fired and what data is
available in each event is to use the state.event runner.

See also

Common Salt Events

Example usage:

salt-run state.event pretty=True

Example output:

salt/job/20150213001905721678/new {
 "_stamp": "2015-02-13T00:19:05.724583",
 "arg": [],
 "fun": "test.ping",
 "jid": "20150213001905721678",
 "minions": [
 "jerry"
],
 "tgt": "*",
 "tgt_type": "glob",
 "user": "root"
}
salt/job/20150213001910749506/ret/jerry {
 "_stamp": "2015-02-13T00:19:11.136730",
 "cmd": "_return",
 "fun": "saltutil.find_job",
 "fun_args": [
 "20150213001905721678"
],
 "id": "jerry",
 "jid": "20150213001910749506",
 "retcode": 0,
 "return": {},
 "success": true
}

Debugging the Reactor

The best window into the Reactor is to run the master in the foreground with
debug logging enabled. The output will include when the master sees the event,
what the master does in response to that event, and it will also include the
rendered SLS file (or any errors generated while rendering the SLS file).

	Stop the master.

	Start the master manually:

salt-master -l debug

	Look for log entries in the form:

[DEBUG] Gathering reactors for tag foo/bar
[DEBUG] Compiling reactions for tag foo/bar
[DEBUG] Rendered data from file: /path/to/the/reactor_file.sls:
<... Rendered output appears here. ...>

The rendered output is the result of the Jinja parsing and is a good way to
view the result of referencing Jinja variables. If the result is empty then
Jinja produced an empty result and the Reactor will ignore it.

Passing Event Data to Minions or Orchestration as Pillar

An interesting trick to pass data from the Reactor SLS file to
state.apply is to pass it as inline
Pillar data since both functions take a keyword argument named pillar.

The following example uses Salt's Reactor to listen for the event that is fired
when the key for a new minion is accepted on the master using salt-key.

/etc/salt/master.d/reactor.conf:

reactor:
 - 'salt/key':
 - /srv/salt/haproxy/react_new_minion.sls

The Reactor then fires a :state.apply
command targeted to the HAProxy servers and passes the ID of the new minion
from the event to the state file via inline Pillar.

/srv/salt/haproxy/react_new_minion.sls:

{% if data['act'] == 'accept' and data['id'].startswith('web') %}
add_new_minion_to_pool:
 local.state.apply:
 - tgt: 'haproxy*'
 - args:
 - mods: haproxy.refresh_pool
 - pillar:
 new_minion: {{ data['id'] }}
{% endif %}

The above command is equivalent to the following command at the CLI:

salt 'haproxy*' state.apply haproxy.refresh_pool pillar='{new_minion: minionid}'

This works with Orchestrate files as well:

call_some_orchestrate_file:
 runner.state.orchestrate:
 - args:
 - mods: orchestrate.some_orchestrate_file
 - pillar:
 stuff: things

Which is equivalent to the following command at the CLI:

salt-run state.orchestrate orchestrate.some_orchestrate_file pillar='{stuff: things}'

Finally, that data is available in the state file using the normal Pillar
lookup syntax. The following example is grabbing web server names and IP
addresses from Salt Mine. If this state is invoked from the
Reactor then the custom Pillar value from above will be available and the new
minion will be added to the pool but with the disabled flag so that HAProxy
won't yet direct traffic to it.

/srv/salt/haproxy/refresh_pool.sls:

{% set new_minion = salt['pillar.get']('new_minion') %}

listen web *:80
 balance source
 {% for server,ip in salt['mine.get']('web*', 'network.interfaces', ['eth0']).items() %}
 {% if server == new_minion %}
 server {{ server }} {{ ip }}:80 disabled
 {% else %}
 server {{ server }} {{ ip }}:80 check
 {% endif %}
 {% endfor %}

A Complete Example

In this example, we're going to assume that we have a group of servers that
will come online at random and need to have keys automatically accepted. We'll
also add that we don't want all servers being automatically accepted. For this
example, we'll assume that all hosts that have an id that starts with 'ink'
will be automatically accepted and have state.apply executed. On top of this, we're going to add that
a host coming up that was replaced (meaning a new key) will also be accepted.

Our master configuration will be rather simple. All minions that attempt to
authenticate will match the tag of salt/auth. When it comes
to the minion key being accepted, we get a more refined tag that
includes the minion id, which we can use for matching.

/etc/salt/master.d/reactor.conf:

reactor:
 - 'salt/auth':
 - /srv/reactor/auth-pending.sls
 - 'salt/minion/ink*/start':
 - /srv/reactor/auth-complete.sls

In this SLS file, we say that if the key was rejected we will delete the key on
the master and then also tell the master to ssh in to the minion and tell it to
restart the minion, since a minion process will die if the key is rejected.

We also say that if the key is pending and the id starts with ink we will
accept the key. A minion that is waiting on a pending key will retry
authentication every ten seconds by default.

/srv/reactor/auth-pending.sls:

{# Ink server failed to authenticate -- remove accepted key #}
{% if not data['result'] and data['id'].startswith('ink') %}
minion_remove:
 wheel.key.delete:
 - args:
 - match: {{ data['id'] }}
minion_rejoin:
 local.cmd.run:
 - tgt: salt-master.domain.tld
 - args:
 - cmd: ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no "{{ data['id'] }}" 'sleep 10 && /etc/init.d/salt-minion restart'
{% endif %}

{# Ink server is sending new key -- accept this key #}
{% if 'act' in data and data['act'] == 'pend' and data['id'].startswith('ink') %}
minion_add:
 wheel.key.accept:
 - args:
 - match: {{ data['id'] }}
{% endif %}

No if statements are needed here because we already limited this action to just
Ink servers in the master configuration.

/srv/reactor/auth-complete.sls:

{# When an Ink server connects, run state.apply. #}
highstate_run:
 local.state.apply:
 - tgt: {{ data['id'] }}
 - ret: smtp

The above will also return the highstate result data
using the smtp_return returner (use virtualname like when using from the
command line with --return). The returner needs to be configured on the
minion for this to work. See salt.returners.smtp_return documentation for that.

Syncing Custom Types on Minion Start

Salt will sync all custom types (by running a saltutil.sync_all) on every highstate. However, there is a chicken-and-egg issue where, on the
initial highstate, a minion will not yet have these
custom types synced when the top file is first compiled. This can be worked
around with a simple reactor which watches for salt/minion/*/start events,
which each minion fires when it first starts up and connects to the master.

On the master, create /srv/reactor/sync_grains.sls with the following
contents:

sync_grains:
 local.saltutil.sync_grains:
 - tgt: {{ data['id'] }}

And in the master config file, add the following reactor configuration:

reactor:
 - 'salt/minion/*/start':
 - /srv/reactor/sync_grains.sls

This will cause the master to instruct each minion to sync its custom grains
when it starts, making these grains available when the initial highstate is executed.

Other types can be synced by replacing local.saltutil.sync_grains with
local.saltutil.sync_modules, local.saltutil.sync_all, or whatever else
suits the intended use case.

Also, if it is not desirable that every minion syncs on startup, the *
can be replaced with a different glob to narrow down the set of minions which
will match that reactor (e.g. salt/minion/appsrv*/start, which would only
match minion IDs beginning with appsrv).

Reactor Tuning for Large-Scale Installations

The reactor uses a thread pool implementation that's contained inside
salt.utils.process.ThreadPool. It uses Python's stdlib Queue to enqueue
jobs which are picked up by standard Python threads. If the queue is full,
False is simply returned by the firing method on the thread pool.

As such, there are a few things to say about the selection of proper values
for the reactor.

For situations where it is expected that many long-running jobs might be
executed by the reactor, reactor_worker_hwm should be increased or even
set to 0 to bound it only by available memory. If set to zero, a close eye
should be kept on memory consumption.

If many long-running jobs are expected and execution concurrency and
performance are a concern, you may also increase the value for
reactor_worker_threads. This will control the number of concurrent threads
which are pulling jobs from the queue and executing them. Obviously, this
bears a relationship to the speed at which the queue itself will fill up.
The price to pay for this value is that each thread will contain a copy of
Salt code needed to perform the requested action.

Orchestration

	Orchestrate Runner
	The Orchestrate Runner
	Writing SLS Files

	Executing the Orchestrate Runner

	Masterless Orchestration

	Examples
	Function
	Fail Functions

	State

	Highstate

	Runner

	Return Codes in Runner/Wheel Jobs

	More Complex Orchestration

	Parsing Results Programmatically
	Running States on the Master without a Minion
	Limitations

Orchestrate Runner

Executing states or highstate on a minion is perfect when you want to ensure that
minion configured and running the way you want. Sometimes however you want to
configure a set of minions all at once.

For example, if you want to set up a load balancer in front of a cluster of web
servers you can ensure the load balancer is set up first, and then the same
matching configuration is applied consistently across the whole cluster.

Orchestration is the way to do this.

The Orchestrate Runner

New in version 0.17.0.

Note

Orchestrate Deprecates OverState

The Orchestrate Runner (originally called the state.sls runner) offers all
the functionality of the OverState, but with some advantages:

	All Requisites and Other Global State Arguments available in states can be
used.

	The states/functions will also work on salt-ssh minions.

The Orchestrate Runner replaced the OverState system in Salt 2015.8.0.

The orchestrate runner generalizes the Salt state system to a Salt master
context. Whereas the state.sls, state.highstate, et al. functions are
concurrently and independently executed on each Salt minion, the
state.orchestrate runner is executed on the master, giving it a
master-level view and control over requisites, such as state ordering and
conditionals. This allows for inter minion requisites, like ordering the
application of states on different minions that must not happen simultaneously,
or for halting the state run on all minions if a minion fails one of its
states.

The state.sls, state.highstate, et al. functions allow you to statefully
manage each minion and the state.orchestrate runner allows you to
statefully manage your entire infrastructure.

Writing SLS Files

Orchestrate SLS files are stored in the same location as State SLS files. This
means that both file_roots and gitfs_remotes impact what SLS files are
available to the reactor and orchestrator.

It is recommended to keep reactor and orchestrator SLS files in their own
uniquely named subdirectories such as _orch/, orch/, _orchestrate/,
react/, _reactor/, etc. This will avoid duplicate naming and will help
prevent confusion.

Executing the Orchestrate Runner

The Orchestrate Runner command format is the same as for the state.sls
function, except that since it is a runner, it is executed with salt-run
rather than salt. Assuming you have a state.sls file called
/srv/salt/orch/webserver.sls the following command, run on the master,
will apply the states defined in that file.

salt-run state.orchestrate orch.webserver

Note

state.orch is a synonym for state.orchestrate

Changed in version 2014.1.1: The runner function was renamed to state.orchestrate to avoid confusion
with the state.sls execution function. In
versions 0.17.0 through 2014.1.0, state.sls must be used.

Masterless Orchestration

New in version 2016.11.0.

To support salt orchestration on masterless minions, the Orchestrate Runner is
available as an execution module. The syntax for masterless orchestration is
exactly the same, but it uses the salt-call command and the minion
configuration must contain the file_mode: local option. Alternatively,
use salt-call --local on the command line.

salt-call --local state.orchestrate orch.webserver

Note

Masterless orchestration supports only the salt.state command in an
sls file; it does not (currently) support the salt.function command.

Examples

Function

To execute a function, use salt.function:

/srv/salt/orch/cleanfoo.sls
cmd.run:
 salt.function:
 - tgt: '*'
 - arg:
 - rm -rf /tmp/foo

salt-run state.orchestrate orch.cleanfoo

If you omit the "name" argument, the ID of the state will be the default name,
or in the case of salt.function, the execution module function to run. You
can specify the "name" argument to avoid conflicting IDs:

copy_some_file:
 salt.function:
 - name: file.copy
 - tgt: '*'
 - arg:
 - /path/to/file
 - /tmp/copy_of_file
 - kwarg:
 remove_existing: true

Fail Functions

When running a remote execution function in orchestration, certain return
values for those functions may indicate failure, while the function itself
doesn't set a return code. For those circumstances, using a "fail function"
allows for a more flexible means of assessing success or failure.

A fail function can be written as part of a custom execution module. The function should accept one argument, and
return a boolean result. For example:

def check_func_result(retval):
 if some_condition:
 return True
 else:
 return False

The function can then be referenced in orchestration SLS like so:

do_stuff:
 salt.function:
 - name: modname.funcname
 - tgt: '*'
 - fail_function: mymod.check_func_result

Important

Fail functions run on the master, so they must be synced using salt-run
saltutil.sync_modules.

State

To execute a state, use salt.state.

/srv/salt/orch/webserver.sls
install_nginx:
 salt.state:
 - tgt: 'web*'
 - sls:
 - nginx

salt-run state.orchestrate orch.webserver

Highstate

To run a highstate, set highstate: True in your state config:

/srv/salt/orch/web_setup.sls
webserver_setup:
 salt.state:
 - tgt: 'web*'
 - highstate: True

salt-run state.orchestrate orch.web_setup

Runner

To execute another runner, use salt.runner.
For example to use the cloud.profile runner in your orchestration state
additional options to replace values in the configured profile, use this:

/srv/salt/orch/deploy.sls
create_instance:
 salt.runner:
 - name: cloud.profile
 - prof: cloud-centos
 - provider: cloud
 - instances:
 - server1
 - opts:
 minion:
 master: master1

To get a more dynamic state, use jinja variables together with
inline pillar data.
Using the same example but passing on pillar data, the state would be like
this.

/srv/salt/orch/deploy.sls
{% set servers = salt['pillar.get']('servers', 'test') %}
{% set master = salt['pillar.get']('master', 'salt') %}
create_instance:
 salt.runner:
 - name: cloud.profile
 - prof: cloud-centos
 - provider: cloud
 - instances:
 - {{ servers }}
 - opts:
 minion:
 master: {{ master }}

To execute with pillar data.

salt-run state.orch orch.deploy pillar='{"servers": "newsystem1",
"master": "mymaster"}'

Return Codes in Runner/Wheel Jobs

New in version 2018.3.0.

State (salt.state) jobs are able to report failure via the state
return dictionary. Remote execution (salt.function)
jobs are able to report failure by setting a retcode key in the
__context__ dictionary. However, runner (salt.runner) and wheel
(salt.wheel) jobs would only report a False result when the
runner/wheel function raised an exception. As of the 2018.3.0 release, it is
now possible to set a retcode in runner and wheel functions just as you can do
in remote execution functions. Here is some example pseudocode:

def myrunner():
 ...
 # do stuff
 ...
 if some_error_condition:
 __context__["retcode"] = 1
 return result

This allows a custom runner/wheel function to report its failure so that
requisites can accurately tell that a job has failed.

More Complex Orchestration

Many states/functions can be configured in a single file, which when combined
with the full suite of Requisites and Other Global State Arguments, can be used
to easily configure complex orchestration tasks. Additionally, the
states/functions will be executed in the order in which they are defined,
unless prevented from doing so by any Requisites and Other Global State Arguments, as is the default in
SLS files since 0.17.0.

bootstrap_servers:
 salt.function:
 - name: cmd.run
 - tgt: 10.0.0.0/24
 - tgt_type: ipcidr
 - arg:
 - bootstrap

storage_setup:
 salt.state:
 - tgt: 'role:storage'
 - tgt_type: grain
 - sls: ceph
 - require:
 - salt: webserver_setup

webserver_setup:
 salt.state:
 - tgt: 'web*'
 - highstate: True

Given the above setup, the orchestration will be carried out as follows:

	The shell command bootstrap will be executed on all minions in the
10.0.0.0/24 subnet.

	A Highstate will be run on all minions whose ID starts with "web", since
the storage_setup state requires it.

	Finally, the ceph SLS target will be executed on all minions which have
a grain called role with a value of storage.

Note

Remember, salt-run is always executed on the master.

Parsing Results Programmatically

Orchestration jobs return output in a specific data structure. That data
structure is represented differently depending on the outputter used. With the
default outputter for orchestration, you get a nice human-readable output.
Assume the following orchestration SLS:

good_state:
 salt.state:
 - tgt: myminion
 - sls:
 - succeed_with_changes

bad_state:
 salt.state:
 - tgt: myminion
 - sls:
 - fail_with_changes

mymod.myfunc:
 salt.function:
 - tgt: myminion

mymod.myfunc_false_result:
 salt.function:
 - tgt: myminion

Running this using the default outputter would produce output which looks like
this:

fa5944a73aa8_master:

 ID: good_state
 Function: salt.state
 Result: True
 Comment: States ran successfully. Updating myminion.
 Started: 21:08:02.681604
 Duration: 265.565 ms
 Changes:
 myminion:

 ID: test succeed with changes
 Function: test.succeed_with_changes
 Result: True
 Comment: Success!
 Started: 21:08:02.835893
 Duration: 0.375 ms
 Changes:

 testing:

 new:
 Something pretended to change
 old:
 Unchanged

 Summary for myminion

 Succeeded: 1 (changed=1)
 Failed: 0

 Total states run: 1
 Total run time: 0.375 ms

 ID: bad_state
 Function: salt.state
 Result: False
 Comment: Run failed on minions: myminion
 Started: 21:08:02.947702
 Duration: 177.01 ms
 Changes:
 myminion:

 ID: test fail with changes
 Function: test.fail_with_changes
 Result: False
 Comment: Failure!
 Started: 21:08:03.116634
 Duration: 0.502 ms
 Changes:

 testing:

 new:
 Something pretended to change
 old:
 Unchanged

 Summary for myminion

 Succeeded: 0 (changed=1)
 Failed: 1

 Total states run: 1
 Total run time: 0.502 ms

 ID: mymod.myfunc
 Function: salt.function
 Result: True
 Comment: Function ran successfully. Function mymod.myfunc ran on myminion.
 Started: 21:08:03.125011
 Duration: 159.488 ms
 Changes:
 myminion:
 True

 ID: mymod.myfunc_false_result
 Function: salt.function
 Result: False
 Comment: Running function mymod.myfunc_false_result failed on minions: myminion. Function mymod.myfunc_false_result ran on myminion.
 Started: 21:08:03.285148
 Duration: 176.787 ms
 Changes:
 myminion:
 False

Summary for fa5944a73aa8_master

Succeeded: 2 (changed=4)
Failed: 2

Total states run: 4
Total run time: 778.850 ms

However, using the json outputter, you can get the output in an easily
loadable and parsable format:

salt-run state.orchestrate test --out=json

{
 "outputter": "highstate",
 "data": {
 "fa5944a73aa8_master": {
 "salt_|-good_state_|-good_state_|-state": {
 "comment": "States ran successfully. Updating myminion.",
 "name": "good_state",
 "start_time": "21:35:16.868345",
 "result": true,
 "duration": 267.299,
 "__run_num__": 0,
 "__jid__": "20171130213516897392",
 "__sls__": "test",
 "changes": {
 "ret": {
 "myminion": {
 "test_|-test succeed with changes_|-test succeed with changes_|-succeed_with_changes": {
 "comment": "Success!",
 "name": "test succeed with changes",
 "start_time": "21:35:17.022592",
 "result": true,
 "duration": 0.362,
 "__run_num__": 0,
 "__sls__": "succeed_with_changes",
 "changes": {
 "testing": {
 "new": "Something pretended to change",
 "old": "Unchanged"
 }
 },
 "__id__": "test succeed with changes"
 }
 }
 },
 "out": "highstate"
 },
 "__id__": "good_state"
 },
 "salt_|-bad_state_|-bad_state_|-state": {
 "comment": "Run failed on minions: test",
 "name": "bad_state",
 "start_time": "21:35:17.136511",
 "result": false,
 "duration": 197.635,
 "__run_num__": 1,
 "__jid__": "20171130213517202203",
 "__sls__": "test",
 "changes": {
 "ret": {
 "myminion": {
 "test_|-test fail with changes_|-test fail with changes_|-fail_with_changes": {
 "comment": "Failure!",
 "name": "test fail with changes",
 "start_time": "21:35:17.326268",
 "result": false,
 "duration": 0.509,
 "__run_num__": 0,
 "__sls__": "fail_with_changes",
 "changes": {
 "testing": {
 "new": "Something pretended to change",
 "old": "Unchanged"
 }
 },
 "__id__": "test fail with changes"
 }
 }
 },
 "out": "highstate"
 },
 "__id__": "bad_state"
 },
 "salt_|-mymod.myfunc_|-mymod.myfunc_|-function": {
 "comment": "Function ran successfully. Function mymod.myfunc ran on myminion.",
 "name": "mymod.myfunc",
 "start_time": "21:35:17.334373",
 "result": true,
 "duration": 151.716,
 "__run_num__": 2,
 "__jid__": "20171130213517361706",
 "__sls__": "test",
 "changes": {
 "ret": {
 "myminion": true
 },
 "out": "highstate"
 },
 "__id__": "mymod.myfunc"
 },
 "salt_|-mymod.myfunc_false_result-mymod.myfunc_false_result-function": {
 "comment": "Running function mymod.myfunc_false_result failed on minions: myminion. Function mymod.myfunc_false_result ran on myminion.",
 "name": "mymod.myfunc_false_result",
 "start_time": "21:35:17.486625",
 "result": false,
 "duration": 174.241,
 "__run_num__": 3,
 "__jid__": "20171130213517536270",
 "__sls__": "test",
 "changes": {
 "ret": {
 "myminion": false
 },
 "out": "highstate"
 },
 "__id__": "mymod.myfunc_false_result"
 }
 }
 },
 "retcode": 1
}

The 2018.3.0 release includes a couple fixes to make parsing this data easier and
more accurate. The first is the ability to set a return code in a custom runner or wheel
function, as noted above. The second is a change to how failures are included
in the return data. Prior to the 2018.3.0 release, minions that failed a
salt.state orchestration job would show up in the comment field of the
return data, in a human-readable string that was not easily parsed. They are
now included in the changes dictionary alongside the minions that
succeeded. In addition, salt.function jobs which failed because the
fail function returned False
used to handle their failures in the same way salt.state jobs did, and this
has likewise been corrected.

Running States on the Master without a Minion

The orchestrate runner can be used to execute states on the master without
using a minion. For example, assume that salt://foo.sls contains the
following SLS:

/etc/foo.conf:
 file.managed:
 - source: salt://files/foo.conf
 - mode: 0600

In this case, running salt-run state.orchestrate foo would be the
equivalent of running a state.sls foo, but it would execute on the master
only, and would not require a minion daemon to be running on the master.

This is not technically orchestration, but it can be useful in certain use
cases.

Limitations

Only one SLS target can be run at a time using this method, while using
state.sls allows for multiple SLS files to
be passed in a comma-separated list.

Solaris

This section contains details on Solaris specific quirks and workarounds.

Note

Solaris refers to both Solaris 10 compatible platforms like Solaris 10, illumos, SmartOS, OmniOS, OpenIndiana,... and Oracle Solaris 11 platforms.

	Solaris-specific Behaviour
	FQDN/UQDN

	Grains

Solaris-specific Behaviour

Salt is capable of managing Solaris systems, however due to various differences
between the operating systems, there are some things you need to keep in mind.

This document will contain any quirks that apply across Salt or limitations in
some modules.

FQDN/UQDN

On Solaris platforms the FQDN will not always be properly detected.
If an IPv6 address is configured pythons `socket.getfqdn()` fails to return
a FQDN and returns the nodename instead. For a full breakdown see the following
issue on github: #37027

Grains

Not all grains are available or some have empty or 0 as value. Mostly grains
that are dependent on hardware discovery like:
- num_gpus
- gpus

Also some resolver related grains like:
- domain
- dns:options
- dns:sortlist

Salt SSH

 Execute salt commands and states over ssh without installing a salt-minion.

Getting Started

Salt SSH is very easy to use, simply set up a basic roster file of the
systems to connect to and run salt-ssh commands in a similar way as
standard salt commands.

	Salt ssh is considered production ready in version 2014.7.0

	Python is required on the remote system (unless using the -r option to
send raw ssh commands). The python version requirement is the same as that
for a standard Salt installation.

	On many systems, the salt-ssh executable will be in its own package, usually named
salt-ssh

	The Salt SSH system does not supersede the standard Salt communication
systems, it simply offers an SSH-based alternative that does not require
ZeroMQ and a remote agent. Be aware that since all communication with Salt SSH is
executed via SSH it is substantially slower than standard Salt with ZeroMQ.

	At the moment fileserver operations must be wrapped to ensure that the
relevant files are delivered with the salt-ssh commands.
The state module is an exception, which compiles the state run on the
master, and in the process finds all the references to salt:// paths and
copies those files down in the same tarball as the state run.
However, needed fileserver wrappers are still under development.

Salt SSH Roster

The roster system in Salt allows for remote minions to be easily defined.

Note

See the SSH roster docs for more details.

Simply create the roster file, the default location is /etc/salt/roster:

web1: 192.168.42.1

This is a very basic roster file where a Salt ID is being assigned to an IP
address. A more elaborate roster can be created:

web1:
 host: 192.168.42.1 # The IP addr or DNS hostname
 user: fred # Remote executions will be executed as user fred
 passwd: foobarbaz # The password to use for login, if omitted, keys are used
 sudo: True # Whether to sudo to root, not enabled by default
web2:
 host: 192.168.42.2

Note

sudo works only if NOPASSWD is set for user in /etc/sudoers:
fred ALL=(ALL) NOPASSWD: ALL

Deploy ssh key for salt-ssh

By default, salt-ssh will generate key pairs for ssh, the default path will be
/etc/salt/pki/master/ssh/salt-ssh.rsa. The key generation happens when you run
salt-ssh for the first time.

You can use ssh-copy-id, (the OpenSSH key deployment tool) to deploy keys to your servers.

ssh-copy-id -i /etc/salt/pki/master/ssh/salt-ssh.rsa.pub user@server.demo.com

One could also create a simple shell script, named salt-ssh-copy-id.sh as follows:

#!/bin/bash
if [-z $1]; then
 echo $0 user@host.com
 exit 0
fi
ssh-copy-id -i /etc/salt/pki/master/ssh/salt-ssh.rsa.pub $1

Note

Be certain to chmod +x salt-ssh-copy-id.sh.

./salt-ssh-copy-id.sh user@server1.host.com
./salt-ssh-copy-id.sh user@server2.host.com

Once keys are successfully deployed, salt-ssh can be used to control them.

Alternatively ssh agent forwarding can be used by setting the priv to agent-forwarding.

Calling Salt SSH

Note

salt-ssh on target hosts without Python 3

The salt-ssh command requires at least python 3, which is not
installed by default on some target hosts. An easy workaround in this
situation is to use the -r option to run a raw shell command that
installs python26:

salt-ssh centos-5-minion -r 'yum -y install epel-release ; yum -y install python26'

Note

salt-ssh on systems with Python 3.x

Salt, before the 2017.7.0 release, does not support Python 3.x which is the
default on for example the popular 16.04 LTS release of Ubuntu. An easy
workaround for this scenario is to use the -r option similar to the
example above:

salt-ssh ubuntu-1604-minion -r 'apt update ; apt install -y python-minimal'

The salt-ssh command can be easily executed in the same way as a salt
command:

salt-ssh '*' test.version

Commands with salt-ssh follow the same syntax as the salt command.

The standard salt functions are available! The output is the same as salt
and many of the same flags are available. Please see
Salt SSH reference for all of the available options.

Raw Shell Calls

By default salt-ssh runs Salt execution modules on the remote system,
but salt-ssh can also execute raw shell commands:

salt-ssh '*' -r 'ifconfig'

States Via Salt SSH

The Salt State system can also be used with salt-ssh. The state system
abstracts the same interface to the user in salt-ssh as it does when using
standard salt. The intent is that Salt Formulas defined for standard
salt will work seamlessly with salt-ssh and vice-versa.

The standard Salt States walkthroughs function by simply replacing salt
commands with salt-ssh.

Targeting with Salt SSH

Due to the fact that the targeting approach differs in salt-ssh, only glob
and regex targets are supported as of this writing, the remaining target
systems still need to be implemented.

Note

By default, Grains are settable through salt-ssh. By
default, these grains will not be persisted across reboots.

See the "thin_dir" setting in Roster documentation
for more details.

Configuring Salt SSH

Salt SSH takes its configuration from a master configuration file. Normally, this
file is in /etc/salt/master. If one wishes to use a customized configuration file,
the -c option to Salt SSH facilitates passing in a directory to look inside for a
configuration file named master.

Minion Config

New in version 2015.5.1.

Minion config options can be defined globally using the master configuration
option ssh_minion_opts. It can also be defined on a per-minion basis with
the minion_opts entry in the roster.

Running Salt SSH as non-root user

By default, Salt read all the configuration from /etc/salt/. If you are running
Salt SSH with a regular user you have to modify some paths or you will get
"Permission denied" messages. You have to modify two parameters: pki_dir
and cachedir. Those should point to a full path writable for the user.

It's recommended not to modify /etc/salt for this purpose. Create a private copy
of /etc/salt for the user and run the command with -c /new/config/path.

Define CLI Options with Saltfile

If you are commonly passing in CLI options to salt-ssh, you can create
a Saltfile to automatically use these options. This is common if you're
managing several different salt projects on the same server.

So you can cd into a directory that has a Saltfile with the following
YAML contents:

salt-ssh:
 config_dir: path/to/config/dir
 ssh_log_file: salt-ssh.log
 ssh_max_procs: 30
 ssh_wipe: True

Instead of having to call
salt-ssh --config-dir=path/to/config/dir --max-procs=30 --wipe * test.version you
can call salt-ssh * test.version.

Boolean-style options should be specified in their YAML representation.

Note

The option keys specified must match the destination attributes for the
options specified in the parser
salt.utils.parsers.SaltSSHOptionParser. For example, in the
case of the --wipe command line option, its dest is configured to
be ssh_wipe and thus this is what should be configured in the
Saltfile. Using the names of flags for this option, being wipe:
True or w: True, will not work.

Note

For the Saltfile to be automatically detected it needs to be named
Saltfile with a capital S and be readable by the user running
salt-ssh.

At last you can create ~/.salt/Saltfile and salt-ssh
will automatically load it by default.

Advanced options with salt-ssh

Salt's ability to allow users to have custom grains and custom modules
is also applicable to using salt-ssh. This is done through first packing
the custom grains into the thin tarball before it is deployed on the system.

For this to happen, the config file must be explicit enough to indicate
where the custom grains are located on the machine like so:

file_client: local
file_roots:
 base:
 - /home/user/.salt
 - /home/user/.salt/_states
 - /home/user/.salt/_grains
module_dirs:
 - /home/user/.salt
pillar_roots:
 base:
 - /home/user/.salt/_pillar
root_dir: /tmp/.salt-root

It's better to be explicit rather than implicit in this situation. This will
allow urls all under salt:// to be resolved such as salt://_grains/custom_grain.py.

One can confirm this action by executing a properly setup salt-ssh minion with
salt-ssh minion grains.items. During this process, a saltutil.sync_all is
ran to discover the thin tarball and then consumed. Output similar to this
indicates a successful sync with custom grains.

local:

 ...
 executors:
 grains:
 - grains.custom_grain
 log_handlers:
 ...

This is especially important when using a custom file_roots that differ from
/etc/salt/.

Note

Please see https://docs.saltproject.io/en/latest/topics/grains/ for more
information on grains and custom grains.

Debugging salt-ssh

One common approach for debugging salt-ssh is to simply use the tarball that salt
ships to the remote machine and call salt-call directly.

To determine the location of salt-call, simply run salt-ssh with the -ltrace
flag and look for a line containing the string, SALT_ARGV. This contains the salt-call
command that salt-ssh attempted to execute.

It is recommended that one modify this command a bit by removing the -l quiet,
--metadata and --output json to get a better idea of what's going on the target system.

	Salt Rosters
	How Rosters Work
	Targets Data

	ssh_pre_flight

	ssh_pre_flight_args

	Target Defaults

	thin_dir

	SSH Ext Alternatives
	auto_detect

Different Python Versions

The 3001 release removed python 2 support in Salt. Even though this python 2 support
is being dropped we have provided multiple ways to work around this with Salt-SSH. You
can use the following options:

	ssh_pre_flight

	Using the Salt-SSH raw shell calls to install Python3.

	Use an older version of Salt on the target host that still supports Python 2 using the feature SSH ext alternatives

Salt Rosters

Salt rosters are pluggable systems added in Salt 0.17.0 to facilitate the
salt-ssh system.
The roster system was created because salt-ssh needs a means to
identify which systems need to be targeted for execution.

See also

roster modules

Note

The Roster System is not needed or used in standard Salt because the
master does not need to be initially aware of target systems, since the
Salt Minion checks itself into the master.

Since the roster system is pluggable, it can be easily augmented to attach to
any existing systems to gather information about what servers are presently
available and should be attached to by salt-ssh. By default the roster
file is located at /etc/salt/roster.

How Rosters Work

The roster system compiles a data structure internally referred to as
targets. The targets is a list of target systems and attributes about how
to connect to said systems. The only requirement for a roster module in Salt
is to return the targets data structure.

Targets Data

The information which can be stored in a roster target is the following:

<Salt ID>: # The id to reference the target system with
 host: # The IP address or DNS name of the remote host
 user: # The user to log in as
 passwd: # The password to log in with

 # Optional parameters
 port: # The target system's ssh port number
 sudo: # Boolean to run command via sudo
 sudo_user: # Str: Set this to execute Salt as a sudo user other than root.
 # This user must be in the same system group as the remote user
 # that is used to login and is specified above. Alternatively,
 # the user must be a super-user.
 tty: # Boolean: Set this option to True if sudo is also set to
 # True and requiretty is also set on the target system
 priv: # File path to ssh private key, defaults to salt-ssh.rsa
 # The priv can also be set to agent-forwarding to not specify
 # a key, but use ssh agent forwarding
 priv_passwd: # Passphrase for ssh private key
 timeout: # Number of seconds to wait for response when establishing
 # an SSH connection
 minion_opts: # Dictionary of minion opts
 thin_dir: # The target system's storage directory for Salt
 # components. Defaults to /tmp/salt-<hash>.
 cmd_umask: # umask to enforce for the salt-call command. Should be in
 # octal (so for 0o077 in YAML you would do 0077, or 63)
 ssh_pre_flight: # Path to a script that will run before all other salt-ssh
 # commands. Will only run the first time when the thin dir
 # does not exist, unless --pre-flight is passed to salt-ssh
 # command or ssh_run_pre_flight is set to true in the config
 # Added in 3001 Release.
 ssh_pre_flight_args: # The list of arguments to pass to the script
 # running on the minion with ssh_pre_flight.
 # Can be specified as single string.
 set_path: # Set the path environment variable, to ensure the expected python
 # binary is in the salt-ssh path, when running the command.
 # Example: '$PATH:/usr/local/bin/'. Added in 3001 Release.
 ssh_options: # List of options (as 'option=argument') to pass to ssh.

ssh_pre_flight

A Salt-SSH roster option ssh_pre_flight was added in the 3001 release. This enables
you to run a script before Salt-SSH tries to run any commands. You can set this option
in the roster for a specific minion or use the roster_defaults to set it for all minions.
This script will only run if the thin dir is not currently on the minion. This means it will
only run on the first run of salt-ssh or if you have recently wiped out your thin dir. If
you want to intentionally run the script again you have a couple of options:

	Wipe out your thin dir by using the -w salt-ssh arg.

	Set ssh_run_pre_flight to True in the config

	Run salt-ssh with the --pre-flight arg.

ssh_pre_flight_args

Additional arguments to the script running on the minion with ssh_pre_flight can be passed
with specifying a list of arguments or a single string. In case of using single string
distinct arguments will be passed to the script by splitting this string with the spaces.

Target Defaults

The roster_defaults dictionary in the master config is used to set the
default login variables for minions in the roster so that the same arguments do
not need to be passed with commandline arguments.

roster_defaults:
 user: daniel
 sudo: True
 priv: /root/.ssh/id_rsa
 tty: True

thin_dir

Salt needs to upload a standalone environment to the target system, and this
defaults to /tmp/salt-<hash>. This directory will be cleaned up per normal
systems operation.

If you need a persistent Salt environment, for instance to set persistent grains,
this value will need to be changed.

SSH Ext Alternatives

In the 2019.2.0 release the ssh_ext_alternatives feature was added.
This allows salt-ssh to work across different supported python versions. You will
need to ensure you have the following:

	Salt is installed, with all required dependencies for the Python version.

	Everything needs to be importable from the respective Python environment.

To enable using this feature you will need to edit the master configuration similar
to below:

ssh_ext_alternatives:
 2019.2: # Namespace, can be anything.
 py-version: [2, 7] # Constraint to specific interpreter version
 path: /opt/2019.2/salt # Main Salt installation directory.
 dependencies: # List of dependencies and their installation paths
 jinja2: /opt/jinja2
 yaml: /opt/yaml
 tornado: /opt/tornado
 msgpack: /opt/msgpack
 certifi: /opt/certifi
 singledispatch: /opt/singledispatch.py
 singledispatch_helpers: /opt/singledispatch_helpers.py
 markupsafe: /opt/markupsafe
 backports_abc: /opt/backports_abc.py

Warning

When using Salt versions >= 3001 and Python 2 is your py-version
you need to use an older version of Salt that supports Python 2.
For example, if using Salt-SSH version 3001 and you do not want
to install Python 3 on your target host you can use ssh_ext_alternatives's
path option. This option needs to point to a 2019.2.3 Salt installation directory
on your Salt-SSH host, which still supports Python 2.

auto_detect

In the 3001 release the auto_detect feature was added for ssh_ext_alternatives.
This allows salt-ssh to automatically detect the path to all of your dependencies and
does not require you to define them under dependencies.

ssh_ext_alternatives:
 2019.2: # Namespace, can be anything.
 py-version: [2, 7] # Constraint to specific interpreter version
 path: /opt/2019.2/salt # Main Salt installation directory.
 auto_detect: True # Auto detect dependencies
 py_bin: /usr/bin/python2.7 # Python binary path used to auto detect dependencies

If py_bin is not set alongside auto_detect, it will attempt to auto detect
the dependencies using the major version set in py-version. For example if you
have [2, 7] set as your py-version, it will attempt to use the binary python2.

You can also use auto_detect and dependencies together.

ssh_ext_alternatives:
 2019.2: # Namespace, can be anything.
 py-version: [2, 7] # Constraint to specific interpreter version
 path: /opt/2019.2/salt # Main Salt installation directory.
 auto_detect: True # Auto detect dependencies
 py_bin: /usr/bin/python2.7 # Python binary path to auto detect dependencies
 dependencies: # List of dependencies and their installation paths
 jinja2: /opt/jinja2

If a dependency is defined in the dependencies list ssh_ext_alternatives will use
this dependency, instead of the path that auto_detect finds. For example, if you define
/opt/jinja2 under your dependencies for jinja2, it will not try to autodetect the
file path to the jinja2 module, and will favor /opt/jinja2.

Thorium Complex Reactor

The original Salt Reactor is based on the idea of listening for a specific
event and then reacting to it. This model comes with many logical limitations,
for instance it is very difficult (and hacky) to fire a reaction based on
aggregate data or based on multiple events.

The Thorium reactor is intended to alleviate this problem in a very elegant way.
Instead of using extensive jinja routines or complex python sls files the
aggregation of data and the determination of what should run becomes isolated
to the sls data logic, makes the definitions much cleaner.

Starting the Thorium Engine

To enable the thorium engine add the following configuration to the engines
section of your Salt Master or Minion configuration file and restart the daemon:

engines:
 - thorium: {}

Thorium Modules

Because of its specialized nature, Thorium uses its own set of modules. However,
many of these modules are designed to wrap the more commonly-used Salt
subsystems. These modules are:

	local: Execution modules

	runner: Runner modules

	wheel: Wheel modules

There are other modules that ship with Thorium as well. Some of these will be
highlighted later in this document.

Writing Thorium Formulas

Like some other Salt subsystems, Thorium uses its own directory structure. The
default location for this structure is /srv/thorium/, but it can be changed
using the thorium_roots setting in the master configuration file.

This would explicitly set the roots to the default:

thorium_roots:
 base:
 - /srv/thorium

Example thorium_roots configuration:

thorium_roots:
 base:
 - /etc/salt/thorium

It is also possible to use gitfs with Thorium,
using the thoriumenv or thorium_top settings.

Example using thorium_top:

thorium_top: salt://thorium/top.sls
gitfs_provider: pygit2

gitfs_remotes:
 - git@github.com:user/repo.git:
 - name: salt-backend
 - root: salt
 - base: master
 - git@github.com:user/repo.git:
 - name: thorium-backend
 - root: thorium
 - base: master
 - mountpoint: salt://thorium

Note

When using this method don't forget to prepend the mountpoint to files served by this repo,
for example top.sls:

base:
 '*':
 - thorium.key_clean

Example using thoriumenv:

thoriumenv: thorium
gitfs_provider: pygit2

gitfs_remotes:
 - git@github.com:user/repo.git:
 - name: salt-backend
 - root: salt
 - base: master
 - git@github.com:user/repo.git:
 - name: thorium-backend
 - root: thorium
 - saltenv:
 - thorium:
 - ref: master

Note

When using this method all state will run under the defined environment,
for example top.sls:

thorium:
 '*':
 - key_clean

The Thorium top.sls File

Thorium uses its own top.sls file, which follows the same convention as is
found in /srv/salt/:

<srv>:
 <target>:
 - <formula 1>
 - <formula 2>
 - <etc...>

For instance, a top.sls using a standard base environment and a single
Thorium formula called key_clean, would look like:

base:
 '*':
 - key_clean

Take note that the target in a Thorium top.sls is not used; it only exists
to follow the same convention as other top.sls files. Leave this set to
'*' in your own Thorium top.sls.

Thorium Formula Files

Thorium SLS files are processed by the same state compiler that processes Salt
state files. This means that features like requisites, templates, and so on are
available.

Let's take a look at an example, and then discuss each component of it. This
formula uses Thorium to detect when a minion has disappeared and then deletes
the key from the master when the minion has been gone for 60 seconds:

statreg:
 status.reg

keydel:
 key.timeout:
 - delete: 60
 - require:
 - status: statreg

There are two stanzas in this formula, whose IDs are statreg and
keydel. The first stanza, statreg, tells Thorium to keep track of
minion status beacons in its register. We'll talk more about the register in
a moment.

The second stanza, keydel, is the one that does the real work. It uses the
key module to apply an expiration (using the timeout function) to a
minion. Because delete is set to 60, this is a 60 second expiration. If
a minion does not check in at least once every 60 seconds, its key will be
deleted from the master. This particular function also allows you to use
reject instead of delete, allowing for a minion to be rejected instead
of deleted if it does not check in within the specified time period.

There is also a require requisite in this stanza. It states that the
key.timeout function will not be called unless the status.reg function
in the statreg codeblock has been successfully called first.

Thorium Links to Beacons

The above example was added in the 2016.11.0 release of Salt and makes use of the
status beacon also added in the 2016.11.0 release. For the above Thorium state
to function properly you will also need to enable the status beacon in the
minion configuration file:

beacons:
 status:
 - interval: 10

This will cause the minion to use the status beacon to check in with the master
every 10 seconds.

The Thorium Register

In order to keep track of information, Thorium uses an in-memory register (or
rather, collection of registers) on the master. These registers are only
populated when told to by a formula, and they normally will be erased when the
master is restarted. It is possible to persist the registers to disk, but we'll
get to that in a moment.

The example above uses status.reg to populate a register for you, which is
automatically used by the key.timeout function. However, you can set your
own register values as well, using the reg module.

Because Thorium watches the event bus, the reg module is designed to look
for user-specified tags, and then extract data from the payload of events that
match those tags. For instance, the following stanza will look for an event
with a tag of my/custom/event:

foo:
 reg.list:
 - add: bar
 - match: my/custom/event

When such an event is found, the data found in the payload dictionary key of
bar will be stored in a register called foo. This register will store
that data in a list. You may also use reg.set to add data to a set()
instead.

If you would like to see a copy of the register as it is stored in memory, you
can use the file.save function:

myreg:
 file.save

In this case, each time the register is updated, a copy will be saved in JSON
format at /var/cache/salt/master/thorium/saves/myreg. If you would like to
see when particular events are added to a list-type register, you may add a
stamp option to reg.list (but not reg.set). With the above two
stanzas put together, this would look like:

foo:
 reg.list:
 - add: bar
 - match: my/custom/event
 - stamp: True

myreg:
 file.save

If you would like to only keep a certain number of the most recent register
entries, you may also add a prune option to reg.list (but not
reg.set):

foo:
 reg.list:
 - add: bar
 - match: my/custom/event
 - stamp: True
 - prune: 50

This example will only keep the 50 most recent entries in the foo register.

Using Register Data

Putting data in a register is useless if you don't do anything with it. The
check module is designed to examine register data and determine whether it
matches the given parameters. For instance, the check.contains function
will return True if the given value is contained in the specified
register:

foo:
 reg.list:
 - add: bar
 - match: my/custom/event
 - stamp: True
 - prune: 50
 check.contains:
 - value: somedata

Used with a require requisite, we can call one of the wrapper modules and
perform an operation. For example:

shell_test:
 local.cmd:
 - tgt: dufresne
 - func: cmd.run
 - arg:
 - echo 'thorium success' > /tmp/thorium.txt
 - require:
 - check: foo

This stanza will only run if the check.contains function under the foo
ID returns true (meaning the match was found).

There are a number of other functions in the check module which use
different means of comparing values:

	gt: Check whether the register entry is greater than the given value

	gte: Check whether the register entry is greater than or equal to the given value

	lt: Check whether the register entry is less than the given value

	lte: Check whether the register entry is less than or equal to the given value

	eq: Check whether the register entry is equal to the given value

	ne: Check whether the register entry is not equal to the given value

There is also a function called check.event which does not examine the
register. Instead, it looks directly at an event as it is coming in on the
event bus, and returns True if that event's tag matches. For example:

salt/foo/*/bar:
 check.event

run_remote_ex:
 local.cmd:
 - tgt: '*'
 - func: test.version
 - require:
 - check: salt/foo/*/bar

This formula will look for an event whose tag is salt/foo/<anything>/bar and
if it comes in, issue a test.version to all minions.

Register Persistence

It is possible to persist the register data to disk when a master is stopped
gracefully, and reload it from disk when the master starts up again. This
functionality is provided by the returner subsystem, and is enabled whenever
any returner containing a load_reg and a save_reg function is used.

Salt Cloud

 Provision systems on cloud hosts / hypervisors and immediately bring them under management.

Configuration

Salt Cloud provides a powerful interface to interact with cloud hosts. This
interface is tightly integrated with Salt, and new virtual machines
are automatically connected to your Salt master after creation.

Since Salt Cloud is designed to be an automated system, most configuration
is done using the following YAML configuration files:

	/etc/salt/cloud: The main configuration file, contains global settings
that apply to all cloud hosts. See Salt Cloud Configuration.

	/etc/salt/cloud.providers.d/*.conf: Contains settings that configure
a specific cloud host, such as credentials, region settings, and so on. Since
configuration varies significantly between each cloud host, a separate file
should be created for each cloud host. In Salt Cloud, a provider is
synonymous with a cloud host (Amazon EC2, Google Compute Engine, Rackspace,
and so on). See Provider Specifics.

	/etc/salt/cloud.profiles.d/*.conf: Contains settings that define
a specific VM type. A profile defines the systems specs and image, and any
other settings that are specific to this VM type. Each specific VM type is
called a profile, and multiple profiles can be defined in a profile file.
Each profile references a parent provider that defines the cloud host in
which the VM is created (the provider settings are in the provider
configuration explained above). Based on your needs, you might define
different profiles for web servers, database servers, and so on. See VM
Profiles.

Configuration Inheritance

Configuration settings are inherited in order from the cloud config =>
providers => profile.

[image: ../../_images/cloud-settings-inheritance.png]
For example, if you wanted to use the same image for
all virtual machines for a specific provider, the image name could be placed in
the provider file. This value is inherited by all profiles that use that
provider, but is overridden if a image name is defined in the profile.

Most configuration settings can be defined in any file, the main difference
being how that setting is inherited.

QuickStart

The Salt Cloud Quickstart walks you through defining
a provider, a VM profile, and shows you how to create virtual machines using Salt Cloud.

Note that if you installed Salt via Salt Bootstrap [https://github.com/saltstack/salt-bootstrap], it may not have
automatically installed salt-cloud for you. Use your distribution's package
manager to install the salt-cloud package from the same repo that you
used to install Salt. These repos will automatically be setup by Salt Bootstrap.

Alternatively, the -L option can be passed to the Salt Bootstrap [https://github.com/saltstack/salt-bootstrap] script when
installing Salt. The -L option will install salt-cloud and the required
libcloud package.

Using Salt Cloud

	Command Line Reference
	Synopsis

	Description

	Options
	Execution Options

	Query Options

	Cloud Providers Listings

	Cloud Credentials

	Output Options

	Examples

	See also

	Basic
	Creating a VM

	Destroying a VM

	Profiles
	Multiple Configuration Files

	Larger Example

	Maps
	Requiring Other Instances

	Setting up New Salt Masters

	Using Direct Map Data

	Actions

	Functions

Core Configuration

	Installing salt cloud
	Installing Salt Cloud for development

	Core Configuration
	Thread Pool Size

	Minion Configuration

	Cloud Configuration Syntax

	Pillar Configuration

	Cloud Configurations
	Scaleway

	Rackspace

	Amazon AWS

	Linode

	Joyent Cloud

	GoGrid

	OpenStack

	DigitalOcean

	Parallels

	Proxmox

	LXC

	Saltify

	Vagrant

	Extending Profiles and Cloud Providers Configuration
	Extending Profiles

	Extending Providers

Windows Configuration

	 Windows Configuration
	Dependencies

	Requirements

	Self Signed Certificates with WinRM

	Firewall Settings

	Configuration

	Auto-Generated Passwords on EC2

Cloud Provider Specifics

	 Getting Started With Aliyun
	Dependencies

	Configuration

	Profiles
	Cloud Profiles

	 Getting Started With CloudStack
	Dependencies

	Configuration

	Profiles
	Cloud Profiles

	CloudStack specific settings
	securitygroup

	 Getting Started With DigitalOcean
	Configuration

	Profiles
	Cloud Profiles

	userdata_file

	Miscellaneous Information

	 Getting Started With Dimension Data
	Dependencies

	Configuration

	Profiles
	Cloud Profiles

	 Getting Started With EC2
	Dependencies

	Configuration

	Access Credentials

	Windows Deploy Timeouts

	Key Pairs

	Security Groups

	IAM Profile

	Cloud Profiles

	Required Settings

	Optional Settings
	Setting up a Master inside EC2

	Modify EC2 Tags

	Rename EC2 Instances

	Rename on Destroy

	Listing Images

	EC2 Images

	show_image

	show_instance

	ebs_optimized

	del_root_vol_on_destroy

	del_all_vols_on_destroy

	EC2 Termination Protection

	Alternate Endpoint

	Volume Management
	Creating Volumes

	Attaching Volumes

	Show a Volume

	Detaching Volumes

	Deleting Volumes

	Managing Key Pairs
	Creating a Key Pair

	Importing a Key Pair

	Show a Key Pair

	Delete a Key Pair

	Launching instances into a VPC
	Simple launching into a VPC

	Specifying interface properties

	 Getting Started With GoGrid
	Configuration

	Profiles
	Cloud Profiles

	Assigning IPs

	 Getting Started With Google Compute Engine
	Dependencies

	Google Compute Engine Setup

	Provider Configuration

	Profile Configuration

	GCE Specific Settings
	Initial Profile

	image

	size

	location

	network

	subnetwork

	labels

	tags

	metadata

	use_persistent_disk

	delete_boot_pd

	ssh_interface

	external_ip

	ex_disk_type

	ip_forwarding

	Profile with scopes

	SSH Remote Access

	Single instance details

	Destroy, persistent disks, and metadata

	List various resources

	Persistent Disk
	Create

	Delete

	Attach

	Detach

	Show disk

	Create snapshot

	Delete snapshot

	Show snapshot

	Networking
	Create network

	Destroy network

	Show network

	Create subnetwork

	Destroy subnetwork

	Show subnetwork

	Create address

	Delete address

	Show address

	Create firewall

	Delete firewall

	Show firewall

	Load Balancer
	HTTP Health Check

	Load-balancer

	Attach and Detach LB

	 Getting Started With HP Cloud
	Set up a cloud provider configuration file

	Compute Region

	Authentication

	Set up a cloud profile config file

	Launch an instance

	Manage the instance

	SSH to the instance

	Using a private IP

	 Getting Started With Joyent
	Dependencies

	Configuration

	Profiles
	Cloud Profiles

	SmartDataCenter

	Miscellaneous Configuration
	use_ssl

	verify_ssl

	 Getting Started With Libvirt
	Host Dependencies

	Salt-Cloud Dependencies

	Provider Configuration

	Cloud Profiles

	Required Settings

	SSH Key Authentication

	Optional Settings

	 Getting Started With Linode
	Dependencies

	Provider Configuration
	Configuration Options

	Example Configuration

	Profile Configuration
	Configuration Options

	Example Configuration

	Migrating to APIv4
	Notable Changes

	Query Utilities
	Listing Sizes

	Listing Images

	Listing Locations

	Cloning

	 Getting Started With LXC
	Limitations

	Operation

	Provider configuration

	Profile configuration

	Driver Support

	 Getting Started With OneAndOne
	Dependencies

	Configuration

	Authentication

	Profiles

	Functions

	 Getting Started With OpenNebula
	Dependencies

	Configuration

	Access Credentials

	Key Pairs

	Cloud Profiles

	Change Disk Size

	Required Settings
	Required Settings for VM Deployment

	Listing Images

	Listing Locations

	Listing Sizes

	Additional OpenNebula API Functionality

	Access via DNS entry instead of IP

	 Getting Started With OpenStack

	 Getting Started With Parallels
	Access Credentials

	Cloud Profiles

	Required Settings

	Optional Settings

	 Getting Started With ProfitBricks
	Dependencies

	Configuration

	Virtual Data Center

	Authentication

	Profiles
	Profile Specifics:

	 Getting Started With Proxmox
	Dependencies

	Access Credentials

	Cloud Profiles

	Required Settings

	Optional Settings

	QEMU

	 Getting Started With Scaleway
	Configuration

	Profiles
	Cloud Profiles

	 Getting Started With Saltify
	Dependencies

	Configuration

	Profiles
	Destroy Options

	Wake On LAN

	Using Map Files

	Bulk Deployments

	Credential Verification

	 Getting Started With SoftLayer
	Dependencies

	Configuration

	Access Credentials

	Profiles
	Cloud Profiles

	Using Multiple Disks

	Dedicated Host

	Bare metal Profiles

	Actions
	show_instance

	Functions
	list_vlans

	list_custom_images

	Optional Products for SoftLayer HW
	Public Secondary IP Addresses

	Primary IPv6 Addresses

	Public Static IPv6 Addresses

	OS-Specific Addon

	Control Panel Software

	Database Software

	Anti-Virus & Spyware Protection

	Insurance

	Monitoring

	Notification

	Advanced Monitoring

	Response

	Intrusion Detection & Protection

	Hardware & Software Firewalls

	 Getting Started With Tencent Cloud
	Dependencies

	Provider Configuration
	Configuration Parameters

	Profile Configuration
	Configuration Parameters

	Actions
	show_instance

	show_disk

	destroy

	start

	stop

	reboot

	Functions
	list_securitygroups

	list_availability_zones

	list_custom_images

	show_image

	 Getting Started With Vagrant
	Dependencies

	Configuration

	Profiles

	Provisioning a Vagrant cloud host (example)
	Create and use your new Salt minion

	 Getting Started With Vexxhost
	Cloud Provider Configuration

	Authentication

	Cloud Profile Configuration

	Provision an instance

	 Getting Started With Virtualbox
	Dependencies

	Configuration

	Profiles
	Provisioning

	Actions

	Functions

	 Getting Started With VMware
	Dependencies

	Configuration

	Profiles

	Cloning a VM

	Instant Cloning a VM

	Cloning a Template

	Cloning from a Snapshot

	Creating a VM

	Specifying disk backing mode

	 Getting Started With Xen
	Setup Dependencies

	Provider Configuration

	Profile Configuration
	Listing Sizes

	Listing Images

	Listing Locations

Miscellaneous Options

	Miscellaneous
	Deploy Script Arguments

	Selecting the File Transport

	Sync After Install

	Setting Up New Salt Masters

	Setting Up a Salt Syndic with Salt Cloud

	SSH Port

	Delete SSH Keys

	Keeping /tmp/ Files

	Hide Output From Minion Install

	Connection Timeout
	wait_for_ip_timeout

	wait_for_ip_interval

	ssh_connect_timeout

	wait_for_passwd_timeout

	wait_for_passwd_maxtries

	wait_for_fun_timeout

	wait_for_spot_timeout

	Salt Cloud Cache
	update_cachedir

	diff_cache_events

	SSH Known Hosts

	SSH Agent

	File Map Upload

	Running Pre-Flight Commands

	Force Minion Config

Troubleshooting Steps

	 Troubleshooting
	Virtual Machines Are Created, But Do Not Respond

	Generic Troubleshooting Steps
	Debug Mode

	Salt Bootstrap

	The Bootstrap Log

	Keeping Temp Files

	Unprivileged Primary Users

	/tmp/ is Mounted as noexec

	Executing the Deploy Script Manually

Extending Salt Cloud

	Adding Cloud Providers
	All Driver Modules
	The __virtual__() Function

	The get_configured_provider() Function

	Libcloud Based Modules
	The create() Function

	The libcloudfuncs Functions

	Non-Libcloud Based Modules
	The create() Function

	The get_size() Function

	The get_image() Function

	The avail_locations() Function

	The avail_images() Function

	The avail_sizes() Function

	The script() Function

	The destroy() Function

	The list_nodes() Function

	The list_nodes_full() Function

	The list_nodes_select() Function

	The show_instance() Function

	Actions and Functions
	Actions

	Functions

	Adding OS Support
	Other Generic Deploy Scripts

	Custom Deploy Scripts

	Post-Deploy Commands

	Skipping the Deploy Script

	Updating Salt Bootstrap

	Keeping /tmp/ Files

	Deploy Script Arguments

Using Salt Cloud from Salt

	Using Salt Cloud from Salt
	Minion Keys

	Execution Module
	list_images

	list_sizes

	list_locations

	query

	full_query

	select_query

	profile

	create

	destroy

	action

	State Module
	cloud.present

	cloud.profile

	cloud.absent

	Runner Module

	CloudClient

	Reactor

Feature Comparison

	Features
	Legacy Drivers

	Note for Developers

	Standard Features

	Actions

	Functions

Tutorials

	QuickStart
	Define a Provider

	List Cloud Provider Options

	Create VM Profiles

	Create VMs

	Destroy VMs

	Query VMs

	Cloud Map

	Using Salt Cloud with the Event Reactor
	Event Structure

	Available Events
	salt/cloud/<minion_id>/creating

	salt/cloud/<minion_id>/requesting

	salt/cloud/<minion_id>/querying

	salt/cloud/<minion_id>/waiting_for_ssh

	salt/cloud/<minion_id>/deploying

	salt/cloud/<minion_id>/created

	Filtering Events

	Configuring the Event Reactor

	Reactor SLS Files

	Example: Reactor-Based Highstate

salt-cloud

Provision virtual machines in the cloud with Salt

Synopsis

salt-cloud -m /etc/salt/cloud.map

salt-cloud -m /etc/salt/cloud.map NAME

salt-cloud -m /etc/salt/cloud.map NAME1 NAME2

salt-cloud -p PROFILE NAME

salt-cloud -p PROFILE NAME1 NAME2 NAME3 NAME4 NAME5 NAME6

Description

Salt Cloud is the system used to provision virtual machines on various public
clouds via a cleanly controlled profile and mapping system.

Options

	
--version

	Print the version of Salt that is running.

	
--versions-report

	Show program's dependencies and version number, and then exit

	
-h, --help

	Show the help message and exit

	
-c CONFIG_DIR, --config-dir=CONFIG_dir

	The location of the Salt configuration directory. This directory contains
the configuration files for Salt master and minions. The default location
on most systems is /etc/salt.

Execution Options

	
-L LOCATION, --location=LOCATION

	Specify which region to connect to.

	
-a ACTION, --action=ACTION

	Perform an action that may be specific to this cloud provider. This
argument requires one or more instance names to be specified.

	
-f <FUNC-NAME> <PROVIDER>, --function=<FUNC-NAME> <PROVIDER>

	Perform an function that may be specific to this cloud provider, that does
not apply to an instance. This argument requires a provider to be specified
(i.e.: nova).

	
-p PROFILE, --profile=PROFILE

	Select a single profile to build the named cloud VMs from. The profile must
be defined in the specified profiles file.

	
-m MAP, --map=MAP

	Specify a map file to use. If used without any other options, this option
will ensure that all of the mapped VMs are created. If the named VM already
exists then it will be skipped.

	
-H, --hard

	When specifying a map file, the default behavior is to ensure that all of
the VMs specified in the map file are created. If the --hard option is
set, then any VMs that exist on configured cloud providers that are
not specified in the map file will be destroyed. Be advised that this can
be a destructive operation and should be used with care.

	
-d, --destroy

	Pass in the name(s) of VMs to destroy, salt-cloud will search the
configured cloud providers for the specified names and destroy the
VMs. Be advised that this is a destructive operation and should be used
with care. Can be used in conjunction with the -m option to specify a map
of VMs to be deleted.

	
-P, --parallel

	Normally when building many cloud VMs they are executed serially. The -P
option will run each cloud vm build in a separate process allowing for
large groups of VMs to be build at once.

Be advised that some cloud provider's systems don't seem to be well suited
for this influx of vm creation. When creating large groups of VMs watch the
cloud provider carefully.

	
-u, --update-bootstrap

	Update salt-bootstrap to the latest stable bootstrap release.

	
-y, --assume-yes

	Default yes in answer to all confirmation questions.

	
-k, --keep-tmp

	Do not remove files from /tmp/ after deploy.sh finishes.

	
--show-deploy-args

	Include the options used to deploy the minion in the data returned.

	
--script-args=SCRIPT_ARGS

	Script arguments to be fed to the bootstrap script when deploying the VM.

Query Options

	
-Q, --query

	Execute a query and return some information about the nodes running on
configured cloud providers

	
-F, --full-query

	Execute a query and print out all available information about all cloud VMs.
Can be used in conjunction with -m to display only information about the
specified map.

	
-S, --select-query

	Execute a query and print out selected information about all cloud VMs.
Can be used in conjunction with -m to display only information about the
specified map.

	
--list-providers

	Display a list of configured providers.

	
--list-profiles

	
New in version 2014.7.0.

Display a list of configured profiles. Pass in a cloud provider to view
the provider's associated profiles, such as digitalocean, or pass in
all to list all the configured profiles.

Cloud Providers Listings

	
--list-locations=LIST_LOCATIONS

	Display a list of locations available in configured cloud providers. Pass
the cloud provider that available locations are desired on, such as "linode",
or pass "all" to list locations for all configured cloud providers

	
--list-images=LIST_IMAGES

	Display a list of images available in configured cloud providers. Pass the
cloud provider that available images are desired on, such as "linode", or pass
"all" to list images for all configured cloud providers

	
--list-sizes=LIST_SIZES

	Display a list of sizes available in configured cloud providers. Pass the
cloud provider that available sizes are desired on, such as "AWS", or pass
"all" to list sizes for all configured cloud providers

Cloud Credentials

	
--set-password=<USERNAME> <PROVIDER>

	Configure password for a cloud provider and save it to the keyring.
PROVIDER can be specified with or without a driver, for example:
"--set-password bob rackspace" or more specific "--set-password bob
rackspace:openstack" DEPRECATED!

Output Options

	
--out

	Pass in an alternative outputter to display the return of data. This
outputter can be any of the available outputters:

highstate, json, key, overstatestage, pprint, raw, txt, yaml, and many others.

Some outputters are formatted only for data returned from specific functions.
If an outputter is used that does not support the data passed into it, then
Salt will fall back on the pprint outputter and display the return data
using the Python pprint standard library module.

	
--out-indent OUTPUT_INDENT, --output-indent OUTPUT_INDENT

	Print the output indented by the provided value in spaces. Negative values
disable indentation. Only applicable in outputters that support
indentation.

	
--out-file=OUTPUT_FILE, --output-file=OUTPUT_FILE

	Write the output to the specified file.

	
--out-file-append, --output-file-append

	Append the output to the specified file.

	
--no-color

	Disable all colored output

	
--force-color

	Force colored output

Note

When using colored output the color codes are as follows:

green denotes success, red denotes failure, blue denotes
changes and success and yellow denotes a expected future change in configuration.

	
--state-output=STATE_OUTPUT, --state_output=STATE_OUTPUT

	Override the configured state_output value for minion
output. One of 'full', 'terse', 'mixed', 'changes' or
'filter'. Default: 'none'.

	
--state-verbose=STATE_VERBOSE, --state_verbose=STATE_VERBOSE

	Override the configured state_verbose value for minion
output. Set to True or False. Default: none.

Examples

To create 4 VMs named web1, web2, db1, and db2 from specified profiles:

salt-cloud -p fedora_rackspace web1 web2 db1 db2

To read in a map file and create all VMs specified therein:

salt-cloud -m /path/to/cloud.map

To read in a map file and create all VMs specified therein in parallel:

salt-cloud -m /path/to/cloud.map -P

To delete any VMs specified in the map file:

salt-cloud -m /path/to/cloud.map -d

To delete any VMs NOT specified in the map file:

salt-cloud -m /path/to/cloud.map -H

To display the status of all VMs specified in the map file:

salt-cloud -m /path/to/cloud.map -Q

See also

salt-cloud(7)
salt(7)
salt-master(1)
salt-minion(1)

Salt Cloud basic usage

Salt Cloud needs, at least, one configured
Provider
and Profile to be functional.

Creating a VM

To create a VM with salt cloud, use command:

salt-cloud -p <profile> name_of_vm

Assuming there is a profile configured as following:

fedora_rackspace:
 provider: my-rackspace-config
 image: Fedora 17
 size: 256 server
 script: bootstrap-salt

Then, the command to create new VM named fedora_http_01 is:

salt-cloud -p fedora_rackspace fedora_http_01

Destroying a VM

To destroy a created-by-salt-cloud VM, use command:

salt-cloud -d name_of_vm

For example, to delete the VM created on above example, use:

salt-cloud -d fedora_http_01

VM Profiles

Salt cloud designates virtual machines inside the profile configuration file.
The profile configuration file defaults to /etc/salt/cloud.profiles and is
a yaml configuration. The syntax for declaring profiles is simple:

fedora_rackspace:
 provider: my-rackspace-config
 image: Fedora 17
 size: 256 server
 script: bootstrap-salt

It should be noted that the script option defaults to bootstrap-salt,
and does not normally need to be specified. Further examples in this document
will not show the script option.

A few key pieces of information need to be declared and can change based on the
cloud provider. A number of additional parameters can also be inserted:

centos_rackspace:
 provider: my-rackspace-config
 image: CentOS 6.2
 size: 1024 server
 minion:
 master: salt.example.com
 append_domain: webs.example.com
 grains:
 role: webserver

The image must be selected from available images. Similarly, sizes must be
selected from the list of sizes. To get a list of available images and sizes
use the following command:

salt-cloud --list-images openstack
salt-cloud --list-sizes openstack

Some parameters can be specified in the main Salt cloud configuration file and
then are applied to all cloud profiles. For instance if only a single cloud
provider is being used then the provider option can be declared in the Salt
cloud configuration file.

Multiple Configuration Files

In addition to /etc/salt/cloud.profiles, profiles can also be specified in
any file matching cloud.profiles.d/*conf which is a sub-directory relative
to the profiles configuration file(with the above configuration file as an
example, /etc/salt/cloud.profiles.d/*.conf). This allows for more
extensible configuration, and plays nicely with various configuration
management tools as well as version control systems.

Larger Example

rhel_ec2:
 provider: my-ec2-config
 image: ami-e565ba8c
 size: t1.micro
 minion:
 cheese: edam

ubuntu_ec2:
 provider: my-ec2-config
 image: ami-7e2da54e
 size: t1.micro
 minion:
 cheese: edam

ubuntu_rackspace:
 provider: my-rackspace-config
 image: Ubuntu 12.04 LTS
 size: 256 server
 minion:
 cheese: edam

fedora_rackspace:
 provider: my-rackspace-config
 image: Fedora 17
 size: 256 server
 minion:
 cheese: edam

cent_linode:
 provider: my-linode-config
 image: CentOS 6.2 64bit
 size: Linode 512

cent_gogrid:
 provider: my-gogrid-config
 image: 12834
 size: 512MB

cent_joyent:
 provider: my-joyent-config
 image: centos-7
 size: g4-highram-16G

Cloud Map File

A number of options exist when creating virtual machines. They can be managed
directly from profiles and the command line execution, or a more complex map
file can be created. The map file allows for a number of virtual machines to
be created and associated with specific profiles. The map file is designed to
be run once to create these more complex scenarios using salt-cloud.

Map files have a simple format, specify a profile and then a list of virtual
machines to make from said profile:

fedora_small:
 - web1
 - web2
 - web3
fedora_high:
 - redis1
 - redis2
 - redis3
cent_high:
 - riak1
 - riak2
 - riak3

This map file can then be called to roll out all of these virtual machines. Map
files are called from the salt-cloud command with the -m option:

$ salt-cloud -m /path/to/mapfile

Remember, that as with direct profile provisioning the -P option can be passed
to create the virtual machines in parallel:

$ salt-cloud -m /path/to/mapfile -P

Note

Due to limitations in the GoGrid API, instances cannot be provisioned in parallel
with the GoGrid driver. Map files will work with GoGrid, but the -P
argument should not be used on maps referencing GoGrid instances.

A map file can also be enforced to represent the total state of a cloud
deployment by using the --hard option. When using the hard option any vms
that exist but are not specified in the map file will be destroyed:

$ salt-cloud -m /path/to/mapfile -P -H

Be careful with this argument, it is very dangerous! In fact, it is so
dangerous that in order to use it, you must explicitly enable it in the main
configuration file.

enable_hard_maps: True

A map file can include grains and minion configuration options:

fedora_small:
 - web1:
 minion:
 log_level: debug
 grains:
 cheese: tasty
 omelet: du fromage
 - web2:
 minion:
 log_level: warn
 grains:
 cheese: more tasty
 omelet: with peppers

Any top level data element from your profile may be overridden in the map file:

fedora_small:
 - web1:
 size: t2.micro
 - web2:
 size: t2.nano

As of Salt 2017.7.0, nested elements are merged, and can can be specified
individually without having to repeat the complete definition for each top
level data element. In this example a separate MAC is assigned to each VMware
instance while inheriting device parameters for for disk and network
configuration:

nyc-vm:
 - db1:
 devices:
 network:
 Network Adapter 1:
 mac: '44:44:44:44:44:41'
 - db2:
 devices:
 network:
 Network Adapter 1:
 mac: '44:44:44:44:44:42'

A map file may also be used with the various query options:

$ salt-cloud -m /path/to/mapfile -Q
{'ec2': {'web1': {'id': 'i-e6aqfegb',
 'image': None,
 'private_ips': [],
 'public_ips': [],
 'size': None,
 'state': 0}},
 'web2': {'Absent'}}

...or with the delete option:

$ salt-cloud -m /path/to/mapfile -d
The following virtual machines are set to be destroyed:
 web1
 web2

Proceed? [N/y]

Warning

Specifying Nodes with Maps on the Command Line
Specifying the name of a node or nodes with the maps options on the command
line is not supported. This is especially important to remember when
using --destroy with maps; salt-cloud will ignore any arguments
passed in which are not directly relevant to the map file. When using
``--destroy`` with a map, every node in the map file will be deleted!
Maps don't provide any useful information for destroying individual nodes,
and should not be used to destroy a subset of a map.

Requiring Other Instances

The requires directive can be used in map files to ensure that one instance
is created and available before another is created.

fedora_high:
 - db1:
 size: m5.xlarge
 - web1:
 size: m5.large
 requires:
 - db1

This requisite is passed to the instance definition dicitonary in a map file
and accepts a list of instance names as defined in the map.

Setting up New Salt Masters

Bootstrapping a new master in the map is as simple as:

fedora_small:
 - web1:
 make_master: True
 - web2
 - web3

Notice that ALL bootstrapped minions from the map will answer to the newly
created salt-master.

To make any of the bootstrapped minions answer to the bootstrapping salt-master
as opposed to the newly created salt-master, as an example:

fedora_small:
 - web1:
 make_master: True
 minion:
 master: <the local master ip address>
 local_master: True
 - web2
 - web3

The above says the minion running on the newly created salt-master responds to
the local master, ie, the master used to bootstrap these VMs.

Another example:

fedora_small:
 - web1:
 make_master: True
 - web2
 - web3:
 minion:
 master: <the local master ip address>
 local_master: True

The above example makes the web3 minion answer to the local master, not the
newly created master.

Using Direct Map Data

When using modules that access the CloudClient directly (notably, the
cloud execution and runner modules), it is possible to pass in the contents
of a map file, rather than a path to the location of the map file.

Normally when using these modules, the path to the map file is passed in using:

salt-run cloud.map_run /path/to/cloud.map

To pass in the actual map data, use the map_data argument:

salt-run cloud.map_run map_data='{"centos7": [{"saltmaster": {"minion": \
 {"transport": "tcp"}, "make_master": true, "master": {"transport": \
 "tcp"}}}, {"minion001": {"minion": {"transport": "tcp"}}}]}'

Cloud Actions

Once a VM has been created, there are a number of actions that can be performed
on it. The "reboot" action can be used across all providers, but all other
actions are specific to the cloud provider. In order to perform an action, you
may specify it from the command line, including the name(s) of the VM to
perform the action on:

$ salt-cloud -a reboot vm_name
$ salt-cloud -a reboot vm1 vm2 vm2

Or you may specify a map which includes all VMs to perform the action on:

$ salt-cloud -a reboot -m /path/to/mapfile

The following is an example list of actions currently supported by salt-cloud:

all providers:
 - reboot
ec2:
 - start
 - stop
joyent:
 - stop
linode:
 - start
 - stop

Another useful reference for viewing more salt-cloud actions is the
Salt Cloud Feature Matrix.

Cloud Functions

Cloud functions work much the same way as cloud actions, except that they don't
perform an operation on a specific instance, and so do not need a machine name
to be specified. However, since they perform an operation on a specific cloud
provider, that provider must be specified.

$ salt-cloud -f show_image ec2 image=ami-fd20ad94

There are three universal salt-cloud functions that are extremely useful for
gathering information about instances on a provider basis:

	list_nodes: Returns some general information about the instances for the given provider.

	list_nodes_full: Returns all information about the instances for the given provider.

	list_nodes_select: Returns select information about the instances for the given provider.

$ salt-cloud -f list_nodes linode
$ salt-cloud -f list_nodes_full linode
$ salt-cloud -f list_nodes_select linode

Another useful reference for viewing salt-cloud functions is the
Salt Cloud Feature Matrix.

Install Salt Cloud

Salt Cloud is now part of Salt proper. It was merged in as of
Salt version 2014.1.0.

On Ubuntu, install Salt Cloud by using following command:

sudo add-apt-repository ppa:saltstack/salt
sudo apt-get update
sudo apt-get install salt-cloud

If using Salt Cloud on macOS, curl-ca-bundle must be installed. Presently,
this package is not available via brew, but it is available using MacPorts:

sudo port install curl-ca-bundle

Salt Cloud depends on apache-libcloud. Libcloud can be installed via pip
with pip install apache-libcloud.

Installing Salt Cloud for development

Installing Salt for development enables Salt Cloud development as well, just
make sure apache-libcloud is installed as per above paragraph.

See these instructions: Installing Salt for development.

Core Configuration

A number of core configuration options and some options that are global to the
VM profiles can be set in the cloud configuration file. By default this file is
located at /etc/salt/cloud.

Thread Pool Size

When salt cloud is operating in parallel mode via the -P argument, you can
control the thread pool size by specifying the pool_size parameter with
a positive integer value.

By default, the thread pool size will be set to the number of VMs that salt
cloud is operating on.

pool_size: 10

Minion Configuration

The default minion configuration is set up in this file. Minions created by
salt-cloud derive their configuration from this file. Almost all parameters
found in Configuring the Salt Minion can be
used here.

minion:
 master: saltmaster.example.com

In particular, this is the location to specify the location of the salt master
and its listening port, if the port is not set to the default.

Similar to most other settings, Minion configuration settings are inherited
across configuration files. For example, the master setting might be contained
in the main cloud configuration file as demonstrated above, but additional
settings can be placed in the provider, profile or map configuration files:

ec2-web:
 size: t1.micro
 minion:
 environment: test
 startup_states: sls
 sls_list:
 - web

When salt cloud creates a new minion, it can automatically add grain information
to the minion configuration file identifying the sources originally used
to define it.

The generated grain information will appear similar to:

grains:
 salt-cloud:
 driver: ec2
 provider: my_ec2:ec2
 profile: ec2-web

The generation of the salt-cloud grain can be suppressed by the
option enable_cloud_grains: 'False' in the cloud configuration file.

Cloud Configuration Syntax

The data specific to interacting with public clouds is set up here.

Cloud provider configuration settings can live in several places. The first is in
/etc/salt/cloud:

/etc/salt/cloud
providers:
 my-aws-migrated-config:
 id: HJGRYCILJLKJYG
 key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
 keyname: test
 securitygroup: quick-start
 private_key: /root/test.pem
 driver: ec2

Cloud provider configuration data can also be housed in /etc/salt/cloud.providers
or any file matching /etc/salt/cloud.providers.d/*.conf. All files in any of these
locations will be parsed for cloud provider data.

Using the example configuration above:

/etc/salt/cloud.providers
or could be /etc/salt/cloud.providers.d/*.conf
my-aws-config:
 id: HJGRYCILJLKJYG
 key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
 keyname: test
 securitygroup: quick-start
 private_key: /root/test.pem
 driver: ec2

Note

Salt Cloud provider configurations within /etc/cloud.provider.d/ should not
specify the providers starting key.

It is also possible to have multiple cloud configuration blocks within the same alias block.
For example:

production-config:
 - id: HJGRYCILJLKJYG
 key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
 keyname: test
 securitygroup: quick-start
 private_key: /root/test.pem
 driver: ec2

 - user: example_user
 apikey: 123984bjjas87034
 driver: rackspace

However, using this configuration method requires a change with profile configuration blocks.
The provider alias needs to have the provider key value appended as in the following example:

rhel_aws_dev:
 provider: production-config:ec2
 image: ami-e565ba8c
 size: t1.micro

rhel_aws_prod:
 provider: production-config:ec2
 image: ami-e565ba8c
 size: High-CPU Extra Large Instance

database_prod:
 provider: production-config:rackspace
 image: Ubuntu 12.04 LTS
 size: 256 server

Notice that because of the multiple entries, one has to be explicit about the provider alias and
name, from the above example, production-config: ec2.

This data interactions with the salt-cloud binary regarding its --list-location,
--list-images, and --list-sizes which needs a cloud provider as an argument. The argument
used should be the configured cloud provider alias. If the provider alias has multiple entries,
<provider-alias>: <provider-name> should be used.

To allow for a more extensible configuration, --providers-config, which defaults to
/etc/salt/cloud.providers, was added to the cli parser. It allows for the providers'
configuration to be added on a per-file basis.

Pillar Configuration

It is possible to configure cloud providers using pillars. This is only used when inside the cloud
module. You can setup a variable called cloud that contains your profile, provider, and map to
pass that information to the cloud servers instead of having to copy the full configuration to every
minion. In your pillar file, you would use something like this:

cloud:
 ssh_key_name: saltstack
 ssh_key_file: /root/.ssh/id_rsa
 update_cachedir: True
 diff_cache_events: True

 providers:
 my-openstack:
 driver: openstack
 region_name: ORD
 cloud: mycloud

 profiles:
 ubuntu-openstack:
 provider: my-openstack
 size: ds512M
 image: CentOS 7
 script_args: git develop

 maps:
 my-dev-map:
 ubuntu-openstack:
 - dev-test01
 - dev-test02
 - dev-test03
 - dev-test04
 my-prd-map:
 ubuntu-openstack:
 - prd-web01
 - prd-web02
 minion:
 id: custom-minion-id-app1-stack1-frontend
 grains:
 roles:
 - webserver
 deployment: datacenter4-openstack
 - prod-db01
 - prod-db02

Cloud Configurations

Scaleway

To use Salt Cloud with Scaleway, you need to get an access key and an API token. API tokens are unique identifiers associated with your Scaleway account.
To retrieve your access key and API token, log-in to the Scaleway control panel, open the pull-down menu on your account name and click on "My Credentials" link.

If you do not have API token you can create one by clicking the "Create New Token" button on the right corner.

my-scaleway-config:
 access_key: 15cf404d-4560-41b1-9a0c-21c3d5c4ff1f
 token: a7347ec8-5de1-4024-a5e3-24b77d1ba91d
 driver: scaleway

Note

In the cloud profile that uses this provider configuration, the syntax for the
provider required field would be provider: my-scaleway-config.

Rackspace

Rackspace cloud requires two configuration options; a user and an apikey:

my-rackspace-config:
 user: example_user
 apikey: 123984bjjas87034
 driver: rackspace

Note

In the cloud profile that uses this provider configuration, the syntax for the
provider required field would be provider: my-rackspace-config.

Amazon AWS

A number of configuration options are required for Amazon AWS including id,
key, keyname, securitygroup, and private_key:

my-aws-quick-start:
 id: HJGRYCILJLKJYG
 key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
 keyname: test
 securitygroup: quick-start
 private_key: /root/test.pem
 driver: ec2

my-aws-default:
 id: HJGRYCILJLKJYG
 key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
 keyname: test
 securitygroup: default
 private_key: /root/test.pem
 driver: ec2

Note

In the cloud profile that uses this provider configuration, the syntax for the
provider required field would be either provider: my-aws-quick-start
or provider: my-aws-default.

Linode

Linode requires a single API key, but the default root password also needs to
be set:

my-linode-config:
 apikey: asldkgfaklsdfjsjaslfjaklsdjf;askldjfaaklsjdfhasldsadfghdkf
 password: F00barbazlonglongp@ssword
 ssh_pubkey: ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIKHEOLLbeXgaqRQT9NBAopVz366SdYc0KKX33vAnq+2R user@host
 ssh_key_file: ~/.ssh/id_ed25519
 driver: linode

The password needs to be 8 characters and contain lowercase, uppercase, and
numbers.

Note

In the cloud profile that uses this provider configuration, the syntax for the
provider required field would be provider: my-linode-config

Joyent Cloud

The Joyent cloud requires three configuration parameters: The username and
password that are used to log into the Joyent system, as well as the location
of the private SSH key associated with the Joyent account. The SSH key is needed
to send the provisioning commands up to the freshly created virtual machine.

my-joyent-config:
 user: fred
 password: saltybacon
 private_key: /root/joyent.pem
 driver: joyent

Note

In the cloud profile that uses this provider configuration, the syntax for the
provider required field would be provider: my-joyent-config

GoGrid

To use Salt Cloud with GoGrid, log into the GoGrid web interface and create an
API key. Do this by clicking on "My Account" and then going to the API Keys
tab.

The apikey and the sharedsecret configuration parameters need to
be set in the configuration file to enable interfacing with GoGrid:

my-gogrid-config:
 apikey: asdff7896asdh789
 sharedsecret: saltybacon
 driver: gogrid

Note

In the cloud profile that uses this provider configuration, the syntax for the
provider required field would be provider: my-gogrid-config.

OpenStack

Using Salt for OpenStack uses the shade <https://docs.openstack.org/shade/latest/> driver managed by the
openstack-infra team.

This driver can be configured using the /etc/openstack/clouds.yml file with
os-client-config <https://docs.openstack.org/os-client-config/latest/>

myopenstack:
 driver: openstack
 region_name: RegionOne
 cloud: mycloud

Or by just configuring the same auth block directly in the cloud provider config.

myopenstack:
 driver: openstack
 region_name: RegionOne
 auth:
 username: 'demo'
 password: secret
 project_name: 'demo'
 auth_url: 'http://openstack/identity'

Both of these methods support using the
vendor <https://docs.openstack.org/os-client-config/latest/user/vendor-support.html>
options.

For more information, look at Openstack Cloud Driver Docs

DigitalOcean

Using Salt for DigitalOcean requires a client_key and an api_key. These
can be found in the DigitalOcean web interface, in the "My Settings" section,
under the API Access tab.

my-digitalocean-config:
 driver: digitalocean
 personal_access_token: xxx
 location: New York 1

Note

In the cloud profile that uses this provider configuration, the syntax for the
provider required field would be provider: my-digital-ocean-config.

Parallels

Using Salt with Parallels requires a user, password and URL. These
can be obtained from your cloud provider.

my-parallels-config:
 user: myuser
 password: xyzzy
 url: https://api.cloud.xmission.com:4465/paci/v1.0/
 driver: parallels

Note

In the cloud profile that uses this provider configuration, the syntax for the
provider required field would be provider: my-parallels-config.

Proxmox

Using Salt with Proxmox requires a user, password, and URL. These can be
obtained from your cloud host. Both PAM and PVE users can be used.

my-proxmox-config:
 driver: proxmox
 user: saltcloud@pve
 password: xyzzy
 url: your.proxmox.host

Note

In the cloud profile that uses this provider configuration, the syntax for the
provider required field would be provider: my-proxmox-config.

LXC

The lxc driver uses saltify to install salt and attach the lxc container as a new lxc
minion. As soon as we can, we manage baremetal operation over SSH. You can also destroy
those containers via this driver.

devhost10-lxc:
 target: devhost10
 driver: lxc

And in the map file:

devhost10-lxc:
 provider: devhost10-lxc
 from_container: ubuntu
 backing: lvm
 sudo: True
 size: 3g
 ip: 10.0.3.9
 minion:
 master: 10.5.0.1
 master_port: 4506
 lxc_conf:
 - lxc.utsname: superlxc

Note

In the cloud profile that uses this provider configuration, the syntax for the
provider required field would be provider: devhost10-lxc.

Saltify

The Saltify driver is a new, experimental driver designed to install Salt on a remote
machine, virtual or bare metal, using SSH. This driver is useful for provisioning
machines which are already installed, but not Salted. For more information about using
this driver and for configuration examples, please see the
Getting Started with Saltify documentation.

Vagrant

The Vagrant driver is a new, experimental driver for controlling a VagrantBox
virtual machine, and installing Salt on it. The target host machine must be a
working salt minion, which is controlled via the salt master using salt-api.
For more information, see
Getting Started With Vagrant.

Extending Profiles and Cloud Providers Configuration

As of 0.8.7, the option to extend both the profiles and cloud providers
configuration and avoid duplication was added. The extends feature works on the
current profiles configuration, but, regarding the cloud providers
configuration, only works in the new syntax and respective configuration
files, i.e. /etc/salt/salt/cloud.providers or
/etc/salt/cloud.providers.d/*.conf.

Note

Extending cloud profiles and providers is not recursive. For example, a
profile that is extended by a second profile is possible, but the second
profile cannot be extended by a third profile.

Also, if a profile (or provider) is extending another profile and each
contains a list of values, the lists from the extending profile will
override the list from the original profile. The lists are not merged
together.

Extending Profiles

Some example usage on how to use extends with profiles. Consider
/etc/salt/salt/cloud.profiles containing:

development-instances:
 provider: my-ec2-config
 size: t1.micro
 ssh_username: ec2_user
 securitygroup:
 - default
 deploy: False

Amazon-Linux-AMI-2012.09-64bit:
 image: ami-54cf5c3d
 extends: development-instances

Fedora-17:
 image: ami-08d97e61
 extends: development-instances

CentOS-5:
 provider: my-aws-config
 image: ami-09b61d60
 extends: development-instances

The above configuration, once parsed would generate the following profiles
data:

[
 {
 "deploy": False,
 "image": "ami-08d97e61",
 "profile": "Fedora-17",
 "provider": "my-ec2-config",
 "securitygroup": ["default"],
 "size": "t1.micro",
 "ssh_username": "ec2_user",
 },
 {
 "deploy": False,
 "image": "ami-09b61d60",
 "profile": "CentOS-5",
 "provider": "my-aws-config",
 "securitygroup": ["default"],
 "size": "t1.micro",
 "ssh_username": "ec2_user",
 },
 {
 "deploy": False,
 "image": "ami-54cf5c3d",
 "profile": "Amazon-Linux-AMI-2012.09-64bit",
 "provider": "my-ec2-config",
 "securitygroup": ["default"],
 "size": "t1.micro",
 "ssh_username": "ec2_user",
 },
 {
 "deploy": False,
 "profile": "development-instances",
 "provider": "my-ec2-config",
 "securitygroup": ["default"],
 "size": "t1.micro",
 "ssh_username": "ec2_user",
 },
]

Pretty cool right?

Extending Providers

Some example usage on how to use extends within the cloud providers
configuration. Consider /etc/salt/salt/cloud.providers containing:

my-develop-envs:
 - id: HJGRYCILJLKJYG
 key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
 keyname: test
 securitygroup: quick-start
 private_key: /root/test.pem
 location: ap-southeast-1
 availability_zone: ap-southeast-1b
 driver: ec2

 - user: myuser@mycorp.com
 password: mypass
 ssh_key_name: mykey
 ssh_key_file: '/etc/salt/ibm/mykey.pem'
 location: Raleigh
 driver: ibmsce

my-productions-envs:
 - extends: my-develop-envs:ibmsce
 user: my-production-user@mycorp.com
 location: us-east-1
 availability_zone: us-east-1

The above configuration, once parsed would generate the following providers
data:

{
 "providers": {
 "my-develop-envs": [
 {
 "availability_zone": "ap-southeast-1b",
 "id": "HJGRYCILJLKJYG",
 "key": "kdjgfsgm;woormgl/aserigjksjdhasdfgn",
 "keyname": "test",
 "location": "ap-southeast-1",
 "private_key": "/root/test.pem",
 "driver": "aws",
 "securitygroup": "quick-start",
 },
 {
 "location": "Raleigh",
 "password": "mypass",
 "driver": "ibmsce",
 "ssh_key_file": "/etc/salt/ibm/mykey.pem",
 "ssh_key_name": "mykey",
 "user": "myuser@mycorp.com",
 },
],
 "my-productions-envs": [
 {
 "availability_zone": "us-east-1",
 "location": "us-east-1",
 "password": "mypass",
 "driver": "ibmsce",
 "ssh_key_file": "/etc/salt/ibm/mykey.pem",
 "ssh_key_name": "mykey",
 "user": "my-production-user@mycorp.com",
 }
],
 }
}

Spinning up Windows Minions

It is possible to use Salt Cloud to spin up Windows instances, and then install
Salt on them. This functionality is available on all cloud providers that are
supported by Salt Cloud. However, it may not necessarily be available on all
Windows images.

Dependencies

Salt Cloud needs the following packages:

	pypsexec [https://github.com/jborean93/pypsexec].

	smbprotocol [https://github.com/jborean93/smbprotocol].

For versions of Salt prior to 3006, Salt Cloud has a dependency on the
impacket library to set up the Windows Salt Minion installer:

	impacket [https://github.com/SecureAuthCorp/impacket].

Requirements

A copy of the Salt Minion Windows installer must be present on the system on
which Salt Cloud is running. See
Windows - Salt install guide [https://docs.saltproject.io/salt/install-guide/en/latest/topics/install-by-operating-system/windows.html] for information about downloading
and using the Salt Minion Windows installer.

Self Signed Certificates with WinRM

Salt-Cloud can use versions of pywinrm<=0.1.1 or pywinrm>=0.2.1.

For versions greater than 0.2.1, winrm_verify_ssl needs to be set to
False if the certificate is self signed and not verifiable.

Firewall Settings

Because Salt Cloud makes use of smbclient and winexe, port 445 must be open
on the target image. This port is not generally open by default on a standard
Windows distribution, and care must be taken to use an image in which this port
is open, or the Windows firewall is disabled.

If supported by the cloud provider, a PowerShell script may be used to open up
this port automatically, using the cloud provider's userdata. The following
script would open up port 445, and apply the changes:

<powershell>
New-NetFirewallRule -Name "SMB445" -DisplayName "SMB445" -Protocol TCP -LocalPort 445
Set-Item (dir wsman:\localhost\Listener*\Port -Recurse).pspath 445 -Force
Restart-Service winrm
</powershell>

For EC2, this script may be saved as a file, and specified in the provider or
profile configuration as userdata_file. For instance:

my-ec2-config:
 # Pass userdata to the instance to be created
 userdata_file: /etc/salt/windows-firewall.ps1

Note

From versions 2016.11.0 and 2016.11.3, this file was passed through the
master's renderer to template it. However, this caused
issues with non-YAML data, so templating is no longer performed by default.
To template the userdata_file, add a userdata_template option to the
cloud profile:

my-ec2-config:
 # Pass userdata to the instance to be created
 userdata_file: /etc/salt/windows-firewall.ps1
 userdata_template: jinja

If no userdata_template is set in the cloud profile, then the master
configuration will be checked for a userdata_template value.
If this is not set, then no templating will be performed on the
userdata_file.

To disable templating in a cloud profile when a
userdata_template has been set in the master configuration
file, simply set userdata_template to False in the cloud profile:

my-ec2-config:
 # Pass userdata to the instance to be created
 userdata_file: /etc/salt/windows-firewall.ps1
 userdata_template: False

If you are using WinRM on EC2 the HTTPS port for the WinRM service must also be
enabled in your userdata. By default EC2 Windows images only have insecure HTTP
enabled. To enable HTTPS and basic authentication required by pywinrm consider
the following userdata example:

<powershell>
New-NetFirewallRule -Name "SMB445" -DisplayName "SMB445" -Protocol TCP -LocalPort 445
New-NetFirewallRule -Name "WINRM5986" -DisplayName "WINRM5986" -Protocol TCP -LocalPort 5986

winrm quickconfig -q
winrm set winrm/config/winrs '@{MaxMemoryPerShellMB="300"}'
winrm set winrm/config '@{MaxTimeoutms="1800000"}'
winrm set winrm/config/service/auth '@{Basic="true"}'

$SourceStoreScope = 'LocalMachine'
$SourceStorename = 'Remote Desktop'

$SourceStore = New-Object -TypeName System.Security.Cryptography.X509Certificates.X509Store -ArgumentList $SourceStorename, $SourceStoreScope
$SourceStore.Open([System.Security.Cryptography.X509Certificates.OpenFlags]::ReadOnly)

$cert = $SourceStore.Certificates | Where-Object -FilterScript {
 $_.subject -like '*'
}

$DestStoreScope = 'LocalMachine'
$DestStoreName = 'My'

$DestStore = New-Object -TypeName System.Security.Cryptography.X509Certificates.X509Store -ArgumentList $DestStoreName, $DestStoreScope
$DestStore.Open([System.Security.Cryptography.X509Certificates.OpenFlags]::ReadWrite)
$DestStore.Add($cert)

$SourceStore.Close()
$DestStore.Close()

winrm create winrm/config/listener?Address=*+Transport=HTTPS `@`{CertificateThumbprint=`"($cert.Thumbprint)`"`}

Restart-Service winrm
</powershell>

No certificate store is available by default on EC2 images and creating
one does not seem possible without an MMC (cannot be automated). To use the
default EC2 Windows images the above copies the RDP store.

Configuration

Configuration is set as usual, with some extra configuration settings. The
location of the Windows installer on the machine that Salt Cloud is running on
must be specified. This may be done in any of the regular configuration files
(main, providers, profiles, maps). For example:

Setting the installer in /etc/salt/cloud.providers:

my-softlayer:
 driver: softlayer
 user: MYUSER1138
 apikey: 'e3b68aa711e6deadc62d5b76355674beef7cc3116062ddbacafe5f7e465bfdc9'
 minion:
 master: saltmaster.example.com
 win_installer: /root/Salt-Minion-2014.7.0-AMD64-Setup.exe
 win_username: Administrator
 win_password: letmein
 smb_port: 445

The default Windows user is Administrator, and the default Windows password
is blank.

If WinRM is to be used use_winrm needs to be set to True. winrm_port
can be used to specify a custom port (must be HTTPS listener). And
winrm_verify_ssl can be set to False to use a self signed certificate.

Auto-Generated Passwords on EC2

On EC2, when the win_password is set to auto, Salt Cloud will query EC2 for
an auto-generated password. This password is expected to take at least 4 minutes
to generate, adding additional time to the deploy process.

When the EC2 API is queried for the auto-generated password, it will be returned
in a message encrypted with the specified keyname. This requires that the
appropriate private_key file is also specified. Such a profile configuration
might look like:

windows-server-2012:
 provider: my-ec2-config
 image: ami-c49c0dac
 size: m1.small
 securitygroup: windows
 keyname: mykey
 private_key: /root/mykey.pem
 userdata_file: /etc/salt/windows-firewall.ps1
 win_installer: /root/Salt-Minion-2014.7.0-AMD64-Setup.exe
 win_username: Administrator
 win_password: auto

Getting Started With Aliyun ECS

The Aliyun ECS (Elastic Computer Service) is one of the most popular public
cloud hosts in China. This cloud host can be used to manage aliyun
instance using salt-cloud.

http://www.aliyun.com/

Dependencies

This driver requires the Python requests library to be installed.

Configuration

Using Salt for Aliyun ECS requires aliyun access key id and key secret.
These can be found in the aliyun web interface, in the "User Center" section,
under "My Service" tab.

Note: This example is for /etc/salt/cloud.providers or any file in the
/etc/salt/cloud.providers.d/ directory.

my-aliyun-config:
 # aliyun Access Key ID
 id: wDGEwGregedg3435gDgxd
 # aliyun Access Key Secret
 key: GDd45t43RDBTrkkkg43934t34qT43t4dgegerGEgg
 location: cn-qingdao
 driver: aliyun

Note

Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This
change was made to avoid confusion with the provider parameter that is used in cloud profile
definitions. Cloud provider definitions now use driver to refer to the Salt cloud module that
provides the underlying functionality to connect to a cloud host, while cloud profiles continue
to use provider to refer to provider configurations that you define.

Profiles

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles or in the
/etc/salt/cloud.profiles.d/ directory:

aliyun_centos:
 provider: my-aliyun-config
 size: ecs.t1.small
 location: cn-qingdao
 securitygroup: G1989096784427999
 image: centos6u3_64_20G_aliaegis_20130816.vhd

Sizes can be obtained using the --list-sizes option for the salt-cloud
command:

salt-cloud --list-sizes my-aliyun-config
my-aliyun-config:

 aliyun:

 ecs.c1.large:

 CpuCoreCount:
 8
 InstanceTypeId:
 ecs.c1.large
 MemorySize:
 16.0

...SNIP...

Images can be obtained using the --list-images option for the salt-cloud
command:

salt-cloud --list-images my-aliyun-config
my-aliyun-config:

 aliyun:

 centos5u8_64_20G_aliaegis_20131231.vhd:

 Architecture:
 x86_64
 Description:

 ImageId:
 centos5u8_64_20G_aliaegis_20131231.vhd
 ImageName:
 CentOS 5.8 64位
 ImageOwnerAlias:
 system
 ImageVersion:
 1.0
 OSName:
 CentOS 5.8 64位
 Platform:
 CENTOS5
 Size:
 20
 Visibility:
 public
...SNIP...

Locations can be obtained using the --list-locations option for the salt-cloud
command:

my-aliyun-config:

 aliyun:

 cn-beijing:

 LocalName:
 北京
 RegionId:
 cn-beijing
 cn-hangzhou:

 LocalName:
 杭州
 RegionId:
 cn-hangzhou
 cn-hongkong:

 LocalName:
 香港
 RegionId:
 cn-hongkong
 cn-qingdao:

 LocalName:
 青岛
 RegionId:
 cn-qingdao

Security Group can be obtained using the -f list_securitygroup option
for the salt-cloud command:

salt-cloud --location=cn-qingdao -f list_securitygroup my-aliyun-config
my-aliyun-config:

 aliyun:

 G1989096784427999:

 Description:
 G1989096784427999
 SecurityGroupId:
 G1989096784427999

Note

Aliyun ECS REST API documentation is available from Aliyun ECS API [http://help.aliyun.com/list/11113464.html?spm=5176.7224429.1997282881.55.J9XhVL].

Getting Started with CloudStack

CloudStack is one the most popular cloud projects. It's an open source project
to build public and/or private clouds. You can use Salt Cloud to launch
CloudStack instances.

Dependencies

	Libcloud >= 0.13.2

Configuration

Using Salt for CloudStack, requires an API key and a secret key along with the API address endpoint information.

Note: This example is for /etc/salt/cloud.providers or any file in the
/etc/salt/cloud.providers.d/ directory.

exoscale:
 driver: cloudstack
 host: api.exoscale.com
 path: /compute
 apikey: EXOAPIKEY
 secretkey: EXOSECRETKEYINYOURACCOUNT

Note

Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This
change was made to avoid confusion with the provider parameter that is used in cloud profile
definitions. Cloud provider definitions now use driver to refer to the Salt cloud module that
provides the underlying functionality to connect to a cloud host, while cloud profiles continue
to use provider to refer to provider configurations that you define.

Profiles

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles or in the
/etc/salt/cloud.profiles.d/ directory:

exoscale-ubuntu:
 provider: exoscale-config
 image: Linux Ubuntu 18.04
 size: Small
 location: ch-gva-2
 ssh_username: ubuntu

Locations can be obtained using the --list-locations option for the salt-cloud
command:

salt-cloud --list-locations exoscale-config
exoscale:

 cloudstack:

 ch-dk-2:

 country:
 Unknown
 driver:
 id:
 91e5e9e4-c9ed-4b76-bee4-427004b3baf9
 name:
 ch-dk-2
 ch-gva-2:

 country:
 Unknown
 driver:
 id:
 1128bd56-b4d9-4ac6-a7b9-c715b187ce11
 name:
 ch-gva-2

Sizes can be obtained using the --list-sizes option for the salt-cloud
command:

salt-cloud --list-sizes exoscale
exoscale:

 cloudstack:

 Extra-large:

 bandwidth:
 0
 disk:
 0
 driver:
 extra:

 cpu:
 4
 get_uuid:
 id:
 350dc5ea-fe6d-42ba-b6c0-efb8b75617ad
 name:
 Extra-large
 price:
 0
 ram:
 16384
 uuid:
 edb4cd4ae14bbf152d451b30c4b417ab095a5bfe
...SNIP...

Images can be obtained using the --list-images option for the salt-cloud
command:

salt-cloud --list-images exoscale
exoscale:

 cloudstack:

 Linux CentOS 6.6 64-bit:

 driver:
 extra:

 displaytext:
 Linux CentOS 6.6 64-bit 10G Disk (2014-12-01-bac8e0)
 format:
 QCOW2
 hypervisor:
 KVM
 os:
 Other PV (64-bit)
 size:
 10737418240
 get_uuid:
 id:
 aa69ae64-1ea9-40af-8824-c2c3344e8d7c
 name:
 Linux CentOS 6.6 64-bit
 uuid:
 f26b4f54ec8591abdb6b5feb3b58f720aa438fee
...SNIP...

CloudStack specific settings

securitygroup

New in version 2017.7.0.

You can specify a list of security groups (by name or id) that should be
assigned to the VM:

exoscale:
 provider: cloudstack
 securitygroup:
 - default
 - salt-master

Getting Started With DigitalOcean

DigitalOcean is a public cloud host that specializes in Linux instances.

Configuration

Using Salt for DigitalOcean requires a personal_access_token, an ssh_key_file,
and at least one SSH key name in ssh_key_names. More ssh_key_names can be added
by separating each key with a comma. The personal_access_token can be found in the
DigitalOcean web interface in the "Apps & API" section. The SSH key name can be found
under the "SSH Keys" section.

Note: This example is for /etc/salt/cloud.providers or any file in the
/etc/salt/cloud.providers.d/ directory.

my-digitalocean-config:
 driver: digitalocean
 personal_access_token: xxx
 ssh_key_file: /path/to/ssh/key/file
 ssh_key_names: my-key-name,my-key-name-2
 location: New York 1

Note

Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This
change was made to avoid confusion with the provider parameter that is used in cloud profile
definitions. Cloud provider definitions now use driver to refer to the Salt cloud module that
provides the underlying functionality to connect to a cloud host, while cloud profiles continue
to use provider to refer to provider configurations that you define.

Profiles

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles or in the
/etc/salt/cloud.profiles.d/ directory:

digitalocean-ubuntu:
 provider: my-digitalocean-config
 image: 14.04 x64
 size: 512MB
 location: New York 1
 vpc_name: Optional
 backups_enabled: True
 ipv6: True
 create_dns_record: True
 userdata_file: /etc/salt/cloud.userdata.d/setup
 tags:
 - tag1
 - tag2
 - tag3

Locations can be obtained using the --list-locations option for the salt-cloud
command:

salt-cloud --list-locations my-digitalocean-config
my-digitalocean-config:

 digitalocean:

 Amsterdam 1:

 available:
 False
 features:
 [u'backups']
 name:
 Amsterdam 1
 sizes:
 []
 slug:
 ams1
...SNIP...

Sizes can be obtained using the --list-sizes option for the salt-cloud
command:

salt-cloud --list-sizes my-digitalocean-config
my-digitalocean-config:

 digitalocean:

 512MB:

 cost_per_hour:
 0.00744
 cost_per_month:
 5.0
 cpu:
 1
 disk:
 20
 id:
 66
 memory:
 512
 name:
 512MB
 slug:
 None
...SNIP...

Images can be obtained using the --list-images option for the salt-cloud
command:

salt-cloud --list-images my-digitalocean-config
my-digitalocean-config:

 digitalocean:

 10.1:

 created_at:
 2015-01-20T20:04:34Z
 distribution:
 FreeBSD
 id:
 10144573
 min_disk_size:
 20
 name:
 10.1
 public:
 True
...SNIP...

Profile Specifics:

ssh_username

If using a FreeBSD image from DigitalOcean, you'll need to set the ssh_username
setting to freebsd in your profile configuration.

digitalocean-freebsd:
 provider: my-digitalocean-config
 image: 10.2
 size: 512MB
 ssh_username: freebsd

userdata_file

New in version 2016.11.6.

Use userdata_file to specify the userdata file to upload for use with
cloud-init if available.

my-openstack-config:
 # Pass userdata to the instance to be created
 userdata_file: /etc/salt/cloud-init/packages.yml

my-do-config:
 # Pass userdata to the instance to be created
 userdata_file: /etc/salt/cloud-init/packages.yml
 userdata_template: jinja

If no userdata_template is set in the cloud profile, then the master
configuration will be checked for a userdata_template value.
If this is not set, then no templating will be performed on the
userdata_file.

To disable templating in a cloud profile when a
userdata_template has been set in the master configuration
file, simply set userdata_template to False in the cloud profile:

my-do-config:
 # Pass userdata to the instance to be created
 userdata_file: /etc/salt/cloud-init/packages.yml
 userdata_template: False

Miscellaneous Information

Note

DigitalOcean's concept of Applications is nothing more than a
pre-configured instance (same as a normal Droplet). You will find examples
such Docker 0.7 Ubuntu 13.04 x64 and Wordpress on Ubuntu 12.10
when using the --list-images option. These names can be used just like
the rest of the standard instances when specifying an image in the cloud
profile configuration.

Note

If your domain's DNS is managed with DigitalOcean, and your minion name
matches your DigitalOcean managed DNS domain, you can automatically create
A and AAA records for newly created droplets. Use create_dns_record: True
in your config to enable this. Adding delete_dns_record: True to also
delete records when a droplet is destroyed is optional. Due to limitations
in salt-cloud design, the destroy code does not have access to the VM config
data. WHETHER YOU ADD create_dns_record: True OR NOT, salt-cloud WILL
attempt to delete your DNS records if the minion name matches. This will
prevent advertising any recycled IP addresses for destroyed minions.

Note

If you need to perform the bootstrap using the local interface for droplets,
this can be done by setting ssh_interface: private in your config. By
default the salt-cloud script would run on the public interface however if firewall
is preventing the connection to the Droplet over the public interface you might need
to set this option to connect via private interface. Also, to use this feature
private_networking: True must be set in the config.

Note

Additional documentation is available from DigitalOcean [https://www.digitalocean.com/community/tutorials/automated-provisioning-of-digitalocean-cloud-servers-with-salt-cloud-on-ubuntu-12-04].

Getting Started With Dimension Data Cloud

Dimension Data are a global IT Services company and form part of the NTT Group.
Dimension Data provide IT-as-a-Service to customers around the globe on their
cloud platform (Compute as a Service). The CaaS service is available either on
one of the public cloud instances or as a private instance on premises.

http://cloud.dimensiondata.com/

CaaS has its own non-standard API , SaltStack provides a wrapper on top of this
API with common methods with other IaaS solutions and Public cloud providers.
Therefore, you can use the Dimension Data module to communicate with both the
public and private clouds.

Dependencies

This driver requires the Python apache-libcloud and netaddr library to be installed.

Configuration

When you instantiate a driver you need to pass the following arguments to the
driver constructor:

	user_id - Your Dimension Data Cloud username

	key - Your Dimension Data Cloud password

	region - The region key, one of the possible region keys

Possible regions:

	dd-na : Dimension Data North America (USA)

	dd-eu : Dimension Data Europe

	dd-af : Dimension Data Africa

	dd-au : Dimension Data Australia

	dd-latam : Dimension Data Latin America

	dd-ap : Dimension Data Asia Pacific

	dd-canada : Dimension Data Canada region

Note: This example is for /etc/salt/cloud.providers or any file in the
/etc/salt/cloud.providers.d/ directory.

my-dimensiondata-config:
 user_id: my_username
 key: myPassword!
 region: dd-na
 driver: dimensiondata

Note

In version 2015.8.0, the provider parameter in cloud provider
definitions was renamed to driver. This change was made to avoid
confusion with the provider parameter that is used in cloud profile
definitions. Cloud provider definitions now use driver to refer to the
Salt cloud module that provides the underlying functionality to connect to
a cloud host, while cloud profiles continue to use provider to refer to
provider configurations that you define.

Profiles

Cloud Profiles

Dimension Data images have an inbuilt size configuration, there is no list of sizes (although, if the
command --list-sizes is run a default will be returned).

Images can be obtained using the --list-images option for the salt-cloud
command:

salt-cloud --list-images my-dimensiondata-config
my-dimensiondata-config:

dimensiondata:

 CSfM SharePoint 2013 Trial:

 driver:
 extra:

 OS_displayName:
 WIN2012R2S/64
 OS_type:
 None
 cpu:
 created:
 2015-03-19T18:36:06.000Z
 description:
 Windows 2012 R2 Standard 64-bit installed with SharePoint 2013 and Visual Studio 2013 Pro (Trial Version)
 location:
 memoryGb:
 12
 osImageKey:
 T-WIN-2012R2-STD-SP2013-VS2013-64-4-12-100
 get_uuid:
 id:
 0df4677e-d380-4e9b-9469-b529ee0214c5
 name:
 CSfM SharePoint 2013 Trial
 uuid:
 28c077f1be970ee904541407b377e3ff87a9ac69
 CentOS 5 32-bit 2 CPU:

 driver:
 extra:

 OS_displayName:
 CENTOS5/32
 OS_type:
 None
 cpu:
 created:
 2015-10-21T14:52:29.000Z
 description:
 CentOS Release 5.11 32-bit
 location:
 memoryGb:
 4
 osImageKey:
 T-CENT-5-32-2-4-10
 get_uuid:
 id:
 a8046bd1-04ea-4668-bf32-bf8d5540faed
 name:
 CentOS 5 32-bit 2 CPU
 uuid:
 4d7dd59929fed6f4228db861b609da64997773a7

...SNIP...

Locations can be obtained using the --list-locations option for the salt-cloud
command:

my-dimensiondata-config:

 dimensiondata:

 Australia - Melbourne:

 country:
 Australia
 driver:
 id:
 AU2
 name:
 Australia - Melbourne
 Australia - Melbourne MCP2:

 country:
 Australia
 driver:
 id:
 AU10
 name:
 Australia - Melbourne MCP2
 Australia - Sydney:

 country:
 Australia
 driver:
 id:
 AU1
 name:
 Australia - Sydney
 Australia - Sydney MCP2:

 country:
 Australia
 driver:
 id:
 AU9
 name:
 Australia - Sydney MCP2
 New Zealand:

 country:
 New Zealand
 driver:
 id:
 AU8
 name:
 New Zealand
 New_Zealand:

 country:
 New Zealand
 driver:
 id:
 AU11
 name:
 New_Zealand

Note

Dimension Data Cloud REST API documentation is available from Dimension Data MCP 2 [https://community.opsourcecloud.net/Browse.jsp?id=e5b1a66815188ad439f76183b401f026].

Getting Started With AWS EC2

Amazon EC2 is a very widely used public cloud platform and one of the core
platforms Salt Cloud has been built to support.

Previously, the suggested driver for AWS EC2 was the aws driver. This
has been deprecated in favor of the ec2 driver. Configuration using the
old aws driver will still function, but that driver is no longer in
active development.

Dependencies

This driver requires the Python requests library to be installed.

Configuration

The following example illustrates some of the options that can be set. These
parameters are discussed in more detail below.

Note: This example is for /etc/salt/cloud.providers or any file in the
/etc/salt/cloud.providers.d/ directory.

my-ec2-southeast-public-ips:
 # Set up the location of the salt master
 #
 minion:
 master: saltmaster.example.com

 # Set up grains information, which will be common for all nodes
 # using this provider
 grains:
 node_type: broker
 release: 1.0.1

 # Specify whether to use public or private IP for deploy script.
 #
 # Valid options are:
 # private_ips - The salt-cloud command is run inside the EC2
 # public_ips - The salt-cloud command is run outside of EC2
 #
 ssh_interface: public_ips

 # Optionally configure the Windows credential validation number of
 # retries and delay between retries. This defaults to 10 retries
 # with a one second delay betwee retries
 win_deploy_auth_retries: 10
 win_deploy_auth_retry_delay: 1

 # Set the EC2 access credentials (see below)
 #
 id: 'use-instance-role-credentials'
 key: 'use-instance-role-credentials'

 # If 'role_arn' is specified the above credentials are used to
 # to assume to the role. By default, role_arn is set to None.
 role_arn: arn:aws:iam::012345678910:role/SomeRoleName

 # Make sure this key is owned by corresponding user (default 'salt') with permissions 0400.
 #
 private_key: /etc/salt/my_test_key.pem
 keyname: my_test_key
 securitygroup: default

 # Optionally configure default region
 # Use salt-cloud --list-locations <provider> to obtain valid regions
 #
 location: ap-southeast-1
 availability_zone: ap-southeast-1b

 # Configure which user to use to run the deploy script. This setting is
 # dependent upon the AMI that is used to deploy. It is usually safer to
 # configure this individually in a profile, than globally. Typical users
 # are:
 #
 # Amazon Linux -> ec2-user
 # RHEL -> ec2-user
 # CentOS -> ec2-user
 # Ubuntu -> ubuntu
 # Debian -> admin
 #
 ssh_username: ec2-user

 # Optionally add an IAM profile
 iam_profile: 'arn:aws:iam::123456789012:instance-profile/ExampleInstanceProfile'

 driver: ec2

my-ec2-southeast-private-ips:
 # Set up the location of the salt master
 #
 minion:
 master: saltmaster.example.com

 # Specify whether to use public or private IP for deploy script.
 #
 # Valid options are:
 # private_ips - The salt-master is also hosted with EC2
 # public_ips - The salt-master is hosted outside of EC2
 #
 ssh_interface: private_ips

 # Optionally configure the Windows credential validation number of
 # retries and delay between retries. This defaults to 10 retries
 # with a one second delay betwee retries
 win_deploy_auth_retries: 10
 win_deploy_auth_retry_delay: 1

 # Set the EC2 access credentials (see below)
 #
 id: 'use-instance-role-credentials'
 key: 'use-instance-role-credentials'

 # Make sure this key is owned by root with permissions 0400.
 #
 private_key: /etc/salt/my_test_key.pem
 keyname: my_test_key

 # This one should NOT be specified if VPC was not configured in AWS to be
 # the default. It might cause an error message which says that network
 # interfaces and an instance-level security groups may not be specified
 # on the same request.
 #
 securitygroup: default

 # Optionally configure default region
 #
 location: ap-southeast-1
 availability_zone: ap-southeast-1b

 # Configure which user to use to run the deploy script. This setting is
 # dependent upon the AMI that is used to deploy. It is usually safer to
 # configure this individually in a profile, than globally. Typical users
 # are:
 #
 # Amazon Linux -> ec2-user
 # RHEL -> ec2-user
 # CentOS -> ec2-user
 # Ubuntu -> ubuntu
 #
 ssh_username: ec2-user

 # Optionally add an IAM profile
 iam_profile: 'my other profile name'

 driver: ec2

Note

Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This
change was made to avoid confusion with the provider parameter that is used in cloud profile
definitions. Cloud provider definitions now use driver to refer to the Salt cloud module that
provides the underlying functionality to connect to a cloud host, while cloud profiles continue
to use provider to refer to provider configurations that you define.

Access Credentials

The id and key settings may be found in the Security Credentials area
of the AWS Account page:

https://portal.aws.amazon.com/gp/aws/securityCredentials

Both are located in the Access Credentials area of the page, under the Access
Keys tab. The id setting is labeled Access Key ID, and the key setting
is labeled Secret Access Key.

Note: if either id or key is set to 'use-instance-role-credentials' it is
assumed that Salt is running on an AWS instance, and the instance role
credentials will be retrieved and used. Since both the id and key are
required parameters for the AWS ec2 provider, it is recommended to set both
to 'use-instance-role-credentials' for this functionality.

A "static" and "permanent" Access Key ID and Secret Key can be specified,
but this is not recommended. Instance role keys are rotated on a regular
basis, and are the recommended method of specifying AWS credentials.

Windows Deploy Timeouts

For Windows instances, it may take longer than normal for the instance to be
ready. In these circumstances, the provider configuration can be configured
with a win_deploy_auth_retries and/or a win_deploy_auth_retry_delay
setting, which default to 10 retries and a one second delay between retries.
These retries and timeouts relate to validating the Administrator password
once AWS provides the credentials via the AWS API.

Key Pairs

In order to create an instance with Salt installed and configured, a key pair
will need to be created. This can be done in the EC2 Management Console, in the
Key Pairs area. These key pairs are unique to a specific region. Keys in the
us-east-1 region can be configured at:

https://console.aws.amazon.com/ec2/home?region=us-east-1#s=KeyPairs

Keys in the us-west-1 region can be configured at

https://console.aws.amazon.com/ec2/home?region=us-west-1#s=KeyPairs

...and so on. When creating a key pair, the browser will prompt to download a
pem file. This file must be placed in a directory accessible by Salt Cloud,
with permissions set to either 0400 or 0600.

Security Groups

An instance on EC2 needs to belong to a security group. Like key pairs, these
are unique to a specific region. These are also configured in the EC2
Management Console. Security groups for the us-east-1 region can be configured
at:

https://console.aws.amazon.com/ec2/home?region=us-east-1#s=SecurityGroups

...and so on.

A security group defines firewall rules which an instance will adhere to. If
the salt-master is configured outside of EC2, the security group must open the
SSH port (usually port 22) in order for Salt Cloud to install Salt.

IAM Profile

Amazon EC2 instances support the concept of an instance profile [https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2_instance-profiles.html], which
is a logical container for the IAM role. At the time that you launch an EC2
instance, you can associate the instance with an instance profile, which in
turn corresponds to the IAM role. Any software that runs on the EC2 instance
is able to access AWS using the permissions associated with the IAM role.

Scaffolding the profile is a 2-step configuration process:

	Configure an IAM Role from the IAM Management Console [https://console.aws.amazon.com/iam/home?#roles].

	Attach this role to a new profile. It can be done with the AWS CLI [https://docs.aws.amazon.com/cli/latest/index.html]:

> aws iam create-instance-profile --instance-profile-name PROFILE_NAME
> aws iam add-role-to-instance-profile --instance-profile-name PROFILE_NAME --role-name ROLE_NAME

Once the profile is created, you can use the PROFILE_NAME to configure
your cloud profiles.

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles:

base_ec2_private:
 provider: my-ec2-southeast-private-ips
 image: ami-e565ba8c
 size: t2.micro
 ssh_username: ec2-user

base_ec2_public:
 provider: my-ec2-southeast-public-ips
 image: ami-e565ba8c
 size: t2.micro
 ssh_username: ec2-user

base_ec2_db:
 provider: my-ec2-southeast-public-ips
 image: ami-e565ba8c
 size: m1.xlarge
 ssh_username: ec2-user
 volumes:
 - { size: 10, device: /dev/sdf }
 - { size: 10, device: /dev/sdg, type: io1, iops: 1000 }
 - { size: 10, device: /dev/sdh, type: io1, iops: 1000 }
 - { size: 10, device: /dev/sdi, tags: {"Environment": "production"} }
 # optionally add tags to profile:
 tag: {'Environment': 'production', 'Role': 'database'}
 # force grains to sync after install
 sync_after_install: grains

base_ec2_vpc:
 provider: my-ec2-southeast-public-ips
 image: ami-a73264ce
 size: m1.xlarge
 ssh_username: ec2-user
 script: /etc/salt/cloud.deploy.d/my_bootstrap.sh
 network_interfaces:
 - DeviceIndex: 0
 PrivateIpAddresses:
 - Primary: True
 #auto assign public ip (not EIP)
 AssociatePublicIpAddress: True
 SubnetId: subnet-813d4bbf
 SecurityGroupId:
 - sg-750af413
 del_root_vol_on_destroy: True
 del_all_vols_on_destroy: True
 volumes:
 - { size: 10, device: /dev/sdf }
 - { size: 10, device: /dev/sdg, type: io1, iops: 1000 }
 - { size: 10, device: /dev/sdh, type: io1, iops: 1000 }
 tag: {'Environment': 'production', 'Role': 'database'}
 sync_after_install: grains

The profile can now be realized with a salt command:

salt-cloud -p base_ec2 ami.example.com
salt-cloud -p base_ec2_public ami.example.com
salt-cloud -p base_ec2_private ami.example.com

This will create an instance named ami.example.com in EC2. The minion that
is installed on this instance will have an id of ami.example.com. If
the command was executed on the salt-master, its Salt key will automatically be
signed on the master.

Once the instance has been created with salt-minion installed, connectivity to
it can be verified with Salt:

salt 'ami.example.com' test.version

Required Settings

The following settings are always required for EC2:

Set the EC2 login data
my-ec2-config:
 id: HJGRYCILJLKJYG
 key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
 keyname: test
 securitygroup: quick-start
 private_key: /root/test.pem
 driver: ec2

Optional Settings

EC2 allows a userdata file to be passed to the instance to be created. This
functionality was added to Salt in the 2015.5.0 release.

my-ec2-config:
 # Pass userdata to the instance to be created
 userdata_file: /etc/salt/my-userdata-file

Note

From versions 2016.11.0 and 2016.11.3, this file was passed through the
master's renderer to template it. However, this caused
issues with non-YAML data, so templating is no longer performed by default.
To template the userdata_file, add a userdata_template option to the
cloud profile:

my-ec2-config:
 # Pass userdata to the instance to be created
 userdata_file: /etc/salt/my-userdata-file
 userdata_template: jinja

If no userdata_template is set in the cloud profile, then the master
configuration will be checked for a userdata_template value.
If this is not set, then no templating will be performed on the
userdata_file.

To disable templating in a cloud profile when a
userdata_template has been set in the master configuration
file, simply set userdata_template to False in the cloud profile:

my-ec2-config:
 # Pass userdata to the instance to be created
 userdata_file: /etc/salt/my-userdata-file
 userdata_template: False

EC2 allows a location to be set for servers to be deployed in. Availability
zones exist inside regions, and may be added to increase specificity.

my-ec2-config:
 # Optionally configure default region
 location: ap-southeast-1
 availability_zone: ap-southeast-1b

EC2 instances can have a public or private IP, or both. When an instance is
deployed, Salt Cloud needs to log into it via SSH to run the deploy script.
By default, the public IP will be used for this. If the salt-cloud command is
run from another EC2 instance, the private IP should be used.

my-ec2-config:
 # Specify whether to use public or private IP for deploy script
 # private_ips or public_ips
 ssh_interface: public_ips

Many EC2 instances do not allow remote access to the root user by default.
Instead, another user must be used to run the deploy script using sudo. Some
common usernames include ec2-user (for Amazon Linux), ubuntu (for Ubuntu
instances), admin (official Debian) and bitnami (for images provided by
Bitnami).

my-ec2-config:
 # Configure which user to use to run the deploy script
 ssh_username: ec2-user

Multiple usernames can be provided, in which case Salt Cloud will attempt to
guess the correct username. This is mostly useful in the main configuration
file:

my-ec2-config:
 ssh_username:
 - ec2-user
 - ubuntu
 - admin
 - bitnami

Multiple security groups can also be specified in the same fashion:

my-ec2-config:
 securitygroup:
 - default
 - extra

EC2 instances can be added to an AWS Placement Group [https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html] by specifying the
placementgroup option:

my-ec2-config:
 placementgroup: my-aws-placement-group

Your instances may optionally make use of EC2 Spot Instances. The
following example will request that spot instances be used and your
maximum bid will be $0.10. Keep in mind that different spot prices
may be needed based on the current value of the various EC2 instance
sizes. You can check current and past spot instance pricing via the
EC2 API or AWS Console.

my-ec2-config:
 spot_config:
 spot_price: 0.10

You can optionally specify tags to apply to the EC2 spot instance request.
A spot instance request itself is an object in AWS. The following example
will set two tags on the spot instance request.

my-ec2-config:
 spot_config:
 spot_price: 0.10
 tag:
 tag0: value
 tag1: value

By default, the spot instance type is set to 'one-time', meaning it will
be launched and, if it's ever terminated for whatever reason, it will not
be recreated. If you would like your spot instances to be relaunched after
a termination (by you or AWS), set the type to 'persistent'.

NOTE: Spot instances are a great way to save a bit of money, but you do
run the risk of losing your spot instances if the current price for the
instance size goes above your maximum bid.

The following parameters may be set in the cloud configuration file to
control various aspects of the spot instance launching:

	wait_for_spot_timeout: seconds to wait before giving up on spot instance
launch (default=600)

	wait_for_spot_interval: seconds to wait in between polling requests to
determine if a spot instance is available (default=30)

	wait_for_spot_interval_multiplier: a multiplier to add to the interval in
between requests, which is useful if AWS is throttling your requests
(default=1)

	wait_for_spot_max_failures: maximum number of failures before giving up
on launching your spot instance (default=10)

If you find that you're being throttled by AWS while polling for spot
instances, you can set the following in your core cloud configuration
file that will double the polling interval after each request to AWS.

wait_for_spot_interval: 1
wait_for_spot_interval_multiplier: 2

See the AWS Spot Instances [https://aws.amazon.com/ec2/spot/] documentation for more information.

Block device mappings enable you to specify additional EBS volumes or instance
store volumes when the instance is launched. This setting is also available on
each cloud profile. Note that the number of instance stores varies by instance
type. If more mappings are provided than are supported by the instance type,
mappings will be created in the order provided and additional mappings will be
ignored. Consult the AWS documentation [https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html] for a listing of the available
instance stores, and device names.

my-ec2-config:
 block_device_mappings:
 - DeviceName: /dev/sdb
 VirtualName: ephemeral0
 - DeviceName: /dev/sdc
 VirtualName: ephemeral1

You can also use block device mappings to change the size of the root device at the
provisioning time. For example, assuming the root device is '/dev/sda', you can set
its size to 100G by using the following configuration.

my-ec2-config:
 block_device_mappings:
 - DeviceName: /dev/sda
 Ebs.VolumeSize: 100
 Ebs.VolumeType: gp2
 Ebs.SnapshotId: dummy0
 - DeviceName: /dev/sdb
 # required for devices > 2TB
 Ebs.VolumeType: gp2
 Ebs.VolumeSize: 3001

Tagging of block devices can be set on a per device basis. For example, you may
have multiple devices defined in your block_device_mappings structure. You have the
option to set tags on any of one device or all of them as shown in the following
configuration.

my-ec2-config:
 block_device_mappings:
 - DeviceName: /dev/sda
 Ebs.VolumeSize: 100
 Ebs.VolumeType: gp2
 tag:
 tag0: myserver
 tag1: value
 - DeviceName: /dev/sdb
 Ebs.VolumeType: gp2
 Ebs.VolumeSize: 3001
 tag:
 tagX: value
 tagY: value

You can configure any AWS valid tag name as shown in the above example, including
'Name'. If you do not configure the tag 'Name', it will be automatically created
with a value set to the virtual machine name. If you configure the tag 'Name', the
value you configure will be used rather than defaulting to the virtual machine
name as shown in the following configuration.

my-ec2-config:
 block_device_mappings:
 - DeviceName: /dev/sda
 Ebs.VolumeSize: 100
 Ebs.VolumeType: gp2
 tag:
 Name: myserver
 tag0: value
 tag1: value
 - DeviceName: /dev/sdb
 Ebs.VolumeType: gp2
 Ebs.VolumeSize: 3001
 tag:
 Name: customvalue
 tagX: value
 tagY: value

Existing EBS volumes may also be attached (not created) to your instances or
you can create new EBS volumes based on EBS snapshots. To simply attach an
existing volume use the volume_id parameter.

device: /dev/xvdj
volume_id: vol-12345abcd

Or, to create a volume from an EBS snapshot, use the snapshot parameter.

device: /dev/xvdj
snapshot: snap-abcd12345

Note that volume_id will take precedence over the snapshot parameter.

Tags can be set once an instance has been launched.

my-ec2-config:
 tag:
 tag0: value
 tag1: value

Setting up a Master inside EC2

Salt Cloud can configure Salt Masters as well as Minions. Use the make_master setting to use
this functionality.

my-ec2-config:
 # Optionally install a Salt Master in addition to the Salt Minion
 make_master: True

When creating a Salt Master inside EC2 with make_master: True, or when the Salt Master is already
located and configured inside EC2, by default, minions connect to the master's public IP address during
Salt Cloud's provisioning process. Depending on how your security groups are defined, the minions
may or may not be able to communicate with the master. In order to use the master's private IP in EC2
instead of the public IP, set the salt_interface to private_ips.

my-ec2-config:
 # Optionally set the IP configuration to private_ips
 salt_interface: private_ips

Modify EC2 Tags

One of the features of EC2 is the ability to tag resources. In fact, under the
hood, the names given to EC2 instances by salt-cloud are actually just stored
as a tag called Name. Salt Cloud has the ability to manage these tags:

salt-cloud -a get_tags mymachine
salt-cloud -a set_tags mymachine tag1=somestuff tag2='Other stuff'
salt-cloud -a del_tags mymachine tag1,tag2,tag3

It is possible to manage tags on any resource in EC2 with a Resource ID, not
just instances:

salt-cloud -f get_tags my_ec2 resource_id=af5467ba
salt-cloud -f set_tags my_ec2 resource_id=af5467ba tag1=somestuff
salt-cloud -f del_tags my_ec2 resource_id=af5467ba tags=tag1,tag2,tag3

Rename EC2 Instances

As mentioned above, EC2 instances are named via a tag. However, renaming an
instance by renaming its tag will cause the salt keys to mismatch. A rename
function exists which renames both the instance, and the salt keys.

salt-cloud -a rename mymachine newname=yourmachine

Rename on Destroy

When instances on EC2 are destroyed, there will be a lag between the time that
the action is sent, and the time that Amazon cleans up the instance. During
this time, the instance still retains a Name tag, which will cause a collision
if the creation of an instance with the same name is attempted before the
cleanup occurs. In order to avoid such collisions, Salt Cloud can be configured
to rename instances when they are destroyed. The new name will look something
like:

myinstance-DEL20f5b8ad4eb64ed88f2c428df80a1a0c

In order to enable this, add rename_on_destroy line to the main
configuration file:

my-ec2-config:
 rename_on_destroy: True

Listing Images

Normally, images can be queried on a cloud provider by passing the
--list-images argument to Salt Cloud. This still holds true for EC2:

salt-cloud --list-images my-ec2-config

However, the full list of images on EC2 is extremely large, and querying all of
the available images may cause Salt Cloud to behave as if frozen. Therefore,
the default behavior of this option may be modified, by adding an owner
argument to the provider configuration:

owner: aws-marketplace

The possible values for this setting are amazon, aws-marketplace,
self, <AWS account ID> or all. The default setting is amazon.
Take note that all and aws-marketplace may cause Salt Cloud to appear
as if it is freezing, as it tries to handle the large amount of data.

It is also possible to perform this query using different settings without
modifying the configuration files. To do this, call the avail_images
function directly:

salt-cloud -f avail_images my-ec2-config owner=aws-marketplace

EC2 Images

The following are lists of available AMI images, generally sorted by OS. These
lists are on 3rd-party websites, are not managed by Salt Stack in any way. They
are provided here as a reference for those who are interested, and contain no
warranty (express or implied) from anyone affiliated with Salt Stack. Most of
them have never been used, much less tested, by the Salt Stack team.

	Arch Linux [https://wiki.archlinux.org/index.php/Arch_Linux_AMIs_for_Amazon_Web_Services]

	FreeBSD [https://aws.amazon.com/marketplace/search/results?filters=vendor_id&vendor_id=92bb514d-02bc-49fd-9727-c474863f63da]

	Fedora [https://fedoraproject.org/wiki/Cloud_images]

	CentOS [https://wiki.centos.org/Cloud/AWS]

	Ubuntu [http://cloud-images.ubuntu.com/locator/ec2/]

	Debian [https://wiki.debian.org/Cloud/AmazonEC2Image]

	OmniOS [https://omniosce.org/setup/aws.html]

	All Images on Amazon [https://aws.amazon.com/marketplace]

NOTE: If image of a profile does not start with ami-, latest
image with that name will be used. For example, to create a CentOS 7
profile, instead of using the AMI like image: ami-1caef165, we
can use its name like image: 'CentOS Linux 7 x86_64 HVM EBS ENA 1803_01'.
We can also use a pattern like below to get the latest CentOS 7:

profile-id:
 provider: provider-name
 subnetid: subnet-XXXXXXXX
 image: 'CentOS Linux 7 x86_64 HVM EBS *'
 size: m1.medium
 ssh_username: centos
 securitygroupid:
 - sg-XXXXXXXX
 securitygroupname:
 - AnotherSecurityGroup
 - AndThirdSecurityGroup

show_image

This is a function that describes an AMI on EC2. This will give insight as to
the defaults that will be applied to an instance using a particular AMI.

$ salt-cloud -f show_image ec2 image=ami-fd20ad94

show_instance

This action is a thin wrapper around --full-query, which displays details on a
single instance only. In an environment with several machines, this will save a
user from having to sort through all instance data, just to examine a single
instance.

$ salt-cloud -a show_instance myinstance

ebs_optimized

This argument enables switching of the EbsOptimized setting which default
to 'false'. Indicates whether the instance is optimized for EBS I/O. This
optimization provides dedicated throughput to Amazon EBS and an optimized
configuration stack to provide optimal Amazon EBS I/O performance. This
optimization isn't available with all instance types. Additional usage
charges apply when using an EBS-optimized instance.

This setting can be added to the profile or map file for an instance.

If set to True, this setting will enable an instance to be EbsOptimized

ebs_optimized: True

This can also be set as a cloud provider setting in the EC2 cloud
configuration:

my-ec2-config:
 ebs_optimized: True

del_root_vol_on_destroy

This argument overrides the default DeleteOnTermination setting in the AMI for
the EBS root volumes for an instance. Many AMIs contain 'false' as a default,
resulting in orphaned volumes in the EC2 account, which may unknowingly be
charged to the account. This setting can be added to the profile or map file
for an instance.

If set, this setting will apply to the root EBS volume

del_root_vol_on_destroy: True

This can also be set as a cloud provider setting in the EC2 cloud
configuration:

my-ec2-config:
 del_root_vol_on_destroy: True

del_all_vols_on_destroy

This argument overrides the default DeleteOnTermination setting in the AMI for
the not-root EBS volumes for an instance. Many AMIs contain 'false' as a
default, resulting in orphaned volumes in the EC2 account, which may
unknowingly be charged to the account. This setting can be added to the profile
or map file for an instance.

If set, this setting will apply to any (non-root) volumes that were created
by salt-cloud using the 'volumes' setting.

The volumes will not be deleted under the following conditions
* If a volume is detached before terminating the instance
* If a volume is created without this setting and attached to the instance

del_all_vols_on_destroy: True

This can also be set as a cloud provider setting in the EC2 cloud
configuration:

my-ec2-config:
 del_all_vols_on_destroy: True

The setting for this may be changed on all volumes of an existing instance
using one of the following commands:

salt-cloud -a delvol_on_destroy myinstance
salt-cloud -a keepvol_on_destroy myinstance
salt-cloud -a show_delvol_on_destroy myinstance

The setting for this may be changed on a volume on an existing instance
using one of the following commands:

salt-cloud -a delvol_on_destroy myinstance device=/dev/sda1
salt-cloud -a delvol_on_destroy myinstance volume_id=vol-1a2b3c4d
salt-cloud -a keepvol_on_destroy myinstance device=/dev/sda1
salt-cloud -a keepvol_on_destroy myinstance volume_id=vol-1a2b3c4d
salt-cloud -a show_delvol_on_destroy myinstance device=/dev/sda1
salt-cloud -a show_delvol_on_destroy myinstance volume_id=vol-1a2b3c4d

EC2 Termination Protection

EC2 allows the user to enable and disable termination protection on a specific
instance. An instance with this protection enabled cannot be destroyed. The EC2
driver adds a show_term_protect action to the regular EC2 functionality.

salt-cloud -a show_term_protect mymachine
salt-cloud -a enable_term_protect mymachine
salt-cloud -a disable_term_protect mymachine

Alternate Endpoint

Normally, EC2 endpoints are build using the region and the service_url. The
resulting endpoint would follow this pattern:

ec2.<region>.<service_url>

This results in an endpoint that looks like:

ec2.us-east-1.amazonaws.com

There are other projects that support an EC2 compatibility layer, which this
scheme does not account for. This can be overridden by specifying the endpoint
directly in the main cloud configuration file:

my-ec2-config:
 endpoint: myendpoint.example.com:1138/services/Cloud

Volume Management

The EC2 driver has several functions and actions for management of EBS volumes.

Creating Volumes

A volume may be created, independent of an instance. A zone must be specified.
A size or a snapshot may be specified (in GiB). If neither is given, a default
size of 10 GiB will be used. If a snapshot is given, the size of the snapshot
will be used.

The following parameters may also be set (when providing a snapshot OR size):

	type: choose between standard (magnetic disk), gp2 (SSD), or io1 (provisioned IOPS).
(default=standard)

	iops: the number of IOPS (only applicable to io1 volumes) (default varies on volume size)

	encrypted: enable encryption on the volume (default=false)

salt-cloud -f create_volume ec2 zone=us-east-1b
salt-cloud -f create_volume ec2 zone=us-east-1b size=10
salt-cloud -f create_volume ec2 zone=us-east-1b snapshot=snap12345678
salt-cloud -f create_volume ec2 size=10 type=standard
salt-cloud -f create_volume ec2 size=10 type=gp2
salt-cloud -f create_volume ec2 size=10 type=io1 iops=1000

Attaching Volumes

Unattached volumes may be attached to an instance. The following values are
required; name or instance_id, volume_id, and device.

salt-cloud -a attach_volume myinstance volume_id=vol-12345 device=/dev/sdb1

Show a Volume

The details about an existing volume may be retrieved.

salt-cloud -a show_volume myinstance volume_id=vol-12345
salt-cloud -f show_volume ec2 volume_id=vol-12345

Detaching Volumes

An existing volume may be detached from an instance.

salt-cloud -a detach_volume myinstance volume_id=vol-12345

Deleting Volumes

A volume that is not attached to an instance may be deleted.

salt-cloud -f delete_volume ec2 volume_id=vol-12345

Managing Key Pairs

The EC2 driver has the ability to manage key pairs.

Creating a Key Pair

A key pair is required in order to create an instance. When creating a key pair
with this function, the return data will contain a copy of the private key.
This private key is not stored by Amazon, will not be obtainable past this
point, and should be stored immediately.

salt-cloud -f create_keypair ec2 keyname=mykeypair

Importing a Key Pair

salt-cloud -f import_keypair ec2 keyname=mykeypair file=/path/to/id_rsa.pub

Show a Key Pair

This function will show the details related to a key pair, not including the
private key itself (which is not stored by Amazon).

salt-cloud -f show_keypair ec2 keyname=mykeypair

Delete a Key Pair

This function removes the key pair from Amazon.

salt-cloud -f delete_keypair ec2 keyname=mykeypair

Launching instances into a VPC

Simple launching into a VPC

In the amazon web interface, identify the id or the name of the subnet into
which your image should be created. Then, edit your cloud.profiles file like
so:-

profile-id:
 provider: provider-name
 subnetid: subnet-XXXXXXXX
 image: ami-XXXXXXXX
 size: m1.medium
 ssh_username: ubuntu
 securitygroupid:
 - sg-XXXXXXXX
 securitygroupname:
 - AnotherSecurityGroup
 - AndThirdSecurityGroup

Note that 'subnetid' takes precedence over 'subnetname', but 'securitygroupid'
and 'securitygroupname' are merged together to generate a single list for
SecurityGroups of instances.

Specifying interface properties

New in version 2014.7.0.

Launching into a VPC allows you to specify more complex configurations for
the network interfaces of your virtual machines, for example:-

profile-id:
 provider: provider-name
 image: ami-XXXXXXXX
 size: m1.medium
 ssh_username: ubuntu

 # Do not include either 'subnetid', 'subnetname', 'securitygroupid' or
 # 'securitygroupname' here if you are going to manually specify
 # interface configuration
 #
 network_interfaces:
 - DeviceIndex: 0
 SubnetId: subnet-XXXXXXXX
 SecurityGroupId:
 - sg-XXXXXXXX

 # Uncomment this line if you would like to set an explicit private
 # IP address for the ec2 instance
 #
 # PrivateIpAddress: 192.168.1.66

 # Uncomment this to associate an existing Elastic IP Address with
 # this network interface:
 #
 # associate_eip: eipalloc-XXXXXXXX

 # You can allocate more than one IP address to an interface. Use the
 # 'ip addr list' command to see them.
 #
 # SecondaryPrivateIpAddressCount: 2

 # Uncomment this to allocate a new Elastic IP Address to this
 # interface (will be associated with the primary private ip address
 # of the interface
 #
 # allocate_new_eip: True

 # Uncomment this instead to allocate a new Elastic IP Address to
 # both the primary private ip address and each of the secondary ones
 #
 allocate_new_eips: True

 # Uncomment this if you're creating NAT instances. Allows an instance
 # to accept IP packets with destinations other than itself.
 # SourceDestCheck: False

 - DeviceIndex: 1
 subnetname: XXXXXXXX-Subnet
 securitygroupname:
 - XXXXXXXX-SecurityGroup
 - YYYYYYYY-SecurityGroup

Note that it is an error to assign a 'subnetid', 'subnetname', 'securitygroupid'
or 'securitygroupname' to a profile where the interfaces are manually configured
like this. These are both really properties of each network interface, not of
the machine itself.

Getting Started With GoGrid

GoGrid is a public cloud host that supports Linux and Windows.

Configuration

To use Salt Cloud with GoGrid log into the GoGrid web interface and create an
API key. Do this by clicking on "My Account" and then going to the API Keys
tab.

The apikey and the sharedsecret configuration parameters need to be set
in the configuration file to enable interfacing with GoGrid:

Note: This example is for /etc/salt/cloud.providers or any file in the
/etc/salt/cloud.providers.d/ directory.

my-gogrid-config:
 driver: gogrid
 apikey: asdff7896asdh789
 sharedsecret: saltybacon

Note

A Note about using Map files with GoGrid:

Due to limitations in the GoGrid API, instances cannot be provisioned in parallel
with the GoGrid driver. Map files will work with GoGrid, but the -P
argument should not be used on maps referencing GoGrid instances.

Note

Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This
change was made to avoid confusion with the provider parameter that is used in cloud profile
definitions. Cloud provider definitions now use driver to refer to the Salt cloud module that
provides the underlying functionality to connect to a cloud host, while cloud profiles continue
to use provider to refer to provider configurations that you define.

Profiles

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles or in the
/etc/salt/cloud.profiles.d/ directory:

gogrid_512:
 provider: my-gogrid-config
 size: 512MB
 image: CentOS 6.2 (64-bit) w/ None

Sizes can be obtained using the --list-sizes option for the salt-cloud
command:

salt-cloud --list-sizes my-gogrid-config
my-gogrid-config:

 gogrid:

 512MB:

 bandwidth:
 None
 disk:
 30
 driver:
 get_uuid:
 id:
 512MB
 name:
 512MB
 price:
 0.095
 ram:
 512
 uuid:
 bde1e4d7c3a643536e42a35142c7caac34b060e9
...SNIP...

Images can be obtained using the --list-images option for the salt-cloud
command:

salt-cloud --list-images my-gogrid-config
my-gogrid-config:

 gogrid:

 CentOS 6.4 (64-bit) w/ None:

 driver:
 extra:

 get_uuid:
 id:
 18094
 name:
 CentOS 6.4 (64-bit) w/ None
 uuid:
 bfd4055389919e01aa6261828a96cf54c8dcc2c4
...SNIP...

Assigning IPs

New in version 2015.8.0.

The GoGrid API allows IP addresses to be manually assigned. Salt Cloud supports
this functionality by allowing an IP address to be specified using the
assign_public_ip argument. This likely makes the most sense inside a map
file, but it may also be used inside a profile.

gogrid_512:
 provider: my-gogrid-config
 size: 512MB
 image: CentOS 6.2 (64-bit) w/ None
 assign_public_ip: 11.38.257.42

Getting Started With Google Compute Engine

Google Compute Engine (GCE) is Google-infrastructure as a service that lets you
run your large-scale computing workloads on virtual machines. This document
covers how to use Salt Cloud to provision and manage your virtual machines
hosted within Google's infrastructure.

You can find out more about GCE and other Google Cloud Platform services
at https://cloud.google.com.

Dependencies

	LibCloud >= 1.0.0

Changed in version 2017.7.0.

	A Google Cloud Platform account with Compute Engine enabled

	A registered Service Account for authorization

	Oh, and obviously you'll need salt [https://github.com/saltstack/salt]

Google Compute Engine Setup

	Sign up for Google Cloud Platform

Go to https://cloud.google.com and use your Google account to sign up for
Google Cloud Platform and complete the guided instructions.

	Create a Project

Next, go to the console at https://cloud.google.com/console and create a
new Project. Make sure to select your new Project if you are not
automatically directed to the Project.

Projects are a way of grouping together related users, services, and
billing. You may opt to create multiple Projects and the remaining
instructions will need to be completed for each Project if you wish to
use GCE and Salt Cloud to manage your virtual machines.

	Enable the Google Compute Engine service

In your Project, either just click Compute Engine to the left, or go to
the APIs & auth section and APIs link and enable the Google Compute
Engine service.

	Create a Service Account

To set up authorization, navigate to APIs & auth section and then the
Credentials link and click the CREATE NEW CLIENT ID button. Select
Service Account and click the Create Client ID button. This will
automatically download a .json file, which may or may not be used
in later steps, depending on your version of libcloud.

Look for a new Service Account section in the page and record the generated
email address for the matching key/fingerprint. The email address will be used
in the service_account_email_address of the /etc/salt/cloud.providers
or the /etc/salt/cloud.providers.d/*.conf file.

	Key Format

Note

If you are using libcloud >= 0.17.0 it is recommended that you use the JSON
format file you downloaded above and skip to the Provider Configuration section
below, using the JSON file in place of 'NEW.pem' in the documentation.

If you are using an older version of libcloud or are unsure of the version you
have, please follow the instructions below to generate and format a new P12 key.

In the new Service Account section, click Generate new P12 key, which
will automatically download a .p12 private key file. The .p12
private key needs to be converted to a format compatible with libcloud.
This new Google-generated private key was encrypted using notasecret as
a passphrase. Use the following command and record the location of the
converted private key and record the location for use in the
service_account_private_key of the /etc/salt/cloud file:

openssl pkcs12 -in ORIG.p12 -passin pass:notasecret \
-nodes -nocerts | openssl rsa -out NEW.pem

Provider Configuration

Set up the provider cloud config at /etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/*.conf:

gce-config:
 # Set up the Project name and Service Account authorization
 project: "your-project-id"
 service_account_email_address: "123-a5gt@developer.gserviceaccount.com"
 service_account_private_key: "/path/to/your/NEW.pem"

 # Set up the location of the salt master
 minion:
 master: saltmaster.example.com

 # Set up grains information, which will be common for all nodes
 # using this provider
 grains:
 node_type: broker
 release: 1.0.1

 driver: gce

Note

Empty strings as values for service_account_private_key and service_account_email_address
can be used on GCE instances. This will result in the service account assigned to the GCE instance
being used.

Note

The value provided for project must not contain underscores or spaces and
is labeled as "Project ID" on the Google Developers Console.

Note

Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This
change was made to avoid confusion with the provider parameter that is used in cloud profile
definitions. Cloud provider definitions now use driver to refer to the Salt cloud module that
provides the underlying functionality to connect to a cloud host, while cloud profiles continue
to use provider to refer to provider configurations that you define.

Profile Configuration

Set up an initial profile at /etc/salt/cloud.profiles or
/etc/salt/cloud.profiles.d/*.conf:

my-gce-profile:
 image: centos-6
 size: n1-standard-1
 location: europe-west1-b
 network: default
 subnetwork: default
 labels: '{"name": "myinstance"}'
 tags: '["one", "two", "three"]'
 metadata: '{"one": "1", "2": "two"}'
 use_persistent_disk: True
 delete_boot_pd: False
 deploy: True
 make_master: False
 provider: gce-config

The profile can be realized now with a salt command:

salt-cloud -p my-gce-profile gce-instance

This will create an salt minion instance named gce-instance in GCE. If
the command was executed on the salt-master, its Salt key will automatically
be signed on the master.

Once the instance has been created with a salt-minion installed, connectivity to
it can be verified with Salt:

salt gce-instance test.version

GCE Specific Settings

Consult the sample profile below for more information about GCE specific
settings. Some of them are mandatory and are properly labeled below but
typically also include a hard-coded default.

Initial Profile

Set up an initial profile at /etc/salt/cloud.profiles or
/etc/salt/cloud.profiles.d/gce.conf:

my-gce-profile:
 image: centos-6
 size: n1-standard-1
 location: europe-west1-b
 network: default
 subnetwork: default
 labels: '{"name": "myinstance"}'
 tags: '["one", "two", "three"]'
 metadata: '{"one": "1", "2": "two"}'
 use_persistent_disk: True
 delete_boot_pd: False
 ssh_interface: public_ips
 external_ip: "ephemeral"

image

Image is used to define what Operating System image should be used
to for the instance. Examples are Debian 7 (wheezy) and CentOS 6. Required.

size

A 'size', in GCE terms, refers to the instance's 'machine type'. See
the on-line documentation for a complete list of GCE machine types. Required.

location

A 'location', in GCE terms, refers to the instance's 'zone'. GCE
has the notion of both Regions (e.g. us-central1, europe-west1, etc)
and Zones (e.g. us-central1-a, us-central1-b, etc). Required.

network

Use this setting to define the network resource for the instance.
All GCE projects contain a network named 'default' but it's possible
to use this setting to create instances belonging to a different
network resource.

subnetwork

Use this setting to define the subnetwork an instance will be created in.
This requires that the network your instance is created under has a mode of 'custom' or 'auto'.
Additionally, the subnetwork your instance is created under is associated with the location you provide.

New in version 2017.7.0.

labels

This setting allows you to set labels on your GCE instances. It
should be a dictionary and must be parse-able by the python
ast.literal_eval() function to convert it to a python dictionary.

New in version 3006.

tags

GCE supports instance/network tags and this setting allows you to
set custom tags. It should be a list of strings and must be
parse-able by the python ast.literal_eval() function to convert it
to a python list.

metadata

GCE supports instance metadata and this setting allows you to
set custom metadata. It should be a hash of key/value strings and
parse-able by the python ast.literal_eval() function to convert it
to a python dictionary.

use_persistent_disk

Use this setting to ensure that when new instances are created,
they will use a persistent disk to preserve data between instance
terminations and re-creations.

delete_boot_pd

In the event that you wish the boot persistent disk to be permanently
deleted when you destroy an instance, set delete_boot_pd to True.

ssh_interface

New in version 2015.5.0.

Specify whether to use public or private IP for deploy script.

Valid options are:

	private_ips: The salt-master is also hosted with GCE

	public_ips: The salt-master is hosted outside of GCE

external_ip

Per instance setting: Used a named fixed IP address to this host.

Valid options are:

	ephemeral: The host will use a GCE ephemeral IP

	None: No external IP will be configured on this host.

Optionally, pass the name of a GCE address to use a fixed IP address.
If the address does not already exist, it will be created.

ex_disk_type

GCE supports two different disk types, pd-standard and pd-ssd.
The default disk type setting is pd-standard. To specify using an SSD
disk, set pd-ssd as the value.

New in version 2014.7.0.

ip_forwarding

GCE instances can be enabled to use IP Forwarding. When set to True,
this options allows the instance to send/receive non-matching src/dst
packets. Default is False.

New in version 2015.8.1.

Profile with scopes

Scopes can be specified by setting the optional ex_service_accounts
key in your cloud profile. The following example enables the bigquery scope.

my-gce-profile:
 image: centos-6
 ssh_username: salt
 size: f1-micro
 location: us-central1-a
 network: default
 subnetwork: default
 labels: '{"name": "myinstance"}'
 tags: '["one", "two", "three"]'
 metadata: '{"one": "1", "2": "two",
 "sshKeys": ""}'
 use_persistent_disk: True
 delete_boot_pd: False
 deploy: False
 make_master: False
 provider: gce-config
 ex_service_accounts:
 - scopes:
 - bigquery

Email can also be specified as an (optional) parameter.

my-gce-profile:
...snip
 ex_service_accounts:
 - scopes:
 - bigquery
 email: default

There can be multiple entries for scopes since ex-service_accounts accepts
a list of dictionaries. For more information refer to the libcloud documentation
on specifying service account scopes [https://libcloud.readthedocs.io/en/latest/compute/drivers/gce.html#specifying-service-account-scopes].

SSH Remote Access

GCE instances do not allow remote access to the root user by default.
Instead, another user must be used to run the deploy script using sudo.
Append something like this to /etc/salt/cloud.profiles or
/etc/salt/cloud.profiles.d/*.conf:

my-gce-profile:
 ...

 # SSH to GCE instances as gceuser
 ssh_username: gceuser

 # Use the local private SSH key file located here
 ssh_keyfile: /etc/cloud/google_compute_engine

If you have not already used this SSH key to login to instances in this
GCE project you will also need to add the public key to your projects
metadata at https://cloud.google.com/console. You could also add it via
the metadata setting too:

my-gce-profile:
 ...

 metadata: '{"one": "1", "2": "two",
 "sshKeys": "gceuser:ssh-rsa <Your SSH Public Key> gceuser@host"}'

Single instance details

This action is a thin wrapper around --full-query, which displays details on a
single instance only. In an environment with several machines, this will save a
user from having to sort through all instance data, just to examine a single
instance.

salt-cloud -a show_instance myinstance

Destroy, persistent disks, and metadata

As noted in the provider configuration, it's possible to force the boot
persistent disk to be deleted when you destroy the instance. The way that
this has been implemented is to use the instance metadata to record the
cloud profile used when creating the instance. When destroy is called,
if the instance contains a salt-cloud-profile key, it's value is used
to reference the matching profile to determine if delete_boot_pd is
set to True.

Be aware that any GCE instances created with salt cloud will contain this
custom salt-cloud-profile metadata entry.

List various resources

It's also possible to list several GCE resources similar to what can be done
with other providers. The following commands can be used to list GCE zones
(locations), machine types (sizes), and images.

salt-cloud --list-locations gce
salt-cloud --list-sizes gce
salt-cloud --list-images gce

Persistent Disk

The Compute Engine provider provides functions via salt-cloud to manage your
Persistent Disks. You can create and destroy disks as well as attach and
detach them from running instances.

Create

When creating a disk, you can create an empty disk and specify its size (in
GB), or specify either an 'image' or 'snapshot'.

salt-cloud -f create_disk gce disk_name=pd location=us-central1-b size=200

Delete

Deleting a disk only requires the name of the disk to delete

salt-cloud -f delete_disk gce disk_name=old-backup

Attach

Attaching a disk to an existing instance is really an 'action' and requires
both an instance name and disk name. It's possible to use this ation to
create bootable persistent disks if necessary. Compute Engine also supports
attaching a persistent disk in READ_ONLY mode to multiple instances at the
same time (but then cannot be attached in READ_WRITE to any instance).

salt-cloud -a attach_disk myinstance disk_name=pd mode=READ_WRITE boot=yes

Detach

Detaching a disk is also an action against an instance and only requires
the name of the disk. Note that this does not safely sync and umount the
disk from the instance. To ensure no data loss, you must first make sure the
disk is unmounted from the instance.

salt-cloud -a detach_disk myinstance disk_name=pd

Show disk

It's also possible to look up the details for an existing disk with either
a function or an action.

salt-cloud -a show_disk myinstance disk_name=pd
salt-cloud -f show_disk gce disk_name=pd

Create snapshot

You can take a snapshot of an existing disk's content. The snapshot can then
in turn be used to create other persistent disks. Note that to prevent data
corruption, it is strongly suggested that you unmount the disk prior to
taking a snapshot. You must name the snapshot and provide the name of the
disk.

salt-cloud -f create_snapshot gce name=backup-20140226 disk_name=pd

Delete snapshot

You can delete a snapshot when it's no longer needed by specifying the name
of the snapshot.

salt-cloud -f delete_snapshot gce name=backup-20140226

Show snapshot

Use this function to look up information about the snapshot.

salt-cloud -f show_snapshot gce name=backup-20140226

Networking

Compute Engine supports multiple private networks per project. Instances
within a private network can easily communicate with each other by an
internal DNS service that resolves instance names. Instances within a private
network can also communicate with either directly without needing special
routing or firewall rules even if they span different regions/zones.

Networks also support custom firewall rules. By default, traffic between
instances on the same private network is open to all ports and protocols.
Inbound SSH traffic (port 22) is also allowed but all other inbound traffic
is blocked.

Create network

New networks require a name and CIDR range if they don't have a 'mode'.
Optionally, 'mode' can be provided. Supported modes are 'auto', 'custom', 'legacy'.
Optionally, 'description' can be provided to add an extra note to your network.
New instances can be created and added to this network by setting the network name during create. It is
not possible to add/remove existing instances to a network.

salt-cloud -f create_network gce name=mynet cidr=10.10.10.0/24
salt-cloud -f create_network gce name=mynet mode=auto description=some optional info.

Changed in version 2017.7.0.

Destroy network

Destroy a network by specifying the name. If a resource is currently using
the target network an exception will be raised.

salt-cloud -f delete_network gce name=mynet

Show network

Specify the network name to view information about the network.

salt-cloud -f show_network gce name=mynet

Create subnetwork

New subnetworks require a name, region, and CIDR range.
Optionally, 'description' can be provided to add an extra note to your subnetwork.
New instances can be created and added to this subnetwork by setting the subnetwork name during create. It is
not possible to add/remove existing instances to a subnetwork.

salt-cloud -f create_subnetwork gce name=mynet network=mynet region=us-central1 cidr=10.0.10.0/24
salt-cloud -f create_subnetwork gce name=mynet network=mynet region=us-central1 cidr=10.10.10.0/24 description=some info about my subnet.

New in version 2017.7.0.

Destroy subnetwork

Destroy a subnetwork by specifying the name and region. If a resource is currently using
the target subnetwork an exception will be raised.

salt-cloud -f delete_subnetwork gce name=mynet region=us-central1

New in version 2017.7.0.

Show subnetwork

Specify the subnetwork name to view information about the subnetwork.

salt-cloud -f show_subnetwork gce name=mynet

New in version 2017.7.0.

Create address

Create a new named static IP address in a region.

salt-cloud -f create_address gce name=my-fixed-ip region=us-central1

Delete address

Delete an existing named fixed IP address.

salt-cloud -f delete_address gce name=my-fixed-ip region=us-central1

Show address

View details on a named address.

salt-cloud -f show_address gce name=my-fixed-ip region=us-central1

Create firewall

You'll need to create custom firewall rules if you want to allow other traffic
than what is described above. For instance, if you run a web service on
your instances, you'll need to explicitly allow HTTP and/or SSL traffic.
The firewall rule must have a name and it will use the 'default' network
unless otherwise specified with a 'network' attribute. Firewalls also support
instance tags for source/destination

salt-cloud -f create_fwrule gce name=web allow=tcp:80,tcp:443,icmp

Delete firewall

Deleting a firewall rule will prevent any previously allowed traffic for the
named firewall rule.

salt-cloud -f delete_fwrule gce name=web

Show firewall

Use this function to review an existing firewall rule's information.

salt-cloud -f show_fwrule gce name=web

Load Balancer

Compute Engine possess a load-balancer feature for splitting traffic across
multiple instances. Please reference the
documentation [https://cloud.google.com/load-balancing/docs]
for a more complete description.

The load-balancer functionality is slightly different than that described
in Google's documentation. The concept of TargetPool and ForwardingRule
are consolidated in salt-cloud/libcloud. HTTP Health Checks are optional.

HTTP Health Check

HTTP Health Checks can be used as a means to toggle load-balancing across
instance members, or to detect if an HTTP site is functioning. A common
use-case is to set up a health check URL and if you want to toggle traffic
on/off to an instance, you can temporarily have it return a non-200 response.
A non-200 response to the load-balancer's health check will keep the LB from
sending any new traffic to the "down" instance. Once the instance's
health check URL beings returning 200-responses, the LB will again start to
send traffic to it. Review Compute Engine's documentation for allowable
parameters. You can use the following salt-cloud functions to manage your
HTTP health checks.

salt-cloud -f create_hc gce name=myhc path=/ port=80
salt-cloud -f delete_hc gce name=myhc
salt-cloud -f show_hc gce name=myhc

Load-balancer

When creating a new load-balancer, it requires a name, region, port range,
and list of members. There are other optional parameters for protocol,
and list of health checks. Deleting or showing details about the LB only
requires the name.

salt-cloud -f create_lb gce name=lb region=... ports=80 members=w1,w2,w3
salt-cloud -f delete_lb gce name=lb
salt-cloud -f show_lb gce name=lb

You can also create a load balancer using a named fixed IP addressby specifying the name of the address.
If the address does not exist yet it will be created.

salt-cloud -f create_lb gce name=my-lb region=us-central1 ports=234 members=s1,s2,s3 address=my-lb-ip

Attach and Detach LB

It is possible to attach or detach an instance from an existing load-balancer.
Both the instance and load-balancer must exist before using these functions.

salt-cloud -f attach_lb gce name=lb member=w4
salt-cloud -f detach_lb gce name=lb member=oops

Getting Started With HP Cloud

HP Cloud is a major public cloud platform and uses the libcloud
openstack driver. The current version of OpenStack that HP Cloud
uses is Havana. When an instance is booted, it must have a
floating IP added to it in order to connect to it and further below
you will see an example that adds context to this statement.

Set up a cloud provider configuration file

To use the openstack driver for HP Cloud, set up the cloud
provider configuration file as in the example shown below:

/etc/salt/cloud.providers.d/hpcloud.conf:

hpcloud-config:
 # Set the location of the salt-master
 #
 minion:
 master: saltmaster.example.com

 # Configure HP Cloud using the OpenStack plugin
 #
 identity_url: https://region-b.geo-1.identity.hpcloudsvc.com:35357/v2.0/tokens
 compute_name: Compute
 protocol: ipv4

 # Set the compute region:
 #
 compute_region: region-b.geo-1

 # Configure HP Cloud authentication credentials
 #
 user: myname
 tenant: myname-project1
 password: xxxxxxxxx

 # keys to allow connection to the instance launched
 #
 ssh_key_name: yourkey
 ssh_key_file: /path/to/key/yourkey.priv

 driver: openstack

The subsequent example that follows is using the openstack driver.

Note

Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This
change was made to avoid confusion with the provider parameter that is used in cloud profile
definitions. Cloud provider definitions now use driver to refer to the Salt cloud module that
provides the underlying functionality to connect to a cloud host, while cloud profiles continue
to use provider to refer to provider configurations that you define.

Compute Region

Originally, HP Cloud, in its OpenStack Essex version (1.0), had 3
availability zones in one region, US West (region-a.geo-1), which
each behaved each as a region.

This has since changed, and the current OpenStack Havana version of
HP Cloud (1.1) now has simplified this and now has two regions to choose from:

region-a.geo-1 -> US West
region-b.geo-1 -> US East

Authentication

The user is the same user as is used to log into the HP Cloud management
UI. The tenant can be found in the upper left under "Project/Region/Scope".
It is often named the same as user albeit with a -project1 appended.
The password is of course what you created your account with. The management
UI also has other information such as being able to select US East or US West.

Set up a cloud profile config file

The profile shown below is a know working profile for an Ubuntu instance. The
profile configuration file is stored in the following location:

/etc/salt/cloud.profiles.d/hp_ae1_ubuntu.conf:

hp_ae1_ubuntu:
 provider: hp_ae1
 image: 9302692b-b787-4b52-a3a6-daebb79cb498
 ignore_cidr: 10.0.0.1/24
 networks:
 - floating: Ext-Net
 size: standard.small
 ssh_key_file: /root/keys/test.key
 ssh_key_name: test
 ssh_username: ubuntu

Some important things about the example above:

	The image parameter can use either the image name or image ID which you can obtain by running in the example below (this case US East):

salt-cloud --list-images hp_ae1

	The parameter ignore_cidr specifies a range of addresses to ignore when trying to connect to the instance. In this case, it's the range of IP addresses used for an private IP of the instance.

	The parameter networks is very important to include. In previous versions of Salt Cloud, this is what made it possible for salt-cloud to be able to attach a floating IP to the instance in order to connect to the instance and set up the minion. The current version of salt-cloud doesn't require it, though having it is of no harm either. Newer versions of salt-cloud will use this, and without it, will attempt to find a list of floating IP addresses to use regardless.

	The ssh_key_file and ssh_key_name are the keys that will make it possible to connect to the instance to set up the minion

	The ssh_username parameter, in this case, being that the image used will be ubuntu, will make it possible to not only log in but install the minion

Launch an instance

To instantiate a machine based on this profile (example):

salt-cloud -p hp_ae1_ubuntu ubuntu_instance_1

After several minutes, this will create an instance named ubuntu_instance_1
running in HP Cloud in the US East region and will set up the minion and then
return information about the instance once completed.

Manage the instance

Once the instance has been created with salt-minion installed, connectivity to
it can be verified with Salt:

salt ubuntu_instance_1 ping

SSH to the instance

Additionally, the instance can be accessed via SSH using the floating IP assigned to it

ssh ubuntu@<floating ip>

Using a private IP

Alternatively, in the cloud profile, using the private IP to log into the instance to set up the minion is another option, particularly if salt-cloud is running within the cloud on an instance that is on the same network with all the other instances (minions)

The example below is a modified version of the previous example. Note the use of ssh_interface:

hp_ae1_ubuntu:
 provider: hp_ae1
 image: 9302692b-b787-4b52-a3a6-daebb79cb498
 size: standard.small
 ssh_key_file: /root/keys/test.key
 ssh_key_name: test
 ssh_username: ubuntu
 ssh_interface: private_ips

With this setup, salt-cloud will use the private IP address to ssh into the instance and set up the salt-minion

Getting Started With Joyent

Joyent is a public cloud host that supports SmartOS, Linux, FreeBSD, and
Windows.

Dependencies

This driver requires the Python requests library to be installed.

Configuration

The Joyent cloud requires three configuration parameters. The user name and
password that are used to log into the Joyent system, and the location of the
private ssh key associated with the Joyent account. The ssh key is needed to
send the provisioning commands up to the freshly created virtual machine.

Note: This example is for /etc/salt/cloud.providers or any file in the
/etc/salt/cloud.providers.d/ directory.

my-joyent-config:
 driver: joyent
 user: fred
 password: saltybacon
 private_key: /root/mykey.pem
 keyname: mykey

Note

Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This
change was made to avoid confusion with the provider parameter that is used in cloud profile
definitions. Cloud provider definitions now use driver to refer to the Salt cloud module that
provides the underlying functionality to connect to a cloud host, while cloud profiles continue
to use provider to refer to provider configurations that you define.

Profiles

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles or in the
/etc/salt/cloud.profiles.d/ directory:

joyent_512:
 provider: my-joyent-config
 size: g4-highcpu-512M
 image: ubuntu-16.04

Sizes can be obtained using the --list-sizes option for the salt-cloud
command:

salt-cloud --list-sizes my-joyent-config
my-joyent-config:

 joyent:

 g4-highcpu-512M:

 default:
 False
 description:
 Compute Optimized 512M RAM - 1 vCPU - 10 GB Disk
 disk:
 10240
 group:
 Compute Optimized
 id:
 14aea8fc-d0f8-11e5-bfe4-a7458dbc6c99
 lwps:
 4000
 memory:
 512
 name:
 g4-highcpu-512M
 swap:
 2048
 vcpus:
 0
 version:
 1.0.3
...SNIP...

Images can be obtained using the --list-images option for the salt-cloud
command:

salt-cloud --list-images my-joyent-config
my-joyent-config:

 joyent:

 base:

 description:
 A 32-bit SmartOS image with just essential packages
 installed. Ideal for users who are comfortabl e with
 setting up their own environment and tools.
 files:
 |_

 compression:
 gzip
 sha1:
 b00a77408ddd9aeac85085b68b1cd22a07353956
 size:
 106918297
 homepage:
 http://wiki.joyent.com/jpc2/Base+Instance
 id:
 00aec452-6e81-11e4-8474-ebfec9a1a911
 name:
 base
 os:
 smartos
 owner:
 9dce1460-0c4c-4417-ab8b-25ca478c5a78
 public:
 True
 published_at:
 2014-11-17T17:41:46Z
 requirements:

 state:
 active
 type:
 smartmachine
 version:
 14.3.0

...SNIP...

SmartDataCenter

This driver can also be used with the Joyent SmartDataCenter project. More
details can be found at:

Using SDC requires that an api_host_suffix is set. The default value for this is
.api.joyentcloud.com. All characters, including the leading ., should be
included:

api_host_suffix: .api.myhostname.com

Miscellaneous Configuration

The following configuration items can be set in either provider or
profile configuration files.

use_ssl

When set to True (the default), attach https:// to any URL that does not
already have http:// or https:// included at the beginning. The best
practice is to leave the protocol out of the URL, and use this setting to manage
it.

verify_ssl

When set to True (the default), the underlying web library will verify the
SSL certificate. This should only be set to False for debugging.`

Getting Started With Libvirt

Libvirt is a toolkit to interact with the virtualization capabilities of recent versions
of Linux (and other OSes). This driver Salt cloud provider is currently geared towards
libvirt with qemu-kvm.

https://libvirt.org/

Host Dependencies

	libvirt >= 1.2.18 (older might work)

Salt-Cloud Dependencies

	libvirt-python

Provider Configuration

For every KVM host a provider needs to be set up. The provider currently maps to one libvirt daemon (e.g. one KVM host).

Set up the provider cloud configuration file at /etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/*.conf.

Set up a provider with qemu+ssh protocol
kvm-via-ssh:
 driver: libvirt
 url: qemu+ssh://user@kvm.company.com/system?socket=/var/run/libvirt/libvirt-sock

Or connect to a local libvirt instance
local-kvm:
 driver: libvirt
 url: qemu:///system
 # work around flag for XML validation errors while cloning
 validate_xml: no

Cloud Profiles

Virtual machines get cloned from so called Cloud Profiles. Profiles can be set up at /etc/salt/cloud.profiles or
/etc/salt/cloud.profiles.d/*.conf:

	Configure a profile to be used:

centos7:
 # points back at provider configuration
 provider: local-kvm
 base_domain: base-centos7-64
 ip_source: ip-learning
 ssh_username: root
 password: my-very-secret-password
 # /tmp is mounted noexec.. do workaround
 deploy_command: sh /tmp/.saltcloud/deploy.sh
 script_args: -F
 # grains to add to the minion
 grains:
 clones-are-awesome: true
 # override minion settings
 minion:
 master: 192.168.16.1
 master_port: 5506

The profile can be realized now with a salt command:

salt-cloud -p centos7 my-centos7-clone

This will create an instance named my-centos7-clone on the cloud host. Also
the minion id will be set to my-centos7-clone.

If the command was executed on the salt-master, its Salt key will automatically
be accepted on the master.

Once the instance has been created with salt-minion installed, connectivity to
it can be verified with Salt:

salt my-centos7-clone test.version

Required Settings

The following settings are always required for libvirt:

centos7:
 provider: local-kvm
 # the domain to clone
 base_domain: base-centos7-64

SSH Key Authentication

Instead of specifying a password, an authorized key can be used for the minion setup. Ensure that
the ssh user of your base image has the public key you want to use in ~/.ssh/authorized_keys. If
you want to use a non-root user you will likely want to configure salt-cloud to use sudo.

An example using root:

centos7:
 provider: local-kvm
 # the domain to clone
 base_domain: base-centos7-64
 ssh_username: root
 private_key: /path/to/private/key

An example using a non-root user:

centos7:
 provider: local-kvm
 # the domain to clone
 base_domain: base-centos7-64
 ssh_username: centos
 private_key: /path/to/private/key
 sudo: True
 sudo_password: "--redacted--"

Optional Settings

centos7:
 # ssh settings
 # use forwarded agent instead of a local key
 ssh_agent: True
 ssh_port: 4910

 # credentials
 ssh_username: root
 # password will be used for sudo if defined, use sudo_password if using ssh keys
 password: my-secret-password
 private_key: /path/to/private/key
 sudo: True
 sudo_password: "--redacted--"

 # bootstrap options
 deploy_command: sh /tmp/.saltcloud/deploy.sh
 script_args: -F

 # minion config
 grains:
 sushi: more tasty
 # point at the another master at another port
 minion:
 master: 192.168.16.1
 master_port: 5506

 # libvirt settings
 # clone_strategy: [quick | full] # default is full
 clone_strategy: quick
 # ip_source: [ip-learning | qemu-agent] # default is ip-learning
 ip_source: qemu-agent
 # validate_xml: [false | true] # default is true
 validate_xml: false

The clone_strategy controls how the clone is done. In case of full the disks
are copied creating a standalone clone. If quick is used the disks of the base domain
are used as backing disks for the clone. This results in nearly instantaneous clones at
the expense of slower write performance. The quick strategy has a number of requirements:

	The disks must be of type qcow2

	The base domain must be turned off

	The base domain must not change after creating the clone

The ip_source setting controls how the IP address of the cloned instance is determined.
When using ip-learning the IP is requested from libvirt. This needs a recent libvirt
version and may only work for NAT/routed networks where libvirt runs the dhcp server.
Another option is to use qemu-agent this requires that the qemu-agent is installed and
configured to run at startup in the base domain.

The validate_xml setting is available to disable xml validation by libvirt when cloning.

See also salt.cloud.clouds.libvirt

Getting Started With Linode

Linode is a public cloud host with a focus on Linux instances.

Dependencies

This driver requires the Python requests library to be installed.

Provider Configuration

Configuration Options

	apikey
	(Required) The key to use to authenticate with the Linode API.

	password
	(Required) The default password to set on new VMs. Must be 8 characters with at least one lowercase, uppercase, and numeric.

	poll_interval
	The rate of time in milliseconds to poll the Linode API for changes. Defaults to 500.

	ratelimit_sleep
	The time in seconds to wait before retrying after a ratelimit has been enforced. Defaults to 0.

Example Configuration

Set up the provider cloud configuration file at /etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/*.conf.

my-linode-provider:
 driver: linode
 apikey: f4ZsmwtB1c7f85Jdu43RgXVDFlNjuJaeIYV8QMftTqKScEB2vSosFSr...
 password: F00barbazverylongp@ssword

Profile Configuration

Configuration Options

	image
	(Required) The image to deploy the boot disk from. This should be an image ID
(e.g. linode/ubuntu22.04); official images start with linode/.

	location
	(Required) The location of the VM. This should be a Linode region
(e.g. us-east). See the list of locations [https://api.linode.com/v4/regions] and
the guide to choose a location [https://www.linode.com/docs/products/platform/get-started/guides/choose-a-data-center/]
for more options.

	size
	(Required) The size of the VM. This should be a Linode instance type ID
(e.g. g6-standard-2). See the list of sizes [https://api.linode.com/v4/linode/types] and
the guide to choose a size [https://www.linode.com/docs/products/compute/compute-instances/plans/choosing-a-plan/]
for more options.

	password (overrides provider)
	(*Required) The default password for the VM. Must be provided at the profile
or provider level.

	assign_private_ip
	
New in version 2016.3.0.

(optional) Whether or not to assign a private IP to the VM. Defaults to False.

	backups_enabled
	(optional) Whether or not to enable the backup for this VM. Backup can be
configured in your Linode account Defaults to False.

	cloneform
	(optional) The name of the Linode to clone from.

	ssh_interface
	
New in version 2016.3.0.

(optional) The interface with which to connect over SSH. Valid options are private_ips or
public_ips. Defaults to public_ips.

If specifying private_ips, the Linodes must be hosted within the same data center
and have the Network Helper enabled on your entire account. The instance that is
running the Salt-Cloud provisioning command must also have a private IP assigned to it.

Newer accounts created on Linode have the Network Helper setting enabled by default,
account-wide. Legacy accounts do not have this setting enabled by default. To enable
the Network Helper on your Linode account, please see Linode's Network Helper [https://www.linode.com/docs/platform/network-helper/#what-is-network-helper]
documentation.

	ssh_pubkey
	(optional) The public key to authorize for SSH with the VM.

	swap
	(optional) The amount of disk space to allocate for the swap partition. Defaults to 256.

Example Configuration

Set up a profile configuration at /etc/salt/cloud.profiles or /etc/salt/cloud.profiles.d/*.conf:

my-linode-profile:
 provider: my-linode-provider
 size: g6-standard-1
 image: linode/ubuntu22.04
 location: us-east

The my-linode-profile can be realized now with a salt command:

salt-cloud -p my-linode-profile my-linode-instance

This will create a salt minion instance named my-linode-instance in Linode. If the command was
executed on the salt-master, its Salt key will automatically be signed on the master.

Once the instance has been created with a salt-minion installed, connectivity to
it can be verified with Salt:

salt my-linode-instance test.version

A more advanced configuration utlizing all of the configuration options might look like:

my-linode-profile-advanced:
 provider: my-linode-provider
 size: g6-standard-1
 image: linode/ubuntu22.04
 location: us-central
 password: iamaverylongp@ssword
 assign_private_ip: true
 ssh_interface: private_ips
 ssh_pubkey: ssh-rsa AAAAB3NzaC1yc2EAAAADAQAB...
 swap_size: 512

Migrating to APIv4

Linode APIv3 has been removed, and APIv4 is the only available version.

When switching to APIv4, you will also need to generate a new token. See
here [https://www.linode.com/docs/products/tools/api/get-started/#create-an-api-token]
for more information.

Notable Changes

Move from label references to ID references. The profile configuration parameters location,
size, and image have moved from accepting label based references to IDs. See the
profile configuration section for more details.

The ``disk_size`` profile configuration parameter has been removed. The parameter will not be taken into
account when creating new VMs while targeting APIv4. See the disk_size description under the
profile configuration section for more details.

The ``boot`` function no longer requires a ``config_id``. A config can be inferred by the API instead when booting.

The ``clone`` function has renamed parameters to match convention. The old version of these parameters are no longer
supported.
* datacenter_id has been removed and replaced by location.
* plan_id has been removed and replaced by size.

The ``get_plan_id`` function has been removed and is not supported by APIv4. IDs are now the only way
of referring to a "plan" (or type/size).

Query Utilities

Listing Sizes

Available sizes can be obtained by running one of:

salt-cloud --list-sizes my-linode-provider

salt-cloud -f avail_sizes my-linode-provider

This will list all Linode sizes/types which can be referenced in VM profiles.

my-linode-config:
 g6-standard-1:

 class:
 standard
 disk:
 51200
 gpus:
 0
 id:
 g6-standard-1
 label:
 Linode 2GB
 memory:
 2048
 network_out:
 2000
 price:

 hourly:
 0.015
 monthly:
 10.0
 successor:
 None
 transfer:
 2000
 vcpus:
 1
 addons:

 backups:

 price:

 hourly:
 0.004
 monthly:
 2.5
...SNIP...

Listing Images

Available images can be obtained by running one of:

salt-cloud --list-images my-linode-provider

salt-cloud -f avail_images my-linode-provider

This will list all Linode images which can be referenced in VM profiles.
Official images are available under the linode namespace.

my-linode-config:

 linode:

 linode/ubuntu22.04:

 created:
 2019-06-20T17:17:11
 created_by:
 linode
 deprecated:
 False
 description:
 None
 eol:
 2021-05-01T04:00:00
 expiry:
 None
 id:
 linode/ubuntu22.04
 is_public:
 True
 label:
 Alpine 3.10
 size:
 300
 type:
 manual
 vendor:
 Alpine
...SNIP...

Listing Locations

Available locations can be obtained by running one of:

salt-cloud --list-locations my-linode-provider

salt-cloud -f avail_locations my-linode-provider

This will list all Linode regions which can be referenced in VM profiles.

my-linode-config:

 linode:

 us-east:

 capabilities:
 - Linodes
 - NodeBalancers
 - Block Storage
 - Object Storage
 - GPU Linodes
 - Kubernetes
 country:
 us
 id:
 us-east
 status:
 ok
...SNIP...

Cloning

To clone a Linode, add a profile with a clonefrom key, and a script_args: -C.
clonefrom should be the name of the Linode that is the source for the clone.
script_args: -C passes a -C to the salt-bootstrap script, which only configures
the minion and doesn't try to install a new copy of salt-minion. This way the minion
gets new keys and the keys get pre-seeded on the master, and the /etc/salt/minion
file has the right minion 'id:' declaration.

Cloning requires a post 2015-02-01 salt-bootstrap.

It is safest to clone a stopped machine. To stop a machine run

salt-cloud -a stop machine_to_clone

To create a new machine based on another machine, add an entry to your linode
cloud profile that looks like this:

li-clone:
 provider: my-linode-config
 clonefrom: machine_to_clone
 script_args: -C -F

Then run salt-cloud as normal, specifying -p li-clone. The profile name can
be anything; It doesn't have to be li-clone.

clonefrom: is the name of an existing machine in Linode from which to clone.
Script_args: -C -F is necessary to avoid re-deploying Salt via salt-bootstrap.
-C will just re-deploy keys so the new minion will not have a duplicate key
or minion_id on the Master, and -F will force a rewrite of the Minion config
file on the new Minion. If -F isn't provided, the new Minion will have the
machine_to_clone's Minion ID, instead of its own Minion ID, which can cause
problems.

Note

Pull Request #733 [https://github.com/saltstack/salt-bootstrap/pull/733] to the salt-bootstrap repo makes the -F argument
non-necessary. Once that change is released into a stable version of the
Bootstrap Script, the -C argument will be sufficient for the script_args
setting.

If the machine_to_clone does not have Salt installed on it, refrain from using
the script_args: -C -F altogether, because the new machine will need to have
Salt installed.

Getting Started With LXC

The LXC module is designed to install Salt in an LXC container on a controlled
and possibly remote minion.

In other words, Salt will connect to a minion, then from that minion:

	Provision and configure a container for networking access

	Use those modules to deploy salt and re-attach to master.

	lxc runner

	lxc module

	seed

Limitations

	You can only act on one minion and one provider at a time.

	Listing images must be targeted to a particular LXC provider (nothing will be
outputted with all)

Operation

Salt's LXC support does use lxc.init
via the lxc.cloud_init_interface
and seeds the minion via seed.mkconfig.

You can provide to those lxc VMs a profile and a network profile like if
you were directly using the minion module.

Order of operation:

	Create the LXC container on the desired minion (clone or template)

	Change LXC config options (if any need to be changed)

	Start container

	Change base passwords if any

	Change base DNS configuration if necessary

	Wait for LXC container to be up and ready for ssh

	Test SSH connection and bailout in error

	Upload deploy script and seeds, then re-attach the minion.

Provider configuration

Here is a simple provider configuration:

Note: This example goes in /etc/salt/cloud.providers or any file in the
/etc/salt/cloud.providers.d/ directory.
devhost10-lxc:
 target: devhost10
 driver: lxc

Note

Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This
change was made to avoid confusion with the provider parameter that is used in cloud profile
definitions. Cloud provider definitions now use driver to refer to the Salt cloud module that
provides the underlying functionality to connect to a cloud host, while cloud profiles continue
to use provider to refer to provider configurations that you define.

Profile configuration

Please read LXC Management with Salt before anything else.
And specially Profiles.

Here are the options to configure your containers:

	target
	Host minion id to install the lxc Container into

	lxc_profile
	Name of the profile or inline options for the LXC vm creation/cloning,
please see Container Profiles.

	network_profile
	Name of the profile or inline options for the LXC vm network settings,
please see Network Profiles.

	nic_opts
	Totally optional.
Per interface new-style configuration options mappings which will
override any profile default option:

eth0: {'mac': '00:16:3e:01:29:40',
 'gateway': None, (default)
 'link': 'br0', (default)
 'gateway': None, (default)
 'netmask': '', (default)
 'ip': '22.1.4.25'}}

	password
	password for root and sysadmin users

	dnsservers
	List of DNS servers to use. This is optional.

	minion
	minion configuration (see Minion Configuration in Salt Cloud)

	bootstrap_delay
	specify the time to wait (in seconds) between container creation
and salt bootstrap execution. It is useful to ensure that all essential services
have started before the bootstrap script is executed. By default there's no
wait time between container creation and bootstrap unless you are on systemd
where we wait that the system is no more in starting state.

	bootstrap_shell
	shell for bootstraping script (default: /bin/sh)

	script
	defaults to salt-boostrap

	script_args
	arguments which are given to the bootstrap script.
the {0} placeholder will be replaced by the path which contains the
minion config and key files, eg:

script_args="-c {0}"

Using profiles:

Note: This example would go in /etc/salt/cloud.profiles or any file in the
/etc/salt/cloud.profiles.d/ directory.
devhost10-lxc:
 provider: devhost10-lxc
 lxc_profile: foo
 network_profile: bar
 minion:
 master: 10.5.0.1
 master_port: 4506

Using inline profiles (eg to override the network bridge):

devhost11-lxc:
 provider: devhost10-lxc
 lxc_profile:
 clone_from: foo
 network_profile:
 etho:
 link: lxcbr0
 minion:
 master: 10.5.0.1
 master_port: 4506

Using a lxc template instead of a clone:

devhost11-lxc:
 provider: devhost10-lxc
 lxc_profile:
 template: ubuntu
 # options:
 # release: trusty
 network_profile:
 etho:
 link: lxcbr0
 minion:
 master: 10.5.0.1
 master_port: 4506

Static ip:

Note: This example would go in /etc/salt/cloud.profiles or any file in the
/etc/salt/cloud.profiles.d/ directory.
devhost10-lxc:
 provider: devhost10-lxc
 nic_opts:
 eth0:
 ipv4: 10.0.3.9
 minion:
 master: 10.5.0.1
 master_port: 4506

DHCP:

Note: This example would go in /etc/salt/cloud.profiles or any file in the
/etc/salt/cloud.profiles.d/ directory.
devhost10-lxc:
 provider: devhost10-lxc
 minion:
 master: 10.5.0.1
 master_port: 4506

Driver Support

	Container creation

	Image listing (LXC templates)

	Running container information (IP addresses, etc.)

Getting Started With 1and1

1&1 is one of the world’s leading Web hosting providers. 1&1 currently offers
a wide range of Web hosting products, including email solutions and high-end
servers in 10 different countries including Germany, Spain, Great Britain
and the United States. From domains to 1&1 MyWebsite to eBusiness solutions
like Cloud Hosting and Web servers for complex tasks, 1&1 is well placed to deliver
a high quality service to its customers. All 1&1 products are hosted in
1&1‘s high-performance, green data centers in the USA and Europe.

Dependencies

	1and1 >= 1.2.0

Configuration

	Using the new format, set up the cloud configuration at
/etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/oneandone.conf:

my-oneandone-config:
 driver: oneandone

 # Set the location of the salt-master
 #
 minion:
 master: saltmaster.example.com

 # Configure oneandone authentication credentials
 #
 api_token: <api_token>
 ssh_private_key: /path/to/id_rsa
 ssh_public_key: /path/to/id_rsa.pub

Authentication

The api_key is used for API authorization. This token can be obtained
from the CloudPanel in the Management section below Users.

Profiles

Here is an example of a profile:

oneandone_fixed_size:
 provider: my-oneandone-config
 description: Small instance size server
 fixed_instance_size: S
 appliance_id: 8E3BAA98E3DFD37857810E0288DD8FBA

oneandone_custom_size:
 provider: my-oneandone-config
 description: Custom size server
 vcore: 2
 cores_per_processor: 2
 ram: 8
 appliance_id: 8E3BAA98E3DFD37857810E0288DD8FBA
 hdds:
 -
 is_main: true
 size: 20
 -
 is_main: false
 size: 20

The following list explains some of the important properties.

	fixed_instance_size_id
	When creating a server, either fixed_instance_size_id or custom hardware params
containing vcore, cores_per_processor, ram, and hdds must be provided.
Can be one of the IDs listed among the output of the following command:

salt-cloud --list-sizes oneandone

	vcore
	Total amount of processors.

	cores_per_processor
	Number of cores per processor.

	ram
	RAM memory size in GB.

	hdds
	Hard disks.

	appliance_id
	ID of the image that will be installed on server.
Can be one of the IDs listed in the output of the following command:

salt-cloud --list-images oneandone

	datacenter_id
	ID of the datacenter where the server will be created.
Can be one of the IDs listed in the output of the following command:

salt-cloud --list-locations oneandone

	description
	Description of the server.

	password
	Password of the server. Password must contain more than 8 characters
using uppercase letters, numbers and other special symbols.

	power_on
	Power on server after creation. Default is set to true.

	firewall_policy_id
	Firewall policy ID. If it is not provided, the server will assign
the best firewall policy, creating a new one if necessary. If the parameter
is sent with a 0 value, the server will be created with all ports blocked.

	ip_id
	IP address ID.

	load_balancer_id
	Load balancer ID.

	monitoring_policy_id
	Monitoring policy ID.

	deploy
	Set to False if Salt should not be installed on the node.

	wait_for_timeout
	The timeout to wait in seconds for provisioning resources such as servers.
The default wait_for_timeout is 15 minutes.

	public_key_ids
	List of public key IDs (ssh key).

Functions

	Create an SSH key

sudo salt-cloud -f create_ssh_key my-oneandone-config name='SaltTest' description='SaltTestDescription'

	Create a block storage

sudo salt-cloud -f create_block_storage my-oneandone-config name='SaltTest2' description='SaltTestDescription' size=50 datacenter_id='5091F6D8CBFEF9C26ACE957C652D5D49'

For more information concerning cloud profiles, see here.

Getting Started with OpenNebula

OpenNebula is an open-source solution for the comprehensive management of virtualized data centers to enable the mixed
use of private, public, and hybrid IaaS clouds.

Dependencies

The driver requires Python's lxml library to be installed. It also requires an OpenNebula installation running
version 4.12 or greater.

Configuration

The following example illustrates some of the options that can be set. These parameters are discussed in more detail
below.

Note: This example is for /etc/salt/cloud.providers or any file in the
/etc/salt/cloud.providers.d/ directory.

my-opennebula-provider:
 # Set up the location of the salt master
 #
 minion:
 master: saltmaster.example.com

 # Define xml_rpc setting which Salt-Cloud uses to connect to the OpenNebula API. Required.
 #
 xml_rpc: http://localhost:2633/RPC2

 # Define the OpenNebula access credentials. This can be the main "oneadmin" user that OpenNebula uses as the
 # OpenNebula main admin, or it can be a user defined in the OpenNebula instance. Required.
 #
 user: oneadmin
 password: JHGhgsayu32jsa

 # Define the private key location that is used by OpenNebula to access new VMs. This setting is required if
 # provisioning new VMs or accessing VMs previously created with the associated public key.
 #
 private_key: /path/to/private/key

 driver: opennebula

Access Credentials

The Salt Cloud driver for OpenNebula was written using OpenNebula's native XML RPC API. Every interaction with
OpenNebula's API requires a username and password to make the connection from the machine running Salt Cloud
to API running on the OpenNebula instance. Based on the access credentials passed in, OpenNebula filters the commands
that the user can perform or the information for which the user can query. For example, the images that a user can
view with a --list-images command are the images that the connected user and the connected user's groups can access.

Key Pairs

Salt Cloud needs to be able to access a virtual machine in order to install the Salt Minion by using a public/private
key pair. The virtual machine will need to be seeded with the public key, which is laid down by the OpenNebula
template. Salt Cloud then uses the corresponding private key, provided by the private_key setting in the cloud
provider file, to SSH into the new virtual machine.

To seed the virtual machine with the public key, the public key must be added to the OpenNebula template. If using the
OpenNebula web interface, navigate to the template, then click Update. Click the Context tab. Under the
Network & SSH section, click Add SSH Contextualization and paste the public key in the Public Key box.
Don't forget to save your changes by clicking the green Update button.

Note

The key pair must not have a pass-phrase.

Cloud Profiles

Set up an initial profile at either /etc/salt/cloud.profiles or the /etc/salt/cloud.profiles.d/ directory.

my-opennebula-profile:
 provider: my-opennebula-provider
 image: Ubuntu-14.04

The profile can now be realized with a salt command:

salt-cloud -p my-opennebula-profile my-new-vm

This will create a new instance named my-new-vm in OpenNebula. The minion that is installed on this instance will
have a minion id of my-new-vm. If the command was executed on the salt-master, its Salt key will automatically be
signed on the master.

Once the instance has been created with salt-minion installed, connectivity to it can be verified with Salt:

salt my-new-vm test.version

OpenNebula uses an image --> template --> virtual machine paradigm where the template draws on the image, or disk,
and virtual machines are created from templates. Because of this, there is no need to define a size in the cloud
profile. The size of the virtual machine is defined in the template.

Change Disk Size

You can now change the size of a VM on creation by cloning an image and expanding the size. You can accomplish this by
the following cloud profile settings below.

my-opennebula-profile:
 provider: my-opennebula-provider
 image: Ubuntu-14.04
 disk:
 disk0:
 disk_type: clone
 size: 8096
 image: centos7-base-image-v2
 disk1:
 disk_type: volatile
 type: swap
 size: 4096
 disk2:
 disk_type: volatile
 size: 4096
 type: fs
 format: ext3

There are currently two different disk_types a user can use: volatile and clone. Clone which is required when specifying devices
will clone an image in open nebula and will expand it to the size specified in the profile settings. By default this will clone
the image attached to the template specified in the profile but a user can add the image argument under the disk definition.

For example the profile below will not use Ubuntu-14.04 for the cloned disk image. It will use the centos7-base-image image:

my-opennebula-profile:
 provider: my-opennebula-provider
 image: Ubuntu-14.04
 disk:
 disk0:
 disk_type: clone
 size: 8096
 image: centos7-base-image

If you want to use the image attached to the template set in the profile you can simply remove the image argument as show below.
The profile below will clone the image Ubuntu-14.04 and expand the disk to 8GB.:

my-opennebula-profile:
 provider: my-opennebula-provider
 image: Ubuntu-14.04
 disk:
 disk0:
 disk_type: clone
 size: 8096

A user can also currently specify swap or fs disks. Below is an example of this profile setting:

my-opennebula-profile:
 provider: my-opennebula-provider
 image: Ubuntu-14.04
 disk:
 disk0:
 disk_type: clone
 size: 8096
 disk1:
 disk_type: volatile
 type: swap
 size: 4096
 disk2:
 disk_type: volatile
 size: 4096
 type: fs
 format: ext3

The example above will attach both a swap disk and a ext3 filesystem with a size of 4GB. To note if you define other disks you have
to define the image disk to clone because the template will write over the entire 'DISK=[]' template definition on creation.

Required Settings

The following settings are always required for OpenNebula:

my-opennebula-config:
 xml_rpc: http://localhost:26633/RPC2
 user: oneadmin
 password: JHGhgsayu32jsa
 driver: opennebula

Required Settings for VM Deployment

The settings defined in the Required Settings section are required for all interactions with
OpenNebula. However, when deploying a virtual machine via Salt Cloud, an additional setting, private_key, is also
required:

my-opennebula-config:
 private_key: /path/to/private/key

Listing Images

Images can be queried on OpenNebula by passing the --list-images argument to Salt Cloud:

salt-cloud --list-images opennebula

Listing Locations

In OpenNebula, locations are defined as hosts. Locations, or "hosts", can be querried on OpenNebula by passing the
--list-locations argument to Salt Cloud:

salt-cloud --list-locations opennebula

Listing Sizes

Sizes are defined by templates in OpenNebula. As such, the --list-sizes call returns an empty dictionary since
there are no sizes to return.

Additional OpenNebula API Functionality

The Salt Cloud driver for OpenNebula was written using OpenNebula's native XML RPC API. As such, many --function
and --action calls were added to the OpenNebula driver to enhance support for an OpenNebula infrastructure with
additional control from Salt Cloud. See the OpenNebula function definitions
for more information.

Access via DNS entry instead of IP

Some OpenNebula installations do not assign IP addresses to new VMs, instead they establish the new VM's hostname based
on OpenNebula's name of the VM, and then allocate an IP out of DHCP with dynamic DNS attaching the hostname. This driver
supports this behavior by adding the entry fqdn_base to the driver configuration or the OpenNebula profile with a value
matching the base fully-qualified domain. For example:

Note: This example is for /etc/salt/cloud.providers or any file in the
/etc/salt/cloud.providers.d/ directory.

my-opennebula-provider:
 [...]
 fqdn_base: corp.example.com
 [...]

Getting Started with Openstack

See salt.cloud.clouds.openstack

Getting Started With Parallels

Parallels Cloud Server is a product by Parallels that delivers a cloud hosting
solution. The PARALLELS module for Salt Cloud enables you to manage instances
hosted using PCS. Further information can be found at:

http://www.parallels.com/products/pcs/

	Using the old format, set up the cloud configuration at /etc/salt/cloud:

Set up the location of the salt master
#
minion:
 master: saltmaster.example.com

Set the PARALLELS access credentials (see below)
#
PARALLELS.user: myuser
PARALLELS.password: badpass

Set the access URL for your PARALLELS host
#
PARALLELS.url: https://api.cloud.xmission.com:4465/paci/v1.0/

	Using the new format, set up the cloud configuration at
/etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/parallels.conf:

my-parallels-config:
 # Set up the location of the salt master
 #
 minion:
 master: saltmaster.example.com

 # Set the PARALLELS access credentials (see below)
 #
 user: myuser
 password: badpass

 # Set the access URL for your PARALLELS provider
 #
 url: https://api.cloud.xmission.com:4465/paci/v1.0/
 driver: parallels

Note

Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This
change was made to avoid confusion with the provider parameter that is used in cloud profile
definitions. Cloud provider definitions now use driver to refer to the Salt cloud module that
provides the underlying functionality to connect to a cloud host, while cloud profiles continue
to use provider to refer to provider configurations that you define.

Access Credentials

The user, password, and url will be provided to you by your cloud
host. These are all required in order for the PARALLELS driver to work.

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles or
/etc/salt/cloud.profiles.d/parallels.conf:

parallels-ubuntu:
 provider: my-parallels-config
 image: ubuntu-12.04-x86_64

The profile can be realized now with a salt command:

salt-cloud -p parallels-ubuntu myubuntu

This will create an instance named myubuntu on the cloud host. The
minion that is installed on this instance will have an id of myubuntu.
If the command was executed on the salt-master, its Salt key will automatically
be signed on the master.

Once the instance has been created with salt-minion installed, connectivity to
it can be verified with Salt:

salt myubuntu test.version

Required Settings

The following settings are always required for PARALLELS:

	Using the old cloud configuration format:

PARALLELS.user: myuser
PARALLELS.password: badpass
PARALLELS.url: https://api.cloud.xmission.com:4465/paci/v1.0/

	Using the new cloud configuration format:

my-parallels-config:
 user: myuser
 password: badpass
 url: https://api.cloud.xmission.com:4465/paci/v1.0/
 driver: parallels

Optional Settings

Unlike other cloud providers in Salt Cloud, Parallels does not utilize a
size setting. This is because Parallels allows the end-user to specify a
more detailed configuration for their instances than is allowed by many other
cloud hosts. The following options are available to be used in a profile,
with their default settings listed.

Description of the instance. Defaults to the instance name.
desc: <instance_name>

How many CPU cores, and how fast they are (in MHz)
cpu_number: 1
cpu_power: 1000

How many megabytes of RAM
ram: 256

Bandwidth available, in kbps
bandwidth: 100

How many public IPs will be assigned to this instance
ip_num: 1

Size of the instance disk (in GiB)
disk_size: 10

Username and password
ssh_username: root
password: <value from PARALLELS.password>

The name of the image, from ``salt-cloud --list-images parallels``
image: ubuntu-12.04-x86_64

Getting Started With ProfitBricks

ProfitBricks provides an enterprise-grade Infrastructure as a Service (IaaS)
solution that can be managed through a browser-based "Data Center Designer"
(DCD) tool or via an easy to use API. A unique feature of the ProfitBricks
platform is that it allows you to define your own settings for cores, memory,
and disk size without being tied to a particular server size.

Dependencies

	profitbricks >= 4.1.1

Configuration

	Using the new format, set up the cloud configuration at
/etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/profitbricks.conf:

my-profitbricks-config:
 driver: profitbricks

 # Set the location of the salt-master
 #
 minion:
 master: saltmaster.example.com

 # Configure ProfitBricks authentication credentials
 #
 username: user@domain.com
 password: 123456
 # datacenter is the UUID of a pre-existing virtual data center.
 datacenter: 9e6709a0-6bf9-4bd6-8692-60349c70ce0e
 # delete_volumes is forcing a deletion of all volumes attached to a server on a deletion of a server
 delete_volumes: true
 # Connect to public LAN ID 1.
 public_lan: 1
 ssh_public_key: /path/to/id_rsa.pub
 ssh_private_key: /path/to/id_rsa

Note

Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This
change was made to avoid confusion with the provider parameter that is used in cloud profile
definitions. Cloud provider definitions now use driver to refer to the Salt cloud module that
provides the underlying functionality to connect to a cloud host, while cloud profiles continue
to use provider to refer to provider configurations that you define.

Virtual Data Center

ProfitBricks uses the concept of Virtual Data Centers. These are logically
separated from one another and allow you to have a self-contained environment
for all servers, volumes, networking, snapshots, and so forth.

A list of existing virtual data centers can be retrieved with the following command:

salt-cloud -f list_datacenters my-profitbricks-config

A new data center can be created with the following command:

salt-cloud -f create_datacenter my-profitbricks-config name=example location=us/las description="my description"

Authentication

The username and password are the same as those used to log into the
ProfitBricks "Data Center Designer".

Profiles

Here is an example of a profile:

profitbricks_staging
 provider: my-profitbricks-config
 size: Micro Instance
 image_alias: 'ubuntu:latest'
 # image or image_alias must be provided
 # image: 2f98b678-6e7e-11e5-b680-52540066fee9
 cores: 2
 ram: 4096
 public_lan: 1
 private_lan: 2
 ssh_public_key: /path/to/id_rsa.pub
 ssh_private_key: /path/to/id_rsa
 ssh_interface: private_lan

profitbricks_production:
 provider: my-profitbricks-config
 image: Ubuntu-15.10-server-2016-05-01
 image_password: MyPassword1
 disk_type: SSD
 disk_size: 40
 cores: 8
 cpu_family: INTEL_XEON
 ram: 32768
 public_lan: 1
 public_ips:
 - 172.217.18.174
 private_lan: 2
 private_ips:
 - 192.168.100.10
 public_firewall_rules:
 Allow SSH:
 protocol: TCP
 source_ip: 1.2.3.4
 port_range_start: 22
 port_range_end: 22
 Allow Ping:
 protocol: ICMP
 icmp_type: 8
 ssh_public_key: /path/to/id_rsa.pub
 ssh_private_key: /path/to/id_rsa
 ssh_interface: private_lan
 volumes:
 db_data:
 disk_size: 500
 db_log:
 disk_size: 50
 disk_type: SSD

Locations can be obtained using the --list-locations option for the salt-cloud
command:

salt-cloud --list-locations my-profitbricks-config

Images can be obtained using the --list-sizes option for the salt-cloud
command:

salt-cloud --list-images my-profitbricks-config

Sizes can be obtained using the --list-sizes option for the salt-cloud
command:

salt-cloud --list-sizes my-profitbricks-config

Changed in version 2019.2.0: One or more public IP address can be reserved with the following command:

salt-cloud -f reserve_ipblock my-profitbricks-config location='us/ewr' size=1

Profile Specifics:

The following list explains some of the important properties.

	size - Can be one of the options listed in the output of the following
command:

salt-cloud --list-sizes my-profitbricks-config

	image - Can be one of the options listed in the output of the following
command:

salt-cloud --list-images my-profitbricks-config

	image_alias - Can be one of the options listed in the output of the
following command:

salt-cloud -f list_images my-profitbricks-config

	disk_size - This option allows you to override the size of the disk as
defined by the size. The disk size is set in gigabytes (GB).

	disk_type - This option allow the disk type to be set to HDD or SSD. The
default is HDD.

New in version 2019.2.0.

	image_password - A password is set on the image for the "root" or
"Administrator" account. This field may only be set during volume creation.
Only valid with ProfitBricks supplied HDD (not ISO) images. The password must
contain at least 8 and no more than 50 characters. Only these characters are
allowed: [a-z][A-Z][0-9]

	cores - This option allows you to override the number of CPU cores as
defined by the size.

	ram - This option allows you to override the amount of RAM defined by the
size. The value must be a multiple of 256, e.g. 256, 512, 768, 1024, and so
forth.

	public_lan - This option will connect the server to the specified public
LAN. If no LAN exists, then a new public LAN will be created. The value
accepts a LAN ID (integer).

New in version 2019.2.0.

	public_ips - Public IPs assigned to the NIC in the public LAN.

	public_firewall_rules - This option allows for a list of firewall rules
assigned to the public network interface.

Firewall Rule Name:
 protocol: <protocol> (TCP, UDP, ICMP)
 source_mac: <source-mac>
 source_ip: <source-ip>
 target_ip: <target-ip>
 port_range_start: <port-range-start>
 port_range_end: <port-range-end>
 icmp_type: <icmp-type>
 icmp_code: <icmp-code>

	private_lan - This option will connect the server to the specified
private LAN. If no LAN exists, then a new private LAN will be created. The
value accepts a LAN ID (integer).

New in version 2019.2.0.

	private_ips - Private IPs assigned in the private LAN. NAT setting is
ignored when this setting is active.

	private_firewall_rules - This option allows for a list of firewall rules
assigned to the private network interface.

Firewall Rule Name:
 protocol: <protocol> (TCP, UDP, ICMP)
 source_mac: <source-mac>
 source_ip: <source-ip>
 target_ip: <target-ip>
 port_range_start: <port-range-start>
 port_range_end: <port-range-end>
 icmp_type: <icmp-type>
 icmp_code: <icmp-code>

	ssh_private_key - Full path to the SSH private key file

	ssh_public_key - Full path to the SSH public key file

	ssh_interface - This option will use the private LAN IP for node
connections (such as as bootstrapping the node) instead of the public LAN IP.
The value accepts 'private_lan'.

	cpu_family - This option allow the CPU family to be set to AMD_OPTERON or
INTEL_XEON. The default is AMD_OPTERON.

	volumes - This option allows a list of additional volumes by name that
will be created and attached to the server. Each volume requires 'disk_size'
and, optionally, 'disk_type'. The default is HDD.

	deploy - Set to False if Salt should not be installed on the node.

	wait_for_timeout - The timeout to wait in seconds for provisioning
resources such as servers. The default wait_for_timeout is 15 minutes.

For more information concerning cloud profiles, see here.

Getting Started With Proxmox

Warning

This cloud provider will be removed from Salt in version 3009.0 in favor of
the saltext.proxmox Salt Extension [https://github.com/salt-extensions/saltext-proxmox]

Proxmox Virtual Environment is a complete server virtualization management solution,
based on OpenVZ(in Proxmox up to 3.4)/LXC(from Proxmox 4.0 and up) and full virtualization with KVM.
Further information can be found at:

https://www.proxmox.com

Dependencies

	IPy >= 0.81

	requests >= 2.2.1

Please note:
This module allows you to create OpenVZ/LXC containers and KVM VMs, but installing Salt on it will only be
done on containers rather than a KVM virtual machine.

	Set up the cloud configuration at
/etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/proxmox.conf:

my-proxmox-config:
 # Set up the location of the salt master
 #
 minion:
 master: saltmaster.example.com

 # Set the PROXMOX access credentials (see below)
 #
 user: myuser@pve
 password: badpass

 # Set the access URL for your PROXMOX host
 #
 url: your.proxmox.host
 driver: proxmox

Note

Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This
change was made to avoid confusion with the provider parameter that is used in cloud profile
definitions. Cloud provider definitions now use driver to refer to the Salt cloud module that
provides the underlying functionality to connect to a cloud host, while cloud profiles continue
to use provider to refer to provider configurations that you define.

Access Credentials

The user, password, and url will be provided to you by your cloud
host. These are all required in order for the PROXMOX driver to work.

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles or
/etc/salt/cloud.profiles.d/proxmox.conf:

	Configure a profile to be used:

proxmox-ubuntu:
 provider: my-proxmox-config
 image: local:vztmpl/ubuntu-12.04-standard_12.04-1_amd64.tar.gz
 technology: lxc

 # host needs to be set to the configured name of the proxmox host
 # and not the ip address or FQDN of the server
 host: myvmhost
 ip_address: 192.168.100.155
 password: topsecret

The profile can be realized now with a salt command:

salt-cloud -p proxmox-ubuntu myubuntu

This will create an instance named myubuntu on the cloud host. The
minion that is installed on this instance will have a hostname of myubuntu.
If the command was executed on the salt-master, its Salt key will automatically
be signed on the master.

Once the instance has been created with salt-minion installed, connectivity to
it can be verified with Salt:

salt myubuntu test.version

Required Settings

The following settings are always required for PROXMOX:

	Using the new cloud configuration format:

my-proxmox-config:
 driver: proxmox
 user: saltcloud@pve
 password: xyzzy
 url: your.proxmox.host

Optional Settings

Unlike other cloud providers in Salt Cloud, Proxmox does not utilize a
size setting. This is because Proxmox allows the end-user to specify a
more detailed configuration for their instances, than is allowed by many other
cloud providers. The following options are available to be used in a profile,
with their default settings listed.

Description of the instance.
desc: <instance_name>

How many CPU cores, and how fast they are (in MHz)
cpus: 1
cpuunits: 1000

How many megabytes of RAM
memory: 256

How much swap space in MB
swap: 256

Whether to auto boot the vm after the host reboots
onboot: 1

Size of the instance disk (in GiB)
disk: 10

Host to create this vm on
host: myvmhost

Nameservers. Defaults to host
nameserver: 8.8.8.8 8.8.4.4

Username and password
ssh_username: root
password: <value from PROXMOX.password>

The name of the image, from ``salt-cloud --list-images proxmox``
image: local:vztmpl/ubuntu-12.04-standard_12.04-1_amd64.tar.gz

Whether or not to verify the SSL cert on the Proxmox host
verify_ssl: False

Network interfaces, netX
net0: name=eth0,bridge=vmbr0,ip=dhcp

Public key to add to /root/.ssh/authorized_keys.
pubkey: 'ssh-rsa AAAAB3NzaC1yc2EAAAADAQABA...'

QEMU

Some functionnalities works differently if you use 'qemu' as technology. In order to create a new VM with qemu, you need to specificy some more information.
You can also clone a qemu template which already is on your Proxmox server.

QEMU profile file (for a new VM):

proxmox-win7:
 # Image of the new VM
 image: image.iso # You can get all your available images using 'salt-cloud --list-images provider_name' (Ex: 'salt-cloud --list-images my-proxmox-config')

 # Technology used to create the VM ('qemu', 'openvz'(on Proxmox <4.x) or 'lxc'(on Proxmox 4.x+))
 technology: qemu

 # Proxmox node name
 host: node_name

 # Proxmox password
 password: your_password

 # Workaround https://github.com/saltstack/salt/issues/27821
 size: ''

 # RAM size (MB)
 memory: 2048

 # OS Type enum (other / wxp / w2k / w2k3 / w2k8 / wvista / win7 / win8 / l24 / l26 / solaris)
 ostype: win7

 # Hard disk location
 sata0: <location>:<size>, format=<qcow2/vmdk/raw>, size=<size>GB #Example: local:120,format=qcow2,size=120GB

 #CD/DVD Drive
 ide2: <content_location>,media=cdrom #Example: local:iso/name.iso,media=cdrom

 # Network Device
 net0:<model>,bridge=<bridge> #Example: e1000,bridge=vmbr0

 # Enable QEMU Guest Agent (0 / 1)
 agent: 1

 # VM name
 name: Test

More information about these parameters can be found on Proxmox API (http://pve.proxmox.com/pve2-api-doc/) under the 'POST' method of nodes/{node}/qemu

QEMU profile file (for a clone):

proxmox-win7:
 # Enable Clone
 clone: True

 # New VM description
 clone_description: 'description'

 # New VM name
 clone_name: 'name'

 # New VM format (qcow2 / raw / vmdk)
 clone_format: qcow2

 # Full clone (1) or Link clone (0)
 clone_full: 0

 # VMID of Template to clone
 clone_from: ID

 # Technology used to create the VM ('qemu' or 'lxc')
 technology: qemu

 # Proxmox node name
 host: node_name

 # Proxmox password
 password: your_password

 # Workaround https://github.com/saltstack/salt/issues/27821
 size: ''

 # Enable the use of a Qemu agent on VM to retrieve the IP-address from.
 agent_get_ip: True

More information can be found on Proxmox API under the 'POST' method of /nodes/{node}/qemu/{vmid}/clone

Note

The Proxmox API offers a lot more options and parameters, which are not yet
supported by this salt-cloud 'overlay'. Feel free to add your contribution
by forking the github repository and modifying the following file:
salt/cloud/clouds/proxmox.py

An easy way to support more parameters for VM creation would be to add the
names of the optional parameters in the 'create_nodes(vm_)' function, under
the 'qemu' technology. But it requires you to dig into the code ...

Getting Started With Scaleway

Scaleway is the first IaaS host worldwide to offer an ARM based cloud. It’s the ideal platform for horizontal scaling with BareMetal SSD servers. The solution provides on demand resources: it comes with on-demand SSD storage, movable IPs , images, security group and an Object Storage solution. https://scaleway.com

Configuration

Using Salt for Scaleway, requires an access key and an API token. API tokens are unique identifiers associated with your Scaleway account.
To retrieve your access key and API token, log-in to the Scaleway control panel, open the pull-down menu on your account name and click on "My Credentials" link.

If you do not have API token you can create one by clicking the "Create New Token" button on the right corner.

Note: This example is for /etc/salt/cloud.providers or any file in the
/etc/salt/cloud.providers.d/ directory.

my-scaleway-config:
 access_key: 15cf404d-4560-41b1-9a0c-21c3d5c4ff1f
 token: a7347ec8-5de1-4024-a5e3-24b77d1ba91d
 driver: scaleway

Note

Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This
change was made to avoid confusion with the provider parameter that is used in cloud profile
definitions. Cloud provider definitions now use driver to refer to the Salt cloud module that
provides the underlying functionality to connect to a cloud host, while cloud profiles continue
to use provider to refer to provider configurations that you define.

Profiles

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles or in the /etc/salt/cloud.profiles.d/ directory:

scaleway-ubuntu:
 provider: my-scaleway-config
 image: Ubuntu Trusty (14.04 LTS)

Images can be obtained using the --list-images option for the salt-cloud command:

#salt-cloud --list-images my-scaleway-config
my-scaleway-config:

 scaleway:

 069fd876-eb04-44ab-a9cd-47e2fa3e5309:

 arch:
 arm
 creation_date:
 2015-03-12T09:35:45.764477+00:00
 default_bootscript:
 {u'kernel': {u'dtb': u'', u'title': u'Pimouss 3.2.34-30-std', u'id': u'cfda4308-cd6f-4e51-9744-905fc0da370f', u'path': u'kernel/pimouss-uImage-3.2.34-30-std'}, u'title': u'3.2.34-std #30 (stable)', u'id': u'c5af0215-2516-4316-befc-5da1cfad609c', u'initrd': {u'path': u'initrd/c1-uInitrd', u'id': u'1be14b1b-e24c-48e5-b0b6-7ba452e42b92', u'title': u'C1 initrd'}, u'bootcmdargs': {u'id': u'd22c4dde-e5a4-47ad-abb9-d23b54d542ff', u'value': u'ip=dhcp boot=local root=/dev/nbd0 USE_XNBD=1 nbd.max_parts=8'}, u'organization': u'11111111-1111-4111-8111-111111111111', u'public': True}
 extra_volumes:
 []
 id:
 069fd876-eb04-44ab-a9cd-47e2fa3e5309
 modification_date:
 2015-04-24T12:02:16.820256+00:00
 name:
 Ubuntu Vivid (15.04)
 organization:
 a283af0b-d13e-42e1-a43f-855ffbf281ab
 public:
 True
 root_volume:
 {u'name': u'distrib-ubuntu-vivid-2015-03-12_10:32-snapshot', u'id': u'a6d02e63-8dee-4bce-b627-b21730f35a05', u'volume_type': u'l_ssd', u'size': 50000000000L}
...

Execute a query and return all information about the nodes running on configured cloud providers using the -Q option for the salt-cloud command:

salt-cloud -F
[INFO] salt-cloud starting
[INFO] Starting new HTTPS connection (1): api.scaleway.com
my-scaleway-config:

 scaleway:

 salt-manager:

 creation_date:
 2015-06-03T08:17:38.818068+00:00
 hostname:
 salt-manager
...

Note

Additional documentation about Scaleway can be found at https://www.scaleway.com/docs.

Getting Started With Saltify

The Saltify driver is a driver for installing Salt on existing
machines (virtual or bare metal).

Dependencies

The Saltify driver has no external dependencies.

Configuration

Because the Saltify driver does not use an actual cloud provider host, it can have a
simple provider configuration. The only thing that is required to be set is the
driver name, and any other potentially useful information, like the location of
the salt-master:

Note: This example is for /etc/salt/cloud.providers file or any file in
the /etc/salt/cloud.providers.d/ directory.

my-saltify-config:
 minion:
 master: 111.222.333.444
 driver: saltify

However, if you wish to use the more advanced capabilities of salt-cloud, such as
rebooting, listing, and disconnecting machines, then the salt master must fill
the role usually performed by a vendor's cloud management system. The salt master
must be running on the salt-cloud machine, and created nodes must be connected to the
master.

Additional information about which configuration options apply to which actions
can be studied in the
Saltify Module documentation
and the
Miscellaneous Salt Cloud Options
document.

Profiles

Saltify requires a separate profile to be configured for each machine that
needs Salt installed [1]. The initial profile can be set up at
/etc/salt/cloud.profiles
or in the /etc/salt/cloud.profiles.d/ directory. Each profile requires
both an ssh_host and an ssh_username key parameter as well as either
an key_filename or a password.

[1]
Unless you are using a map file to provide the unique parameters.

Profile configuration example:

/etc/salt/cloud.profiles.d/saltify.conf

salt-this-machine:
 ssh_host: 12.34.56.78
 ssh_username: root
 key_filename: '/etc/salt/mysshkey.pem'
 provider: my-saltify-config

The machine can now be "Salted" with the following command:

salt-cloud -p salt-this-machine my-machine

This will install salt on the machine specified by the cloud profile,
salt-this-machine, and will give the machine the minion id of
my-machine. If the command was executed on the salt-master, its Salt
key will automatically be accepted by the master.

Once a salt-minion has been successfully installed on the instance, connectivity
to it can be verified with Salt:

salt my-machine test.version

Destroy Options

New in version 2018.3.0.

For obvious reasons, the destroy action does not actually vaporize hardware.
If the salt master is connected, it can tear down parts of the client machines.
It will remove the client's key from the salt master,
and can execute the following options:

- remove_config_on_destroy: true
 # default: true
 # Deactivate salt-minion on reboot and
 # delete the minion config and key files from its "/etc/salt" directory,
 # NOTE: If deactivation was unsuccessful (older Ubuntu machines) then when
 # salt-minion restarts it will automatically create a new, unwanted, set
 # of key files. Use the "force_minion_config" option to replace them.

- shutdown_on_destroy: false
 # default: false
 # last of all, send a "shutdown" command to the client.

Wake On LAN

New in version 2018.3.0.

In addition to connecting a hardware machine to a Salt master,
you have the option of sending a wake-on-LAN
magic packet [https://en.wikipedia.org/wiki/Wake-on-LAN]
to start that machine running.

The "magic packet" must be sent by an existing salt minion which is on
the same network segment as the target machine. (Or your router
must be set up especially to route WoL packets.) Your target machine
must be set up to listen for WoL and to respond appropriately.

You must provide the Salt node id of the machine which will send
the WoL packet (parameter wol_sender_node), and
the hardware MAC address of the machine you intend to wake,
(parameter wake_on_lan_mac). If both parameters are defined,
the WoL will be sent. The cloud master will then sleep a while
(parameter wol_boot_wait) to give the target machine time to
boot up before we start probing its SSH port to begin deploying
Salt to it. The default sleep time is 30 seconds.

/etc/salt/cloud.profiles.d/saltify.conf

salt-this-machine:
 ssh_host: 12.34.56.78
 ssh_username: root
 key_filename: '/etc/salt/mysshkey.pem'
 provider: my-saltify-config
 wake_on_lan_mac: '00:e0:4c:70:2a:b2' # found with ifconfig
 wol_sender_node: bevymaster # its on this network segment
 wol_boot_wait: 45 # seconds to sleep

Using Map Files

The settings explained in the section above may also be set in a map file. An
example of how to use the Saltify driver with a map file follows:

/etc/salt/saltify-map

make_salty:
 - my-instance-0:
 ssh_host: 12.34.56.78
 ssh_username: root
 password: very-bad-password
 - my-instance-1:
 ssh_host: 44.33.22.11
 ssh_username: root
 password: another-bad-pass

In this example, the names my-instance-0 and my-instance-1 will be the
identifiers of the deployed minions.

Note: The ssh_host directive is also used for Windows hosts, even though they do
not typically run the SSH service. It indicates IP address or host name for the target
system.

Note: When using a cloud map with the Saltify driver, the name of the profile
to use, in this case make_salty, must be defined in a profile config. For
example:

/etc/salt/cloud.profiles.d/saltify.conf

make_salty:
 provider: my-saltify-config

The machines listed in the map file can now be "Salted" by applying the
following salt map command:

salt-cloud -m /etc/salt/saltify-map

This command will install salt on the machines specified in the map and will
give each machine their minion id of my-instance-0 and my-instance-1,
respectively. If the command was executed on the salt-master, its Salt key will
automatically be signed on the master.

Connectivity to the new "Salted" instances can now be verified with Salt:

salt 'my-instance-*' test.version

Bulk Deployments

When deploying large numbers of Salt Minions using Saltify, it may be
preferable to organize the configuration in a way that duplicates data
as little as possible. For example, if a group of target systems have
the same credentials, they can be specified in the profile, rather than
in a map file.

/etc/salt/cloud.profiles.d/saltify.conf

make_salty:
 provider: my-saltify-config
 ssh_username: root
 password: very-bad-password

/etc/salt/saltify-map

make_salty:
 - my-instance-0:
 ssh_host: 12.34.56.78
 - my-instance-1:
 ssh_host: 44.33.22.11

If ssh_host is not provided, its default value will be the Minion identifier
(my-instance-0 and my-instance-1, in the example above). For deployments with
working DNS resolution, this can save a lot of redundant data in the map. Here is an
example map file using DNS names instead of IP addresses:

/etc/salt/saltify-map

make_salty:
 - my-instance-0
 - my-instance-1

Credential Verification

Because the Saltify driver does not actually create VM's, unlike other
salt-cloud drivers, it has special behaviour when the deploy option is set
to False. When the cloud configuration specifies deploy: False, the
Saltify driver will attempt to authenticate to the target node(s) and return
True for each one that succeeds. This can be useful to verify ports,
protocols, services and credentials are correctly configured before a live
deployment.

	Return values:
	
	True: Credential verification succeeded

	False: Credential verification succeeded

	None: Credential verification was not attempted.

Getting Started With SoftLayer

SoftLayer is a public cloud host, and baremetal hardware hosting service.

Dependencies

The SoftLayer driver for Salt Cloud requires the softlayer package, which is
available at PyPI:

https://pypi.org/project/SoftLayer/

This package can be installed using pip or easy_install:

pip install softlayer
easy_install softlayer

Configuration

Set up the cloud config at /etc/salt/cloud.providers:

Note: These examples are for /etc/salt/cloud.providers

 my-softlayer:
 # Set up the location of the salt master
 minion:
 master: saltmaster.example.com

 # Set the SoftLayer access credentials (see below)
 user: MYUSER1138
 apikey: 'e3b68aa711e6deadc62d5b76355674beef7cc3116062ddbacafe5f7e465bfdc9'

 driver: softlayer

 my-softlayer-hw:
 # Set up the location of the salt master
 minion:
 master: saltmaster.example.com

 # Set the SoftLayer access credentials (see below)
 user: MYUSER1138
 apikey: 'e3b68aa711e6deadc62d5b76355674beef7cc3116062ddbacafe5f7e465bfdc9'

 driver: softlayer_hw

Note

Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This
change was made to avoid confusion with the provider parameter that is used in cloud profile
definitions. Cloud provider definitions now use driver to refer to the Salt cloud module that
provides the underlying functionality to connect to a cloud host, while cloud profiles continue
to use provider to refer to provider configurations that you define.

Access Credentials

The user setting is the same user as is used to log into the SoftLayer
Administration area. The apikey setting is found inside the Admin area after
logging in:

	Hover over the Account menu item.

	Click the Users link.

	Find the API Key column and click View.

Profiles

Cloud Profiles

Set up an initial profile at /etc/salt/cloud.profiles:

base_softlayer_ubuntu:
 provider: my-softlayer
 image: UBUNTU_LATEST
 cpu_number: 1
 ram: 1024
 disk_size: 100
 local_disk: True
 hourly_billing: True
 domain: example.com
 location: sjc01
 # Optional
 max_net_speed: 1000
 private_vlan: 396
 private_network: True
 private_ssh: True
 # Use a dedicated host instead of cloud
 dedicated_host_id: 1234
 # May be used _instead_of_ image
 global_identifier: 320d8be5-46c0-dead-cafe-13e3c51

Most of the above items are required; optional items are specified below.

image

Images to build an instance can be found using the --list-images option:

salt-cloud --list-images my-softlayer

The setting used will be labeled as template.

cpu_number

This is the number of CPU cores that will be used for this instance. This
number may be dependent upon the image that is used. For instance:

Red Hat Enterprise Linux 6 - Minimal Install (64 bit) (1 - 4 Core):

 name:
 Red Hat Enterprise Linux 6 - Minimal Install (64 bit) (1 - 4 Core)
 template:
 REDHAT_6_64
Red Hat Enterprise Linux 6 - Minimal Install (64 bit) (5 - 100 Core):

 name:
 Red Hat Enterprise Linux 6 - Minimal Install (64 bit) (5 - 100 Core)
 template:
 REDHAT_6_64

Note that the template (meaning, the image option) for both of these is the
same, but the names suggests how many CPU cores are supported.

ram

This is the amount of memory, in megabytes, that will be allocated to this
instance.

disk_size

The amount of disk space that will be allocated to this image, in gigabytes.

base_softlayer_ubuntu:
 disk_size: 100

Using Multiple Disks

New in version 2015.8.1.

SoftLayer allows up to 5 disks to be specified for a virtual machine upon
creation. Multiple disks can be specified either as a list or a comma-delimited
string. The first disk_size specified in the string or list will be the first
disk size assigned to the VM.

List Example:
.. code-block:: yaml

	base_softlayer_ubuntu:
	disk_size: ['100', '20', '20']

String Example:
.. code-block:: yaml

	base_softlayer_ubuntu:
	disk_size: '100, 20, 20'

local_disk

When true the disks for the computing instance will be provisioned on the host
which it runs, otherwise SAN disks will be provisioned.

hourly_billing

When true the computing instance will be billed on hourly usage, otherwise it
will be billed on a monthly basis.

domain

The domain name that will be used in the FQDN (Fully Qualified Domain Name) for
this instance. The domain setting will be used in conjunction with the
instance name to form the FQDN.

use_fqdn

If set to True, the Minion will be identified by the FQDN (Fully Qualified Domain
Name) which is a result of combining the domain configuration value and the
Minion name specified either via the CLI or a map file rather than only using the
short host name, or Minion ID. Default is False.

New in version 2016.3.0.

For example, if the value of domain is example.com and a new VM was created
via the CLI with salt-cloud -p base_softlayer_ubuntu my-vm, the resulting
Minion ID would be my-vm.example.com.

Note

When enabling the use_fqdn setting, the Minion ID will be the FQDN and will
interact with salt commands with the FQDN instead of the short hostname. However,
due to the way the SoftLayer API is constructed, some Salt Cloud functions such
as listing nodes or destroying VMs will only list the short hostname of the VM
instead of the FQDN.

Example output displaying the SoftLayer hostname quirk mentioned in the note above
(note the Minion ID is my-vm.example.com, but the VM to be destroyed is listed
with its short hostname, my-vm):

salt-key -L
Accepted Keys:
my-vm.example.com
Denied Keys:
Unaccepted Keys:
Rejected Keys:
#
#
salt my-vm.example.com test.version
my-vm.example.com:
 2018.3.4
#
#
salt-cloud -d my-vm.example.com
[INFO] salt-cloud starting
[INFO] POST https://api.softlayer.com/xmlrpc/v3.1/SoftLayer_Account
The following virtual machines are set to be destroyed:
 softlayer-config:
 softlayer:
 my-vm

Proceed? [N/y] y
... proceeding
[INFO] Destroying in non-parallel mode.
[INFO] POST https://api.softlayer.com/xmlrpc/v3.1/SoftLayer_Account
[INFO] POST https://api.softlayer.com/xmlrpc/v3.1/SoftLayer_Virtual_Guest
softlayer-config:

 softlayer:

 my-vm:
 True

location

Images to build an instance can be found using the --list-locations option:

salt-cloud --list-location my-softlayer

max_net_speed

Specifies the connection speed for the instance's network components. This
setting is optional. By default, this is set to 10.

post_uri

Specifies the uri location of the script to be downloaded and run after the instance
is provisioned.

New in version 2015.8.1.

Example:
.. code-block:: yaml

	base_softlayer_ubuntu:
	post_uri: 'https://SOMESERVERIP:8000/myscript.sh'

public_vlan

If it is necessary for an instance to be created within a specific frontend
VLAN, the ID for that VLAN can be specified in either the provider or profile
configuration.

This ID can be queried using the list_vlans function, as described below. This
setting is optional.

If this setting is set to None, salt-cloud will connect to the private ip of
the server.

Note

If this setting is not provided and the server is not built with a public
vlan, private_ssh or private_wds will need to be set to make sure that
salt-cloud attempts to connect to the private ip.

private_vlan

If it is necessary for an instance to be created within a specific backend VLAN,
the ID for that VLAN can be specified in either the provider or profile
configuration.

This ID can be queried using the list_vlans function, as described below. This
setting is optional.

private_network

If a server is to only be used internally, meaning it does not have a public
VLAN associated with it, this value would be set to True. This setting is
optional. The default is False.

private_ssh or private_wds

Whether to run the deploy script on the server using the public IP address
or the private IP address. If set to True, Salt Cloud will attempt to SSH or
WinRM into the new server using the private IP address. The default is False.
This settiong is optional.

global_identifier

When creating an instance using a custom template, this option is set to the
corresponding value obtained using the list_custom_images function. This
option will not be used if an image is set, and if an image is not set, it
is required.

The profile can be realized now with a salt command:

salt-cloud -p base_softlayer_ubuntu myserver

Using the above configuration, this will create myserver.example.com.

Once the instance has been created with salt-minion installed, connectivity to
it can be verified with Salt:

salt 'myserver.example.com' test.version

Dedicated Host

Soflayer allows the creation of new VMs in a dedicated host. This means that
you can order and pay a fixed amount for a bare metal dedicated host and use
it to provision as many VMs as you can fit in there. If you want your VMs to
be launched in a dedicated host, instead of Sofltayer's cloud, set the
dedicated_host_id parameter in your profile.

dedicated_host_id

The id of the dedicated host where the VMs should be created. If not set, VMs
will be created in Softlayer's cloud instead.

Bare metal Profiles

Set up an initial profile at /etc/salt/cloud.profiles:

base_softlayer_hw_centos:
 provider: my-softlayer-hw
 # CentOS 6.0 - Minimal Install (64 bit)
 image: 13963
 # 2 x 2.0 GHz Core Bare Metal Instance - 2 GB Ram
 size: 1921
 # 500GB SATA II
 hdd: 1267
 # San Jose 01
 location: 168642
 domain: example.com
 # Optional
 vlan: 396
 port_speed: 273
 banwidth: 248

Most of the above items are required; optional items are specified below.

image

Images to build an instance can be found using the --list-images option:

salt-cloud --list-images my-softlayer-hw

A list of id`s and names will be provided. The `name will describe the
operating system and architecture. The id will be the setting to be used in
the profile.

size

Sizes to build an instance can be found using the --list-sizes option:

salt-cloud --list-sizes my-softlayer-hw

A list of id`s and names will be provided. The `name will describe the speed
and quantity of CPU cores, and the amount of memory that the hardware will
contain. The id will be the setting to be used in the profile.

hdd

There is currently only one size of hard disk drive (HDD) that is available for
hardware instances on SoftLayer:

1267: 500GB SATA II

The hdd setting in the profile should be 1267. Other sizes may be
added in the future.

location

Locations to build an instance can be found using the --list-images option:

salt-cloud --list-locations my-softlayer-hw

A list of IDs and names will be provided. The location will describe the
location in human terms. The id will be the setting to be used in the profile.

domain

The domain name that will be used in the FQDN (Fully Qualified Domain Name) for
this instance. The domain setting will be used in conjunction with the
instance name to form the FQDN.

vlan

If it is necessary for an instance to be created within a specific VLAN, the ID
for that VLAN can be specified in either the provider or profile configuration.

This ID can be queried using the list_vlans function, as described below.

port_speed

Specifies the speed for the instance's network port. This setting refers to an
ID within the SoftLayer API, which sets the port speed. This setting is
optional. The default is 273, or, 100 Mbps Public & Private Networks. The
following settings are available:

	273: 100 Mbps Public & Private Networks

	274: 1 Gbps Public & Private Networks

	21509: 10 Mbps Dual Public & Private Networks (up to 20 Mbps)

	21513: 100 Mbps Dual Public & Private Networks (up to 200 Mbps)

	2314: 1 Gbps Dual Public & Private Networks (up to 2 Gbps)

	272: 10 Mbps Public & Private Networks

bandwidth

Specifies the network bandwidth available for the instance. This setting refers
to an ID within the SoftLayer API, which sets the bandwidth. This setting is
optional. The default is 248, or, 5000 GB Bandwidth. The following settings are
available:

	248: 5000 GB Bandwidth

	129: 6000 GB Bandwidth

	130: 8000 GB Bandwidth

	131: 10000 GB Bandwidth

	36: Unlimited Bandwidth (10 Mbps Uplink)

	125: Unlimited Bandwidth (100 Mbps Uplink)

Actions

The following actions are currently supported by the SoftLayer Salt Cloud
driver.

show_instance

This action is a thin wrapper around --full-query, which displays details on a
single instance only. In an environment with several machines, this will save a
user from having to sort through all instance data, just to examine a single
instance.

$ salt-cloud -a show_instance myinstance

Functions

The following functions are currently supported by the SoftLayer Salt Cloud
driver.

list_vlans

This function lists all VLANs associated with the account, and all known data
from the SoftLayer API concerning those VLANs.

$ salt-cloud -f list_vlans my-softlayer
$ salt-cloud -f list_vlans my-softlayer-hw

The id returned in this list is necessary for the vlan option when creating
an instance.

list_custom_images

This function lists any custom templates associated with the account, that can
be used to create a new instance.

$ salt-cloud -f list_custom_images my-softlayer

The globalIdentifier returned in this list is necessary for the
global_identifier option when creating an image using a custom template.

Optional Products for SoftLayer HW

The softlayer_hw driver supports the ability to add optional products, which
are supported by SoftLayer's API. These products each have an ID associated with
them, that can be passed into Salt Cloud with the optional_products option:

softlayer_hw_test:
 provider: my-softlayer-hw
 # CentOS 6.0 - Minimal Install (64 bit)
 image: 13963
 # 2 x 2.0 GHz Core Bare Metal Instance - 2 GB Ram
 size: 1921
 # 500GB SATA II
 hdd: 1267
 # San Jose 01
 location: 168642
 domain: example.com
 optional_products:
 # MySQL for Linux
 - id: 28
 # Business Continuance Insurance
 - id: 104

These values can be manually obtained by looking at the source of an order page
on the SoftLayer web interface. For convenience, many of these values are listed
here:

Public Secondary IP Addresses

	22: 4 Public IP Addresses

	23: 8 Public IP Addresses

Primary IPv6 Addresses

	17129: 1 IPv6 Address

Public Static IPv6 Addresses

	1481: /64 Block Static Public IPv6 Addresses

OS-Specific Addon

	17139: XenServer Advanced for XenServer 6.x

	17141: XenServer Enterprise for XenServer 6.x

	2334: XenServer Advanced for XenServer 5.6

	2335: XenServer Enterprise for XenServer 5.6

	13915: Microsoft WebMatrix

	21276: VMware vCenter 5.1 Standard

Control Panel Software

	121: cPanel/WHM with Fantastico and RVskin

	20778: Parallels Plesk Panel 11 (Linux) 100 Domain w/ Power Pack

	20786: Parallels Plesk Panel 11 (Windows) 100 Domain w/ Power Pack

	20787: Parallels Plesk Panel 11 (Linux) Unlimited Domain w/ Power Pack

	20792: Parallels Plesk Panel 11 (Windows) Unlimited Domain w/ Power Pack

	2340: Parallels Plesk Panel 10 (Linux) 100 Domain w/ Power Pack

	2339: Parallels Plesk Panel 10 (Linux) Unlimited Domain w/ Power Pack

	13704: Parallels Plesk Panel 10 (Windows) Unlimited Domain w/ Power Pack

Database Software

	29: MySQL 5.0 for Windows

	28: MySQL for Linux

	21501: Riak 1.x

	20893: MongoDB

	30: Microsoft SQL Server 2005 Express

	92: Microsoft SQL Server 2005 Workgroup

	90: Microsoft SQL Server 2005 Standard

	94: Microsoft SQL Server 2005 Enterprise

	1330: Microsoft SQL Server 2008 Express

	1340: Microsoft SQL Server 2008 Web

	1337: Microsoft SQL Server 2008 Workgroup

	1334: Microsoft SQL Server 2008 Standard

	1331: Microsoft SQL Server 2008 Enterprise

	2179: Microsoft SQL Server 2008 Express R2

	2173: Microsoft SQL Server 2008 Web R2

	2183: Microsoft SQL Server 2008 Workgroup R2

	2180: Microsoft SQL Server 2008 Standard R2

	2176: Microsoft SQL Server 2008 Enterprise R2

Anti-Virus & Spyware Protection

	594: McAfee VirusScan Anti-Virus - Windows

	414: McAfee Total Protection - Windows

Insurance

	104: Business Continuance Insurance

Monitoring

	55: Host Ping

	56: Host Ping and TCP Service Monitoring

Notification

	57: Email and Ticket

Advanced Monitoring

	2302: Monitoring Package - Basic

	2303: Monitoring Package - Advanced

	2304: Monitoring Package - Premium Application

Response

	58: Automated Notification

	59: Automated Reboot from Monitoring

	60: 24x7x365 NOC Monitoring, Notification, and Response

Intrusion Detection & Protection

	413: McAfee Host Intrusion Protection w/Reporting

Hardware & Software Firewalls

	411: APF Software Firewall for Linux

	894: Microsoft Windows Firewall

	410: 10Mbps Hardware Firewall

	409: 100Mbps Hardware Firewall

	408: 1000Mbps Hardware Firewall

Getting Started With Tencent Cloud

Tencent Cloud is a secure, reliable and high-performance cloud compute service
provided by Tencent. It is the 2nd largest Cloud Provider in China.

Dependencies

The Tencent Cloud driver for Salt Cloud requires the tencentcloud-sdk-python package,
which is available at PyPI:

https://pypi.org/project/tencentcloud-sdk-python/

This package can be installed using pip or easy_install:

pip install tencentcloud-sdk-python
easy_install tencentcloud-sdk-python

Provider Configuration

	To use this module, set up the cloud configuration at
	/etc/salt/cloud.providers or /etc/salt/cloud.providers.d/*.conf:

my-tencentcloud-config:
 driver: tencentcloud
 # Tencent Cloud Secret Id
 id: AKIDA64pOio9BMemkApzevX0HS169S4b750A
 # Tencent Cloud Secret Key
 key: 8r2xmPn0C5FDvRAlmcJimiTZKVRsk260
 # Tencent Cloud Region
 location: ap-guangzhou

Configuration Parameters

driver

Required. tencentcloud to use this module.

id

Required. Your Tencent Cloud secret id.

key

Required. Your Tencent Cloud secret key.

location

Optional. If this value is not specified, the default is ap-guangzhou.
Available locations can be found using the --list-locations option:

salt-cloud --list-location my-tencentcloud-config

Profile Configuration

Tencent Cloud profiles require a provider, availability_zone, image and size.
Set up an initial profile at /etc/salt/cloud.profiles or /etc/salt/cloud.profiles.d/*.conf:

tencentcloud-guangzhou-s1sm1:
 provider: my-tencentcloud-config
 availability_zone: ap-guangzhou-3
 image: img-31tjrtph
 size: S1.SMALL1
 allocate_public_ip: True
 internet_max_bandwidth_out: 1
 password: '153e41ec96140152'
 securitygroups:
 - sg-5e90804b

Configuration Parameters

provider

Required. Name of entry in salt/cloud.providers.d/??? file.

availability_zone

Required. The availability zone that the instance is located in.
Available zones can be found using the list_availability_zones function:

salt-cloud -f list_availability_zones my-tencentcloud-config

image

Required. The image id to use for the instance.
Available images can be found using the --list-images option:

salt-cloud --list-images my-tencentcloud-config

size

Required. Instance type for instance can be found using the --list-sizes option.

salt-cloud --list-sizes my-tencentcloud-config

securitygroups

Optional. A list of security group ids to associate with.
Available security group ids can be found using the list_securitygroups function:

salt-cloud -f list_securitygroups my-tencentcloud-config

Multiple security groups are supported:

tencentcloud-guangzhou-s1sm1:
 securitygroups:
 - sg-5e90804b
 - sg-8kpynf2t

hostname

Optional. The hostname of the instance.

instance_charge_type

Optional. The charge type of the instance. Valid values are PREPAID,
POSTPAID_BY_HOUR and SPOTPAID. The default is POSTPAID_BY_HOUR.

instance_charge_type_prepaid_renew_flag

Optional. When enabled, the instance will be renew automatically
when it reaches the end of the prepaid tenancy.
Valid values are NOTIFY_AND_AUTO_RENEW, NOTIFY_AND_MANUAL_RENEW and DISABLE_NOTIFY_AND_MANUAL_RENEW.

Note

This value is only used when instance_charge_type is set to PREPAID.

instance_charge_type_prepaid_period

Optional. The tenancy time in months of the prepaid instance,
Valid values are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 24, 36.

Note

This value is only used when instance_charge_type is set to PREPAID.

allocate_public_ip

Optional. Associate a public ip address with an instance
in a VPC or Classic. Boolean value, default is false.

internet_max_bandwidth_out

Optional. Maximum outgoing bandwidth to the public network, measured in Mbps (Mega bits per second).
Value range: [0, 100]. If this value is not specified, the default is 0 Mbps.

internet_charge_type

Optional. Internet charge type of the instance. Valid values are BANDWIDTH_PREPAID,
TRAFFIC_POSTPAID_BY_HOUR, BANDWIDTH_POSTPAID_BY_HOUR and BANDWIDTH_PACKAGE.
The default is TRAFFIC_POSTPAID_BY_HOUR.

key_name

Optional. The key pair to use for the instance, for example skey-16jig7tx.

password

Optional. Login password for the instance.

private_ip

Optional. The private ip to be assigned to this instance,
must be in the provided subnet and available.

project_id

Optional. The project this instance belongs to, defaults to 0.

vpc_id

Optional. The id of a VPC network.
If you want to create instances in a VPC network, this parameter must be set.

subnet_id

Optional. The id of a VPC subnet.
If you want to create instances in VPC network, this parameter must be set.

system_disk_size

Optional. Size of the system disk.
Value range: [50, 1000], and unit is GB. Default is 50 GB.

system_disk_type

Optional. Type of the system disk.
Valid values are CLOUD_BASIC, CLOUD_SSD and CLOUD_PREMIUM, default value is CLOUD_BASIC.

Actions

The following actions are supported by the Tencent Cloud Salt Cloud driver.

show_instance

This action is a thin wrapper around --full-query, which displays details on a
single instance only. In an environment with several machines, this will save a
user from having to sort through all instance data, just to examine a single
instance.

$ salt-cloud -a show_instance myinstance

show_disk

Return disk details about a specific instance.

$ salt-cloud -a show_disk myinstance

destroy

Destroy a Tencent Cloud instance.

$ salt-cloud -a destroy myinstance

start

Start a Tencent Cloud instance.

$ salt-cloud -a start myinstance

stop

Stop a Tencent Cloud instance.

$ salt-cloud -a stop myinstance

reboot

Reboot a Tencent Cloud instance.

$ salt-cloud -a reboot myinstance

Functions

The following functions are currently supported by the Tencent Cloud Salt Cloud driver.

list_securitygroups

Lists all Tencent Cloud security groups in current region.

$ salt-cloud -f list_securitygroups my-tencentcloud-config

list_availability_zones

Lists all Tencent Cloud availability zones in current region.

$ salt-cloud -f list_availability_zones my-tencentcloud-config

list_custom_images

Lists any custom images associated with the account. These images can
be used to create a new instance.

$ salt-cloud -f list_custom_images my-tencentcloud-config

show_image

Return details about a specific image. This image can be used
to create a new instance.

$ salt-cloud -f show_image tencentcloud image=img-31tjrtph

Getting Started With Vagrant

The Vagrant driver is a new, experimental driver for spinning up a VagrantBox
virtual machine, and installing Salt on it.

Dependencies

The Vagrant driver itself has no external dependencies.

The machine which will host the VagrantBox must be an already existing minion
of the cloud server's Salt master.
It must have Vagrant [https://www.vagrantup.com/] installed, and a Vagrant-compatible virtual machine engine,
such as VirtualBox [https://www.virtualbox.org/].
(Note: The Vagrant driver does not depend on the salt-cloud VirtualBox driver in any way.)

[Caution: The version of Vagrant packaged for apt install in Ubuntu 16.04 will not connect a bridged
network adapter correctly. Use a version downloaded directly from the web site.]

Include the Vagrant guest editions plugin:
vagrant plugin install vagrant-vbguest.

Configuration

Configuration of the client virtual machine (using VirtualBox, VMware, etc)
will be done by Vagrant as specified in the Vagrantfile on the host machine.

Salt-cloud will push the commands to install and provision a salt minion on
the virtual machine, so you need not (perhaps should not) provision salt
in your Vagrantfile, in most cases.

If, however, your cloud master cannot open an SSH connection to the child VM,
you may need to let Vagrant provision the VM with Salt, and use some other
method (such as passing a pillar dictionary to the VM) to pass the master's
IP address to the VM. The VM can then attempt to reach the salt master in the
usual way for non-cloud minions. Specify the profile configuration argument
as deploy: False to prevent the cloud master from trying.

Note: This example is for /etc/salt/cloud.providers file or any file in
the /etc/salt/cloud.providers.d/ directory.

my-vagrant-config:
 minion:
 master: 111.222.333.444
 provider: vagrant

Because the Vagrant driver needs a place to store the mapping between the
node name you use for Salt commands and the Vagrantfile which controls the VM,
you must configure your salt minion as a Salt smb server.
(See host provisioning example below.)

Profiles

Vagrant requires a profile to be configured for each machine that needs Salt
installed. The initial profile can be set up at /etc/salt/cloud.profiles
or in the /etc/salt/cloud.profiles.d/ directory.

Each profile requires a vagrantfile parameter. If the Vagrantfile has
definitions for multiple machines [https://www.vagrantup.com/docs/multi-machine/] then you need a machine parameter,

Salt-cloud uses SSH to provision the minion. There must be a routable path
from the cloud master to the VM. Usually, you will want to use
a bridged network adapter for SSH. The address may not be known until
DHCP assigns it. If ssh_host is not defined, and target_network
is defined, the driver will attempt to read the address from the output
of an ifconfig command. Lacking either setting,
the driver will try to use the value Vagrant returns as its ssh_host,
which will work only if the cloud master is running somewhere on the same host.

The target_network setting should be used
to identify the IP network your bridged adapter is expected to appear on.
Use CIDR notation, like target_network: '2001:DB8::/32'
or target_network: '192.0.2.0/24'.

Profile configuration example:

/etc/salt/cloud.profiles.d/vagrant.conf

vagrant-machine:
 host: my-vhost # the Salt id of the virtual machine's host computer.
 provider: my-vagrant-config
 cwd: /srv/machines # the path to your Vagrantfile.
 vagrant_runas: my-username # the username who defined the Vagrantbox on the host
 # vagrant_up_timeout: 300 # (seconds) timeout for cmd.run of the "vagrant up" command
 # vagrant_provider: '' # option for "vagrant up" like: "--provider vmware_fusion"
 # ssh_host: None # "None" means try to find the routable IP address from "ifconfig"
 # ssh_username: '' # also required when ssh_host is used.
 # target_network: None # Expected CIDR address range of your bridged network
 # force_minion_config: false # Set "true" to re-purpose an existing VM

The machine can now be created and configured with the following command:

salt-cloud -p vagrant-machine my-id

This will create the machine specified by the cloud profile
vagrant-machine, and will give the machine the minion id of
my-id. If the cloud master is also the salt-master, its Salt
key will automatically be accepted on the master.

Once a salt-minion has been successfully installed on the instance, connectivity
to it can be verified with Salt:

salt my-id test.version

Provisioning a Vagrant cloud host (example)

In order to query or control minions it created, each host
minion needs to track the Salt node names associated with
any guest virtual machines on it.
It does that using a Salt sdb database.

The Salt sdb is not configured by default. The following example shows a
simple installation.

This example assumes:

	you are on a large network using the 10.x.x.x IP address space

	your Salt master's Salt id is "bevymaster"

	it will also be your salt-cloud controller

	it is at hardware address 10.124.30.7

	it is running a recent Debian family Linux (raspbian)

	your workstation is a Salt minion of bevymaster

	your workstation's minion id is "my_laptop"

	VirtualBox has been installed on "my_laptop" (apt install is okay)

	Vagrant was installed from vagrantup.com. (not the 16.04 Ubuntu apt)

	"my_laptop" has done "vagrant plugin install vagrant-vbguest"

	the VM you want to start is on "my_laptop" at "/home/my_username/Vagrantfile"

file /etc/salt/minion.d/vagrant_sdb.conf on host computer "my_laptop"
-- this sdb database is required by the Vagrant module --
vagrant_sdb_data: # The sdb database must have this name.
 driver: sqlite3 # Let's use SQLite to store the data ...
 database: /var/cache/salt/vagrant.sqlite # ... in this file ...
 table: sdb # ... using this table name.
 create_table: True # if not present

Remember to re-start your minion after changing its configuration files...

sudo systemctl restart salt-minion

-*- mode: ruby -*-
file /home/my_username/Vagrantfile on host computer "my_laptop"
BEVY = "bevy1"
DOMAIN = BEVY + ".test" # .test is an ICANN reserved non-public TLD

must supply a list of names to avoid Vagrant asking for interactive input
def get_good_ifc() # try to find a working Ubuntu network adapter name
 addr_infos = Socket.getifaddrs
 addr_infos.each do |info|
 a = info.addr
 if a and a.ip? and not a.ip_address.start_with?("127.")
 return info.name
 end
 end
 return "eth0" # fall back to an old reliable name
end

Vagrant.configure(2) do |config|
 config.ssh.forward_agent = true # so you can use git ssh://...

 # add a bridged network interface. (try to detect name, then guess MacOS names, too)
 interface_guesses = [get_good_ifc(), 'en0: Ethernet', 'en1: Wi-Fi (AirPort)']
 config.vm.network "public_network", bridge: interface_guesses
 if ARGV[0] == "up"
 puts "Trying bridge network using interfaces: #{interface_guesses}"
 end
 config.vm.provision "shell", inline: "ip address", run: "always" # make user feel good

 # Define machine QUAIL1
 config.vm.define "quail1", primary: true do |quail_config|
 quail_config.vm.box = "boxesio/xenial64-standard" # a public VMware & Virtualbox box
 quail_config.vm.hostname = "quail1." + DOMAIN # supply a name in our bevy
 quail_config.vm.provider "virtualbox" do |v|
 v.memory = 1024 # limit memory for the virtual box
 v.cpus = 1
 v.linked_clone = true # make a soft copy of the base Vagrant box
 v.customize ["modifyvm", :id, "--natnet1", "192.168.128.0/24"] # do not use 10.x network for NAT
 end
 end
end

file /etc/salt/cloud.profiles.d/my_vagrant_profiles.conf on bevymaster
q1:
 host: my_laptop # the Salt id of your virtual machine host
 machine: quail1 # a machine name in the Vagrantfile (if not primary)
 vagrant_runas: my_username # owner of Vagrant box files on "my_laptop"
 cwd: '/home/my_username' # the path (on "my_laptop") of the Vagrantfile
 provider: my_vagrant_provider # name of entry in provider.conf file
 target_network: '10.0.0.0/8' # VM external address will be somewhere here

file /etc/salt/cloud.providers.d/vagrant_provider.conf on bevymaster
my_vagrant_provider:
 driver: vagrant
 minion:
 master: 10.124.30.7 # the hard address of the master

Create and use your new Salt minion

	Typing on the Salt master computer bevymaster, tell it to create a new minion named v1 using profile q1...

sudo salt-cloud -p q1 v1
sudo salt v1 network.ip_addrs
 [you get a list of IP addresses, including the bridged one]

	logged in to your laptop (or some other computer known to GitHub)...

[NOTE:] if you are using MacOS, you need to type ssh-add -K after each boot,
unless you use one of the methods in this gist [https://github.com/jirsbek/SSH-keys-in-macOS-Sierra-keychain].

ssh -A vagrant@< the bridged network address >
 # [or, if you are at /home/my_username/ on my_laptop]
vagrant ssh quail1

	then typing on your new node "v1" (a.k.a. quail1.bevy1.test)...

password: vagrant
 # [stuff types out ...]

ls -al /vagrant
 # [should be shared /home/my_username from my_laptop]

you can access other network facilities using the ssh authorization
as recorded in your ~.ssh/ directory on my_laptop ...

sudo apt update
sudo apt install git
git clone ssh://git@github.com/yourID/your_project
etc...

Getting Started with VEXXHOST

VEXXHOST [https://vexxhost.com/] is a cloud computing host which provides
Canadian cloud computing [https://vexxhost.com//cloud-computing] services
which are based in Monteral and use the libcloud OpenStack driver. VEXXHOST
currently runs the Havana release of OpenStack. When provisioning new
instances, they automatically get a public IP and private IP address.
Therefore, you do not need to assign a floating IP to access your instance
after it's booted.

Cloud Provider Configuration

To use the openstack driver for the VEXXHOST public cloud, you will need to
set up the cloud provider configuration file as in the example below:

/etc/salt/cloud.providers.d/vexxhost.conf:
In order to use the VEXXHOST public cloud, you will need to setup a cloud
provider configuration file as in the example below which uses the OpenStack
driver.

my-vexxhost-config:
 # Set the location of the salt-master
 #
 minion:
 master: saltmaster.example.com

 # Configure VEXXHOST using the OpenStack plugin
 #
 identity_url: http://auth.api.thenebulacloud.com:5000/v2.0/tokens
 compute_name: nova

 # Set the compute region:
 #
 compute_region: na-yul-nhs1

 # Configure VEXXHOST authentication credentials
 #
 user: your-tenant-id
 password: your-api-key
 tenant: your-tenant-name

 # keys to allow connection to the instance launched
 #
 ssh_key_name: yourkey
 ssh_key_file: /path/to/key/yourkey.priv

 driver: openstack

Note

Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This
change was made to avoid confusion with the provider parameter that is used in cloud profile
definitions. Cloud provider definitions now use driver to refer to the Salt cloud module that
provides the underlying functionality to connect to a cloud host, while cloud profiles continue
to use provider to refer to provider configurations that you define.

Authentication

All of the authentication fields that you need can be found by logging into
your VEXXHOST customer center. Once you've logged in, you will need to click
on "CloudConsole" and then click on "API Credentials".

Cloud Profile Configuration

In order to get the correct image UUID and the instance type to use in the
cloud profile, you can run the following command respectively:

salt-cloud --list-images=vexxhost-config
salt-cloud --list-sizes=vexxhost-config

Once you have that, you can go ahead and create a new cloud profile. This
profile will build an Ubuntu 12.04 LTS nb.2G instance.

/etc/salt/cloud.profiles.d/vh_ubuntu1204_2G.conf:

vh_ubuntu1204_2G:
 provider: my-vexxhost-config
 image: 4051139f-750d-4d72-8ef0-074f2ccc7e5a
 size: nb.2G

Provision an instance

To create an instance based on the sample profile that we created above, you
can run the following salt-cloud command.

salt-cloud -p vh_ubuntu1204_2G vh_instance1

Typically, instances are provisioned in under 30 seconds on the VEXXHOST public
cloud. After the instance provisions, it will be set up a minion and then
return all the instance information once it's complete.

Once the instance has been setup, you can test connectivity to it by running
the following command:

salt vh_instance1 test.version

You can now continue to provision new instances and they will all automatically
be set up as minions of the master you've defined in the configuration file.

Getting Started With Virtualbox

The Virtualbox cloud module allows you to manage a local Virtualbox hypervisor. Remote hypervisors may come later on.

Dependencies

The virtualbox module for Salt Cloud requires the Virtualbox SDK [http://download.virtualbox.org/virtualbox/SDKRef.pdf]
which is contained in a virtualbox installation from

https://www.virtualbox.org/wiki/Downloads

Configuration

The Virtualbox cloud module just needs to use the virtualbox driver for now. Virtualbox will be run as the running user.

/etc/salt/cloud.providers or /etc/salt/cloud.providers.d/virtualbox.conf:

virtualbox-config:
 driver: virtualbox

Profiles

Set up an initial profile at /etc/salt/cloud.profiles or
/etc/salt/cloud.profiles.d/virtualbox.conf:

virtualbox-test:
 provider: virtualbox-config
 clonefrom: VM_to_clone_from
 # Optional
 power_on: True
 deploy: True
 ssh_username: a_username
 password: a_password
 sudo: a_username
 sudo_password: a_password
 # Example minion config
 minion:
 master: localhost
 make_master: True

	clonefrom Mandatory
	Enter the name of the VM/template to clone from.

So far only machines can only be cloned and automatically provisioned by Salt Cloud.

Provisioning

In order to provision when creating a new machine power_on and deploy have to be True.

Furthermore to connect to the VM ssh_username and password will have to be set.

sudo and sudo_password are the credentials for getting root access in order to deploy salt

Actions

	start
	Attempt to boot a VM by name. VMs should have unique names in order to boot the correct one.

	stop
	Attempt to stop a VM. This is akin to a force shutdown or 5 second press.

Functions

	show_image
	Show all available information about a VM given by the image parameter

$ salt-cloud -f show_image virtualbox image=my_vm_name

Getting Started With VMware

New in version 2015.5.4.

Author: Nitin Madhok <nmadhok@g.clemson.edu>

The VMware cloud module allows you to manage VMware ESX, ESXi, and vCenter.

Dependencies

The vmware module for Salt Cloud requires the pyVmomi package, which is
available at PyPI:

https://pypi.org/project/pyvmomi/

This package can be installed using pip or easy_install:

pip install pyvmomi
easy_install pyvmomi

Note

Version 6.0 of pyVmomi has some problems with SSL error handling on certain
versions of Python. If using version 6.0 of pyVmomi, the machine that you
are running the proxy minion process from must have either Python 2.7.9 or
newer This is due to an upstream dependency in pyVmomi 6.0 that is not supported
in Python version 2.6 to 2.7.8. If the version of Python running the salt-cloud
command is not in the supported range, you will need to install an earlier version
of pyVmomi. See Issue #29537 [https://github.com/saltstack/salt/issues/29537] for more information.

Note

pyVmomi doesn't expose the ability to specify the locale when connecting to
VMware. This causes parsing issues when connecting to an instance of VMware
running under a non-English locale. Until this feature is added upstream
Issue #38402 [https://github.com/saltstack/salt/issues/38402] contains a workaround.

Configuration

The VMware cloud module needs the vCenter or ESX/ESXi URL, username and password to be
set up in the cloud configuration at
/etc/salt/cloud.providers or /etc/salt/cloud.providers.d/vmware.conf:

my-vmware-config:
 driver: vmware
 user: 'DOMAIN\user'
 password: 'verybadpass'
 url: '10.20.30.40'

vcenter01:
 driver: vmware
 user: 'DOMAIN\user'
 password: 'verybadpass'
 url: 'vcenter01.domain.com'
 protocol: 'https'
 port: 443

vcenter02:
 driver: vmware
 user: 'DOMAIN\user'
 password: 'verybadpass'
 url: 'vcenter02.domain.com'
 protocol: 'http'
 port: 80

vcenter03-do-not-verify:
 driver: vmware
 user: 'DOMAIN\user'
 password: 'verybadpass'
 url: 'vcenter01.domain.com'
 protocol: 'https'
 port: 443
 verify_ssl: False

esx01:
 driver: vmware
 user: 'admin'
 password: 'verybadpass'
 url: 'esx01.domain.com'

Note

Optionally, protocol and port can be specified if the vCenter
server is not using the defaults. Default is protocol: https and
port: 443.

Note

Changed in version 2015.8.0.

The provider parameter in cloud provider configuration was renamed to driver.
This change was made to avoid confusion with the provider parameter that is
used in cloud profile configuration. Cloud provider configuration now uses driver
to refer to the salt-cloud driver that provides the underlying functionality to
connect to a cloud provider, while cloud profile configuration continues to use
provider to refer to the cloud provider configuration that you define.

Profiles

Set up an initial profile at /etc/salt/cloud.profiles or
/etc/salt/cloud.profiles.d/vmware.conf:

vmware-centos6.5:
 provider: vcenter01
 clonefrom: test-vm

 ## Optional arguments
 num_cpus: 4
 memory: 8GB
 devices:
 cd:
 CD/DVD drive 1:
 device_type: datastore_iso_file
 iso_path: "[nap004-1] vmimages/tools-isoimages/linux.iso"
 CD/DVD drive 2:
 device_type: client_device
 mode: atapi
 controller: IDE 2
 CD/DVD drive 3:
 device_type: client_device
 mode: passthrough
 controller: IDE 3
 disk:
 Hard disk 1:
 size: 30
 Hard disk 2:
 size: 20
 controller: SCSI controller 2
 Hard disk 3:
 size: 5
 controller: SCSI controller 3
 datastore: smalldiskdatastore
 network:
 Network adapter 1:
 name: 10.20.30-400-Test
 switch_type: standard
 ip: 10.20.30.123
 gateway: [10.20.30.110]
 subnet_mask: 255.255.255.128
 domain: example.com
 Network adapter 2:
 name: 10.30.40-500-Dev-DHCP
 adapter_type: e1000
 switch_type: distributed
 mac: '00:16:3e:e8:19:0f'
 Network adapter 3:
 name: 10.40.50-600-Prod
 adapter_type: vmxnet3
 switch_type: distributed
 ip: 10.40.50.123
 gateway: [10.40.50.110]
 subnet_mask: 255.255.255.128
 domain: example.com
 scsi:
 SCSI controller 1:
 type: lsilogic
 SCSI controller 2:
 type: lsilogic_sas
 bus_sharing: virtual
 SCSI controller 3:
 type: paravirtual
 bus_sharing: physical
 ide:
 IDE 2: {}
 IDE 3: {}

 domain: example.com
 dns_servers:
 - 123.127.255.240
 - 123.127.255.241
 - 123.127.255.242

 resourcepool: Resources
 cluster: Prod

 datastore: HUGE-DATASTORE-Cluster
 folder: Development
 datacenter: DC1
 host: c4212n-002.domain.com
 template: False
 power_on: True
 extra_config:
 mem.hotadd: 'yes'
 guestinfo.foo: bar
 guestinfo.domain: foobar.com
 guestinfo.customVariable: customValue
 annotation: Created by Salt-Cloud

 deploy: True
 customization: True
 private_key: /root/.ssh/mykey.pem
 ssh_username: cloud-user
 password: veryVeryBadPassword
 minion:
 master: 123.127.193.105

 file_map:
 /path/to/local/custom/script: /path/to/remote/script
 /path/to/local/file: /path/to/remote/file
 /srv/salt/yum/epel.repo: /etc/yum.repos.d/epel.repo

 hardware_version: 10
 image: centos64Guest

 #For Windows VM
 win_username: Administrator
 win_password: administrator
 win_organization_name: ABC-Corp
 plain_text: True
 win_installer: /root/Salt-Minion-2015.8.4-AMD64-Setup.exe
 win_user_fullname: Windows User
 verify_ssl: False

	provider
	Enter the name that was specified when the cloud provider config was created.

	clonefrom
	Enter the name of the VM/template to clone from. If not specified, the VM will be created
without cloning.

	num_cpus
	Enter the number of vCPUS that you want the VM/template to have. If not specified,
the current VM/template's vCPU count is used.

	cores_per_socket
	Enter the number of cores per vCPU that you want the VM/template to have. If not specified,
this will default to 1.

Note

Cores per socket should be less than or equal to the total number of
vCPUs assigned to the VM/template.

New in version 2016.11.0.

	memory
	Enter the memory size (in MB or GB) that you want the VM/template to have. If
not specified, the current VM/template's memory size is used. Example
memory: 8GB or memory: 8192MB.

	devices
	Enter the device specifications here. Currently, the following devices can be
created or reconfigured:

	cd
	Enter the CD/DVD drive specification here. If the CD/DVD drive doesn't exist,
it will be created with the specified configuration. If the CD/DVD drive
already exists, it will be reconfigured with the specifications. The following
options can be specified per CD/DVD drive:

	device_type
	Specify how the CD/DVD drive should be used. Currently supported types are
client_device and datastore_iso_file. Default is
device_type: client_device

	iso_path
	Enter the path to the iso file present on the datastore only if
device_type: datastore_iso_file. The syntax to specify this is
iso_path: "[datastoreName] vmimages/tools-isoimages/linux.iso". This
field is ignored if device_type: client_device

	mode
	Enter the mode of connection only if device_type: client_device. Currently
supported modes are passthrough and atapi. This field is ignored if
device_type: datastore_iso_file. Default is mode: passthrough

	controller
	Specify the IDE controller label to which this drive should be attached.
This should be specified only when creating both the specified IDE
controller as well as the CD/DVD drive at the same time.

	disk
	Enter the disk specification here. If the hard disk doesn't exist, it will
be created with the provided size. If the hard disk already exists, it will
be expanded if the provided size is greater than the current size of the disk.

	size
	Enter the size of disk in GB

	thin_provision
	Specifies whether the disk should be thin provisioned or not. Default is thin_provision: False.
.. versionadded:: 2016.3.0

	eagerly_scrub
	Specifies whether the disk should be rewrite with zeros during thick provisioning or not.
Default is eagerly_scrub: False.
.. versionadded:: 2018.3.0

	controller
	Specify the SCSI controller label to which this disk should be attached.
This should be specified only when creating both the specified SCSI
controller as well as the hard disk at the same time.

	datastore
	The name of a valid datastore should you wish the new disk to be in
a datastore other than the default for the VM.

	network
	Enter the network adapter specification here. If the network adapter doesn't
exist, a new network adapter will be created with the specified network name,
type and other configuration. If the network adapter already exists, it will
be reconfigured with the specifications. The following additional options can
be specified per network adapter (See example above):

	name
	Enter the network name you want the network adapter to be mapped to.

	adapter_type
	Enter the network adapter type you want to create. Currently supported
types are vmxnet, vmxnet2, vmxnet3, e1000 and e1000e.
If no type is specified, by default vmxnet3 will be used.

	switch_type
	Enter the type of switch to use. This decides whether to use a standard
switch network or a distributed virtual portgroup. Currently supported
types are standard for standard portgroups and distributed for
distributed virtual portgroups.

	ip
	Enter the static IP you want the network adapter to be mapped to. If the
network specified is DHCP enabled, you do not have to specify this.

	gateway
	Enter the gateway for the network as a list. If the network specified
is DHCP enabled, you do not have to specify this.

	subnet_mask
	Enter the subnet mask for the network. If the network specified is DHCP
enabled, you do not have to specify this.

	domain
	Enter the domain to be used with the network adapter. If the network
specified is DHCP enabled, you do not have to specify this.

	mac
	Enter the MAC for this network adapter. If not specified an address
will be selected automatically.

	scsi
	Enter the SCSI controller specification here. If the SCSI controller doesn't exist,
a new SCSI controller will be created of the specified type. If the SCSI controller
already exists, it will be reconfigured with the specifications. The following
additional options can be specified per SCSI controller:

	type
	Enter the SCSI controller type you want to create. Currently supported
types are lsilogic, lsilogic_sas and paravirtual. Type must
be specified when creating a new SCSI controller.

	bus_sharing
	Specify this if sharing of virtual disks between virtual machines is desired.
The following can be specified:

	virtual
	Virtual disks can be shared between virtual machines on the same server.

	physical
	Virtual disks can be shared between virtual machines on any server.

	no
	Virtual disks cannot be shared between virtual machines.

	ide
	Enter the IDE controller specification here. If the IDE controller doesn't exist,
a new IDE controller is created. If the IDE controller already exists,
no further changes to it are made. The IDE controller specification is
a dictionary.

ide:
 IDE 2: {}

	domain
	Enter the global domain name to be used for DNS. If not specified and if the VM name
is a FQDN, domain is set to the domain from the VM name. Default is local.

	dns_servers
	Enter the list of DNS servers to use in order of priority.

	resourcepool
	Enter the name of the resourcepool to which the new virtual machine should be
attached. This determines what compute resources will be available to the clone.

Note

	For a clone operation from a virtual machine, it will use the same
resourcepool as the original virtual machine unless specified.

	For a clone operation from a template to a virtual machine, specifying
either this or cluster is required. If both are specified, the resourcepool
value will be used.

	For a clone operation to a template, this argument is ignored.

	cluster
	Enter the name of the cluster whose resource pool the new virtual machine should
be attached to.

Note

	For a clone operation from a virtual machine, it will use the same cluster's
resourcepool as the original virtual machine unless specified.

	For a clone operation from a template to a virtual machine, specifying either
this or resourcepool is required. If both are specified, the resourcepool
value will be used.

	For a clone operation to a template, this argument is ignored.

	datastore
	Enter the name of the datastore or the datastore cluster where the virtual machine
should be located on physical storage. If not specified, the current datastore is
used.

Note

	If you specify a datastore cluster name, DRS Storage recommendation is
automatically applied.

	If you specify a datastore name, DRS Storage recommendation is disabled.

	folder
	Enter the name of the folder that will contain the new virtual machine.

Note

	For a clone operation from a VM/template, the new VM/template will be added
to the same folder that the original VM/template belongs to unless specified.

	If both folder and datacenter are specified, the folder value will be used.

	datacenter
	Enter the name of the datacenter that will contain the new virtual machine.

Note

	For a clone operation from a VM/template, the new VM/template will be added
to the same folder that the original VM/template belongs to unless specified.

	If both folder and datacenter are specified, the folder value will be used.

	host
	Enter the name of the target host where the virtual machine should be registered.

If not specified:

Note

	If resource pool is not specified, current host is used.

	If resource pool is specified, and the target pool represents a stand-alone
host, the host is used.

	If resource pool is specified, and the target pool represents a DRS-enabled
cluster, a host selected by DRS is used.

	If resource pool is specified and the target pool represents a cluster without
DRS enabled, an InvalidArgument exception be thrown.

	template
	Specifies whether the new virtual machine should be marked as a template or not.
Default is template: False.

	power_on
	Specifies whether the new virtual machine should be powered on or not. If
template: True is set, this field is ignored. Default is power_on: True.

	cpu_hot_add
	Boolean value that enables hot-add support for adding CPU resources while
the guest is powered on.

	cpu_hot_remove
	Boolean value that enables hot-remove support for removing CPU resources while
the guest is powered on.

	mem_hot_add
	Boolean value that enables hot-add support for adding memory resources while
the guest is powered on.

	nested_hv
	Boolean value that enables support for nested hardware-assisted virtualization.

	vpmc
	Boolean value that enables virtual CPU performance counters.

	extra_config
	Specifies the additional configuration information for the virtual machine. This
describes a set of modifications to the additional options. If the key is already
present, it will be reset with the new value provided. Otherwise, a new option is
added. Keys with empty values will be removed.

	annotation
	User-provided description of the virtual machine. This will store a message in the
vSphere interface, under the annotations section in the Summary view of the virtual
machine.

	deploy
	Specifies if salt should be installed on the newly created VM. Default is True
so salt will be installed using the bootstrap script. If template: True or
power_on: False is set, this field is ignored and salt will not be installed.

	wait_for_ip_timeout
	When deploy: True, this timeout determines the maximum time to wait for
VMware tools to be installed on the virtual machine. If this timeout is
reached, an attempt to determine the client's IP will be made by resolving
the VM's name. By lowering this value a salt bootstrap can be fully
automated for systems that are not built with VMware tools. Default is
wait_for_ip_timeout: 1200.

	customization
	Specify whether the new virtual machine should be customized or not. If
customization: False is set, the new virtual machine will not be customized.
Default is customization: True.

	private_key
	Specify the path to the private key to use to be able to ssh to the VM.

	ssh_username
	Specify the username to use in order to ssh to the VM. Default is root

	password
	Specify a password to use in order to ssh to the VM. If private_key is
specified, you do not need to specify this.

	minion
	Specify custom minion configuration you want the salt minion to have. A good example
would be to specify the master as the IP/DNS name of the master.

	file_map
	Specify file/files you want to copy to the VM before the bootstrap script is run
and salt is installed. A good example of using this would be if you need to put
custom repo files on the server in case your server will be in a private network
and cannot reach external networks.

	hardware_version
	Specify the virtual hardware version for the vm/template that is supported by the
host.

	image
	Specify the guest id of the VM. For a full list of supported values see the
VMware vSphere documentation:

https://code.vmware.com/apis?pid=com.vmware.wssdk.apiref.doc&release=vsphere-60&topic=vim.vm.GuestOsDescriptor.GuestOsIdentifier.html

Note

For a clone operation, this argument is ignored.

	win_username
	Specify windows vm administrator account.

Note

Windows template should have "administrator" account.

	win_password
	Specify windows vm administrator account password.

Note

During network configuration (if network specified), it is used to specify new administrator password for the machine.

	win_organization_name
	
	Specify windows vm user's organization. Default organization name is Organization
	VMware vSphere documentation:

https://www.vmware.com/support/developer/vc-sdk/visdk25pubs/ReferenceGuide/vim.vm.customization.UserData.html

	win_user_fullname
	
	Specify windows vm user's fullname. Default fullname is "Windows User"
	VMware vSphere documentation:

https://www.vmware.com/support/developer/vc-sdk/visdk25pubs/ReferenceGuide/vim.vm.customization.UserData.html

	plain_text
	Flag to specify whether or not the password is in plain text, rather than encrypted.
VMware vSphere documentation:

https://www.vmware.com/support/developer/vc-sdk/visdk25pubs/ReferenceGuide/vim.vm.customization.Password.html

	win_installer
	Specify windows minion client installer path

	win_run_once
	Specify a list of commands to run on first login to a windows minion

https://www.vmware.com/support/developer/vc-sdk/visdk25pubs/ReferenceGuide/vim.vm.customization.GuiRunOnce.html

	verify_ssl
	Verify the vmware ssl certificate. The default is True.

Cloning a VM

Cloning VMs/templates is the easiest and the preferred way to work with VMs using the VMware driver.

Note

Cloning operations are unsupported on standalone ESXi hosts, a vCenter server will be required.

Example of a minimal profile:

my-minimal-clone:
 provider: vcenter01
 clonefrom: 'test-vm'

When cloning a VM, all the profile configuration parameters are optional and the configuration gets inherited from the clone.

Example to add/resize a disk:

my-disk-example:
 provider: vcenter01
 clonefrom: 'test-vm'

 devices:
 disk:
 Hard disk 1:
 size: 30

Depending on the configuration of the VM that is getting cloned, the disk in the resulting clone will differ.

Note

	If the VM has no disk named 'Hard disk 1' an empty disk with the specified size will be added to the clone.

	If the VM has a disk named 'Hard disk 1' and the size specified is larger than the original disk, an empty disk with the specified size will be added to the clone.

	If the VM has a disk named 'Hard disk 1' and the size specified is smaller than the original disk, an empty disk with the original size will be added to the clone.

Example to reconfigure the memory and number of vCPUs:

my-disk-example:
 provider: vcenter01
 clonefrom: 'test-vm'

 memory: 16GB
 num_cpus: 8

Instant Cloning a VM

Instant Cloning a powered-ON VM is the easiest and the preferred way to work with VMs from controlled point in time using the VMware driver.

Note

Instant Cloning operations are unsupported on standalone ESXi hosts, a vCenter server will be required.

Example of a minimal profile when skipping optional parameters:

my-minimal-clone:
 provider: vcenter01
 clonefrom: 'test-vm'
 instant_clone: true

When Instant cloning a VM, all the profile configuration parameters are optional and the configuration gets inherited from the clone.

Example to specify optional parameters :

my-minimal-clone:
 provider: vcenter01
 clonefrom: 'test-vm'
 instant_clone: true
 datastore: 'local-0 (1)'
 datacenter: 'vAPISdkDatacenter'
 resourcepool: 'RP1'

Cloning a Template

Cloning a template works similar to cloning a VM except for the fact that a resource
pool or cluster must be specified additionally in the profile.

Example of a minimal profile:

my-template-clone:
 provider: vcenter01
 clonefrom: 'test-template'
 cluster: 'Prod'

Cloning from a Snapshot

New in version 2016.3.5.

Cloning from a snapshot requires that one of the
supported options be set in the cloud profile.

Supported options are createNewChildDiskBacking,
moveChildMostDiskBacking, moveAllDiskBackingsAndAllowSharing
and moveAllDiskBackingsAndDisallowSharing.

Example of a minimal profile:

my-template-clone:
 provider: vcenter01
 clonefrom: 'salt_vm'
 snapshot:
 disk_move_type: createNewChildDiskBacking
 # these types are also supported
 # disk_move_type: moveChildMostDiskBacking
 # disk_move_type: moveAllDiskBackingsAndAllowSharing
 # disk_move_type: moveAllDiskBackingsAndDisallowSharing

Creating a VM

New in version 2016.3.0.

Creating a VM from scratch means that more configuration has to be specified in the
profile because there is no place to inherit configuration from.

Note

Unlike most cloud drivers that use prepared images, creating VMs using VMware
cloud driver needs an installation method that requires no human interaction.
For Example: preseeded ISO, kickstart URL or network PXE boot.

Example of a minimal profile:

my-minimal-profile:
 provider: esx01
 datastore: esx01-datastore
 resourcepool: Resources
 folder: vm

Note

The example above contains the minimum required configuration needed to create
a VM from scratch. The resulting VM will only have 1 VCPU, 32MB of RAM and will
not have any storage or networking.

Example of a complete profile:

my-complete-example:
 provider: esx01
 datastore: esx01-datastore
 resourcepool: Resources
 folder: vm

 num_cpus: 2
 memory: 8GB

 image: debian7_64Guest

 devices:
 scsi:
 SCSI controller 0:
 type: lsilogic_sas
 ide:
 IDE 0: {}
 IDE 1: {}
 disk:
 Hard disk 0:
 controller: 'SCSI controller 0'
 size: 20
 mode: 'independent_nonpersistent'
 cd:
 CD/DVD drive 0:
 controller: 'IDE 0'
 device_type: datastore_iso_file
 iso_path: '[esx01-datastore] debian-8-with-preseed.iso'
 network:
 Network adapter 0:
 name: 'VM Network'
 swith_type: standard

Note

Depending on VMware ESX/ESXi version, an exact match for image might not
be available. In such cases, the closest match to another image should
be used. In the example above, a Debian 8 VM is created using the image
debian7_64Guest which is for a Debian 7 guest.

Specifying disk backing mode

New in version 2016.3.5.

Disk backing mode can now be specified when cloning a VM. This option
can be set in the cloud profile as shown in example below:

my-vm:
 provider: esx01
 datastore: esx01-datastore
 resourcepool: Resources
 folder: vm

 devices:
 disk:
 Hard disk 1:
 mode: 'independent_nonpersistent'
 size: 42
 Hard disk 2:
 mode: 'independent_nonpersistent'

Getting Started With Xen

The Xen cloud driver works with Citrix XenServer.

It can be used with a single XenServer or a XenServer resource pool.

Setup Dependencies

This driver requires a copy of the freely available XenAPI.py Python module.

Information about the Xen API Python module in the XenServer SDK
can be found at https://pypi.org/project/XenAPI/

Place a copy of this module on your system. For example, it can
be placed in the site packages location on your system.

The location of site packages can be determined by running:

python -m site --user-site

Provider Configuration

Xen requires login credentials to a XenServer.

Set up the provider cloud configuration file at /etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/*.conf.

/etc/salt/cloud.providers.d/myxen.conf
myxen:
 driver: xen
 url: https://10.0.0.120
 user: root
 password: p@ssw0rd

	url:
	The url option supports both http and https uri prefixes.

	user:
	A valid user id to login to the XenServer host.

	password:
	The associated password for the user.

Note

Changed in version 2015.8.0.

The provider parameter in cloud provider definitions was renamed to driver. This
change was made to avoid confusion with the provider parameter that is used in cloud profile
definitions. Cloud provider definitions now use driver to refer to the Salt cloud module that
provides the underlying functionality to connect to a cloud host, while cloud profiles continue
to use provider to refer to provider configurations that you define.

Profile Configuration

Xen profiles require a provider and image.

	provider:
	This will be the name of your defined provider.

	image:
	The name of the VM template used to clone or copy.

	clone:
	The default behavior is to clone a template or VM. This is very fast,
but requires the source template or VM to be in the same storage
repository of the new target system. If the source and target are in
different storage repositories then you must copy the source and not
clone it by setting clone: False.

	deploy:
	The provisioning process will attempt to install the Salt minion
service on the new target system by default. This will require login
credentials for Salt cloud to login via ssh to it. The user and
password options are required. If deploy is set to False
then these options are not needed.

	resource_pool:
	The name of the resource pool used for this profile.

	storage_repo:
	The name of the storage repository for the target system.

	ipv4_cidr:
	If template is Windows, and running guest tools then a static
ip address can be set.

	ipv4_gw:
	If template is Windows, and running guest tools then a gateway
can be set.

Set up an initial profile
at /etc/salt/cloud.profiles or in the /etc/salt/cloud.profiles.d/ directory:

file: /etc/salt/cloud.profiles.d/xenprofiles.conf
sles:
 provider: myxen
 deploy: False
 image: sles12sp2-template

suse:
 user: root
 password: p@ssw0rd
 provider: myxen
 image: opensuseleap42_2-template
 storage_repo: 'Local storage'
 clone: False
 minion:
 master: 10.0.0.20

w2k12:
 provider: myxen
 image: w2k12svr-template
 clone: True
 userdata_file: /srv/salt/win/files/windows-firewall.ps1
 win_installer: /srv/salt/win/files/Salt-Minion-2016.11.3-AMD64-Setup.exe
 win_username: Administrator
 win_password: p@ssw0rd
 use_winrm: False
 ipv4_cidr: 10.0.0.215/24
 ipv4_gw: 10.0.0.1
 minion:
 master: 10.0.0.21

The first example will create a clone of the sles12sp2-template in the
same storage repository without deploying the Salt minion.

The second example will make a copy of the image and deploy a new
suse VM with the Salt minion installed.

The third example will create a clone of the Windows 2012 template
and deploy the Salt minion.

The profile can be used with a salt command:

salt-cloud -p suse xenvm02

This will create an salt minion instance named xenvm02 in Xen. If the command was
executed on the salt-master, its Salt key will automatically be signed on the master.

Once the instance has been created with a salt-minion installed, connectivity to
it can be verified with Salt:

salt xenvm02 test.version

Listing Sizes

Sizes can be obtained using the --list-sizes option for the salt-cloud
command:

salt-cloud --list-sizes myxen

Note

Since size information is build in a template this command
is not implemented.

Listing Images

Images can be obtained using the --list-images option for the salt-cloud
command:

salt-cloud --list-images myxen

This command will return a list of templates with details.

Listing Locations

Locations can be obtained using the --list-locations option for the salt-cloud
command:

salt-cloud --list-locations myxen

Returns a list of resource pools.

Miscellaneous Salt Cloud Options

This page describes various miscellaneous options available in Salt Cloud

Deploy Script Arguments

Custom deploy scripts are unlikely to need custom arguments to be passed to
them, but salt-bootstrap has been extended quite a bit, and this may be
necessary. script_args can be specified in either the profile or the map file,
to pass arguments to the deploy script:

ec2-amazon:
 provider: my-ec2-config
 image: ami-1624987f
 size: t1.micro
 ssh_username: ec2-user
 script: bootstrap-salt
 script_args: -c /tmp/

This has also been tested to work with pipes, if needed:

script_args: '| head'

Selecting the File Transport

By default, Salt Cloud uses SFTP to transfer files to Linux hosts. However, if
SFTP is not available, or specific SCP functionality is needed, Salt Cloud can
be configured to use SCP instead.

file_transport: sftp
file_transport: scp

Sync After Install

Salt allows users to create custom plugins such as execution, grains, and state
modules which can be synchronised to minions to extend Salt with further
functionality.

This option will inform Salt Cloud to synchronise your custom modules to the
minion just after it has been created. For this to happen, the following line
needs to be added to the main cloud configuration file:

sync_after_install: all

The available options for this setting are:

all
beacons
clouds
engines
executors
grains
log
matchers
modules
output
pillar
proxymodules
renderers
returners
sdb
serializers
states
thorium
utils

A present and non-falsy value that doesn't match one of these list items will
assume all, so sync_after_install: True and sync_after_install: all are
equivalent (though the former will produce a warning).

Setting Up New Salt Masters

It has become increasingly common for users to set up multi-hierarchal
infrastructures using Salt Cloud. This sometimes involves setting up an
instance to be a master in addition to a minion. With that in mind, you can
now lay down master configuration on a machine by specifying master options
in the profile or map file.

make_master: True

This will cause Salt Cloud to generate master keys for the instance, and tell
salt-bootstrap to install the salt-master package, in addition to the
salt-minion package.

The default master configuration is usually appropriate for most users, and
will not be changed unless specific master configuration has been added to the
profile or map:

master:
 user: root
 interface: 0.0.0.0

Setting Up a Salt Syndic with Salt Cloud

In addition to setting up new Salt Masters, syndics can also be
provisioned using Salt Cloud. In order to set up a Salt Syndic via Salt Cloud,
a Salt Master needs to be installed on the new machine and a master configuration
file needs to be set up using the make_master setting. This setting can be
defined either in a profile config file or in a map file:

make_master: True

To install the Salt Syndic, the only other specification that needs to be
configured is the syndic_master key to specify the location of the master
that the syndic will be reporting to. This modification needs to be placed
in the master setting, which can be configured either in the profile,
provider, or /etc/salt/cloud config file:

master:
 syndic_master: 123.456.789 # may be either an IP address or a hostname

Many other Salt Syndic configuration settings and specifications can be passed
through to the new syndic machine via the master configuration setting.
See the Salt Syndic documentation for more information.

SSH Port

By default ssh port is set to port 22. If you want to use a custom port in
provider, profile, or map blocks use ssh_port option.

New in version 2015.5.0.

ssh_port: 2222

Delete SSH Keys

When Salt Cloud deploys an instance, the SSH pub key for the instance is added
to the known_hosts file for the user that ran the salt-cloud command. When an
instance is deployed, a cloud host generally recycles the IP address for
the instance. When Salt Cloud attempts to deploy an instance using a recycled
IP address that has previously been accessed from the same machine, the old key
in the known_hosts file will cause a conflict.

In order to mitigate this issue, Salt Cloud can be configured to remove old
keys from the known_hosts file when destroying the node. In order to do this,
the following line needs to be added to the main cloud configuration file:

delete_sshkeys: True

Keeping /tmp/ Files

When Salt Cloud deploys an instance, it uploads temporary files to /tmp/ for
salt-bootstrap to put in place. After the script has run, they are deleted. To
keep these files around (mostly for debugging purposes), the --keep-tmp option
can be added:

salt-cloud -p myprofile mymachine --keep-tmp

For those wondering why /tmp/ was used instead of /root/, this had to be done
for images which require the use of sudo, and therefore do not allow remote
root logins, even for file transfers (which makes /root/ unavailable).

Hide Output From Minion Install

By default Salt Cloud will stream the output from the minion deploy script
directly to STDOUT. Although this can been very useful, in certain cases you
may wish to switch this off. The following config option is there to enable or
disable this output:

display_ssh_output: False

Connection Timeout

There are several stages when deploying Salt where Salt Cloud needs to wait for
something to happen. The VM getting its IP address, the VM's SSH port is
available, etc.

If you find that the Salt Cloud defaults are not enough and your deployment
fails because Salt Cloud did not wait log enough, there are some settings you
can tweak.

Note

All settings should be provided in lowercase
All values should be provided in seconds

You can tweak these settings globally, per cloud provider, or event per profile
definition.

wait_for_ip_timeout

The amount of time Salt Cloud should wait for a VM to start and get an IP back
from the cloud host.
Default: varies by cloud provider (between 5 and 25 minutes)

wait_for_ip_interval

The amount of time Salt Cloud should sleep while querying for the VM's IP.
Default: varies by cloud provider (between .5 and 10 seconds)

ssh_connect_timeout

The amount of time Salt Cloud should wait for a successful SSH connection to
the VM.
Default: varies by cloud provider (between 5 and 15 minutes)

wait_for_passwd_timeout

The amount of time until an ssh connection can be established via password or
ssh key.
Default: varies by cloud provider (mostly 15 seconds)

wait_for_passwd_maxtries

The number of attempts to connect to the VM until we abandon.
Default: 15 attempts

wait_for_fun_timeout

Some cloud drivers check for an available IP or a successful SSH connection
using a function, namely, SoftLayer, and SoftLayer-HW. So, the amount of time
Salt Cloud should retry such functions before failing.
Default: 15 minutes.

wait_for_spot_timeout

The amount of time Salt Cloud should wait before an EC2 Spot instance is
available. This setting is only available for the EC2 cloud driver.
Default: 10 minutes

Salt Cloud Cache

Salt Cloud can maintain a cache of node data, for supported providers. The
following options manage this functionality.

update_cachedir

On supported cloud providers, whether or not to maintain a cache of nodes
returned from a --full-query. The data will be stored in msgpack format
under <SALT_CACHEDIR>/cloud/active/<DRIVER>/<PROVIDER>/<NODE_NAME>.p. This
setting can be True or False.

diff_cache_events

When the cloud cachedir is being managed, if differences are encountered
between the data that is returned live from the cloud host and the data in
the cache, fire events which describe the changes. This setting can be True or
False.

Some of these events will contain data which describe a node. Because some of
the fields returned may contain sensitive data, the cache_event_strip_fields
configuration option exists to strip those fields from the event return.

cache_event_strip_fields:
 - password
 - priv_key

The following are events that can be fired based on this data.

salt/cloud/minionid/cache_node_new

A new node was found on the cloud host which was not listed in the cloud
cachedir. A dict describing the new node will be contained in the event.

salt/cloud/minionid/cache_node_missing

A node that was previously listed in the cloud cachedir is no longer available
on the cloud host.

salt/cloud/minionid/cache_node_diff

One or more pieces of data in the cloud cachedir has changed on the cloud
host. A dict containing both the old and the new data will be contained in
the event.

SSH Known Hosts

Normally when bootstrapping a VM, salt-cloud will ignore the SSH host key. This
is because it does not know what the host key is before starting (because it
doesn't exist yet). If strict host key checking is turned on without the key
in the known_hosts file, then the host will never be available, and cannot
be bootstrapped.

If a provider is able to determine the host key before trying to bootstrap it,
that provider's driver can add it to the known_hosts file, and then turn on
strict host key checking. This can be set up in the main cloud configuration
file (normally /etc/salt/cloud) or in the provider-specific configuration
file:

known_hosts_file: /path/to/.ssh/known_hosts

If this is not set, it will default to /dev/null, and strict host key
checking will be turned off.

It is highly recommended that this option is not set, unless the user has
verified that the provider supports this functionality, and that the image
being used is capable of providing the necessary information. At this time,
only the EC2 driver supports this functionality.

SSH Agent

New in version 2015.5.0.

If the ssh key is not stored on the server salt-cloud is being run on, set
ssh_agent, and salt-cloud will use the forwarded ssh-agent to authenticate.

ssh_agent: True

File Map Upload

New in version 2014.7.0.

The file_map option allows an arbitrary group of files to be uploaded to the
target system before running the deploy script. This functionality requires a
provider uses salt.utils.cloud.bootstrap(), which is currently limited to the ec2,
gce, openstack and nova drivers.

The file_map can be configured globally in /etc/salt/cloud, or in any cloud
provider or profile file. For example, to upload an extra package or a custom deploy
script, a cloud profile using file_map might look like:

ubuntu14:
 provider: ec2-config
 image: ami-98aa1cf0
 size: t1.micro
 ssh_username: root
 securitygroup: default
 file_map:
 /local/path/to/custom/script: /remote/path/to/use/custom/script
 /local/path/to/package: /remote/path/to/store/package

Running Pre-Flight Commands

New in version 2018.3.0.

To execute specified preflight shell commands on a VM before the deploy script is
run, use the preflight_cmds option. These must be defined as a list in a cloud
configuration file. For example:

my-cloud-profile:
 provider: linode-config
 image: Ubuntu 16.04 LTS
 size: Linode 2048
 preflight_cmds:
 - whoami
 - echo 'hello world!'

These commands will run in sequence before the bootstrap script is executed.

Force Minion Config

New in version 2018.3.0.

The force_minion_config option requests the bootstrap process to overwrite
an existing minion configuration file and public/private key files.
Default: False

This might be important for drivers (such as saltify) which are expected to
take over a connection from a former salt master.

my_saltify_provider:
 driver: saltify
 force_minion_config: true

Troubleshooting Salt Cloud

This page describes various steps for troubleshooting problems that may arise
while using Salt Cloud.

Virtual Machines Are Created, But Do Not Respond

Are TCP ports 4505 and 4506 open on the master? This is easy to overlook on new
masters. Information on how to open firewall ports on various platforms can be
found here.

Generic Troubleshooting Steps

This section describes a set of instructions that are useful to a large number
of situations, and are likely to solve most issues that arise.

Debug Mode

Frequently, running Salt Cloud in debug mode will reveal information about a
deployment which would otherwise not be obvious:

salt-cloud -p myprofile myinstance -l debug

Keep in mind that a number of messages will appear that look at first like
errors, but are in fact intended to give developers factual information to
assist in debugging. A number of messages that appear will be for cloud
providers that you do not have configured; in these cases, the message usually
is intended to confirm that they are not configured.

Salt Bootstrap

By default, Salt Cloud uses the Salt Bootstrap script to provision instances:

This script is packaged with Salt Cloud, but may be updated without updating
the Salt package:

salt-cloud -u

The Bootstrap Log

If the default deploy script was used, there should be a file in the /tmp/
directory called bootstrap-salt.log. This file contains the full output from
the deployment, including any errors that may have occurred.

Keeping Temp Files

Salt Cloud uploads minion-specific files to instances once they are available
via SSH, and then executes a deploy script to put them into the correct place
and install Salt. The --keep-tmp option will instruct Salt Cloud not to
remove those files when finished with them, so that the user may inspect them
for problems:

salt-cloud -p myprofile myinstance --keep-tmp

By default, Salt Cloud will create a directory on the target instance called
/tmp/.saltcloud/. This directory should be owned by the user that is to
execute the deploy script, and should have permissions of 0700.

Most cloud hosts are configured to use root as the default initial user
for deployment, and as such, this directory and all files in it should be owned
by the root user.

The /tmp/.saltcloud/ directory should the following files:

	A deploy.sh script. This script should have permissions of 0755.

	A .pem and .pub key named after the minion. The .pem file should
have permissions of 0600. Ensure that the .pem and .pub files have
been properly copied to the /etc/salt/pki/minion/ directory.

	A file called minion. This file should have been copied to the
/etc/salt/ directory.

	Optionally, a file called grains. This file, if present, should have been
copied to the /etc/salt/ directory.

Unprivileged Primary Users

Some cloud hosts, most notably EC2, are configured with a different primary user.
Some common examples are ec2-user, ubuntu, fedora, and bitnami.
In these cases, the /tmp/.saltcloud/ directory and all files in it should
be owned by this user.

Some cloud hosts, such as EC2, are configured to not require these users to
provide a password when using the sudo command. Because it is more secure
to require sudo users to provide a password, other hosts are configured
that way.

If this instance is required to provide a password, it needs to be configured
in Salt Cloud. A password for sudo to use may be added to either the provider
configuration or the profile configuration:

sudo_password: mypassword

/tmp/ is Mounted as noexec

It is more secure to mount the /tmp/ directory with a noexec option.
This is uncommon on most cloud hosts, but very common in private
environments. To see if the /tmp/ directory is mounted this way, run the
following command:

mount | grep tmp

The if the output of this command includes a line that looks like this, then
the /tmp/ directory is mounted as noexec:

tmpfs on /tmp type tmpfs (rw,noexec)

If this is the case, then the deploy_command will need to be changed
in order to run the deploy script through the sh command, rather than trying
to execute it directly. This may be specified in either the provider or the
profile config:

deploy_command: sh /tmp/.saltcloud/deploy.sh

Please note that by default, Salt Cloud will place its files in a directory
called /tmp/.saltcloud/. This may be also be changed in the provider or
profile configuration:

tmp_dir: /tmp/.saltcloud/

If this directory is changed, then the deploy_command need to be changed
in order to reflect the tmp_dir configuration.

Executing the Deploy Script Manually

If all of the files needed for deployment were successfully uploaded to the
correct locations, and contain the correct permissions and ownerships, the
deploy script may be executed manually in order to check for other issues:

cd /tmp/.saltcloud/
./deploy.sh

Writing Cloud Driver Modules

Salt Cloud runs on a module system similar to the main Salt project. The
modules inside saltcloud exist in the salt/cloud/clouds directory of the
salt source.

There are two basic types of cloud modules. If a cloud host is supported by
libcloud, then using it is the fastest route to getting a module written. The
Apache Libcloud project is located at:

http://libcloud.apache.org/

Not every cloud host is supported by libcloud. Additionally, not every
feature in a supported cloud host is necessarily supported by libcloud. In
either of these cases, a module can be created which does not rely on libcloud.

All Driver Modules

The following functions are required by all driver modules, whether or not they are
based on libcloud.

The __virtual__() Function

This function determines whether or not to make this cloud module available
upon execution. Most often, it uses get_configured_provider() to determine
if the necessary configuration has been set up. It may also check for necessary
imports, to decide whether to load the module. In most cases, it will return a
True or False value. If the name of the driver used does not match the
filename, then that name should be returned instead of True.

The get_configured_provider() Function

This function uses config.is_provider_configured() to determine whether
all required information for this driver has been configured. The last value
in the list of required settings should be followed by a comma.

Libcloud Based Modules

Writing a cloud module based on libcloud has two major advantages. First of all,
much of the work has already been done by the libcloud project. Second, most of
the functions necessary to Salt have already been added to the Salt Cloud
project.

The create() Function

The most important function that does need to be manually written is the
create() function. This is what is used to request a virtual machine to be
created by the cloud host, wait for it to become available, and then
(optionally) log in and install Salt on it.

A good example to follow for writing a cloud driver module based on libcloud
is the module provided for Linode:

https://github.com/saltstack/salt/tree/master/salt/cloud/clouds/linode.py

The basic flow of a create() function is as follows:

	Send a request to the cloud host to create a virtual machine.

	Wait for the virtual machine to become available.

	Generate kwargs to be used to deploy Salt.

	Log into the virtual machine and deploy Salt.

	Return a data structure that describes the newly-created virtual machine.

At various points throughout this function, events may be fired on the Salt
event bus. Four of these events, which are described below, are required. Other
events may be added by the user, where appropriate.

When the create() function is called, it is passed a data structure called
vm_. This dict contains a composite of information describing the virtual
machine to be created. A dict called __opts__ is also provided by Salt,
which contains the options used to run Salt Cloud, as well as a set of
configuration and environment variables.

The first thing the create() function must do is fire an event stating that
it has started the create process. This event is tagged
salt/cloud/<vm name>/creating. The payload contains the names of the VM,
profile, and provider.

A set of kwargs is then usually created, to describe the parameters required
by the cloud host to request the virtual machine.

An event is then fired to state that a virtual machine is about to be requested.
It is tagged as salt/cloud/<vm name>/requesting. The payload contains most
or all of the parameters that will be sent to the cloud host. Any private
information (such as passwords) should not be sent in the event.

After a request is made, a set of deploy kwargs will be generated. These will
be used to install Salt on the target machine. Windows options are supported
at this point, and should be generated, even if the cloud host does not
currently support Windows. This will save time in the future if the host
does eventually decide to support Windows.

An event is then fired to state that the deploy process is about to begin. This
event is tagged salt/cloud/<vm name>/deploying. The payload for the event
will contain a set of deploy kwargs, useful for debugging purposed. Any private
data, including passwords and keys (including public keys) should be stripped
from the deploy kwargs before the event is fired.

If any Windows options have been passed in, the
salt.utils.cloud.deploy_windows() function will be called. Otherwise, it
will be assumed that the target is a Linux or Unix machine, and the
salt.utils.cloud.deploy_script() will be called.

Both of these functions will wait for the target machine to become available,
then the necessary port to log in, then a successful login that can be used to
install Salt. Minion configuration and keys will then be uploaded to a temporary
directory on the target by the appropriate function. On a Windows target, the
Windows Minion Installer will be run in silent mode. On a Linux/Unix target, a
deploy script (bootstrap-salt.sh, by default) will be run, which will
auto-detect the operating system, and install Salt using its native package
manager. These do not need to be handled by the developer in the cloud module.

The salt.utils.cloud.validate_windows_cred() function has been extended to
take the number of retries and retry_delay parameters in case a specific cloud
host has a delay between providing the Windows credentials and the
credentials being available for use. In their create() function, or as
a sub-function called during the creation process, developers should use the
win_deploy_auth_retries and win_deploy_auth_retry_delay parameters from
the provider configuration to allow the end-user the ability to customize the
number of tries and delay between tries for their particular host.

After the appropriate deploy function completes, a final event is fired
which describes the virtual machine that has just been created. This event is
tagged salt/cloud/<vm name>/created. The payload contains the names of the
VM, profile, and provider.

Finally, a dict (queried from the provider) which describes the new virtual
machine is returned to the user. Because this data is not fired on the event
bus it can, and should, return any passwords that were returned by the cloud
host. In some cases (for example, Rackspace), this is the only time that
the password can be queried by the user; post-creation queries may not contain
password information (depending upon the host).

The libcloudfuncs Functions

A number of other functions are required for all cloud hosts. However, with
libcloud-based modules, these are all provided for free by the libcloudfuncs
library. The following two lines set up the imports:

from salt.cloud.libcloudfuncs import * # pylint: disable=W0614,W0401
import salt.utils.functools

And then a series of declarations will make the necessary functions available
within the cloud module.

get_size = salt.utils.functools.namespaced_function(get_size, globals())
get_image = salt.utils.functools.namespaced_function(get_image, globals())
avail_locations = salt.utils.functools.namespaced_function(avail_locations, globals())
avail_images = salt.utils.functools.namespaced_function(avail_images, globals())
avail_sizes = salt.utils.functools.namespaced_function(avail_sizes, globals())
script = salt.utils.functools.namespaced_function(script, globals())
destroy = salt.utils.functools.namespaced_function(destroy, globals())
list_nodes = salt.utils.functools.namespaced_function(list_nodes, globals())
list_nodes_full = salt.utils.functools.namespaced_function(list_nodes_full, globals())
list_nodes_select = salt.utils.functools.namespaced_function(
 list_nodes_select, globals()
)
show_instance = salt.utils.functools.namespaced_function(show_instance, globals())

If necessary, these functions may be replaced by removing the appropriate
declaration line, and then adding the function as normal.

These functions are required for all cloud modules, and are described in detail
in the next section.

Non-Libcloud Based Modules

In some cases, using libcloud is not an option. This may be because libcloud has
not yet included the necessary driver itself, or it may be that the driver that
is included with libcloud does not contain all of the necessary features
required by the developer. When this is the case, some or all of the functions
in libcloudfuncs may be replaced. If they are all replaced, the libcloud
imports should be absent from the Salt Cloud module.

A good example of a non-libcloud driver is the DigitalOcean driver:

https://github.com/saltstack/salt/tree/master/salt/cloud/clouds/digitalocean.py

The create() Function

The create() function must be created as described in the libcloud-based
module documentation.

The get_size() Function

This function is only necessary for libcloud-based modules, and does not need
to exist otherwise.

The get_image() Function

This function is only necessary for libcloud-based modules, and does not need
to exist otherwise.

The avail_locations() Function

This function returns a list of locations available, if the cloud host uses
multiple data centers. It is not necessary if the cloud host uses only one
data center. It is normally called using the --list-locations option.

salt-cloud --list-locations my-cloud-provider

The avail_images() Function

This function returns a list of images available for this cloud provider. There
are not currently any known cloud providers that do not provide this
functionality, though they may refer to images by a different name (for example,
"templates"). It is normally called using the --list-images option.

salt-cloud --list-images my-cloud-provider

The avail_sizes() Function

This function returns a list of sizes available for this cloud provider.
Generally, this refers to a combination of RAM, CPU, and/or disk space. This
functionality may not be present on some cloud providers. For example, the
Parallels module breaks down RAM, CPU, and disk space into separate options,
whereas in other providers, these options are baked into the image. It is
normally called using the --list-sizes option.

salt-cloud --list-sizes my-cloud-provider

The script() Function

This function builds the deploy script to be used on the remote machine. It is
likely to be moved into the salt.utils.cloud library in the near future, as
it is very generic and can usually be copied wholesale from another module.

The destroy() Function

This function irreversibly destroys a virtual machine on the cloud provider.
Before doing so, it should fire an event on the Salt event bus. The tag for this
event is salt/cloud/<vm name>/destroying. Once the virtual machine has been
destroyed, another event is fired. The tag for that event is
salt/cloud/<vm name>/destroyed.

This function is normally called with the -d options:

salt-cloud -d myinstance

The list_nodes() Function

This function returns a list of nodes available on this cloud provider, using
the following fields:

	id (str)

	image (str)

	size (str)

	state (str)

	private_ips (list)

	public_ips (list)

No other fields should be returned in this function, and all of these fields
should be returned, even if empty. The private_ips and public_ips fields should
always be of a list type, even if empty, and the other fields should always be
of a str type. This function is normally called with the -Q option:

salt-cloud -Q

The list_nodes_full() Function

All information available about all nodes should be returned in this function.
The fields in the list_nodes() function should also be returned, even if they
would not normally be provided by the cloud provider. This is because some
functions both within Salt and 3rd party will break if an expected field is not
present. This function is normally called with the -F option:

salt-cloud -F

The list_nodes_select() Function

This function returns only the fields specified in the query.selection
option in /etc/salt/cloud. Because this function is so generic, all of the
heavy lifting has been moved into the salt.utils.cloud library.

A function to call list_nodes_select() still needs to be present. In
general, the following code can be used as-is:

def list_nodes_select(call=None):
 """
 Return a list of the VMs that are on the provider, with select fields
 """
 return salt.utils.cloud.list_nodes_select(
 list_nodes_full("function"), __opts__["query.selection"], call
)

However, depending on the cloud provider, additional variables may be required.
For instance, some modules use a conn object, or may need to pass other
options into list_nodes_full(). In this case, be sure to update the function
appropriately:

def list_nodes_select(conn=None, call=None):
 """
 Return a list of the VMs that are on the provider, with select fields
 """
 if not conn:
 conn = get_conn() # pylint: disable=E0602

 return salt.utils.cloud.list_nodes_select(
 list_nodes_full(conn, "function"), __opts__["query.selection"], call
)

This function is normally called with the -S option:

salt-cloud -S

The show_instance() Function

This function is used to display all of the information about a single node
that is available from the cloud provider. The simplest way to provide this is
usually to call list_nodes_full(), and return just the data for the
requested node. It is normally called as an action:

salt-cloud -a show_instance myinstance

Actions and Functions

Extra functionality may be added to a cloud provider in the form of an
--action or a --function. Actions are performed against a cloud
instance/virtual machine, and functions are performed against a cloud provider.

Actions

Actions are calls that are performed against a specific instance or virtual
machine. The show_instance action should be available in all cloud modules.
Actions are normally called with the -a option:

salt-cloud -a show_instance myinstance

Actions must accept a name as a first argument, may optionally support any
number of kwargs as appropriate, and must accept an argument of call, with
a default of None.

Before performing any other work, an action should normally verify that it has
been called correctly. It may then perform the desired feature, and return
useful information to the user. A basic action looks like:

def show_instance(name, call=None):
 """
 Show the details from EC2 concerning an AMI
 """
 if call != "action":
 raise SaltCloudSystemExit(
 "The show_instance action must be called with -a or --action."
)

 return _get_node(name)

Please note that generic kwargs, if used, are passed through to actions as
kwargs and not **kwargs. An example of this is seen in the Functions
section.

Functions

Functions are called that are performed against a specific cloud provider. An
optional function that is often useful is show_image, which describes an
image in detail. Functions are normally called with the -f option:

salt-cloud -f show_image my-cloud-provider image='Ubuntu 13.10 64-bit'

A function may accept any number of kwargs as appropriate, and must accept an
argument of call with a default of None.

Before performing any other work, a function should normally verify that it has
been called correctly. It may then perform the desired feature, and return
useful information to the user. A basic function looks like:

def show_image(kwargs, call=None):
 """
 Show the details from EC2 concerning an AMI
 """
 if call != "function":
 raise SaltCloudSystemExit(
 "The show_image action must be called with -f or --function."
)

 params = {"ImageId.1": kwargs["image"], "Action": "DescribeImages"}
 result = query(params)
 log.info(result)

 return result

Take note that generic kwargs are passed through to functions as kwargs and
not **kwargs.

Cloud deployment scripts

Salt Cloud works primarily by executing a script on the virtual machines as
soon as they become available. The script that is executed is referenced in the
cloud profile as the script. In older versions, this was the os
argument. This was changed in 0.8.2.

A number of legacy scripts exist in the deploy directory in the saltcloud
source tree. The preferred method is currently to use the salt-bootstrap
script. A stable version is included with each release tarball starting with
0.8.4. The most updated version can be found at:

https://github.com/saltstack/salt-bootstrap

Note that, somewhat counter-intuitively, this script is referenced as
bootstrap-salt in the configuration.

You can specify a deploy script in the cloud configuration file
(/etc/salt/cloud by default):

script: bootstrap-salt

Or in a provider:

my-provider:
 # snip...
 script: bootstrap-salt

Or in a profile:

my-profile:
 provider: my-provider
 # snip...
 script: bootstrap-salt

If you do not specify a script argument in your cloud configuration file,
provider configuration or profile configuration, the "bootstrap-salt" script
will be used by default.

Other Generic Deploy Scripts

If you want to be assured of always using the latest Salt Bootstrap script,
there are a few generic templates available in the deploy directory of your
saltcloud source tree:

curl-bootstrap
curl-bootstrap-git
python-bootstrap
wget-bootstrap
wget-bootstrap-git

These are example scripts which were designed to be customized, adapted, and
refit to meet your needs. One important use of them is to pass options to
the salt-bootstrap script, such as updating to specific git tags.

Custom Deploy Scripts

If the Salt Bootstrap script does not meet your needs, you may write your own.
The script should be written in shell and is a Jinja template. Deploy scripts
need to execute a number of functions to do a complete salt setup. These
functions include:

	Install the salt minion. If this can be done via system packages this method
is HIGHLY preferred.

	Add the salt minion keys before the minion is started for the first time.
The minion keys are available as strings that can be copied into place in
the Jinja template under the dict named "vm".

	Start the salt-minion daemon and enable it at startup time.

	Set up the minion configuration file from the "minion" data available in
the Jinja template.

A good, well commented example of this process is the Fedora deployment
script:

https://github.com/saltstack/salt/blob/master/salt/cloud/deploy/Fedora.sh

A number of legacy deploy scripts are included with the release tarball. None
of them are as functional or complete as Salt Bootstrap, and are still included
for academic purposes.

Custom deploy scripts are picked up from /etc/salt/cloud.deploy.d by
default, but you can change the location of deploy scripts with the cloud
configuration deploy_scripts_search_path. Additionally, if your deploy
script has the extension .sh, you can leave out the extension in your
configuration.

For example, if your custom deploy script is located in
/etc/salt/cloud.deploy.d/my_deploy.sh, you could specify it in a cloud
profile like this:

my-profile:
 provider: my-provider
 # snip...
 script: my_deploy

You're also free to use the full path to the script if you like. Using full
paths, your script doesn't have to live inside /etc/salt/cloud.deploy.d or
whatever you've configured with deploy_scripts_search_path.

Post-Deploy Commands

Once a minion has been deployed, it has the option to run a salt command.
Normally, this would be the state.apply,
which would finish provisioning the VM. Another common option (for testing) is
to use test.version. This is configured in the
main cloud config file:

start_action: state.apply

This is currently considered to be experimental functionality, and may not work
well with all cloud hosts. If you experience problems with Salt Cloud hanging
after Salt is deployed, consider using Startup States instead.

Skipping the Deploy Script

For whatever reason, you may want to skip the deploy script altogether. This
results in a VM being spun up much faster, with absolutely no configuration.
This can be set from the command line:

salt-cloud --no-deploy -p micro_aws my_instance

Or it can be set from the main cloud config file:

deploy: False

Or it can be set from the provider's configuration:

RACKSPACE.user: example_user
RACKSPACE.apikey: 123984bjjas87034
RACKSPACE.deploy: False

Or even on the VM's profile settings:

ubuntu_aws:
 provider: my-ec2-config
 image: ami-7e2da54e
 size: t1.micro
 deploy: False

The default for deploy is True.

In the profile, you may also set the script option to None:

script: None

This is the slowest option, since it still uploads the None deploy script and
executes it.

Updating Salt Bootstrap

Salt Bootstrap can be updated automatically with salt-cloud:

salt-cloud -u
salt-cloud --update-bootstrap

Bear in mind that this updates to the latest stable version from:

https://bootstrap.saltproject.io/stable/bootstrap-salt.sh

To update Salt Bootstrap script to the develop version, run the following
command on the Salt minion host with salt-cloud installed:

salt-call config.gather_bootstrap_script 'https://bootstrap.saltproject.io/develop/bootstrap-salt.sh'

Or just download the file manually:

curl -L 'https://bootstrap.saltproject.io/develop' > /etc/salt/cloud.deploy.d/bootstrap-salt.sh

Keeping /tmp/ Files

When Salt Cloud deploys an instance, it uploads temporary files to /tmp/ for
salt-bootstrap to put in place. After the script has run, they are deleted. To
keep these files around (mostly for debugging purposes), the --keep-tmp option
can be added:

salt-cloud -p myprofile mymachine --keep-tmp

For those wondering why /tmp/ was used instead of /root/, this had to be done
for images which require the use of sudo, and therefore do not allow remote
root logins, even for file transfers (which makes /root/ unavailable).

Deploy Script Arguments

Custom deploy scripts are unlikely to need custom arguments to be passed to
them, but salt-bootstrap has been extended quite a bit, and this may be
necessary. script_args can be specified in either the profile or the map file,
to pass arguments to the deploy script:

aws-amazon:
 provider: my-ec2-config
 image: ami-1624987f
 size: t1.micro
 ssh_username: ec2-user
 script: bootstrap-salt
 script_args: -c /tmp/

This has also been tested to work with pipes, if needed:

script_args: '| head'

Using the Salt Modules for Cloud

In addition to the salt-cloud command, Salt Cloud can be called from Salt,
in a variety of different ways. Most users will be interested in either the
execution module or the state module, but it is also possible to call Salt Cloud
as a runner.

Because the actual work will be performed on a remote minion, the normal Salt
Cloud configuration must exist on any target minion that needs to execute a Salt
Cloud command. Because Salt Cloud now supports breaking out configuration into
individual files, the configuration is easily managed using Salt's own
file.managed state function. For example, the following directories allow
this configuration to be managed easily:

/etc/salt/cloud.providers.d/
/etc/salt/cloud.profiles.d/

Minion Keys

Keep in mind that when creating minions, Salt Cloud will create public and
private minion keys, upload them to the minion, and place the public key on the
machine that created the minion. It will not attempt to place any public
minion keys on the master, unless the minion which was used to create the
instance is also the Salt Master. This is because granting arbitrary minions
access to modify keys on the master is a serious security risk, and must be
avoided.

Execution Module

The cloud module is available to use from the command line. At the moment,
almost every standard Salt Cloud feature is available to use. The following
commands are available:

list_images

This command is designed to show images that are available to be used to create
an instance using Salt Cloud. In general they are used in the creation of
profiles, but may also be used to create an instance directly (see below).
Listing images requires a provider to be configured, and specified:

salt myminion cloud.list_images my-cloud-provider

list_sizes

This command is designed to show sizes that are available to be used to create
an instance using Salt Cloud. In general they are used in the creation of
profiles, but may also be used to create an instance directly (see below). This
command is not available for all cloud providers; see the provider-specific
documentation for details. Listing sizes requires a provider to be configured,
and specified:

salt myminion cloud.list_sizes my-cloud-provider

list_locations

This command is designed to show locations that are available to be used to
create an instance using Salt Cloud. In general they are used in the creation of
profiles, but may also be used to create an instance directly (see below). This
command is not available for all cloud providers; see the provider-specific
documentation for details. Listing locations requires a provider to be
configured, and specified:

salt myminion cloud.list_locations my-cloud-provider

query

This command is used to query all configured cloud providers, and display all
instances associated with those accounts. By default, it will run a standard
query, returning the following fields:

	id
	The name or ID of the instance, as used by the cloud provider.

	image
	The disk image that was used to create this instance.

	private_ips
	Any public IP addresses currently assigned to this instance.

	public_ips
	Any private IP addresses currently assigned to this instance.

	size
	The size of the instance; can refer to RAM, CPU(s), disk space, etc.,
depending on the cloud provider.

	state
	The running state of the instance; for example, running, stopped,
pending, etc. This state is dependent upon the provider.

This command may also be used to perform a full query or a select query, as
described below. The following usages are available:

salt myminion cloud.query
salt myminion cloud.query list_nodes
salt myminion cloud.query list_nodes_full

full_query

This command behaves like the query command, but lists all information
concerning each instance as provided by the cloud provider, in addition to the
fields returned by the query command.

salt myminion cloud.full_query

select_query

This command behaves like the query command, but only returned select
fields as defined in the /etc/salt/cloud configuration file. A sample
configuration for this section of the file might look like:

query.selection:
 - id
 - key_name

This configuration would only return the id and key_name fields, for
those cloud providers that support those two fields. This would be called using
the following command:

salt myminion cloud.select_query

profile

This command is used to create an instance using a profile that is configured
on the target minion. Please note that the profile must be configured before
this command can be used with it.

salt myminion cloud.profile ec2-centos64-x64 my-new-instance

Please note that the execution module does not run in parallel mode. Using
multiple minions to create instances can effectively perform parallel instance
creation.

create

This command is similar to the profile command, in that it is used to create
a new instance. However, it does not require a profile to be pre-configured.
Instead, all of the options that are normally configured in a profile are passed
directly to Salt Cloud to create the instance:

salt myminion cloud.create my-ec2-config my-new-instance \
 image=ami-1624987f size='t1.micro' ssh_username=ec2-user \
 securitygroup=default delvol_on_destroy=True

Please note that the execution module does not run in parallel mode. Using
multiple minions to create instances can effectively perform parallel instance
creation.

destroy

This command is used to destroy an instance or instances. This command will
search all configured providers and remove any instance(s) which matches the
name(s) passed in here. The results of this command are non-reversable and
should be used with caution.

salt myminion cloud.destroy myinstance
salt myminion cloud.destroy myinstance1,myinstance2

action

This command implements both the action and the function commands
used in the standard salt-cloud command. If one of the standard action
commands is used, an instance name must be provided. If one of the standard
function commands is used, a provider configuration must be named.

salt myminion cloud.action start instance=myinstance
salt myminion cloud.action show_image provider=my-ec2-config \
 image=ami-1624987f

The actions available are largely dependent upon the module for the specific
cloud provider. The following actions are available for all cloud providers:

	list_nodes
	This is a direct call to the query function as described above, but is
only performed against a single cloud provider. A provider configuration
must be included.

	list_nodes_select
	This is a direct call to the full_query function as described above, but
is only performed against a single cloud provider. A provider configuration
must be included.

	list_nodes_select
	This is a direct call to the select_query function as described above,
but is only performed against a single cloud provider. A provider
configuration must be included.

	show_instance
	This is a thin wrapper around list_nodes, which returns the full
information about a single instance. An instance name must be provided.

State Module

A subset of the execution module is available through the cloud state
module. Not all functions are currently included, because there is currently
insufficient code for them to perform statefully. For example, a command to
create an instance may be issued with a series of options, but those options
cannot currently be statefully managed. Additional states to manage these
options will be released at a later time.

cloud.present

This state will ensure that an instance is present inside a particular cloud
provider. Any option that is normally specified in the cloud.create
execution module and function may be declared here, but only the actual
presence of the instance will be managed statefully.

my-instance-name:
 cloud.present:
 - cloud_provider: my-ec2-config
 - image: ami-1624987f
 - size: 't1.micro'
 - ssh_username: ec2-user
 - securitygroup: default
 - delvol_on_destroy: True

cloud.profile

This state will ensure that an instance is present inside a particular cloud
provider. This function calls the cloud.profile execution module and
function, but as with cloud.present, only the actual presence of the
instance will be managed statefully.

my-instance-name:
 cloud.profile:
 - profile: ec2-centos64-x64

cloud.absent

This state will ensure that an instance (identified by name) does not exist in
any of the cloud providers configured on the target minion. Please note that
this state is non-reversable and may be considered especially destructive when
issued as a cloud state.

my-instance-name:
 cloud.absent

Runner Module

The cloud runner module is executed on the master, and performs actions
using the configuration and Salt modules on the master itself. This means that
any public minion keys will also be properly accepted by the master.

Using the functions in the runner module is no different than using those in
the execution module, outside of the behavior described in the above paragraph.
The following functions are available inside the runner:

	list_images

	list_sizes

	list_locations

	query

	full_query

	select_query

	profile

	destroy

	action

Outside of the standard usage of salt-run itself, commands are executed as
usual:

salt-run cloud.profile ec2-centos64-x86_64 my-instance-name

CloudClient

The execution, state, and runner modules ultimately all use the CloudClient
library that ships with Salt. To use the CloudClient library locally (either on
the master or a minion), create a client object and issue a command against it:

import salt.cloud
import pprint

client = salt.cloud.CloudClient("/etc/salt/cloud")
nodes = client.query()
pprint.pprint(nodes)

Reactor

Examples of using the reactor with Salt Cloud are available in the
ec2-autoscale-reactor [https://github.com/saltstack-formulas/ec2-autoscale-reactor] and
salt-cloud-reactor [https://github.com/saltstack-formulas/salt-cloud-reactor] formulas.

Feature Matrix

A number of features are available in most cloud hosts, but not all are
available everywhere. This may be because the feature isn't supported by the
cloud host itself, or it may only be that the feature has not yet been
added to Salt Cloud. In a handful of cases, it is because the feature does not
make sense for a particular cloud provider (Saltify, for instance).

This matrix shows which features are available in which cloud hosts, as far
as Salt Cloud is concerned. This is not a comprehensive list of all features
available in all cloud hosts, and should not be used to make business
decisions concerning choosing a cloud host. In most cases, adding support
for a feature to Salt Cloud requires only a little effort.

Legacy Drivers

Both AWS and Rackspace are listed as "Legacy". This is because those drivers
have been replaced by other drivers, which are generally the preferred method
for working with those hosts.

The EC2 driver should be used instead of the AWS driver, when possible. The
OpenStack driver should be used instead of the Rackspace driver, unless the user
is dealing with instances in "the old cloud" in Rackspace.

Note for Developers

When adding new features to a particular cloud host, please make sure to
add the feature to this table. Additionally, if you notice a feature that is not
properly listed here, pull requests to fix them is appreciated.

Standard Features

These are features that are available for almost every cloud host.

	
	AWS
(Legacy)

	CloudStack

	Digital
Ocean

	EC2

	GoGrid

	JoyEnt

	Linode

	OpenStack

	Parallels

	Rackspace
(Legacy)

	Saltify

	Vagrant

	Softlayer

	Softlayer
Hardware

	Aliyun

	Tencent
Cloud

	Query

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	[1]

	[1]

	Yes

	Yes

	Yes

	Yes

	Full Query

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	[1]

	[1]

	Yes

	Yes

	Yes

	Yes

	Selective Query

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	[1]

	[1]

	Yes

	Yes

	Yes

	Yes

	List Sizes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	[2]

	[2]

	Yes

	Yes

	Yes

	Yes

	List Images

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	List Locations

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	[2]

	[2]

	Yes

	Yes

	Yes

	Yes

	create

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	[1]

	Yes

	Yes

	Yes

	Yes

	destroy

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	[1]

	[1]

	Yes

	Yes

	Yes

	Yes

[1] Yes, if salt-api is enabled.

[2] Always returns {}.

Actions

These are features that are performed on a specific instance, and require an
instance name to be passed in. For example:

salt-cloud -a attach_volume ami.example.com

	Actions

	AWS
(Legacy)

	CloudStack

	Digital
Ocean

	EC2

	GoGrid

	JoyEnt

	Linode

	OpenStack

	Parallels

	Rackspace
(Legacy)

	
	Saltify&
	Vagrant

	Softlayer

	Softlayer
Hardware

	Aliyun

	Tencent
Cloud

	attach_volume

	
	
	
	Yes

	
	
	
	
	
	
	
	
	
	
	

	create_attach_volumes

	Yes

	
	
	Yes

	
	
	
	
	
	
	
	
	
	
	

	del_tags

	Yes

	
	
	Yes

	
	
	
	
	
	
	
	
	
	
	

	delvol_on_destroy

	
	
	
	Yes

	
	
	
	
	
	
	
	
	
	
	

	detach_volume

	
	
	
	Yes

	
	
	
	
	
	
	
	
	
	
	

	disable_term_protect

	Yes

	
	
	Yes

	
	
	
	
	
	
	
	
	
	
	

	enable_term_protect

	Yes

	
	
	Yes

	
	
	
	
	
	
	
	
	
	
	

	get_tags

	Yes

	
	
	Yes

	
	
	
	
	
	
	
	
	
	
	

	keepvol_on_destroy

	
	
	
	Yes

	
	
	
	
	
	
	
	
	
	
	

	list_keypairs

	
	
	Yes

	
	
	
	
	
	
	
	
	
	
	
	

	rename

	Yes

	
	
	Yes

	
	
	
	
	
	
	
	
	
	
	

	set_tags

	Yes

	
	
	Yes

	
	
	
	
	
	
	
	
	
	
	

	show_delvol_on_destroy

	
	
	
	Yes

	
	
	
	
	
	
	
	
	
	
	

	show_instance

	
	
	Yes

	Yes

	
	
	Yes

	
	Yes

	
	
	Yes

	Yes

	Yes

	Yes

	show_term_protect

	
	
	
	Yes

	
	
	
	
	
	
	
	
	
	
	

	start

	Yes

	
	
	Yes

	
	Yes

	Yes

	
	Yes

	
	
	
	
	Yes

	Yes

	stop

	Yes

	
	
	Yes

	
	Yes

	Yes

	
	Yes

	
	
	
	
	Yes

	Yes

	take_action

	
	
	
	
	
	Yes

	
	
	
	
	
	
	
	
	

Functions

These are features that are performed against a specific cloud provider, and
require the name of the provider to be passed in. For example:

salt-cloud -f list_images my_digitalocean

	Functions

	AWS
(Legacy)

	CloudStack

	Digital
Ocean

	EC2

	GoGrid

	JoyEnt

	Linode

	OpenStack

	Parallels

	Rackspace
(Legacy)

	
	Saltify&
	Vagrant

	Softlayer

	Softlayer
Hardware

	Aliyun

	Tencent
Cloud

	block_device_mappings

	Yes

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	create_keypair

	
	
	
	Yes

	
	
	
	
	
	
	
	
	
	
	

	create_volume

	
	
	
	Yes

	
	
	
	
	
	
	
	
	
	
	

	delete_key

	
	
	
	
	
	Yes

	
	
	
	
	
	
	
	
	

	delete_keypair

	
	
	
	Yes

	
	
	
	
	
	
	
	
	
	
	

	delete_volume

	
	
	
	Yes

	
	
	
	
	
	
	
	
	
	
	

	get_image

	
	
	Yes

	
	
	Yes

	
	
	Yes

	
	
	
	
	Yes

	

	get_ip

	
	Yes

	
	
	
	
	
	
	
	
	
	
	
	
	

	get_key

	
	Yes

	
	
	
	
	
	
	
	
	
	
	
	
	

	get_keyid

	
	
	Yes

	
	
	
	
	
	
	
	
	
	
	
	

	get_keypair

	
	Yes

	
	
	
	
	
	
	
	
	
	
	
	
	

	get_networkid

	
	Yes

	
	
	
	
	
	
	
	
	
	
	
	
	

	get_node

	
	
	
	
	
	Yes

	
	
	
	
	
	
	
	
	

	get_password

	
	Yes

	
	
	
	
	
	
	
	
	
	
	
	
	

	get_size

	
	
	Yes

	
	
	Yes

	
	
	
	
	
	
	
	Yes

	

	get_spot_config

	
	
	
	Yes

	
	
	
	
	
	
	
	
	
	
	

	get_subnetid

	
	
	
	Yes

	
	
	
	
	
	
	
	
	
	
	

	iam_profile

	Yes

	
	
	Yes

	
	
	
	
	
	
	
	
	
	Yes

	

	import_key

	
	
	
	
	
	Yes

	
	
	
	
	
	
	
	
	

	key_list

	
	
	
	
	
	Yes

	
	
	
	
	
	
	
	
	

	keyname

	Yes

	
	
	Yes

	
	
	
	
	
	
	
	
	
	
	

	list_availability_zones

	
	
	
	Yes

	
	
	
	
	
	
	
	
	
	Yes

	Yes

	list_custom_images

	
	
	
	
	
	
	
	
	
	
	
	Yes

	
	
	Yes

	list_keys

	
	
	
	
	
	Yes

	
	
	
	
	
	
	
	
	

	list_nodes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	list_nodes_full

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	list_nodes_select

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	list_vlans

	
	
	
	
	
	
	
	
	
	
	
	Yes

	Yes

	
	

	rackconnect

	
	
	
	
	
	
	
	Yes

	
	
	
	
	
	
	

	reboot

	
	
	
	Yes

	
	Yes

	
	
	
	
	[1]

	
	
	Yes

	Yes

	reformat_node

	
	
	
	
	
	Yes

	
	
	
	
	
	
	
	
	

	securitygroup

	Yes

	
	
	Yes

	
	
	
	
	
	
	
	
	
	
	

	securitygroupid

	
	
	
	Yes

	
	
	
	
	
	
	
	
	
	Yes

	

	show_image

	
	
	
	Yes

	
	
	
	
	Yes

	
	
	
	
	Yes

	Yes

	show_key

	
	
	
	
	
	Yes

	
	
	
	
	
	
	
	
	

	show_keypair

	
	
	Yes

	Yes

	
	
	
	
	
	
	
	
	
	
	

	show_volume

	
	
	
	Yes

	
	
	
	
	
	
	
	
	
	
	

[1] Yes, if salt-api is enabled.

Salt Cloud Quickstart

Salt Cloud is built-in to Salt, and the easiest way to run Salt Cloud is
directly from your Salt Master.

Note that if you installed Salt via Salt Bootstrap [https://github.com/saltstack/salt-bootstrap], it may not have
automatically installed salt-cloud for you. Use your distribution's package
manager to install the salt-cloud package from the same repo that you
used to install Salt. These repos will automatically be setup by Salt Bootstrap.

Alternatively, the -L option can be passed to the Salt Bootstrap [https://github.com/saltstack/salt-bootstrap] script when
installing Salt. The -L option will install salt-cloud and the required
libcloud package.

This quickstart walks you through the basic steps of setting up a cloud host
and defining some virtual machines to create.

Note

Salt Cloud has its own process and does not rely on the Salt Master,
so it can be installed on a standalone minion instead of your Salt Master.

Define a Provider

The first step is to add the credentials for your cloud host. Credentials and
other settings provided by the cloud host are stored in provider configuration
files. Provider configurations contain the details needed to connect to a cloud
host such as EC2, GCE, Rackspace, etc., and any global options that you want
set on your cloud minions (such as the location of your Salt Master).

On your Salt Master, browse to /etc/salt/cloud.providers.d/ and create
a file called <provider>.conf, replacing <provider> with
ec2, softlayer, and so on. The name helps you identify the contents,
and is not important as long as the file ends in .conf.

Next, browse to the Provider specifics and
add any required settings for your cloud host to this file. Here is an example
for Amazon EC2:

my-ec2:
 driver: ec2
 # Set the EC2 access credentials (see below)
 #
 id: 'HJGRYCILJLKJYG'
 key: 'kdjgfsgm;woormgl/aserigjksjdhasdfgn'
 # Make sure this key is owned by root with permissions 0400.
 #
 private_key: /etc/salt/my_test_key.pem
 keyname: my_test_key
 securitygroup: default
 # Optional: Set up the location of the Salt Master
 #
 minion:
 master: saltmaster.example.com

The required configuration varies between cloud hosts so make sure you read the
provider specifics.

List Cloud Provider Options

You can now query the cloud provider you configured for available locations,
images, and sizes. This information is used when you set up VM profiles.

salt-cloud --list-locations <provider_name> # my-ec2 in the previous example
salt-cloud --list-images <provider_name>
salt-cloud --list-sizes <provider_name>

Replace <provider_name> with the name of the provider configuration you defined.

Create VM Profiles

On your Salt Master, browse to /etc/salt/cloud.profiles.d/ and create
a file called <profile>.conf, replacing <profile> with
ec2, softlayer, and so on. The file must end in .conf.

You can now add any custom profiles you'd like to define to this file. Here are
a few examples:

micro_ec2:
 provider: my-ec2
 image: ami-d514f291
 size: t1.micro

medium_ec2:
 provider: my-ec2
 image: ami-d514f291
 size: m3.medium

large_ec2:
 provider: my-ec2
 image: ami-d514f291
 size: m3.large

Notice that the provider in our profile matches the provider name that we
defined? That is how Salt Cloud knows how to connect to a cloud host to
create a VM with these attributes.

Create VMs

VMs are created by calling salt-cloud with the following options:

salt-cloud -p <profile> <name1> <name2> ...

For example:

salt-cloud -p micro_ec2 minion1 minion2

Destroy VMs

Add a -d and the minion name you provided to destroy:

salt-cloud -d minion1 minion2

Query VMs

You can view details about the VMs you've created using --query:

salt-cloud --query

Cloud Map

Now that you know how to create and destoy individual VMs, next you should
learn how to use a cloud map to create a number of VMs at once.

Cloud maps let you define a map of your infrastructure and quickly provision
any number of VMs. On subsequent runs, any VMs that do not exist are created,
and VMs that are already configured are left unmodified.

See Cloud Map File.

Using Salt Cloud with the Event Reactor

One of the most powerful features of the Salt framework is the Event Reactor.
As the Reactor was in development, Salt Cloud was regularly updated to take
advantage of the Reactor upon completion. As such, various aspects of both the
creation and destruction of instances with Salt Cloud fire events to the Salt
Master, which can be used by the Event Reactor.

Event Structure

As of this writing, all events in Salt Cloud have a tag, which includes the ID
of the instance being managed, and a payload which describes the task that is
currently being handled. A Salt Cloud tag looks like:

salt/cloud/<minion_id>/<task>

For instance, the first event fired when creating an instance named web1
would look like:

salt/cloud/web1/creating

Assuming this instance is using the ec2-centos profile, which is in turn
using the ec2-config provider, the payload for this tag would look like:

{"name": "web1", "profile": "ec2-centos", "provider": "ec2-config:ec2"}

Available Events

When an instance is created in Salt Cloud, whether by map, profile, or directly
through an API, a minimum of five events are normally fired. More may be
available, depending upon the cloud provider being used. Some of the common
events are described below.

salt/cloud/<minion_id>/creating

This event states simply that the process to create an instance has begun. At
this point in time, no actual work has begun. The payload for this event
includes:

name
profile
provider

salt/cloud/<minion_id>/requesting

Salt Cloud is about to make a request to the cloud provider to create an
instance. At this point, all of the variables required to make the request have
been gathered, and the payload of the event will reflect those variables which
do not normally pose a security risk. What is returned here is dependent upon
the cloud provider. Some common variables are:

name
image
size
location

salt/cloud/<minion_id>/querying

The instance has been successfully requested, but the necessary information to
log into the instance (such as IP address) is not yet available. This event
marks the beginning of the process to wait for this information.

The payload for this event normally only includes the instance_id.

salt/cloud/<minion_id>/waiting_for_ssh

The information required to log into the instance has been retrieved, but the
instance is not necessarily ready to be accessed. Following this event, Salt
Cloud will wait for the IP address to respond to a ping, then wait for the
specified port (usually 22) to respond to a connection, and on Linux systems,
for SSH to become available. Salt Cloud will attempt to issue the date
command on the remote system, as a means to check for availability. If no
ssh_username has been specified, a list of usernames (starting with
root) will be attempted. If one or more usernames was configured for
ssh_username, they will be added to the beginning of the list, in order.

The payload for this event normally only includes the ip_address.

salt/cloud/<minion_id>/deploying

The necessary port has been detected as available, and now Salt Cloud can log
into the instance, upload any files used for deployment, and run the deploy
script. Once the script has completed, Salt Cloud will log back into the
instance and remove any remaining files.

A number of variables are used to deploy instances, and the majority of these
will be available in the payload. Any keys, passwords or other sensitive data
will be scraped from the payload. Most of the variables returned will be
related to the profile or provider config, and any default values that could
have been changed in the profile or provider, but weren't.

salt/cloud/<minion_id>/created

The deploy sequence has completed, and the instance is now available, Salted,
and ready for use. This event is the final task for Salt Cloud, before returning
instance information to the user and exiting.

The payload for this event contains little more than the initial creating
event. This event is required in all cloud providers.

Filtering Events

When creating a VM, it is possible with certain tags to filter how much
information is sent to the event bus. The tags that can be filtered on any
provider are:

	salt/cloud/<minion_id>/creating

	salt/cloud/<minion_id>/requesting

	salt/cloud/<minion_id>/created

Other providers may allow other tags to be filtered; when that is the case,
the documentation for that provider will contain more details.

To filter information, create a section in your /etc/salt/cloud file called
filter_events. Create a section for each tag that you want to filter, using
the last segment of the tag. For instance, use creating to represent
salt/cloud/<minion_id>/creating:

filter_events:
 creating:
 keys:
 - name
 - profile
 - provider

Any keys listed here will be added to the default keys that are already set to
be displayed for that provider. If you wish to start with a clean slate and
only show the keys specified, add another option called use_defaults and
set it to False.

filter_events:
 creating:
 keys:
 - name
 - profile
 - provider
 use_defaults: False

Configuring the Event Reactor

The Event Reactor is built into the Salt Master process, and as such is
configured via the master configuration file. Normally this will be a YAML
file located at /etc/salt/master. Additionally, master configuration items
can be stored, in YAML format, inside the /etc/salt/master.d/ directory.

These configuration items may be stored in either location; however, they may
only be stored in one location. For organizational and security purposes, it
may be best to create a single configuration file, which contains only Event
Reactor configuration, at /etc/salt/master.d/reactor.

The Event Reactor uses a top-level configuration item called reactor. This
block contains a list of tags to be watched for, each of which also includes a
list of sls files. For instance:

reactor:
 - 'salt/minion/*/start':
 - '/srv/reactor/custom-reactor.sls'
 - 'salt/cloud/*/created':
 - '/srv/reactor/cloud-alert.sls'
 - 'salt/cloud/*/destroyed':
 - '/srv/reactor/cloud-destroy-alert.sls'

The above configuration configures reactors for three different tags: one which
is fired when a minion process has started and is available to receive commands,
one which is fired when a cloud instance has been created, and one which is
fired when a cloud instance is destroyed.

Note that each tag contains a wildcard (*) in it. For each of these tags,
this will normally refer to a minion_id. This is not required of event tags,
but is very common.

Reactor SLS Files

Reactor sls files should be placed in the /srv/reactor/ directory for
consistency between environments, but this is not currently enforced by Salt.

Reactor sls files follow a similar format to other sls files in
Salt. By default they are written in YAML and can be templated using Jinja, but
since they are processed through Salt's rendering system, any available
renderer (JSON, Mako, Cheetah, etc.) can be used.

As with other sls files, each stanza will start with a declaration ID,
followed by the function to run, and then any arguments for that function. For
example:

/srv/reactor/cloud-alert.sls
new_instance_alert:
 cmd.pagerduty.create_event:
 - tgt: alertserver
 - kwarg:
 description: "New instance: {{ data['name'] }}"
 details: "New cloud instance created on {{ data['provider'] }}"
 service_key: 1626dead5ecafe46231e968eb1be29c4
 profile: my-pagerduty-account

When the Event Reactor receives an event notifying it that a new instance has
been created, this sls will create a new incident in PagerDuty, using the
configured PagerDuty account.

The declaration ID in this example is new_instance_alert. The function
called is cmd.pagerduty.create_event. The cmd portion of this function
specifies that an execution module and function will be called, in this case,
the pagerduty.create_event function.

Because an execution module is specified, a target (tgt) must be specified
on which to call the function. In this case, a minion called alertserver
has been used. Any arguments passed through to the function are declared in the
kwarg block.

Example: Reactor-Based Highstate

When Salt Cloud creates an instance, by default it will install the Salt Minion
onto the instance, along with any specified minion configuration, and
automatically accept that minion's keys on the master. One of the configuration
options that can be specified is startup_states, which is commonly set to
highstate. This will tell the minion to immediately apply a highstate, as soon as it is able to do so.

This can present a problem with some system images on some cloud hosts. For
instance, Salt Cloud can be configured to log in as either the root user, or
a user with sudo access. While some hosts commonly use images that
lock out remote root access and require a user with sudo privileges to
log in (notably EC2, with their ec2-user login), most cloud hosts fall
back to root as the default login on all images, including for operating
systems (such as Ubuntu) which normally disallow remote root login.

For users of these operating systems, it is understandable that a
highstate would include configuration to block
remote root logins again. However, Salt Cloud may not have finished
cleaning up its deployment files by the time the minion process has started,
and kicked off a highstate run. Users have reported
errors from Salt Cloud getting locked out while trying to clean up after
itself.

The goal of a startup state may be achieved using the Event Reactor. Because a
minion fires an event when it is able to receive commands, this event can
effectively be used inside the reactor system instead. The following will point
the reactor system to the right sls file:

reactor:
 - 'salt/cloud/*/created':
 - '/srv/reactor/startup_highstate.sls'

And the following sls file will start a highstate run on the target minion:

/srv/reactor/startup_highstate.sls
reactor_highstate:
 cmd.state.apply:
 - tgt: {{ data['name'] }}

Because this event will not be fired until Salt Cloud has cleaned up after
itself, the highstate run will not step on
salt-cloud's toes. And because every file on the minion is configurable,
including /etc/salt/minion, the startup_states can still be configured
for future minion restarts, if desired.

Salt Proxy Minion

Proxy minions are a developing Salt feature that enables controlling devices
that, for whatever reason, cannot run a standard salt-minion. Examples include
network gear that has an API but runs a proprietary OS, devices with limited
CPU or memory, or devices that could run a minion, but for security reasons,
will not.

There are some proxy modules available, but if your device
interface is not currently supported you will most likely have to write the interface
yourself, because there are an infinite number of controllable devices. Fortunately, this
is only as difficult as the actual interface to the proxied device. Devices that have an
existing Python module (PyUSB for example) would be relatively simple to interface.
Code to control a device that has an HTML REST-based interface should be easy. Code to
control your typical housecat would be excellent source material for a PhD thesis.

Salt proxy-minions provide the 'plumbing' that allows device enumeration
and discovery, control, status, remote execution, and state management.

See the Proxy Minion Walkthrough for an end-to-end
demonstration of a working REST-based proxy minion.

See the Proxy Minion SSH Walkthrough for an end-to-end
demonstration of a working SSH proxy minion.

See Proxyminion States to configure and
run salt-proxy on a remote minion. Specify all your master side
proxy (pillar) configuration and use this state to remotely configure proxies on one
or more minions.

See Proxyminion Beacon to help
with easy configuration and management of salt-proxy processes.

New in 2017.7.0

The proxy_merge_grains_in_module configuration variable
introduced in 2016.3, has been changed, defaulting to True.

The connection with the remote device is kept alive by default, when the
module implements the alive function and proxy_keep_alive
is set to True. The polling interval is set using the
proxy_keep_alive_interval option which defaults to 1 minute.

The developers are also able to use the proxy_always_alive,
when designing a proxy module flexible enough to open the
connection with the remote device only when required.

New in 2016.11.0

Proxy minions now support configuration files with names ending in '*.conf'
and placed in /etc/salt/proxy.d.

Proxy minions can now be configured in /etc/salt/proxy or /etc/salt/proxy.d
instead of just pillar. Configuration format is the same as it would be in pillar.

New in 2016.3

The deprecated config option enumerate_proxy_minions has been removed.

As mentioned in earlier documentation, the add_proxymodule_to_opts
configuration variable defaults to False in this release. This means if you
have proxymodules or other code looking in __opts__['proxymodule'] you
will need to set this variable in your /etc/salt/proxy file, or
modify your code to use the __proxy__ injected variable.

The __proxyenabled__ directive now only applies to grains and proxy modules
themselves. Standard execution modules and state modules are not prevented
from loading for proxy minions.

Enhancements in grains processing have made the __proxyenabled__ directive
somewhat redundant in dynamic grains code. It is still required, but best
practices for the __virtual__ function in grains files have changed. It
is now recommended that the __virtual__ functions check to make sure
they are being loaded for the correct proxytype, example below:

def __virtual__():
 """
 Only work on proxy
 """
 try:
 if (
 salt.utils.platform.is_proxy()
 and __opts__["proxy"]["proxytype"] == "ssh_sample"
):
 return __virtualname__
 except KeyError:
 pass

 return False

The try/except block above exists because grains are processed very early
in the proxy minion startup process, sometimes earlier than the proxy
key in the __opts__ dictionary is populated.

Grains are loaded so early in startup that no dunder dictionaries are
present, so __proxy__, __salt__, etc. are not available. Custom
grains located in /srv/salt/_grains and in the salt install grains
directory can now take a single argument, proxy, that is identical
to __proxy__. This enables patterns like

def get_ip(proxy):
 """
 Ask the remote device what IP it has
 """
 return {"ip": proxy["proxymodulename.get_ip"]()}

Then the grain ip will contain the result of calling the get_ip() function
in the proxymodule called proxymodulename.

Proxy modules now benefit from including a function called initialized(). This
function should return True if the proxy's init() function has been successfully
called. This is needed to make grains processing easier.

Finally, if there is a function called grains in the proxymodule, it
will be executed on proxy-minion startup and its contents will be merged with
the rest of the proxy's grains. Since older proxy-minions might have used other
methods to call such a function and add its results to grains, this is config-gated
by a new proxy configuration option called proxy_merge_grains_in_module. This
defaults to True in the 2017.7.0 release.

New in 2015.8.2

BREAKING CHANGE: Adding the proxymodule variable to __opts__ is deprecated.
The proxymodule variable has been moved a new globally-injected variable
called __proxy__. A related configuration option called
add_proxymodule_to_opts has been added and defaults to True. In the next
major release, 2016.3.0, this variable will default to False.

In the meantime, proxies that functioned under 2015.8.0 and .1 should continue
to work under 2015.8.2. You should rework your proxy code to use __proxy__ as
soon as possible.

The rest_sample example proxy minion has been updated to use __proxy__.

This change was made because proxymodules are a LazyLoader object, but
LazyLoaders cannot be serialized. __opts__ gets serialized, and so things
like saltutil.sync_all and state.highstate would throw exceptions.

Support has been added to Salt's loader allowing custom proxymodules
to be placed in salt://_proxy. Proxy minions that need these modules
will need to be restarted to pick up any changes. A corresponding utility function,
saltutil.sync_proxymodules, has been added to sync these modules to minions.

In addition, a salt.utils helper function called is_proxy() was added to make
it easier to tell when the running minion is a proxy minion. NOTE: This
function was renamed to salt.utils.platform.is_proxy() for the 2018.3.0
release

New in 2015.8

Starting with the 2015.8 release of Salt, proxy processes are no longer forked
off from a controlling minion. Instead, they have their own script
salt-proxy which takes mostly the same arguments that the standard Salt
minion does with the addition of --proxyid. This is the id that the
salt-proxy will use to identify itself to the master. Proxy configurations are
still best kept in Pillar and their format has not changed.

This change allows for better process control and logging. Proxy processes can
now be listed with standard process management utilities (ps from the
command line). Also, a full Salt minion is no longer required (though it is
still strongly recommended) on machines hosting proxies.

Getting Started

The following diagram may be helpful in understanding the structure of a Salt
installation that includes proxy-minions:

[image: ../../_images/proxy_minions.png]
The key thing to remember is the left-most section of the diagram. Salt's
nature is to have a minion connect to a master, then the master may control
the minion. However, for proxy minions, the target device cannot run a minion.

After the proxy minion is started and initiates its connection to the
device, it connects back to the salt-master and for all intents and purposes
looks like just another minion to the Salt master.

To create support for a proxied device one needs to create four things:

	The proxy_connection_module (located in salt/proxy).

	The grains support code (located in salt/grains).

	Salt modules specific to the controlled
device.

	Salt states specific to the controlled device.

Configuration parameters

Proxy minions require no configuration parameters in /etc/salt/master.

Salt's Pillar system is ideally suited for configuring proxy-minions
(though they can be configured in /etc/salt/proxy as well). Proxies
can either be designated via a pillar file in pillar_roots, or through an
external pillar. External pillars afford the opportunity for interfacing with
a configuration management system, database, or other knowledgeable system that
that may already contain all the details of proxy targets. To use static files
in pillar_roots, pattern your files after the following examples, which are
based on the diagram above:

/srv/pillar/top.sls

base:
 net-device1:
 - net-device1
 net-device2:
 - net-device2
 net-device3:
 - net-device3
 i2c-device4:
 - i2c-device4
 i2c-device5:
 - i2c-device5
 433wireless-device6:
 - 433wireless-device6
 smsgate-device7:
 - device7

/srv/pillar/net-device1.sls

proxy:
 proxytype: networkswitch
 host: 172.23.23.5
 username: root
 passwd: letmein

/srv/pillar/net-device2.sls

proxy:
 proxytype: networkswitch
 host: 172.23.23.6
 username: root
 passwd: letmein

/srv/pillar/net-device3.sls

proxy:
 proxytype: networkswitch
 host: 172.23.23.7
 username: root
 passwd: letmein

/srv/pillar/i2c-device4.sls

proxy:
 proxytype: i2c_lightshow
 i2c_address: 1

/srv/pillar/i2c-device5.sls

proxy:
 proxytype: i2c_lightshow
 i2c_address: 2

/srv/pillar/433wireless-device6.sls

proxy:
 proxytype: 433mhz_wireless

/srv/pillar/smsgate-device7.sls

proxy:
 proxytype: sms_serial
 deventry: /dev/tty04

Note the contents of each minioncontroller key may differ widely based on
the type of device that the proxy-minion is managing.

In the above example

	net-devices 1, 2, and 3 are network switches that have a management
interface available at a particular IP address.

	i2c-devices 4 and 5 are very low-level devices controlled over an i2c bus.
In this case the devices are physically connected to machine
'minioncontroller2', and are addressable on the i2c bus at their respective
i2c addresses.

	433wireless-device6 is a 433 MHz wireless transmitter, also physically connected to
minioncontroller2

	smsgate-device7 is an SMS gateway connected to machine minioncontroller3 via a
serial port.

Because of the way pillar works, each of the salt-proxy processes that fork off the
proxy minions will only see the keys specific to the proxies it will be
handling.

Proxies can be configured in /etc/salt/proxy or with files in /etc/salt/proxy.d as of
Salt's 2016.11.0 release.

Also, in general, proxy-minions are lightweight, so the machines that run them
could conceivably control a large number of devices. To run more than one proxy from
a single machine, simply start an additional proxy process with --proxyid
set to the id to which you want the proxy to bind.
It is possible for the proxy services to be spread across
many machines if necessary, or intentionally run on machines that need to
control devices because of some physical interface (e.g. i2c and serial above).
Another reason to divide proxy services might be security. In more secure
environments only certain machines may have a network path to certain devices.

Proxymodules

A proxy module encapsulates all the code necessary to interface with a device.
Proxymodules are located inside the salt.proxy module, or can be placed in
the _proxy directory in your file_roots (default is /srv/salt/_proxy.
At a minimum a proxymodule object must implement the following functions:

__virtual__(): This function performs the same duty that it does for other
types of Salt modules. Logic goes here to determine if the module can be
loaded, checking for the presence of Python modules on which the proxy depends.
Returning False will prevent the module from loading.

init(opts): Perform any initialization that the device needs. This is
a good place to bring up a persistent connection to a device, or authenticate
to create a persistent authorization token.

initialized(): Returns True if init() was successfully called.

shutdown(): Code to cleanly shut down or close a connection to
a controlled device goes here. This function must exist, but can contain only
the keyword pass if there is no shutdown logic required.

ping(): While not required, it is highly recommended that this function also
be defined in the proxymodule. The code for ping should contact the
controlled device and make sure it is really available.

alive(opts): Another optional function, it is used together with the
proxy_keep_alive option (default: True). This function should
return a boolean value corresponding to the state of the connection.
If the connection is down, will try to restart (shutdown
followed by init). The polling frequency is controlled using
the proxy_keep_alive_interval option, in minutes.

grains(): Rather than including grains in /srv/salt/_grains or in
the standard install directories for grains, grains can be computed and
returned by this function. This function will be called automatically
if proxy_merge_grains_in_module is set to True in /etc/salt/proxy.
This variable defaults to True in the release code-named 2017.7.0.

Pre 2015.8 the proxymodule also must have an id() function. 2015.8 and following don't use
this function because the proxy's id is required on the command line.

Here is an example proxymodule used to interface to a very simple REST
server. Code for the server is in the salt-contrib GitHub repository [https://github.com/saltstack/salt-contrib/tree/master/proxyminion_rest_example].

This proxymodule enables "service" enumeration, starting, stopping, restarting,
and status; "package" installation, and a ping.

-*- coding: utf-8 -*-
"""
This is a simple proxy-minion designed to connect to and communicate with
the bottle-based web service contained in https://github.com/saltstack/salt-contrib/tree/master/proxyminion_rest_example
"""
from __future__ import absolute_import

Import python libs
import logging
import salt.utils.http

HAS_REST_EXAMPLE = True

This must be present or the Salt loader won't load this module
__proxyenabled__ = ["rest_sample"]

Variables are scoped to this module so we can have persistent data
across calls to fns in here.
GRAINS_CACHE = {}
DETAILS = {}

Want logging!
log = logging.getLogger(__file__)

This does nothing, it's here just as an example and to provide a log
entry when the module is loaded.
def __virtual__():
 """
 Only return if all the modules are available
 """
 log.debug("rest_sample proxy __virtual__() called...")
 return True

def _complicated_function_that_determines_if_alive():
 return True

Every proxy module needs an 'init', though you can
just put DETAILS['initialized'] = True here if nothing
else needs to be done.

def init(opts):
 log.debug("rest_sample proxy init() called...")
 DETAILS["initialized"] = True

 # Save the REST URL
 DETAILS["url"] = opts["proxy"]["url"]

 # Make sure the REST URL ends with a '/'
 if not DETAILS["url"].endswith("/"):
 DETAILS["url"] += "/"

def alive(opts):
 """
 This function returns a flag with the connection state.
 It is very useful when the proxy minion establishes the communication
 via a channel that requires a more elaborated keep-alive mechanism, e.g.
 NETCONF over SSH.
 """
 log.debug("rest_sample proxy alive() called...")
 return _complicated_function_that_determines_if_alive()

def initialized():
 """
 Since grains are loaded in many different places and some of those
 places occur before the proxy can be initialized, return whether
 our init() function has been called
 """
 return DETAILS.get("initialized", False)

def grains():
 """
 Get the grains from the proxied device
 """
 if not DETAILS.get("grains_cache", {}):
 r = salt.utils.http.query(
 DETAILS["url"] + "info", decode_type="json", decode=True
)
 DETAILS["grains_cache"] = r["dict"]
 return DETAILS["grains_cache"]

def grains_refresh():
 """
 Refresh the grains from the proxied device
 """
 DETAILS["grains_cache"] = None
 return grains()

def fns():
 return {
 "details": "This key is here because a function in "
 "grains/rest_sample.py called fns() here in the proxymodule."
 }

def service_start(name):
 """
 Start a "service" on the REST server
 """
 r = salt.utils.http.query(
 DETAILS["url"] + "service/start/" + name, decode_type="json", decode=True
)
 return r["dict"]

def service_stop(name):
 """
 Stop a "service" on the REST server
 """
 r = salt.utils.http.query(
 DETAILS["url"] + "service/stop/" + name, decode_type="json", decode=True
)
 return r["dict"]

def service_restart(name):
 """
 Restart a "service" on the REST server
 """
 r = salt.utils.http.query(
 DETAILS["url"] + "service/restart/" + name, decode_type="json", decode=True
)
 return r["dict"]

def service_list():
 """
 List "services" on the REST server
 """
 r = salt.utils.http.query(
 DETAILS["url"] + "service/list", decode_type="json", decode=True
)
 return r["dict"]

def service_status(name):
 """
 Check if a service is running on the REST server
 """
 r = salt.utils.http.query(
 DETAILS["url"] + "service/status/" + name, decode_type="json", decode=True
)
 return r["dict"]

def package_list():
 """
 List "packages" installed on the REST server
 """
 r = salt.utils.http.query(
 DETAILS["url"] + "package/list", decode_type="json", decode=True
)
 return r["dict"]

def package_install(name, **kwargs):
 """
 Install a "package" on the REST server
 """
 cmd = DETAILS["url"] + "package/install/" + name
 if kwargs.get("version", False):
 cmd += "/" + kwargs["version"]
 else:
 cmd += "/1.0"
 r = salt.utils.http.query(cmd, decode_type="json", decode=True)
 return r["dict"]

def fix_outage():
 r = salt.utils.http.query(DETAILS["url"] + "fix_outage")
 return r

def uptodate(name):
 """
 Call the REST endpoint to see if the packages on the "server" are up to date.
 """
 r = salt.utils.http.query(
 DETAILS["url"] + "package/remove/" + name, decode_type="json", decode=True
)
 return r["dict"]

def package_remove(name):
 """
 Remove a "package" on the REST server
 """
 r = salt.utils.http.query(
 DETAILS["url"] + "package/remove/" + name, decode_type="json", decode=True
)
 return r["dict"]

def package_status(name):
 """
 Check the installation status of a package on the REST server
 """
 r = salt.utils.http.query(
 DETAILS["url"] + "package/status/" + name, decode_type="json", decode=True
)
 return r["dict"]

def ping():
 """
 Is the REST server up?
 """
 r = salt.utils.http.query(DETAILS["url"] + "ping", decode_type="json", decode=True)
 try:
 return r["dict"].get("ret", False)
 except Exception:
 return False

def shutdown(opts):
 """
 For this proxy shutdown is a no-op
 """
 log.debug("rest_sample proxy shutdown() called...")

Grains are data about minions. Most proxied devices will have a paltry amount
of data as compared to a typical Linux server. By default, a proxy minion will
have several grains taken from the host. Salt core code requires values for kernel,
os, and os_family--all of these are forced to be proxy for proxy-minions.

To add others to your proxy minion for
a particular device, create a file in salt/grains named [proxytype].py and place
inside it the different functions that need to be run to collect the data you
are interested in. Here's an example. Note the function below called proxy_functions.
It demonstrates how a grains function can take a single argument, which will be
set to the value of __proxy__. Dunder variables are not yet injected into Salt processes
at the time grains are loaded, so this enables us to get a handle to the proxymodule so we
can cross-call the functions therein used to communicate with the controlled device.

Note that as of 2016.3, grains values can also be calculated in a function called grains()
in the proxymodule itself. This might be useful if a proxymodule author wants to keep
all the code for the proxy interface in the same place instead of splitting it between
the proxy and grains directories.

This function will only be called automatically if the configuration variable
proxy_merge_grains_in_module is set to True in the proxy configuration file
(default /etc/salt/proxy). This variable defaults to True in the
release code-named 2017.7.0.

The __proxyenabled__ directive

In previous versions of Salt the __proxyenabled__ directive controlled
loading of all Salt modules for proxies (e.g. grains, execution modules, state
modules). From 2016.3 on, the only modules that respect __proxyenabled__
are grains and proxy modules. These modules need to be told which proxy they
work with.

__proxyenabled__ is a list, and can contain a single '*' to indicate
a grains module works with all proxies.

Example from salt/grains/rest_sample.py:

-*- coding: utf-8 -*-
"""
Generate baseline proxy minion grains
"""
from __future__ import absolute_import
import salt.utils.platform

__proxyenabled__ = ["rest_sample"]

__virtualname__ = "rest_sample"

def __virtual__():
 try:
 if (
 salt.utils.platform.is_proxy()
 and __opts__["proxy"]["proxytype"] == "rest_sample"
):
 return __virtualname__
 except KeyError:
 pass

 return False

	Salt Proxy Minion End-to-End Example

SSH Proxymodules

See above for a general introduction to writing proxy modules.
All of the guidelines that apply to REST are the same for SSH.
This sections specifically talks about the SSH proxy module and
explains the working of the example proxy module ssh_sample.

Here is a simple example proxymodule used to interface to a device over SSH.
Code for the SSH shell is in the salt-contrib GitHub repository [https://github.com/saltstack/salt-contrib/tree/master/proxyminion_rest_example].

This proxymodule enables "package" installation.

-*- coding: utf-8 -*-
"""
This is a simple proxy-minion designed to connect to and communicate with
a server that exposes functionality via SSH.
This can be used as an option when the device does not provide
an api over HTTP and doesn't have the python stack to run a minion.
"""
from __future__ import absolute_import

Import python libs
import salt.utils.json
import logging

Import Salt's libs
from salt.utils.vt_helper import SSHConnection
from salt.utils.vt import TerminalException

This must be present or the Salt loader won't load this module
__proxyenabled__ = ["ssh_sample"]

DETAILS = {}

Want logging!
log = logging.getLogger(__file__)

This does nothing, it's here just as an example and to provide a log
entry when the module is loaded.
def __virtual__():
 """
 Only return if all the modules are available
 """
 log.info("ssh_sample proxy __virtual__() called...")

 return True

def init(opts):
 """
 Required.
 Can be used to initialize the server connection.
 """
 try:
 DETAILS["server"] = SSHConnection(
 host=__opts__["proxy"]["host"],
 username=__opts__["proxy"]["username"],
 password=__opts__["proxy"]["password"],
)
 # connected to the SSH server
 out, err = DETAILS["server"].sendline("help")

 except TerminalException as e:
 log.error(e)
 return False

def shutdown(opts):
 """
 Disconnect
 """
 DETAILS["server"].close_connection()

def parse(out):
 """
 Extract json from out.

 Parameter
 out: Type string. The data returned by the
 ssh command.
 """
 jsonret = []
 in_json = False
 for ln_ in out.split("\n"):
 if "{" in ln_:
 in_json = True
 if in_json:
 jsonret.append(ln_)
 if "}" in ln_:
 in_json = False
 return salt.utils.json.loads("\n".join(jsonret))

def package_list():
 """
 List "packages" by executing a command via ssh
 This function is called in response to the salt command

 .. code-block:: bash

 salt target_minion pkg.list_pkgs

 """
 # Send the command to execute
 out, err = DETAILS["server"].sendline("pkg_list")

 # "scrape" the output and return the right fields as a dict
 return parse(out)

def package_install(name, **kwargs):
 """
 Install a "package" on the REST server
 """
 cmd = "pkg_install " + name
 if "version" in kwargs:
 cmd += "/" + kwargs["version"]
 else:
 cmd += "/1.0"

 # Send the command to execute
 out, err = DETAILS["server"].sendline(cmd)

 # "scrape" the output and return the right fields as a dict
 return parse(out)

def package_remove(name):
 """
 Remove a "package" on the REST server
 """
 cmd = "pkg_remove " + name

 # Send the command to execute
 out, err = DETAILS["server"].sendline(cmd)

 # "scrape" the output and return the right fields as a dict
 return parse(out)

Connection Setup

The init() method is responsible for connection setup. It uses the host, username and password config variables defined in the pillar data. The prompt kwarg can be passed to SSHConnection if your SSH server's prompt differs from the example's prompt (Cmd). Instantiating the SSHConnection class establishes an SSH connection to the ssh server (using Salt VT).

Command execution

The package_* methods use the SSH connection (established in init()) to send commands out to the SSH server. The sendline() method of SSHConnection class can be used to send commands out to the server. In the above example we send commands like pkg_list or pkg_install. You can send any SSH command via this utility.

Output parsing

Output returned by sendline() is a tuple of strings representing the stdout and the stderr respectively. In the toy example shown we simply scrape the output and convert it to a python dictionary, as shown in the parse method. You can tailor this method to match your parsing logic.

Connection teardown

The shutdown method is responsible for calling the close_connection() method of SSHConnection class. This ends the SSH connection to the server.

For more information please refer to class SSHConnection [https://github.com/saltstack/salt/blob/b8271c7512da7e048019ee26422be9e7d6b795ab/salt/utils/vt_helper.py#L28].

	Salt Proxy Minion SSH End-to-End Example

	Proxy Minion Beacon

	Proxy Minion States

	ESXi Proxy Minion
	Dependencies

	Configuration

	Starting the Proxy Minion

	Executing Commands

	Relevant Salt Files and Resources

Salt Proxy Minion End-to-End Example

The following is walkthrough that documents how to run a sample REST service
and configure one or more proxy minions to talk to and control it.

	Ideally, create a Python virtualenv in which to run the REST service. This
is not strictly required, but without a virtualenv you will need to install
bottle via pip globally on your system

	Clone https://github.com/saltstack/salt-contrib
and copy the contents of the directory proxyminion_rest_example
somewhere on a machine that is reachable from the machine on which you want to
run the salt-proxy. This machine needs Python 2.7 or later.

	Install bottle version 0.12.8 via pip or easy_install

pip install bottle==0.12.8

	Run python rest.py --help for usage

	Start the REST API on an appropriate port and IP.

	Load the REST service's status page in your browser by going to the IP/port
combination (e.g. http://127.0.0.1:8000)

	You should see a page entitled "Salt Proxy Minion" with two sections,
one for "services" and one for "packages" and you should see a log entry in
the terminal where you started the REST process indicating that the index
page was retrieved.

[image: ../../_images/rest_status_screen.png]
Now, configure your salt-proxy.

	Edit /etc/salt/proxy and add an entry for your master's location

master: localhost

	On your salt-master, ensure that pillar is configured properly. Select an ID
for your proxy (in this example we will name the proxy with the letter 'p'
followed by the port the proxy is answering on). In your pillar topfile,
place an entry for your proxy:

base:
 'p8000':
 - p8000

This says that Salt's pillar should load some values for the proxy p8000
from the file /srv/pillar/p8000.sls (if you have not changed your default pillar_roots)

	In the pillar root for your base environment, create the p8000.sls file with the
following contents:

proxy:
 proxytype: rest_sample
 url: http://<IP your REST listens on>:port

In other words, if your REST service is listening on port 8000 on 127.0.0.1
the 'url' key above should say url: http://127.0.0.1:8000

	Make sure your salt-master is running.

	Start the salt-proxy in debug mode

salt-proxy --proxyid=p8000 -l debug

	Accept your proxy's key on your salt-master

salt-key -y -a p8000
The following keys are going to be accepted:
Unaccepted Keys:
p8000
Key for minion p8000 accepted.

	Now you should be able to ping your proxy. When you ping, you should see
a log entry in the terminal where the REST service is running.

salt p8000 test.version

	The REST service implements a degenerately simple pkg and service provider as
well as a small set of grains. To "install" a package, use a standard
pkg.install. If you pass '==' and a version number after the package
name then the service will parse that and accept that as the package's
version.

	Try running salt p8000 grains.items to see what grains are available. You
can target proxies via grains if you like.

	You can also start and stop the available services (apache, redbull, and
postgresql with service.start, etc.

	States can be written to target the proxy. Feel free to experiment with
them.

Salt Proxy Minion SSH End-to-End Example

The following is walkthrough that documents how to run a sample SSH service
and configure one or more proxy minions to talk to and control it.

	This walkthrough uses a custom SSH shell to provide an end to end example.
Any other shells can be used too.

	Setup the proxy command shell as shown https://github.com/saltstack/salt-contrib/tree/master/proxyminion_ssh_example

Now, configure your salt-proxy.

	Edit /etc/salt/proxy and add an entry for your master's location

master: localhost
multiprocessing: False

	On your salt-master, ensure that pillar is configured properly. Select an ID
for your proxy (in this example we will name the proxy with the letter 'p'
followed by the port the proxy is answering on). In your pillar topfile,
place an entry for your proxy:

base:
 'p8000':
 - p8000

This says that Salt's pillar should load some values for the proxy p8000
from the file /srv/pillar/p8000.sls (if you have not changed your default pillar_roots)

	In the pillar root for your base environment, create the p8000.sls file with the
following contents:

proxy:
 proxytype: ssh_sample
 host: saltyVM
 username: salt
 password: badpass

	Make sure your salt-master is running.

	Start the salt-proxy in debug mode

salt-proxy --proxyid=p8000 -l debug

	Accept your proxy's key on your salt-master

salt-key -y -a p8000
The following keys are going to be accepted:
Unaccepted Keys:
p8000
Key for minion p8000 accepted.

	Now you should be able to run commands on your proxy.

salt p8000 pkg.list_pkgs

	The SSH shell implements a degenerately simple pkg.
To "install" a package, use a standard
pkg.install. If you pass '==' and a version number after the package
name then the service will parse that and accept that as the package's
version.

New in version 2015.8.3.

Proxy Minion Beacon

The salt proxy beacon is meant to facilitate configuring
multiple proxies on one or many minions. This should simplify
configuring and managing multiple salt-proxy processes.

	On your salt-master, ensure that pillar is configured properly. Select an ID
for your proxy (in this example we will name the proxy 'p8000').
In your pillar topfile, place an entry for your proxy:

base:
 'p8000':
 - p8000

This says that Salt's pillar should load some values for the proxy p8000
from the file /srv/pillar/p8000.sls (if you have not changed your default pillar_roots)

	In the pillar root for your base environment, create the p8000.sls file with the
following contents:

proxy:
 # set proxytype for your proxymodule
 proxytype: ssh_sample
 host: saltyVM
 username: salt
 password: badpass

This should complete the proxy setup for p8000

	Configure [https://docs.saltproject.io/en/latest/topics/beacons/#configuring-beacons] the salt_proxy beacon

beacons:
 salt_proxy:
 - proxies:
 p8000: {}
 p8001: {}

Once this beacon is configured it will automatically start the salt-proxy
process. If the salt-proxy process is terminated the beacon will
re-start it.

	Accept your proxy's key on your salt-master

salt-key -y -a p8000
The following keys are going to be accepted:
Unaccepted Keys:
p8000
Key for minion p8000 accepted.

	Now you should be able to run commands on your proxy.

salt p8000 pkg.list_pkgs

New in version 2015.8.2.

Proxy Minion States

Salt proxy state can be used to deploy, configure and run
a salt-proxy instance on your minion. Configure proxy settings
on the master side and the state configures and runs salt-proxy
on the remote end.

	On your salt-master, ensure that pillar is configured properly. Select an ID
for your proxy (in this example we will name the proxy 'p8000').
In your pillar topfile, place an entry for your proxy:

base:
 'p8000':
 - p8000

This says that Salt's pillar should load some values for the proxy p8000
from the file /srv/pillar/p8000.sls (if you have not changed your default pillar_roots)

	In the pillar root for your base environment, create the p8000.sls file with the
following contents:

proxy:
 # set proxytype for your proxymodule
 proxytype: ssh_sample
 host: saltyVM
 username: salt
 password: badpass

	Create the following state in your state tree
(let's name it salt_proxy.sls)

salt-proxy-configure:
 salt_proxy.configure_proxy:
 - proxyname: p8000
 - start: True # start the process if it isn't running

	Make sure your salt-master and salt-minion are running.

	Run the state salt_proxy on the minion where you want to run salt-proxy

Example using state.sls to configure and run salt-proxy

salt device_minion state.sls salt_proxy

This starts salt-proxy on device_minion

	Accept your proxy's key on your salt-master

salt-key -y -a p8000
The following keys are going to be accepted:
Unaccepted Keys:
p8000
Key for minion p8000 accepted.

	Now you should be able to run commands on your proxy.

salt p8000 pkg.list_pkgs

ESXi Proxy Minion

New in version 2015.8.4.

Note

This tutorial assumes basic knowledge of Salt. To get up to speed, check
out the Salt Walkthrough.

This tutorial also assumes a basic understanding of Salt Proxy Minions. If
you're unfamiliar with Salt's Proxy Minion system, please read the
Salt Proxy Minion documentation and the
Salt Proxy Minion End-to-End Example
tutorial.

The third assumption that this tutorial makes is that you also have a
basic understanding of ESXi hosts. You can learn more about ESXi hosts on
VMware's various resources [https://www.vmware.com/products/esxi-and-esx.html].

Salt's ESXi Proxy Minion allows a VMware ESXi host to be treated as an individual
Salt Minion, without installing a Salt Minion on the ESXi host.

Since an ESXi host may not necessarily run on an OS capable of hosting a Python
stack, the ESXi host can't run a regular Salt Minion directly. Therefore, Salt's
Proxy Minion functionality enables you to designate another machine to host a
proxy process that "proxies" communication from the Salt Master to the ESXi host.
The master does not know or care that the ESXi target is not a "real" Salt Minion.

More in-depth conceptual reading on Proxy Minions can be found in the
Proxy Minion section of Salt's documentation.

Salt's ESXi Proxy Minion was added in the 2015.8.4 release of Salt.

Note

Be aware that some functionality for the ESXi Proxy Minion may depend on the
type of license attached the ESXi host(s).

For example, certain services are only available to manipulate service state
or policies with a VMware vSphere Enterprise or Enterprise Plus license, while
others are available with a Standard license. The ntpd service is restricted
to an Enterprise Plus license, while ssh is available via the Standard
license.

Please see the vSphere Comparison [https://www.vmware.com/products/vsphere.html#compare] page for more information.

Dependencies

Manipulation of the ESXi host via a Proxy Minion requires the machine running
the Proxy Minion process to have the ESXCLI package (and all of its dependencies)
and the pyVmomi Python Library to be installed.

ESXi Password

The ESXi Proxy Minion uses VMware's API to perform tasks on the host as if it was
a regular Salt Minion. In order to access the API that is already running on the
ESXi host, the ESXi host must have a username and password that is used to log
into the host. The username is usually root. Before Salt can access the ESXi
host via VMware's API, a default password must be set on the host.

pyVmomi

The pyVmomi Python library must be installed on the machine that is running the
proxy process. pyVmomi can be installed via pip:

pip install pyVmomi

Note

Version 6.0 of pyVmomi has some problems with SSL error handling on certain
versions of Python. If using version 6.0 of pyVmomi, the machine that you
are running the proxy minion process from must have either Python 2.6,
Python 2.7.9, or newer. This is due to an upstream dependency in pyVmomi 6.0
that is not supported in Python version 2.7 to 2.7.8. If the
version of Python running the proxy process is not in the supported range, you
will need to install an earlier version of pyVmomi. See Issue #29537 [https://github.com/saltstack/salt/issues/29537] for
more information.

Based on the note above, to install an earlier version of pyVmomi than the
version currently listed in PyPi, run the following:

pip install pyVmomi==5.5.0.2014.1.1

The 5.5.0.2014.1.1 is a known stable version that the original ESXi Proxy Minion
was developed against.

ESXCLI

Currently, about a third of the functions used for the ESXi Proxy Minion require
the ESXCLI package be installed on the machine running the Proxy Minion process.

The ESXCLI package is also referred to as the VMware vSphere CLI, or vCLI. VMware
provides vCLI package installation instructions for vSphere 5.5 [http://pubs.vmware.com/vsphere-55/index.jsp#com.vmware.vcli.getstart.doc/cli_install.4.2.html] and
vSphere 6.0 [http://pubs.vmware.com/vsphere-60/index.jsp#com.vmware.vcli.getstart.doc/cli_install.4.2.html].

Once all of the required dependencies are in place and the vCLI package is
installed, you can check to see if you can connect to your ESXi host by running
the following command:

esxcli -s <host-location> -u <username> -p <password> system syslog config get

If the connection was successful, ESXCLI was successfully installed on your system.
You should see output related to the ESXi host's syslog configuration.

Configuration

There are several places where various configuration values need to be set in
order for the ESXi Proxy Minion to run and connect properly.

Proxy Config File

On the machine that will be running the Proxy Minion process(es), a proxy config
file must be in place. This file should be located in the /etc/salt/ directory
and should be named proxy. If the file is not there by default, create it.

This file should contain the location of your Salt Master that the Salt Proxy
will connect to.

Example Proxy Config File:

/etc/salt/proxy

master: <salt-master-location>

Pillar Profiles

Proxy minions get their configuration from Salt's Pillar. Every proxy must
have a stanza in Pillar and a reference in the Pillar top-file that matches
the Proxy ID. At a minimum for communication with the ESXi host, the pillar
should look like this:

proxy:
 proxytype: esxi
 host: <ip or dns name of esxi host>
 username: <ESXi username>
 passwords:
 - first_password
 - second_password
 - third_password

Some other optional settings are protocol and port. These can be added
to the pillar configuration.

proxytype

The proxytype key and value pair is critical, as it tells Salt which
interface to load from the proxy directory in Salt's install hierarchy,
or from /srv/salt/_proxy on the Salt Master (if you have created your
own proxy module, for example). To use this ESXi Proxy Module, set this to
esxi.

host

The location, or ip/dns, of the ESXi host. Required.

username

The username used to login to the ESXi host, such as root. Required.

passwords

A list of passwords to be used to try and login to the ESXi host. At least
one password in this list is required.

The proxy integration will try the passwords listed in order. It is
configured this way so you can have a regular password and the password you
may be updating for an ESXi host either via the
vsphere.update_host_password
execution module function or via the
esxi.password_present state
function. This way, after the password is changed, you should not need to
restart the proxy minion--it should just pick up the new password
provided in the list. You can then change pillar at will to move that
password to the front and retire the unused ones.

Use-case/reasoning for using a list of passwords: You are setting up an
ESXi host for the first time, and the host comes with a default password.
You know that you'll be changing this password during your initial setup
from the default to a new password. If you only have one password option,
and if you have a state changing the password, any remote execution commands
or states that run after the password change will not be able to run on the
host until the password is updated in Pillar and the Proxy Minion process is
restarted.

This allows you to use any number of potential fallback passwords.

Note

When a password is changed on the host to one in the list of possible
passwords, the further down on the list the password is, the longer
individual commands will take to return. This is due to the nature of
pyVmomi's login system. We have to wait for the first attempt to fail
before trying the next password on the list.

This scenario is especially true, and even slower, when the proxy
minion first starts. If the correct password is not the first password
on the list, it may take up to a minute for test.version to respond
with salt's version installed (Example: 2018.3.4. Once the initial
authorization is complete, the responses for commands will be a little
faster.

To avoid these longer waiting periods, SaltStack recommends moving the
correct password to the top of the list and restarting the proxy minion
at your earliest convenience.

protocol

If the ESXi host is not using the default protocol, set this value to an
alternate protocol. Default is https. For example:

port

If the ESXi host is not using the default port, set this value to an
alternate port. Default is 443.

Example Configuration Files

An example of all of the basic configurations that need to be in place before
starting the Proxy Minion processes includes the Proxy Config File, Pillar
Top File, and any individual Proxy Minion Pillar files.

In this example, we'll assuming there are two ESXi hosts to connect to. Therefore,
we'll be creating two Proxy Minion config files, one config for each ESXi host.

Proxy Config File:

/etc/salt/proxy

master: <salt-master-location>

Pillar Top File:

/srv/pillar/top.sls

base:
 'esxi-1':
 - esxi-1
 'esxi-2':
 - esxi-2

Pillar Config File for the first ESXi host, esxi-1:

/srv/pillar/esxi-1.sls

proxy:
 proxytype: esxi
 host: esxi-1.example.com
 username: 'root'
 passwords:
 - bad-password-1
 - backup-bad-password-1

Pillar Config File for the second ESXi host, esxi-2:

/srv/pillar/esxi-2.sls

proxy:
 proxytype: esxi
 host: esxi-2.example.com
 username: 'root'
 passwords:
 - bad-password-2
 - backup-bad-password-2

Starting the Proxy Minion

Once all of the correct configuration files are in place, it is time to start the
proxy processes!

	First, make sure your Salt Master is running.

	Start the first Salt Proxy, in debug mode, by giving the Proxy Minion process
and ID that matches the config file name created in the Configuration section.

salt-proxy --proxyid='esxi-1' -l debug

	Accept the esxi-1 Proxy Minion's key on the Salt Master:

salt-key -L
Accepted Keys:
Denied Keys:
Unaccepted Keys:
esxi-1
Rejected Keys:
#
salt-key -a esxi-1
The following keys are going to be accepted:
Unaccepted Keys:
esxi-1
Proceed? [n/Y] y
Key for minion esxi-1 accepted.

	Repeat for the second Salt Proxy, this time we'll run the proxy process as a
daemon, as an example.

salt-proxy --proxyid='esxi-2' -d

	Accept the esxi-2 Proxy Minion's key on the Salt Master:

salt-key -L
Accepted Keys:
esxi-1
Denied Keys:
Unaccepted Keys:
esxi-2
Rejected Keys:
#
salt-key -a esxi-1
The following keys are going to be accepted:
Unaccepted Keys:
esxi-2
Proceed? [n/Y] y
Key for minion esxi-1 accepted.

	Check and see if your Proxy Minions are responding:

salt 'esxi-*' test.version
esxi-1:
 True
esxi-3:
 True

Executing Commands

Now that you've configured your Proxy Minions and have them responding successfully
to a test.version, we can start executing commands against the ESXi hosts via Salt.

It's important to understand how this particular proxy works, and there are a couple
of important pieces to be aware of in order to start running remote execution and
state commands against the ESXi host via a Proxy Minion: the
vSphere Execution Module, the ESXi Execution Module, and the ESXi State Module.

vSphere Execution Module

The Salt.modules.vsphere is a
standard Salt execution module that does the bulk of the work for the ESXi Proxy
Minion. If you pull up the docs for it you'll see that almost every function in
the module takes credentials (username and password) and a target host
argument. When credentials and a host aren't passed, Salt runs commands
through pyVmomi or ESXCLI against the local machine. If you wanted,
you could run functions from this module on any machine where an appropriate
version of pyVmomi and ESXCLI are installed, and that machine would reach
out over the network and communicate with the ESXi host.

You'll notice that most of the functions in the vSphere module require a host,
username, and password. These parameters are contained in the Pillar files and
passed through to the function via the proxy process that is already running. You don't
need to provide these parameters when you execute the commands. See the
Running Remote Execution Commands section below for an example.

ESXi Execution Module

In order for the Pillar information set up in the Configuration section above to
be passed to the function call in the vSphere Execution Module, the
salt.modules.esxi execution module acts
as a "shim" between the vSphere execution module functions and the proxy process.

The "shim" takes the authentication credentials specified in the Pillar files and
passes them through to the host, username, password, and optional
protocol and port options required by the vSphere Execution Module functions.

If the function takes more positional, or keyword, arguments you can append them
to the call. It's this shim that speaks to the ESXi host through the proxy, arranging
for the credentials and hostname to be pulled from the Pillar section for the ESXi
Proxy Minion.

Because of the presence of the shim, to lookup documentation for what
functions you can use to interface with the ESXi host, you'll want to
look in salt.modules.vsphere
instead of salt.modules.esxi.

Running Remote Execution Commands

To run commands from the Salt Master to execute, via the ESXi Proxy Minion, against
the ESXi host, you use the esxi.cmd <vsphere-function-name> syntax to call
functions located in the vSphere Execution Module. Both args and kwargs needed
for various vsphere execution module functions must be passed through in a kwarg-
type manor. For example:

salt 'esxi-*' esxi.cmd system_info
salt 'exsi-*' esxi.cmd get_service_running service_name='ssh'

ESXi State Module

The ESXi State Module functions similarly to other state modules. The "shim" provided
by the ESXi Execution Module passes the necessary host, username, and
password credentials through, so those options don't need to be provided in the
state. Other than that, state files are written and executed just like any other
Salt state. See the salt.modules.esxi state
for ESXi state functions.

The follow state file is an example of how to configure various pieces of an ESXi host
including enabling SSH, uploading and SSH key, configuring a coredump network config,
syslog, ntp, enabling VMotion, resetting a host password, and more.

/srv/salt/configure-esxi.sls

configure-host-ssh:
 esxi.ssh_configured:
 - service_running: True
 - ssh_key_file: /etc/salt/ssh_keys/my_key.pub
 - service_policy: 'automatic'
 - service_restart: True
 - certificate_verify: True

configure-host-coredump:
 esxi.coredump_configured:
 - enabled: True
 - dump_ip: 'my-coredump-ip.example.com'

configure-host-syslog:
 esxi.syslog_configured:
 - syslog_configs:
 loghost: ssl://localhost:5432,tcp://10.1.0.1:1514
 default-timeout: 120
 - firewall: True
 - reset_service: True
 - reset_syslog_config: True
 - reset_configs: loghost,default-timeout

configure-host-ntp:
 esxi.ntp_configured:
 - service_running: True
 - ntp_servers:
 - 192.174.1.100
 - 192.174.1.200
 - service_policy: 'automatic'
 - service_restart: True

configure-vmotion:
 esxi.vmotion_configured:
 - enabled: True

configure-host-vsan:
 esxi.vsan_configured:
 - enabled: True
 - add_disks_to_vsan: True

configure-host-password:
 esxi.password_present:
 - password: 'new-bad-password'

States are called via the ESXi Proxy Minion just as they would on a regular minion.
For example:

salt 'esxi-*' state.sls configure-esxi test=true
salt 'esxi-*' state.sls configure-esxi

Relevant Salt Files and Resources

	ESXi Proxy Minion

	ESXi Execution Module

	ESXi State Module

	Salt Proxy Minion Docs

	Salt Proxy Minion End-to-End Example

	vSphere Execution Module

Network Automation

Network automation is a continuous process of automating the configuration,
management and operations of a computer network. Although the abstraction
could be compared with the operations on the server side, there are many particular
challenges, the most important being that a network device is traditionally
closed hardware able to run proprietary software only. In other words,
the user is not able to install the salt-minion package directly on a
traditional network device. For these reasons, most network devices can be
controlled only remotely via proxy minions or
using the Salt SSH. However, there are also vendors producing
whitebox equipment (e.g. Arista, Cumulus) or others that have moved the
operating system in the container (e.g. Cisco NX-OS, Cisco IOS-XR),
allowing the salt-minion to be installed directly on the platform.

New in Carbon (2016.11)

The methodologies for network automation have been introduced in
2016.11.0. Network
automation support is based on proxy minions.

	NAPALM proxy

	Junos proxy

	Cisco NXOS

	Cisco NSO

NAPALM

NAPALM (Network Automation and Programmability Abstraction Layer with
Multivendor support) is an opensourced Python library that implements a set of
functions to interact with different router vendor devices using a unified API.
Being vendor-agnostic simplifies operations, as the configuration and
interaction with the network device does not rely on a particular vendor.

[image: ../../_images/napalm_logo.png]
Beginning with 2017.7.0, the NAPALM modules have been transformed so they can
run in both proxy and regular minions. That means, if the operating system
allows, the salt-minion package can be installed directly on the network gear.
The interface between the network operating system and Salt in that case would
be the corresponding NAPALM sub-package.

For example, if the user installs the
salt-minion on a Arista switch, the only requirement is
napalm-eos [https://github.com/napalm-automation/napalm-eos].

The following modules are available in 2017.7.0:

	NAPALM grains

	NET execution module - Networking basic
features

	NTP execution module

	BGP execution module

	Routes execution module

	SNMP execution module

	Users execution module

	Probes execution module

	NTP peers management state

	SNMP configuration management state

	Users management state

	Netconfig state module - Manage the configuration
of network devices using arbitrary templates and the Salt-specific
advanced templating methodologies.

	Network ACL execution module - Generate and
load ACL (firewall) configuration on network devices.

	Network ACL state - Manage the firewall
configuration. It only requires writing the pillar structure correctly!

	NAPALM YANG execution module - Parse,
generate and load native device configuration in a standard way,
using the OpenConfig/IETF models. This module contains also helpers for
the states.

	NAPALM YANG state module - Manage the
network device configuration according to the YANG models (OpenConfig or IETF).

	NET finder - Runner to find details easily and
fast. It's smart enough to know what you are looking for. It will search
in the details of the network interfaces, IP addresses, MAC address tables,
ARP tables and LLDP neighbors.

	BGP finder - Runner to search BGP neighbors details.

	NAPALM syslog - Engine to import events
from the napalm-logs library into the Salt event bus. The events are based
on the syslog messages from the network devices and structured following
the OpenConfig/IETF YANG models.

	NAPALM Helpers - Generic helpers for
NAPALM-related operations. For example, the
Compliance report function
can be used inside the state modules to compare the expected and the
existing configuration.

Getting started

Install NAPALM - follow the notes [https://napalm.readthedocs.io/en/latest/installation/index.html] and check the platform-specific dependencies [https://napalm.readthedocs.io/en/latest/installation/index.html#dependencies].

Salt's Pillar system is ideally suited for configuring proxy-minions
(though they can be configured in /etc/salt/proxy as well). Proxies
can either be designated via a pillar file in pillar_roots,
or through an external pillar.
External pillars afford the opportunity for interfacing with
a configuration management system, database, or other knowledgeable system
that may already contain all the details of proxy targets. To use static files
in pillar_roots, pattern your files after the following examples:

/etc/salt/pillar/top.sls

base:
 router1:
 - router1
 router2:
 - router2
 switch1:
 - switch1
 switch2:
 - switch2
 cpe1:
 - cpe1

/etc/salt/pillar/router1.sls

proxy:
 proxytype: napalm
 driver: junos
 host: r1.bbone.as1234.net
 username: my_username
 password: my_password

/etc/salt/pillar/router2.sls

proxy:
 proxytype: napalm
 driver: iosxr
 host: r2.bbone.as1234.net
 username: my_username
 password: my_password
 optional_args:
 port: 22022

/etc/salt/pillar/switch1.sls

proxy:
 proxytype: napalm
 driver: eos
 host: sw1.bbone.as1234.net
 username: my_username
 password: my_password
 optional_args:
 enable_password: my_secret

/etc/salt/pillar/switch2.sls

proxy:
 proxytype: napalm
 driver: nxos
 host: sw2.bbone.as1234.net
 username: my_username
 password: my_password

/etc/salt/pillar/cpe1.sls

proxy:
 proxytype: napalm
 driver: ios
 host: cpe1.edge.as1234.net
 username: ''
 password: ''
 optional_args:
 use_keys: True
 auto_rollback_on_error: True

CLI examples

Display the complete running configuration on router1:

$ sudo salt 'router1' net.config source='running'

Retrieve the NTP servers configured on all devices:

$ sudo salt '*' ntp.servers
router1:

 comment:
 out:
 - 1.2.3.4
 result:
 True
cpe1:

 comment:
 out:
 - 1.2.3.4
 result:
 True
switch2:

 comment:
 out:
 - 1.2.3.4
 result:
 True
router2:

 comment:
 out:
 - 1.2.3.4
 result:
 True
switch1:

 comment:
 out:
 - 1.2.3.4
 result:
 True

Display the ARP tables on all Cisco devices running IOS-XR 5.3.3:

$ sudo salt -G 'os:iosxr and version:5.3.3' net.arp

Return operational details for interfaces from Arista switches:

$ sudo salt -C 'sw* and os:eos' net.interfaces

Execute traceroute from the edge of the network:

$ sudo salt 'router*' net.traceroute 8.8.8.8 vrf='CUSTOMER1-VRF'

Verbatim display from the CLI of Juniper routers:

$ sudo salt -C 'router* and G@os:junos' net.cli 'show version and haiku'

Retrieve the results of the RPM probes configured on Juniper MX960 routers:

$ sudo salt -C 'router* and G@os:junos and G@model:MX960' probes.results

Return the list of configured users on the CPEs:

$ sudo salt 'cpe*' users.config

Using the BGP finder, return the list of BGP neighbors
that are down:

$ sudo salt-run bgp.neighbors up=False

Using the NET finder, determine the devices containing
the pattern "PX-1234-LHR" in their interface description:

$ sudo salt-run net.find PX-1234-LHR

Cross-platform configuration management example: NTP

Assuming that the user adds the following two lines under
file_roots:

file_roots:
 base:
 - /etc/salt/pillar/
 - /etc/salt/templates/
 - /etc/salt/states/

Define the list of NTP peers and servers wanted:

/etc/salt/pillar/ntp.sls

ntp.servers:
 - 1.2.3.4
 - 5.6.7.8
ntp.peers:
 - 10.11.12.13
 - 14.15.16.17

Include the new file: for example, if we want to have the same NTP servers on all
network devices, we can add the following line inside the top.sls file:

'*':
 - ntp

/etc/salt/pillar/top.sls

base:
 '*':
 - ntp
 router1:
 - router1
 router2:
 - router2
 switch1:
 - switch1
 switch2:
 - switch2
 cpe1:
 - cpe1

Or include only where needed:

/etc/salt/pillar/top.sls

base:
 router1:
 - router1
 - ntp
 router2:
 - router2
 - ntp
 switch1:
 - switch1
 switch2:
 - switch2
 cpe1:
 - cpe1

Define the cross-vendor template:

/etc/salt/templates/ntp.jinja

{%- if grains.vendor|lower == 'cisco' %}
 no ntp
 {%- for server in servers %}
 ntp server {{ server }}
 {%- endfor %}
 {%- for peer in peers %}
 ntp peer {{ peer }}
 {%- endfor %}
{%- elif grains.os|lower == 'junos' %}
 system {
 replace:
 ntp {
 {%- for server in servers %}
 server {{ server }};
 {%- endfor %}
 {%- for peer in peers %}
 peer {{ peer }};
 {%- endfor %}
 }
 }
{%- endif %}

Define the SLS state file, making use of the
Netconfig state module:

/etc/salt/states/router/ntp.sls

ntp_config_example:
 netconfig.managed:
 - template_name: salt://ntp.jinja
 - peers: {{ pillar.get('ntp.peers', []) | json }}
 - servers: {{ pillar.get('ntp.servers', []) | json }}

Run the state and assure NTP configuration consistency across your
multi-vendor network:

$ sudo salt 'router*' state.sls router.ntp

Besides CLI, the state can be scheduled or executed when triggered by a certain
event.

JUNOS

Juniper has developed a Junos specific proxy infrastructure which allows
remote execution and configuration management of Junos devices without
having to install SaltStack on the device. The infrastructure includes:

	Junos proxy

	Junos execution module

	Junos state module

	Junos syslog engine

The execution and state modules are implemented using junos-eznc (PyEZ).
Junos PyEZ is a microframework for Python that enables you to remotely manage
and automate devices running the Junos operating system.

Getting started

Install PyEZ on the system which will run the Junos proxy minion.
It is required to run Junos specific modules.

pip install junos-eznc

Next, set the master of the proxy minions.

/etc/salt/proxy

master: <master_ip>

Add the details of the Junos device. Device details are usually stored in
salt pillars. If the you do not wish to store credentials in the pillar,
one can setup passwordless ssh.

/srv/pillar/vmx_details.sls

proxy:
 proxytype: junos
 host: <hostip>
 username: user
 passwd: secret123

Map the pillar file to the proxy minion. This is done in the top file.

/srv/pillar/top.sls

base:
 vmx:
 - vmx_details

Note

Before starting the Junos proxy make sure that netconf is enabled on the
Junos device. This can be done by adding the following configuration on
the Junos device.

set system services netconf ssh

Start the salt master.

salt-master -l debug

Then start the salt proxy.

salt-proxy --proxyid=vmx -l debug

Once the master and junos proxy minion have started, we can run execution
and state modules on the proxy minion. Below are few examples.

CLI examples

For detailed documentation of all the junos execution modules refer:
Junos execution module

Display device facts.

$ sudo salt 'vmx' junos.facts

Refresh the Junos facts. This function will also refresh the facts which are
stored in salt grains. (Junos proxy stores Junos facts in the salt grains)

$ sudo salt 'vmx' junos.facts_refresh

Call an RPC.

$ sudo salt 'vmx' junos.rpc 'get-interface-information' '/var/log/interface-info.txt' terse=True

Install config on the device.

$ sudo salt 'vmx' junos.install_config 'salt://my_config.set'

Shutdown the junos device.

$ sudo salt 'vmx' junos.shutdown shutdown=True in_min=10

State file examples

For detailed documentation of all the junos state modules refer:
Junos state module

Executing an RPC on Junos device and storing the output in a file.

/srv/salt/rpc.sls

get-interface-information:
 junos:
 - rpc
 - dest: /home/user/rpc.log
 - interface_name: lo0

Lock the junos device, load the configuration, commit it and unlock
the device.

/srv/salt/load.sls

lock the config:
 junos.lock

salt://configs/my_config.set:
 junos:
 - install_config
 - timeout: 100
 - diffs_file: 'var/log/diff'

commit the changes:
 junos:
 - commit

unlock the config:
 junos.unlock

According to the device personality install appropriate image on the device.

/srv/salt/image_install.sls

{% if grains['junos_facts']['personality'] == MX %}
salt://images/mx_junos_image.tgz:
 junos:
 - install_os
 - timeout: 100
 - reboot: True
{% elif grains['junos_facts']['personality'] == EX %}
salt://images/ex_junos_image.tgz:
 junos:
 - install_os
 - timeout: 150
{% elif grains['junos_facts']['personality'] == SRX %}
salt://images/srx_junos_image.tgz:
 junos:
 - install_os
 - timeout: 150
{% endif %}

Junos Syslog Engine

Junos Syslog Engine is a Salt engine
which receives data from various Junos devices, extracts event information and
forwards it on the master/minion event bus. To start the engine on the salt
master, add the following configuration in the master config file.
The engine can also run on the salt minion.

/etc/salt/master

engines:
 - junos_syslog:
 port: xxx

For junos_syslog engine to receive events, syslog must be set on the Junos device.
This can be done via following configuration:

set system syslog host <ip-of-the-salt-device> port xxx any any

Salt Virt

The Salt Virt cloud controller capability was initially added to Salt in
version 0.14.0 as an alpha technology.

The initial Salt Virt system supports core cloud operations:

	Virtual machine deployment

	Inspection of deployed VMs

	Virtual machine migration

	Network profiling

	Automatic VM integration with all aspects of Salt

	Image Pre-seeding

Many features are currently under development to enhance the capabilities of
the Salt Virt systems.

Note

It is noteworthy that Salt was originally developed with the intent of
using the Salt communication system as the backbone to a cloud controller.
This means that the Salt Virt system is not an afterthought, simply a
system that took the back seat to other development. The original attempt
to develop the cloud control aspects of Salt was a project called butter.
This project never took off, but was functional and proves the early
viability of Salt to be a cloud controller.

Warning

Salt Virt does not work with KVM that is running in a VM. KVM must be running
on the base hardware.

Salt Virt Tutorial

A tutorial about how to get Salt Virt up and running has been added to the
tutorial section:

Cloud Controller Tutorial

The Salt Virt Runner

The point of interaction with the cloud controller is the virt
runner. The virt runner comes with routines to execute specific
virtual machine routines.

Reference documentation for the virt runner is available with the runner
module documentation:

Virt Runner Reference

Based on Live State Data

The Salt Virt system is based on using Salt to query live data about
hypervisors and then using the data gathered to make decisions about cloud
operations. This means that no external resources are required to run Salt
Virt, and that the information gathered about the cloud is live and accurate.

Deploy from Network or Disk

	Virtual Machine Disk Profiles
	Define More Profiles

	Virtual Machine Network Profiles
	Define More Profiles

	Salt as a Cloud Controller
	Setting up Hypervisors
	Installing Hypervisor Software

	Hypervisor Network Setup

	Virtual Machine Network Setup

	Libvirt State

	Getting Virtual Machine Images Ready
	Existing Virtual Machine Images
	CentOS

	Fedora Linux

	openSUSE

	SUSE

	Ubuntu Linux

	Using Salt Virt

	QEMU Copy on Write Support

	Migrating Virtual Machines

	VNC Consoles

	Conclusion

Virtual Machine Disk Profiles

Salt Virt allows for the disks created for deployed virtual machines
to be finely configured. The configuration is a simple data structure which is
read from the config.option function, meaning that the configuration can be
stored in the minion config file, the master config file, or the minion's
pillar.

This configuration option is called virt.disk. The default virt.disk
data structure looks like this:

virt.disk:
 default:
 - system:
 size: 8192
 format: qcow2
 model: virtio

Note

The format and model does not need to be defined, Salt will
default to the optimal format used by the underlying hypervisor,
in the case of kvm this it is qcow2 and
virtio.

This configuration sets up a disk profile called default. The default
profile creates a single system disk on the virtual machine.

Define More Profiles

Many environments will require more complex disk profiles and may require
more than one profile, this can be easily accomplished:

virt.disk:
 default:
 - system:
 size: 8192
 database:
 - system:
 size: 8192
 - data:
 size: 30720
 web:
 - system:
 size: 1024
 - logs:
 size: 5120

This configuration allows for one of three profiles to be selected,
allowing virtual machines to be created with different storage needs
of the deployed vm.

Virtual Machine Network Profiles

Salt Virt allows for the network devices created for deployed virtual machines
to be finely configured. The configuration is a simple data structure which is
read from the config.option function, meaning that the configuration can be
stored in the minion config file, the master config file, or the minion's
pillar.

This configuration option is called virt:nic. By default the virt:nic
option is empty but defaults to a data structure which looks like this:

virt:
 nic:
 default:
 eth0:
 bridge: br0
 model: virtio

Note

The model does not need to be defined, Salt will default to the optimal
model used by the underlying hypervisor, in the case of kvm this model
is virtio

This configuration sets up a network profile called default. The default
profile creates a single Ethernet device on the virtual machine that is bridged
to the hypervisor's br0 interface. This default setup does not
require setting up the virt:nic configuration, and is the reason why a
default install only requires setting up the br0 bridge device on the
hypervisor.

Define More Profiles

Many environments will require more complex network profiles and may require
more than one profile, this can be easily accomplished:

virt:
 nic:
 dual:
 eth0:
 bridge: service_br
 eth1:
 bridge: storage_br
 single:
 eth0:
 bridge: service_br
 triple:
 eth0:
 bridge: service_br
 eth1:
 bridge: storage_br
 eth2:
 bridge: dmz_br
 all:
 eth0:
 bridge: service_br
 eth1:
 bridge: storage_br
 eth2:
 bridge: dmz_br
 eth3:
 bridge: database_br
 dmz:
 eth0:
 bridge: service_br
 eth1:
 bridge: dmz_br
 database:
 eth0:
 bridge: service_br
 eth1:
 bridge: database_br

This configuration allows for one of six profiles to be selected, allowing
virtual machines to be created which attach to different network depending
on the needs of the deployed vm.

Salt as a Cloud Controller

In Salt 0.14.0, an advanced cloud control system was introduced, allowing
private cloud VMs to be managed directly with Salt. This system is generally
referred to as Salt Virt.

The Salt Virt system already exists and is installed within Salt itself. This
means that besides setting up Salt, no additional salt code needs to be
deployed.

Note

The libvirt python module and the certtool binary are required.

The main goal of Salt Virt is to facilitate a very fast and simple cloud that
can scale and is fully featured. Salt Virt comes with the ability to set up and
manage complex virtual machine networking, powerful image and disk management,
and virtual machine migration with and without shared storage.

This means that Salt Virt can be used to create a cloud from a blade center
and a SAN, but can also create a cloud out of a swarm of Linux Desktops
without a single shared storage system. Salt Virt can make clouds from
truly commodity hardware, but can also stand up the power of specialized
hardware as well.

Setting up Hypervisors

The first step to set up the hypervisors involves getting the correct software
installed and setting up the hypervisor network interfaces.

Installing Hypervisor Software

Salt Virt is made to be hypervisor agnostic but currently, the only fully
implemented hypervisor is KVM via libvirt.

The required software for a hypervisor is libvirt and kvm. For advanced
features, install libguestfs or qemu-nbd.

Note

Libguestfs and qemu-nbd allow for virtual machine images to be mounted
before startup and get pre-seeded with configurations and a salt minion.

This sls will set up the needed software for a hypervisor, and run the routines
to set up the libvirt pki keys.

Note

Package names and setup used is Red Hat specific. Different package names
will be required for different platforms.

libvirt:
 pkg.installed: []
 file.managed:
 - name: /etc/sysconfig/libvirtd
 - contents: 'LIBVIRTD_ARGS="--listen"'
 - require:
 - pkg: libvirt
 virt.keys:
 - require:
 - pkg: libvirt
 service.running:
 - name: libvirtd
 - require:
 - pkg: libvirt
 - network: br0
 - libvirt: libvirt
 - watch:
 - file: libvirt

libvirt-python:
 pkg.installed: []

libguestfs:
 pkg.installed:
 - pkgs:
 - libguestfs
 - libguestfs-tools

Hypervisor Network Setup

The hypervisors will need to be running a network bridge to serve up network
devices for virtual machines. This formula will set up a standard bridge on
a hypervisor connecting the bridge to eth0:

eth0:
 network.managed:
 - enabled: True
 - type: eth
 - bridge: br0

br0:
 network.managed:
 - enabled: True
 - type: bridge
 - proto: dhcp
 - require:
 - network: eth0

Virtual Machine Network Setup

Salt Virt comes with a system to model the network interfaces used by the
deployed virtual machines. By default, a single interface is created for the
deployed virtual machine and is bridged to br0. To get going with the
default networking setup, ensure that the bridge interface named br0 exists
on the hypervisor and is bridged to an active network device.

Note

To use more advanced networking in Salt Virt, read the Salt Virt
Networking document:

Salt Virt Networking

Libvirt State

One of the challenges of deploying a libvirt based cloud is the distribution
of libvirt certificates. These certificates allow for virtual machine
migration. Salt comes with a system used to auto deploy these certificates.
Salt manages the signing authority key and generates keys for libvirt clients
on the master, signs them with the certificate authority, and uses pillar to
distribute them. This is managed via the libvirt state. Simply execute this
formula on the minion to ensure that the certificate is in place and up to
date:

Note

The above formula includes the calls needed to set up libvirt keys.

libvirt_keys:
 virt.keys

Getting Virtual Machine Images Ready

Salt Virt requires that virtual machine images be provided as these are not
generated on the fly. Generating these virtual machine images differs greatly
based on the underlying platform.

Virtual machine images can be manually created using KVM and running through
the installer, but this process is not recommended since it is very manual and
prone to errors.

Virtual Machine generation applications are available for many platforms:

	kiwi: (openSUSE, SLES, RHEL, CentOS)
	https://opensuse.github.io/kiwi/

	vm-builder:
	https://wiki.debian.org/VMBuilder

See also

url vmbuilder-formula [https://github.com/saltstack-formulas/vmbuilder-formula]

Once virtual machine images are available, the easiest way to make them
available to Salt Virt is to place them in the Salt file server. Just copy an
image into /srv/salt and it can now be used by Salt Virt.

For purposes of this demo, the file name centos.img will be used.

Existing Virtual Machine Images

Many existing Linux distributions distribute virtual machine images which
can be used with Salt Virt. Please be advised that NONE OF THESE IMAGES ARE
SUPPORTED BY SALTSTACK.

CentOS

These images have been prepared for OpenNebula but should work without issue with
Salt Virt, only the raw qcow image file is needed:
https://wiki.centos.org/Cloud/OpenNebula

Fedora Linux

Images for Fedora Linux can be found here:
https://alt.fedoraproject.org/cloud

openSUSE

https://download.opensuse.org/distribution/leap/15.1/jeos/openSUSE-Leap-15.1-JeOS.x86_64-15.1.0-kvm-and-xen-Current.qcow2.meta4

SUSE

https://www.suse.com/products/server/jeos

Ubuntu Linux

Images for Ubuntu Linux can be found here:
http://cloud-images.ubuntu.com/

Using Salt Virt

With hypervisors set up and virtual machine images ready, Salt can start
issuing cloud commands using the virt runner.

Start by running a Salt Virt hypervisor info command:

salt-run virt.host_info

This will query the running hypervisor(s) for stats and display useful
information such as the number of CPUs and amount of memory.

You can also list all VMs and their current states on all hypervisor nodes:

salt-run virt.list

Now that hypervisors are available a virtual machine can be provisioned, the
virt.init routine will create a new virtual machine:

salt-run virt.init centos1 2 512 salt://centos.img

The Salt Virt runner will now automatically select a hypervisor to deploy
the new virtual machine on. Using salt:// assumes that the CentOS virtual
machine image is located in the root of the Salt File Server on the master.
When images are cloned (i.e. copied locally after retrieval from the file
server), the destination directory on the hypervisor minion is determined by the
virt:images config option; by default this is /srv/salt-images/.

When a VM is initialized using virt.init, the image is copied to the
hypervisor using cp.cache_file and will be mounted and seeded with a minion.
Seeding includes setting pre-authenticated keys on the new machine. A minion
will only be installed if one can not be found on the image using the default
arguments to seed.apply.

Note

The biggest bottleneck in starting VMs is when the Salt Minion needs to be
installed. Making sure that the source VM images already have Salt
installed will GREATLY speed up virtual machine deployment.

You can also deploy an image on a particular minion by directly calling the
virt execution module with an absolute image path. This can be quite handy for
testing:

salt 'hypervisor*' virt.init centos1 2 512 image=/var/lib/libvirt/images/centos.img

Now that the new VM has been prepared, it can be seen via the virt.query
command:

salt-run virt.query

This command will return data about all of the hypervisors and respective
virtual machines.

Now that the new VM is booted, it should have contacted the Salt Master. A
test.ping will reveal if the new VM is running.

QEMU Copy on Write Support

For fast image cloning, you can use the qcow [https://en.wikipedia.org/wiki/Qcow] disk image format.
Pass the enable_qcow flag and a .qcow2 image path to virt.init:

salt 'hypervisor*' virt.init centos1 2 512 image=/var/lib/libvirt/images/centos.qcow2 enable_qcow=True start=False

Note

Beware that attempting to boot a qcow image too quickly after cloning
can result in a race condition where libvirt may try to boot the machine
before image seeding has completed. For that reason, it is recommended to
also pass start=False to virt.init.

Also know that you must not modify the original base image without
first making a copy and then rebasing all overlay images onto it.
See the qemu-img rebase usage docs.

Migrating Virtual Machines

Salt Virt comes with full support for virtual machine migration. Using
the libvirt state in the above formula makes migration possible.

A few things need to be available to support migration. Many operating systems
turn on firewalls when originally set up; the firewall needs to be opened up
to allow for libvirt and kvm to cross communicate and execution migration
routines. On Red Hat based hypervisors in particular, port 16514 needs to be
opened on hypervisors:

iptables -A INPUT -m state --state NEW -m tcp -p tcp --dport 16514 -j ACCEPT

Note

More in-depth information regarding distribution specific firewall settings can be found in:

Opening the Firewall up for Salt

Salt also needs the virt:tunnel option to be turned on. This flag tells Salt
to run migrations securely via the libvirt TLS tunnel and to use port 16514.
Without virt:tunnel, libvirt tries to bind to random ports when running
migrations.

To turn on virt:tunnel, simply apply it to the master config file:

virt:
 tunnel: True

Once the master config has been updated, restart the master and send out a call
to the minions to refresh the pillar to pick up on the change:

salt * saltutil.refresh_modules

Now, migration routines can be run! To migrate a VM, simply run the Salt Virt
migrate routine:

salt-run virt.migrate centos <new hypervisor>

VNC Consoles

Although not enabled by default, Salt Virt can also set up VNC consoles allowing
for remote visual consoles to be opened up. When creating a new VM using
virt.init, pass the enable_vnc=True parameter to have a console
configured for the new VM.

The information from a virt.query routine will display the VNC console port
for the specific VMs:

centos
 CPU: 2
 Memory: 524288
 State: running
 Graphics: vnc - hyper6:5900
 Disk - vda:
 Size: 2.0G
 File: /srv/salt-images/ubuntu2/system.qcow2
 File Format: qcow2
 Nic - ac:de:48:98:08:77:
 Source: br0
 Type: bridge

The line Graphics: vnc - hyper6:5900 holds the key. First the port named,
in this case 5900, will need to be available in the hypervisor's firewall.
Once the port is open, then the console can be easily opened via vncviewer:

vncviewer hyper6:5900

By default there is no VNC security set up on these ports, which suggests that
keeping them firewalled and mandating that SSH tunnels be used to access these
VNC interfaces. Keep in mind that activity on a VNC interface that is accessed
can be viewed by any other user that accesses that same VNC interface, and any
other user logging in can also operate with the logged in user on the virtual
machine.

Conclusion

Now with Salt Virt running, new hypervisors can be seamlessly added just by
running the above states on new bare metal machines, and these machines will be
instantly available to Salt Virt.

Onedir Packaging

Relenv onedir packaging

Starting in 3006, only onedir packaging will be available. The 3006 onedir packages
are built with the relenv [https://github.com/saltstack/relative-environment-for-python] tool.

Docker Containers

The Salt Project uses docker containers to build our deb and rpm packages. If you are building your own packages you can use
the same containers we build with in the Github piplines. These containers are documented here [https://github.com/saltstack/salt-ci-containers/tree/main/custom/packaging].

Package Grain

In the 3007.0 release a new package grain was added. This detects how Salt was installed using the _pkg.txt
in the root of the Salt repo. By default this is set to pip, but it is set to onedir when tools pkg build salt-onedir
is run in our pipelines when building our onedir packages. If you are building your own custom packages, please ensure you set
_pkg.txt contents to be the type of package you are creating. The options are pip, onedir or system.

How to build onedir only

	Install relenv:

pip install relenv

	Fetch toolchain (Only required for linux OSs)

relenv toolchain fetch

	Fetch Native Python Build:

relenv fetch --python=<python-version>

	Create relenv environment:

relenv create --python=<python-version> <relenv-package-path>

	Add Salt into onedir.

<relenv-package-path>/bin/pip install /path/to/salt

How to build rpm packages

	Ensure you are in the current Salt cloned git repo:

cd <path-to-salt-repo>

	Install the dependencies:

yum -y install python3 python3-pip openssl git rpmdevtools rpmlint systemd-units libxcrypt-compat git gnupg2 jq createrepo rpm-sign rustc cargo epel-release
yum -y install patchelf
pip install awscli

pip install -r requirements/static/ci/py{python_version}/tools.txt

	(Optional) To build a specific Salt version, you will need to install tools and changelog dependencies:

pip install -r requirements/static/ci/py{python_version}/changelog.txt

	(Optional) To build a specific Salt version, run tools and set Salt version:

tools changelog update-rpm <salt-version>

	Build the RPM:

Only the arch argument is required, the rest are optional.

tools pkg build rpm --relenv-version <relenv-version> --python-version <python-version> --arch <arch>

How to build deb packages

	Ensure you are in the current Salt cloned git repo.:

cd <path-to-salt-repo>

	Install the dependencies:

apt install -y apt-utils gnupg jq awscli python3 python3-venv python3-pip build-essential devscripts debhelper bash-completion git patchelf rustc

pip install -r requirements/static/ci/py{python_version}/tools.txt

	(Optional) To build a specific Salt version, you will need to install changelog dependencies:

pip install -r requirements/static/ci/py{python_version}/changelog.txt

	(Optional) To build a specific Salt version, run tools and set Salt version:

tools changelog update-deb <salt-version>

	Build the deb package:

Only the arch argument is required, the rest are optional.

tools pkg build deb --relenv-version <relenv-version> --python-version <python-version> --arch <arch>

How to build MacOS packages

	Ensure you are in the current Salt cloned git repo.:

cd <path-to-salt-repo>

	Install the dependencies:

pip install -r requirements/static/ci/py{python_version}/tools.txt

	Build the MacOS package:

Only the salt-version argument is required, the rest are optional.
Do note that you will not be able to sign the packages when building them.

tools pkg build macos --salt-version <salt-version>

How to build Windows packages

	Ensure you are in the current Salt cloned git repo.:

cd <path-to-salt-repo>

	Install the dependencies:

pip install -r requirements/static/ci/py{python_version}/tools.txt

	Build the MacOS package:

Only the arch and salt-version arguments are required, the rest are optional.
Do note that you will not be able to sign the packages when building them.

tools pkg build windows --salt-version <salt-version> --arch <arch>

How to access python binary

The python library is available in the install directory of the onedir package. For example
on linux the default location would be /opt/saltstack/salt/bin/python3.

Testing the packages

If you want to test your built packages, or any other collection of salt packages post 3006.0, follow this guide

	Testing packages
	The package test suite

	Setup
	Using tools

	Downloading individually

	Running the tests

Testing packages

The package test suite

The salt repo provides a test suite for testing basic functionality of our
packages at <repo-root>/pkg/tests/. You can run the install, upgrade, and
downgrade tests. These tests run automatically on most PRs that are submitted
against Salt.

Warning

These tests make destructive changes to your system because they install the
built packages onto the system. They may also install older versions in the
case of upgrades or downgrades. To prevent destructive changes, run the
tests in an isolated system, preferably a virtual machine.

Setup

In order to run the package tests, the relenv [https://github.com/saltstack/relative-environment-for-python] onedir and
built packages need to be placed in the correct locations.

	Place all salt packages for the applicable testing version in
<repo-root>/artifacts/pkg/.

	The onedir must be located under <repo-root>/artifacts/.

	Additionally, to ensure complete parity with Salt's CI/CD suite, place the
nox virtual environment in <repo-root>/.nox/test-pkgs-onedir.

The following are a few ways this can be accomplished easily.

You can ensure parity by installing the package test suite through a few
possible methods:

	Using tools

	Downloading individually

Using tools

Salt has preliminary support for setting up the package test suite in the
tools command suite that is located under <repo-root>/tools/testsuite/.
This method requires the Github CLI tool gh (https://cli.github.com/) to be properly configured for
interaction with the salt repo.

	Install the dependencies using this command:

pip install -r requirements/static/ci/py{python_version}/tools.txt

	Download and extract the artifacts with this tools command:

tools ts setup --platform {linux|darwin|windows} --slug
<operating-system-slug> --pr <pr-number> --pkg

The most common use case is to test the packages built on a CI/CD run for a
given PR. To see the possible options for each argument, and other ways to
utilize this command, use the following:

tools ts setup -h

Warning

You can only download artifacts from finished workflow runs. This is something
imposed by the GitHub API.
To download artifacts from a running workflow run, you either have to wait for
the finish or cancel it.

Downloading individually

If the tools ts setup command doesn't work, you can download, unzip, and
place the artifacts in the correct locations manually. Typically, you want to
test packages built on a CI/CD run for a given PR. This guide explains how to
set up for running the package tests using those artifacts. An analogous process
can be performed for artifacts from nightly builds.

	Find and download the artifacts:

Under the summary page for the most recent actions run for that PR, there is
a list of available artifacts from that run that can be downloaded. Download
the package artifacts by finding
salt-<major>.<minor>+<number>.<sha>-<arch>-<pkg-type>. For example, the
amd64 deb packages might look like:
salt-3006.2+123.01234567890-x86_64-deb.

The onedir artifact will look like
salt-<major>.<minor>+<number>.<sha>-onedir-<platform>-<arch>.tar.xz. For
instance, the macos x86_64 onedir may have the name
salt-3006.2+123.01234567890-onedir-darwin-x86_64.tar.xz.

Note

Windows onedir artifacts have .zip extensions instead of tar.xz

While it is optional, it is recommended to download the nox session
artifact as well. This will have the form of
nox-<os-name>-test-pkgs-onedir-<arch>. The amd64 Ubuntu 20.04 nox
artifact may look like nox-ubuntu-20.04-test-pkgs-onedir-x86_64.

	Place the artifacts in the correct location:

Unzip the packages and place them in <repo-root>/artifacts/pkg/.

You must unzip and untar the onedir packages and place them in
<repo-root>/artifacts/. Windows onedir requires an additional unzip
action. If you set it up correctly, the <repo-root>/artifacts/salt
directory then contains the uncompressed onedir files.

Additionally, decompress the nox artifact and place it under
<repo-root>/.nox/.

Running the tests

You can run the test suite run if all the artifacts are in the correct location.

Note

You need root access to run the test artifacts. Run all nox commands at the
root of the salt repo and as the root user.

	Install nox:

pip install nox

	Run the install tests:

nox -e test-pkgs-onedir -- install

	Run the upgrade or downgrade tests:

nox -e test-pkgs-onedir -- upgrade --prev-version <previous-version>

You can run the downgrade tests in the same way, replacing upgrade with
downgrade.

Note

If you are testing upgrades or downgrades and classic packages are
available for your system, replace upgrade or
downgrade with upgrade-classic or downgrade-classic
respectively to test against those versions.

Command Line Reference

salt-api

	salt-api
	Synopsis

	Description

	Options
	Logging Options

	See also

salt-call

	salt-call
	Synopsis

	Description

	Options
	Logging Options

	Output Options

	See also

salt

	salt
	Synopsis

	Description

	Options
	Logging Options

	Target Selection

	Output Options

	See also

salt-cloud

	salt-cloud
	Synopsis

	Description

	Options
	Execution Options

	Query Options

	Cloud Providers Listings

	Cloud Credentials

	Output Options

	Examples

	See also

salt-cp

	salt-cp
	Synopsis

	Description

	Options
	Logging Options

	Target Selection

	See also

salt-extend

	salt-extend
	Synopsis

	Description

	Options

	See also

salt-key

	salt-key
	Synopsis

	Description

	Options
	Logging Options

	Output Options

	Actions

	Key Generation Options

	See also

salt-master

	salt-master
	Synopsis

	Description

	Options
	Logging Options

	See also

salt-minion

	salt-minion
	Synopsis

	Description

	Options
	Logging Options

	See also

salt-proxy

	salt-proxy
	Synopsis

	Description

	Options
	Logging Options

	See also

salt-run

	salt-run
	Synopsis

	Description

	Options
	Logging Options

	See also

salt-ssh

	salt-ssh
	Synopsis

	Description

	Options
	Authentication Options

	Scan Roster Options

	Logging Options

	Target Selection

	Output Options

	See also

salt-syndic

	salt-syndic
	Synopsis

	Description

	Options
	Logging Options

	See also

spm

	spm
	Synopsis

	Description

	Options
	Logging Options

	Commands

	See also

salt-api

Start interfaces used to remotely connect to the salt master

Synopsis

salt-api

Description

The Salt API system manages network api connectors for the Salt Master

Options

	
--version

	Print the version of Salt that is running.

	
--versions-report

	Show program's dependencies and version number, and then exit

	
-h, --help

	Show the help message and exit

	
-c CONFIG_DIR, --config-dir=CONFIG_dir

	The location of the Salt configuration directory. This directory contains
the configuration files for Salt master and minions. The default location
on most systems is /etc/salt.

	
-d, --daemon

	Run the salt-api as a daemon

	
--pid-file=PIDFILE

	Specify the location of the pidfile. Default: /var/run/salt-api.pid

Logging Options

Logging options which override any settings defined on the configuration files.

	
-l LOG_LEVEL, --log-level=LOG_LEVEL

	Console logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

	
--log-file=LOG_FILE

	Log file path. Default: /var/log/salt/api.

	
--log-file-level=LOG_LEVEL_LOGFILE

	Logfile logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

See also

salt-api(7)
salt(7)
salt-master(1)

salt-call

Synopsis

salt-call [options]

Description

The salt-call command is used to run module functions locally on a minion
instead of executing them from the master. Salt-call is used to run a
Standalone Minion, and was originally
created for troubleshooting.

The Salt Master is contacted to retrieve state files and other resources
during execution unless the --local option is specified.

Note

salt-call commands execute from the current user's shell
context, while salt commands execute from the system's default context.

Options

	
--version

	Print the version of Salt that is running.

	
--versions-report

	Show program's dependencies and version number, and then exit

	
-h, --help

	Show the help message and exit

	
-c CONFIG_DIR, --config-dir=CONFIG_dir

	The location of the Salt configuration directory. This directory contains
the configuration files for Salt master and minions. The default location
on most systems is /etc/salt.

	
--hard-crash

	Raise any original exception rather than exiting gracefully Default: False

	
-g, --grains

	Return the information generated by the Salt grains

	
-m MODULE_DIRS, --module-dirs=MODULE_DIRS

	Specify an additional directory to pull modules from. Multiple directories
can be provided by passing -m /--module-dirs multiple times.

	
-d, --doc, --documentation

	Return the documentation for the specified module or for all modules if
none are specified

	
--master=MASTER

	Specify the master to use. The minion must be authenticated with the
master. If this option is omitted, the master options from the minion
config will be used. If multi masters are set up the first listed master
that responds will be used.

	
--return RETURNER

	Set salt-call to pass the return data to one or many returner interfaces.
To use many returner interfaces specify a comma delimited list of
returners.

	
--local

	Run salt-call locally, as if there was no master running.

	
--file-root=FILE_ROOT

	Set this directory as the base file root.

	
--pillar-root=PILLAR_ROOT

	Set this directory as the base pillar root.

	
--retcode-passthrough

	Exit with the salt call retcode and not the salt binary retcode

	
--no-return-event

	Do not send the return event back to master.

	
--metadata

	Print out the execution metadata as well as the return. This will print out
the outputter data, the return code, etc.

	
--id=ID

	Specify the minion id to use. If this option is omitted, the id option from
the minion config will be used.

	
--skip-grains

	Do not load grains.

	
--refresh-grains-cache

	Force a refresh of the grains cache

Logging Options

Logging options which override any settings defined on the configuration files.

	
-l LOG_LEVEL, --log-level=LOG_LEVEL

	Console logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

	
--log-file=LOG_FILE

	Log file path. Default: /var/log/salt/minion.

	
--log-file-level=LOG_LEVEL_LOGFILE

	Logfile logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

Output Options

	
--out

	Pass in an alternative outputter to display the return of data. This
outputter can be any of the available outputters:

highstate, json, key, overstatestage, pprint, raw, txt, yaml, and many others.

Some outputters are formatted only for data returned from specific functions.
If an outputter is used that does not support the data passed into it, then
Salt will fall back on the pprint outputter and display the return data
using the Python pprint standard library module.

	
--out-indent OUTPUT_INDENT, --output-indent OUTPUT_INDENT

	Print the output indented by the provided value in spaces. Negative values
disable indentation. Only applicable in outputters that support
indentation.

	
--out-file=OUTPUT_FILE, --output-file=OUTPUT_FILE

	Write the output to the specified file.

	
--out-file-append, --output-file-append

	Append the output to the specified file.

	
--no-color

	Disable all colored output

	
--force-color

	Force colored output

Note

When using colored output the color codes are as follows:

green denotes success, red denotes failure, blue denotes
changes and success and yellow denotes a expected future change in configuration.

	
--state-output=STATE_OUTPUT, --state_output=STATE_OUTPUT

	Override the configured state_output value for minion
output. One of 'full', 'terse', 'mixed', 'changes' or
'filter'. Default: 'none'.

	
--state-verbose=STATE_VERBOSE, --state_verbose=STATE_VERBOSE

	Override the configured state_verbose value for minion
output. Set to True or False. Default: none.

See also

salt(1)
salt-master(1)
salt-minion(1)

salt

Synopsis

salt '*' [options] sys.doc

salt -E '.*' [options] sys.doc cmd

salt -G 'os:Arch.*' [options] test.version

salt -C 'G@os:Arch.* and webserv* or G@kernel:FreeBSD' [options] test.version

Description

Salt allows for commands to be executed across a swath of remote systems in
parallel. This means that remote systems can be both controlled and queried
with ease.

Options

	
--version

	Print the version of Salt that is running.

	
--versions-report

	Show program's dependencies and version number, and then exit

	
-h, --help

	Show the help message and exit

	
-c CONFIG_DIR, --config-dir=CONFIG_dir

	The location of the Salt configuration directory. This directory contains
the configuration files for Salt master and minions. The default location
on most systems is /etc/salt.

	
-t TIMEOUT, --timeout=TIMEOUT

	The timeout in seconds to wait for replies from the Salt minions. The
timeout number specifies how long the command line client will wait to
query the minions and check on running jobs. Default: 5

	
-s, --static

	By default as of version 0.9.8 the salt command returns data to the
console as it is received from minions, but previous releases would return
data only after all data was received. Use the static option to only return
the data with a hard timeout and after all minions have returned.
Without the static option, you will get a separate JSON string per minion
which makes JSON output invalid as a whole.

	
--async

	Instead of waiting for the job to run on minions only print the job id of
the started execution and complete.

	
--subset=SUBSET

	Execute the routine on a random subset of the targeted minions. The
minions will be verified that they have the named function before
executing. The SUBSET argument is the count of the minions to target.

	
-v VERBOSE, --verbose

	Turn on verbosity for the salt call, this will cause the salt command to
print out extra data like the job id.

	
--hide-timeout

	Instead of showing the return data for all minions. This option
prints only the online minions which could be reached.

	
-b BATCH, --batch-size=BATCH

	Instead of executing on all targeted minions at once, execute on a
progressive set of minions. This option takes an argument in the form of
an explicit number of minions to execute at once, or a percentage of
minions to execute on.

	
--batch-wait=BATCH_WAIT

	Wait the specified time in seconds after each job is done before
freeing the slot in the batch of the next one.

	
--batch-safe-limit=BATCH_SAFE_LIMIT

	Execute the salt job in batch mode if the job would have executed
on at least this many minions.

	
--batch-safe-size=BATCH_SAFE_SIZE

	Batch size to use for batch jobs created by --batch-safe-limit.

	
-a EAUTH, --auth=EAUTH

	Pass in an external authentication medium to validate against. The
credentials will be prompted for. The options are auto,
keystone, ldap, and pam. Can be used with the -T
option.

	
-T, --make-token

	Used in conjunction with the -a option. This creates a token that allows
for the authenticated user to send commands without needing to
re-authenticate.

	
--return=RETURNER

	Choose an alternative returner to call on the minion, if an
alternative returner is used then the return will not come back to
the command line but will be sent to the specified return system.
The options are carbon, cassandra, couchbase, couchdb,
elasticsearch, etcd, hipchat, local, local_cache,
memcache, mongo, mysql, odbc, postgres, redis,
sentry, slack, sms, smtp, sqlite3, syslog, and xmpp.

	
-d, --doc, --documentation

	Return the documentation for the module functions available on the minions

	
--args-separator=ARGS_SEPARATOR

	Set the special argument used as a delimiter between command arguments of
compound commands. This is useful when one wants to pass commas as
arguments to some of the commands in a compound command.

Logging Options

Logging options which override any settings defined on the configuration files.

	
-l LOG_LEVEL, --log-level=LOG_LEVEL

	Console logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

	
--log-file=LOG_FILE

	Log file path. Default: /var/log/salt/master.

	
--log-file-level=LOG_LEVEL_LOGFILE

	Logfile logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

Target Selection

The default matching that Salt utilizes is shell-style globbing around the
minion id. See https://docs.python.org/3/library/fnmatch.html#module-fnmatch.

	
-E, --pcre

	The target expression will be interpreted as a PCRE regular expression
rather than a shell glob.

	
-L, --list

	The target expression will be interpreted as a comma-delimited list;
example: server1.foo.bar,server2.foo.bar,example7.quo.qux

	
-G, --grain

	The target expression matches values returned by the Salt grains system on
the minions. The target expression is in the format of '<grain value>:<glob
expression>'; example: 'os:Arch*'

This was changed in version 0.9.8 to accept glob expressions instead of
regular expression. To use regular expression matching with grains, use
the --grain-pcre option.

	
--grain-pcre

	The target expression matches values returned by the Salt grains system on
the minions. The target expression is in the format of '<grain value>:<
regular expression>'; example: 'os:Arch.*'

	
-N, --nodegroup

	Use a predefined compound target defined in the Salt master configuration
file.

	
-R, --range

	Instead of using shell globs to evaluate the target, use a range expression
to identify targets. Range expressions look like %cluster.

Using the Range option requires that a range server is set up and the
location of the range server is referenced in the master configuration
file.

	
-C, --compound

	Utilize many target definitions to make the call very granular. This option
takes a group of targets separated by and or or. The default matcher is a
glob as usual. If something other than a glob is used, preface it with the
letter denoting the type; example: 'webserv* and G@os:Debian or E@db*'
Make sure that the compound target is encapsulated in quotes.

	
-I, --pillar

	Instead of using shell globs to evaluate the target, use a pillar value to
identify targets. The syntax for the target is the pillar key followed by
a glob expression: "role:production*"

	
-S, --ipcidr

	Match based on Subnet (CIDR notation) or IPv4 address.

Output Options

	
--out

	Pass in an alternative outputter to display the return of data. This
outputter can be any of the available outputters:

highstate, json, key, overstatestage, pprint, raw, txt, yaml, and many others.

Some outputters are formatted only for data returned from specific functions.
If an outputter is used that does not support the data passed into it, then
Salt will fall back on the pprint outputter and display the return data
using the Python pprint standard library module.

	
--out-indent OUTPUT_INDENT, --output-indent OUTPUT_INDENT

	Print the output indented by the provided value in spaces. Negative values
disable indentation. Only applicable in outputters that support
indentation.

	
--out-file=OUTPUT_FILE, --output-file=OUTPUT_FILE

	Write the output to the specified file.

	
--out-file-append, --output-file-append

	Append the output to the specified file.

	
--no-color

	Disable all colored output

	
--force-color

	Force colored output

Note

When using colored output the color codes are as follows:

green denotes success, red denotes failure, blue denotes
changes and success and yellow denotes a expected future change in configuration.

	
--state-output=STATE_OUTPUT, --state_output=STATE_OUTPUT

	Override the configured state_output value for minion
output. One of 'full', 'terse', 'mixed', 'changes' or
'filter'. Default: 'none'.

	
--state-verbose=STATE_VERBOSE, --state_verbose=STATE_VERBOSE

	Override the configured state_verbose value for minion
output. Set to True or False. Default: none.

Note

If using --out=json, you will probably want --static as well.
Without the static option, you will get a separate JSON string per minion
which makes JSON output invalid as a whole.
This is due to using an iterative outputter. So if you want to feed it
to a JSON parser, use --static as well.

See also

salt(7)
salt-master(1)
salt-minion(1)

salt-cloud

Provision virtual machines in the cloud with Salt

Synopsis

salt-cloud -m /etc/salt/cloud.map

salt-cloud -m /etc/salt/cloud.map NAME

salt-cloud -m /etc/salt/cloud.map NAME1 NAME2

salt-cloud -p PROFILE NAME

salt-cloud -p PROFILE NAME1 NAME2 NAME3 NAME4 NAME5 NAME6

Description

Salt Cloud is the system used to provision virtual machines on various public
clouds via a cleanly controlled profile and mapping system.

Options

	
--version

	Print the version of Salt that is running.

	
--versions-report

	Show program's dependencies and version number, and then exit

	
-h, --help

	Show the help message and exit

	
-c CONFIG_DIR, --config-dir=CONFIG_dir

	The location of the Salt configuration directory. This directory contains
the configuration files for Salt master and minions. The default location
on most systems is /etc/salt.

Execution Options

	
-L LOCATION, --location=LOCATION

	Specify which region to connect to.

	
-a ACTION, --action=ACTION

	Perform an action that may be specific to this cloud provider. This
argument requires one or more instance names to be specified.

	
-f <FUNC-NAME> <PROVIDER>, --function=<FUNC-NAME> <PROVIDER>

	Perform an function that may be specific to this cloud provider, that does
not apply to an instance. This argument requires a provider to be specified
(i.e.: nova).

	
-p PROFILE, --profile=PROFILE

	Select a single profile to build the named cloud VMs from. The profile must
be defined in the specified profiles file.

	
-m MAP, --map=MAP

	Specify a map file to use. If used without any other options, this option
will ensure that all of the mapped VMs are created. If the named VM already
exists then it will be skipped.

	
-H, --hard

	When specifying a map file, the default behavior is to ensure that all of
the VMs specified in the map file are created. If the --hard option is
set, then any VMs that exist on configured cloud providers that are
not specified in the map file will be destroyed. Be advised that this can
be a destructive operation and should be used with care.

	
-d, --destroy

	Pass in the name(s) of VMs to destroy, salt-cloud will search the
configured cloud providers for the specified names and destroy the
VMs. Be advised that this is a destructive operation and should be used
with care. Can be used in conjunction with the -m option to specify a map
of VMs to be deleted.

	
-P, --parallel

	Normally when building many cloud VMs they are executed serially. The -P
option will run each cloud vm build in a separate process allowing for
large groups of VMs to be build at once.

Be advised that some cloud provider's systems don't seem to be well suited
for this influx of vm creation. When creating large groups of VMs watch the
cloud provider carefully.

	
-u, --update-bootstrap

	Update salt-bootstrap to the latest stable bootstrap release.

	
-y, --assume-yes

	Default yes in answer to all confirmation questions.

	
-k, --keep-tmp

	Do not remove files from /tmp/ after deploy.sh finishes.

	
--show-deploy-args

	Include the options used to deploy the minion in the data returned.

	
--script-args=SCRIPT_ARGS

	Script arguments to be fed to the bootstrap script when deploying the VM.

Query Options

	
-Q, --query

	Execute a query and return some information about the nodes running on
configured cloud providers

	
-F, --full-query

	Execute a query and print out all available information about all cloud VMs.
Can be used in conjunction with -m to display only information about the
specified map.

	
-S, --select-query

	Execute a query and print out selected information about all cloud VMs.
Can be used in conjunction with -m to display only information about the
specified map.

	
--list-providers

	Display a list of configured providers.

	
--list-profiles

	
New in version 2014.7.0.

Display a list of configured profiles. Pass in a cloud provider to view
the provider's associated profiles, such as digitalocean, or pass in
all to list all the configured profiles.

Cloud Providers Listings

	
--list-locations=LIST_LOCATIONS

	Display a list of locations available in configured cloud providers. Pass
the cloud provider that available locations are desired on, such as "linode",
or pass "all" to list locations for all configured cloud providers

	
--list-images=LIST_IMAGES

	Display a list of images available in configured cloud providers. Pass the
cloud provider that available images are desired on, such as "linode", or pass
"all" to list images for all configured cloud providers

	
--list-sizes=LIST_SIZES

	Display a list of sizes available in configured cloud providers. Pass the
cloud provider that available sizes are desired on, such as "AWS", or pass
"all" to list sizes for all configured cloud providers

Cloud Credentials

	
--set-password=<USERNAME> <PROVIDER>

	Configure password for a cloud provider and save it to the keyring.
PROVIDER can be specified with or without a driver, for example:
"--set-password bob rackspace" or more specific "--set-password bob
rackspace:openstack" DEPRECATED!

Output Options

	
--out

	Pass in an alternative outputter to display the return of data. This
outputter can be any of the available outputters:

highstate, json, key, overstatestage, pprint, raw, txt, yaml, and many others.

Some outputters are formatted only for data returned from specific functions.
If an outputter is used that does not support the data passed into it, then
Salt will fall back on the pprint outputter and display the return data
using the Python pprint standard library module.

	
--out-indent OUTPUT_INDENT, --output-indent OUTPUT_INDENT

	Print the output indented by the provided value in spaces. Negative values
disable indentation. Only applicable in outputters that support
indentation.

	
--out-file=OUTPUT_FILE, --output-file=OUTPUT_FILE

	Write the output to the specified file.

	
--out-file-append, --output-file-append

	Append the output to the specified file.

	
--no-color

	Disable all colored output

	
--force-color

	Force colored output

Note

When using colored output the color codes are as follows:

green denotes success, red denotes failure, blue denotes
changes and success and yellow denotes a expected future change in configuration.

	
--state-output=STATE_OUTPUT, --state_output=STATE_OUTPUT

	Override the configured state_output value for minion
output. One of 'full', 'terse', 'mixed', 'changes' or
'filter'. Default: 'none'.

	
--state-verbose=STATE_VERBOSE, --state_verbose=STATE_VERBOSE

	Override the configured state_verbose value for minion
output. Set to True or False. Default: none.

Examples

To create 4 VMs named web1, web2, db1, and db2 from specified profiles:

salt-cloud -p fedora_rackspace web1 web2 db1 db2

To read in a map file and create all VMs specified therein:

salt-cloud -m /path/to/cloud.map

To read in a map file and create all VMs specified therein in parallel:

salt-cloud -m /path/to/cloud.map -P

To delete any VMs specified in the map file:

salt-cloud -m /path/to/cloud.map -d

To delete any VMs NOT specified in the map file:

salt-cloud -m /path/to/cloud.map -H

To display the status of all VMs specified in the map file:

salt-cloud -m /path/to/cloud.map -Q

See also

salt-cloud(7)
salt(7)
salt-master(1)
salt-minion(1)

salt-cp

Copy a file or files to one or more minions

Synopsis

salt-cp '*' [options] SOURCE [SOURCE2 SOURCE3 ...] DEST

salt-cp -E '.*' [options] SOURCE [SOURCE2 SOURCE3 ...] DEST

salt-cp -G 'os:Arch.*' [options] SOURCE [SOURCE2 SOURCE3 ...] DEST

Description

salt-cp copies files from the master to all of the Salt minions matched by the
specified target expression.

Note

salt-cp uses Salt's publishing mechanism. This means the privacy of the
contents of the file on the wire is completely dependent upon the transport
in use. In addition, if the master or minion is running with debug logging,
the contents of the file will be logged to disk.

In addition, this tool is less efficient than the Salt fileserver when
copying larger files. It is recommended to instead use
cp.get_file to copy larger files to
minions. However, this requires the file to be located within one of the
fileserver directories.

Changed in version 2016.3.7,2016.11.6,2017.7.0: Compression support added, disable with -n. Also, if the destination
path ends in a path separator (i.e. /, or \ on Windows, the
desitination will be assumed to be a directory. Finally, recursion is now
supported, allowing for entire directories to be copied.

Changed in version 2016.11.7,2017.7.2: Reverted back to the old copy mode to preserve backward compatibility. The
new functionality added in 2016.6.6 and 2017.7.0 is now available using the
-C or --chunked CLI arguments. Note that compression, recursive
copying, and support for copying large files is only available in chunked
mode.

Options

	
--version

	Print the version of Salt that is running.

	
--versions-report

	Show program's dependencies and version number, and then exit

	
-h, --help

	Show the help message and exit

	
-c CONFIG_DIR, --config-dir=CONFIG_dir

	The location of the Salt configuration directory. This directory contains
the configuration files for Salt master and minions. The default location
on most systems is /etc/salt.

	
-t TIMEOUT, --timeout=TIMEOUT

	The timeout in seconds to wait for replies from the Salt minions. The
timeout number specifies how long the command line client will wait to
query the minions and check on running jobs. Default: 5

Logging Options

Logging options which override any settings defined on the configuration files.

	
-l LOG_LEVEL, --log-level=LOG_LEVEL

	Console logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

	
--log-file=LOG_FILE

	Log file path. Default: /var/log/salt/master.

	
--log-file-level=LOG_LEVEL_LOGFILE

	Logfile logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

Target Selection

The default matching that Salt utilizes is shell-style globbing around the
minion id. See https://docs.python.org/3/library/fnmatch.html#module-fnmatch.

	
-E, --pcre

	The target expression will be interpreted as a PCRE regular expression
rather than a shell glob.

	
-L, --list

	The target expression will be interpreted as a comma-delimited list;
example: server1.foo.bar,server2.foo.bar,example7.quo.qux

	
-G, --grain

	The target expression matches values returned by the Salt grains system on
the minions. The target expression is in the format of '<grain value>:<glob
expression>'; example: 'os:Arch*'

This was changed in version 0.9.8 to accept glob expressions instead of
regular expression. To use regular expression matching with grains, use
the --grain-pcre option.

	
--grain-pcre

	The target expression matches values returned by the Salt grains system on
the minions. The target expression is in the format of '<grain value>:<
regular expression>'; example: 'os:Arch.*'

	
-N, --nodegroup

	Use a predefined compound target defined in the Salt master configuration
file.

	
-R, --range

	Instead of using shell globs to evaluate the target, use a range expression
to identify targets. Range expressions look like %cluster.

Using the Range option requires that a range server is set up and the
location of the range server is referenced in the master configuration
file.

	
-C, --chunked

	Use new chunked mode to copy files. This mode supports large files, recursive
directories copying and compression.

New in version 2016.11.7,2017.7.2.

	
-n, --no-compression

	Disable gzip compression in chunked mode.

New in version 2016.3.7,2016.11.6,2017.7.0.

See also

salt(1)
salt-master(1)
salt-minion(1)

salt-extend

A utilty to generate extensions to the Salt source-code. This is used for :

	Adding new execution modules, state modules

	Adding unit tests to existing modules

	Adding integration tests to existing modules

Synopsis

salt-extend --help

Description

salt-extend is a templating tool for extending SaltStack. If you're looking to add a module to
SaltStack, then the salt-extend utility can guide you through the process.

You can use Salt Extend to quickly create templated modules for adding new behaviours to some of the module subsystems within Salt.

Salt Extend takes a template directory and merges it into a SaltStack source code directory.

See also: Salt Extend.

Options

	
--extension, -e

	The extension type you want to develop, e.g. module, module_unit, state

	
--salt-directory, -o

	The path to the salt installation, defaults to .

	
--name, -n

	The module name for the new module

	
--description, -d

	A description of the new extension

	
--no-merge

	Don't merge the new module into the Salt source directory specified by --salt-directory, save
to a temporary directory and print the directory path

	
--debug

	Print debug messages to stdout

See also

salt-api(1)
salt-call(1)
salt-cloud(1)
salt-cp(1)
salt-key(1)
salt-main(1)
salt-master(1)
salt-minion(1)
salt-run(1)
salt-ssh(1)
salt-syndic(1)

salt-key

Synopsis

salt-key [options]

Description

Salt-key executes simple management of Salt server public keys used for
authentication.

On initial connection, a Salt minion sends its public key to the Salt
master. This key must be accepted using the salt-key command on the
Salt master.

Salt minion keys can be in one of the following states:

	unaccepted: key is waiting to be accepted.

	accepted: key was accepted and the minion can communicate with the Salt
master.

	rejected: key was rejected using the salt-key command. In
this state the minion does not receive any communication from the Salt
master.

	denied: key was rejected automatically by the Salt master.
This occurs when a minion has a duplicate ID, or when a minion was rebuilt or
had new keys generated and the previous key was not deleted from the Salt
master. In this state the minion does not receive any communication from the
Salt master.

To change the state of a minion key, use -d to delete the key and then
accept or reject the key.

Options

	
--version

	Print the version of Salt that is running.

	
--versions-report

	Show program's dependencies and version number, and then exit

	
-h, --help

	Show the help message and exit

	
-c CONFIG_DIR, --config-dir=CONFIG_dir

	The location of the Salt configuration directory. This directory contains
the configuration files for Salt master and minions. The default location
on most systems is /etc/salt.

	
-u USER, --user=USER

	Specify user to run salt-key

	
--hard-crash

	Raise any original exception rather than exiting gracefully. Default is
False.

	
-q, --quiet

	Suppress output

	
-y, --yes

	Answer 'Yes' to all questions presented, defaults to False

	
--rotate-aes-key=ROTATE_AES_KEY

	Setting this to False prevents the master from refreshing the key session
when keys are deleted or rejected, this lowers the security of the key
deletion/rejection operation. Default is True.

Logging Options

Logging options which override any settings defined on the configuration files.

	
--log-file=LOG_FILE

	Log file path. Default: /var/log/salt/minion.

	
--log-file-level=LOG_LEVEL_LOGFILE

	Logfile logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

Output Options

	
--out

	Pass in an alternative outputter to display the return of data. This
outputter can be any of the available outputters:

highstate, json, key, overstatestage, pprint, raw, txt, yaml, and many others.

Some outputters are formatted only for data returned from specific functions.
If an outputter is used that does not support the data passed into it, then
Salt will fall back on the pprint outputter and display the return data
using the Python pprint standard library module.

	
--out-indent OUTPUT_INDENT, --output-indent OUTPUT_INDENT

	Print the output indented by the provided value in spaces. Negative values
disable indentation. Only applicable in outputters that support
indentation.

	
--out-file=OUTPUT_FILE, --output-file=OUTPUT_FILE

	Write the output to the specified file.

	
--out-file-append, --output-file-append

	Append the output to the specified file.

	
--no-color

	Disable all colored output

	
--force-color

	Force colored output

Note

When using colored output the color codes are as follows:

green denotes success, red denotes failure, blue denotes
changes and success and yellow denotes a expected future change in configuration.

	
--state-output=STATE_OUTPUT, --state_output=STATE_OUTPUT

	Override the configured state_output value for minion
output. One of 'full', 'terse', 'mixed', 'changes' or
'filter'. Default: 'none'.

	
--state-verbose=STATE_VERBOSE, --state_verbose=STATE_VERBOSE

	Override the configured state_verbose value for minion
output. Set to True or False. Default: none.

Actions

	
-l ARG, --list=ARG

	List the public keys. The args pre, un, and unaccepted will
list unaccepted/unsigned keys. acc or accepted will list
accepted/signed keys. rej or rejected will list rejected keys.
Finally, all will list all keys.

	
-L, --list-all

	List all public keys. (Deprecated: use --list all)

	
-a ACCEPT, --accept=ACCEPT

	Accept the specified public key (use --include-all to match rejected keys
in addition to pending keys). Globs are supported.

	
-A, --accept-all

	Accepts all pending keys.

	
-r REJECT, --reject=REJECT

	Reject the specified public key (use --include-all to match accepted keys
in addition to pending keys). Globs are supported.

	
-R, --reject-all

	Rejects all pending keys.

	
--include-all

	Include non-pending keys when accepting/rejecting.

	
-p PRINT, --print=PRINT

	Print the specified public key.

	
-P, --print-all

	Print all public keys

	
-d DELETE, --delete=DELETE

	Delete the specified key. Globs are supported.

	
-D, --delete-all

	Delete all keys.

	
-f FINGER, --finger=FINGER

	Print the specified key's fingerprint.

	
-F, --finger-all

	Print all keys' fingerprints.

Key Generation Options

	
--gen-keys=GEN_KEYS

	Set a name to generate a keypair for use with salt

	
--gen-keys-dir=GEN_KEYS_DIR

	Set the directory to save the generated keypair. Only works
with 'gen_keys_dir' option; default is the current directory.

	
--keysize=KEYSIZE

	Set the keysize for the generated key, only works with
the '--gen-keys' option, the key size must be 2048 or
higher, otherwise it will be rounded up to 2048. The
default is 2048.

	
--gen-signature

	Create a signature file of the master's public-key named
master_pubkey_signature. The signature can be sent to a minion in the
master's auth-reply and enables the minion to verify the master's public-key
cryptographically. This requires a new signing-key-pair which can be
auto-created with the --auto-create parameter.

	
--priv=PRIV

	The private-key file to create a signature with

	
--signature-path=SIGNATURE_PATH

	The path where the signature file should be written

	
--pub=PUB

	The public-key file to create a signature for

	
--auto-create

	Auto-create a signing key-pair if it does not yet exist

See also

salt(7)
salt-master(1)
salt-minion(1)

salt-master

The Salt master daemon, used to control the Salt minions

Synopsis

salt-master [options]

Description

The master daemon controls the Salt minions

Options

	
--version

	Print the version of Salt that is running.

	
--versions-report

	Show program's dependencies and version number, and then exit

	
-h, --help

	Show the help message and exit

	
-c CONFIG_DIR, --config-dir=CONFIG_dir

	The location of the Salt configuration directory. This directory contains
the configuration files for Salt master and minions. The default location
on most systems is /etc/salt.

	
-u USER, --user=USER

	Specify user to run salt-master

	
-d, --daemon

	Run salt-master as a daemon

	
--pid-file PIDFILE

	Specify the location of the pidfile. Default: /var/run/salt-master.pid

Logging Options

Logging options which override any settings defined on the configuration files.

	
-l LOG_LEVEL, --log-level=LOG_LEVEL

	Console logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

	
--log-file=LOG_FILE

	Log file path. Default: /var/log/salt/master.

	
--log-file-level=LOG_LEVEL_LOGFILE

	Logfile logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

See also

salt(1)
salt(7)
salt-minion(1)

salt-minion

The Salt minion daemon, receives commands from a remote Salt master.

Synopsis

salt-minion [options]

Description

The Salt minion receives commands from the central Salt master and replies with
the results of said commands.

Options

	
--version

	Print the version of Salt that is running.

	
--versions-report

	Show program's dependencies and version number, and then exit

	
-h, --help

	Show the help message and exit

	
-c CONFIG_DIR, --config-dir=CONFIG_dir

	The location of the Salt configuration directory. This directory contains
the configuration files for Salt master and minions. The default location
on most systems is /etc/salt.

	
-u USER, --user=USER

	Specify user to run salt-minion

	
-d, --daemon

	Run salt-minion as a daemon

	
--pid-file PIDFILE

	Specify the location of the pidfile. Default: /var/run/salt-minion.pid

Logging Options

Logging options which override any settings defined on the configuration files.

	
-l LOG_LEVEL, --log-level=LOG_LEVEL

	Console logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

	
--log-file=LOG_FILE

	Log file path. Default: /var/log/salt/minion.

	
--log-file-level=LOG_LEVEL_LOGFILE

	Logfile logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

See also

salt(1)
salt(7)
salt-master(1)

salt-proxy

Receives commands from a Salt master and proxies these commands to
devices that are unable to run a full minion.

Synopsis

salt-proxy [options]

Description

The Salt proxy minion receives commands from a Salt master, transmits
appropriate commands to devices that are unable to run a minion, and replies
with the results of said commands.

Options

	
--proxyid

	The minion id that this proxy will assume. This is required.

	
--version

	Print the version of Salt that is running.

	
--versions-report

	Show program's dependencies and version number, and then exit

	
-h, --help

	Show the help message and exit

	
-c CONFIG_DIR, --config-dir=CONFIG_dir

	The location of the Salt configuration directory. This directory
contains the configuration files for Salt master and minions.
The default location on most systems is /etc/salt.

	
-u USER, --user=USER

	Specify user to run salt-proxy

	
-d, --daemon

	Run salt-proxy as a daemon

	
--pid-file PIDFILE

	Specify the location of the pidfile. Default: /var/run/salt-proxy-<id>.pid

Logging Options

Logging options which override any settings defined on the configuration files.

	
-l LOG_LEVEL, --log-level=LOG_LEVEL

	Console logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

	
--log-file=LOG_FILE

	Log file path. Default: /var/log/salt/minion.

	
--log-file-level=LOG_LEVEL_LOGFILE

	Logfile logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

See also

salt(1)
salt(7)
salt-master(1)
salt-minion(1)

salt-run

Execute a Salt runner

Synopsis

salt-run RUNNER

Description

salt-run is the frontend command for executing Salt Runners.
Salt runners are simple modules used to execute convenience functions on the
master

Options

	
--version

	Print the version of Salt that is running.

	
--versions-report

	Show program's dependencies and version number, and then exit

	
-h, --help

	Show the help message and exit

	
-c CONFIG_DIR, --config-dir=CONFIG_dir

	The location of the Salt configuration directory. This directory contains
the configuration files for Salt master and minions. The default location
on most systems is /etc/salt.

	
-t TIMEOUT, --timeout=TIMEOUT

	The timeout in seconds to wait for replies from the Salt minions. The
timeout number specifies how long the command line client will wait to
query the minions and check on running jobs. Default: 1

	
--hard-crash

	Raise any original exception rather than exiting gracefully. Default is
False.

	
-d, --doc, --documentation

	Display documentation for runners, pass a module or a runner to see
documentation on only that module/runner.

Logging Options

Logging options which override any settings defined on the configuration files.

	
-l LOG_LEVEL, --log-level=LOG_LEVEL

	Console logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

	
--log-file=LOG_FILE

	Log file path. Default: /var/log/salt/master.

	
--log-file-level=LOG_LEVEL_LOGFILE

	Logfile logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

See also

salt(1)
salt-master(1)
salt-minion(1)

salt-ssh

Synopsis

salt-ssh '*' [options] sys.doc

salt-ssh -E '.*' [options] sys.doc cmd

Description

Salt SSH allows for salt routines to be executed using only SSH for transport

Options

	
--version

	Print the version of Salt that is running.

	
--versions-report

	Show program's dependencies and version number, and then exit

	
-h, --help

	Show the help message and exit

	
-c CONFIG_DIR, --config-dir=CONFIG_dir

	The location of the Salt configuration directory. This directory contains
the configuration files for Salt master and minions. The default location
on most systems is /etc/salt.

	
--hard-crash

	Raise any original exception rather than exiting gracefully. Default: False.

	
-r, --raw, --raw-shell

	Execute a raw shell command.

	
--roster

	Define which roster system to use, this defines if a database backend,
scanner, or custom roster system is used. Default is the flat file roster.

	
--roster-file

	Define an alternative location for the default roster file location. The
default roster file is called roster and is found in the same directory
as the master config file.

New in version 2014.1.0.

	
--refresh, --refresh-cache

	Force a refresh of the master side data cache of the target's data. This
is needed if a target's grains have been changed and the auto refresh
timeframe has not been reached.

	
--max-procs

	Set the number of concurrent minions to communicate with. This value
defines how many processes are opened up at a time to manage connections,
the more running process the faster communication should be, default
is 25.

	
--extra-filerefs=EXTRA_FILEREFS

	Pass in extra files to include in the state tarball.

	
--min-extra-modules=MIN_EXTRA_MODS

	One or comma-separated list of extra Python modulesto be included
into Minimal Salt.

	
--thin-extra-modules=THIN_EXTRA_MODS

	One or comma-separated list of extra Python modulesto be included
into Thin Salt.

	
-v, --verbose

	Turn on command verbosity, display jid.

	
-s, --static

	Return the data from minions as a group after they all return.

	
-w, --wipe

	Remove the deployment of the salt files when done executing.

	
-W, --rand-thin-dir

	Select a random temp dir to deploy on the remote system. The dir
will be cleaned after the execution.

	
-t, --regen-thin, --thin

	Trigger a thin tarball regeneration. This is needed if custom
grains/modules/states have been added or updated.

	
--python2-bin=PYTHON2_BIN

	Path to a python2 binary which has salt installed.

	
--python3-bin=PYTHON3_BIN

	Path to a python3 binary which has salt installed.

	
--jid=JID

	Pass a JID to be used instead of generating one.

	
--pre-flight

	Run the ssh_pre_flight script defined in the roster.
By default this script will only run if the thin dir
does not exist on the target minion. This option will
force the script to run regardless of the thin dir
existing or not.

Authentication Options

	
--priv=SSH_PRIV

	Specify the SSH private key file to be used for authentication.

	
--priv-passwd=SSH_PRIV_PASSWD

	Specify the SSH private key file's passphrase if need be.

	
-i, --ignore-host-keys

	By default ssh host keys are honored and connections will ask for
approval. Use this option to disable StrictHostKeyChecking.

	
--no-host-keys

	Fully ignores ssh host keys which by default are honored and connections
would ask for approval. Useful if the host key of a remote server has
changed and would still error with --ignore-host-keys.

	
--user=SSH_USER

	Set the default user to attempt to use when authenticating.

	
--passwd

	Set the default password to attempt to use when authenticating.

	
--askpass

	Interactively ask for the SSH password with no echo - avoids password
in process args and stored in history.

	
--key-deploy

	Set this flag to attempt to deploy the authorized ssh key with all
minions. This combined with --passwd can make initial deployment of keys
very fast and easy.

	
--identities-only

	Use the only authentication identity files configured in the ssh_config
files. See IdentitiesOnly flag in man ssh_config.

	
--sudo

	Run command via sudo.

Scan Roster Options

	
--scan-ports=SSH_SCAN_PORTS

	Comma-separated list of ports to scan in the scan roster.

	
--scan-timeout=SSH_SCAN_TIMEOUT

	Scanning socket timeout for the scan roster.

Logging Options

Logging options which override any settings defined on the configuration files.

	
-l LOG_LEVEL, --log-level=LOG_LEVEL

	Console logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

	
--log-file=LOG_FILE

	Log file path. Default: /var/log/salt/ssh.

	
--log-file-level=LOG_LEVEL_LOGFILE

	Logfile logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

Target Selection

The default matching that Salt utilizes is shell-style globbing around the
minion id. See https://docs.python.org/3/library/fnmatch.html#module-fnmatch.

	
-E, --pcre

	The target expression will be interpreted as a PCRE regular expression
rather than a shell glob.

Output Options

	
--out

	Pass in an alternative outputter to display the return of data. This
outputter can be any of the available outputters:

highstate, json, key, overstatestage, pprint, raw, txt, yaml, and many others.

Some outputters are formatted only for data returned from specific functions.
If an outputter is used that does not support the data passed into it, then
Salt will fall back on the pprint outputter and display the return data
using the Python pprint standard library module.

	
--out-indent OUTPUT_INDENT, --output-indent OUTPUT_INDENT

	Print the output indented by the provided value in spaces. Negative values
disable indentation. Only applicable in outputters that support
indentation.

	
--out-file=OUTPUT_FILE, --output-file=OUTPUT_FILE

	Write the output to the specified file.

	
--out-file-append, --output-file-append

	Append the output to the specified file.

	
--no-color

	Disable all colored output

	
--force-color

	Force colored output

Note

When using colored output the color codes are as follows:

green denotes success, red denotes failure, blue denotes
changes and success and yellow denotes a expected future change in configuration.

	
--state-output=STATE_OUTPUT, --state_output=STATE_OUTPUT

	Override the configured state_output value for minion
output. One of 'full', 'terse', 'mixed', 'changes' or
'filter'. Default: 'none'.

	
--state-verbose=STATE_VERBOSE, --state_verbose=STATE_VERBOSE

	Override the configured state_verbose value for minion
output. Set to True or False. Default: none.

Note

If using --out=json, you will probably want --static as well.
Without the static option, you will get a separate JSON string per minion
which makes JSON output invalid as a whole.
This is due to using an iterative outputter. So if you want to feed it
to a JSON parser, use --static as well.

See also

salt(7)
salt-master(1)
salt-minion(1)

salt-syndic

The Salt syndic daemon, a special minion that passes through commands from a
higher master

Synopsis

salt-syndic [options]

Description

The Salt syndic daemon, a special minion that passes through commands from a
higher master.

Options

	
--version

	Print the version of Salt that is running.

	
--versions-report

	Show program's dependencies and version number, and then exit

	
-h, --help

	Show the help message and exit

	
-c CONFIG_DIR, --config-dir=CONFIG_dir

	The location of the Salt configuration directory. This directory contains
the configuration files for Salt master and minions. The default location
on most systems is /etc/salt.

	
-u USER, --user=USER

	Specify user to run salt-syndic

	
-d, --daemon

	Run salt-syndic as a daemon

	
--pid-file PIDFILE

	Specify the location of the pidfile. Default: /var/run/salt-syndic.pid

Logging Options

Logging options which override any settings defined on the configuration files.

	
-l LOG_LEVEL, --log-level=LOG_LEVEL

	Console logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

	
--log-file=LOG_FILE

	Log file path. Default: /var/log/salt/master.

	
--log-file-level=LOG_LEVEL_LOGFILE

	Logfile logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

See also

salt(1)
salt-master(1)
salt-minion(1)

spm

Salt Package Manager

Synopsis

spm <command> [<argument>]

Description

spm is the frontend command for managing Salt packages. Packages normally only
include formulas, meaning a group of SLS files that install into the
file_roots on the Salt Master, but Salt modules can also be installed.

Options

	
-y, --assume-yes

	Assume yes instead of prompting the other whether or not to proceed
with a particular command. Default is False.

	
-f, --force

	When presented with a course of action that spm would normally refuse to
perform, that action will be performed anyway. This is often destructive,
and should be used with caution.

Logging Options

Logging options which override any settings defined on the configuration files.

	
-l LOG_LEVEL, --log-level=LOG_LEVEL

	Console logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

	
--log-file=LOG_FILE

	Log file path. Default: /var/log/salt/spm.

	
--log-file-level=LOG_LEVEL_LOGFILE

	Logfile logging log level. One of all, garbage, trace,
debug, info, warning, error, quiet. Default:
warning.

Commands

	
update_repo

	Connect to remote repositories locally configured on the system and download
their metadata.

	
install

	Install a package from a configured SPM repository. Requires a package name.

	
remove

	Remove an installed package from the system. Requires a package name.

	
info

	List information about an installed package. Requires a package name.

	
files

	List files belonging to an installed package. Requires a package name.

	
local

	Perform one of the above options (except for remove) on a package file,
instead of on a package in a repository, or an installed package. Requires
a valid path to a local file on the system.

	
build

	Build a package from a directory containing a FORMULA file. Requires a valid
path to a local directory on the system.

	
create_repo

	Scan a directory for valid SPM package files and build an SPM-METADATA file
in that directory which describes them.

See also

salt(1)
salt-master(1)
salt-minion(1)

Pillars

Salt includes a number of built-in external pillars, listed at
pillar modules.

The below links contain documentation for the configuration options

	master-side configuration

	minion-side configuration

Note that some of same the configuration options from the master are present in
the minion configuration file, these are used in masterless mode.

The source for the built-in Salt pillars can be found here:
salt/pillar [https://github.com/saltstack/salt/blob/master/salt/pillar]

Master Tops

Salt includes a number of built-in subsystems to generate top file data, they
are listed at
master tops modules.

The source for the built-in Salt master tops can be found here:
salt/tops [https://github.com/saltstack/salt/blob/master/salt/tops]

Salt Module Reference

This section contains a list of the Python modules that are used to extend the various subsystems within Salt.

	auth modules

	beacon modules

	cache modules

	cloud modules

	engine modules

	execution modules

	executors modules

	fileserver modules

	grains modules

	netapi modules

	output modules

	pillar modules

	proxy modules

	queue modules

	renderer modules

	returner modules

	roster modules

	runner modules

	sdb modules

	serializer modules

	state modules

	thorium modules

	token modules

	master tops modules

	wheel modules

auth modules

	auto

	An "Always Approved" eauth interface to test against, not intended for production use

	django

	Provide authentication using Django Web Framework

	file

	Provide authentication using local files

	keystone

	Provide authentication using OpenStack Keystone

	ldap

	Provide authentication using simple LDAP binds

	mysql

	Provide authentication using MySQL.

	pam

	Authenticate against PAM

	pki

	Authenticate via a PKI certificate.

	rest

	Provide authentication using a REST call

	sharedsecret

	Provide authentication using configured shared secret

	yubico

	Provide authentication using YubiKey.

salt.auth.auto

An "Always Approved" eauth interface to test against, not intended for
production use

	
salt.auth.auto.auth(username, password)

	Authenticate!

salt.auth.django

Provide authentication using Django Web Framework

	depends:

	
	Django Web Framework

Django authentication depends on the presence of the django framework in the
PYTHONPATH, the Django project's settings.py file being in the
PYTHONPATH and accessible via the DJANGO_SETTINGS_MODULE environment
variable.

Django auth can be defined like any other eauth module:

external_auth:
 django:
 fred:
 - .*
 - '@runner'

This will authenticate Fred via Django and allow him to run any execution
module and all runners.

The authorization details can optionally be located inside the Django database.
The relevant entry in the models.py file would look like this:

class SaltExternalAuthModel(models.Model):
 user_fk = models.ForeignKey(User, on_delete=models.CASCADE)
 minion_or_fn_matcher = models.CharField(max_length=255)
 minion_fn = models.CharField(max_length=255)

The external_auth clause in the master config would then look
like this:

external_auth:
 django:
 ^model: <fully-qualified reference to model class>

When a user attempts to authenticate via Django, Salt will import the package
indicated via the keyword ^model. That model must have the fields
indicated above, though the model DOES NOT have to be named
'SaltExternalAuthModel'.

	
salt.auth.django.acl(username)

	
	Parameters:

	username -- Username to filter for

	Returns:

	Dictionary that can be slotted into the __opts__ structure for
eauth that designates the user associated ACL

Database records such as:

	username

	minion_or_fn_matcher

	minion_fn

	fred

	
	test.ping

	fred

	server1

	network.interfaces

	fred

	server1

	raid.list

	fred

	server2

	.*

	guru

	.*

	

	smartadmin

	server1

	.*

Should result in an eauth config such as:

fred:
 - test.ping
 - server1:
 - network.interfaces
 - raid.list
 - server2:
 - .*
guru:
 - .*
smartadmin:
 - server1:
 - .*

	
salt.auth.django.auth(username, password)

	Simple Django auth

	
salt.auth.django.is_connection_usable()

	

salt.auth.file

Provide authentication using local files

New in version 2018.3.0.

The file auth module allows simple authentication via local files. Different
filetypes are supported, including:

	Text files, with passwords in plaintext or hashed

	Apache-style htpasswd files

	Apache-style htdigest files

Note

The python-passlib library is required when using a ^filetype of
htpasswd or htdigest.

The simplest example is a plaintext file with usernames and passwords:

external_auth:
 file:
 ^filename: /etc/insecure-user-list.txt
 gene:
 - .*
 dean:
 - test.*

In this example the /etc/insecure-user-list.txt file would be formatted
as so:

dean:goneFishing
gene:OceanMan

^filename is the only required parameter. Any parameter that begins with
a ^ is passed directly to the underlying file authentication function
via kwargs, with the leading ^ being stripped.

The text file option is configurable to work with legacy formats:

external_auth:
 file:
 ^filename: /etc/legacy_users.txt
 ^filetype: text
 ^hashtype: md5
 ^username_field: 2
 ^password_field: 3
 ^field_separator: '|'
 trey:
 - .*

This would authenticate users against a file of the following format:

46|trey|16a0034f90b06bf3c5982ed8ac41aab4
555|mike|b6e02a4d2cb2a6ef0669e79be6fd02e4
2001|page|14fce21db306a43d3b680da1a527847a
8888|jon|c4e94ba906578ccf494d71f45795c6cb

Note

The hashutil.digest execution
function is used for comparing hashed passwords, so any algorithm
supported by that function will work.

There is also support for Apache-style htpasswd and htdigest files:

external_auth:
 file:
 ^filename: /var/www/html/.htusers
 ^filetype: htpasswd
 cory:
 - .*

When using htdigest the ^realm must be set:

external_auth:
 file:
 ^filename: /var/www/html/.htdigest
 ^filetype: htdigest
 ^realm: MySecureRealm
 cory:
 - .*

	
salt.auth.file.auth(username, password)

	File based authentication

	^filename
	The path to the file to use for authentication.

	^filetype
	The type of file: text, htpasswd, htdigest.

Default: text

	^realm
	The realm required by htdigest authentication.

Note

The following parameters are only used with the text filetype.

	^hashtype
	The digest format of the password. Can be plaintext or any digest
available via hashutil.digest.

Default: plaintext

	^field_separator
	The character to use as a delimiter between fields in a text file.

Default: :

	^username_field
	The numbered field in the text file that contains the username, with
numbering beginning at 1 (one).

Default: 1

	^password_field
	The numbered field in the text file that contains the password, with
numbering beginning at 1 (one).

Default: 2

salt.auth.keystone

Provide authentication using OpenStack Keystone

	depends:

	
	keystoneclient Python module

	
salt.auth.keystone.auth(username, password)

	Try and authenticate

	
salt.auth.keystone.get_auth_url()

	Try and get the URL from the config, else return localhost

salt.auth.ldap

Provide authentication using simple LDAP binds

	depends:

	
	ldap Python module

	
salt.auth.ldap.auth(username, password)

	Simple LDAP auth

	
salt.auth.ldap.groups(username, **kwargs)

	Authenticate against an LDAP group

Behavior is highly dependent on if Active Directory is in use.

AD handles group membership very differently than OpenLDAP.
See the External Authentication documentation for a thorough
discussion of available parameters for customizing the search.

OpenLDAP allows you to search for all groups in the directory
and returns members of those groups. Then we check against
the username entered.

	
salt.auth.ldap.process_acl(auth_list, opts=None)

	Query LDAP, retrieve list of minion_ids from an OU or other search.
For each minion_id returned from the LDAP search, copy the perms
matchers into the auth dictionary
:param auth_list:
:param opts: __opts__ for when __opts__ is not injected
:return: Modified auth list.

salt.auth.mysql

Provide authentication using MySQL.

When using MySQL as an authentication backend, you will need to create or
use an existing table that has a username and a password column.

To get started, create a simple table that holds just a username and
a password. The password field will hold a SHA256 checksum.

CREATE TABLE `users` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `username` varchar(25) DEFAULT NULL,
 `password` varchar(70) DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=latin1;

To create a user within MySQL, execute the following statement.

INSERT INTO users VALUES (NULL, 'diana', SHA2('secret', 256))

mysql_auth:
 hostname: localhost
 database: SaltStack
 username: root
 password: letmein
 auth_sql: 'SELECT username FROM users WHERE username = "{0}" AND password = SHA2("{1}", 256)'

The auth_sql contains the SQL that will validate a user to ensure they are
correctly authenticated. This is where you can specify other SQL queries to
authenticate users.

Enable MySQL authentication.

external_auth:
 mysql:
 damian:
 - test.*

	depends:

	
	MySQL-python Python module

	
salt.auth.mysql.auth(username, password)

	Authenticate using a MySQL user table

salt.auth.pam

Authenticate against PAM

Provides an authenticate function that will allow the caller to authenticate
a user against the Pluggable Authentication Modules (PAM) on the system.

Implemented using ctypes, so no compilation is necessary.

There is one extra configuration option for pam. The pam_service that is
authenticated against. This defaults to login

auth.pam.service: login

Note

Solaris-like (SmartOS, OmniOS, ...) systems may need auth.pam.service set to other.

Note

PAM authentication will not work for the root user.

The Python interface to PAM does not support authenticating as root.

Note

This module executes itself in a subprocess in order to user the system python
and pam libraries. We do this to avoid openssl version conflicts when
running under a salt onedir build.

	
class salt.auth.pam.PamConv

	Wrapper class for pam_conv structure

	
appdata_ptr

	Structure/Union member

	
conv

	Structure/Union member

	
class salt.auth.pam.PamHandle

	Wrapper class for pam_handle_t

	
handle

	Structure/Union member

	
class salt.auth.pam.PamMessage

	Wrapper class for pam_message structure

	
msg

	Structure/Union member

	
msg_style

	Structure/Union member

	
class salt.auth.pam.PamResponse

	Wrapper class for pam_response structure

	
resp

	Structure/Union member

	
resp_retcode

	Structure/Union member

	
salt.auth.pam.auth(username, password, **kwargs)

	Authenticate via pam

	
salt.auth.pam.authenticate(username, password)

	Returns True if the given username and password authenticate for the
given service. Returns False otherwise

username: the username to authenticate

password: the password in plain text

	
salt.auth.pam.groups(username, *args, **kwargs)

	Retrieve groups for a given user for this auth provider

Uses system groups

salt.auth.pki

Authenticate via a PKI certificate.

Note

This module is Experimental and should be used with caution

Provides an authenticate function that will allow the caller to authenticate
a user via their public cert against a pre-defined Certificate Authority.

TODO: Add a 'ca_dir' option to configure a directory of CA files, a la Apache.

	depends:

	
	pyOpenSSL module

	
salt.auth.pki.auth(username, password, **kwargs)

	Returns True if the given user cert (password is the cert contents)
was issued by the CA and if cert's Common Name is equal to username.

Returns False otherwise.

	username: we need it to run the auth function from CLI/API;
	it should be in master config auth/acl

	password: contents of user certificate (pem-encoded user public key);
	why "password"? For CLI, it's the only available name

Configure the CA cert in the master config file:

external_auth:
 pki:
 ca_file: /etc/pki/tls/ca_certs/trusted-ca.crt
 your_user:
 - .*

salt.auth.rest

Provide authentication using a REST call

REST auth can be defined like any other eauth module:

external_auth:
 rest:
 ^url: https://url/for/rest/call
 fred:
 - .*
 - '@runner'

If there are entries underneath the ^url entry then they are merged with any responses
from the REST call. In the above example, assuming the REST call does not return
any additional ACLs, this will authenticate Fred via a REST call and allow him to
run any execution module and all runners.

The REST call should return a JSON array that maps to a regular eauth YAML
structure of a user as above.

	
salt.auth.rest.acl(username, **kwargs)

	REST authorization

	
salt.auth.rest.auth(username, password)

	REST authentication

	
salt.auth.rest.fetch(username, password)

	Call the rest authentication endpoint

salt.auth.sharedsecret

Provide authentication using configured shared secret

external_auth:
 sharedsecret:
 fred:
 - .*
 - '@jobs'

The shared secret should be added to the master configuration, for
example in /etc/salt/master.d/sharedsecret.conf (make sure that file
is only readable by the user running the master):

sharedsecret: OIUHF_CHANGE_THIS_12h88

This auth module should be used with caution. It was initially
designed to work with a frontal that takes care of authentication (for
example kerberos) and places the shared secret in the HTTP headers to
the salt-api call. This salt-api call should really be done on
localhost to avoid someone eavesdropping on the shared secret.

See the documentation for cherrypy to setup the headers in your
frontal.

New in version 2015.8.0.

	
salt.auth.sharedsecret.auth(username, password)

	Shared secret authentication

salt.auth.yubico

Provide authentication using YubiKey.

New in version 2015.5.0.

	depends:

	yubico-client Python module

To get your YubiKey API key you will need to visit the website below.

https://upgrade.yubico.com/getapikey/

The resulting page will show the generated Client ID (aka AuthID or API ID)
and the generated API key (Secret Key). Make a note of both and use these
two values in your /etc/salt/master configuration.

/etc/salt/master

yubico_users:
 damian:
 id: 12345
 key: ABCDEFGHIJKLMNOPQRSTUVWXYZ

external_auth:
 yubico:
 damian:
 - test.*

Please wait five to ten minutes after generating the key before testing so that
the API key will be updated on all the YubiCloud servers.

	
salt.auth.yubico.auth(username, password)

	Authenticate against yubico server

	
salt.auth.yubico.groups(username, *args, **kwargs)

	

beacon modules

	adb

	Beacon to emit adb device state changes for Android devices

	aix_account

	Beacon to fire event when we notice a AIX user is locked due to many failed login attempts.

	avahi_announce

	Beacon to announce via avahi (zeroconf)

	bonjour_announce

	Beacon to announce via Bonjour (zeroconf)

	btmp

	Beacon to fire events at failed login of users

	cert_info

	Beacon to monitor certificate expiration dates from files on the filesystem.

	diskusage

	Beacon to monitor disk usage.

	glxinfo

	Beacon to emit when a display is available to a linux machine

	haproxy

	Watch current connections of haproxy server backends.

	inotify

	Watch files and translate the changes into salt events

	journald

	A simple beacon to watch journald for specific entries

	junos_rre_keys

	Junos redundant routing engine beacon.

	load

	Beacon to emit system load averages

	log_beacon

	Beacon to fire events at specific log messages.

	memusage

	Beacon to monitor memory usage.

	napalm_beacon

	Watch NAPALM functions and fire events on specific triggers

	network_info

	Beacon to monitor statistics from ethernet adapters

	network_settings

	Beacon to monitor network adapter setting changes on Linux

	pkg

	Watch for pkgs that have upgrades, then fire an event.

	proxy_example

	Example beacon to use with salt-proxy

	ps

	Send events covering process status

	salt_monitor

	A beacon to execute salt execution module functions.

	salt_proxy

	Beacon to manage and report the status of one or more salt proxy processes

	sensehat

	Monitor temperature, humidity and pressure using the SenseHat of a Raspberry Pi

	service

	Send events covering service status

	sh

	Watch the shell commands being executed actively.

	smartos_imgadm

	Beacon that fires events on image import/delete.

	smartos_vmadm

	Beacon that fires events on vm state changes

	status

	The status beacon is intended to send a basic health check event up to the master, this allows for event driven routines based on presence to be set up.

	swapusage

	Beacon to monitor swap usage.

	telegram_bot_msg

	Beacon to emit Telegram messages

	twilio_txt_msg

	Beacon to emit Twilio text messages

	watchdog

	Watch files and translate the changes into salt events.

	wtmp

	Beacon to fire events at login of users as registered in the wtmp file

salt.beacons.adb

Beacon to emit adb device state changes for Android devices

New in version 2016.3.0.

	
salt.beacons.adb.beacon(config)

	Emit the status of all devices returned by adb

Specify the device states that should emit an event,
there will be an event for each device with the
event type and device specified.

beacons:
 adb:
 - states:
 - offline
 - unauthorized
 - missing
 - no_devices_event: True
 - battery_low: 25

	
salt.beacons.adb.validate(config)

	Validate the beacon configuration

salt.beacons.aix_account

Beacon to fire event when we notice a AIX user is locked due to many failed login attempts.

New in version 2018.3.0.

	depends:

	none

	
salt.beacons.aix_account.beacon(config)

	Checks for locked accounts due to too many invalid login attempts, 3 or higher.

beacons:
 aix_account:
 user: ALL
 interval: 120

	
salt.beacons.aix_account.validate(config)

	Validate the beacon configuration

salt.beacons.avahi_announce

Beacon to announce via avahi (zeroconf)

New in version 2016.11.0.

Dependencies

	python-avahi

	dbus-python

	
salt.beacons.avahi_announce.beacon(config)

	Broadcast values via zeroconf

If the announced values are static, it is advised to set run_once: True
(do not poll) on the beacon configuration.

The following are required configuration settings:

	servicetype - The service type to announce

	port - The port of the service to announce

	txt - The TXT record of the service being announced as a dict. Grains
can be used to define TXT values using one of following two formats:

	grains.<grain_name>

	grains.<grain_name>[i] where i is an integer representing the
index of the grain to use. If the grain is not a list, the index is
ignored.

The following are optional configuration settings:

	servicename - Set the name of the service. Will use the hostname from
the minion's host grain if this value is not set.

	reset_on_change - If True and there is a change in TXT records
detected, it will stop announcing the service and then restart announcing
the service. This interruption in service announcement may be desirable
if the client relies on changes in the browse records to update its cache
of TXT records. Defaults to False.

	reset_wait - The number of seconds to wait after announcement stops
announcing and before it restarts announcing in the case where there is a
change in TXT records detected and reset_on_change is True.
Defaults to 0.

	copy_grains - If True, Salt will copy the grains passed into the
beacon when it backs them up to check for changes on the next iteration.
Normally, instead of copy, it would use straight value assignment. This
will allow detection of changes to grains where the grains are modified
in-place instead of completely replaced. In-place grains changes are not
currently done in the main Salt code but may be done due to a custom
plug-in. Defaults to False.

Example Config

beacons:
 avahi_announce:
 - run_once: True
 - servicetype: _demo._tcp
 - port: 1234
 - txt:
 ProdName: grains.productname
 SerialNo: grains.serialnumber
 Comments: 'this is a test'

	
salt.beacons.avahi_announce.validate(config)

	Validate the beacon configuration

salt.beacons.bonjour_announce

Beacon to announce via Bonjour (zeroconf)

	
salt.beacons.bonjour_announce.beacon(config)

	Broadcast values via zeroconf

If the announced values are static, it is advised to set run_once: True
(do not poll) on the beacon configuration.

The following are required configuration settings:

	servicetype - The service type to announce

	port - The port of the service to announce

	txt - The TXT record of the service being announced as a dict. Grains
can be used to define TXT values using one of following two formats:

	grains.<grain_name>

	grains.<grain_name>[i] where i is an integer representing the
index of the grain to use. If the grain is not a list, the index is
ignored.

The following are optional configuration settings:

	servicename - Set the name of the service. Will use the hostname from
the minion's host grain if this value is not set.

	reset_on_change - If True and there is a change in TXT records
detected, it will stop announcing the service and then restart announcing
the service. This interruption in service announcement may be desirable
if the client relies on changes in the browse records to update its cache
of TXT records. Defaults to False.

	reset_wait - The number of seconds to wait after announcement stops
announcing and before it restarts announcing in the case where there is a
change in TXT records detected and reset_on_change is True.
Defaults to 0.

	copy_grains - If True, Salt will copy the grains passed into the
beacon when it backs them up to check for changes on the next iteration.
Normally, instead of copy, it would use straight value assignment. This
will allow detection of changes to grains where the grains are modified
in-place instead of completely replaced. In-place grains changes are not
currently done in the main Salt code but may be done due to a custom
plug-in. Defaults to False.

Example Config

beacons:
 bonjour_announce:
 - run_once: True
 - servicetype: _demo._tcp
 - port: 1234
 - txt:
 ProdName: grains.productname
 SerialNo: grains.serialnumber
 Comments: 'this is a test'

	
salt.beacons.bonjour_announce.validate(config)

	Validate the beacon configuration

salt.beacons.btmp

Beacon to fire events at failed login of users

New in version 2015.5.0.

Example Configuration

Fire events on all failed logins
beacons:
 btmp: []

Matching on user name, using a default time range
beacons:
 btmp:
 - users:
 gareth:
 - defaults:
 time_range:
 start: '8am'
 end: '4pm'

Matching on user name, overriding the default time range
beacons:
 btmp:
 - users:
 gareth:
 time_range:
 start: '8am'
 end: '4pm'
 - defaults:
 time_range:
 start: '8am'
 end: '4pm'

Matching on group name, overriding the default time range
beacons:
 btmp:
 - groups:
 users:
 time_range:
 start: '8am'
 end: '4pm'
 - defaults:
 time_range:
 start: '8am'
 end: '4pm'

Use Case: Posting Failed Login Events to Slack

This can be done using the following reactor SLS:

report-wtmp:
 runner.salt.cmd:
 - args:
 - fun: slack.post_message
 - channel: mychannel # Slack channel
 - from_name: someuser # Slack user
 - message: "Failed login from `{{ data.get('user', '') or 'unknown user' }}` on `{{ data['id'] }}`"

Match the event like so in the master config file:

reactor:

 - 'salt/beacon/*/btmp/':
 - salt://reactor/btmp.sls

Note

This approach uses the slack execution module directly on the master, and therefore requires
that the master has a slack API key in its configuration:

slack:
 api_key: xoxb-XXXXXXXXXXXX-XXXXXXXXXXXX-XXXXXXXXXXXXXXXXXXXXXXXX

See the slack execution module
documentation for more information. While you can use an individual user's
API key to post to Slack, a bot user is likely better suited for this. The
slack engine documentation has information
on how to set up a bot user.

	
salt.beacons.btmp.beacon(config)

	Read the last btmp file and return information on the failed logins

	
salt.beacons.btmp.validate(config)

	Validate the beacon configuration

salt.beacons.cert_info

Beacon to monitor certificate expiration dates from files on the filesystem.

New in version 3000.

	maintainer:

	<devops@eitr.tech>

	maturity:

	new

	depends:

	OpenSSL

	
salt.beacons.cert_info.beacon(config)

	Monitor the certificate files on the minion.

Specify a notification threshold in days and only emit a beacon if any certificates are
expiring within that timeframe or if notify_days equals -1 (always report information).
The default notification threshold is 45 days and can be overridden at the beacon level and
at an individual certificate level.

beacons:
 cert_info:
 - files:
 - /etc/pki/tls/certs/mycert.pem
 - /etc/pki/tls/certs/yourcert.pem:
 notify_days: 15
 - /etc/pki/tls/certs/ourcert.pem
 - notify_days: 45
 - interval: 86400

	
salt.beacons.cert_info.validate(config)

	Validate the beacon configuration

salt.beacons.diskusage

Beacon to monitor disk usage.

New in version 2015.5.0.

	depends:

	python-psutil

	
salt.beacons.diskusage.beacon(config)

	Monitor the disk usage of the minion

Specify thresholds for each disk and only emit a beacon if any of them are
exceeded.

beacons:
 diskusage:
 - /: 63%
 - /mnt/nfs: 50%

Windows drives must be quoted to avoid yaml syntax errors

beacons:
 diskusage:
 - interval: 120
 - 'c:\\': 90%
 - 'd:\\': 50%

Regular expressions can be used as mount points.

beacons:
 diskusage:
 - '^\/(?!home).*$': 90%
 - '^[a-zA-Z]:\\$': 50%

The first one will match all mounted disks beginning with "/", except /home
The second one will match disks from A:to Z:on a Windows system

Note that if a regular expression are evaluated after static mount points,
which means that if a regular expression matches another defined mount point,
it will override the previously defined threshold.

	
salt.beacons.diskusage.validate(config)

	Validate the beacon configuration

salt.beacons.glxinfo

Beacon to emit when a display is available to a linux machine

New in version 2016.3.0.

	
salt.beacons.glxinfo.beacon(config)

	Emit the status of a connected display to the minion

Mainly this is used to detect when the display fails to connect
for whatever reason.

beacons:
 glxinfo:
 - user: frank
 - screen_event: True

	
salt.beacons.glxinfo.validate(config)

	Validate the beacon configuration

salt.beacons.haproxy

Watch current connections of haproxy server backends.
Fire an event when over a specified threshold.

New in version 2016.11.0.

	
salt.beacons.haproxy.beacon(config)

	Check if current number of sessions of a server for a specific haproxy backend
is over a defined threshold.

beacons:
 haproxy:
 - backends:
 www-backend:
 threshold: 45
 servers:
 - web1
 - web2
 - interval: 120

	
salt.beacons.haproxy.validate(config)

	Validate the beacon configuration

salt.beacons.inotify

Watch files and translate the changes into salt events

	depends:

	
	pyinotify Python module >= 0.9.5

	Caution:

	Using generic mask options like open, access, ignored, and
closed_nowrite with reactors can easily cause the reactor
to loop on itself. To mitigate this behavior, consider
setting the disable_during_state_run flag to True in
the beacon configuration.

	note:

	The inotify beacon only works on OSes that have inotify
kernel support.

	
salt.beacons.inotify.beacon(config)

	Watch the configured files

Example Config

beacons:
 inotify:
 - files:
 /path/to/file/or/dir:
 mask:
 - open
 - create
 - close_write
 recurse: True
 auto_add: True
 exclude:
 - /path/to/file/or/dir/exclude1
 - /path/to/file/or/dir/exclude2
 - /path/to/file/or/dir/regex[a-m]*$:
 regex: True
 - coalesce: True

The mask list can contain the following events (the default mask is create,
delete, and modify):

	access - File accessed

	attrib - File metadata changed

	close_nowrite - Unwritable file closed

	close_write - Writable file closed

	create - File created in watched directory

	delete - File deleted from watched directory

	delete_self - Watched file or directory deleted

	modify - File modified

	moved_from - File moved out of watched directory

	moved_to - File moved into watched directory

	move_self - Watched file moved

	open - File opened

The mask can also contain the following options:

	dont_follow - Don't dereference symbolic links

	excl_unlink - Omit events for children after they have been unlinked

	oneshot - Remove watch after one event

	onlydir - Operate only if name is directory

	recurse:
	Recursively watch files in the directory

	auto_add:
	Automatically start watching files that are created in the watched directory

	exclude:
	Exclude directories or files from triggering events in the watched directory.
Can use regex if regex is set to True

	coalesce:
	If this coalescing option is enabled, events are filtered based on
their unicity, only unique events are enqueued, doublons are discarded.
An event is unique when the combination of its fields (wd, mask,
cookie, name) is unique among events of a same batch. After a batch of
events is processed any events are accepted again.
This option is top-level (at the same level as the path) and therefore
affects all paths that are being watched. This is due to this option
being at the Notifier level in pyinotify.

	
salt.beacons.inotify.close(config)

	

	
salt.beacons.inotify.validate(config)

	Validate the beacon configuration

salt.beacons.journald

A simple beacon to watch journald for specific entries

	
salt.beacons.journald.beacon(config)

	The journald beacon allows for the systemd journal to be parsed and linked
objects to be turned into events.

This beacons config will return all sshd jornal entries

beacons:
 journald:
 - services:
 sshd:
 SYSLOG_IDENTIFIER: sshd
 PRIORITY: 6

	
salt.beacons.journald.validate(config)

	Validate the beacon configuration

salt.beacons.junos_rre_keys

Junos redundant routing engine beacon.

Note

This beacon only works on the Juniper native minion.

Copies salt-minion keys to the backup RE when present

Configure with

beacon:
 beacons:
 junos_rre_keys:
 - interval: 43200

interval above is in seconds, 43200 is recommended (every 12 hours)

	
salt.beacons.junos_rre_keys.beacon(config)

	

salt.beacons.load

Beacon to emit system load averages

	
salt.beacons.load.beacon(config)

	Emit the load averages of this host.

Specify thresholds for each load average
and only emit a beacon if any of them are
exceeded.

onchangeonly: when onchangeonly is True the beacon will fire
events only when the load average pass one threshold. Otherwise, it will fire an
event at each beacon interval. The default is False.

	emitatstartup: when emitatstartup is False the beacon will not fire
	event when the minion is reload. Applicable only when onchangeonly is True.
The default is True.

beacons:
 load:
 - averages:
 1m:
 - 0.0
 - 2.0
 5m:
 - 0.0
 - 1.5
 15m:
 - 0.1
 - 1.0
 - emitatstartup: True
 - onchangeonly: False

	
salt.beacons.load.validate(config)

	Validate the beacon configuration

salt.beacons.log_beacon

Beacon to fire events at specific log messages.

New in version 2017.7.0.

	
salt.beacons.log_beacon.beacon(config)

	Read the log file and return match whole string

beacons:
 log:
 - file: <path>
 - tags:
 <tag>:
 regex: <pattern>

Note

regex matching is based on the re [https://docs.python.org/3.6/library/re.html#regular-expression-syntax] module

The defined tag is added to the beacon event tag.
This is not the tag in the log.

beacons:
 log:
 - file: /var/log/messages #path to log.
 - tags:
 goodbye/world: # tag added to beacon event tag.
 regex: .*good-bye.* # match good-bye string anywhere in the log entry.

	
salt.beacons.log_beacon.validate(config)

	Validate the beacon configuration

salt.beacons.memusage

Beacon to monitor memory usage.

New in version 2016.3.0.

	depends:

	python-psutil

	
salt.beacons.memusage.beacon(config)

	Monitor the memory usage of the minion

Specify thresholds for percent used and only emit a beacon
if it is exceeded.

beacons:
 memusage:
 - percent: 63%

	
salt.beacons.memusage.validate(config)

	Validate the beacon configuration

salt.beacons.napalm_beacon

Watch NAPALM functions and fire events on specific triggers

New in version 2018.3.0.

Note

The NAPALM beacon only works only when running under
a regular Minion or a Proxy Minion, managed via NAPALM [http://napalm.readthedocs.io/en/latest/index.html].
Check the documentation for the
NAPALM proxy module.

The configuration accepts a list of Salt functions to be
invoked, and the corresponding output hierarchy that should
be matched against. To invoke a function with certain
arguments, they can be specified using the _args key, or
_kwargs for more specific key-value arguments.

The match structure follows the output hierarchy of the NAPALM
functions, under the out key.

For example, the following is normal structure returned by the
ntp.stats execution function:

{
 "comment": "",
 "result": true,
 "out": [
 {
 "referenceid": ".GPSs.",
 "remote": "172.17.17.1",
 "synchronized": true,
 "reachability": 377,
 "offset": 0.461,
 "when": "860",
 "delay": 143.606,
 "hostpoll": 1024,
 "stratum": 1,
 "jitter": 0.027,
 "type": "-"
 },
 {
 "referenceid": ".INIT.",
 "remote": "172.17.17.2",
 "synchronized": false,
 "reachability": 0,
 "offset": 0.0,
 "when": "-",
 "delay": 0.0,
 "hostpoll": 1024,
 "stratum": 16,
 "jitter": 4000.0,
 "type": "-"
 }
]
}

In order to fire events when the synchronization is lost with
one of the NTP peers, e.g., 172.17.17.2, we can match it explicitly as:

ntp.stats:
 remote: 172.17.17.2
 synchronized: false

There is one single nesting level, as the output of ntp.stats is
just a list of dictionaries, and this beacon will compare each dictionary
from the list with the structure examplified above.

Note

When we want to match on any element at a certain level, we can
configure * to match anything.

Considering a more complex structure consisting on multiple nested levels,
e.g., the output of the bgp.neighbors
execution function, to check when any neighbor from the global
routing table is down, the match structure would have the format:

bgp.neighbors:
 global:
 '*':
 up: false

The match structure above will match any BGP neighbor, with
any network (* matches any AS number), under the global VRF.
In other words, this beacon will push an event on the Salt bus
when there's a BGP neighbor down.

The right operand can also accept mathematical operations
(i.e., <, <=, !=, >, >= etc.) when comparing
numerical values.

Configuration Example:

beacons:
 napalm:
 - net.interfaces:
 # fire events when any interfaces is down
 '*':
 is_up: false
 - net.interfaces:
 # fire events only when the xe-0/0/0 interface is down
 'xe-0/0/0':
 is_up: false
 - ntp.stats:
 # fire when there's any NTP peer unsynchornized
 synchronized: false
 - ntp.stats:
 # fire only when the synchronization
 # with with the 172.17.17.2 NTP server is lost
 _args:
 - 172.17.17.2
 synchronized: false
 - ntp.stats:
 # fire only when there's a NTP peer with
 # synchronization stratum > 5
 stratum: '> 5'

Event structure example:

{
 "_stamp": "2017-09-05T09:51:09.377202",
 "args": [],
 "data": {
 "comment": "",
 "out": [
 {
 "delay": 0.0,
 "hostpoll": 1024,
 "jitter": 4000.0,
 "offset": 0.0,
 "reachability": 0,
 "referenceid": ".INIT.",
 "remote": "172.17.17.1",
 "stratum": 16,
 "synchronized": false,
 "type": "-",
 "when": "-"
 }
],
 "result": true
 },
 "fun": "ntp.stats",
 "id": "edge01.bjm01",
 "kwargs": {},
 "match": {
 "stratum": "> 5"
 }
}

The event examplified above has been fired when the device
identified by the Minion id edge01.bjm01 has been synchronized
with a NTP server at a stratum level greater than 5.

	
salt.beacons.napalm_beacon.beacon(config)

	Watch napalm function and fire events.

	
salt.beacons.napalm_beacon.validate(config)

	Validate the beacon configuration.

salt.beacons.network_info

Beacon to monitor statistics from ethernet adapters

New in version 2015.5.0.

	
salt.beacons.network_info.beacon(config)

	Emit the network statistics of this host.

Specify thresholds for each network stat
and only emit a beacon if any of them are
exceeded.

Emit beacon when any values are equal to
configured values.

beacons:
 network_info:
 - interfaces:
 eth0:
 type: equal
 bytes_sent: 100000
 bytes_recv: 100000
 packets_sent: 100000
 packets_recv: 100000
 errin: 100
 errout: 100
 dropin: 100
 dropout: 100

Emit beacon when any values are greater
than configured values.

beacons:
 network_info:
 - interfaces:
 eth0:
 type: greater
 bytes_sent: 100000
 bytes_recv: 100000
 packets_sent: 100000
 packets_recv: 100000
 errin: 100
 errout: 100
 dropin: 100
 dropout: 100

	
salt.beacons.network_info.validate(config)

	Validate the beacon configuration

salt.beacons.network_settings

Beacon to monitor network adapter setting changes on Linux

New in version 2016.3.0.

	
class salt.beacons.network_settings.Hashabledict

	Helper class that implements a hash function for a dictionary

	
salt.beacons.network_settings.beacon(config)

	Watch for changes on network settings

By default, the beacon will emit when there is a value change on one of the
settings on watch. The config also support the onvalue parameter for each
setting, which instruct the beacon to only emit if the setting changed to
the value defined.

Example Config

beacons:
 network_settings:
 - interfaces:
 eth0:
 ipaddr:
 promiscuity:
 onvalue: 1
 eth1:
 linkmode:

The config above will check for value changes on eth0 ipaddr and eth1 linkmode. It will also
emit if the promiscuity value changes to 1.

Beacon items can use the * wildcard to make a definition apply to several interfaces. For
example an eth* would apply to all ethernet interfaces.

Setting the argument coalesce = True will combine all the beacon results on a single event.
The example below shows how to trigger coalesced results:

beacons:
 network_settings:
 - coalesce: True
 - interfaces:
 eth0:
 ipaddr:
 promiscuity:

	
salt.beacons.network_settings.validate(config)

	Validate the beacon configuration

salt.beacons.pkg

Watch for pkgs that have upgrades, then fire an event.

New in version 2016.3.0.

	
salt.beacons.pkg.beacon(config)

	Check if installed packages are the latest versions
and fire an event for those that have upgrades.

beacons:
 pkg:
 - pkgs:
 - zsh
 - apache2
 - refresh: True

	
salt.beacons.pkg.validate(config)

	Validate the beacon configuration

salt.beacons.proxy_example

Example beacon to use with salt-proxy

beacons:
 proxy_example:
 endpoint: beacon

	
salt.beacons.proxy_example.beacon(config)

	Called several times each second
https://docs.saltproject.io/en/latest/topics/beacons/#the-beacon-function

beacons:
 proxy_example:
 - endpoint: beacon

	
salt.beacons.proxy_example.validate(config)

	Validate the beacon configuration

salt.beacons.ps

Send events covering process status

	
salt.beacons.ps.beacon(config)

	Scan for processes and fire events

Example Config

beacons:
 ps:
 - processes:
 salt-master: running
 mysql: stopped

The config above sets up beacons to check that
processes are running or stopped.

	
salt.beacons.ps.validate(config)

	Validate the beacon configuration

salt.beacons.salt_monitor

A beacon to execute salt execution module functions. This beacon will fire only if the return data is "truthy".
The function return, function name and args and/or kwargs, will be passed as data in the event.

The configuration can accept a list of salt functions to execute every interval.
Make sure to allot enough time via 'interval' key to allow all salt functions to execute.
The salt functions will be executed sequentially.

The elements in list of functions can be either a simple string (with no arguments) or a dictionary with a single
key being the salt execution module and sub keys indicating args and / or kwargs.

See example config below.

beacons:
 salt_monitor:
 - salt_fun:
 - slsutil.renderer:
 args:
 - salt://states/apache.sls
 kwargs:
 - default_renderer: jinja
 - test.ping
 - interval: 3600 # seconds

	
salt.beacons.salt_monitor.beacon(config)

	

	
salt.beacons.salt_monitor.validate(config)

	

salt.beacons.salt_proxy

Beacon to manage and report the status of
one or more salt proxy processes

New in version 2015.8.3.

	
salt.beacons.salt_proxy.beacon(config)

	Handle configured proxies

beacons:
 salt_proxy:
 - proxies:
 p8000: {}
 p8001: {}

	
salt.beacons.salt_proxy.validate(config)

	Validate the beacon configuration

salt.beacons.sensehat module

Monitor temperature, humidity and pressure using the SenseHat of a Raspberry Pi

New in version 2017.7.0.

	maintainer:

	Benedikt Werner <1benediktwerner@gmail.com>

	maturity:

	new

	depends:

	sense_hat Python module

	
salt.beacons.sensehat.beacon(config)

	Monitor the temperature, humidity and pressure using the SenseHat sensors.

You can either specify a threshold for each value and only emit a beacon
if it is exceeded or define a range and emit a beacon when the value is
out of range.

Units:
* humidity: percent
* temperature: degrees Celsius
* temperature_from_pressure: degrees Celsius
* pressure: Millibars

beacons:
 sensehat:
 - sensors:
 humidity: 70%
 temperature: [20, 40]
 temperature_from_pressure: 40
 pressure: 1500

	
salt.beacons.sensehat.validate(config)

	Validate the beacon configuration

salt.beacons.service

Send events covering service status

	
salt.beacons.service.beacon(config)

	Scan for the configured services and fire events

Example Config

beacons:
 service:
 - services:
 salt-master: {}
 mysql: {}

The config above sets up beacons to check for
the salt-master and mysql services.

The config also supports two other parameters for each service:

onchangeonly: when onchangeonly is True the beacon will fire
events only when the service status changes. Otherwise, it will fire an
event at each beacon interval. The default is False.

delay: when delay is greater than 0 the beacon will fire events only
after the service status changes, and the delay (in seconds) has passed.
Applicable only when onchangeonly is True. The default is 0.

emitatstartup: when emitatstartup is False the beacon will not fire
event when the minion is reload. Applicable only when onchangeonly is True.
The default is True.

uncleanshutdown: If uncleanshutdown is present it should point to the
location of a pid file for the service. Most services will not clean up
this pid file if they are shutdown uncleanly (e.g. via kill -9) or if they
are terminated through a crash such as a segmentation fault. If the file is
present, then the beacon will add uncleanshutdown: True to the event. If
not present, the field will be False. The field is only added when the
service is NOT running. Omitting the configuration variable altogether will
turn this feature off.

Please note that some init systems can remove the pid file if the service
registers as crashed. One such example is nginx on CentOS 7, where the
service unit removes the pid file when the service shuts down (IE: the pid
file is observed as removed when kill -9 is sent to the nginx master
process). The 'uncleanshutdown' option might not be of much use there,
unless the unit file is modified.

Here is an example that will fire an event 30 seconds after the state of nginx
changes and report an uncleanshutdown. This example is for Arch, which
places nginx's pid file in /run.

beacons:
 service:
 - services:
 nginx:
 onchangeonly: True
 delay: 30
 uncleanshutdown: /run/nginx.pid

	
salt.beacons.service.validate(config)

	Validate the beacon configuration

salt.beacons.sh

Watch the shell commands being executed actively. This beacon requires strace.

	
salt.beacons.sh.beacon(config)

	Scan the shell execve routines. This beacon will convert all login shells

beacons:
 sh: []

	
salt.beacons.sh.validate(config)

	Validate the beacon configuration

salt.beacons.smartos_imgadm

Beacon that fires events on image import/delete.

minimal
- check for new images every 1 second (salt default)
- does not send events at startup
beacons:
 imgadm: []

standard
- check for new images every 60 seconds
- send import events at startup for all images
beacons:
 imgadm:
 - interval: 60
 - startup_import_event: True

	
salt.beacons.smartos_imgadm.beacon(config)

	Poll imgadm and compare available images

	
salt.beacons.smartos_imgadm.validate(config)

	Validate the beacon configuration

salt.beacons.smartos_vmadm

Beacon that fires events on vm state changes

minimal
- check for vm changes every 1 second (salt default)
- does not send events at startup
beacons:
 vmadm: []

standard
- check for vm changes every 60 seconds
- send create event at startup for all vms
beacons:
 vmadm:
 - interval: 60
 - startup_create_event: True

	
salt.beacons.smartos_vmadm.beacon(config)

	Poll vmadm for changes

	
salt.beacons.smartos_vmadm.validate(config)

	Validate the beacon configuration

salt.beacons.status

The status beacon is intended to send a basic health check event up to the
master, this allows for event driven routines based on presence to be set up.

The intention of this beacon is to add the config options to add monitoring
stats to the health beacon making it a one stop shop for gathering systems
health and status data

New in version 2016.11.0.

To configure this beacon to use the defaults, set up an empty dict for it in
the minion config:

beacons:
 status: []

By default, all of the information from the following execution module
functions will be returned:

	loadavg

	cpustats

	meminfo

	vmstats

	time

You can also configure your own set of functions to be returned:

beacons:
 status:
 - time:
 - all
 - loadavg:
 - all

You may also configure only certain fields from each function to be returned.
For instance, the loadavg function returns the following fields:

	1-min

	5-min

	15-min

If you wanted to return only the 1-min and 5-min fields for loadavg
then you would configure:

beacons:
 status:
 - loadavg:
 - 1-min
 - 5-min

Other functions only return a single value instead of a dictionary. With these,
you may specify all or 0. The following are both valid:

beacons:
 status:
 - time:
 - all

beacons:
 status:
 - time:
 - 0

If a status function returns a list, you may return the index marker or
markers for specific list items:

beacons:
 status:
 - w:
 - 0
 - 1
 - 2

Warning

Not all status functions are supported for every operating system. Be certain
to check the minion log for errors after configuring this beacon.

	
salt.beacons.status.beacon(config)

	Return status for requested information

	
salt.beacons.status.validate(config)

	Validate the config is a dict

salt.beacons.swapusage

Beacon to monitor swap usage.

New in version 3003.

	depends:

	python-psutil

	
salt.beacons.swapusage.beacon(config)

	Monitor the swap usage of the minion

Specify thresholds for percent used and only emit a beacon
if it is exceeded.

beacons:
 swapusage:
 - percent: 13%

	
salt.beacons.swapusage.validate(config)

	Validate the beacon configuration

salt.beacons.telegram_bot_msg

Beacon to emit Telegram messages

Requires the python-telegram-bot library

	
salt.beacons.telegram_bot_msg.beacon(config)

	Emit a dict with a key "msgs" whose value is a list of messages
sent to the configured bot by one of the allowed usernames.

beacons:
 telegram_bot_msg:
 - token: "<bot access token>"
 - accept_from:
 - "<valid username>"
 - interval: 10

	
salt.beacons.telegram_bot_msg.validate(config)

	Validate the beacon configuration

salt.beacons.twilio_txt_msg

Beacon to emit Twilio text messages

	
salt.beacons.twilio_txt_msg.beacon(config)

	Emit a dict name "texts" whose value is a list
of texts.

beacons:
 twilio_txt_msg:
 - account_sid: "<account sid>"
 - auth_token: "<auth token>"
 - twilio_number: "+15555555555"
 - interval: 10

	
salt.beacons.twilio_txt_msg.validate(config)

	Validate the beacon configuration

salt.beacons.watchdog

Watch files and translate the changes into salt events.

New in version 2019.2.0.

	depends:

	
	watchdog Python module >= 0.8.3

	
class salt.beacons.watchdog.FileSystemEventHandler

	A dummy class to make the import work

	
class salt.beacons.watchdog.Handler(queue, masks=None)

	
	
on_created(event)

	

	
on_deleted(event)

	

	
on_modified(event)

	

	
on_moved(event)

	

	
exception salt.beacons.watchdog.ValidationError

	

	
salt.beacons.watchdog.beacon(config)

	Watch the configured directories

Example Config

beacons:
 watchdog:
 - directories:
 /path/to/dir:
 mask:
 - create
 - modify
 - delete
 - move

The mask list can contain the following events (the default mask is create,
modify delete, and move):

	create - File or directory is created in watched directory

	modify - The watched directory is modified

	delete - File or directory is deleted from watched directory

	move - File or directory is moved or renamed in the watched directory

	
salt.beacons.watchdog.close(config)

	

	
salt.beacons.watchdog.to_salt_event(event)

	

	
salt.beacons.watchdog.validate(config)

	Validate the beacon configuration

salt.beacons.wtmp

Beacon to fire events at login of users as registered in the wtmp file

New in version 2015.5.0.

Example Configuration

Fire events on all logins
beacons:
 wtmp: []

Matching on user name, using a default time range
beacons:
 wtmp:
 - users:
 gareth:
 - defaults:
 time_range:
 start: '8am'
 end: '4pm'

Matching on user name, overriding the default time range
beacons:
 wtmp:
 - users:
 gareth:
 time_range:
 start: '7am'
 end: '3pm'
 - defaults:
 time_range:
 start: '8am'
 end: '4pm'

Matching on group name, overriding the default time range
beacons:
 wtmp:
 - groups:
 users:
 time_range:
 start: '7am'
 end: '3pm'
 - defaults:
 time_range:
 start: '8am'
 end: '4pm'

How to Tell What An Event Means

In the events that this beacon fires, a type of 7 denotes a login, while a
type of 8 denotes a logout. These values correspond to the ut_type
value from a wtmp/utmp event (see the wtmp manpage for more information).
In the extremely unlikely case that your platform uses different values, they
can be overridden using a ut_type key in the beacon configuration:

beacons:
 wtmp:
 - ut_type:
 login: 9
 logout: 10

This beacon's events include an action key which will be either login
or logout depending on the event type.

Changed in version 2019.2.0: action key added to beacon event, and ut_type config parameter
added.

Use Case: Posting Login/Logout Events to Slack

This can be done using the following reactor SLS:

report-wtmp:
 runner.salt.cmd:
 - args:
 - fun: slack.post_message
 - channel: mychannel # Slack channel
 - from_name: someuser # Slack user
 - message: "{{ data.get('action', 'Unknown event') | capitalize }} from `{{ data.get('user', '') or 'unknown user' }}` on `{{ data['id'] }}`"

Match the event like so in the master config file:

reactor:

 - 'salt/beacon/*/wtmp/':
 - salt://reactor/wtmp.sls

Note

This approach uses the slack execution module directly on the master, and therefore requires
that the master has a slack API key in its configuration:

slack:
 api_key: xoxb-XXXXXXXXXXXX-XXXXXXXXXXXX-XXXXXXXXXXXXXXXXXXXXXXXX

See the slack execution module
documentation for more information. While you can use an individual user's
API key to post to Slack, a bot user is likely better suited for this. The
slack engine documentation has information
on how to set up a bot user.

	
salt.beacons.wtmp.beacon(config)

	Read the last wtmp file and return information on the logins

	
salt.beacons.wtmp.validate(config)

	Validate the beacon configuration

cache modules

For understanding and usage of the cache modules see the Minion Data Cache topic.

	consul

	Minion data cache plugin for Consul key/value data store.

	etcd_cache

	Minion data cache plugin for Etcd key/value data store.

	localfs

	Cache data in filesystem.

	mysql_cache

	Minion data cache plugin for MySQL database.

	redis_cache

	Redis

salt.cache.consul

Minion data cache plugin for Consul key/value data store.

New in version 2016.11.2.

Changed in version 3005: Timestamp/cache updated support added.

	depends:

	python-consul >= 0.2.0

It is up to the system administrator to set up and configure the Consul
infrastructure. All is needed for this plugin is a working Consul agent
with a read-write access to the key-value store.

The related documentation can be found in the Consul documentation [https://www.consul.io/docs/index.html].

To enable this cache plugin, the master will need the python client for
Consul installed. This can be easily installed with pip:

pip install python-consul

Optionally, depending on the Consul agent configuration, the following values
could be set in the master config. These are the defaults:

consul.host: 127.0.0.1
consul.port: 8500
consul.token: None
consul.scheme: http
consul.consistency: default
consul.dc: dc1
consul.verify: True
consul.timestamp_suffix: .tstamp # Added in 3005.0

In order to bring the cache APIs into conformity, in 3005.0 timestamp
information gets stored as a separate {key}.tstamp key/value. If your
existing functionality depends on being able to store normal keys with the
.tstamp suffix, override the consul.timestamp_suffix default config.

Related docs could be found in the python-consul documentation [https://python-consul.readthedocs.io/en/latest/#consul].

To use the consul as a minion data cache backend, set the master cache config
value to consul:

cache: consul

	
salt.cache.consul.contains(bank, key)

	Checks if the specified bank contains the specified key.

	
salt.cache.consul.fetch(bank, key)

	Fetch a key value.

	
salt.cache.consul.flush(bank, key=None)

	Remove the key from the cache bank with all the key content.

	
salt.cache.consul.list_(bank)

	Return an iterable object containing all entries stored in the specified bank.

	
salt.cache.consul.store(bank, key, data)

	Store a key value.

	
salt.cache.consul.updated(bank, key)

	Return the Unix Epoch timestamp of when the key was last updated. Return
None if key is not found.

salt.cache.etcd_cache

Minion data cache plugin for Etcd key/value data store.

New in version 2018.3.0.

Changed in version 3005.

It is up to the system administrator to set up and configure the Etcd
infrastructure. All is needed for this plugin is a working Etcd agent
with a read-write access to the key-value store.

The related documentation can be found in the Etcd documentation [https://github.com/coreos/etcd].

To enable this cache plugin, the master will need the python client for
Etcd installed. This can be easily installed with pip:

pip install python-etcd

Note

While etcd API v3 has been implemented in other places within salt,
etcd_cache does not support it at this time due to fundamental differences in
how the versions are designed and v3 not being compatible with the cache API.

Optionally, depending on the Etcd agent configuration, the following values
could be set in the master config. These are the defaults:

etcd.host: 127.0.0.1
etcd.port: 2379
etcd.protocol: http
etcd.allow_reconnect: True
etcd.allow_redirect: False
etcd.srv_domain: None
etcd.read_timeout: 60
etcd.username: None
etcd.password: None
etcd.cert: None
etcd.ca_cert: None

Related docs could be found in the python-etcd documentation [http://python-etcd.readthedocs.io/en/latest/].

To use the etcd as a minion data cache backend, set the master cache config
value to etcd:

cache: etcd

In Phosphorus, ls/list was changed to always return the final name in the path.
This should only make a difference if you were directly using ls on paths
that were more or less nested than, for example: 1/2/3/4.

	
salt.cache.etcd_cache.contains(bank, key)

	Checks if the specified bank contains the specified key.

	
salt.cache.etcd_cache.fetch(bank, key)

	Fetch a key value.

	
salt.cache.etcd_cache.flush(bank, key=None)

	Remove the key from the cache bank with all the key content.

	
salt.cache.etcd_cache.ls(bank)

	Return an iterable object containing all entries stored in the specified
bank.

	
salt.cache.etcd_cache.store(bank, key, data)

	Store a key value.

	
salt.cache.etcd_cache.updated(bank, key)

	Return Unix Epoch based timestamp of when the bank/key was updated.

salt.cache.localfs

Cache data in filesystem.

New in version 2016.11.0.

The localfs Minion cache module is the default cache module and does not
require any configuration.

Expiration values can be set in the relevant config file (/etc/salt/master for
the master, /etc/salt/cloud for Salt Cloud, etc).

	
salt.cache.localfs.contains(bank, key, cachedir)

	Checks if the specified bank contains the specified key.

	
salt.cache.localfs.fetch(bank, key, cachedir)

	Fetch information from a file.

	
salt.cache.localfs.flush(bank, key=None, cachedir=None)

	Remove the key from the cache bank with all the key content.

	
salt.cache.localfs.get_storage_id(kwargs)

	

	
salt.cache.localfs.init_kwargs(kwargs)

	

	
salt.cache.localfs.list_(bank, cachedir)

	Return an iterable object containing all entries stored in the specified bank.

	
salt.cache.localfs.store(bank, key, data, cachedir)

	Store information in a file.

	
salt.cache.localfs.updated(bank, key, cachedir)

	Return the epoch of the mtime for this cache file

salt.cache.mysql_cache

Minion data cache plugin for MySQL database.

New in version 2018.3.0.

It is up to the system administrator to set up and configure the MySQL
infrastructure. All is needed for this plugin is a working MySQL server.

Warning

The mysql.database and mysql.table_name will be directly added into certain
queries. Salt treats these as trusted input.

The module requires the database (default salt_cache) to exist but creates
its own table if needed. The keys are indexed using the bank and
etcd_key columns.

To enable this cache plugin, the master will need the python client for
MySQL installed. This can be easily installed with pip:

pip install pymysql

Optionally, depending on the MySQL agent configuration, the following values
could be set in the master config. These are the defaults:

mysql.host: 127.0.0.1
mysql.port: 2379
mysql.user: None
mysql.password: None
mysql.database: salt_cache
mysql.table_name: cache
This may be enabled to create a fresh connection on every call
mysql.fresh_connection: false

Related docs can be found in the python-mysql documentation [http://python-mysql.readthedocs.io/en/latest/].

To use the mysql as a minion data cache backend, set the master cache config
value to mysql:

cache: mysql

	
salt.cache.mysql_cache.contains(bank, key)

	Checks if the specified bank contains the specified key.

	
salt.cache.mysql_cache.fetch(bank, key)

	Fetch a key value.

	
salt.cache.mysql_cache.flush(bank, key=None)

	Remove the key from the cache bank with all the key content.

	
salt.cache.mysql_cache.force_reconnect()

	Force a reconnection to the MySQL database, by removing the client from
Salt's __context__.

	
salt.cache.mysql_cache.ls(bank)

	Return an iterable object containing all entries stored in the specified
bank.

	
salt.cache.mysql_cache.run_query(conn, query, args=None, retries=3)

	Get a cursor and run a query. Reconnect up to retries times if
needed.
Returns: cursor, affected rows counter
Raises: SaltCacheError, AttributeError, OperationalError, InterfaceError

	
salt.cache.mysql_cache.store(bank, key, data)

	Store a key value.

	
salt.cache.mysql_cache.updated(bank, key)

	Return the integer Unix epoch update timestamp of the specified bank and
key.

salt.cache.redis_cache

Redis

Redis plugin for the Salt caching subsystem.

New in version 2017.7.0.

Changed in version 3005.

To enable this cache plugin, the master will need the python client for redis installed.
This can be easily installed with pip:

salt * pip.install redis

As Redis provides a simple mechanism for very fast key-value store, in order to
provide the necessary features for the Salt caching subsystem, the following
conventions are used:

	A Redis key consists of the bank name and the cache key separated by /, e.g.:
$KEY_minions/alpha/stuff where minions/alpha is the bank name
and stuff is the key name.

	As the caching subsystem is organised as a tree, we need to store the caching
path and identify the bank and its offspring. At the same time, Redis is
linear and we need to avoid doing keys <pattern> which is very
inefficient as it goes through all the keys on the remote Redis server.
Instead, each bank hierarchy has a Redis SET associated which stores the list
of sub-banks. By default, these keys begin with $BANK_.

	In addition, each key name is stored in a separate SET of all the keys within
a bank. By default, these SETs begin with $BANKEYS_.

For example, to store the key my-key under the bank root-bank/sub-bank/leaf-bank,
the following hierarchy will be built:

127.0.0.1:6379> SMEMBERS $BANK_root-bank
1) "sub-bank"
127.0.0.1:6379> SMEMBERS $BANK_root-bank/sub-bank
1) "leaf-bank"
127.0.0.1:6379> SMEMBERS $BANKEYS_root-bank/sub-bank/leaf-bank
1) "my-key"
127.0.0.1:6379> GET $KEY_root-bank/sub-bank/leaf-bank/my-key
"my-value"

There are four types of keys stored:

	$BANK_* is a Redis SET containing the list of banks under the current bank.

	$BANKEYS_* is a Redis SET containing the list of keys under the current bank.

	$KEY_* keeps the value of the key.

	$TSTAMP_* stores the last updated timestamp of the key.

These prefixes and the separator can be adjusted using the configuration options:

	bank_prefix: $BANK
	The prefix used for the name of the Redis key storing the list of sub-banks.

	bank_keys_prefix: $BANKEYS
	The prefix used for the name of the Redis key storing the list of keys under a certain bank.

	key_prefix: $KEY
	The prefix of the Redis keys having the value of the keys to be cached under
a certain bank.

	timestamp_prefix: $TSTAMP
	The prefix for the last modified timestamp for keys.

New in version 3005.

	separator: _
	The separator between the prefix and the key body.

The connection details can be specified using:

	host: localhost
	The hostname of the Redis server.

	port: 6379
	The Redis server port.

	cluster_mode: False
	Whether cluster_mode is enabled or not

	cluster.startup_nodes:
	A list of host, port dictionaries pointing to cluster members. At least one is required
but multiple nodes are better

cache.redis.cluster.startup_nodes
 - host: redis-member-1
 port: 6379
 - host: redis-member-2
 port: 6379

	cluster.skip_full_coverage_check: False
	Some cluster providers restrict certain redis commands such as CONFIG for enhanced security.
Set this option to true to skip checks that required advanced privileges.

Note

Most cloud hosted redis clusters will require this to be set to True

	db: '0'
	The database index.

Note

The database index must be specified as string not as integer value!

	password:
	Redis connection password.

unix_socket_path:

New in version 2018.3.1.

Path to a UNIX socket for access. Overrides host / port.

Configuration Example:

cache.redis.host: localhost
cache.redis.port: 6379
cache.redis.db: '0'
cache.redis.password: my pass
cache.redis.bank_prefix: #BANK
cache.redis.bank_keys_prefix: #BANKEYS
cache.redis.key_prefix: #KEY
cache.redis.timestamp_prefix: #TICKS
cache.redis.separator: '@'

Cluster Configuration Example:

cache.redis.cluster_mode: true
cache.redis.cluster.skip_full_coverage_check: true
cache.redis.cluster.startup_nodes:
 - host: redis-member-1
 port: 6379
 - host: redis-member-2
 port: 6379
cache.redis.db: '0'
cache.redis.password: my pass
cache.redis.bank_prefix: #BANK
cache.redis.bank_keys_prefix: #BANKEYS
cache.redis.key_prefix: #KEY
cache.redis.separator: '@'

	
salt.cache.redis_cache.contains(bank, key)

	Checks if the specified bank contains the specified key.

	
salt.cache.redis_cache.fetch(bank, key)

	Fetch data from the Redis cache.

	
salt.cache.redis_cache.flush(bank, key=None)

	Remove the key from the cache bank with all the key content. If no key is specified, remove
the entire bank with all keys and sub-banks inside.
This function is using the Redis pipelining for best performance.
However, when removing a whole bank,
in order to re-create the tree, there are a couple of requests made. In total:

	one for node in the hierarchy sub-tree, starting from the bank node

	one pipelined request to get the keys under all banks in the sub-tree

	one pipeline request to remove the corresponding keys

This is not quite optimal, as if we need to flush a bank having
a very long list of sub-banks, the number of requests to build the sub-tree may grow quite big.

An improvement for this would be loading a custom Lua script in the Redis instance of the user
(using the register_script feature) and call it whenever we flush.
This script would only need to build this sub-tree causing problems. It can be added later and the behaviour
should not change as the user needs to explicitly allow Salt inject scripts in their Redis instance.

	
salt.cache.redis_cache.init_kwargs(kwargs)

	Effectively a noop. Return an empty dictionary.

	
salt.cache.redis_cache.list_(bank)

	Lists entries stored in the specified bank.

	
salt.cache.redis_cache.store(bank, key, data)

	Store the data in a Redis key.

	
salt.cache.redis_cache.updated(bank, key)

	Return the Unix Epoch timestamp of when the key was last updated. Return
None if key is not found.

cloud modules

	aliyun

	AliYun ECS Cloud Module

	clc

	CenturyLink Cloud Module

	cloudstack

	CloudStack Cloud Module

	digitalocean

	DigitalOcean Cloud Module

	dimensiondata

	Dimension Data Cloud Module

	ec2

	The EC2 Cloud Module

	gce

	Copyright 2013 Google Inc.

	gogrid

	GoGrid Cloud Module

	hetzner

	Hetzner Cloud Module

	joyent

	Joyent Cloud Module

	libvirt

	Libvirt Cloud Module

	linode

	The Linode Cloud Module

	lxc

	Install Salt on an LXC Container

	oneandone

	1&1 Cloud Server Module

	opennebula

	OpenNebula Cloud Module

	openstack

	Openstack Cloud Driver

	packet

	Packet Cloud Module Using Packet's Python API Client

	parallels

	Parallels Cloud Module

	profitbricks

	ProfitBricks Cloud Module

	proxmox

	

	pyrax

	Pyrax Cloud Module

	qingcloud

	QingCloud Cloud Module

	saltify

	

	scaleway

	Scaleway Cloud Module

	softlayer

	SoftLayer Cloud Module

	softlayer_hw

	SoftLayer HW Cloud Module

	tencentcloud

	Tencent Cloud Cloud Module

	vagrant

	Vagrant Cloud Driver

	virtualbox

	A salt cloud provider that lets you use virtualbox on your machine and act as a cloud.

	vmware

	VMware Cloud Module

	vultrpy

	Vultr Cloud Module using python-vultr bindings

	xen

	XenServer Cloud Driver

salt.cloud.clouds.aliyun

AliYun ECS Cloud Module

New in version 2014.7.0.

The Aliyun cloud module is used to control access to the aliyun ECS.
http://www.aliyun.com/

Use of this module requires the id and key parameter to be set.
Set up the cloud configuration at /etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/aliyun.conf:

my-aliyun-config:
 # aliyun Access Key ID
 id: wFGEwgregeqw3435gDger
 # aliyun Access Key Secret
 key: GDE43t43REGTrkilg43934t34qT43t4dgegerGEgg
 location: cn-qingdao
 driver: aliyun

	depends:

	requests

	
salt.cloud.clouds.aliyun.avail_images(kwargs=None, call=None)

	Return a list of the images that are on the provider

	
salt.cloud.clouds.aliyun.avail_locations(call=None)

	Return a dict of all available VM locations on the cloud provider with
relevant data

	
salt.cloud.clouds.aliyun.avail_sizes(call=None)

	Return a list of the image sizes that are on the provider

	
salt.cloud.clouds.aliyun.create(vm_)

	Create a single VM from a data dict

	
salt.cloud.clouds.aliyun.create_node(kwargs)

	Convenience function to make the rest api call for node creation.

	
salt.cloud.clouds.aliyun.destroy(name, call=None)

	Destroy a node.

CLI Example:

salt-cloud -a destroy myinstance
salt-cloud -d myinstance

	
salt.cloud.clouds.aliyun.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.aliyun.get_dependencies()

	Warn if dependencies aren't met.

	
salt.cloud.clouds.aliyun.get_image(vm_)

	Return the image object to use

	
salt.cloud.clouds.aliyun.get_location(vm_=None)

	
	Return the aliyun region to use, in this order:
	
	CLI parameter

	VM parameter

	Cloud profile setting

	
salt.cloud.clouds.aliyun.get_securitygroup(vm_)

	Return the security group

	
salt.cloud.clouds.aliyun.get_size(vm_)

	Return the VM's size. Used by create_node().

	
salt.cloud.clouds.aliyun.list_availability_zones(call=None)

	List all availability zones in the current region

	
salt.cloud.clouds.aliyun.list_monitor_data(kwargs=None, call=None)

	Get monitor data of the instance. If instance name is
missing, will show all the instance monitor data on the region.

CLI Examples:

salt-cloud -f list_monitor_data aliyun
salt-cloud -f list_monitor_data aliyun name=AY14051311071990225bd

	
salt.cloud.clouds.aliyun.list_nodes(call=None)

	Return a list of the VMs that are on the provider

	
salt.cloud.clouds.aliyun.list_nodes_full(call=None)

	Return a list of the VMs that are on the provider

	
salt.cloud.clouds.aliyun.list_nodes_min(call=None)

	Return a list of the VMs that are on the provider. Only a list of VM names,
and their state, is returned. This is the minimum amount of information
needed to check for existing VMs.

	
salt.cloud.clouds.aliyun.list_nodes_select(call=None)

	Return a list of the VMs that are on the provider, with select fields

	
salt.cloud.clouds.aliyun.list_securitygroup(call=None)

	Return a list of security group

	
salt.cloud.clouds.aliyun.query(params=None)

	Make a web call to aliyun ECS REST API

	
salt.cloud.clouds.aliyun.reboot(name, call=None)

	Reboot a node

CLI Examples:

salt-cloud -a reboot myinstance

	
salt.cloud.clouds.aliyun.script(vm_)

	Return the script deployment object

	
salt.cloud.clouds.aliyun.show_disk(name, call=None)

	Show the disk details of the instance

CLI Examples:

salt-cloud -a show_disk aliyun myinstance

	
salt.cloud.clouds.aliyun.show_image(kwargs, call=None)

	Show the details from aliyun image

	
salt.cloud.clouds.aliyun.show_instance(name, call=None)

	Show the details from aliyun instance

	
salt.cloud.clouds.aliyun.start(name, call=None)

	Start a node

CLI Examples:

salt-cloud -a start myinstance

	
salt.cloud.clouds.aliyun.stop(name, force=False, call=None)

	Stop a node

CLI Examples:

salt-cloud -a stop myinstance
salt-cloud -a stop myinstance force=True

salt.cloud.clouds.clc

CenturyLink Cloud Module

New in version 2018.3.0.

The CLC cloud module allows you to manage CLC Via the CLC SDK.

	codeauthor:

	Stephan Looney <slooney@stephanlooney.com>

Dependencies

	clc-sdk Python Module

	flask

CLC SDK

clc-sdk can be installed via pip:

pip install clc-sdk

Note

For sdk reference see: https://github.com/CenturyLinkCloud/clc-python-sdk

Flask

flask can be installed via pip:

pip install flask

Configuration

To use this module: set up the clc-sdk, user, password, key in the
cloud configuration at
/etc/salt/cloud.providers or /etc/salt/cloud.providers.d/clc.conf:

my-clc-config:
 driver: clc
 user: 'web-user'
 password: 'verybadpass'
 token: ''
 token_pass:''
 accountalias: 'ACT'

Note

The provider parameter in cloud provider configuration was renamed to driver.
This change was made to avoid confusion with the provider parameter that is
used in cloud profile configuration. Cloud provider configuration now uses driver
to refer to the salt-cloud driver that provides the underlying functionality to
connect to a cloud provider, while cloud profile configuration continues to use
provider to refer to the cloud provider configuration that you define.

	
salt.cloud.clouds.clc.avail_images(call=None)

	returns a list of images available to you

	
salt.cloud.clouds.clc.avail_locations(call=None)

	returns a list of locations available to you

	
salt.cloud.clouds.clc.avail_sizes(call=None)

	use templates for this

	
salt.cloud.clouds.clc.create(vm_)

	get the system build going

	
salt.cloud.clouds.clc.destroy(name, call=None)

	destroy the vm

	
salt.cloud.clouds.clc.get_build_status(req_id, nodename)

	get the build status from CLC to make sure we don't return to early

	
salt.cloud.clouds.clc.get_configured_provider()

	

	
salt.cloud.clouds.clc.get_creds()

	

	
salt.cloud.clouds.clc.get_dependencies()

	Warn if dependencies aren't met.

	
salt.cloud.clouds.clc.get_group_estimate(call=None, for_output=True, **kwargs)

	Return a list of the VMs that are on the provider
usage: "salt-cloud -f get_group_estimate clc group=Dev location=VA1"

	
salt.cloud.clouds.clc.get_month_to_date(call=None, for_output=True)

	Return a list of the VMs that are on the provider

	
salt.cloud.clouds.clc.get_monthly_estimate(call=None, for_output=True)

	Return a list of the VMs that are on the provider

	
salt.cloud.clouds.clc.get_queue_data(call=None, for_output=True)

	

	
salt.cloud.clouds.clc.get_server_alerts(call=None, for_output=True, **kwargs)

	Return a list of alerts from CLC as reported by their infra

	
salt.cloud.clouds.clc.list_nodes_full(call=None, for_output=True)

	Return a list of the VMs that are on the provider

salt.cloud.clouds.cloudstack

CloudStack Cloud Module

The CloudStack cloud module is used to control access to a CloudStack based
Public Cloud.

	depends:

	libcloud >= 0.15

Use of this module requires the apikey, secretkey, host and
path parameters.

my-cloudstack-cloud-config:
 apikey: <your api key >
 secretkey: <your secret key >
 host: localhost
 path: /client/api
 driver: cloudstack

	
salt.cloud.clouds.cloudstack.avail_images(conn=None, call=None)

	Return a dict of all available VM images on the cloud provider with
relevant data

	
salt.cloud.clouds.cloudstack.avail_locations(conn=None, call=None)

	Return a dict of all available VM locations on the cloud provider with
relevant data

	
salt.cloud.clouds.cloudstack.avail_sizes(conn=None, call=None)

	Return a dict of all available VM images on the cloud provider with
relevant data

	
salt.cloud.clouds.cloudstack.block_device_mappings(vm_)

	Return the block device mapping:

[{'DeviceName': '/dev/sdb', 'VirtualName': 'ephemeral0'},
 {'DeviceName': '/dev/sdc', 'VirtualName': 'ephemeral1'}]

	
salt.cloud.clouds.cloudstack.cloudstack_displayname(vm_)

	Return display name of VM:

	::
	"minion1"

	
salt.cloud.clouds.cloudstack.create(vm_)

	Create a single VM from a data dict

	
salt.cloud.clouds.cloudstack.destroy(name, conn=None, call=None)

	Delete a single VM, and all of its volumes

	
salt.cloud.clouds.cloudstack.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.cloudstack.get_conn()

	Return a conn object for the passed VM data

	
salt.cloud.clouds.cloudstack.get_dependencies()

	Warn if dependencies aren't met.

	
salt.cloud.clouds.cloudstack.get_image(conn, vm_)

	Return the image object to use

	
salt.cloud.clouds.cloudstack.get_ip(data)

	Return the IP address of the VM
If the VM has public IP as defined by libcloud module then use it
Otherwise try to extract the private IP and use that one.

	
salt.cloud.clouds.cloudstack.get_key()

	Returns the ssh private key for VM access

	
salt.cloud.clouds.cloudstack.get_keypair(vm_)

	Return the keypair to use

	
salt.cloud.clouds.cloudstack.get_location(conn, vm_)

	Return the node location to use

	
salt.cloud.clouds.cloudstack.get_networkid(vm_)

	Return the networkid to use, only valid for Advanced Zone

	
salt.cloud.clouds.cloudstack.get_node(conn, name)

	Return a libcloud node for the named VM

	
salt.cloud.clouds.cloudstack.get_password(vm_)

	Return the password to use

	
salt.cloud.clouds.cloudstack.get_project(conn, vm_)

	Return the project to use.

	
salt.cloud.clouds.cloudstack.get_security_groups(conn, vm_)

	Return a list of security groups to use, defaulting to ['default']

	
salt.cloud.clouds.cloudstack.get_size(conn, vm_)

	Return the VM's size object

	
salt.cloud.clouds.cloudstack.list_nodes(conn=None, call=None)

	Return a list of the VMs that are on the provider

	
salt.cloud.clouds.cloudstack.list_nodes_full(conn=None, call=None)

	Return a list of the VMs that are on the provider, with all fields

	
salt.cloud.clouds.cloudstack.list_nodes_select(conn=None, call=None)

	Return a list of the VMs that are on the provider, with select fields

	
salt.cloud.clouds.cloudstack.script(vm_)

	Return the script deployment object

	
salt.cloud.clouds.cloudstack.show_instance(name, call=None)

	Show the details from the provider concerning an instance

salt.cloud.clouds.digitalocean

DigitalOcean Cloud Module

The DigitalOcean cloud module is used to control access to the DigitalOcean VPS system.

Use of this module requires a requires a personal_access_token, an ssh_key_file,
and at least one SSH key name in ssh_key_names. More ssh_key_names can be added
by separating each key with a comma. The personal_access_token can be found in the
DigitalOcean web interface in the "Apps & API" section. The SSH key name can be found
under the "SSH Keys" section.

Note: This example is for /etc/salt/cloud.providers or any file in the
/etc/salt/cloud.providers.d/ directory.

my-digital-ocean-config:
 personal_access_token: xxx
 ssh_key_file: /path/to/ssh/key/file
 ssh_key_names: my-key-name,my-key-name-2
 driver: digitalocean

	depends:

	requests

	
salt.cloud.clouds.digitalocean.assign_floating_ip(kwargs=None, call=None)

	Assign a floating IP

New in version 2016.3.0.

CLI Examples:

salt-cloud -f assign_floating_ip my-digitalocean-config droplet_id=1234567 floating_ip='45.55.96.47'

	
salt.cloud.clouds.digitalocean.avail_images(call=None)

	Return a list of the images that are on the provider

	
salt.cloud.clouds.digitalocean.avail_locations(call=None)

	Return a dict of all available VM locations on the cloud provider with
relevant data

	
salt.cloud.clouds.digitalocean.avail_sizes(call=None)

	Return a list of the image sizes that are on the provider

	
salt.cloud.clouds.digitalocean.create(vm_)

	Create a single VM from a data dict

	
salt.cloud.clouds.digitalocean.create_floating_ip(kwargs=None, call=None)

	Create a new floating IP

New in version 2016.3.0.

CLI Examples:

salt-cloud -f create_floating_ip my-digitalocean-config region='NYC2'

salt-cloud -f create_floating_ip my-digitalocean-config droplet_id='1234567'

	
salt.cloud.clouds.digitalocean.create_key(kwargs=None, call=None)

	Upload a public key

	
salt.cloud.clouds.digitalocean.create_node(args)

	Create a node

	
salt.cloud.clouds.digitalocean.delete_floating_ip(kwargs=None, call=None)

	Delete a floating IP

New in version 2016.3.0.

CLI Examples:

salt-cloud -f delete_floating_ip my-digitalocean-config floating_ip='45.55.96.47'

	
salt.cloud.clouds.digitalocean.destroy(name, call=None)

	Destroy a node. Will check termination protection and warn if enabled.

CLI Example:

salt-cloud --destroy mymachine

	
salt.cloud.clouds.digitalocean.destroy_dns_records(fqdn)

	Deletes DNS records for the given hostname if the domain is managed with DO.

	
salt.cloud.clouds.digitalocean.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.digitalocean.get_dependencies()

	Warn if dependencies aren't met.

	
salt.cloud.clouds.digitalocean.get_image(vm_)

	Return the image object to use

	
salt.cloud.clouds.digitalocean.get_keyid(keyname)

	Return the ID of the keyname

	
salt.cloud.clouds.digitalocean.get_location(vm_)

	Return the VM's location

	
salt.cloud.clouds.digitalocean.get_size(vm_)

	Return the VM's size. Used by create_node().

	
salt.cloud.clouds.digitalocean.import_keypair(kwargs=None, call=None)

	Upload public key to cloud provider.
Similar to EC2 import_keypair.

New in version 2016.11.0.

	kwargs
	file(mandatory): public key file-name
keyname(mandatory): public key name in the provider

	
salt.cloud.clouds.digitalocean.list_floating_ips(call=None)

	Return a list of the floating ips that are on the provider

New in version 2016.3.0.

CLI Examples:

salt-cloud -f list_floating_ips my-digitalocean-config

	
salt.cloud.clouds.digitalocean.list_keypairs(call=None)

	Return a dict of all available VM locations on the cloud provider with
relevant data

	
salt.cloud.clouds.digitalocean.list_nodes(call=None)

	Return a list of the VMs that are on the provider

	
salt.cloud.clouds.digitalocean.list_nodes_full(call=None, for_output=True)

	Return a list of the VMs that are on the provider

	
salt.cloud.clouds.digitalocean.list_nodes_select(call=None)

	Return a list of the VMs that are on the provider, with select fields

	
salt.cloud.clouds.digitalocean.post_dns_record(**kwargs)

	Creates a DNS record for the given name if the domain is managed with DO.

	
salt.cloud.clouds.digitalocean.query(method='droplets', droplet_id=None, command=None, args=None, http_method='get')

	Make a web call to DigitalOcean

	
salt.cloud.clouds.digitalocean.reboot(name, call=None)

	Reboot a droplet in DigitalOcean.

New in version 2015.8.8.

	name
	The name of the droplet to restart.

CLI Example:

salt-cloud -a reboot droplet_name

	
salt.cloud.clouds.digitalocean.remove_key(kwargs=None, call=None)

	Delete public key

	
salt.cloud.clouds.digitalocean.script(vm_)

	Return the script deployment object

	
salt.cloud.clouds.digitalocean.show_floating_ip(kwargs=None, call=None)

	Show the details of a floating IP

New in version 2016.3.0.

CLI Examples:

salt-cloud -f show_floating_ip my-digitalocean-config floating_ip='45.55.96.47'

	
salt.cloud.clouds.digitalocean.show_instance(name, call=None)

	Show the details from DigitalOcean concerning a droplet

	
salt.cloud.clouds.digitalocean.show_keypair(kwargs=None, call=None)

	Show the details of an SSH keypair

	
salt.cloud.clouds.digitalocean.show_pricing(kwargs=None, call=None)

	Show pricing for a particular profile. This is only an estimate, based on
unofficial pricing sources.

New in version 2015.8.0.

CLI Examples:

salt-cloud -f show_pricing my-digitalocean-config profile=my-profile

	
salt.cloud.clouds.digitalocean.start(name, call=None)

	Start a droplet in DigitalOcean.

New in version 2015.8.8.

	name
	The name of the droplet to start.

CLI Example:

salt-cloud -a start droplet_name

	
salt.cloud.clouds.digitalocean.stop(name, call=None)

	Stop a droplet in DigitalOcean.

New in version 2015.8.8.

	name
	The name of the droplet to stop.

CLI Example:

salt-cloud -a stop droplet_name

	
salt.cloud.clouds.digitalocean.unassign_floating_ip(kwargs=None, call=None)

	Unassign a floating IP

New in version 2016.3.0.

CLI Examples:

salt-cloud -f unassign_floating_ip my-digitalocean-config floating_ip='45.55.96.47'

salt.cloud.clouds.dimensiondata

Dimension Data Cloud Module

This is a cloud module for the Dimension Data Cloud,
using the existing Libcloud driver for Dimension Data.

Note: This example is for /etc/salt/cloud.providers
or any file in the
/etc/salt/cloud.providers.d/ directory.

my-dimensiondata-config:
 user_id: my_username
 key: myPassword!
 region: dd-na
 driver: dimensiondata

	maintainer:

	Anthony Shaw <anthonyshaw@apache.org>

	depends:

	libcloud >= 1.2.1

	
salt.cloud.clouds.dimensiondata.avail_images(conn=None, call=None)

	Return a dict of all available VM images on the cloud provider with
relevant data

	
salt.cloud.clouds.dimensiondata.avail_locations(conn=None, call=None)

	Return a dict of all available VM locations on the cloud provider with
relevant data

	
salt.cloud.clouds.dimensiondata.avail_sizes(conn=None, call=None)

	Return a dict of all available VM images on the cloud provider with
relevant data

	
salt.cloud.clouds.dimensiondata.create(vm_)

	Create a single VM from a data dict

	
salt.cloud.clouds.dimensiondata.create_lb(kwargs=None, call=None)

	Create a load-balancer configuration.

CLI Example:

salt-cloud -f create_lb dimensiondata \
 name=dev-lb port=80 protocol=http \
 members=w1,w2,w3 algorithm=ROUND_ROBIN

	
salt.cloud.clouds.dimensiondata.destroy(name, conn=None, call=None)

	Delete a single VM

	
salt.cloud.clouds.dimensiondata.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.dimensiondata.get_conn()

	Return a conn object for the passed VM data

	
salt.cloud.clouds.dimensiondata.get_dependencies()

	Warn if dependencies aren't met.

	
salt.cloud.clouds.dimensiondata.get_image(conn, vm_)

	Return the image object to use

	
salt.cloud.clouds.dimensiondata.get_lb_conn(dd_driver=None)

	Return a load-balancer conn object

	
salt.cloud.clouds.dimensiondata.get_node(conn, name)

	Return a libcloud node for the named VM

	
salt.cloud.clouds.dimensiondata.get_size(conn, vm_)

	Return the VM's size object

	
salt.cloud.clouds.dimensiondata.list_nodes(conn=None, call=None)

	Return a list of the VMs that are on the provider

	
salt.cloud.clouds.dimensiondata.list_nodes_full(conn=None, call=None)

	Return a list of the VMs that are on the provider, with all fields

	
salt.cloud.clouds.dimensiondata.list_nodes_select(conn=None, call=None)

	Return a list of the VMs that are on the provider, with select fields

	
salt.cloud.clouds.dimensiondata.preferred_ip(vm_, ips)

	Return the preferred Internet protocol. Either 'ipv4' (default) or 'ipv6'.

	
salt.cloud.clouds.dimensiondata.reboot(name, conn=None)

	Reboot a single VM

	
salt.cloud.clouds.dimensiondata.script(vm_)

	Return the script deployment object

	
salt.cloud.clouds.dimensiondata.show_instance(name, call=None)

	Show the details from the provider concerning an instance

	
salt.cloud.clouds.dimensiondata.ssh_interface(vm_)

	Return the ssh_interface type to connect to. Either 'public_ips' (default)
or 'private_ips'.

	
salt.cloud.clouds.dimensiondata.start(name, call=None)

	Stop a VM in DimensionData.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the VM to stop.

CLI Example:

salt-cloud -a stop vm_name

	
salt.cloud.clouds.dimensiondata.stop(name, call=None)

	Stop a VM in DimensionData.

	name:
	The name of the VM to stop.

CLI Example:

salt-cloud -a stop vm_name

salt.cloud.clouds.ec2

The EC2 Cloud Module

The EC2 cloud module is used to interact with the Amazon Elastic Compute Cloud.

	To use the EC2 cloud module, set up the cloud configuration at
	/etc/salt/cloud.providers or /etc/salt/cloud.providers.d/ec2.conf:

my-ec2-config:
 # EC2 API credentials: Access Key ID and Secret Access Key.
 # Alternatively, to use IAM Instance Role credentials available via
 # EC2 metadata set both id and key to 'use-instance-role-credentials'
 id: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

 # If 'role_arn' is specified the above credentials are used to
 # to assume to the role. By default, role_arn is set to None.
 role_arn: arn:aws:iam::012345678910:role/SomeRoleName

 # The ssh keyname to use
 keyname: default
 # The amazon security group
 securitygroup: ssh_open
 # The location of the private key which corresponds to the keyname
 private_key: /root/default.pem

 # Be default, service_url is set to amazonaws.com. If you are using this
 # driver for something other than Amazon EC2, change it here:
 service_url: amazonaws.com

 # The endpoint that is ultimately used is usually formed using the region
 # and the service_url. If you would like to override that entirely, you
 # can explicitly define the endpoint:
 endpoint: myendpoint.example.com:1138/services/Cloud

 # SSH Gateways can be used with this provider. Gateways can be used
 # when a salt-master is not on the same private network as the instance
 # that is being deployed.

 # Defaults to None
 # Required
 ssh_gateway: gateway.example.com

 # Defaults to port 22
 # Optional
 ssh_gateway_port: 22

 # Defaults to root
 # Optional
 ssh_gateway_username: root

 # Default to nc -q0 %h %p
 # Optional
 ssh_gateway_command: "-W %h:%p"

 # One authentication method is required. If both
 # are specified, Private key wins.

 # Private key defaults to None
 ssh_gateway_private_key: /path/to/key.pem

 # Password defaults to None
 ssh_gateway_password: ExamplePasswordHere

 driver: ec2

 # Pass userdata to the instance to be created
 userdata_file: /etc/salt/my-userdata-file

 # Instance termination protection setting
 # Default is disabled
 termination_protection: False

	depends:

	requests

	
salt.cloud.clouds.ec2.attach_volume(name=None, kwargs=None, instance_id=None, call=None)

	Attach a volume to an instance

	
salt.cloud.clouds.ec2.avail_images(kwargs=None, call=None)

	Return a dict of all available VM images on the cloud provider.

	
salt.cloud.clouds.ec2.avail_locations(call=None)

	List all available locations

	
salt.cloud.clouds.ec2.avail_sizes(call=None)

	Return a dict of all available VM sizes on the cloud provider with
relevant data. Latest version can be found at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

	
salt.cloud.clouds.ec2.block_device_mappings(vm_)

	Return the block device mapping:

[{'DeviceName': '/dev/sdb', 'VirtualName': 'ephemeral0'},
 {'DeviceName': '/dev/sdc', 'VirtualName': 'ephemeral1'}]

	
salt.cloud.clouds.ec2.copy_snapshot(kwargs=None, call=None)

	Copy a snapshot

	
salt.cloud.clouds.ec2.create(vm_=None, call=None)

	Create a single VM from a data dict

	
salt.cloud.clouds.ec2.create_attach_volumes(name, kwargs, call=None, wait_to_finish=True)

	Create and attach volumes to created node

	
salt.cloud.clouds.ec2.create_keypair(kwargs=None, call=None)

	Create an SSH keypair

	
salt.cloud.clouds.ec2.create_snapshot(kwargs=None, call=None, wait_to_finish=False)

	Create a snapshot.

	volume_id
	The ID of the Volume from which to create a snapshot.

	description
	The optional description of the snapshot.

CLI Exampe:

salt-cloud -f create_snapshot my-ec2-config volume_id=vol-351d8826
salt-cloud -f create_snapshot my-ec2-config volume_id=vol-351d8826 \
 description="My Snapshot Description"

	
salt.cloud.clouds.ec2.create_volume(kwargs=None, call=None, wait_to_finish=False)

	Create a volume.

	zone
	The availability zone used to create the volume. Required. String.

	size
	The size of the volume, in GiBs. Defaults to 10. Integer.

	snapshot
	The snapshot-id from which to create the volume. Integer.

	type
	The volume type. This can be gp2 for General Purpose SSD, io1 or
io2 for Provisioned IOPS SSD, st1 for Throughput Optimized HDD,
sc1 for Cold HDD, or standard for Magnetic volumes. String.

	iops
	The number of I/O operations per second (IOPS) to provision for the volume,
with a maximum ratio of 50 IOPS/GiB. Only valid for Provisioned IOPS SSD
volumes. Integer.

This option will only be set if type is also specified as io1 or
io2

	encrypted
	Specifies whether the volume will be encrypted. Boolean.

If snapshot is also given in the list of kwargs, then this value is ignored
since volumes that are created from encrypted snapshots are also automatically
encrypted.

	tags
	The tags to apply to the volume during creation. Dictionary.

	call
	The create_volume function must be called with -f or --function.
String.

	wait_to_finish
	Whether or not to wait for the volume to be available. Boolean. Defaults to
False.

CLI Examples:

salt-cloud -f create_volume my-ec2-config zone=us-east-1b
salt-cloud -f create_volume my-ec2-config zone=us-east-1b tags='{"tag1": "val1", "tag2", "val2"}'

	
salt.cloud.clouds.ec2.del_tags(name=None, kwargs=None, call=None, instance_id=None, resource_id=None)

	Delete tags for a resource. Normally a VM name or instance_id is passed in,
but a resource_id may be passed instead. If both are passed in, the
instance_id will be used.

CLI Examples:

salt-cloud -a del_tags mymachine tags=mytag,
salt-cloud -a del_tags mymachine tags=tag1,tag2,tag3
salt-cloud -a del_tags resource_id=vol-3267ab32 tags=tag1,tag2,tag3

	
salt.cloud.clouds.ec2.delete_keypair(kwargs=None, call=None)

	Delete an SSH keypair

	
salt.cloud.clouds.ec2.delete_snapshot(kwargs=None, call=None)

	Delete a snapshot

	
salt.cloud.clouds.ec2.delete_volume(name=None, kwargs=None, instance_id=None, call=None)

	Delete a volume

	
salt.cloud.clouds.ec2.delvol_on_destroy(name, kwargs=None, call=None)

	Delete all/specified EBS volumes upon instance termination

CLI Example:

salt-cloud -a delvol_on_destroy mymachine

	
salt.cloud.clouds.ec2.describe_snapshots(kwargs=None, call=None)

	Describe a snapshot (or snapshots)

	snapshot_id
	One or more snapshot IDs. Multiple IDs must be separated by ",".

	owner
	Return the snapshots owned by the specified owner. Valid values
include: self, amazon, <AWS Account ID>. Multiple values must be
separated by ",".

	restorable_by
	One or more AWS accounts IDs that can create volumes from the snapshot.
Multiple aws account IDs must be separated by ",".

TODO: Add all of the filters.

	
salt.cloud.clouds.ec2.describe_volumes(kwargs=None, call=None)

	Describe a volume (or volumes)

	volume_id
	One or more volume IDs. Multiple IDs must be separated by ",".

TODO: Add all of the filters.

	
salt.cloud.clouds.ec2.destroy(name, call=None)

	Destroy a node. Will check termination protection and warn if enabled.

CLI Example:

salt-cloud --destroy mymachine

	
salt.cloud.clouds.ec2.detach_volume(name=None, kwargs=None, instance_id=None, call=None)

	Detach a volume from an instance

	
salt.cloud.clouds.ec2.disable_detailed_monitoring(name, call=None)

	Enable/disable detailed monitoring on a node

	
salt.cloud.clouds.ec2.disable_term_protect(name, call=None)

	Disable termination protection on a node

CLI Example:

salt-cloud -a disable_term_protect mymachine

	
salt.cloud.clouds.ec2.enable_detailed_monitoring(name, call=None)

	Enable/disable detailed monitoring on a node

	
salt.cloud.clouds.ec2.enable_term_protect(name, call=None)

	Enable termination protection on a node

CLI Example:

salt-cloud -a enable_term_protect mymachine

	
salt.cloud.clouds.ec2.get_availability_zone(vm_)

	Return the availability zone to use

	
salt.cloud.clouds.ec2.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.ec2.get_console_output(name=None, location=None, instance_id=None, call=None, kwargs=None)

	Show the console output from the instance.

By default, returns decoded data, not the Base64-encoded data that is
actually returned from the EC2 API.

	
salt.cloud.clouds.ec2.get_dependencies()

	Warn if dependencies aren't met.

	
salt.cloud.clouds.ec2.get_imageid(vm_)

	Returns the ImageId to use

	
salt.cloud.clouds.ec2.get_location(vm_=None)

	
	Return the EC2 region to use, in this order:
	
	CLI parameter

	VM parameter

	Cloud profile setting

	
salt.cloud.clouds.ec2.get_password_data(name=None, kwargs=None, instance_id=None, call=None)

	Return password data for a Windows instance.

By default only the encrypted password data will be returned. However, if a
key_file is passed in, then a decrypted password will also be returned.

Note that the key_file references the private key that was used to generate
the keypair associated with this instance. This private key will _not_ be
transmitted to Amazon; it is only used internally inside of Salt Cloud to
decrypt data _after_ it has been received from Amazon.

CLI Examples:

salt-cloud -a get_password_data mymachine
salt-cloud -a get_password_data mymachine key_file=/root/ec2key.pem

Note: PKCS1_v1_5 was added in PyCrypto 2.5

	
salt.cloud.clouds.ec2.get_placementgroup(vm_)

	Returns the PlacementGroup to use

	
salt.cloud.clouds.ec2.get_provider(vm_=None)

	Extract the provider name from vm

	
salt.cloud.clouds.ec2.get_spot_config(vm_)

	Returns the spot instance configuration for the provided vm

	
salt.cloud.clouds.ec2.get_ssh_gateway_config(vm_)

	Return the ssh_gateway configuration.

	
salt.cloud.clouds.ec2.get_subnetid(vm_)

	Returns the SubnetId to use

	
salt.cloud.clouds.ec2.get_tags(name=None, instance_id=None, call=None, location=None, kwargs=None, resource_id=None)

	Retrieve tags for a resource. Normally a VM name or instance_id is passed
in, but a resource_id may be passed instead. If both are passed in, the
instance_id will be used.

CLI Examples:

salt-cloud -a get_tags mymachine
salt-cloud -a get_tags resource_id=vol-3267ab32

	
salt.cloud.clouds.ec2.get_tenancy(vm_)

	Returns the Tenancy to use.

Can be "dedicated" or "default". Cannot be present for spot instances.

	
salt.cloud.clouds.ec2.iam_profile(vm_)

	Return the IAM profile.

The IAM instance profile to associate with the instances.
This is either the Amazon Resource Name (ARN) of the instance profile
or the name of the role.

Type: String

Default: None

Required: No

Example: arn:aws:iam::111111111111:instance-profile/s3access

Example: s3access

	
salt.cloud.clouds.ec2.import_keypair(kwargs=None, call=None)

	Import an SSH public key.

New in version 2015.8.3.

	
salt.cloud.clouds.ec2.keepvol_on_destroy(name, kwargs=None, call=None)

	Do not delete all/specified EBS volumes upon instance termination

CLI Example:

salt-cloud -a keepvol_on_destroy mymachine

	
salt.cloud.clouds.ec2.keyname(vm_)

	Return the keyname

	
salt.cloud.clouds.ec2.list_availability_zones(vm_=None)

	List all availability zones in the current region

	
salt.cloud.clouds.ec2.list_nodes(call=None)

	Return a list of the VMs that are on the provider

	
salt.cloud.clouds.ec2.list_nodes_full(location=None, call=None)

	Return a list of the VMs that are on the provider

	
salt.cloud.clouds.ec2.list_nodes_min(location=None, call=None)

	Return a list of the VMs that are on the provider. Only a list of VM names,
and their state, is returned. This is the minimum amount of information
needed to check for existing VMs.

	
salt.cloud.clouds.ec2.list_nodes_select(call=None)

	Return a list of the VMs that are on the provider, with select fields

	
salt.cloud.clouds.ec2.optimize_providers(providers)

	Return an optimized list of providers.

We want to reduce the duplication of querying
the same region.

If a provider is using the same credentials for the same region
the same data will be returned for each provider, thus causing
un-wanted duplicate data and API calls to EC2.

	
salt.cloud.clouds.ec2.query(params=None, setname=None, requesturl=None, location=None, return_url=False, return_root=False)

	

	
salt.cloud.clouds.ec2.query_instance(vm_=None, call=None)

	Query an instance upon creation from the EC2 API

	
salt.cloud.clouds.ec2.queue_instances(instances)

	Queue a set of instances to be provisioned later. Expects a list.

Currently this only queries node data, and then places it in the cloud
cache (if configured). If the salt-cloud-reactor is being used, these
instances will be automatically provisioned using that.

For more information about the salt-cloud-reactor, see:

https://github.com/saltstack-formulas/salt-cloud-reactor

	
salt.cloud.clouds.ec2.reboot(name, call=None)

	Reboot a node.

CLI Example:

salt-cloud -a reboot mymachine

	
salt.cloud.clouds.ec2.register_image(kwargs=None, call=None)

	Create an ami from a snapshot

CLI Example:

salt-cloud -f register_image my-ec2-config ami_name=my_ami description="my description"
 root_device_name=/dev/xvda snapshot_id=snap-xxxxxxxx

	
salt.cloud.clouds.ec2.rename(name, kwargs, call=None)

	Properly rename a node. Pass in the new name as "new name".

CLI Example:

salt-cloud -a rename mymachine newname=yourmachine

	
salt.cloud.clouds.ec2.request_instance(vm_=None, call=None)

	Put together all of the information necessary to request an instance on EC2,
and then fire off the request the instance.

Returns data about the instance

	
salt.cloud.clouds.ec2.script(vm_)

	Return the script deployment object

	
salt.cloud.clouds.ec2.securitygroup(vm_)

	Return the security group

	
salt.cloud.clouds.ec2.securitygroupid(vm_)

	Returns the SecurityGroupId

	
salt.cloud.clouds.ec2.set_tags(name=None, tags=None, call=None, location=None, instance_id=None, resource_id=None, kwargs=None)

	Set tags for a resource. Normally a VM name or instance_id is passed in,
but a resource_id may be passed instead. If both are passed in, the
instance_id will be used.

CLI Examples:

salt-cloud -a set_tags mymachine tag1=somestuff tag2='Other stuff'
salt-cloud -a set_tags resource_id=vol-3267ab32 tag=somestuff

	
salt.cloud.clouds.ec2.show_delvol_on_destroy(name, kwargs=None, call=None)

	Do not delete all/specified EBS volumes upon instance termination

CLI Example:

salt-cloud -a show_delvol_on_destroy mymachine

	
salt.cloud.clouds.ec2.show_detailed_monitoring(name=None, instance_id=None, call=None, quiet=False)

	Show the details from EC2 regarding cloudwatch detailed monitoring.

	
salt.cloud.clouds.ec2.show_image(kwargs, call=None)

	Show the details from EC2 concerning an AMI

	
salt.cloud.clouds.ec2.show_instance(name=None, instance_id=None, call=None, kwargs=None)

	Show the details from EC2 concerning an AMI.

Can be called as an action (which requires a name):

salt-cloud -a show_instance myinstance

...or as a function (which requires either a name or instance_id):

salt-cloud -f show_instance my-ec2 name=myinstance
salt-cloud -f show_instance my-ec2 instance_id=i-d34db33f

	
salt.cloud.clouds.ec2.show_keypair(kwargs=None, call=None)

	Show the details of an SSH keypair

	
salt.cloud.clouds.ec2.show_pricing(kwargs=None, call=None)

	Show pricing for a particular profile. This is only an estimate, based on
unofficial pricing sources.

CLI Examples:

salt-cloud -f show_pricing my-ec2-config profile=my-profile

If pricing sources have not been cached, they will be downloaded. Once they
have been cached, they will not be updated automatically. To manually update
all prices, use the following command:

salt-cloud -f update_pricing <provider>

New in version 2015.8.0.

	
salt.cloud.clouds.ec2.show_term_protect(name=None, instance_id=None, call=None, quiet=False)

	Show the details from EC2 concerning an instance's termination protection state

	
salt.cloud.clouds.ec2.show_volume(kwargs=None, call=None)

	Wrapper around describe_volumes.
Here just to keep functionality.
Might be depreciated later.

	
salt.cloud.clouds.ec2.sign(key, msg)

	

	
salt.cloud.clouds.ec2.ssh_interface(vm_)

	Return the ssh_interface type to connect to. Either 'public_ips' (default)
or 'private_ips'.

	
salt.cloud.clouds.ec2.ssm_create_association(name=None, kwargs=None, instance_id=None, call=None)

	Associates the specified SSM document with the specified instance

http://docs.aws.amazon.com/ssm/latest/APIReference/API_CreateAssociation.html

CLI Examples:

salt-cloud -a ssm_create_association ec2-instance-name ssm_document=ssm-document-name

	
salt.cloud.clouds.ec2.ssm_describe_association(name=None, kwargs=None, instance_id=None, call=None)

	Describes the associations for the specified SSM document or instance.

http://docs.aws.amazon.com/ssm/latest/APIReference/API_DescribeAssociation.html

CLI Examples:

salt-cloud -a ssm_describe_association ec2-instance-name ssm_document=ssm-document-name

	
salt.cloud.clouds.ec2.start(name, call=None)

	Start a node

	
salt.cloud.clouds.ec2.stop(name, call=None)

	Stop a node

	
salt.cloud.clouds.ec2.update_pricing(kwargs=None, call=None)

	Download most recent pricing information from AWS and convert to a local
JSON file.

CLI Examples:

salt-cloud -f update_pricing my-ec2-config
salt-cloud -f update_pricing my-ec2-config type=linux

New in version 2015.8.0.

	
salt.cloud.clouds.ec2.volume_create(**kwargs)

	Wrapper around create_volume.
Here just to ensure the compatibility with the cloud module.

	
salt.cloud.clouds.ec2.volume_list(**kwargs)

	Wrapper around describe_volumes.
Here just to ensure the compatibility with the cloud module.

	
salt.cloud.clouds.ec2.wait_for_instance(vm_=None, data=None, ip_address=None, display_ssh_output=True, call=None)

	Wait for an instance upon creation from the EC2 API, to become available

salt.cloud.clouds.gce

Copyright 2013 Google Inc. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Google Compute Engine Module

The Google Compute Engine module. This module interfaces with Google Compute
Engine (GCE). To authenticate to GCE, you will need to create a Service Account.
To set up Service Account Authentication, follow the Google Compute Engine Setup instructions.

Example Provider Configuration

my-gce-config:
 # The Google Cloud Platform Project ID
 project: "my-project-id"
 # The Service Account client ID
 service_account_email_address: 1234567890@developer.gserviceaccount.com
 # The location of the private key (PEM format)
 service_account_private_key: /home/erjohnso/PRIVKEY.pem
 driver: gce
 # Specify whether to use public or private IP for deploy script.
 # Valid options are:
 # private_ips - The salt-master is also hosted with GCE
 # public_ips - The salt-master is hosted outside of GCE
 ssh_interface: public_ips

	maintainer:

	Eric Johnson <erjohnso@google.com>

	maintainer:

	Russell Tolle <russ.tolle@gmail.com>

	depends:

	libcloud >= 1.0.0

	
salt.cloud.clouds.gce.attach_disk(name=None, kwargs=None, call=None)

	Attach an existing disk to an existing instance.

CLI Example:

salt-cloud -a attach_disk myinstance disk_name=mydisk mode=READ_WRITE

	
salt.cloud.clouds.gce.attach_lb(kwargs=None, call=None)

	Add an existing node/member to an existing load-balancer configuration.

CLI Example:

salt-cloud -f attach_lb gce name=lb member=myinstance

	
salt.cloud.clouds.gce.avail_images(conn=None)

	Return a dict of all available VM images on the cloud provider with
relevant data.

Note that for GCE, there are custom images within the project, but the
generic images are in other projects. This returns a dict of images in
the project plus images in well-known public projects that provide supported
images, as listed on this page:
https://cloud.google.com/compute/docs/operating-systems/

If image names overlap, the image in the current project is used.

	
salt.cloud.clouds.gce.avail_locations(conn=None, call=None)

	Return a dict of all available VM locations on the cloud provider with
relevant data

	
salt.cloud.clouds.gce.avail_sizes(conn=None)

	Return a dict of available instances sizes (a.k.a machine types) and
convert them to something more serializable.

	
salt.cloud.clouds.gce.create(vm_=None, call=None)

	Create a single GCE instance from a data dict.

	
salt.cloud.clouds.gce.create_address(kwargs=None, call=None)

	Create a static address in a region.

CLI Example:

salt-cloud -f create_address gce name=my-ip region=us-central1 address=IP

	
salt.cloud.clouds.gce.create_attach_volumes(name, kwargs, call=None)

	
New in version 2017.7.0.

Create and attach multiple volumes to a node. The 'volumes' and 'node'
arguments are required, where 'node' is a libcloud node, and 'volumes'
is a list of maps, where each map contains:

	size
	The size of the new disk in GB. Required.

	type
	The disk type, either pd-standard or pd-ssd. Optional, defaults to pd-standard.

	image
	An image to use for this new disk. Optional.

	snapshot
	A snapshot to use for this new disk. Optional.

	auto_delete
	An option(bool) to keep or remove the disk upon instance deletion.
Optional, defaults to False.

Volumes are attached in the order in which they are given, thus on a new
node the first volume will be /dev/sdb, the second /dev/sdc, and so on.

	
salt.cloud.clouds.gce.create_disk(kwargs=None, call=None)

	Create a new persistent disk. Must specify disk_name and location,
and optionally can specify 'disk_type' as pd-standard or pd-ssd, which
defaults to pd-standard. Can also specify an image or snapshot but
if neither of those are specified, a size (in GB) is required.

CLI Example:

salt-cloud -f create_disk gce disk_name=pd size=300 location=us-central1-b

	
salt.cloud.clouds.gce.create_fwrule(kwargs=None, call=None)

	Create a GCE firewall rule. The 'default' network is used if not specified.

CLI Example:

salt-cloud -f create_fwrule gce name=allow-http allow=tcp:80

	
salt.cloud.clouds.gce.create_hc(kwargs=None, call=None)

	Create an HTTP health check configuration.

CLI Example:

salt-cloud -f create_hc gce name=hc path=/healthy port=80

	
salt.cloud.clouds.gce.create_lb(kwargs=None, call=None)

	Create a load-balancer configuration.

CLI Example:

salt-cloud -f create_lb gce name=lb region=us-central1 ports=80

	
salt.cloud.clouds.gce.create_network(kwargs=None, call=None)

	
Changed in version 2017.7.0.

Create a GCE network. Must specify name and cidr.

CLI Example:

salt-cloud -f create_network gce name=mynet cidr=10.10.10.0/24 mode=legacy description=optional
salt-cloud -f create_network gce name=mynet description=optional

	
salt.cloud.clouds.gce.create_snapshot(kwargs=None, call=None)

	Create a new disk snapshot. Must specify name and disk_name.

CLI Example:

salt-cloud -f create_snapshot gce name=snap1 disk_name=pd

	
salt.cloud.clouds.gce.create_subnetwork(kwargs=None, call=None)

	
New in version 2017.7.0.

Create a GCE Subnetwork. Must specify name, cidr, network, and region.

CLI Example:

salt-cloud -f create_subnetwork gce name=mysubnet network=mynet1 region=us-west1 cidr=10.0.0.0/24 description=optional

	
salt.cloud.clouds.gce.delete_address(kwargs=None, call=None)

	Permanently delete a static address.

CLI Example:

salt-cloud -f delete_address gce name=my-ip

	
salt.cloud.clouds.gce.delete_disk(kwargs=None, call=None)

	Permanently delete a persistent disk.

CLI Example:

salt-cloud -f delete_disk gce disk_name=pd

	
salt.cloud.clouds.gce.delete_fwrule(kwargs=None, call=None)

	Permanently delete a firewall rule.

CLI Example:

salt-cloud -f delete_fwrule gce name=allow-http

	
salt.cloud.clouds.gce.delete_hc(kwargs=None, call=None)

	Permanently delete a health check.

CLI Example:

salt-cloud -f delete_hc gce name=hc

	
salt.cloud.clouds.gce.delete_lb(kwargs=None, call=None)

	Permanently delete a load-balancer.

CLI Example:

salt-cloud -f delete_lb gce name=lb

	
salt.cloud.clouds.gce.delete_network(kwargs=None, call=None)

	Permanently delete a network.

CLI Example:

salt-cloud -f delete_network gce name=mynet

	
salt.cloud.clouds.gce.delete_snapshot(kwargs=None, call=None)

	Permanently delete a disk snapshot.

CLI Example:

salt-cloud -f delete_snapshot gce name=disk-snap-1

	
salt.cloud.clouds.gce.delete_subnetwork(kwargs=None, call=None)

	
New in version 2017.7.0.

Delete a GCE Subnetwork. Must specify name and region.

CLI Example:

salt-cloud -f delete_subnetwork gce name=mysubnet network=mynet1 region=us-west1

	
salt.cloud.clouds.gce.destroy(vm_name, call=None)

	Call 'destroy' on the instance. Can be called with "-a destroy" or -d

CLI Example:

salt-cloud -a destroy myinstance1 myinstance2 ...
salt-cloud -d myinstance1 myinstance2 ...

	
salt.cloud.clouds.gce.detach_disk(name=None, kwargs=None, call=None)

	Detach a disk from an instance.

CLI Example:

salt-cloud -a detach_disk myinstance disk_name=mydisk

	
salt.cloud.clouds.gce.detach_lb(kwargs=None, call=None)

	Remove an existing node/member from an existing load-balancer configuration.

CLI Example:

salt-cloud -f detach_lb gce name=lb member=myinstance

	
salt.cloud.clouds.gce.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.gce.get_conn()

	Return a conn object for the passed VM data

	
salt.cloud.clouds.gce.get_dependencies()

	Warn if dependencies aren't met.

	
salt.cloud.clouds.gce.get_lb_conn(gce_driver=None)

	Return a load-balancer conn object

	
salt.cloud.clouds.gce.list_nodes(conn=None, call=None)

	Return a list of the VMs that are on the provider

	
salt.cloud.clouds.gce.list_nodes_full(conn=None, call=None)

	Return a list of the VMs that are on the provider, with all fields

	
salt.cloud.clouds.gce.list_nodes_select(conn=None, call=None)

	Return a list of the VMs that are on the provider, with select fields

	
salt.cloud.clouds.gce.reboot(vm_name, call=None)

	Call GCE 'reset' on the instance.

CLI Example:

salt-cloud -a reboot myinstance

	
salt.cloud.clouds.gce.request_instance(vm_)

	Request a single GCE instance from a data dict.

Changed in version 2017.7.0.

	
salt.cloud.clouds.gce.script(vm_)

	Return the script deployment object

	
salt.cloud.clouds.gce.show_address(kwargs=None, call=None)

	Show the details of an existing static address.

CLI Example:

salt-cloud -f show_address gce name=mysnapshot region=us-central1

	
salt.cloud.clouds.gce.show_disk(name=None, kwargs=None, call=None)

	Show the details of an existing disk.

CLI Example:

salt-cloud -a show_disk myinstance disk_name=mydisk
salt-cloud -f show_disk gce disk_name=mydisk

	
salt.cloud.clouds.gce.show_fwrule(kwargs=None, call=None)

	Show the details of an existing firewall rule.

CLI Example:

salt-cloud -f show_fwrule gce name=allow-http

	
salt.cloud.clouds.gce.show_hc(kwargs=None, call=None)

	Show the details of an existing health check.

CLI Example:

salt-cloud -f show_hc gce name=hc

	
salt.cloud.clouds.gce.show_instance(vm_name, call=None)

	Show the details of the existing instance.

	
salt.cloud.clouds.gce.show_lb(kwargs=None, call=None)

	Show the details of an existing load-balancer.

CLI Example:

salt-cloud -f show_lb gce name=lb

	
salt.cloud.clouds.gce.show_network(kwargs=None, call=None)

	Show the details of an existing network.

CLI Example:

salt-cloud -f show_network gce name=mynet

	
salt.cloud.clouds.gce.show_pricing(kwargs=None, call=None)

	Show pricing for a particular profile. This is only an estimate, based on
unofficial pricing sources.

New in version 2015.8.0.

CLI Examples:

salt-cloud -f show_pricing my-gce-config profile=my-profile

	
salt.cloud.clouds.gce.show_snapshot(kwargs=None, call=None)

	Show the details of an existing snapshot.

CLI Example:

salt-cloud -f show_snapshot gce name=mysnapshot

	
salt.cloud.clouds.gce.show_subnetwork(kwargs=None, call=None)

	
New in version 2017.7.0.

Show details of an existing GCE Subnetwork. Must specify name and region.

CLI Example:

salt-cloud -f show_subnetwork gce name=mysubnet region=us-west1

	
salt.cloud.clouds.gce.start(vm_name, call=None)

	Call GCE 'start on the instance.

New in version 2017.7.0.

CLI Example:

salt-cloud -a start myinstance

	
salt.cloud.clouds.gce.stop(vm_name, call=None)

	Call GCE 'stop' on the instance.

New in version 2017.7.0.

CLI Example:

salt-cloud -a stop myinstance

	
salt.cloud.clouds.gce.update_pricing(kwargs=None, call=None)

	Download most recent pricing information from GCE and save locally

CLI Examples:

salt-cloud -f update_pricing my-gce-config

New in version 2015.8.0.

salt.cloud.clouds.gogrid

GoGrid Cloud Module

The GoGrid cloud module. This module interfaces with the gogrid public cloud
service. To use Salt Cloud with GoGrid log into the GoGrid web interface and
create an api key. Do this by clicking on "My Account" and then going to the
API Keys tab.

Set up the cloud configuration at /etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/gogrid.conf:

my-gogrid-config:
 # The generated api key to use
 apikey: asdff7896asdh789
 # The apikey's shared secret
 sharedsecret: saltybacon
 driver: gogrid

Note

A Note about using Map files with GoGrid:

Due to limitations in the GoGrid API, instances cannot be provisioned in parallel
with the GoGrid driver. Map files will work with GoGrid, but the -P
argument should not be used on maps referencing GoGrid instances.

Note

A Note about using Map files with GoGrid:

Due to limitations in the GoGrid API, instances cannot be provisioned in parallel
with the GoGrid driver. Map files will work with GoGrid, but the -P
argument should not be used on maps referencing GoGrid instances.

	
salt.cloud.clouds.gogrid.avail_images()

	Available images

	
salt.cloud.clouds.gogrid.avail_locations()

	Available locations

	
salt.cloud.clouds.gogrid.avail_sizes()

	Available sizes

	
salt.cloud.clouds.gogrid.create(vm_)

	Create a single VM from a data dict

	
salt.cloud.clouds.gogrid.destroy(name, call=None)

	Destroy a machine by name

CLI Example:

salt-cloud -d vm_name

	
salt.cloud.clouds.gogrid.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.gogrid.list_common_lookups(kwargs=None, call=None)

	List common lookups for a particular type of item

New in version 2015.8.0.

	
salt.cloud.clouds.gogrid.list_nodes(full=False, call=None)

	List of nodes, keeping only a brief listing

CLI Example:

salt-cloud -Q

	
salt.cloud.clouds.gogrid.list_nodes_full(call=None)

	List nodes, with all available information

CLI Example:

salt-cloud -F

	
salt.cloud.clouds.gogrid.list_nodes_select(call=None)

	Return a list of the VMs that are on the provider, with select fields

CLI Example:

salt-cloud -S

	
salt.cloud.clouds.gogrid.list_passwords(kwargs=None, call=None)

	List all password on the account

New in version 2015.8.0.

	
salt.cloud.clouds.gogrid.list_public_ips(kwargs=None, call=None)

	List all available public IPs.

CLI Example:

salt-cloud -f list_public_ips <provider>

To list unavailable (assigned) IPs, use:

CLI Example:

salt-cloud -f list_public_ips <provider> state=assigned

New in version 2015.8.0.

	
salt.cloud.clouds.gogrid.reboot(name, call=None)

	Reboot a machine by name

CLI Example:

salt-cloud -a reboot vm_name

New in version 2015.8.0.

	
salt.cloud.clouds.gogrid.show_instance(name, call=None)

	Start a machine by name

CLI Example:

salt-cloud -a show_instance vm_name

New in version 2015.8.0.

	
salt.cloud.clouds.gogrid.start(name, call=None)

	Start a machine by name

CLI Example:

salt-cloud -a start vm_name

New in version 2015.8.0.

	
salt.cloud.clouds.gogrid.stop(name, call=None)

	Stop a machine by name

CLI Example:

salt-cloud -a stop vm_name

New in version 2015.8.0.

salt.cloud.clouds.hetzner

Hetzner Cloud Module

The Hetzner cloud module is used to control access to the hetzner cloud.
https://docs.hetzner.cloud/

	depends:

	hcloud >= 1.10

Use of this module requires the key parameter to be set.

my-hetzner-cloud-config:
 key: <your api key>
 driver: hetzner

	
salt.cloud.clouds.hetzner.avail_images(call=None)

	Return a dictionary of available images

	
salt.cloud.clouds.hetzner.avail_locations(call=None)

	Return a dictionary of available locations

	
salt.cloud.clouds.hetzner.avail_sizes(call=None)

	Return a dictionary of available VM sizes

	
salt.cloud.clouds.hetzner.create(vm_)

	Create a single VM from a data dict

	
salt.cloud.clouds.hetzner.destroy(name, call=None)

	Destroy a node.

CLI Example:

salt-cloud --destroy mymachine

	
salt.cloud.clouds.hetzner.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.hetzner.get_dependencies()

	Warn if dependencies aren't met.

	
salt.cloud.clouds.hetzner.list_nodes(call=None)

	Return a dictionary of existing VMs in the current project, containing basic details of each VM

	
salt.cloud.clouds.hetzner.list_nodes_full(call=None)

	Return a dictionary of existing VMs in the current project, containing full details per VM

	
salt.cloud.clouds.hetzner.list_ssh_keys(call=None)

	Return a dictionary of available SSH keys configured in the current project

	
salt.cloud.clouds.hetzner.reboot(name, call=None, wait=True)

	Reboot a node.

CLI Example:

salt-cloud -a reboot mymachine

	
salt.cloud.clouds.hetzner.resize(name, kwargs, call=None)

	Resize a node.

CLI Example:

salt-cloud -a resize mymachine size=...

	
salt.cloud.clouds.hetzner.show_instance(name, call=None)

	Return the details of a specific VM

	
salt.cloud.clouds.hetzner.start(name, call=None, wait=True)

	Start a node.

CLI Example:

salt-cloud -a start mymachine

	
salt.cloud.clouds.hetzner.stop(name, call=None, wait=True)

	Stop a node.

CLI Example:

salt-cloud -a stop mymachine

	
salt.cloud.clouds.hetzner.wait_until(name, state, timeout=300)

	Wait until a specific state has been reached on a node

salt.cloud.clouds.joyent

Joyent Cloud Module

The Joyent Cloud module is used to interact with the Joyent cloud system.

Set up the cloud configuration at /etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/joyent.conf:

my-joyent-config:
 driver: joyent
 # The Joyent login user
 user: fred
 # The Joyent user's password
 password: saltybacon
 # The location of the ssh private key that can log into the new VM
 private_key: /root/mykey.pem
 # The name of the private key
 keyname: mykey

When creating your profiles for the joyent cloud, add the location attribute to
the profile, this will automatically get picked up when performing tasks
associated with that vm. An example profile might look like:

joyent_512:
 provider: my-joyent-config
 size: g4-highcpu-512M
 image: centos-6
 location: us-east-1

This driver can also be used with the Joyent SmartDataCenter project. More
details can be found at:

Using SDC requires that an api_host_suffix is set. The default value for this is
.api.joyentcloud.com. All characters, including the leading ., should be
included:

api_host_suffix: .api.myhostname.com

	depends:

	PyCrypto

	
salt.cloud.clouds.joyent.avail_images(call=None)

	Get list of available images

CLI Example:

salt-cloud --list-images

Can use a custom URL for images. Default is:

image_url: images.joyent.com/images

	
salt.cloud.clouds.joyent.avail_locations(call=None)

	List all available locations

	
salt.cloud.clouds.joyent.avail_sizes(call=None)

	get list of available packages

CLI Example:

salt-cloud --list-sizes

	
salt.cloud.clouds.joyent.create(vm_)

	Create a single VM from a data dict

CLI Example:

salt-cloud -p profile_name vm_name

	
salt.cloud.clouds.joyent.create_node(**kwargs)

	convenience function to make the rest api call for node creation.

	
salt.cloud.clouds.joyent.delete_key(kwargs=None, call=None)

	List the keys available

CLI Example:

salt-cloud -f delete_key joyent keyname=mykey

	
salt.cloud.clouds.joyent.destroy(name, call=None)

	destroy a machine by name

	Parameters:

	
	name -- name given to the machine

	call -- call value in this case is 'action'

	Returns:

	array of booleans , true if successfully stopped and true if
successfully removed

CLI Example:

salt-cloud -d vm_name

	
salt.cloud.clouds.joyent.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.joyent.get_image(vm_)

	Return the image object to use

	
salt.cloud.clouds.joyent.get_location(vm_=None)

	
	Return the joyent data center to use, in this order:
	
	CLI parameter

	VM parameter

	Cloud profile setting

	
salt.cloud.clouds.joyent.get_location_path(location='us-east-1', api_host_suffix='.api.joyentcloud.com')

	create url from location variable
:param location: joyent data center location
:return: url

	
salt.cloud.clouds.joyent.get_node(name)

	gets the node from the full node list by name
:param name: name of the vm
:return: node object

	
salt.cloud.clouds.joyent.get_size(vm_)

	Return the VM's size object

	
salt.cloud.clouds.joyent.has_method(obj, method_name)

	Find if the provided object has a specific method

	
salt.cloud.clouds.joyent.import_key(kwargs=None, call=None)

	List the keys available

CLI Example:

salt-cloud -f import_key joyent keyname=mykey keyfile=/tmp/mykey.pub

	
salt.cloud.clouds.joyent.joyent_node_state(id_)

	Convert joyent returned state to state common to other data center return
values for consistency

	Parameters:

	id -- joyent state value

	Returns:

	state value

	
salt.cloud.clouds.joyent.key_list(items=None)

	convert list to dictionary using the key as the identifier
:param items: array to iterate over
:return: dictionary

	
salt.cloud.clouds.joyent.list_keys(kwargs=None, call=None)

	List the keys available

	
salt.cloud.clouds.joyent.list_nodes(full=False, call=None)

	list of nodes, keeping only a brief listing

CLI Example:

salt-cloud -Q

	
salt.cloud.clouds.joyent.list_nodes_full(call=None)

	list of nodes, maintaining all content provided from joyent listings

CLI Example:

salt-cloud -F

	
salt.cloud.clouds.joyent.list_nodes_select(call=None)

	Return a list of the VMs that are on the provider, with select fields

	
salt.cloud.clouds.joyent.query(action=None, command=None, args=None, method='GET', location=None, data=None)

	Make a web call to Joyent

	
salt.cloud.clouds.joyent.query_instance(vm_=None, call=None)

	Query an instance upon creation from the Joyent API

	
salt.cloud.clouds.joyent.reboot(name, call=None)

	reboot a machine by name
:param name: name given to the machine
:param call: call value in this case is 'action'
:return: true if successful

CLI Example:

salt-cloud -a reboot vm_name

	
salt.cloud.clouds.joyent.reformat_node(item=None, full=False)

	Reformat the returned data from joyent, determine public/private IPs and
strip out fields if necessary to provide either full or brief content.

	Parameters:

	
	item -- node dictionary

	full -- full or brief output

	Returns:

	dict

	
salt.cloud.clouds.joyent.show_instance(name, call=None)

	get details about a machine
:param name: name given to the machine
:param call: call value in this case is 'action'
:return: machine information

CLI Example:

salt-cloud -a show_instance vm_name

	
salt.cloud.clouds.joyent.show_key(kwargs=None, call=None)

	List the keys available

	
salt.cloud.clouds.joyent.ssh_interface(vm_)

	Return the ssh_interface type to connect to. Either 'public_ips' (default)
or 'private_ips'.

	
salt.cloud.clouds.joyent.start(name, call=None)

	start a machine by name
:param name: name given to the machine
:param call: call value in this case is 'action'
:return: true if successful

CLI Example:

salt-cloud -a start vm_name

	
salt.cloud.clouds.joyent.stop(name, call=None)

	stop a machine by name
:param name: name given to the machine
:param call: call value in this case is 'action'
:return: true if successful

CLI Example:

salt-cloud -a stop vm_name

	
salt.cloud.clouds.joyent.take_action(name=None, call=None, command=None, data=None, method='GET', location='us-east-1')

	take action call used by start,stop, reboot
:param name: name given to the machine
:param call: call value in this case is 'action'
:command: api path
:data: any data to be passed to the api, must be in json format
:method: GET,POST,or DELETE
:location: data center to execute the command on
:return: true if successful

salt.cloud.clouds.libvirt

Libvirt Cloud Module

Example provider:

A provider maps to a libvirt instance
my-libvirt-config:
 driver: libvirt
 # url: "qemu+ssh://user@remotekvm/system?socket=/var/run/libvirt/libvirt-sock"
 url: qemu:///system

Example profile:

base-itest:
 # points back at provider configuration e.g. the libvirt daemon to talk to
 provider: my-libvirt-config
 base_domain: base-image
 # ip_source = [ip-learning | qemu-agent]
 ip_source: ip-learning
 # clone_strategy = [quick | full]
 clone_strategy: quick
 ssh_username: vagrant
 # has_ssh_agent: True
 password: vagrant
 # if /tmp is mounted noexec do workaround
 deploy_command: sh /tmp/.saltcloud/deploy.sh
 # -F makes the bootstrap script overwrite existing config
 # which make reprovisioning a box work
 script_args: -F
 grains:
 sushi: more tasty
 # point at the another master at another port
 minion:
 master: 192.168.16.1
 master_port: 5506

Tested on:
- Fedora 26 (libvirt 3.2.1, qemu 2.9.1)
- Fedora 25 (libvirt 1.3.3.2, qemu 2.6.1)
- Fedora 23 (libvirt 1.2.18, qemu 2.4.1)
- Centos 7 (libvirt 1.2.17, qemu 1.5.3)

	
salt.cloud.clouds.libvirt.create(vm_)

	Provision a single machine

	
salt.cloud.clouds.libvirt.create_volume_with_backing_store_xml(volume)

	

	
salt.cloud.clouds.libvirt.create_volume_xml(volume)

	

	
salt.cloud.clouds.libvirt.destroy(name, call=None)

	This function irreversibly destroys a virtual machine on the cloud provider.
Before doing so, it should fire an event on the Salt event bus.

The tag for this event is salt/cloud/<vm name>/destroying.
Once the virtual machine has been destroyed, another event is fired.
The tag for that event is salt/cloud/<vm name>/destroyed.

	Dependencies:
	list_nodes

@param name:
@type name: str
@param call:
@type call:
@return: True if all went well, otherwise an error message
@rtype: bool|str

	
salt.cloud.clouds.libvirt.destroy_domain(conn, domain)

	

	
salt.cloud.clouds.libvirt.do_cleanup(cleanup)

	Clean up clone domain leftovers as much as possible.

Extra robust clean up in order to deal with some small changes in libvirt
behavior over time. Passed in volumes and domains are deleted, any errors
are ignored. Used when cloning/provisioning a domain fails.

	Parameters:

	cleanup -- list containing dictionaries with two keys: 'what' and 'item'.
If 'what' is domain the 'item' is a libvirt domain object.
If 'what' is volume then the item is a libvirt volume object.

	Returns:

	none

New in version 2017.7.3.

	
salt.cloud.clouds.libvirt.find_pool_and_volume(conn, path)

	

	
salt.cloud.clouds.libvirt.generate_new_name(orig_name)

	

	
salt.cloud.clouds.libvirt.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.libvirt.get_domain_ip(domain, idx, ip_source, skip_loopback=True)

	

	
salt.cloud.clouds.libvirt.get_domain_ips(domain, ip_source)

	

	
salt.cloud.clouds.libvirt.get_domain_volumes(conn, domain)

	

	
salt.cloud.clouds.libvirt.libvirt_error_handler(ctx, error)

	Redirect stderr prints from libvirt to salt logging.

	
salt.cloud.clouds.libvirt.list_nodes(call=None)

	Return a list of the VMs

id (str)
image (str)
size (str)
state (str)
private_ips (list)
public_ips (list)

	
salt.cloud.clouds.libvirt.list_nodes_full(call=None)

	Because this module is not specific to any cloud providers, there will be
no nodes to list.

	
salt.cloud.clouds.libvirt.list_nodes_select(call=None)

	Return a list of the VMs that are on the provider, with select fields

	
salt.cloud.clouds.libvirt.to_ip_addr_type(addr_type)

	

salt.cloud.clouds.linode

The Linode Cloud Module

The Linode cloud module is used to interact with the Linode Cloud.

Provider

The following provider parameters are supported:

	apikey: (required) The key to use to authenticate with the Linode API.

	password: (required) The default password to set on new VMs. Must be 8 characters with at least one lowercase, uppercase, and numeric.

	poll_interval: (optional) The rate of time in milliseconds to poll the Linode API for changes. Defaults to 500.

	ratelimit_sleep: (optional) The time in seconds to wait before retrying after a ratelimit has been enforced. Defaults to 0.

Note

APIv3 usage has been removed in favor of APIv4. To move to APIv4 now,
See the full migration guide
here https://docs.saltproject.io/en/latest/topics/cloud/linode.html#migrating-to-apiv4.

Set up the provider configuration at /etc/salt/cloud.providers or /etc/salt/cloud.providers.d/linode.conf:

my-linode-provider:
 driver: linode
 apikey: f4ZsmwtB1c7f85Jdu43RgXVDFlNjuJaeIYV8QMftTqKScEB2vSosFSr...
 password: F00barbazverylongp@ssword

Profile

The following profile parameters are supported:

	size: (required) The size of the VM. This should be a Linode instance type ID (i.e. g6-standard-2). Run salt-cloud -f avail_sizes my-linode-provider for options.

	location: (required) The location of the VM. This should be a Linode region (e.g. us-east). Run salt-cloud -f avail_locations my-linode-provider for options.

	image: (required) The image to deploy the boot disk from. This should be an image ID (e.g. linode/ubuntu22.04); official images start with linode/. Run salt-cloud -f avail_images my-linode-provider for more options.

	password: (*required) The default password for the VM. Must be provided at the profile or provider level.

	assign_private_ip: (optional) Whether or not to assign a private IP to the VM. Defaults to False.

	backups_enabled: (optional) Whether or not to enable the backup for this VM. Backup can be configured in your Linode account Defaults to False.

	ssh_interface: (optional) The interface with which to connect over SSH. Valid options are private_ips or public_ips. Defaults to public_ips.

	ssh_pubkey: (optional) The public key to authorize for SSH with the VM.

	swap: (optional) The amount of disk space to allocate for the swap partition. Defaults to 256.

	clonefrom: (optional) The name of the Linode to clone from.

Set up a profile configuration in /etc/salt/cloud.profiles.d/:

my-linode-profile:
 # a minimal configuration
 provider: my-linode-provider
 size: g6-standard-1
 image: linode/ubuntu22.04
 location: us-east

my-linode-profile-advanced:
 # an advanced configuration
 provider: my-linode-provider
 size: g6-standard-3
 image: linode/ubuntu22.04
 location: eu-west
 password: bogus123X
 assign_private_ip: true
 ssh_interface: private_ips
 ssh_pubkey: ssh-rsa AAAAB3NzaC1yc2EAAAADAQAB...
 swap_size: 512

Migrating to APIv4

You will need to generate a new token for your account. See https://www.linode.com/docs/products/tools/api/get-started/#create-an-api-token

There are a few changes to note:
- There has been a general move from label references to ID references. The profile configuration parameters location, size, and image have moved from being label based references to IDs. See the profile section for more information. In addition to these inputs being changed, avail_sizes, avail_locations, and avail_images now output options sorted by ID instead of label.
- The disk_size profile configuration parameter has been deprecated and will not be taken into account when creating new VMs while targeting APIv4.

	maintainer:

	Linode Developer Tools and Experience Team <dev-dx@linode.com>

	depends:

	requests

	
class salt.cloud.clouds.linode.LinodeAPI

	
	
abstract avail_images()

	avail_images implementation

	
abstract avail_locations()

	avail_locations implementation

	
abstract avail_sizes()

	avail_sizes implementation

	
abstract boot(name=None, kwargs=None)

	boot implementation

	
abstract clone(kwargs=None)

	clone implementation

	
abstract create(vm_)

	create implementation

	
abstract create_config(kwargs=None)

	create_config implementation

	
abstract destroy(name)

	destroy implementation

	
abstract get_config_id(kwargs=None)

	get_config_id implementation

	
get_linode(kwargs=None)

	

	
abstract list_nodes()

	list_nodes implementation

	
abstract list_nodes_full()

	list_nodes_full implementation

	
abstract list_nodes_min()

	list_nodes_min implementation

	
list_nodes_select(call)

	

	
abstract reboot(name)

	reboot implementation

	
abstract show_instance(name)

	show_instance implementation

	
abstract show_pricing(kwargs=None)

	show_pricing implementation

	
abstract start(name)

	start implementation

	
abstract stop(name)

	stop implementation

	
class salt.cloud.clouds.linode.LinodeAPIv4

	
	
avail_images()

	avail_images implementation

	
avail_locations()

	avail_locations implementation

	
avail_sizes()

	avail_sizes implementation

	
boot(name=None, kwargs=None)

	boot implementation

	
clone(kwargs=None)

	clone implementation

	
create(vm_)

	create implementation

	
create_config(kwargs=None)

	create_config implementation

	
destroy(name)

	destroy implementation

	
classmethod get_api_instance()

	

	
get_config_id(kwargs=None)

	get_config_id implementation

	
list_nodes()

	list_nodes implementation

	
list_nodes_full()

	list_nodes_full implementation

	
list_nodes_min()

	list_nodes_min implementation

	
reboot(name)

	reboot implementation

	
set_backup_schedule(label, linode_id, day, window, auto_enable=False)

	

	
show_instance(name)

	show_instance implementation

	
show_pricing(kwargs=None)

	show_pricing implementation

	
start(name)

	start implementation

	
stop(name)

	stop implementation

	
salt.cloud.clouds.linode.avail_images(call=None)

	Return available Linode images.

CLI Example:

salt-cloud --list-images my-linode-config
salt-cloud -f avail_images my-linode-config

	
salt.cloud.clouds.linode.avail_locations(call=None)

	Return available Linode datacenter locations.

CLI Example:

salt-cloud --list-locations my-linode-config
salt-cloud -f avail_locations my-linode-config

	
salt.cloud.clouds.linode.avail_sizes(call=None)

	Return available Linode sizes.

CLI Example:

salt-cloud --list-sizes my-linode-config
salt-cloud -f avail_sizes my-linode-config

	
salt.cloud.clouds.linode.boot(name=None, kwargs=None, call=None)

	Boot a Linode.

	name
	The name of the Linode to boot. Can be used instead of linode_id.

	linode_id
	The ID of the Linode to boot. If provided, will be used as an
alternative to name and reduces the number of API calls to
Linode by one. Will be preferred over name.

	config_id
	The ID of the Config to boot. Required.

	check_running
	Defaults to True. If set to False, overrides the call to check if
the VM is running before calling the linode.boot API call. Change
check_running to True is useful during the boot call in the
create function, since the new VM will not be running yet.

Can be called as an action (which requires a name):

salt-cloud -a boot my-instance config_id=10

...or as a function (which requires either a name or linode_id):

salt-cloud -f boot my-linode-config name=my-instance config_id=10
salt-cloud -f boot my-linode-config linode_id=1225876 config_id=10

	
salt.cloud.clouds.linode.clone(kwargs=None, call=None)

	Clone a Linode.

	linode_id
	The ID of the Linode to clone. Required.

	location
	The location of the new Linode. Required.

	size
	The size of the new Linode (must be greater than or equal to the clone source). Required.

CLI Example:

salt-cloud -f clone my-linode-config linode_id=1234567 location=us-central size=g6-standard-1

	
salt.cloud.clouds.linode.create(vm_)

	Create a single Linode VM.

	
salt.cloud.clouds.linode.create_config(kwargs=None, call=None)

	Creates a Linode Configuration Profile.

	name
	The name of the VM to create the config for.

	linode_id
	The ID of the Linode to create the configuration for.

	root_disk_id
	The Root Disk ID to be used for this config.

	swap_disk_id
	The Swap Disk ID to be used for this config.

	data_disk_id
	The Data Disk ID to be used for this config.

New in version 2016.3.0.

	kernel_id
	The ID of the kernel to use for this configuration profile.

	
salt.cloud.clouds.linode.destroy(name, call=None)

	Destroys a Linode by name.

	name
	The name of VM to be be destroyed.

CLI Example:

salt-cloud -d vm_name

	
salt.cloud.clouds.linode.get_config_id(kwargs=None, call=None)

	Returns a config_id for a given linode.

New in version 2015.8.0.

	name
	The name of the Linode for which to get the config_id. Can be used instead
of linode_id.

	linode_id
	The ID of the Linode for which to get the config_id. Can be used instead
of name.

CLI Example:

salt-cloud -f get_config_id my-linode-config name=my-linode
salt-cloud -f get_config_id my-linode-config linode_id=1234567

	
salt.cloud.clouds.linode.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.linode.get_linode(kwargs=None, call=None)

	Returns data for a single named Linode.

	name
	The name of the Linode for which to get data. Can be used instead
linode_id. Note this will induce an additional API call
compared to using linode_id.

	linode_id
	The ID of the Linode for which to get data. Can be used instead of
name.

CLI Example:

salt-cloud -f get_linode my-linode-config name=my-instance
salt-cloud -f get_linode my-linode-config linode_id=1234567

	
salt.cloud.clouds.linode.list_nodes(call=None)

	Returns a list of linodes, keeping only a brief listing.

CLI Example:

salt-cloud -Q
salt-cloud --query
salt-cloud -f list_nodes my-linode-config

Note

The image label only displays information about the VM's distribution vendor,
such as "Debian" or "RHEL" and does not display the actual image name. This is
due to a limitation of the Linode API.

	
salt.cloud.clouds.linode.list_nodes_full(call=None)

	List linodes, with all available information.

CLI Example:

salt-cloud -F
salt-cloud --full-query
salt-cloud -f list_nodes_full my-linode-config

Note

The image label only displays information about the VM's distribution vendor,
such as "Debian" or "RHEL" and does not display the actual image name. This is
due to a limitation of the Linode API.

	
salt.cloud.clouds.linode.list_nodes_min(call=None)

	Return a list of the VMs that are on the provider. Only a list of VM names and
their state is returned. This is the minimum amount of information needed to
check for existing VMs.

New in version 2015.8.0.

CLI Example:

salt-cloud -f list_nodes_min my-linode-config
salt-cloud --function list_nodes_min my-linode-config

	
salt.cloud.clouds.linode.list_nodes_select(call=None)

	Return a list of the VMs that are on the provider, with select fields.

	
salt.cloud.clouds.linode.reboot(name, call=None)

	Reboot a linode.

New in version 2015.8.0.

	name
	The name of the VM to reboot.

CLI Example:

salt-cloud -a reboot vm_name

	
salt.cloud.clouds.linode.set_backup_schedule(name=None, kwargs=None, call=None)

	Set the backup schedule for a Linode.

	name
	The name (label) of the Linode. Can be used instead of
linode_id.

	linode_id
	The ID of the Linode instance to set the backup schedule for.
If provided, will be used as an alternative to name and
reduces the number of API calls to Linode by one. Will be
preferred over name.

	auto_enable
	If True, automatically enable the backup feature for the Linode
if it wasn't already enabled. Optional parameter, default to False.

	day
	Possible values:
Sunday, Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday

The day of the week that your Linode's weekly Backup is taken.
If not set manually, a day will be chosen for you. Backups are
taken every day, but backups taken on this day are preferred
when selecting backups to retain for a longer period.

If not set manually, then when backups are initially enabled,
this may come back as Scheduling until the day is automatically
selected.

	window
	Possible values:
W0, W2, W4, W6, W8, W10,
W12, W14, W16, W18, W20, W22

The window in which your backups will be taken, in UTC. A backups
window is a two-hour span of time in which the backup may occur.

For example, W10 indicates that your backups should be taken
between 10:00 and 12:00. If you do not choose a backup window, one
will be selected for you automatically.

If not set manually, when backups are initially enabled this may come
back as Scheduling until the window is automatically selected.

Can be called as an action (which requires a name):

salt-cloud -a set_backup_schedule my-linode-instance day=Monday window=W20 auto_enable=True

...or as a function (which requires either a name or linode_id):

salt-cloud -f set_backup_schedule my-linode-provider name=my-linode-instance day=Monday window=W20 auto_enable=True
salt-cloud -f set_backup_schedule my-linode-provider linode_id=1225876 day=Monday window=W20 auto_enable=True

	
salt.cloud.clouds.linode.show_instance(name, call=None)

	Displays details about a particular Linode VM. Either a name or a linode_id must
be provided.

New in version 2015.8.0.

	name
	The name of the VM for which to display details.

CLI Example:

salt-cloud -a show_instance vm_name

Note

The image label only displays information about the VM's distribution vendor,
such as "Debian" or "RHEL" and does not display the actual image name. This is
due to a limitation of the Linode API.

	
salt.cloud.clouds.linode.show_pricing(kwargs=None, call=None)

	Show pricing for a particular profile. This is only an estimate, based on
unofficial pricing sources.

New in version 2015.8.0.

CLI Example:

salt-cloud -f show_pricing my-linode-config profile=my-linode-profile

	
salt.cloud.clouds.linode.start(name, call=None)

	Start a VM in Linode.

	name
	The name of the VM to start.

CLI Example:

salt-cloud -a stop vm_name

	
salt.cloud.clouds.linode.stop(name, call=None)

	Stop a VM in Linode.

	name
	The name of the VM to stop.

CLI Example:

salt-cloud -a stop vm_name

salt.cloud.clouds.lxc

Install Salt on an LXC Container

New in version 2014.7.0.

Please read core config documentation.

	
salt.cloud.clouds.lxc.avail_images()

	

	
salt.cloud.clouds.lxc.create(vm_, call=None)

	Create an lxc Container.
This function is idempotent and will try to either provision
or finish the provision of an lxc container.

NOTE: Most of the initialization code has been moved and merged
with the lxc runner and lxc.init functions

	
salt.cloud.clouds.lxc.destroy(vm_, call=None)

	Destroy a lxc container

	
salt.cloud.clouds.lxc.get_configured_provider(vm_=None)

	Return the contextual provider of None if no configured
one can be found.

	
salt.cloud.clouds.lxc.get_provider(name)

	

	
salt.cloud.clouds.lxc.list_nodes(conn=None, call=None)

	

	
salt.cloud.clouds.lxc.list_nodes_full(conn=None, call=None)

	

	
salt.cloud.clouds.lxc.list_nodes_select(call=None)

	Return a list of the VMs that are on the provider, with select fields

	
salt.cloud.clouds.lxc.show_instance(name, call=None)

	Show the details from the provider concerning an instance

salt.cloud.clouds.oneandone

1&1 Cloud Server Module

The 1&1 SaltStack cloud module allows a 1&1 server to be automatically deployed
and bootstrapped with Salt. It also has functions to create block storages and
ssh keys.

	depends:

	1and1 >= 1.2.0

The module requires the 1&1 api_token to be provided. The server should also
be assigned a public LAN, a private LAN, or both along with SSH key pairs.

Set up the cloud configuration at /etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/oneandone.conf:

my-oneandone-config:
 driver: oneandone
 # The 1&1 api token
 api_token: <your-token>
 # SSH private key filename
 ssh_private_key: /path/to/private_key
 # SSH public key filename
 ssh_public_key: /path/to/public_key

my-oneandone-profile:
 provider: my-oneandone-config
 # Either provide fixed_instance_size_id or vcore, cores_per_processor, ram, and hdds.
 # Size of the ID desired for the server
 fixed_instance_size: S
 # Total amount of processors
 vcore: 2
 # Number of cores per processor
 cores_per_processor: 2
 # RAM memory size in GB
 ram: 4
 # Hard disks
 hdds:
 -
 is_main: true
 size: 20
 -
 is_main: false
 size: 20
 # ID of the appliance image that will be installed on server
 appliance_id: <ID>
 # ID of the datacenter where the server will be created
 datacenter_id: <ID>
 # Description of the server
 description: My server description
 # Password of the server. Password must contain more than 8 characters
 # using uppercase letters, numbers and other special symbols.
 password: P4$$w0rD
 # Power on server after creation - default True
 power_on: true
 # Firewall policy ID. If it is not provided, the server will assign
 # the best firewall policy, creating a new one if necessary.
 # If the parameter is sent with a 0 value, the server will be created with all ports blocked.
 firewall_policy_id: <ID>
 # IP address ID
 ip_id: <ID>
 # Load balancer ID
 load_balancer_id: <ID>
 # Monitoring policy ID
 monitoring_policy_id: <ID>

Set deploy to False if Salt should not be installed on the node.

my-oneandone-profile:
 deploy: False

Create an SSH key

sudo salt-cloud -f create_ssh_key my-oneandone-config name='SaltTest' description='SaltTestDescription'

Create a block storage

sudo salt-cloud -f create_block_storage my-oneandone-config name='SaltTest2'
description='SaltTestDescription' size=50 datacenter_id='5091F6D8CBFEF9C26ACE957C652D5D49'

	
salt.cloud.clouds.oneandone.avail_images(conn=None, call=None)

	Return a list of the server appliances that are on the provider

	
salt.cloud.clouds.oneandone.avail_locations(conn=None, call=None)

	List available locations/datacenters for 1&1

	
salt.cloud.clouds.oneandone.avail_sizes(call=None)

	Return a dict of all available VM sizes on the cloud provider with
relevant data.

	
salt.cloud.clouds.oneandone.create(vm_)

	Create a single VM from a data dict

	
salt.cloud.clouds.oneandone.create_block_storage(kwargs=None, call=None)

	Create a block storage

	
salt.cloud.clouds.oneandone.create_ssh_key(kwargs=None, call=None)

	Create an ssh key

	
salt.cloud.clouds.oneandone.destroy(name, call=None)

	destroy a server by name

	Parameters:

	
	name -- name given to the server

	call -- call value in this case is 'action'

	Returns:

	array of booleans , true if successfully stopped and true if
successfully removed

CLI Example:

salt-cloud -d vm_name

	
salt.cloud.clouds.oneandone.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.oneandone.get_conn()

	Return a conn object for the passed VM data

	
salt.cloud.clouds.oneandone.get_dependencies()

	Warn if dependencies are not met.

	
salt.cloud.clouds.oneandone.get_image(vm_)

	Return the image object to use

	
salt.cloud.clouds.oneandone.get_key_filename(vm_)

	Check SSH private key file and return absolute path if exists.

	
salt.cloud.clouds.oneandone.get_node(conn, name)

	Return a node for the named VM

	
salt.cloud.clouds.oneandone.get_size(vm_)

	Return the VM's size object

	
salt.cloud.clouds.oneandone.get_wait_timeout(vm_)

	Return the wait_for_timeout for resource provisioning.

	
salt.cloud.clouds.oneandone.list_nodes(conn=None, call=None)

	Return a list of VMs that are on the provider

	
salt.cloud.clouds.oneandone.list_nodes_full(conn=None, call=None)

	Return a list of the VMs that are on the provider, with all fields

	
salt.cloud.clouds.oneandone.list_nodes_select(conn=None, call=None)

	Return a list of the VMs that are on the provider, with select fields

	
salt.cloud.clouds.oneandone.load_public_key(vm_)

	Load the public key file if exists.

	
salt.cloud.clouds.oneandone.reboot(name, call=None)

	reboot a server by name
:param name: name given to the machine
:param call: call value in this case is 'action'
:return: true if successful

CLI Example:

salt-cloud -a reboot vm_name

	
salt.cloud.clouds.oneandone.script(vm_)

	Return the script deployment object

	
salt.cloud.clouds.oneandone.show_instance(name, call=None)

	Show the details from the provider concerning an instance

	
salt.cloud.clouds.oneandone.start(name, call=None)

	start a server by name
:param name: name given to the machine
:param call: call value in this case is 'action'
:return: true if successful

CLI Example:

salt-cloud -a start vm_name

	
salt.cloud.clouds.oneandone.stop(name, call=None)

	stop a server by name
:param name: name given to the machine
:param call: call value in this case is 'action'
:return: true if successful

CLI Example:

salt-cloud -a stop vm_name

salt.cloud.clouds.opennebula

OpenNebula Cloud Module

The OpenNebula cloud module is used to control access to an OpenNebula cloud.

New in version 2014.7.0.

	depends:

	lxml

	depends:

	OpenNebula installation running version 4.14 or later.

Use of this module requires the xml_rpc, user, and password
parameters to be set.

Set up the cloud configuration at /etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/opennebula.conf:

my-opennebula-config:
 xml_rpc: http://localhost:2633/RPC2
 user: oneadmin
 password: JHGhgsayu32jsa
 driver: opennebula

This driver supports accessing new VM instances via DNS entry instead
of IP address. To enable this feature, in the provider or profile file
add fqdn_base with a value matching the base of your fully-qualified
domain name. Example:

my-opennebula-config:
 [...]
 fqdn_base: <my.basedomain.com>
 [...]

The driver will prepend the hostname to the fqdn_base and do a DNS lookup
to find the IP of the new VM.

salt-cloud -f image_allocate opennebula datastore_name=default \
 data='NAME="My New Image" DESCRIPTION="Description of the image." \
 PATH=/home/one_user/images/image_name.img'
salt-cloud -f secgroup_allocate opennebula \
 data="Name = test RULE = [PROTOCOL = TCP, RULE_TYPE = inbound, \
 RANGE = 1000:2000]"

	
salt.cloud.clouds.opennebula.avail_images(call=None)

	Return available OpenNebula images.

CLI Example:

salt-cloud --list-images opennebula
salt-cloud --function avail_images opennebula
salt-cloud -f avail_images opennebula

	
salt.cloud.clouds.opennebula.avail_locations(call=None)

	Return available OpenNebula locations.

CLI Example:

salt-cloud --list-locations opennebula
salt-cloud --function avail_locations opennebula
salt-cloud -f avail_locations opennebula

	
salt.cloud.clouds.opennebula.avail_sizes(call=None)

	Because sizes are built into templates with OpenNebula, there will be no sizes to
return here.

	
salt.cloud.clouds.opennebula.create(vm_)

	Create a single VM from a data dict.

	vm_
	The dictionary use to create a VM.

Optional vm_ dict options for overwriting template:

	region_id
	Optional - OpenNebula Zone ID

	memory
	Optional - In MB

	cpu
	Optional - Percent of host CPU to allocate

	vcpu
	
Optional - Amount of vCPUs to allocate

CLI Example:

 salt-cloud -p my-opennebula-profile vm_name

salt-cloud -p my-opennebula-profile vm_name memory=16384 cpu=2.5 vcpu=16

	
salt.cloud.clouds.opennebula.destroy(name, call=None)

	Destroy a node. Will check termination protection and warn if enabled.

	name
	The name of the vm to be destroyed.

CLI Example:

salt-cloud --destroy vm_name
salt-cloud -d vm_name
salt-cloud --action destroy vm_name
salt-cloud -a destroy vm_name

	
salt.cloud.clouds.opennebula.get_cluster_id(kwargs=None, call=None)

	Returns a cluster's ID from the given cluster name.

New in version 2016.3.0.

CLI Example:

salt-cloud -f get_cluster_id opennebula name=my-cluster-name

	
salt.cloud.clouds.opennebula.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.opennebula.get_datastore_id(kwargs=None, call=None)

	Returns a data store's ID from the given data store name.

New in version 2016.3.0.

CLI Example:

salt-cloud -f get_datastore_id opennebula name=my-datastore-name

	
salt.cloud.clouds.opennebula.get_dependencies()

	Warn if dependencies aren't met.

	
salt.cloud.clouds.opennebula.get_host_id(kwargs=None, call=None)

	Returns a host's ID from the given host name.

New in version 2016.3.0.

CLI Example:

salt-cloud -f get_host_id opennebula name=my-host-name

	
salt.cloud.clouds.opennebula.get_image(vm_)

	Return the image object to use.

	vm_
	The VM dictionary for which to obtain an image.

	
salt.cloud.clouds.opennebula.get_image_id(kwargs=None, call=None)

	Returns an image's ID from the given image name.

New in version 2016.3.0.

CLI Example:

salt-cloud -f get_image_id opennebula name=my-image-name

	
salt.cloud.clouds.opennebula.get_location(vm_)

	Return the VM's location.

	vm_
	The VM dictionary for which to obtain a location.

	
salt.cloud.clouds.opennebula.get_one_version(kwargs=None, call=None)

	Returns the OpenNebula version.

New in version 2016.3.5.

CLI Example:

salt-cloud -f get_one_version one_provider_name

	
salt.cloud.clouds.opennebula.get_secgroup_id(kwargs=None, call=None)

	Returns a security group's ID from the given security group name.

New in version 2016.3.0.

CLI Example:

salt-cloud -f get_secgroup_id opennebula name=my-secgroup-name

	
salt.cloud.clouds.opennebula.get_template(vm_)

	Return the template id for a VM.

New in version 2016.11.0.

	vm_
	The VM dictionary for which to obtain a template.

	
salt.cloud.clouds.opennebula.get_template_id(kwargs=None, call=None)

	Returns a template's ID from the given template name.

New in version 2016.3.0.

CLI Example:

salt-cloud -f get_template_id opennebula name=my-template-name

	
salt.cloud.clouds.opennebula.get_template_image(kwargs=None, call=None)

	Returns a template's image from the given template name.

New in version 2018.3.0.

salt-cloud -f get_template_image opennebula name=my-template-name

	
salt.cloud.clouds.opennebula.get_vm_id(kwargs=None, call=None)

	Returns a virtual machine's ID from the given virtual machine's name.

New in version 2016.3.0.

CLI Example:

salt-cloud -f get_vm_id opennebula name=my-vm

	
salt.cloud.clouds.opennebula.get_vn_id(kwargs=None, call=None)

	Returns a virtual network's ID from the given virtual network's name.

New in version 2016.3.0.

CLI Example:

salt-cloud -f get_vn_id opennebula name=my-vn-name

	
salt.cloud.clouds.opennebula.image_allocate(call=None, kwargs=None)

	Allocates a new image in OpenNebula.

New in version 2016.3.0.

	path
	The path to a file containing the template of the image to allocate.
Syntax within the file can be the usual attribute=value or XML. Can be
used instead of data.

	data
	The data containing the template of the image to allocate. Syntax can be the
usual attribute=value or XML. Can be used instead of path.

	datastore_id
	The ID of the data-store to be used for the new image. Can be used instead
of datastore_name.

	datastore_name
	The name of the data-store to be used for the new image. Can be used instead of
datastore_id.

CLI Example:

salt-cloud -f image_allocate opennebula path=/path/to/image_file.txt datastore_id=1
salt-cloud -f image_allocate opennebula datastore_name=default \
 data='NAME="Ubuntu 14.04" PATH="/home/one_user/images/ubuntu_desktop.img" \
 DESCRIPTION="Ubuntu 14.04 for development."'

	
salt.cloud.clouds.opennebula.image_clone(call=None, kwargs=None)

	Clones an existing image.

New in version 2016.3.0.

	name
	The name of the new image.

	image_id
	The ID of the image to be cloned. Can be used instead of image_name.

	image_name
	The name of the image to be cloned. Can be used instead of image_id.

CLI Example:

salt-cloud -f image_clone opennebula name=my-new-image image_id=10
salt-cloud -f image_clone opennebula name=my-new-image image_name=my-image-to-clone

	
salt.cloud.clouds.opennebula.image_delete(call=None, kwargs=None)

	Deletes the given image from OpenNebula. Either a name or an image_id must
be supplied.

New in version 2016.3.0.

	name
	The name of the image to delete. Can be used instead of image_id.

	image_id
	The ID of the image to delete. Can be used instead of name.

CLI Example:

salt-cloud -f image_delete opennebula name=my-image
salt-cloud --function image_delete opennebula image_id=100

	
salt.cloud.clouds.opennebula.image_info(call=None, kwargs=None)

	Retrieves information for a given image. Either a name or an image_id must be
supplied.

New in version 2016.3.0.

	name
	The name of the image for which to gather information. Can be used instead
of image_id.

	image_id
	The ID of the image for which to gather information. Can be used instead of
name.

CLI Example:

salt-cloud -f image_info opennebula name=my-image
salt-cloud --function image_info opennebula image_id=5

	
salt.cloud.clouds.opennebula.image_persistent(call=None, kwargs=None)

	Sets the Image as persistent or not persistent.

New in version 2016.3.0.

	name
	The name of the image to set. Can be used instead of image_id.

	image_id
	The ID of the image to set. Can be used instead of name.

	persist
	A boolean value to set the image as persistent or not. Set to true
for persistent, false for non-persistent.

CLI Example:

salt-cloud -f image_persistent opennebula name=my-image persist=True
salt-cloud --function image_persistent opennebula image_id=5 persist=False

	
salt.cloud.clouds.opennebula.image_snapshot_delete(call=None, kwargs=None)

	Deletes a snapshot from the image.

New in version 2016.3.0.

	image_id
	The ID of the image from which to delete the snapshot. Can be used instead of
image_name.

	image_name
	The name of the image from which to delete the snapshot. Can be used instead
of image_id.

	snapshot_id
	The ID of the snapshot to delete.

CLI Example:

salt-cloud -f image_snapshot_delete vm_id=106 snapshot_id=45
salt-cloud -f image_snapshot_delete vm_name=my-vm snapshot_id=111

	
salt.cloud.clouds.opennebula.image_snapshot_flatten(call=None, kwargs=None)

	Flattens the snapshot of an image and discards others.

New in version 2016.3.0.

	image_id
	The ID of the image. Can be used instead of image_name.

	image_name
	The name of the image. Can be used instead of image_id.

	snapshot_id
	The ID of the snapshot to flatten.

CLI Example:

salt-cloud -f image_snapshot_flatten vm_id=106 snapshot_id=45
salt-cloud -f image_snapshot_flatten vm_name=my-vm snapshot_id=45

	
salt.cloud.clouds.opennebula.image_snapshot_revert(call=None, kwargs=None)

	Reverts an image state to a previous snapshot.

New in version 2016.3.0.

	image_id
	The ID of the image to revert. Can be used instead of image_name.

	image_name
	The name of the image to revert. Can be used instead of image_id.

	snapshot_id
	The ID of the snapshot to which the image will be reverted.

CLI Example:

salt-cloud -f image_snapshot_revert vm_id=106 snapshot_id=45
salt-cloud -f image_snapshot_revert vm_name=my-vm snapshot_id=120

	
salt.cloud.clouds.opennebula.image_update(call=None, kwargs=None)

	Replaces the image template contents.

New in version 2016.3.0.

	image_id
	The ID of the image to update. Can be used instead of image_name.

	image_name
	The name of the image to update. Can be used instead of image_id.

	path
	The path to a file containing the template of the image. Syntax within the
file can be the usual attribute=value or XML. Can be used instead of data.

	data
	Contains the template of the image. Syntax can be the usual attribute=value
or XML. Can be used instead of path.

	update_type
	There are two ways to update an image: replace the whole template
or merge the new template with the existing one.

CLI Example:

salt-cloud -f image_update opennebula image_id=0 file=/path/to/image_update_file.txt update_type=replace
salt-cloud -f image_update opennebula image_name="Ubuntu 14.04" update_type=merge \
 data='NAME="Ubuntu Dev" PATH="/home/one_user/images/ubuntu_desktop.img" \
 DESCRIPTION = "Ubuntu 14.04 for development."'

	
salt.cloud.clouds.opennebula.list_clusters(call=None)

	Returns a list of clusters in OpenNebula.

New in version 2016.3.0.

CLI Example:

salt-cloud -f list_clusters opennebula

	
salt.cloud.clouds.opennebula.list_datastores(call=None)

	Returns a list of data stores on OpenNebula.

New in version 2016.3.0.

CLI Example:

salt-cloud -f list_datastores opennebula

	
salt.cloud.clouds.opennebula.list_hosts(call=None)

	Returns a list of hosts on OpenNebula.

New in version 2016.3.0.

CLI Example:

salt-cloud -f list_hosts opennebula

	
salt.cloud.clouds.opennebula.list_nodes(call=None)

	Return a list of VMs on OpenNebula.

CLI Example:

salt-cloud -Q
salt-cloud --query
salt-cloud --function list_nodes opennebula
salt-cloud -f list_nodes opennebula

	
salt.cloud.clouds.opennebula.list_nodes_full(call=None)

	Return a list of the VMs on OpenNebula.

CLI Example:

salt-cloud -F
salt-cloud --full-query
salt-cloud --function list_nodes_full opennebula
salt-cloud -f list_nodes_full opennebula

	
salt.cloud.clouds.opennebula.list_nodes_select(call=None)

	Return a list of the VMs that are on the provider, with select fields.

	
salt.cloud.clouds.opennebula.list_security_groups(call=None)

	Lists all security groups available to the user and the user's groups.

New in version 2016.3.0.

CLI Example:

salt-cloud -f list_security_groups opennebula

	
salt.cloud.clouds.opennebula.list_templates(call=None)

	Lists all templates available to the user and the user's groups.

New in version 2016.3.0.

CLI Example:

salt-cloud -f list_templates opennebula

	
salt.cloud.clouds.opennebula.list_vns(call=None)

	Lists all virtual networks available to the user and the user's groups.

New in version 2016.3.0.

CLI Example:

salt-cloud -f list_vns opennebula

	
salt.cloud.clouds.opennebula.reboot(name, call=None)

	Reboot a VM.

New in version 2016.3.0.

	name
	The name of the VM to reboot.

CLI Example:

salt-cloud -a reboot my-vm

	
salt.cloud.clouds.opennebula.secgroup_allocate(call=None, kwargs=None)

	Allocates a new security group in OpenNebula.

New in version 2016.3.0.

	path
	The path to a file containing the template of the security group. Syntax
within the file can be the usual attribute=value or XML. Can be used
instead of data.

	data
	The template data of the security group. Syntax can be the usual
attribute=value or XML. Can be used instead of path.

CLI Example:

salt-cloud -f secgroup_allocate opennebula path=/path/to/secgroup_file.txt
salt-cloud -f secgroup_allocate opennebula \
 data="NAME = test RULE = [PROTOCOL = TCP, RULE_TYPE = inbound, \
 RANGE = 1000:2000]"

	
salt.cloud.clouds.opennebula.secgroup_clone(call=None, kwargs=None)

	Clones an existing security group.

New in version 2016.3.0.

	name
	The name of the new template.

	secgroup_id
	The ID of the security group to be cloned. Can be used instead of
secgroup_name.

	secgroup_name
	The name of the security group to be cloned. Can be used instead of
secgroup_id.

CLI Example:

salt-cloud -f secgroup_clone opennebula name=my-cloned-secgroup secgroup_id=0
salt-cloud -f secgroup_clone opennebula name=my-cloned-secgroup secgroup_name=my-secgroup

	
salt.cloud.clouds.opennebula.secgroup_delete(call=None, kwargs=None)

	Deletes the given security group from OpenNebula. Either a name or a secgroup_id
must be supplied.

New in version 2016.3.0.

	name
	The name of the security group to delete. Can be used instead of
secgroup_id.

	secgroup_id
	The ID of the security group to delete. Can be used instead of name.

CLI Example:

salt-cloud -f secgroup_delete opennebula name=my-secgroup
salt-cloud --function secgroup_delete opennebula secgroup_id=100

	
salt.cloud.clouds.opennebula.secgroup_info(call=None, kwargs=None)

	Retrieves information for the given security group. Either a name or a
secgroup_id must be supplied.

New in version 2016.3.0.

	name
	The name of the security group for which to gather information. Can be
used instead of secgroup_id.

	secgroup_id
	The ID of the security group for which to gather information. Can be
used instead of name.

CLI Example:

salt-cloud -f secgroup_info opennebula name=my-secgroup
salt-cloud --function secgroup_info opennebula secgroup_id=5

	
salt.cloud.clouds.opennebula.secgroup_update(call=None, kwargs=None)

	Replaces the security group template contents.

New in version 2016.3.0.

	secgroup_id
	The ID of the security group to update. Can be used instead of
secgroup_name.

	secgroup_name
	The name of the security group to update. Can be used instead of
secgroup_id.

	path
	The path to a file containing the template of the security group. Syntax
within the file can be the usual attribute=value or XML. Can be used instead
of data.

	data
	The template data of the security group. Syntax can be the usual attribute=value
or XML. Can be used instead of path.

	update_type
	There are two ways to update a security group: replace the whole template
or merge the new template with the existing one.

CLI Example:

salt-cloud --function secgroup_update opennebula secgroup_id=100 \
 path=/path/to/secgroup_update_file.txt \
 update_type=replace
salt-cloud -f secgroup_update opennebula secgroup_name=my-secgroup update_type=merge \
 data="Name = test RULE = [PROTOCOL = TCP, RULE_TYPE = inbound, RANGE = 1000:2000]"

	
salt.cloud.clouds.opennebula.show_instance(name, call=None)

	Show the details from OpenNebula concerning a named VM.

	name
	The name of the VM for which to display details.

	call
	Type of call to use with this function such as function.

CLI Example:

salt-cloud --action show_instance vm_name
salt-cloud -a show_instance vm_name

	
salt.cloud.clouds.opennebula.start(name, call=None)

	Start a VM.

New in version 2016.3.0.

	name
	The name of the VM to start.

CLI Example:

salt-cloud -a start my-vm

	
salt.cloud.clouds.opennebula.stop(name, call=None)

	Stop a VM.

New in version 2016.3.0.

	name
	The name of the VM to stop.

CLI Example:

salt-cloud -a stop my-vm

	
salt.cloud.clouds.opennebula.template_allocate(call=None, kwargs=None)

	Allocates a new template in OpenNebula.

New in version 2016.3.0.

	path
	The path to a file containing the elements of the template to be allocated.
Syntax within the file can be the usual attribute=value or XML. Can be used
instead of data.

	data
	Contains the elements of the template to be allocated. Syntax can be the usual
attribute=value or XML. Can be used instead of path.

CLI Example:

salt-cloud -f template_allocate opennebula path=/path/to/template_file.txt
salt-cloud -f template_allocate opennebula \
 data='CPU="1.0" DISK=[IMAGE="Ubuntu-14.04"] GRAPHICS=[LISTEN="0.0.0.0",TYPE="vnc"] \
 MEMORY="1024" NETWORK="yes" NIC=[NETWORK="192net",NETWORK_UNAME="oneadmin"] \
 OS=[ARCH="x86_64"] SUNSTONE_CAPACITY_SELECT="YES" SUNSTONE_NETWORK_SELECT="YES" \
 VCPU="1"'

	
salt.cloud.clouds.opennebula.template_clone(call=None, kwargs=None)

	Clones an existing virtual machine template.

New in version 2016.3.0.

	name
	The name of the new template.

	template_id
	The ID of the template to be cloned. Can be used instead of template_name.

	template_name
	The name of the template to be cloned. Can be used instead of template_id.

	clone_images
	Optional, defaults to False. Indicates if the images attached to the template should be cloned as well.

CLI Example:

salt-cloud -f template_clone opennebula name=my-new-template template_id=0
salt-cloud -f template_clone opennebula name=my-new-template template_name=my-template

	
salt.cloud.clouds.opennebula.template_delete(call=None, kwargs=None)

	Deletes the given template from OpenNebula. Either a name or a template_id must
be supplied.

New in version 2016.3.0.

	name
	The name of the template to delete. Can be used instead of template_id.

	template_id
	The ID of the template to delete. Can be used instead of name.

CLI Example:

salt-cloud -f template_delete opennebula name=my-template
salt-cloud --function template_delete opennebula template_id=5

	
salt.cloud.clouds.opennebula.template_instantiate(call=None, kwargs=None)

	Instantiates a new virtual machine from a template.

New in version 2016.3.0.

Note

template_instantiate creates a VM on OpenNebula from a template, but it
does not install Salt on the new VM. Use the create function for that
functionality: salt-cloud -p opennebula-profile vm-name.

	vm_name
	Name for the new VM instance.

	template_id
	The ID of the template from which the VM will be created. Can be used instead
of template_name.

	template_name
	The name of the template from which the VM will be created. Can be used instead
of template_id.

CLI Example:

salt-cloud -f template_instantiate opennebula vm_name=my-new-vm template_id=0

	
salt.cloud.clouds.opennebula.template_update(call=None, kwargs=None)

	Replaces the template contents.

New in version 2016.3.0.

	template_id
	The ID of the template to update. Can be used instead of template_name.

	template_name
	The name of the template to update. Can be used instead of template_id.

	path
	The path to a file containing the elements of the template to be updated.
Syntax within the file can be the usual attribute=value or XML. Can be
used instead of data.

	data
	Contains the elements of the template to be updated. Syntax can be the
usual attribute=value or XML. Can be used instead of path.

	update_type
	There are two ways to update a template: replace the whole template
or merge the new template with the existing one.

CLI Example:

salt-cloud --function template_update opennebula template_id=1 update_type=replace \
 path=/path/to/template_update_file.txt
salt-cloud -f template_update opennebula template_name=my-template update_type=merge \
 data='CPU="1.0" DISK=[IMAGE="Ubuntu-14.04"] GRAPHICS=[LISTEN="0.0.0.0",TYPE="vnc"] \
 MEMORY="1024" NETWORK="yes" NIC=[NETWORK="192net",NETWORK_UNAME="oneadmin"] \
 OS=[ARCH="x86_64"] SUNSTONE_CAPACITY_SELECT="YES" SUNSTONE_NETWORK_SELECT="YES" \
 VCPU="1"'

	
salt.cloud.clouds.opennebula.vm_action(name, kwargs=None, call=None)

	Submits an action to be performed on a given virtual machine.

New in version 2016.3.0.

	name
	The name of the VM to action.

	action
	
	The action to be performed on the VM. Available options include:
	
	boot

	delete

	delete-recreate

	hold

	poweroff

	poweroff-hard

	reboot

	reboot-hard

	release

	resched

	resume

	shutdown

	shutdown-hard

	stop

	suspend

	undeploy

	undeploy-hard

	unresched

CLI Example:

salt-cloud -a vm_action my-vm action='release'

	
salt.cloud.clouds.opennebula.vm_allocate(call=None, kwargs=None)

	Allocates a new virtual machine in OpenNebula.

New in version 2016.3.0.

	path
	The path to a file defining the template of the VM to allocate.
Syntax within the file can be the usual attribute=value or XML.
Can be used instead of data.

	data
	Contains the template definitions of the VM to allocate. Syntax can
be the usual attribute=value or XML. Can be used instead of path.

	hold
	If this parameter is set to True, the VM will be created in
the HOLD state. If not set, the VM is created in the PENDING
state. Default is False.

CLI Example:

salt-cloud -f vm_allocate path=/path/to/vm_template.txt
salt-cloud --function vm_allocate path=/path/to/vm_template.txt hold=True

	
salt.cloud.clouds.opennebula.vm_attach(name, kwargs=None, call=None)

	Attaches a new disk to the given virtual machine.

New in version 2016.3.0.

	name
	The name of the VM for which to attach the new disk.

	path
	The path to a file containing a single disk vector attribute.
Syntax within the file can be the usual attribute=value or XML.
Can be used instead of data.

	data
	Contains the data needed to attach a single disk vector attribute.
Syntax can be the usual attribute=value or XML. Can be used instead
of path.

CLI Example:

salt-cloud -a vm_attach my-vm path=/path/to/disk_file.txt
salt-cloud -a vm_attach my-vm data="DISK=[DISK_ID=1]"

	
salt.cloud.clouds.opennebula.vm_attach_nic(name, kwargs=None, call=None)

	Attaches a new network interface to the given virtual machine.

New in version 2016.3.0.

	name
	The name of the VM for which to attach the new network interface.

	path
	The path to a file containing a single NIC vector attribute.
Syntax within the file can be the usual attribute=value or XML. Can
be used instead of data.

	data
	Contains the single NIC vector attribute to attach to the VM.
Syntax can be the usual attribute=value or XML. Can be used instead
of path.

CLI Example:

salt-cloud -a vm_attach_nic my-vm path=/path/to/nic_file.txt
salt-cloud -a vm_attach_nic my-vm data="NIC=[NETWORK_ID=1]"

	
salt.cloud.clouds.opennebula.vm_deploy(name, kwargs=None, call=None)

	Initiates the instance of the given VM on the target host.

New in version 2016.3.0.

	name
	The name of the VM to deploy.

	host_id
	The ID of the target host where the VM will be deployed. Can be used instead
of host_name.

	host_name
	The name of the target host where the VM will be deployed. Can be used instead
of host_id.

	capacity_maintained
	True to enforce the Host capacity is not over-committed. This parameter is only
acknowledged for users in the oneadmin group. Host capacity will be always
enforced for regular users.

	datastore_id
	The ID of the target system data-store where the VM will be deployed. Optional
and can be used instead of datastore_name. If neither datastore_id nor
datastore_name are set, OpenNebula will choose the data-store.

	datastore_name
	The name of the target system data-store where the VM will be deployed. Optional,
and can be used instead of datastore_id. If neither datastore_id nor
datastore_name are set, OpenNebula will choose the data-store.

CLI Example:

salt-cloud -a vm_deploy my-vm host_id=0
salt-cloud -a vm_deploy my-vm host_id=1 capacity_maintained=False
salt-cloud -a vm_deploy my-vm host_name=host01 datastore_id=1
salt-cloud -a vm_deploy my-vm host_name=host01 datastore_name=default

	
salt.cloud.clouds.opennebula.vm_detach(name, kwargs=None, call=None)

	Detaches a disk from a virtual machine.

New in version 2016.3.0.

	name
	The name of the VM from which to detach the disk.

	disk_id
	The ID of the disk to detach.

CLI Example:

salt-cloud -a vm_detach my-vm disk_id=1

	
salt.cloud.clouds.opennebula.vm_detach_nic(name, kwargs=None, call=None)

	Detaches a disk from a virtual machine.

New in version 2016.3.0.

	name
	The name of the VM from which to detach the network interface.

	nic_id
	The ID of the nic to detach.

CLI Example:

salt-cloud -a vm_detach_nic my-vm nic_id=1

	
salt.cloud.clouds.opennebula.vm_disk_save(name, kwargs=None, call=None)

	Sets the disk to be saved in the given image.

New in version 2016.3.0.

	name
	The name of the VM containing the disk to save.

	disk_id
	The ID of the disk to save.

	image_name
	The name of the new image where the disk will be saved.

	image_type
	The type for the new image. If not set, then the default ONED Configuration
will be used. Other valid types include: OS, CDROM, DATABLOCK, KERNEL, RAMDISK,
and CONTEXT.

	snapshot_id
	The ID of the snapshot to export. If not set, the current image state will be
used.

CLI Example:

salt-cloud -a vm_disk_save my-vm disk_id=1 image_name=my-new-image
salt-cloud -a vm_disk_save my-vm disk_id=1 image_name=my-new-image image_type=CONTEXT snapshot_id=10

	
salt.cloud.clouds.opennebula.vm_disk_snapshot_create(name, kwargs=None, call=None)

	Takes a new snapshot of the disk image.

New in version 2016.3.0.

	name
	The name of the VM of which to take the snapshot.

	disk_id
	The ID of the disk to save.

	description
	The description for the snapshot.

CLI Example:

salt-cloud -a vm_disk_snapshot_create my-vm disk_id=0 description="My Snapshot Description"

	
salt.cloud.clouds.opennebula.vm_disk_snapshot_delete(name, kwargs=None, call=None)

	Deletes a disk snapshot based on the given VM and the disk_id.

New in version 2016.3.0.

	name
	The name of the VM containing the snapshot to delete.

	disk_id
	The ID of the disk to save.

	snapshot_id
	The ID of the snapshot to be deleted.

CLI Example:

salt-cloud -a vm_disk_snapshot_delete my-vm disk_id=0 snapshot_id=6

	
salt.cloud.clouds.opennebula.vm_disk_snapshot_revert(name, kwargs=None, call=None)

	Reverts a disk state to a previously taken snapshot.

New in version 2016.3.0.

	name
	The name of the VM containing the snapshot.

	disk_id
	The ID of the disk to revert its state.

	snapshot_id
	The ID of the snapshot to which the snapshot should be reverted.

CLI Example:

salt-cloud -a vm_disk_snapshot_revert my-vm disk_id=0 snapshot_id=6

	
salt.cloud.clouds.opennebula.vm_info(name, call=None)

	Retrieves information for a given virtual machine. A VM name must be supplied.

New in version 2016.3.0.

	name
	The name of the VM for which to gather information.

CLI Example:

salt-cloud -a vm_info my-vm

	
salt.cloud.clouds.opennebula.vm_migrate(name, kwargs=None, call=None)

	Migrates the specified virtual machine to the specified target host.

New in version 2016.3.0.

	name
	The name of the VM to migrate.

	host_id
	The ID of the host to which the VM will be migrated. Can be used instead
of host_name.

	host_name
	The name of the host to which the VM will be migrated. Can be used instead
of host_id.

	live_migration
	If set to True, a live-migration will be performed. Default is False.

	capacity_maintained
	True to enforce the Host capacity is not over-committed. This parameter is only
acknowledged for users in the oneadmin group. Host capacity will be always
enforced for regular users.

	datastore_id
	The target system data-store ID where the VM will be migrated. Can be used
instead of datastore_name.

	datastore_name
	The name of the data-store target system where the VM will be migrated. Can be
used instead of datastore_id.

CLI Example:

salt-cloud -a vm_migrate my-vm host_id=0 datastore_id=1
salt-cloud -a vm_migrate my-vm host_id=0 datastore_id=1 live_migration=True
salt-cloud -a vm_migrate my-vm host_name=host01 datastore_name=default

	
salt.cloud.clouds.opennebula.vm_monitoring(name, call=None)

	Returns the monitoring records for a given virtual machine. A VM name must be
supplied.

The monitoring information returned is a list of VM elements. Each VM element
contains the complete dictionary of the VM with the updated information returned
by the poll action.

New in version 2016.3.0.

	name
	The name of the VM for which to gather monitoring records.

CLI Example:

salt-cloud -a vm_monitoring my-vm

	
salt.cloud.clouds.opennebula.vm_resize(name, kwargs=None, call=None)

	Changes the capacity of the virtual machine.

New in version 2016.3.0.

	name
	The name of the VM to resize.

	path
	The path to a file containing new capacity elements CPU, VCPU, MEMORY. If one
of them is not present, or its value is 0, the VM will not be re-sized. Syntax
within the file can be the usual attribute=value or XML. Can be used instead
of data.

	data
	Contains the new capacity elements CPU, VCPU, and MEMORY. If one of them is not
present, or its value is 0, the VM will not be re-sized. Can be used instead of
path.

	capacity_maintained
	True to enforce the Host capacity is not over-committed. This parameter is only
acknowledged for users in the oneadmin group. Host capacity will be always
enforced for regular users.

CLI Example:

salt-cloud -a vm_resize my-vm path=/path/to/capacity_template.txt
salt-cloud -a vm_resize my-vm path=/path/to/capacity_template.txt capacity_maintained=False
salt-cloud -a vm_resize my-vm data="CPU=1 VCPU=1 MEMORY=1024"

	
salt.cloud.clouds.opennebula.vm_snapshot_create(vm_name, kwargs=None, call=None)

	Creates a new virtual machine snapshot from the provided VM.

New in version 2016.3.0.

	vm_name
	The name of the VM from which to create the snapshot.

	snapshot_name
	The name of the snapshot to be created.

CLI Example:

salt-cloud -a vm_snapshot_create my-vm snapshot_name=my-new-snapshot

	
salt.cloud.clouds.opennebula.vm_snapshot_delete(vm_name, kwargs=None, call=None)

	Deletes a virtual machine snapshot from the provided VM.

New in version 2016.3.0.

	vm_name
	The name of the VM from which to delete the snapshot.

	snapshot_id
	The ID of the snapshot to be deleted.

CLI Example:

salt-cloud -a vm_snapshot_delete my-vm snapshot_id=8

	
salt.cloud.clouds.opennebula.vm_snapshot_revert(vm_name, kwargs=None, call=None)

	Reverts a virtual machine to a snapshot

New in version 2016.3.0.

	vm_name
	The name of the VM to revert.

	snapshot_id
	The snapshot ID.

CLI Example:

salt-cloud -a vm_snapshot_revert my-vm snapshot_id=42

	
salt.cloud.clouds.opennebula.vm_update(name, kwargs=None, call=None)

	Replaces the user template contents.

New in version 2016.3.0.

	name
	The name of the VM to update.

	path
	The path to a file containing new user template contents. Syntax within the
file can be the usual attribute=value or XML. Can be used instead of data.

	data
	Contains the new user template contents. Syntax can be the usual attribute=value
or XML. Can be used instead of path.

	update_type
	There are two ways to update a VM: replace the whole template
or merge the new template with the existing one.

CLI Example:

salt-cloud -a vm_update my-vm path=/path/to/user_template_file.txt update_type='replace'

	
salt.cloud.clouds.opennebula.vn_add_ar(call=None, kwargs=None)

	Adds address ranges to a given virtual network.

New in version 2016.3.0.

	vn_id
	The ID of the virtual network to add the address range. Can be used
instead of vn_name.

	vn_name
	The name of the virtual network to add the address range. Can be used
instead of vn_id.

	path
	The path to a file containing the template of the address range to add.
Syntax within the file can be the usual attribute=value or XML. Can be
used instead of data.

	data
	Contains the template of the address range to add. Syntax can be the
usual attribute=value or XML. Can be used instead of path.

CLI Example:

salt-cloud -f vn_add_ar opennebula vn_id=3 path=/path/to/address_range.txt
salt-cloud -f vn_add_ar opennebula vn_name=my-vn \
 data="AR=[TYPE=IP4, IP=192.168.0.5, SIZE=10]"

	
salt.cloud.clouds.opennebula.vn_allocate(call=None, kwargs=None)

	Allocates a new virtual network in OpenNebula.

New in version 2016.3.0.

	path
	The path to a file containing the template of the virtual network to allocate.
Syntax within the file can be the usual attribute=value or XML. Can be used
instead of data.

	data
	Contains the template of the virtual network to allocate. Syntax can be the
usual attribute=value or XML. Can be used instead of path.

	cluster_id
	The ID of the cluster for which to add the new virtual network. Can be used
instead of cluster_name. If neither cluster_id nor cluster_name
are provided, the virtual network won’t be added to any cluster.

	cluster_name
	The name of the cluster for which to add the new virtual network. Can be used
instead of cluster_id. If neither cluster_name nor cluster_id are
provided, the virtual network won't be added to any cluster.

CLI Example:

salt-cloud -f vn_allocate opennebula path=/path/to/vn_file.txt

	
salt.cloud.clouds.opennebula.vn_delete(call=None, kwargs=None)

	Deletes the given virtual network from OpenNebula. Either a name or a vn_id must
be supplied.

New in version 2016.3.0.

	name
	The name of the virtual network to delete. Can be used instead of vn_id.

	vn_id
	The ID of the virtual network to delete. Can be used instead of name.

CLI Example:

salt-cloud -f vn_delete opennebula name=my-virtual-network
salt-cloud --function vn_delete opennebula vn_id=3

	
salt.cloud.clouds.opennebula.vn_free_ar(call=None, kwargs=None)

	Frees a reserved address range from a virtual network.

New in version 2016.3.0.

	vn_id
	The ID of the virtual network from which to free an address range.
Can be used instead of vn_name.

	vn_name
	The name of the virtual network from which to free an address range.
Can be used instead of vn_id.

	ar_id
	The ID of the address range to free.

CLI Example:

salt-cloud -f vn_free_ar opennebula vn_id=3 ar_id=1
salt-cloud -f vn_free_ar opennebula vn_name=my-vn ar_id=1

	
salt.cloud.clouds.opennebula.vn_hold(call=None, kwargs=None)

	Holds a virtual network lease as used.

New in version 2016.3.0.

	vn_id
	The ID of the virtual network from which to hold the lease. Can be used
instead of vn_name.

	vn_name
	The name of the virtual network from which to hold the lease. Can be used
instead of vn_id.

	path
	The path to a file defining the template of the lease to hold.
Syntax within the file can be the usual attribute=value or XML. Can be
used instead of data.

	data
	Contains the template of the lease to hold. Syntax can be the usual
attribute=value or XML. Can be used instead of path.

CLI Example:

salt-cloud -f vn_hold opennebula vn_id=3 path=/path/to/vn_hold_file.txt
salt-cloud -f vn_hold opennebula vn_name=my-vn data="LEASES=[IP=192.168.0.5]"

	
salt.cloud.clouds.opennebula.vn_info(call=None, kwargs=None)

	Retrieves information for the virtual network.

New in version 2016.3.0.

	name
	The name of the virtual network for which to gather information. Can be
used instead of vn_id.

	vn_id
	The ID of the virtual network for which to gather information. Can be
used instead of name.

CLI Example:

salt-cloud -f vn_info opennebula vn_id=3
salt-cloud --function vn_info opennebula name=public

	
salt.cloud.clouds.opennebula.vn_release(call=None, kwargs=None)

	Releases a virtual network lease that was previously on hold.

New in version 2016.3.0.

	vn_id
	The ID of the virtual network from which to release the lease. Can be
used instead of vn_name.

	vn_name
	The name of the virtual network from which to release the lease.
Can be used instead of vn_id.

	path
	The path to a file defining the template of the lease to release.
Syntax within the file can be the usual attribute=value or XML. Can be
used instead of data.

	data
	Contains the template defining the lease to release. Syntax can be the
usual attribute=value or XML. Can be used instead of path.

CLI Example:

salt-cloud -f vn_release opennebula vn_id=3 path=/path/to/vn_release_file.txt
salt-cloud =f vn_release opennebula vn_name=my-vn data="LEASES=[IP=192.168.0.5]"

	
salt.cloud.clouds.opennebula.vn_reserve(call=None, kwargs=None)

	Reserve network addresses.

New in version 2016.3.0.

	vn_id
	The ID of the virtual network from which to reserve addresses. Can be used
instead of vn_name.

	vn_name
	The name of the virtual network from which to reserve addresses. Can be
used instead of vn_id.

	path
	The path to a file defining the template of the address reservation.
Syntax within the file can be the usual attribute=value or XML. Can be used
instead of data.

	data
	Contains the template defining the address reservation. Syntax can be the
usual attribute=value or XML. Data provided must be wrapped in double
quotes. Can be used instead of path.

CLI Example:

salt-cloud -f vn_reserve opennebula vn_id=3 path=/path/to/vn_reserve_file.txt
salt-cloud -f vn_reserve opennebula vn_name=my-vn data="SIZE=10 AR_ID=8 NETWORK_ID=1"

salt.cloud.clouds.openstack

Openstack Cloud Driver

	depends:

	shade>=1.19.0 [https://pypi.python.org/pypi/shade]

OpenStack is an open source project that is in use by a number a cloud
providers, each of which have their own ways of using it.

This OpenStack driver uses a the shade python module which is managed by the
OpenStack Infra team. This module is written to handle all the different
versions of different OpenStack tools for salt, so most commands are just passed
over to the module to handle everything.

Provider

There are two ways to configure providers for this driver. The first one is to
just let shade handle everything, and configure using os-client-config [https://docs.openstack.org/os-client-config/latest/user/configuration.html#config-files] and
setting up /etc/openstack/clouds.yml.

clouds:
 democloud:
 region_name: RegionOne
 auth:
 username: 'demo'
 password: secret
 project_name: 'demo'
 auth_url: 'http://openstack/identity'

And then this can be referenced in the salt provider based on the democloud
name.

myopenstack:
 driver: openstack
 cloud: democloud
 region_name: RegionOne

This allows for just using one configuration for salt-cloud and for any other
openstack tools which are all using /etc/openstack/clouds.yml

The other method allows for specifying everything in the provider config,
instead of using the extra configuration file. This will allow for passing
salt-cloud configs only through pillars for minions without having to write a
clouds.yml file on each minion.abs

myopenstack:
 driver: openstack
 region_name: RegionOne
 auth:
 username: 'demo'
 password: secret
 project_name: 'demo'
 user_domain_name: default,
 project_domain_name: default,
 auth_url: 'http://openstack/identity'

Or if you need to use a profile to setup some extra stuff, it can be passed as a
profile to use any of the vendor [https://docs.openstack.org/os-client-config/latest/user/vendor-support.html] config options.

myrackspace:
 driver: openstack
 profile: rackspace
 auth:
 username: rackusername
 api_key: myapikey
 region_name: ORD
 auth_type: rackspace_apikey

And this will pull in the profile for rackspace and setup all the correct
options for the auth_url and different api versions for services.

Profile

Most of the options for building servers are just passed on to the
create_server [https://docs.openstack.org/shade/latest/user/usage.html#shade.OpenStackCloud.create_server] function from shade.

The salt specific ones are:

	ssh_key_file: The path to the ssh key that should be used to login to the machine to bootstrap it

	ssh_key_file: The name of the keypair in openstack

	userdata_template: The renderer to use if the userdata is a file that is templated. Default: False

	ssh_interface: The interface to use to login for bootstrapping: public_ips, private_ips, floating_ips, fixed_ips

	ignore_cidr: Specify a CIDR range of unreachable private addresses for salt to ignore when connecting

centos:
 provider: myopenstack
 image: CentOS 7
 size: ds1G
 ssh_key_name: mykey
 ssh_key_file: /root/.ssh/id_rsa

This is the minimum setup required.

If metadata is set to make sure that the host has finished setting up the
wait_for_metadata can be set.

centos:
 provider: myopenstack
 image: CentOS 7
 size: ds1G
 ssh_key_name: mykey
 ssh_key_file: /root/.ssh/id_rsa
 meta:
 build_config: rack_user_only
 wait_for_metadata:
 rax_service_level_automation: Complete
 rackconnect_automation_status: DEPLOYED

If your OpenStack instances only have private IP addresses and a CIDR range of
private addresses are not reachable from the salt-master, you may set your
preference to have Salt ignore it:

my-openstack-config:
 ignore_cidr: 192.168.0.0/16

Anything else from the create_server [https://docs.openstack.org/shade/latest/user/usage.html#shade.OpenStackCloud.create_server] docs can be passed through here.

	image: Image dict, name or ID to boot with. image is required
unless boot_volume is given.

	flavor: Flavor dict, name or ID to boot onto.

	auto_ip: Whether to take actions to find a routable IP for
the server. (defaults to True)

	ips: List of IPs to attach to the server (defaults to None)

	ip_pool: Name of the network or floating IP pool to get an
address from. (defaults to None)

	root_volume: Name or ID of a volume to boot from
(defaults to None - deprecated, use boot_volume)

	boot_volume: Name or ID of a volume to boot from
(defaults to None)

	terminate_volume: If booting from a volume, whether it should
be deleted when the server is destroyed.
(defaults to False)

	volumes: (optional) A list of volumes to attach to the server

	meta: (optional) A dict of arbitrary key/value metadata to
store for this server. Both keys and values must be
<=255 characters.

	files: (optional, deprecated) A dict of files to overwrite
on the server upon boot. Keys are file names (i.e.
/etc/passwd) and values
are the file contents (either as a string or as a
file-like object). A maximum of five entries is allowed,
and each file must be 10k or less.

	reservation_id: a UUID for the set of servers being requested.

	min_count: (optional extension) The minimum number of
servers to launch.

	max_count: (optional extension) The maximum number of
servers to launch.

	security_groups: A list of security group names

	userdata: user data to pass to be exposed by the metadata
server this can be a file type object as well or a
string.

	key_name: (optional extension) name of previously created
keypair to inject into the instance.

	availability_zone: Name of the availability zone for instance
placement.

	block_device_mapping: (optional) A list of dictionaries representing
legacy block device mappings for this server. See
documentation [https://docs.openstack.org/nova/latest/user/block-device-mapping.html#block-device-mapping-v1-aka-legacy]
for details.

	block_device_mapping_v2: (optional) A list of dictionaries representing
block device mappings for this server. See
v2 documentation [https://docs.openstack.org/nova/latest/user/block-device-mapping.html#block-device-mapping-v2]
for details.

	nics: (optional extension) an ordered list of nics to be
added to this server, with information about
connected networks, fixed IPs, port etc.

	scheduler_hints: (optional extension) arbitrary key-value pairs
specified by the client to help boot an instance

	config_drive: (optional extension) value for config drive
either boolean, or volume-id

	disk_config: (optional extension) control how the disk is
partitioned when the server is created. possible
values are 'AUTO' or 'MANUAL'.

	admin_pass: (optional extension) add a user supplied admin
password.

	timeout: (optional) Seconds to wait, defaults to 60.
See the wait parameter.

	reuse_ips: (optional) Whether to attempt to reuse pre-existing
floating ips should a floating IP be
needed (defaults to True)

	network: (optional) Network dict or name or ID to attach the
server to. Mutually exclusive with the nics parameter.
Can also be be a list of network names or IDs or
network dicts.

	boot_from_volume: Whether to boot from volume. 'boot_volume'
implies True, but boot_from_volume=True with
no boot_volume is valid and will create a
volume from the image and use that.

	volume_size: When booting an image from volume, how big should
the created volume be? Defaults to 50.

	nat_destination: Which network should a created floating IP
be attached to, if it's not possible to
infer from the cloud's configuration.
(Optional, defaults to None)

	group: ServerGroup dict, name or id to boot the server in.
If a group is provided in both scheduler_hints and in
the group param, the group param will win.
(Optional, defaults to None)

Note

If there is anything added, that is not in this list, it can be added to an extras
dictionary for the profile, and that will be to the create_server function.

	
salt.cloud.clouds.openstack.avail_images(conn=None, call=None)

	List available images for OpenStack

CLI Example

salt-cloud -f avail_images myopenstack
salt-cloud --list-images myopenstack

	
salt.cloud.clouds.openstack.avail_sizes(conn=None, call=None)

	List available sizes for OpenStack

CLI Example

salt-cloud -f avail_sizes myopenstack
salt-cloud --list-sizes myopenstack

	
salt.cloud.clouds.openstack.call(conn=None, call=None, kwargs=None)

	Call function from shade.

func

function to call from shade.openstackcloud library

CLI Example

salt-cloud -f call myopenstack func=list_images
t sujksalt-cloud -f call myopenstack func=create_network name=mysubnet

	
salt.cloud.clouds.openstack.create(vm_)

	Create a single VM from a data dict

	
salt.cloud.clouds.openstack.destroy(name, conn=None, call=None)

	Delete a single VM

	
salt.cloud.clouds.openstack.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.openstack.get_conn()

	Return a conn object for the passed VM data

	
salt.cloud.clouds.openstack.get_dependencies()

	Warn if dependencies aren't met.

	
salt.cloud.clouds.openstack.ignore_cidr(vm_, ip)

	Return True if we are to ignore the specified IP.

	
salt.cloud.clouds.openstack.list_networks(conn=None, call=None)

	List networks for OpenStack

CLI Example

salt-cloud -f list_networks myopenstack

	
salt.cloud.clouds.openstack.list_nodes(conn=None, call=None)

	Return a list of VMs

CLI Example

salt-cloud -f list_nodes myopenstack

	
salt.cloud.clouds.openstack.list_nodes_full(conn=None, call=None)

	Return a list of VMs with all the information about them

CLI Example

salt-cloud -f list_nodes_full myopenstack

	
salt.cloud.clouds.openstack.list_nodes_min(conn=None, call=None)

	Return a list of VMs with minimal information

CLI Example

salt-cloud -f list_nodes_min myopenstack

	
salt.cloud.clouds.openstack.list_nodes_select(conn=None, call=None)

	Return a list of VMs with the fields from query.selection

CLI Example

salt-cloud -f list_nodes_full myopenstack

	
salt.cloud.clouds.openstack.list_subnets(conn=None, call=None, kwargs=None)

	List subnets in a virtual network

	network
	network to list subnets of

salt-cloud -f list_subnets myopenstack network=salt-net

	
salt.cloud.clouds.openstack.preferred_ip(vm_, ips)

	Return either an 'ipv4' (default) or 'ipv6' address depending on 'protocol' option.
The list of 'ipv4' IPs is filtered by ignore_cidr() to remove any unreachable private addresses.

	
salt.cloud.clouds.openstack.request_instance(vm_, conn=None, call=None)

	Request an instance to be built

	
salt.cloud.clouds.openstack.show_instance(name, conn=None, call=None)

	Get VM on this OpenStack account

name

name of the instance

CLI Example

salt-cloud -a show_instance myserver

	
salt.cloud.clouds.openstack.ssh_interface(vm_)

	Return the ssh_interface type to connect to. Either 'public_ips' (default)
or 'private_ips'.

salt.cloud.clouds.packet

Packet Cloud Module Using Packet's Python API Client

The Packet cloud module is used to control access to the Packet VPS system.

Use of this module only requires the token parameter.

Set up the cloud configuration at /etc/salt/cloud.providers or /etc/salt/cloud.providers.d/packet.conf:

The Packet profile requires size, image, location, project_id

Optional profile parameters:

	storage_size - min value is 10, defines Gigabytes of storage that will be attached to device.

	storage_tier - storage_1 - Standard Plan, storage_2 - Performance Plan

	snapshot_count - int

	snapshot_frequency - string - possible values:

	1min

	15min

	1hour

	1day

	1week

	1month

	1year

This driver requires Packet's client library: https://pypi.python.org/pypi/packet-python

packet-provider:
 minion:
 master: 192.168.50.10
 driver: packet
 token: ewr23rdf35wC8oNjJrhmHa87rjSXzJyi
 private_key: /root/.ssh/id_rsa

packet-profile:
 provider: packet-provider
 size: baremetal_0
 image: ubuntu_16_04_image
 location: ewr1
 project_id: a64d000b-d47c-4d26-9870-46aac43010a6
 storage_size: 10
 storage_tier: storage_1
 storage_snapshot_count: 1
 storage_snapshot_frequency: 15min

	
salt.cloud.clouds.packet.avail_images(call=None)

	Return available Packet os images.

CLI Example:

salt-cloud --list-images packet-provider
salt-cloud -f avail_images packet-provider

	
salt.cloud.clouds.packet.avail_locations(call=None)

	Return available Packet datacenter locations.

CLI Example:

salt-cloud --list-locations packet-provider
salt-cloud -f avail_locations packet-provider

	
salt.cloud.clouds.packet.avail_projects(call=None)

	Return available Packet projects.

CLI Example:

salt-cloud -f avail_projects packet-provider

	
salt.cloud.clouds.packet.avail_sizes(call=None)

	Return available Packet sizes.

CLI Example:

salt-cloud --list-sizes packet-provider
salt-cloud -f avail_sizes packet-provider

	
salt.cloud.clouds.packet.create(vm_)

	Create a single Packet VM.

	
salt.cloud.clouds.packet.destroy(name, call=None)

	Destroys a Packet device by name.

	name
	The hostname of VM to be be destroyed.

CLI Example:

salt-cloud -d name

	
salt.cloud.clouds.packet.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.packet.get_devices_by_token()

	

	
salt.cloud.clouds.packet.get_image(conn, vm_)

	Return the image object to use

	
salt.cloud.clouds.packet.get_size(conn, vm_)

	Return the VM's size object

	
salt.cloud.clouds.packet.is_profile_configured(vm_)

	

	
salt.cloud.clouds.packet.list_nodes(call=None)

	Returns a list of devices, keeping only a brief listing.

CLI Example:

salt-cloud -Q
salt-cloud --query
salt-cloud -f list_nodes packet-provider

	
salt.cloud.clouds.packet.list_nodes_full(call=None)

	List devices, with all available information.

CLI Example:

salt-cloud -F
salt-cloud --full-query
salt-cloud -f list_nodes_full packet-provider

	
salt.cloud.clouds.packet.list_nodes_min(call=None)

	Return a list of the VMs that are on the provider. Only a list of VM names and
their state is returned. This is the minimum amount of information needed to
check for existing VMs.

New in version 2015.8.0.

CLI Example:

salt-cloud -f list_nodes_min packet-provider
salt-cloud --function list_nodes_min packet-provider

	
salt.cloud.clouds.packet.list_nodes_select(call=None)

	Return a list of the VMs that are on the provider, with select fields.

	
salt.cloud.clouds.packet.script(vm_)

	Return the script deployment object

	
salt.cloud.clouds.packet.show_instance(name, call=None)

	Show the details from the provider concerning an instance

salt.cloud.clouds.parallels

Parallels Cloud Module

The Parallels cloud module is used to control access to cloud providers using
the Parallels VPS system.

	Set up the cloud configuration at /etc/salt/cloud.providers or
	/etc/salt/cloud.providers.d/parallels.conf:

my-parallels-config:
 # Parallels account information
 user: myuser
 password: mypassword
 url: https://api.cloud.xmission.com:4465/paci/v1.0/
 driver: parallels

	
salt.cloud.clouds.parallels.avail_images(call=None)

	Return a list of the images that are on the provider

	
salt.cloud.clouds.parallels.create(vm_)

	Create a single VM from a data dict

	
salt.cloud.clouds.parallels.create_node(vm_)

	Build and submit the XML to create a node

	
salt.cloud.clouds.parallels.destroy(name, call=None)

	Destroy a node.

CLI Example:

salt-cloud --destroy mymachine

	
salt.cloud.clouds.parallels.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.parallels.get_image(vm_)

	Return the image object to use

	
salt.cloud.clouds.parallels.list_nodes(call=None)

	Return a list of the VMs that are on the provider

	
salt.cloud.clouds.parallels.list_nodes_full(call=None)

	Return a list of the VMs that are on the provider

	
salt.cloud.clouds.parallels.list_nodes_select(call=None)

	Return a list of the VMs that are on the provider, with select fields

	
salt.cloud.clouds.parallels.query(action=None, command=None, args=None, method='GET', data=None)

	Make a web call to a Parallels provider

	
salt.cloud.clouds.parallels.script(vm_)

	Return the script deployment object

	
salt.cloud.clouds.parallels.show_image(kwargs, call=None)

	Show the details from Parallels concerning an image

	
salt.cloud.clouds.parallels.show_instance(name, call=None)

	Show the details from Parallels concerning an instance

	
salt.cloud.clouds.parallels.start(name, call=None)

	Start a node.

CLI Example:

salt-cloud -a start mymachine

	
salt.cloud.clouds.parallels.stop(name, call=None)

	Stop a node.

CLI Example:

salt-cloud -a stop mymachine

	
salt.cloud.clouds.parallels.wait_until(name, state, timeout=300)

	Wait until a specific state has been reached on a node

salt.cloud.clouds.profitbricks

ProfitBricks Cloud Module

The ProfitBricks SaltStack cloud module allows a ProfitBricks server to
be automatically deployed and bootstraped with Salt.

	depends:

	profitbrick >= 3.1.0

The module requires ProfitBricks credentials to be supplied along with
an existing virtual datacenter UUID where the server resources will
reside. The server should also be assigned a public LAN, a private LAN,
or both along with SSH key pairs.
...

Set up the cloud configuration at /etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/profitbricks.conf:

my-profitbricks-config:
 driver: profitbricks
 # The ProfitBricks login username
 username: user@example.com
 # The ProfitBricks login password
 password: secretpassword
 # The ProfitBricks virtual datacenter UUID
 datacenter_id: <UUID>
 # SSH private key filename
 ssh_private_key: /path/to/private.key
 # SSH public key filename
 ssh_public_key: /path/to/public.key

my-profitbricks-profile:
 provider: my-profitbricks-config
 # Name of a predefined server size.
 size: Micro Instance
 # Assign CPU family to server.
 cpu_family: INTEL_XEON
 # Number of CPU cores to allocate to node (overrides server size).
 cores: 4
 # Amount of RAM in multiples of 256 MB (overrides server size).
 ram: 4096
 # The server availability zone.
 availability_zone: ZONE_1
 # Name or UUID of the HDD image to use.
 image: <UUID>
 # Image alias could be provided instead of image.
 # Example 'ubuntu:latest'
 #image_alias: <IMAGE_ALIAS>
 # Size of the node disk in GB (overrides server size).
 disk_size: 40
 # Type of disk (HDD or SSD).
 disk_type: SSD
 # Storage availability zone to use.
 disk_availability_zone: ZONE_2
 # Assign the server to the specified public LAN.
 public_lan: <ID>
 # Assign firewall rules to the network interface.
 public_firewall_rules:
 SSH:
 protocol: TCP
 port_range_start: 22
 port_range_end: 22
 # Assign the server to the specified private LAN.
 private_lan: <ID>
 # Enable NAT on the private NIC.
 nat: true
 # Assign additional volumes to the server.
 volumes:
 data-volume:
 disk_size: 500
 disk_availability_zone: ZONE_3
 log-volume:
 disk_size: 50
 disk_type: SSD

To use a private IP for connecting and bootstrapping node:

my-profitbricks-profile:
 ssh_interface: private_lan

Set deploy to False if Salt should not be installed on the node.

my-profitbricks-profile:
 deploy: False

	
salt.cloud.clouds.profitbricks.avail_images(call=None)

	Return a list of the images that are on the provider

	
salt.cloud.clouds.profitbricks.avail_locations(call=None)

	Return a dict of all available VM locations on the cloud provider with
relevant data

	
salt.cloud.clouds.profitbricks.avail_sizes(call=None)

	Return a dict of all available VM sizes on the cloud provider with
relevant data. Latest version can be found at:

	
salt.cloud.clouds.profitbricks.create(vm_)

	Create a single VM from a data dict

	
salt.cloud.clouds.profitbricks.create_datacenter(call=None, kwargs=None)

	Creates a virtual datacenter based on supplied parameters.

CLI Example:

salt-cloud -f create_datacenter profitbricks name=mydatacenter
location=us/las description="my description"

	
salt.cloud.clouds.profitbricks.create_loadbalancer(call=None, kwargs=None)

	Creates a loadbalancer within the datacenter from the provider config.

CLI Example:

salt-cloud -f create_loadbalancer profitbricks name=mylb

	
salt.cloud.clouds.profitbricks.destroy(name, call=None)

	destroy a machine by name

	Parameters:

	
	name -- name given to the machine

	call -- call value in this case is 'action'

	Returns:

	array of booleans , true if successfully stopped and true if
successfully removed

CLI Example:

salt-cloud -d vm_name

	
salt.cloud.clouds.profitbricks.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.profitbricks.get_conn()

	Return a conn object for the passed VM data

	
salt.cloud.clouds.profitbricks.get_datacenter(conn)

	Return the datacenter from the config provider datacenter ID

	
salt.cloud.clouds.profitbricks.get_datacenter_id()

	Return datacenter ID from provider configuration

	
salt.cloud.clouds.profitbricks.get_dependencies()

	Warn if dependencies are not met.

	
salt.cloud.clouds.profitbricks.get_disk_type(vm_)

	Return the type of disk to use. Either 'HDD' (default) or 'SSD'.

	
salt.cloud.clouds.profitbricks.get_image(vm_)

	Return the image object to use

	
salt.cloud.clouds.profitbricks.get_key_filename(vm_)

	Check SSH private key file and return absolute path if exists.

	
salt.cloud.clouds.profitbricks.get_node(conn, name)

	Return a node for the named VM

	
salt.cloud.clouds.profitbricks.get_public_keys(vm_)

	Retrieve list of SSH public keys.

	
salt.cloud.clouds.profitbricks.get_size(vm_)

	Return the VM's size object

	
salt.cloud.clouds.profitbricks.get_wait_timeout(vm_)

	Return the wait_for_timeout for resource provisioning.

	
salt.cloud.clouds.profitbricks.list_datacenters(conn=None, call=None)

	List all the data centers

CLI Example:

salt-cloud -f list_datacenters my-profitbricks-config

	
salt.cloud.clouds.profitbricks.list_images(call=None, kwargs=None)

	List all the images with alias by location

CLI Example:

salt-cloud -f list_images my-profitbricks-config location=us/las

	
salt.cloud.clouds.profitbricks.list_loadbalancers(call=None)

	Return a list of the loadbalancers that are on the provider

	
salt.cloud.clouds.profitbricks.list_nodes(conn=None, call=None)

	Return a list of VMs that are on the provider

	
salt.cloud.clouds.profitbricks.list_nodes_full(conn=None, call=None)

	Return a list of the VMs that are on the provider, with all fields

	
salt.cloud.clouds.profitbricks.reboot(name, call=None)

	reboot a machine by name
:param name: name given to the machine
:param call: call value in this case is 'action'
:return: true if successful

CLI Example:

salt-cloud -a reboot vm_name

	
salt.cloud.clouds.profitbricks.reserve_ipblock(call=None, kwargs=None)

	Reserve the IP Block

	
salt.cloud.clouds.profitbricks.set_public_lan(lan_id)

	Enables public Internet access for the specified public_lan. If no public
LAN is available, then a new public LAN is created.

	
salt.cloud.clouds.profitbricks.show_instance(name, call=None)

	Show the details from the provider concerning an instance

	
salt.cloud.clouds.profitbricks.signal_event(vm_, event, description)

	

	
salt.cloud.clouds.profitbricks.ssh_interface(vm_)

	Return the ssh_interface type to connect to. Either 'public_ips' (default)
or 'private_ips'.

	
salt.cloud.clouds.profitbricks.start(name, call=None)

	start a machine by name
:param name: name given to the machine
:param call: call value in this case is 'action'
:return: true if successful

CLI Example:

salt-cloud -a start vm_name

	
salt.cloud.clouds.profitbricks.stop(name, call=None)

	stop a machine by name
:param name: name given to the machine
:param call: call value in this case is 'action'
:return: true if successful

CLI Example:

salt-cloud -a stop vm_name

	
salt.cloud.clouds.profitbricks.version_compatible(version)

	Checks profitbricks version

salt.cloud.clouds.proxmox

Warning

This module will be removed from Salt in version 3009 in favor of
the proxmox Salt Extension [https://github.com/salt-extensions/saltext-proxmox].

Proxmox Cloud Module

New in version 2014.7.0.

The Proxmox cloud module is used to control access to cloud providers using
the Proxmox system (KVM / OpenVZ / LXC).

	Set up the cloud configuration at /etc/salt/cloud.providers or
	/etc/salt/cloud.providers.d/proxmox.conf:

my-proxmox-config:
 # Proxmox account information
 user: myuser@pam or myuser@pve
 password: mypassword
 url: hypervisor.domain.tld
 port: 8006
 driver: proxmox
 verify_ssl: True

Warning

This cloud provider will be removed from Salt in version 3009.0 in favor of
the saltext.proxmox Salt Extension [https://github.com/salt-extensions/saltext-proxmox]

	maintainer:

	Frank Klaassen <frank@cloudright.nl>

	depends:

	requests >= 2.2.1

	depends:

	IPy >= 0.81

	
salt.cloud.clouds.proxmox.avail_images(call=None, location='local')

	Return a list of the images that are on the provider

CLI Example:

salt-cloud --list-images my-proxmox-config

	
salt.cloud.clouds.proxmox.avail_locations(call=None)

	Return a list of the hypervisors (nodes) which this Proxmox PVE machine manages

CLI Example:

salt-cloud --list-locations my-proxmox-config

	
salt.cloud.clouds.proxmox.create(vm_)

	Create a single VM from a data dict

CLI Example:

salt-cloud -p proxmox-ubuntu vmhostname

	
salt.cloud.clouds.proxmox.create_node(vm_, newid)

	Build and submit the requestdata to create a new node

	
salt.cloud.clouds.proxmox.destroy(name, call=None)

	Destroy a node.

CLI Example:

salt-cloud --destroy mymachine

	
salt.cloud.clouds.proxmox.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.proxmox.get_dependencies()

	Warn if dependencies aren't met.

	
salt.cloud.clouds.proxmox.get_resources_nodes(call=None, resFilter=None)

	Retrieve all hypervisors (nodes) available on this environment

CLI Example:

salt-cloud -f get_resources_nodes my-proxmox-config

	
salt.cloud.clouds.proxmox.get_resources_vms(call=None, resFilter=None, includeConfig=True)

	Retrieve all VMs available on this environment

CLI Example:

salt-cloud -f get_resources_vms my-proxmox-config

	
salt.cloud.clouds.proxmox.get_vm_status(vmid=None, name=None)

	Get the status for a VM, either via the ID or the hostname

	
salt.cloud.clouds.proxmox.get_vmconfig(vmid, node=None, node_type='openvz')

	Get VM configuration

	
salt.cloud.clouds.proxmox.ignore_cidr(vm_, ip)

	Return True if we are to ignore the specified IP.

	
salt.cloud.clouds.proxmox.list_nodes(call=None)

	Return a list of the VMs that are managed by the provider

CLI Example:

salt-cloud -Q my-proxmox-config

	
salt.cloud.clouds.proxmox.list_nodes_full(call=None)

	Return a list of the VMs that are on the provider

CLI Example:

salt-cloud -F my-proxmox-config

	
salt.cloud.clouds.proxmox.list_nodes_select(call=None)

	Return a list of the VMs that are on the provider, with select fields

CLI Example:

salt-cloud -S my-proxmox-config

	
salt.cloud.clouds.proxmox.preferred_ip(vm_, ips)

	Return either an 'ipv4' (default) or 'ipv6' address depending on 'protocol' option.
The list of 'ipv4' IPs is filtered by ignore_cidr() to remove any unreachable private addresses.

	
salt.cloud.clouds.proxmox.query(conn_type, option, post_data=None)

	Execute the HTTP request to the API

	
salt.cloud.clouds.proxmox.script(vm_)

	Return the script deployment object

	
salt.cloud.clouds.proxmox.set_vm_status(status, name=None, vmid=None)

	Convenience function for setting VM status

	
salt.cloud.clouds.proxmox.show_instance(name, call=None)

	Show the details from Proxmox concerning an instance

	
salt.cloud.clouds.proxmox.shutdown(name=None, vmid=None, call=None)

	Shutdown a node via ACPI.

CLI Example:

salt-cloud -a shutdown mymachine

	
salt.cloud.clouds.proxmox.start(name, vmid=None, call=None)

	Start a node.

CLI Example:

salt-cloud -a start mymachine

	
salt.cloud.clouds.proxmox.stop(name, vmid=None, call=None)

	Stop a node ("pulling the plug").

CLI Example:

salt-cloud -a stop mymachine

	
salt.cloud.clouds.proxmox.wait_for_created(upid, timeout=300)

	Wait until a the vm has been created successfully

	
salt.cloud.clouds.proxmox.wait_for_state(vmid, state, timeout=300)

	Wait until a specific state has been reached on a node

salt.cloud.clouds.pyrax

Pyrax Cloud Module

PLEASE NOTE: This module is currently in early development, and considered to
be experimental and unstable. It is not recommended for production use. Unless
you are actively developing code in this module, you should use the OpenStack
module instead.

	
salt.cloud.clouds.pyrax.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.pyrax.get_conn(conn_type)

	Return a conn object for the passed VM data

	
salt.cloud.clouds.pyrax.get_dependencies()

	Warn if dependencies aren't met.

	
salt.cloud.clouds.pyrax.queues_create(call, kwargs)

	

	
salt.cloud.clouds.pyrax.queues_delete(call, kwargs)

	

	
salt.cloud.clouds.pyrax.queues_exists(call, kwargs)

	

	
salt.cloud.clouds.pyrax.queues_show(call, kwargs)

	

salt.cloud.clouds.qingcloud

QingCloud Cloud Module

New in version 2015.8.0.

The QingCloud cloud module is used to control access to the QingCloud.
http://www.qingcloud.com/

Use of this module requires the access_key_id, secret_access_key,
zone and key_filename parameter to be set.

Set up the cloud configuration at /etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/qingcloud.conf:

my-qingcloud:
 driver: qingcloud
 access_key_id: AKIDMRTGYONNLTFFRBQJ
 secret_access_key: clYwH21U5UOmcov4aNV2V2XocaHCG3JZGcxEczFu
 zone: pek2
 key_filename: /path/to/your.pem

	depends:

	requests

	
salt.cloud.clouds.qingcloud.avail_images(kwargs=None, call=None)

	Return a list of the images that are on the provider.

CLI Examples:

salt-cloud --list-images my-qingcloud
salt-cloud -f avail_images my-qingcloud zone=gd1

	
salt.cloud.clouds.qingcloud.avail_locations(call=None)

	Return a dict of all available locations on the provider with
relevant data.

CLI Examples:

salt-cloud --list-locations my-qingcloud

	
salt.cloud.clouds.qingcloud.avail_sizes(kwargs=None, call=None)

	Return a list of the instance sizes that are on the provider.

CLI Examples:

salt-cloud --list-sizes my-qingcloud
salt-cloud -f avail_sizes my-qingcloud zone=pek2

	
salt.cloud.clouds.qingcloud.create(vm_)

	Create a single instance from a data dict.

CLI Examples:

salt-cloud -p qingcloud-ubuntu-c1m1 hostname1
salt-cloud -m /path/to/mymap.sls -P

	
salt.cloud.clouds.qingcloud.destroy(instance_id, call=None)

	Destroy an instance.

CLI Example:

salt-cloud -a destroy i-2f733r5n
salt-cloud -d i-2f733r5n

	
salt.cloud.clouds.qingcloud.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.qingcloud.get_dependencies()

	Warn if dependencies aren't met.

	
salt.cloud.clouds.qingcloud.list_nodes(call=None)

	Return a list of the instances that are on the provider.

CLI Examples:

salt-cloud -Q my-qingcloud

	
salt.cloud.clouds.qingcloud.list_nodes_full(call=None)

	Return a list of the instances that are on the provider.

CLI Examples:

salt-cloud -F my-qingcloud

	
salt.cloud.clouds.qingcloud.list_nodes_min(call=None)

	Return a list of the instances that are on the provider. Only a list of
instances names, and their state, is returned.

CLI Examples:

salt-cloud -f list_nodes_min my-qingcloud

	
salt.cloud.clouds.qingcloud.list_nodes_select(call=None)

	Return a list of the instances that are on the provider, with selected
fields.

CLI Examples:

salt-cloud -S my-qingcloud

	
salt.cloud.clouds.qingcloud.query(params=None)

	Make a web call to QingCloud IaaS API.

	
salt.cloud.clouds.qingcloud.reboot(instance_id, call=None)

	Reboot an instance.

CLI Examples:

salt-cloud -a reboot i-2f733r5n

	
salt.cloud.clouds.qingcloud.script(vm_)

	Return the script deployment object.

	
salt.cloud.clouds.qingcloud.show_image(kwargs, call=None)

	Show the details from QingCloud concerning an image.

CLI Examples:

salt-cloud -f show_image my-qingcloud image=trustysrvx64c
salt-cloud -f show_image my-qingcloud image=trustysrvx64c,coreos4
salt-cloud -f show_image my-qingcloud image=trustysrvx64c zone=ap1

	
salt.cloud.clouds.qingcloud.show_instance(instance_id, call=None, kwargs=None)

	Show the details from QingCloud concerning an instance.

CLI Examples:

salt-cloud -a show_instance i-2f733r5n

	
salt.cloud.clouds.qingcloud.start(instance_id, call=None)

	Start an instance.

CLI Examples:

salt-cloud -a start i-2f733r5n

	
salt.cloud.clouds.qingcloud.stop(instance_id, force=False, call=None)

	Stop an instance.

CLI Examples:

salt-cloud -a stop i-2f733r5n
salt-cloud -a stop i-2f733r5n force=True

salt.cloud.clouds.saltify

Saltify Module

The Saltify module is designed to install Salt on a remote machine, virtual or
bare metal, using SSH. This module is useful for provisioning machines which
are already installed, but not Salted.

Changed in version 2018.3.0: The wake_on_lan capability, and actions destroy, reboot, and query functions were added.

Use of this module requires some configuration in cloud profile and provider
files as described in the
Getting Started with Saltify documentation.

	
salt.cloud.clouds.saltify.avail_images(call=None)

	This function returns a list of images available for this cloud provider.

salt-cloud --list-images saltify

returns a list of available profiles.

New in version 2018.3.0.

	
salt.cloud.clouds.saltify.avail_locations(call=None)

	This function returns a list of locations available.

salt-cloud --list-locations my-cloud-provider

[saltify will always return an empty dictionary]

	
salt.cloud.clouds.saltify.avail_sizes(call=None)

	This function returns a list of sizes available for this cloud provider.

salt-cloud --list-sizes saltify

[saltify always returns an empty dictionary]

	
salt.cloud.clouds.saltify.create(vm_)

	if configuration parameter deploy is True,

Provision a single machine, adding its keys to the salt master

else,

Test ssh connections to the machine

Configuration parameters:

	deploy: (see above)

	provider: name of entry in salt/cloud.providers.d/??? file

	ssh_host: IP address or DNS name of the new machine

	ssh_username: name used to log in to the new machine

	ssh_password: password to log in (unless key_filename is used)

	key_filename: (optional) SSH private key for passwordless login

	ssh_port: (default=22) TCP port for SSH connection

	wake_on_lan_mac: (optional) hardware (MAC) address for wake on lan

	wol_sender_node: (optional) salt minion to send wake on lan command

	wol_boot_wait: (default=30) seconds to delay while client boots

	force_minion_config: (optional) replace the minion configuration files on the new machine

See also
Miscellaneous Salt Cloud Options
and
Getting Started with Saltify

CLI Example:

salt-cloud -p mymachine my_new_id

	
salt.cloud.clouds.saltify.destroy(name, call=None)

	Destroy a node.

New in version 2018.3.0.

Disconnect a minion from the master, and remove its keys.

	Optionally, (if remove_config_on_destroy is True),
	disables salt-minion from running on the minion, and
erases the Salt configuration files from it.

	Optionally, (if shutdown_on_destroy is True),
	orders the minion to halt.

CLI Example:

salt-cloud --destroy mymachine

	
salt.cloud.clouds.saltify.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.saltify.list_nodes(call=None)

	List the nodes which have salt-cloud:driver:saltify grains.

salt-cloud -Q

returns a list of dictionaries of defined standard fields.

New in version 2018.3.0.

	
salt.cloud.clouds.saltify.list_nodes_full(call=None)

	Lists complete information for all nodes.

salt-cloud -F

returns a list of dictionaries.

for 'saltify' minions, returns dict of grains (enhanced).

New in version 2018.3.0.

	
salt.cloud.clouds.saltify.list_nodes_select(call=None)

	Return a list of the minions that have salt-cloud grains, with
select fields.

	
salt.cloud.clouds.saltify.reboot(name, call=None)

	Reboot a saltify minion.

New in version 2018.3.0.

	name
	The name of the VM to reboot.

CLI Example:

salt-cloud -a reboot vm_name

	
salt.cloud.clouds.saltify.show_instance(name, call=None)

	List the a single node, return dict of grains.

salt.cloud.clouds.scaleway

Scaleway Cloud Module

New in version 2015.8.0.

The Scaleway cloud module is used to interact with your Scaleway BareMetal
Servers.

Use of this module only requires the api_key parameter to be set. Set up
the cloud configuration at /etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/scaleway.conf:

scaleway-config:
 # Scaleway organization and token
 access_key: 0e604a2c-aea6-4081-acb2-e1d1258ef95c
 token: be8fd96b-04eb-4d39-b6ba-a9edbcf17f12
 driver: scaleway

	
salt.cloud.clouds.scaleway.avail_images(call=None)

	Return a list of the images that are on the provider.

	
salt.cloud.clouds.scaleway.create(server_)

	Create a single BareMetal server from a data dict.

	
salt.cloud.clouds.scaleway.create_node(args)

	Create a node.

	
salt.cloud.clouds.scaleway.destroy(name, call=None)

	Destroy a node. Will check termination protection and warn if enabled.

CLI Example:

salt-cloud --destroy mymachine

	
salt.cloud.clouds.scaleway.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.scaleway.get_image(server_)

	Return the image object to use.

	
salt.cloud.clouds.scaleway.list_nodes(call=None)

	Return a list of the BareMetal servers that are on the provider.

	
salt.cloud.clouds.scaleway.list_nodes_full(call=None)

	Return a list of the BareMetal servers that are on the provider.

	
salt.cloud.clouds.scaleway.list_nodes_select(call=None)

	Return a list of the BareMetal servers that are on the provider, with
select fields.

	
salt.cloud.clouds.scaleway.query(method='servers', server_id=None, command=None, args=None, http_method='GET', root='api_root')

	Make a call to the Scaleway API.

	
salt.cloud.clouds.scaleway.script(server_)

	Return the script deployment object.

	
salt.cloud.clouds.scaleway.show_instance(name, call=None)

	Show the details from a Scaleway BareMetal server.

salt.cloud.clouds.softlayer

SoftLayer Cloud Module

The SoftLayer cloud module is used to control access to the SoftLayer VPS
system.

Use of this module only requires the apikey parameter. Set up the cloud
configuration at:

/etc/salt/cloud.providers or /etc/salt/cloud.providers.d/softlayer.conf:

my-softlayer-config:
 # SoftLayer account api key
 user: MYLOGIN
 apikey: JVkbSJDGHSDKUKSDJfhsdklfjgsjdkflhjlsdfffhgdgjkenrtuinv
 driver: softlayer

The SoftLayer Python Library needs to be installed in order to use the
SoftLayer salt.cloud modules. See: https://pypi.python.org/pypi/SoftLayer

	depends:

	softlayer

	
salt.cloud.clouds.softlayer.avail_images(call=None)

	Return a dict of all available VM images on the cloud provider.

	
salt.cloud.clouds.softlayer.avail_locations(call=None)

	List all available locations

	
salt.cloud.clouds.softlayer.avail_sizes(call=None)

	Return a dict of all available VM sizes on the cloud provider with
relevant data. This data is provided in three dicts.

	
salt.cloud.clouds.softlayer.create(vm_)

	Create a single VM from a data dict

	
salt.cloud.clouds.softlayer.destroy(name, call=None)

	Destroy a node.

CLI Example:

salt-cloud --destroy mymachine

	
salt.cloud.clouds.softlayer.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.softlayer.get_conn(service='SoftLayer_Virtual_Guest')

	Return a conn object for the passed VM data

	
salt.cloud.clouds.softlayer.get_dependencies()

	Warn if dependencies aren't met.

	
salt.cloud.clouds.softlayer.get_location(vm_=None)

	
	Return the location to use, in this order:
	
	CLI parameter

	VM parameter

	Cloud profile setting

	
salt.cloud.clouds.softlayer.list_custom_images(call=None)

	Return a dict of all custom VM images on the cloud provider.

	
salt.cloud.clouds.softlayer.list_nodes(call=None)

	Return a list of the VMs that are on the provider

	
salt.cloud.clouds.softlayer.list_nodes_full(mask='mask[id]', call=None)

	Return a list of the VMs that are on the provider

	
salt.cloud.clouds.softlayer.list_nodes_select(call=None)

	Return a list of the VMs that are on the provider, with select fields

	
salt.cloud.clouds.softlayer.list_vlans(call=None)

	List all VLANs associated with the account

	
salt.cloud.clouds.softlayer.script(vm_)

	Return the script deployment object

	
salt.cloud.clouds.softlayer.show_instance(name, call=None)

	Show the details from SoftLayer concerning a guest

salt.cloud.clouds.softlayer_hw

SoftLayer HW Cloud Module

The SoftLayer HW cloud module is used to control access to the SoftLayer
hardware cloud system

Use of this module only requires the apikey parameter. Set up the cloud
configuration at:

/etc/salt/cloud.providers or /etc/salt/cloud.providers.d/softlayer.conf:

my-softlayer-config:
 # SoftLayer account api key
 user: MYLOGIN
 apikey: JVkbSJDGHSDKUKSDJfhsdklfjgsjdkflhjlsdfffhgdgjkenrtuinv
 driver: softlayer_hw

The SoftLayer Python Library needs to be installed in order to use the
SoftLayer salt.cloud modules. See: https://pypi.python.org/pypi/SoftLayer

	depends:

	softlayer

	
salt.cloud.clouds.softlayer_hw.avail_images(call=None)

	Return a dict of all available VM images on the cloud provider.

	
salt.cloud.clouds.softlayer_hw.avail_locations(call=None)

	List all available locations

	
salt.cloud.clouds.softlayer_hw.avail_sizes(call=None)

	Return a dict of all available VM sizes on the cloud provider with
relevant data. This data is provided in three dicts.

	
salt.cloud.clouds.softlayer_hw.create(vm_)

	Create a single VM from a data dict

	
salt.cloud.clouds.softlayer_hw.destroy(name, call=None)

	Destroy a node.

CLI Example:

salt-cloud --destroy mymachine

	
salt.cloud.clouds.softlayer_hw.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.softlayer_hw.get_conn(service='SoftLayer_Hardware')

	Return a conn object for the passed VM data

	
salt.cloud.clouds.softlayer_hw.get_dependencies()

	Warn if dependencies aren't met.

	
salt.cloud.clouds.softlayer_hw.get_location(vm_=None)

	
	Return the location to use, in this order:
	
	CLI parameter

	VM parameter

	Cloud profile setting

	
salt.cloud.clouds.softlayer_hw.list_nodes(call=None)

	Return a list of the VMs that are on the provider

	
salt.cloud.clouds.softlayer_hw.list_nodes_full(mask='mask[id, hostname, primaryIpAddress, primaryBackendIpAddress, processorPhysicalCoreAmount, memoryCount]', call=None)

	Return a list of the VMs that are on the provider

	
salt.cloud.clouds.softlayer_hw.list_nodes_select(call=None)

	Return a list of the VMs that are on the provider, with select fields

	
salt.cloud.clouds.softlayer_hw.list_vlans(call=None)

	List all VLANs associated with the account

	
salt.cloud.clouds.softlayer_hw.script(vm_)

	Return the script deployment object

	
salt.cloud.clouds.softlayer_hw.show_all_categories(call=None)

	Return a dict of all available categories on the cloud provider.

New in version 2016.3.0.

	
salt.cloud.clouds.softlayer_hw.show_all_prices(call=None, kwargs=None)

	Return a dict of all prices on the cloud provider.

	
salt.cloud.clouds.softlayer_hw.show_instance(name, call=None)

	Show the details from SoftLayer concerning a guest

	
salt.cloud.clouds.softlayer_hw.show_pricing(kwargs=None, call=None)

	Show pricing for a particular profile. This is only an estimate, based on
unofficial pricing sources.

CLI Examples:

salt-cloud -f show_pricing my-softlayerhw-config profile=my-profile

If pricing sources have not been cached, they will be downloaded. Once they
have been cached, they will not be updated automatically. To manually update
all prices, use the following command:

salt-cloud -f update_pricing <provider>

New in version 2015.8.0.

salt.cloud.clouds.tencentcloud

Tencent Cloud Cloud Module

New in version 3000.

The Tencent Cloud Cloud Module is used to control access to the Tencent Cloud instance.
https://intl.cloud.tencent.com/

	To use this module, set up the cloud configuration at
	/etc/salt/cloud.providers or /etc/salt/cloud.providers.d/*.conf:

my-tencentcloud-config:
 driver: tencentcloud
 # Tencent Cloud Secret Id
 id: AKIDA64pOio9BMemkApzevX0HS169S4b750A
 # Tencent Cloud Secret Key
 key: 8r2xmPn0C5FDvRAlmcJimiTZKVRsk260
 # Tencent Cloud Region
 location: ap-guangzhou

	depends:

	tencentcloud-sdk-python

	
salt.cloud.clouds.tencentcloud.avail_images(call=None)

	Return Tencent Cloud available image

CLI Example:

salt-cloud --list-images my-tencentcloud-config
salt-cloud -f avail_images my-tencentcloud-config

	
salt.cloud.clouds.tencentcloud.avail_locations(call=None)

	Return Tencent Cloud available region

CLI Example:

salt-cloud --list-locations my-tencentcloud-config
salt-cloud -f avail_locations my-tencentcloud-config

	
salt.cloud.clouds.tencentcloud.avail_sizes(call=None)

	Return Tencent Cloud available instance type

CLI Example:

salt-cloud --list-sizes my-tencentcloud-config
salt-cloud -f avail_sizes my-tencentcloud-config

	
salt.cloud.clouds.tencentcloud.create(vm_)

	Create a single Tencent Cloud instance from a data dict.

Tencent Cloud profiles require a provider, availability_zone, image and size.
Set up profile at /etc/salt/cloud.profiles or /etc/salt/cloud.profiles.d/*.conf:

tencentcloud-guangzhou-s1sm1:
 provider: my-tencentcloud-config
 availability_zone: ap-guangzhou-3
 image: img-31tjrtph
 size: S1.SMALL1
 allocate_public_ip: True
 internet_max_bandwidth_out: 1
 password: '153e41ec96140152'
 securitygroups:
 - sg-5e90804b

CLI Examples:

salt-cloud -p tencentcloud-guangzhou-s1 myinstance

	
salt.cloud.clouds.tencentcloud.destroy(name, call=None)

	Destroy a Tencent Cloud instance

CLI Example:

salt-cloud -a destroy myinstance
salt-cloud -d myinstance

	
salt.cloud.clouds.tencentcloud.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.tencentcloud.get_dependencies()

	Warn if dependencies aren't met.

	
salt.cloud.clouds.tencentcloud.get_provider_client(name=None)

	Return a new provider client

	
salt.cloud.clouds.tencentcloud.list_availability_zones(call=None)

	Return all Tencent Cloud availability zones in current region

CLI Example:

salt-cloud -f list_availability_zones my-tencentcloud-config

	
salt.cloud.clouds.tencentcloud.list_custom_images(call=None)

	Return all Tencent Cloud images in current region

CLI Example:

salt-cloud -f list_custom_images my-tencentcloud-config

	
salt.cloud.clouds.tencentcloud.list_nodes(call=None)

	Return a list of instances that are on the provider

CLI Examples:

salt-cloud -Q

	
salt.cloud.clouds.tencentcloud.list_nodes_full(call=None)

	Return a list of instances that are on the provider, with full details

CLI Examples:

salt-cloud -F

	
salt.cloud.clouds.tencentcloud.list_nodes_min(call=None)

	Return a list of instances that are on the provider, Only names, and their state, is returned.

CLI Examples:

salt-cloud -f list_nodes_min my-tencentcloud-config

	
salt.cloud.clouds.tencentcloud.list_nodes_select(call=None)

	Return a list of instances that are on the provider, with select fields

CLI Examples:

salt-cloud -S

	
salt.cloud.clouds.tencentcloud.list_securitygroups(call=None)

	Return all Tencent Cloud security groups in current region

CLI Example:

salt-cloud -f list_securitygroups my-tencentcloud-config

	
salt.cloud.clouds.tencentcloud.reboot(name, call=None)

	Reboot a Tencent Cloud instance

CLI Examples:

salt-cloud -a reboot myinstance

	
salt.cloud.clouds.tencentcloud.script(vm_)

	Return the script deployment object

	
salt.cloud.clouds.tencentcloud.show_disk(name, call=None)

	Show the disk details of Tencent Cloud instance

CLI Examples:

salt-cloud -a show_disk myinstance

	
salt.cloud.clouds.tencentcloud.show_image(kwargs, call=None)

	Show the details of Tencent Cloud image

CLI Examples:

salt-cloud -f show_image tencentcloud image=img-31tjrtph

	
salt.cloud.clouds.tencentcloud.show_instance(name, call=None)

	Show the details of Tencent Cloud instance

CLI Examples:

salt-cloud -a show_instance myinstance

	
salt.cloud.clouds.tencentcloud.start(name, call=None)

	Start a Tencent Cloud instance
Notice: the instance state must be stopped

CLI Examples:

salt-cloud -a start myinstance

	
salt.cloud.clouds.tencentcloud.stop(name, force=False, call=None)

	Stop a Tencent Cloud running instance
Note: use force=True to make force stop

CLI Examples:

salt-cloud -a stop myinstance
salt-cloud -a stop myinstance force=True

salt.cloud.clouds.vagrant

Vagrant Cloud Driver

The Vagrant cloud is designed to "vagrant up" a virtual machine as a
Salt minion.

Use of this module requires some configuration in cloud profile and provider
files as described in the
Getting Started with Vagrant documentation.

New in version 2018.3.0.

	
salt.cloud.clouds.vagrant.avail_images(call=None)

	This function returns a list of images available for this cloud provider.
vagrant will return a list of profiles.
salt-cloud --list-images my-cloud-provider

	
salt.cloud.clouds.vagrant.avail_locations(call=None)

	This function returns a list of locations available.

CLI Example:

salt-cloud --list-locations my-cloud-provider

\[vagrant will always returns an empty dictionary \]

	
salt.cloud.clouds.vagrant.avail_sizes(call=None)

	This function returns a list of sizes available for this cloud provider.

CLI Example:

salt-cloud --list-sizes my-cloud-provider

\[vagrant always returns an empty dictionary \]

	
salt.cloud.clouds.vagrant.create(vm_)

	Provision a single machine

CLI Example:

salt-cloud -p my_profile new_node_1

	
salt.cloud.clouds.vagrant.destroy(name, call=None)

	Destroy a node.

CLI Example:

salt-cloud --destroy mymachine

	
salt.cloud.clouds.vagrant.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.vagrant.list_nodes(call=None)

	List the nodes which have salt-cloud:driver:vagrant grains.

CLI Example:

salt-cloud -Q

	
salt.cloud.clouds.vagrant.list_nodes_full(call=None)

	List the nodes, ask all 'vagrant' minions, return dict of grains (enhanced).

CLI Example:

salt-call -F

	
salt.cloud.clouds.vagrant.list_nodes_select(call=None)

	Return a list of the minions that have salt-cloud grains, with
select fields.

	
salt.cloud.clouds.vagrant.reboot(name, call=None)

	Reboot a vagrant minion.

	name
	The name of the VM to reboot.

CLI Example:

salt-cloud -a reboot vm_name

	
salt.cloud.clouds.vagrant.show_instance(name, call=None)

	List the a single node, return dict of grains.

salt.cloud.clouds.virtualbox

A salt cloud provider that lets you use virtualbox on your machine
and act as a cloud.

	depends:

	vboxapi

For now this will only clone existing VMs. It's best to create a template
from which we will clone.

Followed
https://docs.saltproject.io/en/latest/topics/cloud/cloud.html#non-libcloud-based-modules
to create this.

	Dicts provided by salt:
	
	__opts__contains the options used to run Salt Cloud,
	as well as a set of configuration and environment variables

	
salt.cloud.clouds.virtualbox.create(vm_info)

	Creates a virtual machine from the given VM information

This is what is used to request a virtual machine to be created by the
cloud provider, wait for it to become available, and then (optionally) log
in and install Salt on it.

Events fired:

This function fires the event salt/cloud/vm_name/creating, with the
payload containing the names of the VM, profile, and provider.

@param vm_info

{
 name: <str>
 profile: <dict>
 driver: <provider>:<profile>
 clonefrom: <vm_name>
 clonemode: <mode> (default: state, choices: state, child, all)
}

@type vm_info dict
@return dict of resulting vm. !!!Passwords can and should be included!!!

	
salt.cloud.clouds.virtualbox.destroy(name, call=None)

	This function irreversibly destroys a virtual machine on the cloud provider.
Before doing so, it should fire an event on the Salt event bus.

The tag for this event is salt/cloud/<vm name>/destroying.
Once the virtual machine has been destroyed, another event is fired.
The tag for that event is salt/cloud/<vm name>/destroyed.

	Dependencies:
	list_nodes

@param name:
@type name: str
@param call:
@type call:
@return: True if all went well, otherwise an error message
@rtype: bool|str

	
salt.cloud.clouds.virtualbox.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.virtualbox.list_nodes(kwargs=None, call=None)

	This function returns a list of nodes available on this cloud provider, using the following fields:

id (str)
image (str)
size (str)
state (str)
private_ips (list)
public_ips (list)

No other fields should be returned in this function, and all of these fields should be returned, even if empty.
The private_ips and public_ips fields should always be of a list type, even if empty,
and the other fields should always be of a str type.
This function is normally called with the -Q option:

salt-cloud -Q

@param kwargs:
@type kwargs:
@param call:
@type call:
@return:
@rtype:

	
salt.cloud.clouds.virtualbox.list_nodes_full(kwargs=None, call=None)

	All information available about all nodes should be returned in this function.
The fields in the list_nodes() function should also be returned,
even if they would not normally be provided by the cloud provider.

This is because some functions both within Salt and 3rd party will break if an expected field is not present.
This function is normally called with the -F option:

salt-cloud -F

@param kwargs:
@type kwargs:
@param call:
@type call:
@return:
@rtype:

	
salt.cloud.clouds.virtualbox.list_nodes_select(call=None)

	Return a list of the VMs that are on the provider, with select fields

	
salt.cloud.clouds.virtualbox.map_clonemode(vm_info)

	Convert the virtualbox config file values for clone_mode into the integers the API requires

	
salt.cloud.clouds.virtualbox.show_image(kwargs, call=None)

	Show the details of an image

	
salt.cloud.clouds.virtualbox.start(name, call=None)

	Start a machine.
@param name: Machine to start
@type name: str
@param call: Must be "action"
@type call: str

	
salt.cloud.clouds.virtualbox.stop(name, call=None)

	Stop a running machine.
@param name: Machine to stop
@type name: str
@param call: Must be "action"
@type call: str

salt.cloud.clouds.vmware

VMware Cloud Module

New in version 2015.5.4.

The VMware cloud module allows you to manage VMware ESX, ESXi, and vCenter.

See Getting started with VMware to get started.

	codeauthor:

	Nitin Madhok <nmadhok@g.clemson.edu>

Dependencies

	pyVmomi Python Module

pyVmomi

PyVmomi can be installed via pip:

pip install pyVmomi

Note

Version 6.0 of pyVmomi has some problems with SSL error handling on certain
versions of Python. If using version 6.0 of pyVmomi, Python 2.6,
Python 2.7.9, or newer must be present. This is due to an upstream dependency
in pyVmomi 6.0 that is not supported in Python versions 2.7 to 2.7.8. If the
version of Python is not in the supported range, you will need to install an
earlier version of pyVmomi. See Issue #29537 [https://github.com/saltstack/salt/issues/29537] for more information.

Based on the note above, to install an earlier version of pyVmomi than the
version currently listed in PyPi, run the following:

pip install pyVmomi==5.5.0.2014.1.1

The 5.5.0.2014.1.1 is a known stable version that this original VMware cloud
driver was developed against.

Note

Ensure python pyVmomi module is installed by running following one-liner
check. The output should be 0.

python -c "import pyVmomi" ; echo $?

Configuration

To use this module, set up the vCenter or ESX/ESXi URL, username and password in the
cloud configuration at
/etc/salt/cloud.providers or /etc/salt/cloud.providers.d/vmware.conf:

my-vmware-config:
 driver: vmware
 user: 'DOMAIN\user'
 password: 'verybadpass'
 url: '10.20.30.40'

vcenter01:
 driver: vmware
 user: 'DOMAIN\user'
 password: 'verybadpass'
 url: 'vcenter01.domain.com'
 protocol: 'https'
 port: 443

vcenter02:
 driver: vmware
 user: 'DOMAIN\user'
 password: 'verybadpass'
 url: 'vcenter02.domain.com'
 protocol: 'http'
 port: 80

esx01:
 driver: vmware
 user: 'admin'
 password: 'verybadpass'
 url: 'esx01.domain.com'

Note

Optionally, protocol and port can be specified if the vCenter
server is not using the defaults. Default is protocol: https and
port: 443.

Note

Changed in version 2015.8.0.

The provider parameter in cloud provider configuration was renamed to driver.
This change was made to avoid confusion with the provider parameter that is
used in cloud profile configuration. Cloud provider configuration now uses driver
to refer to the salt-cloud driver that provides the underlying functionality to
connect to a cloud provider, while cloud profile configuration continues to use
provider to refer to the cloud provider configuration that you define.

To test the connection for my-vmware-config specified in the cloud
configuration, run test_vcenter_connection()

	
salt.cloud.clouds.vmware.add_host(kwargs=None, call=None)

	Add a host system to the specified cluster or datacenter in this VMware environment

Note

To use this function, you need to specify esxi_host_user and
esxi_host_password under your provider configuration set up at
/etc/salt/cloud.providers or /etc/salt/cloud.providers.d/vmware.conf:

vcenter01:
 driver: vmware
 user: 'DOMAIN\user'
 password: 'verybadpass'
 url: 'vcenter01.domain.com'

 # Required when adding a host system
 esxi_host_user: 'root'
 esxi_host_password: 'myhostpassword'
 # Optional fields that can be specified when adding a host system
 esxi_host_ssl_thumbprint: '12:A3:45:B6:CD:7E:F8:90:A1:BC:23:45:D6:78:9E:FA:01:2B:34:CD'

The SSL thumbprint of the host system can be optionally specified by setting
esxi_host_ssl_thumbprint under your provider configuration. To get the SSL
thumbprint of the host system, execute the following command from a remote
server:

echo -n | openssl s_client -connect <YOUR-HOSTSYSTEM-DNS/IP>:443 2>/dev/null | openssl x509 -noout -fingerprint -sha1

CLI Example:

salt-cloud -f add_host my-vmware-config host="myHostSystemName" cluster="myClusterName"
salt-cloud -f add_host my-vmware-config host="myHostSystemName" datacenter="myDatacenterName"

	
salt.cloud.clouds.vmware.avail_images(call=None)

	Return a list of all the templates present in this VMware environment with basic
details

CLI Example:

salt-cloud --list-images my-vmware-config

	
salt.cloud.clouds.vmware.avail_locations(call=None)

	Return a list of all the available locations/datacenters in this VMware environment

CLI Example:

salt-cloud --list-locations my-vmware-config

	
salt.cloud.clouds.vmware.avail_sizes(call=None)

	Return a list of all the available sizes in this VMware environment.

CLI Example:

salt-cloud --list-sizes my-vmware-config

Note

Since sizes are built into templates, this function will return
an empty dictionary.

	
salt.cloud.clouds.vmware.build_clonespec(config_spec, object_ref, reloc_spec, template)

	Returns the clone spec

	
salt.cloud.clouds.vmware.connect_host(kwargs=None, call=None)

	Connect the specified host system in this VMware environment

CLI Example:

salt-cloud -f connect_host my-vmware-config host="myHostSystemName"

	
salt.cloud.clouds.vmware.convert_to_template(name, kwargs=None, call=None)

	Convert the specified virtual machine to template.

CLI Example:

salt-cloud -a convert_to_template vmname

	
salt.cloud.clouds.vmware.create(vm_)

	To create a single VM in the VMware environment.

Sample profile and arguments that can be specified in it can be found
here.

CLI Example:

salt-cloud -p vmware-centos6.5 vmname

	
salt.cloud.clouds.vmware.create_cluster(kwargs=None, call=None)

	Create a new cluster under the specified datacenter in this VMware environment

CLI Example:

salt-cloud -f create_cluster my-vmware-config name="myNewCluster" datacenter="datacenterName"

	
salt.cloud.clouds.vmware.create_datacenter(kwargs=None, call=None)

	Create a new data center in this VMware environment

CLI Example:

salt-cloud -f create_datacenter my-vmware-config name="MyNewDatacenter"

	
salt.cloud.clouds.vmware.create_datastore_cluster(kwargs=None, call=None)

	Create a new datastore cluster for the specified datacenter in this VMware environment

CLI Example:

salt-cloud -f create_datastore_cluster my-vmware-config name="datastoreClusterName" datacenter="datacenterName"

	
salt.cloud.clouds.vmware.create_folder(kwargs=None, call=None)

	Create the specified folder path in this VMware environment

Note

To create a Host and Cluster Folder under a Datacenter, specify
path="/yourDatacenterName/host/yourFolderName"

To create a Network Folder under a Datacenter, specify
path="/yourDatacenterName/network/yourFolderName"

To create a Storage Folder under a Datacenter, specify
path="/yourDatacenterName/datastore/yourFolderName"

To create a VM and Template Folder under a Datacenter, specify
path="/yourDatacenterName/vm/yourFolderName"

CLI Example:

salt-cloud -f create_folder my-vmware-config path="/Local/a/b/c"
salt-cloud -f create_folder my-vmware-config path="/MyDatacenter/vm/MyVMFolder"
salt-cloud -f create_folder my-vmware-config path="/MyDatacenter/host/MyHostFolder"
salt-cloud -f create_folder my-vmware-config path="/MyDatacenter/network/MyNetworkFolder"
salt-cloud -f create_folder my-vmware-config path="/MyDatacenter/storage/MyStorageFolder"

	
salt.cloud.clouds.vmware.create_snapshot(name, kwargs=None, call=None)

	Create a snapshot of the specified virtual machine in this VMware
environment

Note

If the VM is powered on, the internal state of the VM (memory
dump) is included in the snapshot by default which will also set
the power state of the snapshot to "powered on". You can set
memdump=False to override this. This field is ignored if
the virtual machine is powered off or if the VM does not support
snapshots with memory dumps. Default is memdump=True

Note

If the VM is powered on when the snapshot is taken, VMware Tools
can be used to quiesce the file system in the virtual machine by
setting quiesce=True. This field is ignored if the virtual
machine is powered off; if VMware Tools are not available or if
memdump=True. Default is quiesce=False

CLI Example:

salt-cloud -a create_snapshot vmname snapshot_name="mySnapshot"
salt-cloud -a create_snapshot vmname snapshot_name="mySnapshot" [description="My snapshot"] [memdump=False] [quiesce=True]

	
salt.cloud.clouds.vmware.destroy(name, call=None)

	To destroy a VM from the VMware environment

CLI Example:

salt-cloud -d vmname
salt-cloud --destroy vmname
salt-cloud -a destroy vmname

	
salt.cloud.clouds.vmware.disconnect_host(kwargs=None, call=None)

	Disconnect the specified host system in this VMware environment

CLI Example:

salt-cloud -f disconnect_host my-vmware-config host="myHostSystemName"

	
salt.cloud.clouds.vmware.enter_maintenance_mode(kwargs=None, call=None)

	To put the specified host system in maintenance mode in this VMware environment

CLI Example:

salt-cloud -f enter_maintenance_mode my-vmware-config host="myHostSystemName"

	
salt.cloud.clouds.vmware.exit_maintenance_mode(kwargs=None, call=None)

	To take the specified host system out of maintenance mode in this VMware environment

CLI Example:

salt-cloud -f exit_maintenance_mode my-vmware-config host="myHostSystemName"

	
salt.cloud.clouds.vmware.get_clonespec_for_valid_snapshot(config_spec, object_ref, reloc_spec, template, vm_)

	return clonespec only if values are valid

	
salt.cloud.clouds.vmware.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.vmware.get_dependencies()

	Warn if dependencies aren't met.

	
salt.cloud.clouds.vmware.get_vcenter_version(kwargs=None, call=None)

	Show the vCenter Server version with build number.

CLI Example:

salt-cloud -f get_vcenter_version my-vmware-config

	
salt.cloud.clouds.vmware.handle_snapshot(config_spec, object_ref, reloc_spec, template, vm_)

	Returns a clone spec for cloning from shapshots
:rtype vim.vm.CloneSpec

	
salt.cloud.clouds.vmware.list_clusters(kwargs=None, call=None)

	List all the clusters for this VMware environment

CLI Example:

salt-cloud -f list_clusters my-vmware-config

	
salt.cloud.clouds.vmware.list_clusters_by_datacenter(kwargs=None, call=None)

	List clusters for each datacenter; or clusters for a specified datacenter in
this VMware environment

To list clusters for each datacenter:

CLI Example:

salt-cloud -f list_clusters_by_datacenter my-vmware-config

To list clusters for a specified datacenter:

CLI Example:

salt-cloud -f list_clusters_by_datacenter my-vmware-config datacenter="datacenterName"

	
salt.cloud.clouds.vmware.list_datacenters(kwargs=None, call=None)

	List all the data centers for this VMware environment

CLI Example:

salt-cloud -f list_datacenters my-vmware-config

	
salt.cloud.clouds.vmware.list_datastore_clusters(kwargs=None, call=None)

	List all the datastore clusters for this VMware environment

CLI Example:

salt-cloud -f list_datastore_clusters my-vmware-config

	
salt.cloud.clouds.vmware.list_datastores(kwargs=None, call=None)

	List all the datastores for this VMware environment

CLI Example:

salt-cloud -f list_datastores my-vmware-config

	
salt.cloud.clouds.vmware.list_dvs(kwargs=None, call=None)

	List all the distributed virtual switches for this VMware environment

CLI Example:

salt-cloud -f list_dvs my-vmware-config

	
salt.cloud.clouds.vmware.list_folders(kwargs=None, call=None)

	List all the folders for this VMware environment

CLI Example:

salt-cloud -f list_folders my-vmware-config

	
salt.cloud.clouds.vmware.list_hbas(kwargs=None, call=None)

	List all HBAs for each host system; or all HBAs for a specified host
system; or HBAs of specified type for each host system; or HBAs of
specified type for a specified host system in this VMware environment

Note

You can specify type as either parallel, iscsi, block
or fibre.

To list all HBAs for each host system:

CLI Example:

salt-cloud -f list_hbas my-vmware-config

To list all HBAs for a specified host system:

CLI Example:

salt-cloud -f list_hbas my-vmware-config host="hostSystemName"

To list HBAs of specified type for each host system:

CLI Example:

salt-cloud -f list_hbas my-vmware-config type="HBAType"

To list HBAs of specified type for a specified host system:

CLI Example:

salt-cloud -f list_hbas my-vmware-config host="hostSystemName" type="HBAtype"

	
salt.cloud.clouds.vmware.list_hosts(kwargs=None, call=None)

	List all the hosts for this VMware environment

CLI Example:

salt-cloud -f list_hosts my-vmware-config

	
salt.cloud.clouds.vmware.list_hosts_by_cluster(kwargs=None, call=None)

	List hosts for each cluster; or hosts for a specified cluster in
this VMware environment

To list hosts for each cluster:

CLI Example:

salt-cloud -f list_hosts_by_cluster my-vmware-config

To list hosts for a specified cluster:

CLI Example:

salt-cloud -f list_hosts_by_cluster my-vmware-config cluster="clusterName"

	
salt.cloud.clouds.vmware.list_hosts_by_datacenter(kwargs=None, call=None)

	List hosts for each datacenter; or hosts for a specified datacenter in
this VMware environment

To list hosts for each datacenter:

CLI Example:

salt-cloud -f list_hosts_by_datacenter my-vmware-config

To list hosts for a specified datacenter:

CLI Example:

salt-cloud -f list_hosts_by_datacenter my-vmware-config datacenter="datacenterName"

	
salt.cloud.clouds.vmware.list_networks(kwargs=None, call=None)

	List all the standard networks for this VMware environment

CLI Example:

salt-cloud -f list_networks my-vmware-config

	
salt.cloud.clouds.vmware.list_nodes(kwargs=None, call=None)

	Return a list of all VMs and templates that are on the specified provider, with basic fields

CLI Example:

salt-cloud -f list_nodes my-vmware-config

To return a list of all VMs and templates present on ALL configured providers, with basic
fields:

CLI Example:

salt-cloud -Q

	
salt.cloud.clouds.vmware.list_nodes_full(kwargs=None, call=None)

	Return a list of all VMs and templates that are on the specified provider, with full details

CLI Example:

salt-cloud -f list_nodes_full my-vmware-config

To return a list of all VMs and templates present on ALL configured providers, with full
details:

CLI Example:

salt-cloud -F

	
salt.cloud.clouds.vmware.list_nodes_min(kwargs=None, call=None)

	Return a list of all VMs and templates that are on the specified provider, with no details

CLI Example:

salt-cloud -f list_nodes_min my-vmware-config

	
salt.cloud.clouds.vmware.list_nodes_select(call=None)

	Return a list of all VMs and templates that are on the specified provider, with fields
specified under query.selection in /etc/salt/cloud

CLI Example:

salt-cloud -f list_nodes_select my-vmware-config

To return a list of all VMs and templates present on ALL configured providers, with
fields specified under query.selection in /etc/salt/cloud:

CLI Example:

salt-cloud -S

	
salt.cloud.clouds.vmware.list_portgroups(kwargs=None, call=None)

	List all the distributed virtual portgroups for this VMware environment

CLI Example:

salt-cloud -f list_portgroups my-vmware-config

	
salt.cloud.clouds.vmware.list_resourcepools(kwargs=None, call=None)

	List all the resource pools for this VMware environment

CLI Example:

salt-cloud -f list_resourcepools my-vmware-config

	
salt.cloud.clouds.vmware.list_snapshots(kwargs=None, call=None)

	List snapshots either for all VMs and templates or for a specific VM/template
in this VMware environment

To list snapshots for all VMs and templates:

CLI Example:

salt-cloud -f list_snapshots my-vmware-config

To list snapshots for a specific VM/template:

CLI Example:

salt-cloud -f list_snapshots my-vmware-config name="vmname"

	
salt.cloud.clouds.vmware.list_templates(kwargs=None, call=None)

	List all the templates present in this VMware environment

CLI Example:

salt-cloud -f list_templates my-vmware-config

	
salt.cloud.clouds.vmware.list_vapps(kwargs=None, call=None)

	List all the vApps for this VMware environment

CLI Example:

salt-cloud -f list_vapps my-vmware-config

	
salt.cloud.clouds.vmware.reboot_host(kwargs=None, call=None)

	Reboot the specified host system in this VMware environment

Note

If the host system is not in maintenance mode, it will not be rebooted. If you
want to reboot the host system regardless of whether it is in maintenance mode,
set force=True. Default is force=False.

CLI Example:

salt-cloud -f reboot_host my-vmware-config host="myHostSystemName" [force=True]

	
salt.cloud.clouds.vmware.remove_all_snapshots(name, kwargs=None, call=None)

	Remove all the snapshots present for the specified virtual machine.

Note

All the snapshots higher up in the hierarchy of the current snapshot tree
are consolidated and their virtual disks are merged. To override this
behavior and only remove all snapshots, set merge_snapshots=False.
Default is merge_snapshots=True

CLI Example:

salt-cloud -a remove_all_snapshots vmname [merge_snapshots=False]

	
salt.cloud.clouds.vmware.remove_host(kwargs=None, call=None)

	Remove the specified host system from this VMware environment

CLI Example:

salt-cloud -f remove_host my-vmware-config host="myHostSystemName"

	
salt.cloud.clouds.vmware.remove_snapshot(name, kwargs=None, call=None)

	Remove a snapshot of the specified virtual machine in this VMware environment

CLI Example:

salt-cloud -a remove_snapshot vmname snapshot_name="mySnapshot"
salt-cloud -a remove_snapshot vmname snapshot_name="mySnapshot" [remove_children="True"]

	
salt.cloud.clouds.vmware.rescan_hba(kwargs=None, call=None)

	To rescan a specified HBA or all the HBAs on the Host System

CLI Example:

salt-cloud -f rescan_hba my-vmware-config host="hostSystemName"
salt-cloud -f rescan_hba my-vmware-config hba="hbaDeviceName" host="hostSystemName"

	
salt.cloud.clouds.vmware.reset(name, soft=False, call=None)

	To reset a VM using its name

Note

If soft=True then issues a command to the guest operating system
asking it to perform a reboot. Otherwise hypervisor will terminate VM and start it again.
Default is soft=False

For soft=True vmtools should be installed on guest system.

CLI Example:

salt-cloud -a reset vmname
salt-cloud -a reset vmname soft=True

	
salt.cloud.clouds.vmware.revert_to_snapshot(name, kwargs=None, call=None)

	Revert virtual machine to its current snapshot. If no snapshot
exists, the state of the virtual machine remains unchanged

Note

The virtual machine will be powered on if the power state of
the snapshot when it was created was set to "Powered On". Set
power_off=True so that the virtual machine stays powered
off regardless of the power state of the snapshot when it was
created. Default is power_off=False.

If the power state of the snapshot when it was created was
"Powered On" and if power_off=True, the VM will be put in
suspended state after it has been reverted to the snapshot.

CLI Example:

salt-cloud -a revert_to_snapshot vmame [power_off=True]
salt-cloud -a revert_to_snapshot vmame snapshot_name="selectedSnapshot" [power_off=True]

	
salt.cloud.clouds.vmware.script(vm_)

	Return the script deployment object

	
salt.cloud.clouds.vmware.show_instance(name, call=None)

	List all available details of the specified VM

CLI Example:

salt-cloud -a show_instance vmname

	
salt.cloud.clouds.vmware.shutdown_host(kwargs=None, call=None)

	Shut down the specified host system in this VMware environment

Note

If the host system is not in maintenance mode, it will not be shut down. If you
want to shut down the host system regardless of whether it is in maintenance mode,
set force=True. Default is force=False.

CLI Example:

salt-cloud -f shutdown_host my-vmware-config host="myHostSystemName" [force=True]

	
salt.cloud.clouds.vmware.start(name, call=None)

	To start/power on a VM using its name

CLI Example:

salt-cloud -a start vmname

	
salt.cloud.clouds.vmware.stop(name, soft=False, call=None)

	To stop/power off a VM using its name

Note

If soft=True then issues a command to the guest operating system
asking it to perform a clean shutdown of all services.
Default is soft=False

For soft=True vmtools should be installed on guest system.

CLI Example:

salt-cloud -a stop vmname
salt-cloud -a stop vmname soft=True

	
salt.cloud.clouds.vmware.suspend(name, call=None)

	To suspend a VM using its name

CLI Example:

salt-cloud -a suspend vmname

	
salt.cloud.clouds.vmware.terminate(name, call=None)

	To do an immediate power off of a VM using its name. A SIGKILL
is issued to the vmx process of the VM

CLI Example:

salt-cloud -a terminate vmname

	
salt.cloud.clouds.vmware.test_vcenter_connection(kwargs=None, call=None)

	Test if the connection can be made to the vCenter server using
the specified credentials inside /etc/salt/cloud.providers
or /etc/salt/cloud.providers.d/vmware.conf

CLI Example:

salt-cloud -f test_vcenter_connection my-vmware-config

	
salt.cloud.clouds.vmware.upgrade_tools(name, reboot=False, call=None)

	To upgrade VMware Tools on a specified virtual machine.

Note

If the virtual machine is running Windows OS, use reboot=True
to reboot the virtual machine after VMware tools upgrade. Default
is reboot=False

CLI Example:

salt-cloud -a upgrade_tools vmname
salt-cloud -a upgrade_tools vmname reboot=True

	
salt.cloud.clouds.vmware.upgrade_tools_all(call=None)

	To upgrade VMware Tools on all virtual machines present in
the specified provider

Note

If the virtual machine is running Windows OS, this function
will attempt to suppress the automatic reboot caused by a
VMware Tools upgrade.

CLI Example:

salt-cloud -f upgrade_tools_all my-vmware-config

salt.cloud.clouds.vultrpy

Vultr Cloud Module using python-vultr bindings

New in version 2016.3.0.

The Vultr cloud module is used to control access to the Vultr VPS system.

Use of this module only requires the api_key parameter.

Set up the cloud configuration at /etc/salt/cloud.providers or
/etc/salt/cloud.providers.d/vultr.conf:

my-vultr-config:
 # Vultr account api key
 api_key: <supersecretapi_key>
 driver: vultr

Set up the cloud profile at /etc/salt/cloud.profiles or
/etc/salt/cloud.profiles.d/vultr.conf:

nyc-4gb-4cpu-ubuntu-14-04:
 location: 1
 provider: my-vultr-config
 image: 160
 size: 95
 enable_private_network: True

This driver also supports Vultr's startup script feature. You can list startup
scripts in your account with

salt-cloud -f list_scripts <name of vultr provider>

That list will include the IDs of the scripts in your account. Thus, if you
have a script called 'setup-networking' with an ID of 493234 you can specify
that startup script in a profile like so:

nyc-2gb-1cpu-ubuntu-17-04:
 location: 1
 provider: my-vultr-config
 image: 223
 size: 13
 startup_script_id: 493234

Similarly you can also specify a fiewall group ID using the option firewall_group_id. You can list
firewall groups with

salt-cloud -f list_firewall_groups <name of vultr provider>

To specify SSH keys to be preinstalled on the server, use the ssh_key_names setting

nyc-2gb-1cpu-ubuntu-17-04:
 location: 1
 provider: my-vultr-config
 image: 223
 size: 13
 ssh_key_names: dev1,dev2,salt-master

You can list SSH keys available on your account using

salt-cloud -f list_keypairs <name of vultr provider>

	
salt.cloud.clouds.vultrpy.avail_firewall_groups(conn=None)

	return available firewall groups

	
salt.cloud.clouds.vultrpy.avail_images(conn=None)

	Return available images

	
salt.cloud.clouds.vultrpy.avail_keys(conn=None)

	return available SSH keys

	
salt.cloud.clouds.vultrpy.avail_locations(conn=None)

	return available datacenter locations

	
salt.cloud.clouds.vultrpy.avail_scripts(conn=None)

	return available startup scripts

	
salt.cloud.clouds.vultrpy.avail_sizes(conn=None)

	Return available sizes ("plans" in VultrSpeak)

	
salt.cloud.clouds.vultrpy.create(vm_)

	Create a single VM from a data dict

	
salt.cloud.clouds.vultrpy.destroy(name)

	Remove a node from Vultr

	
salt.cloud.clouds.vultrpy.get_configured_provider()

	Return the first configured instance

	
salt.cloud.clouds.vultrpy.list_firewall_groups(conn=None, call=None)

	return list of firewall groups

	
salt.cloud.clouds.vultrpy.list_keypairs(conn=None, call=None)

	return list of SSH keys

	
salt.cloud.clouds.vultrpy.list_nodes(**kwargs)

	Return basic data on nodes

	
salt.cloud.clouds.vultrpy.list_nodes_full(**kwargs)

	Return all data on nodes

	
salt.cloud.clouds.vultrpy.list_nodes_select(conn=None, call=None)

	Return a list of the VMs that are on the provider, with select fields

	
salt.cloud.clouds.vultrpy.list_scripts(conn=None, call=None)

	return list of Startup Scripts

	
salt.cloud.clouds.vultrpy.show_instance(name, call=None)

	Show the details from the provider concerning an instance

	
salt.cloud.clouds.vultrpy.show_keypair(kwargs=None, call=None)

	return list of SSH keys

	
salt.cloud.clouds.vultrpy.start(*args, **kwargs)

	Execute a "start" action on a VM

	
salt.cloud.clouds.vultrpy.stop(*args, **kwargs)

	Execute a "stop" action on a VM

salt.cloud.clouds.xen

XenServer Cloud Driver

The XenServer driver is designed to work with a Citrix XenServer.

Requires XenServer SDK
(can be downloaded from https://www.citrix.com/downloads/xenserver/product-software/)

Place a copy of the XenAPI.py in the Python site-packages folder.

	depends:

	XenAPI

Example provider configuration:

/etc/salt/cloud.providers.d/myxen.conf
myxen:
 driver: xen
 url: http://10.0.0.120
 user: root
 password: p@ssw0rd

Example profile configuration:

/etc/salt/cloud.profiles.d/myxen.conf
suse:
 provider: myxen
 user: root
 password: p@ssw0rd
 image: opensuseleap42_2-template
 storage_repo: 'Local storage'
 resource_pool: default_pool
 clone: True
 minion:
 master: 10.0.0.18
sles:
 provider: myxen
 user: root
 clone: False
 image: sles12sp2-template
 deploy: False
w2k12:
 provider: myxen
 image: w2k12svr-template
 clone: True
 userdata_file: /srv/salt/win/files/windows-firewall.ps1
 win_installer: /srv/salt/win/files/Salt-Minion-2016.11.3-AMD64-Setup.exe
 win_username: Administrator
 win_password: p@ssw0rd
 use_winrm: False
 ipv4_cidr: 10.0.0.215/24
 ipv4_gw: 10.0.0.1

	
salt.cloud.clouds.xen.avail_images(call=None)

	Get a list of images from Xen

If called with the --list-images then it returns
images with all details.

salt-cloud --list-images myxen

	
salt.cloud.clouds.xen.avail_locations(session=None, call=None)

	Return available Xen locations (not implemented)

salt-cloud --list-locations myxen

	
salt.cloud.clouds.xen.avail_sizes(session=None, call=None)

	Return a list of Xen template definitions

salt-cloud --list-sizes myxen

	
salt.cloud.clouds.xen.create(vm_)

	Create a VM in Xen

The configuration for this function is read from the profile settings.

salt-cloud -p some_profile xenvm01

	
salt.cloud.clouds.xen.destroy(name=None, call=None)

	Destroy Xen VM or template instance

salt-cloud -d xenvm01

	
salt.cloud.clouds.xen.destroy_template(name=None, call=None, kwargs=None)

	Destroy Xen VM or template instance

salt-cloud -f destroy_template myxen name=testvm2

	
salt.cloud.clouds.xen.destroy_vm_vdis(name=None, session=None, call=None)

	Get virtual block devices on VM

salt-cloud -a destroy_vm_vdis xenvm01

	
salt.cloud.clouds.xen.get_configured_provider()

	Return the first configured instance.

	
salt.cloud.clouds.xen.get_pv_args(name, session=None, call=None)

	Get PV arguments for a VM

salt-cloud -a get_pv_args xenvm01

	
salt.cloud.clouds.xen.get_vm_ip(name=None, session=None, call=None)

	Get the IP address of the VM

salt-cloud -a get_vm_ip xenvm01

Note

Requires xen guest tools to be installed in VM

	
salt.cloud.clouds.xen.host_list(call=None)

	Get a list of Xen Servers

salt-cloud -f host_list myxen

	
salt.cloud.clouds.xen.list_nodes()

	List virtual machines

salt-cloud -Q

	
salt.cloud.clouds.xen.list_nodes_full(session=None)

	List full virtual machines

salt-cloud -F

	
salt.cloud.clouds.xen.list_nodes_select(call=None)

	Perform a select query on Xen VM instances

salt-cloud -S

	
salt.cloud.clouds.xen.pause(name, call=None, session=None)

	Pause a vm

salt-cloud -a pause xenvm01

	
salt.cloud.clouds.xen.pif_list(call=None)

	Get a list of Resource Pools

salt-cloud -f pool_list myxen

	
salt.cloud.clouds.xen.pool_list(call=None)

	Get a list of Resource Pools

salt-cloud -f pool_list myxen

	
salt.cloud.clouds.xen.reboot(name, call=None, session=None)

	Reboot a vm

salt-cloud -a reboot xenvm01

	
salt.cloud.clouds.xen.resume(name, call=None, session=None)

	Resume a vm from disk

salt-cloud -a resume xenvm01

	
salt.cloud.clouds.xen.set_pv_args(name, kwargs=None, session=None, call=None)

	Set PV arguments for a VM

salt-cloud -a set_pv_args xenvm01 pv_args="utf-8 graphical"

	
salt.cloud.clouds.xen.set_vm_ip(name=None, ipv4_cidr=None, ipv4_gw=None, session=None, call=None)

	Set the IP address on a virtual interface (vif)

	
salt.cloud.clouds.xen.show_instance(name, session=None, call=None)

	Show information about a specific VM or template

salt-cloud -a show_instance xenvm01

Note

memory is memory_dynamic_max

	
salt.cloud.clouds.xen.shutdown(name, call=None, session=None)

	Shutdown a vm

salt-cloud -a shutdown xenvm01

	
salt.cloud.clouds.xen.sr_list(call=None)

	Geta list of storage repositories

salt-cloud -f sr_list myxen

	
salt.cloud.clouds.xen.start(name, call=None, session=None)

	Start a vm

salt-cloud -a start xenvm01

	
salt.cloud.clouds.xen.stop(name, call=None, session=None)

	Stop a vm

salt-cloud -a stop xenvm01

	
salt.cloud.clouds.xen.suspend(name, call=None, session=None)

	Suspend a vm to disk

salt-cloud -a suspend xenvm01

	
salt.cloud.clouds.xen.template_list(call=None)

	Return available Xen template information.

This returns the details of
each template to show number cores, memory sizes, etc..

salt-cloud -f template_list myxen

	
salt.cloud.clouds.xen.unpause(name, call=None, session=None)

	UnPause a vm

salt-cloud -a unpause xenvm01

	
salt.cloud.clouds.xen.vbd_list(name=None, call=None)

	Get a list of VBDs on a VM

requires: the name of the vm with the vbd definition

salt-cloud -a vbd_list xenvm01

	
salt.cloud.clouds.xen.vdi_list(call=None, kwargs=None)

	Return available Xen VDI images

If this function is called with the -f or --function then
it can return a list with minimal deatil using the terse=True keyword
argument.

salt-cloud -f vdi_list myxen terse=True

	
salt.cloud.clouds.xen.vif_list(name, call=None, kwargs=None)

	Get a list of virtual network interfaces on a VM

requires: the name of the vm with the vbd definition

salt-cloud -a vif_list xenvm01

engine modules

	docker_events

	

	fluent

	An engine that reads messages from the salt event bus and pushes them onto a fluent endpoint.

	http_logstash

	HTTP Logstash engine

	ircbot

	IRC Bot engine

	junos_syslog

	Junos Syslog Engine

	libvirt_events

	An engine that listens for libvirt events and resends them to the salt event bus.

	logentries

	An engine that sends events to the Logentries logging service.

	logstash_engine

	An engine that reads messages from the salt event bus and pushes them onto a logstash endpoint.

	napalm_syslog

	NAPALM syslog engine

	reactor

	Setup Reactor

	redis_sentinel

	An engine that reads messages from the redis sentinel pubsub and sends reactor events based on the channels they are subscribed to.

	script

	Send events based on a script's stdout

	slack

	An engine that reads messages from Slack and can act on them

	slack_bolt_engine

	An engine that reads messages from Slack and can act on them

	sqs_events

	An engine that continuously reads messages from SQS and fires them as events.

	stalekey

	An engine that uses presence detection to keep track of which minions have been recently connected and remove their keys if they have not been connected for a certain period of time.

	test

	A simple test engine, not intended for real use but as an example

	thorium

	Manage the Thorium complex event reaction system

	webhook

	Send events from webhook api

salt.engines.docker_events

Warning

This module will be removed from Salt in version 3009 in favor of
the docker Salt Extension [https://github.com/saltstack/saltext-docker].

Send events from Docker events
:Depends: Docker API >= 1.22

	
salt.engines.docker_events.start(docker_url='unix://var/run/docker.sock', timeout=60, tag='salt/engines/docker_events', filters=None)

	Scan for Docker events and fire events

Example Config

engines:
 - docker_events:
 docker_url: unix://var/run/docker.sock
 filters:
 event:
 - start
 - stop
 - die
 - oom

The config above sets up engines to listen
for events from the Docker daemon and publish
them to the Salt event bus.

For filter reference, see https://docs.docker.com/engine/reference/commandline/events/

salt.engines.fluent

An engine that reads messages from the salt event bus and pushes
them onto a fluent endpoint.

New in version 3000.

	Configuration:

	

All arguments are optional

Example configuration of default settings

engines:
 - fluent:
 host: localhost
 port: 24224
 app: engine

Example fluentd configuration

<source>
 @type forward
 port 24224
</source>

<match saltstack.**>
 @type file
 path /var/log/td-agent/saltstack
</match>

	depends:

	fluent-logger

	
salt.engines.fluent.start(host='localhost', port=24224, app='engine')

	Listen to salt events and forward them to fluent

	Parameters:

	
	host (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Host running fluentd agent. Default is localhost

	port (int [https://docs.python.org/3/library/functions.html#int]) -- Port of fluentd agent. Default is 24224

	app (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Text sent as fluentd tag. Default is "engine". This text is appended
to "saltstack." to form a fluentd tag, ex: "saltstack.engine"

salt.engines.http_logstash

HTTP Logstash engine

An engine that reads messages from the salt event bus and pushes
them onto a logstash endpoint via HTTP requests.

Changed in version 2018.3.0.

Note

By default, this engine take everything from the Salt bus and exports into
Logstash.
For a better selection of the events that you want to publish, you can use
the tags and funs options.

	configuration:

	Example configuration

engines:
 - http_logstash:
 url: http://blabla.com/salt-stuff
 tags:
 - salt/job/*/new
 - salt/job/*/ret/*
 funs:
 - probes.results
 - bgp.config

	
salt.engines.http_logstash.start(url, funs=None, tags=None)

	Listen to salt events and forward them to logstash.

	url
	The Logstash endpoint.

	funs: None
	A list of functions to be compared against, looking into the fun
field from the event data. This option helps to select the events
generated by one or more functions.
If an event does not have the fun field in the data section, it
will be published. For a better selection, consider using the tags
option.
By default, this option accepts any event to be submitted to Logstash.

	tags: None
	A list of pattern to compare the event tag against.
By default, this option accepts any event to be submitted to Logstash.

salt.engines.ircbot

IRC Bot engine

New in version 2017.7.0.

Example Configuration

engines:
 - ircbot:
 nick: <nick>
 username: <username>
 password: <password>
 host: irc.oftc.net
 port: 7000
 channels:
 - salt-test
 - '##something'
 use_ssl: True
 use_sasl: True
 disable_query: True
 allow_hosts:
 - salt/engineer/.*
 allow_nicks:
 - gtmanfred

Available commands on irc are:

	ping
	return pong

	echo <stuff>
	return <stuff> targeted at the user who sent the commands

	event <tag> [<extra>, <data>]
	fire event on the master or minion event stream with the tag salt/engines/ircbot/<tag> and a data object with a
list of everything else sent in the message

Example of usage

08:33:57 @gtmanfred > !ping
08:33:57 gtmanbot > gtmanfred: pong
08:34:02 @gtmanfred > !echo ping
08:34:02 gtmanbot > ping
08:34:17 @gtmanfred > !event test/tag/ircbot irc is useful
08:34:17 gtmanbot > gtmanfred: TaDa!

[DEBUG] Sending event: tag = salt/engines/ircbot/test/tag/ircbot; data = {'_stamp': '2016-11-28T14:34:16.633623', 'data': ['irc', 'is', 'useful']}

	
class salt.engines.ircbot.Event(source, code, line)

	
	
code

	Alias for field number 1

	
line

	Alias for field number 2

	
source

	Alias for field number 0

	
class salt.engines.ircbot.IRCClient(nick, host, port=6667, username=None, password=None, channels=None, use_ssl=False, use_sasl=False, char='!', allow_hosts=False, allow_nicks=False, disable_query=True)

	
	
join_channel(channel)

	

	
on_closed()

	

	
on_connect()

	

	
read_messages()

	

	
send_message(line)

	

	
class salt.engines.ircbot.PrivEvent(source, nick, user, host, code, channel, command, line)

	
	
channel

	Alias for field number 5

	
code

	Alias for field number 4

	
command

	Alias for field number 6

	
host

	Alias for field number 3

	
line

	Alias for field number 7

	
nick

	Alias for field number 1

	
source

	Alias for field number 0

	
user

	Alias for field number 2

	
salt.engines.ircbot.start(nick, host, port=6667, username=None, password=None, channels=None, use_ssl=False, use_sasl=False, char='!', allow_hosts=False, allow_nicks=False, disable_query=True)

	IRC Bot for interacting with salt.

	nick
	Nickname of the connected Bot.

	host
	irc server (example - irc.oftc.net).

	port
	irc port. Default: 6667

	password
	password for authenticating. If not provided, user will not authenticate on the irc server.

	channels
	channels to join.

	use_ssl
	connect to server using ssl. Default: False

	use_sasl
	authenticate using sasl, instead of messaging NickServ. Default: False

Note

This will allow the bot user to be fully authenticated before joining any channels

	char
	command character to look for. Default: !

	allow_hosts
	hostmasks allowed to use commands on the bot. Default: False
True to allow all
False to allow none
List of regexes to allow matching

	allow_nicks
	Nicks that are allowed to use commands on the bot. Default: False
True to allow all
False to allow none
List of regexes to allow matching

	disable_query
	Disable commands from being sent through private queries. Require they be sent to a channel, so that all
communication can be controlled by access to the channel. Default: True

Warning

Unauthenticated Access to event stream

This engine sends events calls to the event stream without authenticating them in salt. Authentication will
need to be configured and enforced on the irc server or enforced in the irc channel. The engine only accepts
commands from channels, so non authenticated users could be banned or quieted in the channel.

/mode +q $~a # quiet all users who are not authenticated
/mode +r # do not allow unauthenticated users into the channel

It would also be possible to add a password to the irc channel, or only allow invited users to join.

salt.engines.junos_syslog

Junos Syslog Engine

New in version 2017.7.0.

	depends:

	pyparsing, twisted

An engine that listens to syslog message from Junos devices,
extract event information and generate message on SaltStack bus.

The event topic sent to salt is dynamically generated according to the topic title
specified by the user. The incoming event data (from the junos device) consists
of the following fields:

	hostname

	hostip

	daemon

	event

	severity

	priority

	timestamp

	message

	pid

	raw (the raw event data forwarded from the device)

The topic title can consist of any of the combination of above fields,
but the topic has to start with 'jnpr/syslog'.
So, we can have different combinations:

	jnpr/syslog/hostip/daemon/event

	jnpr/syslog/daemon/severity

The corresponding dynamic topic sent on salt event bus would look something like:

	jnpr/syslog/1.1.1.1/mgd/UI_COMMIT_COMPLETED

	jnpr/syslog/sshd/7

The default topic title is 'jnpr/syslog/hostname/event'.

The user can choose the type of data they wants of the event bus.
Like, if one wants only events pertaining to a particular daemon, they can
specify that in the configuration file:

daemon: mgd

One can even have a list of daemons like:

daemon:
 - mgd
 - sshd

Example configuration (to be written in master config file)

engines:
 - junos_syslog:
 port: 9999
 topic: jnpr/syslog/hostip/daemon/event
 daemon:
 - mgd
 - sshd

For junos_syslog engine to receive events, syslog must be set on the junos device.
This can be done via following configuration:

set system syslog host <ip-of-the-salt-device> port 516 any any

Below is a sample syslog event which is received from the junos device:

'<30>May 29 05:18:12 bng-ui-vm-9 mspd[1492]: No chassis configuration found'

The source for parsing the syslog messages is taken from:
https://gist.github.com/leandrosilva/3651640#file-xlog-py

	
class salt.engines.junos_syslog.DatagramProtocol

	

	
salt.engines.junos_syslog.start(port=516, **kwargs)

	

salt.engines.libvirt_events

An engine that listens for libvirt events and resends them to the salt event bus.

The minimal configuration is the following and will listen to all events on the
local hypervisor and send them with a tag starting with salt/engines/libvirt_events:

engines:
 - libvirt_events

Note that the automatically-picked libvirt connection will depend on the value
of uri_default in /etc/libvirt/libvirt.conf. To force using another
connection like the local LXC libvirt driver, set the uri property as in the
following example configuration.

engines:
 - libvirt_events:
 uri: lxc:///
 tag_prefix: libvirt
 filters:
 - domain/lifecycle
 - domain/reboot
 - pool

Filters is a list of event types to relay to the event bus. Items in this list
can be either one of the main types (domain, network, pool,
nodedev, secret), all or a more precise filter. These can be done
with values like <main_type>/<subtype>. The possible values are in the
CALLBACK_DEFS constant. If the filters list contains all, all
events will be relayed.

Be aware that the list of events increases with libvirt versions, for example
network events have been added in libvirt 1.2.1 and storage events in 2.0.0.

Running the engine on non-root

Running this engine as non-root requires a special attention, which is surely
the case for the master running as user salt. The engine is likely to fail
to connect to libvirt with an error like this one:

[ERROR] authentication unavailable: no polkit agent available to authenticate action 'org.libvirt.unix.monitor'

To fix this, the user running the engine, for example the salt-master, needs
to have the rights to connect to libvirt in the machine polkit config.
A polkit rule like the following one will allow salt user to connect to libvirt:

polkit.addRule(function(action, subject) {
 if (action.id.indexOf("org.libvirt") == 0 &&
 subject.user == "salt") {
 return polkit.Result.YES;
 }
});

	depends:

	libvirt 1.0.0+ python binding

New in version 2019.2.0.

	
salt.engines.libvirt_events.start(uri=None, tag_prefix='salt/engines/libvirt_events', filters=None)

	Listen to libvirt events and forward them to salt.

	Parameters:

	
	uri -- libvirt URI to listen on.
Defaults to None to pick the first available local hypervisor

	tag_prefix -- the beginning of the salt event tag to use.
Defaults to 'salt/engines/libvirt_events'

	filters -- the list of event of listen on. Defaults to 'all'

salt.engines.logentries

An engine that sends events to the Logentries logging service.

	maintainer:

	Jimmy Tang (jimmy_tang@rapid7.com)

	maturity:

	New

	depends:

	ssl, certifi

	platform:

	all

New in version 2016.3.0.

To enable this engine the master and/or minion will need the following
python libraries

ssl
certifi

If you are running a new enough version of python then the ssl library
will be present already.

You will also need the following values configured in the minion or
master config.

	configuration:

	Example configuration

engines:
 - logentries:
 endpoint: data.logentries.com
 port: 10000
 token: 057af3e2-1c05-47c5-882a-5cd644655dbf

The 'token' can be obtained from the Logentries service.

To test this engine

salt '*' test.ping cmd.run uptime

	
class salt.engines.logentries.PlainTextSocketAppender(verbose=True, LE_API='data.logentries.com', LE_PORT=80, LE_TLS_PORT=443)

	
	
close_connection()

	

	
open_connection()

	

	
put(data)

	

	
reopen_connection()

	

	
salt.engines.logentries.SocketAppender

	alias of TLSSocketAppender

	
class salt.engines.logentries.TLSSocketAppender(verbose=True, LE_API='data.logentries.com', LE_PORT=80, LE_TLS_PORT=443)

	
	
open_connection()

	

	
salt.engines.logentries.event_bus_context(opts)

	

	
salt.engines.logentries.start(endpoint='data.logentries.com', port=10000, token=None, tag='salt/engines/logentries')

	Listen to salt events and forward them to Logentries

salt.engines.logstash_engine

An engine that reads messages from the salt event bus and pushes
them onto a logstash endpoint.

New in version 2015.8.0.

	configuration:

	Example configuration

engines:
 - logstash:
 host: log.my_network.com
 port: 5959
 proto: tcp

	depends:

	logstash

	
salt.engines.logstash_engine.event_bus_context(opts)

	

	
salt.engines.logstash_engine.start(host, port=5959, tag='salt/engine/logstash', proto='udp')

	Listen to salt events and forward them to logstash

salt.engines.napalm_syslog

NAPALM syslog engine

New in version 2017.7.0.

An engine that takes syslog messages structured in
OpenConfig [http://www.openconfig.net/] or IETF format
and fires Salt events.

As there can be many messages pushed into the event bus,
the user is able to filter based on the object structure.

Requirements

	napalm-logs [https://github.com/napalm-automation/napalm-logs]

This engine transfers objects from the napalm-logs library
into the event bus. The top dictionary has the following keys:

	ip

	host

	timestamp

	os: the network OS identified

	model_name: the OpenConfig or IETF model name

	error: the error name (consult the documentation)

	message_details: details extracted from the syslog message

	open_config: the OpenConfig model

The napalm-logs transfers the messages via widely used transport
mechanisms such as: ZeroMQ (default), Kafka, etc.

The user can select the right transport using the transport
option in the configuration.

	configuration:

	Example configuration

engines:
 - napalm_syslog:
 transport: zmq
 address: 1.2.3.4
 port: 49018

	configuration:

	Configuration example, excluding messages from IOS-XR devices:

engines:
 - napalm_syslog:
 transport: kafka
 address: 1.2.3.4
 port: 49018
 os_blacklist:
 - iosxr

Event example:

{
 "_stamp": "2017-05-26T10:03:18.653045",
 "error": "BGP_PREFIX_THRESH_EXCEEDED",
 "host": "vmx01",
 "ip": "192.168.140.252",
 "message_details": {
 "date": "May 25",
 "host": "vmx01",
 "message": "192.168.140.254 (External AS 65001): Configured maximum prefix-limit threshold(22) exceeded for inet-unicast nlri: 28 (instance master)",
 "pri": "28",
 "processId": "2957",
 "processName": "rpd",
 "tag": "BGP_PREFIX_THRESH_EXCEEDED",
 "time": "20:50:41"
 },
 "model_name": "openconfig_bgp",
 "open_config": {
 "bgp": {
 "neighbors": {
 "neighbor": {
 "192.168.140.254": {
 "afi_safis": {
 "afi_safi": {
 "inet": {
 "afi_safi_name": "inet",
 "ipv4_unicast": {
 "prefix_limit": {
 "state": {
 "max_prefixes": 22
 }
 }
 },
 "state": {
 "prefixes": {
 "received": 28
 }
 }
 }
 }
 },
 "neighbor_address": "192.168.140.254",
 "state": {
 "peer_as": 65001
 }
 }
 }
 }
 }
 },
 "os": "junos",
 "timestamp": "1495741841"
}

To consume the events and eventually react and deploy a configuration changes
on the device(s) firing the event, one is able to identify the minion ID, using
one of the following alternatives, but not limited to:

	Host grains to match the event tag

	Host DNS grain to match the IP address in the event data

	Hostname grains to match the event tag

	Define static grains

	Write a grains module

	Targeting minions using pillar data - The user can
configure certain information in the Pillar data and then use it to identify
minions

Master configuration example, to match the event and react:

reactor:
 - 'napalm/syslog/*/BGP_PREFIX_THRESH_EXCEEDED/*':
 - salt://increase_prefix_limit_on_thresh_exceeded.sls

Which matches the events having the error code BGP_PREFIX_THRESH_EXCEEDED
from any network operating system, from any host and reacts, executing the
increase_prefix_limit_on_thresh_exceeded.sls reactor, found under
one of the file_roots paths.

Reactor example:

increase_prefix_limit_on_thresh_exceeded:
 local.net.load_template:
 - tgt: "hostname:{{ data['host'] }}"
 - tgt_type: grain
 - kwarg:
 template_name: salt://increase_prefix_limit.jinja
 openconfig_structure: {{ data['open_config'] }}

The reactor in the example increases the BGP prefix limit
when triggered by an event as above. The minion is matched using the host
field from the data (which is the body of the event), compared to the
hostname grain field. When the event
occurs, the reactor will execute the
net.load_template function,
sending as arguments the template salt://increase_prefix_limit.jinja defined
by the user in their environment and the complete OpenConfig object under
the variable name openconfig_structure. Inside the Jinja template, the user
can process the object from openconfig_structure and define the bussiness
logic as required.

	
salt.engines.napalm_syslog.start(transport='zmq', address='0.0.0.0', port=49017, auth_address='0.0.0.0', auth_port=49018, disable_security=False, certificate=None, os_whitelist=None, os_blacklist=None, error_whitelist=None, error_blacklist=None, host_whitelist=None, host_blacklist=None)

	Listen to napalm-logs and publish events into the Salt event bus.

	transport: zmq
	Choose the desired transport.

Note

Currently zmq is the only valid option.

	address: 0.0.0.0
	The address of the publisher, as configured on napalm-logs.

	port: 49017
	The port of the publisher, as configured on napalm-logs.

	auth_address: 0.0.0.0
	The address used for authentication
when security is not disabled.

	auth_port: 49018
	Port used for authentication.

	disable_security: False
	Trust unencrypted messages.
Strongly discouraged in production.

	certificate: None
	Absolute path to the SSL certificate.

	os_whitelist: None
	List of operating systems allowed. By default everything is allowed.

	os_blacklist: None
	List of operating system to be ignored. Nothing ignored by default.

	error_whitelist: None
	List of errors allowed.

	error_blacklist: None
	List of errors ignored.

	host_whitelist: None
	List of hosts or IPs to be allowed.

	host_blacklist: None
	List of hosts of IPs to be ignored.

salt.engines.reactor

Setup Reactor

Example Config in Master or Minion config

engines:
 - reactor:
 refresh_interval: 60
 worker_threads: 10
 worker_hwm: 10000

reactor:
 - 'salt/cloud/*/destroyed':
 - /srv/reactor/destroy/*.sls

	
salt.engines.reactor.start(refresh_interval=None, worker_threads=None, worker_hwm=None)

	

salt.engines.redis_sentinel

An engine that reads messages from the redis sentinel pubsub and sends reactor
events based on the channels they are subscribed to.

New in version 2016.3.0.

	configuration:

	Example configuration

engines:
 - redis_sentinel:
 hosts:
 matching: 'board*'
 port: 26379
 interface: eth2
 channels:
 - '+switch-master'
 - '+odown'
 - '-odown'

	depends:

	redis

	
class salt.engines.redis_sentinel.Listener(host=None, port=None, channels=None, tag=None)

	
	
run()

	

	
work(item)

	

	
salt.engines.redis_sentinel.start(hosts, channels, tag=None)

	

salt.engines.script

Send events based on a script's stdout

Example Config

engines:
 - script:
 cmd: /some/script.py -a 1 -b 2
 output: json
 interval: 5
 onchange: false

Script engine configs:

	cmd
	Script or command to execute

	output
	Any available saltstack deserializer

	interval
	How often in seconds to execute the command

	onchange
	
New in version 3006.0.

Only fire an event if the tag-specific output changes. Defaults to False.

	
salt.engines.script.start(cmd, output='json', interval=1, onchange=False)

	Parse stdout of a command and generate an event

The script engine will scrap stdout of the
given script and generate an event based on the
presence of the 'tag' key and its value.

If there is a data obj available, that will also
be fired along with the tag.

Example

Given the following json output from a script:

{ "tag" : "lots/of/tacos",
"data" : { "toppings" : "cilantro" }
}

This will fire the event 'lots/of/tacos'
on the event bus with the data obj as is.

	Parameters:

	
	cmd -- The command to execute

	output -- How to deserialize stdout of the script

	interval -- How often to execute the script

	onchange -- Only fire an event if the tag-specific output changes

salt.engines.slack

An engine that reads messages from Slack and can act on them

New in version 2016.3.0.

	depends:

	slackclient [https://pypi.org/project/slackclient/] Python module

Important

This engine requires a bot user. To create a bot user, first go to the
Custom Integrations page in your Slack Workspace. Copy and paste the
following URL, and replace myworkspace with the proper value for your
workspace:

https://myworkspace.slack.com/apps/manage/custom-integrations

Next, click on the Bots integration and request installation. Once
approved by an admin, you will be able to proceed with adding the bot user.
Once the bot user has been added, you can configure it by adding an avatar,
setting the display name, etc. You will also at this time have access to
your API token, which will be needed to configure this engine.

Finally, add this bot user to a channel by switching to the channel and
using /invite @mybotuser. Keep in mind that this engine will process
messages from each channel in which the bot is a member, so it is
recommended to narrowly define the commands which can be executed, and the
Slack users which are allowed to run commands.

This engine has two boolean configuration parameters that toggle specific
features (both default to False):

	control - If set to True, then any message which starts with the
trigger string (which defaults to ! and can be overridden by setting the
trigger option in the engine configuration) will be interpreted as a
Salt CLI command and the engine will attempt to run it. The permissions
defined in the various groups will determine if the Slack user is
allowed to run the command. The targets and default_target options
can be used to set targets for a given command, but the engine can also read
the following two keyword arguments:

	target - The target expression to use for the command

	tgt_type - The match type, can be one of glob, list,
pcre, grain, grain_pcre, pillar, nodegroup, range,
ipcidr, or compound. The default value is glob.

Here are a few examples:

!test.ping target=*
!state.apply foo target=os:CentOS tgt_type=grain
!pkg.version mypkg target=role:database tgt_type=pillar

	fire_all - If set to True, all messages which are not prefixed with
the trigger string will fired as events onto Salt's ref:event bus
<event-system>. The tag for these veents will be prefixed with the string
specified by the tag config option (default: salt/engines/slack).

The groups_pillar_name config option can be used to pull group
configuration from the specified pillar key.

Note

In order to use groups_pillar_name, the engine must be running as a
minion running on the master, so that the Caller client can be used to
retrieve that minions pillar data, because the master process does not have
pillar data.

Configuration Examples

Changed in version 2017.7.0: Access control group support added

This example uses a single group called default. In addition, other groups
are being loaded from pillar data. The group names do not have any
significance, it is the users and commands defined within them that are used to
determine whether the Slack user has permission to run the desired command.

engines:
 - slack:
 token: 'xoxb-xxxxxxxxxx-xxxxxxxxxxxxxxxxxxxxxxxx'
 control: True
 fire_all: False
 groups_pillar_name: 'slack_engine:groups_pillar'
 groups:
 default:
 users:
 - '*'
 commands:
 - test.ping
 - cmd.run
 - list_jobs
 - list_commands
 aliases:
 list_jobs:
 cmd: jobs.list_jobs
 list_commands:
 cmd: 'pillar.get salt:engines:slack:valid_commands target=saltmaster tgt_type=list'
 default_target:
 target: saltmaster
 tgt_type: glob
 targets:
 test.ping:
 target: '*'
 tgt_type: glob
 cmd.run:
 target: saltmaster
 tgt_type: list

This example shows multiple groups applying to different users, with all users
having access to run test.ping. Keep in mind that when using *, the value
must be quoted, or else PyYAML will fail to load the configuration.

engines:
 - slack:
 groups_pillar: slack_engine_pillar
 token: 'xoxb-xxxxxxxxxx-xxxxxxxxxxxxxxxxxxxxxxxx'
 control: True
 fire_all: True
 tag: salt/engines/slack
 groups_pillar_name: 'slack_engine:groups_pillar'
 groups:
 default:
 users:
 - '*'
 commands:
 - test.ping
 aliases:
 list_jobs:
 cmd: jobs.list_jobs
 list_commands:
 cmd: 'pillar.get salt:engines:slack:valid_commands target=saltmaster tgt_type=list'
 gods:
 users:
 - garethgreenaway
 commands:
 - '*'

	
class salt.engines.slack.SlackClient(token)

	
	
can_user_run(user, command, groups)

	Break out the permissions into the following:

Check whether a user is in any group, including whether a group has the '*' membership

	Parameters:

	
	user (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The username being checked against

	command (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The command that is being invoked (e.g. test.ping)

	groups (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- the dictionary with groups permissions structure.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	Returns:

	On a successful permitting match, returns 2-element tuple that contains
the name of the group that successfully matched, and a dictionary containing
the configuration of the group so it can be referenced.

On failure it returns an empty tuple

	
commandline_to_list(cmdline_str, trigger_string)

	cmdline_str is the string of the command line
trigger_string is the trigger string, to be removed

	
control_message_target(slack_user_name, text, loaded_groups, trigger_string)

	Returns a tuple of (target, cmdline,) for the response

Raises IndexError if a user can't be looked up from all_slack_users

Returns (False, False) if the user doesn't have permission

These are returned together because the commandline and the targeting
interact with the group config (specifically aliases and targeting configuration)
so taking care of them together works out.

The cmdline that is returned is the actual list that should be
processed by salt, and not the alias.

	
fire(tag, msg)

	This replaces a function in main called 'fire'

It fires an event into the salt bus.

	
format_return_text(data, function, **kwargs)

	Print out YAML using the block mode

	
generate_triggered_messages(token, trigger_string, groups, groups_pillar_name)

	slack_token = string
trigger_string = string
input_valid_users = set
input_valid_commands = set

When the trigger_string prefixes the message text, yields a dictionary
of:

{
 'message_data': m_data,
 'cmdline': cmdline_list, # this is a list
 'channel': channel,
 'user': m_data['user'],
 'slack_client': sc
}

else yields {'message_data': m_data} and the caller can handle that

When encountering an error (e.g. invalid message), yields {}, the caller can proceed to the next message

When the websocket being read from has given up all its messages, yields {'done': True} to
indicate that the caller has read all of the relevant data for now, and should continue
its own processing and check back for more data later.

This relies on the caller sleeping between checks, otherwise this could flood

	
get_config_groups(groups_conf, groups_pillar_name)

	get info from groups in config, and from the named pillar

todo: add specification for the minion to use to recover pillar

	
get_jobs_from_runner(outstanding_jids)

	Given a list of job_ids, return a dictionary of those job_ids that have
completed and their results.

Query the salt event bus via the jobs runner. jobs.list_job will show
a job in progress, jobs.lookup_jid will return a job that has
completed.

returns a dictionary of job id: result

	
get_slack_channels(token)

	Get all channel names from Slack

	
get_slack_users(token)

	Get all users from Slack

	
get_target(permitted_group, cmdline, alias_cmdline)

	When we are permitted to run a command on a target, look to see
what the default targeting is for that group, and for that specific
command (if provided).

It's possible for None or False to be the result of either, which means
that it's expected that the caller provide a specific target.

If no configured target is provided, the command line will be parsed
for target=foo and tgt_type=bar

Test for this:

h = {'aliases': {}, 'commands': {'cmd.run', 'pillar.get'},
 'default_target': {'target': '*', 'tgt_type': 'glob'},
 'targets': {'pillar.get': {'target': 'you_momma', 'tgt_type': 'list'}},
 'users': {'dmangot', 'jmickle', 'pcn'}}
f = {'aliases': {}, 'commands': {'cmd.run', 'pillar.get'},
 'default_target': {}, 'targets': {},'users': {'dmangot', 'jmickle', 'pcn'}}

g = {'aliases': {}, 'commands': {'cmd.run', 'pillar.get'},
 'default_target': {'target': '*', 'tgt_type': 'glob'},
 'targets': {}, 'users': {'dmangot', 'jmickle', 'pcn'}}

Run each of them through get_configured_target(('foo', f), 'pillar.get') and confirm a valid target

	
message_text(m_data)

	Raises ValueError if a value doesn't work out, and TypeError if
this isn't a message type

	
parse_args_and_kwargs(cmdline)

	cmdline: list

returns tuple of: args (list), kwargs (dict)

	
run_command_async(msg)

	
	Parameters:

	
	message_generator (generator of dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Generates messages from slack that should be run

	fire_all (bool [https://docs.python.org/3/library/functions.html#bool]) -- Whether to also fire messages to the event bus

	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The tag to send to use to send to the event bus

	interval (int [https://docs.python.org/3/library/functions.html#int]) -- time to wait between ending a loop and beginning the next

	
run_commands_from_slack_async(message_generator, fire_all, tag, control, interval=1)

	Pull any pending messages from the message_generator, sending each
one to either the event bus, the command_async or both, depending on
the values of fire_all and command

	
salt.engines.slack.start(token, control=False, trigger='!', groups=None, groups_pillar_name=None, fire_all=False, tag='salt/engines/slack')

	Listen to slack events and forward them to salt, new version

salt.engines.slack_bolt_engine

An engine that reads messages from Slack and can act on them

New in version 3006.0.

	depends:

	slack_bolt [https://pypi.org/project/slack_bolt/] Python module

Important

This engine requires a Slack app and a Slack Bot user. To create a
bot user, first go to the Custom Integrations page in your
Slack Workspace. Copy and paste the following URL, and log in with
account credentials with administrative privileges:

https://api.slack.com/apps/new

Next, click on the From scratch option from the Create an app popup.
Give your new app a unique name, eg. SaltSlackEngine, select the workspace
where your app will be running, and click Create App.

Next, click on Socket Mode and then click on the toggle button for
Enable Socket Mode. In the dialog give your Socket Mode Token a unique
name and then copy and save the app level token. This will be used
as the app_token parameter in the Slack engine configuration.

Next, click on Event Subscriptions and ensure that Enable Events is in
the on position. Then add the following bot events, message.channel
and message.im to the Subcribe to bot events list.

Next, click on OAuth & Permissions and then under Bot Token Scope, click
on Add an OAuth Scope. Ensure the following scopes are included:

	channels:history

	channels:read

	chat:write

	commands

	files:read

	files:write

	im:history

	mpim:history

	usergroups:read

	users:read

Once all the scopes have been added, click the Install to Workspace button
under OAuth Tokens for Your Workspace, then click Allow. Copy and save
the Bot User OAuth Token, this will be used as the bot_token parameter
in the Slack engine configuration.

Finally, add this bot user to a channel by switching to the channel and
using /invite @mybotuser. Keep in mind that this engine will process
messages from each channel in which the bot is a member, so it is
recommended to narrowly define the commands which can be executed, and the
Slack users which are allowed to run commands.

This engine has two boolean configuration parameters that toggle specific
features (both default to False):

	control - If set to True, then any message which starts with the
trigger string (which defaults to ! and can be overridden by setting the
trigger option in the engine configuration) will be interpreted as a
Salt CLI command and the engine will attempt to run it. The permissions
defined in the various groups will determine if the Slack user is
allowed to run the command. The targets and default_target options
can be used to set targets for a given command, but the engine can also read
the following two keyword arguments:

	target - The target expression to use for the command

	tgt_type - The match type, can be one of glob, list,
pcre, grain, grain_pcre, pillar, nodegroup, range,
ipcidr, or compound. The default value is glob.

Here are a few examples:

!test.ping target=*
!state.apply foo target=os:CentOS tgt_type=grain
!pkg.version mypkg target=role:database tgt_type=pillar

	fire_all - If set to True, all messages which are not prefixed with
the trigger string will fired as events onto Salt's ref:event bus
<event-system>. The tag for these events will be prefixed with the string
specified by the tag config option (default: salt/engines/slack).

The groups_pillar_name config option can be used to pull group
configuration from the specified pillar key.

Note

In order to use groups_pillar_name, the engine must be running as a
minion running on the master, so that the Caller client can be used to
retrieve that minion's pillar data, because the master process does not have
pillar data.

Configuration Examples

Changed in version 2017.7.0: Access control group support added

Changed in version 3006.0: Updated to use slack_bolt Python library.

This example uses a single group called default. In addition, other groups
are being loaded from pillar data. The users and commands defined within these
groups are used to determine whether the Slack user has permission to run
the desired command.

engines:
 - slack_bolt:
 app_token: "xapp-x-xxxxxxxxxxx-xxxxxxxxxxxxx-xx"
 bot_token: 'xoxb-xxxxxxxxxx-xxxxxxxxxxxxxxxxxxxxxxxx'
 control: True
 fire_all: False
 groups_pillar_name: 'slack_engine:groups_pillar'
 groups:
 default:
 users:
 - '*'
 commands:
 - test.ping
 - cmd.run
 - list_jobs
 - list_commands
 aliases:
 list_jobs:
 cmd: jobs.list_jobs
 list_commands:
 cmd: 'pillar.get salt:engines:slack:valid_commands target=saltmaster tgt_type=list'
 default_target:
 target: saltmaster
 tgt_type: glob
 targets:
 test.ping:
 target: '*'
 tgt_type: glob
 cmd.run:
 target: saltmaster
 tgt_type: list

This example shows multiple groups applying to different users, with all users
having access to run test.ping. Keep in mind that when using *, the value
must be quoted, or else PyYAML will fail to load the configuration.

engines:
 - slack_bolt:
 groups_pillar: slack_engine_pillar
 app_token: "xapp-x-xxxxxxxxxxx-xxxxxxxxxxxxx-xx"
 bot_token: 'xoxb-xxxxxxxxxx-xxxxxxxxxxxxxxxxxxxxxxxx'
 control: True
 fire_all: True
 tag: salt/engines/slack
 groups_pillar_name: 'slack_engine:groups_pillar'
 groups:
 default:
 users:
 - '*'
 commands:
 - test.ping
 aliases:
 list_jobs:
 cmd: jobs.list_jobs
 list_commands:
 cmd: 'pillar.get salt:engines:slack:valid_commands target=saltmaster tgt_type=list'
 gods:
 users:
 - garethgreenaway
 commands:
 - '*'

	
class salt.engines.slack_bolt_engine.SlackClient(app_token, bot_token, trigger_string)

	
	
can_user_run(user, command, groups)

	Check whether a user is in any group, including whether a group has the '*' membership

	Parameters:

	
	user (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The username being checked against

	command (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The command that is being invoked (e.g. test.ping)

	groups (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- the dictionary with groups permissions structure.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	Returns:

	On a successful permitting match, returns 2-element tuple that contains
the name of the group that successfully matched, and a dictionary containing
the configuration of the group so it can be referenced.

On failure it returns an empty tuple

	
commandline_to_list(cmdline_str, trigger_string)

	cmdline_str is the string of the command line
trigger_string is the trigger string, to be removed

	
control_message_target(slack_user_name, text, loaded_groups, trigger_string)

	Returns a tuple of (target, cmdline,) for the response

Raises IndexError if a user can't be looked up from all_slack_users

Returns (False, False) if the user doesn't have permission

These are returned together because the commandline and the targeting
interact with the group config (specifically aliases and targeting configuration)
so taking care of them together works out.

The cmdline that is returned is the actual list that should be
processed by salt, and not the alias.

	
fire(tag, msg)

	This replaces a function in main called 'fire'

It fires an event into the salt bus.

	Parameters:

	
	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The tag to use when sending events to the Salt event bus.

	msg (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- The msg dictionary to send to the Salt event bus.

	
format_return_text(data, function, **kwargs)

	Print out YAML using the block mode

	Parameters:

	
	token -- The return data that needs to be formatted.

	token -- The function that was used to generate the return data.

	
generate_triggered_messages(token, trigger_string, groups, groups_pillar_name)

	slack_token = string
trigger_string = string
input_valid_users = set
input_valid_commands = set

When the trigger_string prefixes the message text, yields a dictionary
of:

{
 'message_data': m_data,
 'cmdline': cmdline_list, # this is a list
 'channel': channel,
 'user': m_data['user'],
 'slack_client': sc
}

else yields {'message_data': m_data} and the caller can handle that

When encountering an error (e.g. invalid message), yields {}, the caller can proceed to the next message

When the websocket being read from has given up all its messages, yields {'done': True} to
indicate that the caller has read all of the relevant data for now, and should continue
its own processing and check back for more data later.

This relies on the caller sleeping between checks, otherwise this could flood

	
get_config_groups(groups_conf, groups_pillar_name)

	get info from groups in config, and from the named pillar

	Parameters:

	
	group_conf (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- The dictionary containing the groups, group members,
and the commands those group members have access to.

	groups_pillar_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- can be used to pull group configuration from the specified pillar key.

	
get_jobs_from_runner(outstanding_jids)

	Given a list of job_ids, return a dictionary of those job_ids that have
completed and their results.

Query the salt event bus via the jobs runner. jobs.list_job will show
a job in progress, jobs.lookup_jid will return a job that has
completed.

	Parameters:

	outstanding_jids (list [https://docs.python.org/3/library/stdtypes.html#list]) -- The list of job ids to check for completion.

returns a dictionary of job id: result

	
get_slack_channels(token)

	Get all channel names from Slack

	Parameters:

	token (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Slack token being used to allow Salt to interact with Slack.

	
get_slack_users(token)

	Get all users from Slack

	Parameters:

	token -- The Slack token being used to allow Salt to interact with Slack.

	
get_target(permitted_group, cmdline, alias_cmdline)

	When we are permitted to run a command on a target, look to see
what the default targeting is for that group, and for that specific
command (if provided).

It's possible for None or False to be the result of either, which means
that it's expected that the caller provide a specific target.

If no configured target is provided, the command line will be parsed
for target=foo and tgt_type=bar

Test for this:

h = {'aliases': {}, 'commands': {'cmd.run', 'pillar.get'},
 'default_target': {'target': '*', 'tgt_type': 'glob'},
 'targets': {'pillar.get': {'target': 'you_momma', 'tgt_type': 'list'}},
 'users': {'dmangot', 'jmickle', 'pcn'}}
f = {'aliases': {}, 'commands': {'cmd.run', 'pillar.get'},
 'default_target': {}, 'targets': {},'users': {'dmangot', 'jmickle', 'pcn'}}

g = {'aliases': {}, 'commands': {'cmd.run', 'pillar.get'},
 'default_target': {'target': '*', 'tgt_type': 'glob'},
 'targets': {}, 'users': {'dmangot', 'jmickle', 'pcn'}}

Run each of them through get_configured_target(('foo', f), 'pillar.get') and confirm a valid target

	Parameters:

	
	permitted_group (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) -- A tuple containing the group name and group configuration to check for permission.

	cmdline (list [https://docs.python.org/3/library/stdtypes.html#list]) -- The command sent from Slack formatted as a list.

	alias_cmdline (str [https://docs.python.org/3/library/stdtypes.html#str]) -- An alias to a cmdline.

	
message_text(m_data)

	Raises ValueError if a value doesn't work out, and TypeError if
this isn't a message type

	Parameters:

	m_data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- The message sent from Slack

	
message_trigger(message)

	

	
parse_args_and_kwargs(cmdline)

	
	Parameters:

	cmdline (list [https://docs.python.org/3/library/stdtypes.html#list]) -- The command sent from Slack formatted as a list.

returns tuple of: args (list), kwargs (dict)

	
run_command_async(msg)

	
	Parameters:

	msg (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- The message dictionary that contains the command and all information.

	
run_commands_from_slack_async(message_generator, fire_all, tag, control, interval=1)

	Pull any pending messages from the message_generator, sending each
one to either the event bus, the command_async or both, depending on
the values of fire_all and command

	Parameters:

	
	message_generator (generator of dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Generates messages from slack that should be run

	fire_all (bool [https://docs.python.org/3/library/functions.html#bool]) -- Whether to also fire messages to the event bus

	control (bool [https://docs.python.org/3/library/functions.html#bool]) -- If set to True, whether Slack is allowed to control Salt.

	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The tag to send to use to send to the event bus

	interval (int [https://docs.python.org/3/library/functions.html#int]) -- time to wait between ending a loop and beginning the next

	
salt.engines.slack_bolt_engine.start(app_token, bot_token, control=False, trigger='!', groups=None, groups_pillar_name=None, fire_all=False, tag='salt/engines/slack')

	Listen to slack events and forward them to salt, new version

	Parameters:

	
	app_token (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Slack application token used by Salt to communicate with Slack.

	bot_token (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Slack bot token used by Salt to communicate with Slack.

	control (bool [https://docs.python.org/3/library/functions.html#bool]) -- Determines whether or not commands sent from Slack with the trigger string will control Salt, defaults to False.

	trigger (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The string that should preface all messages in Slack that should be treated as commands to send to Salt.

	group (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The string that should preface all messages in Slack that should be treated as commands to send to Salt.

	group_pillars -- A pillar key that can be used to pull group configuration.

	fire_all (bool [https://docs.python.org/3/library/functions.html#bool]) -- If set to True, all messages which are not prefixed with
the trigger string will fired as events onto Salt's ref:event bus
<event-system>. The tag for these events will be prefixed with the string
specified by the tag config option (default: salt/engines/slack).

	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The tag to prefix all events sent to the Salt event bus.

salt.engines.sqs_events

An engine that continuously reads messages from SQS and fires them as events.

Note that long polling is utilized to avoid excessive CPU usage.

New in version 2015.8.0.

	depends:

	boto

Configuration

This engine can be run on the master or on a minion.

Example Config:

sqs.keyid: GKTADJGHEIQSXMKKRBJ08H
sqs.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
sqs.message_format: json

Explicit sqs credentials are accepted but this engine can also utilize
IAM roles assigned to the instance through Instance Profiles. Dynamic
credentials are then automatically obtained from AWS API and no further
configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not (or for boto version < 2.5.1) used you need to
specify them either in a pillar or in the config file of the master or
minion, as appropriate:

To deserialize the message from json:

sqs.message_format: json

It's also possible to specify key, keyid and region via a profile:

sqs.keyid: GKTADJGHEIQSXMKKRBJ08H
sqs.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

sqs.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

Additionally you can define cross account sqs:

engines:
 - sqs_events:
 queue: prod
 owner_acct_id: 111111111111

	
salt.engines.sqs_events.start(queue, profile=None, tag='salt/engine/sqs', owner_acct_id=None)

	Listen to sqs and fire message on event bus

salt.engines.stalekey

An engine that uses presence detection to keep track of which minions
have been recently connected and remove their keys if they have not been
connected for a certain period of time.

Requires that the minion_data_cache option be enabled.

New in version 2017.7.0.

	configuration:

	Example configuration:

engines:
 - stalekey:
 interval: 3600
 expire: 86400

	
salt.engines.stalekey.start(interval=3600, expire=604800)

	Start the engine

salt.engines.test

A simple test engine, not intended for real use but as an example

	
salt.engines.test.event_bus_context(opts)

	

	
salt.engines.test.start()

	Listen to events and write them to a log file

salt.engines.thorium

Manage the Thorium complex event reaction system

	
salt.engines.thorium.start(grains=False, grain_keys=None, pillar=False, pillar_keys=None)

	Execute the Thorium runtime

salt.engines.webhook

Send events from webhook api

	
salt.engines.webhook.start(address=None, port=5000, ssl_crt=None, ssl_key=None)

	Api to listen for webhooks to send to the reactor.

Implement the webhook behavior in an engine.
rest_cherrypy Webhook docs

Unlike the rest_cherrypy Webhook, this is only an unauthenticated webhook
endpoint. If an authenticated webhook endpoint is needed, use the salt-api
webhook which runs on the master and authenticates through eauth.

Warning

Unauthenticated endpoint

This engine sends webhook calls to the event stream. If the engine is
running on a minion with file_client: local the event is sent to the
minion event stream. Otherwise it is sent to the master event stream.

Example Config

engines:
 - webhook: {}

engines:
 - webhook:
 port: 8000
 address: 10.128.1.145
 ssl_crt: /etc/pki/tls/certs/localhost.crt
 ssl_key: /etc/pki/tls/certs/localhost.key

execution modules

Virtual modules

	salt.modules.group

	salt.modules.kernelpkg

	salt.modules.pkg

	salt.modules.service

	salt.modules.shadow

	salt.modules.sysctl

	salt.modules.user

	acme

	ACME / Let's Encrypt module

	aix_group

	Manage groups on Solaris

	aix_shadow

	Manage account locks on AIX systems

	aixpkg

	Package support for AIX

	aliases

	Manage the information in the aliases file

	alternatives

	Support for Alternatives system

	ansiblegate

	Ansible Support

	apache

	Support for Apache

	apcups

	Module for apcupsd

	apf

	Support for Advanced Policy Firewall (APF)

maintainer

Mostafa Hussein <mostafa.hussein91@gmail.com>

maturity

new

depends

python-iptables

platform

Linux

	apkpkg

	Support for apk

	aptly

	Aptly Debian repository manager.

	aptpkg

	Support for APT (Advanced Packaging Tool)

	archive

	A module to wrap (non-Windows) archive calls

	arista_pyeapi

	Arista pyeapi

	artifactory

	Module for fetching artifacts from Artifactory

	at

	Wrapper module for at(1)

	at_solaris

	Wrapper for at(1) on Solaris-like systems

	augeas_cfg

	Manages configuration files via augeas

	aws_sqs

	Support for the Amazon Simple Queue Service.

	bamboohr

	Support for BambooHR

	baredoc

	Baredoc walks the installed module and state directories and generates dictionaries and lists of the function names and their arguments.

	bcache

	Module for managing BCache sets

	beacons

	Module for managing the Salt beacons on a minion

	bigip

	An execution module which can manipulate an f5 bigip via iControl REST

	bluez_bluetooth

	Support for Bluetooth (using BlueZ in Linux).

	boto3_elasticache

	Execution module for Amazon Elasticache using boto3

	boto3_elasticsearch

	Connection module for Amazon Elasticsearch Service

	boto3_route53

	Execution module for Amazon Route53 written against Boto 3

	boto3_sns

	Connection module for Amazon SNS

	boto_apigateway

	Connection module for Amazon APIGateway

	boto_asg

	Connection module for Amazon Autoscale Groups

	boto_cfn

	Connection module for Amazon Cloud Formation

	boto_cloudfront

	Connection module for Amazon CloudFront

	boto_cloudtrail

	Connection module for Amazon CloudTrail

	boto_cloudwatch

	Connection module for Amazon CloudWatch

	boto_cloudwatch_event

	Connection module for Amazon CloudWatch Events

	boto_cognitoidentity

	Connection module for Amazon CognitoIdentity

	boto_datapipeline

	Connection module for Amazon Data Pipeline

	boto_dynamodb

	Connection module for Amazon DynamoDB

	boto_ec2

	Connection module for Amazon EC2

	boto_efs

	Connection module for Amazon EFS

	boto_elasticache

	Connection module for Amazon Elasticache

	boto_elasticsearch_domain

	Connection module for Amazon Elasticsearch Service

	boto_elb

	Connection module for Amazon ELB

	boto_elbv2

	Connection module for Amazon ALB

	boto_iam

	Connection module for Amazon IAM

	boto_iot

	Connection module for Amazon IoT

	boto_kinesis

	Connection module for Amazon Kinesis

	boto_kms

	Connection module for Amazon KMS

	boto_lambda

	Connection module for Amazon Lambda

	boto_rds

	Connection module for Amazon RDS

	boto_route53

	Connection module for Amazon Route53

	boto_s3

	Connection module for Amazon S3 using boto3

	boto_s3_bucket

	Connection module for Amazon S3 Buckets

	boto_secgroup

	Connection module for Amazon Security Groups

	boto_sns

	Connection module for Amazon SNS

	boto_sqs

	Connection module for Amazon SQS

	boto_ssm

	Connection module for Amazon SSM

	boto_vpc

	Connection module for Amazon VPC

	bower

	Manage and query Bower packages

	bridge

	Module for gathering and managing bridging information

	bsd_shadow

	Manage the password database on BSD systems

	btrfs

	Module for managing BTRFS file systems.

	cabal

	Manage and query Cabal packages

	capirca_acl

	Capirca ACL

	cassandra_cql

	Cassandra Database Module

	celery

	Support for scheduling celery tasks.

	ceph

	Module to provide ceph control with salt.

	chassis

	Glue execution module to link to the fx2 proxymodule.

	chef

	Execute chef in server or solo mode

	chocolatey

	A module that wraps calls to the Chocolatey package manager (http://chocolatey.org)

	chronos

	Module providing a simple management interface to a chronos cluster.

	chroot

	Module for chroot :maintainer: Alberto Planas <aplanas@suse.com> :maturity: new :depends: None :platform: Linux

	cimc

	Module to provide Cisco UCS compatibility to Salt

	ciscoconfparse_mod

	Execution module for ciscoconfparse [http://www.pennington.net/py/ciscoconfparse/index.html]

	cisconso

	Execution module for Cisco Network Services Orchestrator Proxy minions

	cloud

	Salt-specific interface for calling Salt Cloud directly

	cmdmod

	A module for shelling out.

	composer

	Use composer to install PHP dependencies for a directory

	config

	Return config information

	consul

	Interact with Consul

	container_resource

	Common resources for LXC and systemd-nspawn containers

	cp

	Minion side functions for salt-cp

	cpan

	Manage Perl modules using CPAN

	cron

	Work with cron

	cryptdev

	Salt module to manage Unix cryptsetup jobs and the crypttab file

	csf

	Support for Config Server Firewall (CSF)

maintainer

Mostafa Hussein <mostafa.hussein91@gmail.com>

maturity

new

platform

Linux

	cyg

	Manage cygwin packages.

	daemontools

	daemontools service module.

	data

	Manage a local persistent data structure that can hold any arbitrary data specific to the minion

	datadog_api

	An execution module that interacts with the Datadog API

	ddns

	Support for RFC 2136 dynamic DNS updates.

	deb_apache

	

	deb_postgres

	Module to provide Postgres compatibility to salt for debian family specific tools.

	debconfmod

	Support for Debconf

	debian_ip

	The networking module for Debian-based distros

	debian_service

	Service support for Debian systems (uses update-rc.d and /sbin/service)

	debuild_pkgbuild

	Debian Package builder system

	defaults

	Module to work with salt formula defaults files

	devinfo

	Module for devinfo :maintainer: Alberto Planas <aplanas@suse.com> :maturity: new :depends: None :platform: Linux

	devmap

	Device-Mapper module

	dig

	Compendium of generic DNS utilities.

	disk

	Module for managing disks and blockdevices

	djangomod

	Manage Django sites

	dnsmasq

	Module for managing dnsmasq

	dnsutil

	Compendium of generic DNS utilities.

	dockercompose

	

	dockermod

	

	dpkg_lowpkg

	Support for DEB packages

	drac

	Manage Dell DRAC

	dracr

	Manage Dell DRAC.

	drbd

	DRBD administration module

	dummyproxy_pkg

	Package support for the dummy proxy used by the test suite

	dummyproxy_service

	Provide the service module for the dummy proxy used in integration tests

	ebuildpkg

	Support for Portage

	eix

	Support for Eix

	elasticsearch

	Elasticsearch - A distributed RESTful search and analytics server

	environ

	Support for getting and setting the environment variables of the current salt process.

	eselect

	Support for eselect, Gentoo's configuration and management tool.

	esxcluster

	Module used to access the esxcluster proxy connection methods

	esxdatacenter

	Module used to access the esxdatacenter proxy connection methods

	esxi

	Glues the VMware vSphere Execution Module to the VMware ESXi Proxy Minions to the esxi proxymodule.

	esxvm

	Module used to access the esx proxy connection methods

	etcd_mod

	Execution module to work with etcd

	ethtool

	Module for running ethtool command

	event

	Use the Salt Event System to fire events from the master to the minion and vice-versa.

	extfs

	Module for managing ext2/3/4 file systems

	file

	Manage information about regular files, directories, and special files on the minion, set/read user, group, mode, and data

	firewalld

	Support for firewalld.

	freebsd_sysctl

	Module for viewing and modifying sysctl parameters

	freebsd_update

	Support for freebsd-update utility on FreeBSD.

	freebsdjail

	The jail module for FreeBSD

	freebsdkmod

	Module to manage FreeBSD kernel modules

	freebsdpkg

	Remote package support using pkg_add(1)

	freebsdports

	Install software from the FreeBSD ports(7) system

	freebsdservice

	The service module for FreeBSD

	freezer

	Module for freezer :maintainer: Alberto Planas <aplanas@suse.com> :maturity: new :depends: None :platform: Linux

	gcp_addon

	A route is a rule that specifies how certain packets should be handled by the virtual network.

	gem

	Manage ruby gems.

	genesis

	Module for managing container and VM images

	gentoo_service

	Top level package command wrapper, used to translate the os detected by grains to the correct service manager

	gentoolkitmod

	Support for Gentoolkit

	git

	Support for the Git SCM

	github

	Module for interacting with the GitHub v3 API.

	glanceng

	Glance module for interacting with OpenStack Glance

	glassfish

	Module for working with the Glassfish/Payara 4.x management API .

	glusterfs

	Manage a glusterfs pool

	gnomedesktop

	GNOME implementations

	google_chat

	Module for sending messages to google chat.

	gpg

	Manage GPG keychains, add keys, create keys, retrieve keys from keyservers.

	grafana4

	Module for working with the Grafana v4 API

	grains

	Return/control aspects of the grains data

	groupadd

	Manage groups on Linux, OpenBSD and NetBSD

	grub_legacy

	Support for GRUB Legacy

	guestfs

	Interact with virtual machine images via libguestfs

	hadoop

	Support for hadoop

	haproxyconn

	Support for haproxy

	hashutil

	A collection of hashing and encoding functions

	heat

	Module for handling OpenStack Heat calls

	helm

	Interface with Helm

	hg

	Support for the Mercurial SCM

	highstate_doc

	This module renders highstate configuration into a more human readable format.

	hosts

	Manage the information in the hosts file

	http

	Module for making various web calls.

	icinga2

	Module to provide icinga2 compatibility to salt.

	idem

	Idem Support

	ifttt

	Support for IFTTT

	ilo

	Manage HP ILO

	incron

	Work with incron

	influxdb08mod

	InfluxDB - A distributed time series database

	influxdbmod

	InfluxDB - A distributed time series database

	infoblox

	This module have been tested on infoblox API v1.2.1, other versions of the API are likly workable.

	ini_manage

	Edit ini files

	inspectlib

	

	inspectlib.collector

	

	inspectlib.dbhandle

	

	inspectlib.entities

	

	inspectlib.exceptions

	

	inspectlib.fsdb

	
	codeauthor:

	Bo Maryniuk <bo@suse.de>

	inspectlib.kiwiproc

	

	inspectlib.query

	

	inspector

	Module for full system inspection.

	introspect

	Functions to perform introspection on a minion, and return data in a format usable by Salt States

	iosconfig

	Cisco IOS configuration manipulation helpers

	ipmi

	Support IPMI commands over LAN.

	ipset

	Support for ipset

	iptables

	Support for iptables

	iwtools

	Support for Wireless Tools for Linux

	jboss7

	Module for managing JBoss AS 7 through the CLI interface.

	jboss7_cli

	Module for low-level interaction with JbossAS7 through CLI.

	jenkinsmod

	Module for controlling Jenkins

	jinja

	Module for checking jinja maps and verifying the result of loading JSON/YAML files

	jira_mod

	JIRA Execution module

	junos

	Module to interact with Junos devices.

	k8s

	

	kapacitor

	Kapacitor execution module.

	kerberos

	Manage Kerberos KDC

	kernelpkg_linux_apt

	Manage Linux kernel packages on APT-based systems

	kernelpkg_linux_yum

	Manage Linux kernel packages on YUM-based systems

	key

	Functions to view the minion's public key information

	keyboard

	Module for managing keyboards on supported POSIX-like systems using systemd, or such as Redhat, Debian and Gentoo.

	keystone

	Module for handling openstack keystone calls.

	keystoneng

	Keystone module for interacting with OpenStack Keystone

	keystore

	Module to interact with keystores

	kmod

	Module to manage Linux kernel modules

	kubeadm

	

	kubernetesmod

	

	launchctl_service

	Module for the management of MacOS systems that use launchd/launchctl

	layman

	Support for Layman

	ldap3

	Query and modify an LDAP database (alternative interface)

	ldapmod

	Salt interface to LDAP commands

	libcloud_compute

	Apache Libcloud Compute Management

	libcloud_dns

	Apache Libcloud DNS Management

	libcloud_loadbalancer

	Apache Libcloud Load Balancer Management

	libcloud_storage

	Apache Libcloud Storage Management

	linux_acl

	Support for Linux File Access Control Lists

	linux_ip

	The networking module for Non-RH/Deb Linux distros

	linux_lvm

	Support for Linux LVM2

	linux_service

	If Salt's OS detection does not identify a different virtual service module, the minion will fall back to using this basic module, which simply wraps sysvinit scripts.

	linux_shadow

	Manage the shadow file on Linux systems

	linux_sysctl

	Module for viewing and modifying sysctl parameters

	localemod

	Module for managing locales on POSIX-like systems.

	locate

	Module for using the locate utilities

	logadm

	Module for managing Solaris logadm based log rotations.

	logmod

	On-demand logging

	logrotate

	Module for managing logrotate.

	lvs

	Support for LVS (Linux Virtual Server)

	lxc

	Control Linux Containers via Salt

	lxd

	Module for managing the LXD daemon and its containers.

	mac_assistive

	This module allows you to manage assistive access on macOS minions with 10.9+

	mac_brew_pkg

	Homebrew for macOS

	mac_desktop

	macOS implementations of various commands in the "desktop" interface

	mac_group

	Manage groups on Mac OS 10.7+

	mac_keychain

	Install certificates into the keychain on Mac OS

	mac_pkgutil

	Installer support for macOS.

	mac_portspkg

	Support for MacPorts under macOS.

	mac_power

	Module for editing power settings on macOS

	mac_service

	The service module for macOS

	mac_shadow

	Manage macOS local directory passwords and policies

	mac_softwareupdate

	Support for the softwareupdate command on MacOS.

	mac_sysctl

	Module for viewing and modifying sysctl parameters

	mac_system

	System module for sleeping, restarting, and shutting down the system on Mac OS X

	mac_timezone

	Module for editing date/time settings on macOS

	mac_user

	Manage users on Mac OS 10.7+

	mac_xattr

	This module allows you to manage extended attributes on files or directories

	macdefaults

	Set defaults on Mac OS

	macpackage

	Install pkg, dmg and .app applications on macOS minions.

	makeconf

	Support for modifying make.conf under Gentoo

	mandrill

	Mandrill

	marathon

	Module providing a simple management interface to a marathon cluster.

	match

	The match module allows for match routines to be run and determine target specs

	mattermost

	Module for sending messages to Mattermost

	mdadm_raid

	Salt module to manage RAID arrays with mdadm

	mdata

	Module for managaging metadata in SmartOS Zones

	memcached

	Module for Management of Memcached Keys

	mine

	The function cache system allows for data to be stored on the master so it can be easily read by other minions

	minion

	Module to provide information about minions

	mod_random

	Provides access to randomness generators.

	modjk

	Control Modjk via the Apache Tomcat "Status" worker (http://tomcat.apache.org/connectors-doc/reference/status.html)

	mongodb

	Module to provide MongoDB functionality to Salt

	monit

	Monit service module.

	moosefs

	Module for gathering and managing information about MooseFS

	mount

	Salt module to manage Unix mounts and the fstab file

	mssql

	Module to provide MS SQL Server compatibility to salt.

	msteams

	Module for sending messages to MS Teams

	munin

	Run munin plugins/checks from salt and format the output as data.

	mysql

	Module to provide MySQL compatibility to salt.

	nacl

	This module helps include encrypted passwords in pillars, grains and salt state files.

	nagios

	Run nagios plugins/checks from salt and get the return as data.

	nagios_rpc

	Check Host & Service status from Nagios via JSON RPC.

	namecheap_domains

	Namecheap Domain Management

	namecheap_domains_dns

	Namecheap DNS Management

	namecheap_domains_ns

	Namecheap Nameserver Management

	namecheap_ssl

	Namecheap SSL Certificate Management

	namecheap_users

	Namecheap User Management

	napalm_bgp

	NAPALM BGP

	napalm_formula

	NAPALM Formula helpers

	napalm_mod

	NAPALM helpers

	napalm_netacl

	NAPALM ACL

	napalm_network

	NAPALM Network

	napalm_ntp

	NAPALM NTP

	napalm_probes

	NAPALM Probes

	napalm_route

	NAPALM Route

	napalm_snmp

	NAPALM SNMP

	napalm_users

	NAPALM Users

	napalm_yang_mod

	NAPALM YANG

	netaddress

	Module for getting information about network addresses.

	netbox

	NetBox

	netbsd_sysctl

	Module for viewing and modifying sysctl parameters

	netbsdservice

	The service module for NetBSD

	netmiko_mod

	Netmiko Execution Module

	netscaler

	Module to provide Citrix Netscaler compatibility to Salt (compatible with netscaler 9.2+)

	network

	Module for gathering and managing network information

	neutron

	Module for handling OpenStack Neutron calls

	neutronng

	Neutron module for interacting with OpenStack Neutron

	nexus

	Module for fetching artifacts from Nexus 3.x

	nfs3

	Module for managing NFS version 3.

	nftables

	Support for nftables

	nginx

	Support for nginx

	nilrt_ip

	The networking module for NI Linux Real-Time distro

	nix

	Work with Nix packages

	nova

	Module for handling OpenStack Nova calls

	npm

	Manage and query NPM packages.

	nspawn

	Manage nspawn containers

	nxos

	Execution module for Cisco NX OS Switches.

	nxos_api

	Execution module to manage Cisco Nexus Switches (NX-OS) over the NX-API

	nxos_upgrade

	Execution module to upgrade Cisco NX-OS Switches.

	omapi

	This module interacts with an ISC DHCP Server via OMAPI.

	openbsd_sysctl

	Module for viewing and modifying OpenBSD sysctl parameters

	openbsdpkg

	Package support for OpenBSD

	openbsdrcctl_service

	The rcctl service module for OpenBSD

	openbsdservice

	The service module for OpenBSD

	openscap

	Module for OpenSCAP Management

	openstack_config

	Modify, retrieve, or delete values from OpenStack configuration files.

	openstack_mng

	Module for OpenStack Management

	openvswitch

	Support for Open vSwitch - module with basic Open vSwitch commands.

	opkg

	Support for Opkg

	opsgenie

	Module for sending data to OpsGenie

	oracle

	Oracle DataBase connection module

	osquery

	Support for OSQuery - https://osquery.io.

	out

	Output Module

	pacmanpkg

	A module to wrap pacman calls, since Arch is the best (https://wiki.archlinux.org/index.php/Arch_is_the_best)

	pagerduty

	Module for Firing Events via PagerDuty

	pagerduty_util

	Module for manageing PagerDuty resource

	pam

	Support for pam

	panos

	Module to provide Palo Alto compatibility to Salt

	parallels

	Manage Parallels Desktop VMs with prlctl and prlsrvctl.

	parted_partition

	Module for managing partitions on POSIX-like systems.

	pcs

	Configure a Pacemaker/Corosync cluster with PCS

	pdbedit

	Manage accounts in Samba's passdb using pdbedit

	pecl

	Manage PHP pecl extensions.

	peeringdb

	PeeringDB Module

	pf

	Control the OpenBSD packet filter (PF).

	philips_hue

	Philips HUE lamps module for proxy.

	pillar

	Extract the pillar data for this minion

	pip

	Install Python packages with pip to either the system or a virtualenv

	pkg_resource

	Resources needed by pkg providers

	pkgin

	Package support for pkgin based systems, inspired from freebsdpkg module

	pkgng

	Support for pkgng, the new package manager for FreeBSD

	pkgutil

	Pkgutil support for Solaris

	portage_config

	Configure portage(5)

	postfix

	Support for Postfix

	postgres

	Module to provide Postgres compatibility to salt.

	poudriere

	Support for poudriere

	powerpath

	powerpath support.

	proxy

	This module allows you to manage proxy settings

	ps

	A salt interface to psutil, a system and process library.

	publish

	Publish a command from a minion to a target

	puppet

	Execute puppet routines

	purefa

	Management of Pure Storage FlashArray

	purefb

	Management of Pure Storage FlashBlade

	pushbullet

	Module for sending messages to Pushbullet (https://www.pushbullet.com)

	pushover_notify

	

	pw_group

	Manage groups on FreeBSD

	pw_user

	Manage users with the pw command

	pyenv

	Manage python installations with pyenv.

	qemu_img

	Qemu-img Command Wrapper

	qemu_nbd

	Qemu Command Wrapper

	quota

	Module for managing quotas on POSIX-like systems.

	rabbitmq

	Module to provide RabbitMQ compatibility to Salt.

	rallydev

	Support for RallyDev

	random_org

	Module for retrieving random information from Random.org

	rbac_solaris

	Module for Solaris' Role-Based Access Control

	rbenv

	Manage ruby installations with rbenv.

	rdp

	Manage RDP Service on Windows servers

	rebootmgr

	Module for rebootmgr :maintainer: Alberto Planas <aplanas@suse.com> :maturity: new :depends: None :platform: Linux

	redismod

	Module to provide redis functionality to Salt

	reg

	Manage the Windows registry

	rest_pkg

	Package support for the REST example

	rest_sample_utils

	Utility functions for the rest_sample

	rest_service

	Provide the service module for the proxy-minion REST sample

	restartcheck

	checkrestart functionality for Debian and Red Hat Based systems

	restconf

	Execution module for RESTCONF Proxy minions

	ret

	Module to integrate with the returner system and retrieve data sent to a salt returner

	rh_ip

	The networking module for RHEL/Fedora based distros

	rh_service

	Service support for RHEL-based systems, including support for both upstart and sysvinit

	riak

	Riak Salt Module

	rpm_lowpkg

	Support for rpm

	rpmbuild_pkgbuild

	RPM Package builder system

	rsync

	Wrapper for rsync

	runit

	runit service module (http://smarden.org/runit)

	rvm

	Manage ruby installations and gemsets with RVM, the Ruby Version Manager.

	s3

	Connection module for Amazon S3

	s6

	s6 service module

	salt_proxy

	Salt proxy module

	salt_version

	Access Salt's elemental release code-names.

	saltcheck

	A module for testing the logic of states and highstates on salt minions

	saltcloudmod

	Control a salt cloud system

	saltutil

	The Saltutil module is used to manage the state of the salt minion itself.

	schedule

	Module for managing the Salt schedule on a minion

	scp_mod

	SCP Module

	scsi

	SCSI administration module

	sdb

	Module for Manipulating Data via the Salt DB API

	seed

	Virtual machine image management tools

	selinux

	Execute calls on selinux

	sensehat

	Module for controlling the LED matrix or reading environment data on the SenseHat of a Raspberry Pi.

	sensors

	Read lm-sensors

	serverdensity_device

	Wrapper around Server Density API

	servicenow

	Module for execution of ServiceNow CI (configuration items)

	slack_notify

	Module for sending messages to Slack

	slackware_service

	The service module for Slackware

	slsutil

	Utility functions for use with or in SLS files

	smartos_imgadm

	Module for running imgadm command on SmartOS

	smartos_nictagadm

	Module for running nictagadm command on SmartOS :maintainer: Jorge Schrauwen <sjorge@blackdot.be> :maturity: new :depends: nictagadm binary, dladm binary :platform: smartos

	smartos_virt

	virst compatibility module for managing VMs on SmartOS

	smartos_vmadm

	Module for running vmadm command on SmartOS

	smbios

	Interface to SMBIOS/DMI

	smf_service

	Service support for Solaris 10 and 11, should work with other systems that use SMF also.

	smtp

	Module for Sending Messages via SMTP

	snapper

	Module to manage filesystem snapshots with snapper

	solaris_fmadm

	Module for running fmadm and fmdump on Solaris

	solaris_group

	Manage groups on Solaris

	solaris_shadow

	Manage the password database on Solaris systems

	solaris_system

	Support for reboot, shutdown, etc

	solaris_user

	Manage users with the useradd command

	solarisipspkg

	IPS pkg support for Solaris

	solarispkg

	Package support for Solaris

	solr

	Apache Solr Salt Module

	solrcloud

	Module for solrcloud configuration

	splunk

	Module for interop with the Splunk API

	splunk_search

	Module for interop with the Splunk API

	sqlite3

	Support for SQLite3

	ssh

	Manage client ssh components

	ssh_pkg

	Service support for the REST example

	ssh_service

	Provide the service module for the proxy-minion SSH sample .

	state

	Control the state system on the minion.

	status

	Module for returning various status data about a minion.

	statuspage

	StatusPage

	supervisord

	Provide the service module for system supervisord or supervisord in a virtualenv

	suse_apache

	

	suse_ip

	The networking module for SUSE based distros

	svn

	Subversion SCM

	swarm

	Docker Swarm Module using Docker's Python SDK

	swift

	Module for handling OpenStack Swift calls Author: Anthony Stanton <anthony.stanton@gmail.com>

	sysbench

	The 'sysbench' module is used to analyze the performance of the minions, right from the master! It measures various system parameters such as CPU, Memory, File I/O, Threads and Mutex.

	sysfs

	Module for interfacing with SysFS

	syslog_ng

	Module for getting information about syslog-ng

	sysmod

	The sys module provides information about the available functions on the minion

	sysrc

	sysrc module for FreeBSD

	system

	Support for reboot, shutdown, etc on POSIX-like systems.

	system_profiler

	System Profiler Module

	systemd_service

	Provides the service module for systemd

	telegram

	Module for sending messages via Telegram.

	telemetry

	Connection module for Telemetry

	temp

	Simple module for creating temporary directories and files

	test

	Module for running arbitrary tests

	test_virtual

	Module for testing that a __virtual__ function returning False will not be available via the Salt Loader.

	testinframod

	This module exposes the functionality of the TestInfra library for use with SaltStack in order to verify the state of your minions.

	textfsm_mod

	TextFSM

	timezone

	Module for managing timezone on POSIX-like systems.

	tls

	A salt module for SSL/TLS.

	tomcat

	Support for Tomcat

	trafficserver

	Apache Traffic Server execution module.

	transactional_update

	Transactional update

	travisci

	Commands for working with travisci.

	tuned

	Interface to Red Hat tuned-adm module

	twilio_notify

	Module for notifications via Twilio

	udev

	Manage and query udev info

	upstart_service

	Module for the management of upstart systems.

	uptime

	Wrapper around uptime API

	useradd

	Manage users with the useradd command

	uwsgi

	uWSGI stats server https://uwsgi-docs.readthedocs.io/en/latest/StatsServer.html

	vagrant

	Work with virtual machines managed by Vagrant.

	varnish

	Support for Varnish

	vault

	

	vbox_guest

	VirtualBox Guest Additions installer

	vboxmanage

	Support for VirtualBox using the VBoxManage command

	vcenter

	Module used to access the vcenter proxy connection methods

	victorops

	Support for VictorOps

	virt

	Work with virtual machines managed by libvirt

	virtualenv_mod

	Create virtualenv environments.

	vmctl

	Manage vms running on the OpenBSD VMM hypervisor using vmctl(8).

	vsphere

	Manage VMware vCenter servers and ESXi hosts.

	webutil

	Support for htpasswd command.

	win_appx

	Manage provisioned apps

	win_auditpol

	A salt module for modifying the audit policies on the machine

	win_autoruns

	Module for listing programs that automatically run on startup (very alpha...not tested on anything but my Win 7x64)

	win_certutil

	This module allows you to install certificates into the windows certificate manager.

	win_dacl

	Manage DACLs on Windows

	win_disk

	Module for gathering disk information on Windows

	win_dism

	Install features/packages for Windows using DISM, which is useful for minions not running server versions of Windows.

	win_dns_client

	Module for configuring DNS Client on Windows systems

	win_dsc

	Module for working with Windows PowerShell DSC (Desired State Configuration)

	win_event

	A module for working with the Windows Event log system.

	win_file

	Manage information about files on the minion, set/read user, group data, modify the ACL of files/directories

	win_firewall

	Module for configuring Windows Firewall using netsh

	win_groupadd

	Manage groups on Windows

	win_iis

	Microsoft IIS site management via WebAdministration powershell module

	win_ip

	The networking module for Windows based systems

	win_lgpo

	Manage Local Policy on Windows

	win_lgpo_reg

	LGPO - Registry.pol

	win_license

	This module allows you to manage windows licensing via slmgr.vbs

	win_network

	Module for gathering and managing network information

	win_ntp

	Management of NTP servers on Windows

	win_path

	Manage the Windows System PATH

	win_pkg

	A module to manage software on Windows

	win_pki

	Microsoft certificate management via the PKI Client PowerShell module.

	win_powercfg

	This module allows you to control the power settings of a windows minion via powercfg.

	win_psget

	Module for managing PowerShell through PowerShellGet (PSGet)

	win_servermanager

	Manage Windows features via the ServerManager powershell module.

	win_service

	Windows Service module.

	win_shadow

	Manage the shadow file

	win_shortcut

	Execution module for creating shortcuts on Windows.

	win_smtp_server

	Module for managing IIS SMTP server configuration on Windows servers.

	win_snmp

	Module for managing SNMP service settings on Windows servers.

	win_status

	Module for returning various status data about a minion.

	win_system

	Module for managing Windows systems and getting Windows system information.

	win_task

	Windows Task Scheduler Module .

	win_timezone

	Module for managing timezone on Windows systems.

	win_useradd

	Module for managing Windows Users.

	win_wua

	Module for managing Windows Updates using the Windows Update Agent.

	win_wusa

	Microsoft Update files management via wusa.exe

	winrepo

	Module to manage Windows software repo on a Standalone Minion

	wordpress

	This module is used to manage Wordpress installations

	x509

	Manage X509 certificates

	x509_v2

	Manage X.509 certificates

	xapi_virt

	This module (mostly) uses the XenAPI to manage Xen virtual machines.

	xbpspkg

	Package support for XBPS package manager (used by VoidLinux)

	xfs

	Module for managing XFS file systems.

	xml

	XML file manager

	xmpp

	Module for Sending Messages via XMPP (a.k.a.

	yaml

	Yaml helper module for troubleshooting yaml

	yumpkg

	Support for YUM/DNF

	zabbix

	

	zcbuildout

	Management of zc.buildout

	zenoss

	Module for working with the Zenoss API

	zfs

	Module for running ZFS command

	zk_concurrency

	Concurrency controls in zookeeper

	znc

	znc - An advanced IRC bouncer

	zoneadm

	Module for Solaris 10's zoneadm

	zonecfg

	Module for Solaris 10's zonecfg

	zookeeper

	Zookeeper Module

maintainer

SaltStack

maturity

new

platform

all

depends

kazoo

	zpool

	Module for running ZFS zpool command

	zypperpkg

	Package support for openSUSE via the zypper package manager

salt.modules.group

group is a virtual module that is fulfilled by one of the following
modules:

	Execution Module

	Used for

	groupadd

	Linux, NetBSD, and OpenBSD systems using
groupadd(8), groupdel(8), and
groupmod(8)

	pw_group

	FreeBSD-based OSes using pw(8)

	solaris_group

	Solaris-based OSes using
groupadd(1M), groupdel(1M), and
groupmod(1M)

	win_groupadd

	Windows

salt.modules.kernelpkg

kernelpkg is a virtual module that is fulfilled by one of the following modules:

	Execution Module

	Used for

	kernelpkg_linux_apt

	Debian/Ubuntu-based distros which use
apt-get for package management

	kernelpkg_linux_yum

	RedHat-based distros and derivatives
using yum or dnf

salt.modules.pkg

pkg is a virtual module that is fulfilled by one of the following modules:

	Execution Module

	Used for

	aixpkg

	AIX OS using installp and rpm

	aptpkg

	Debian/Ubuntu-based distros which use
apt-get(8) for package management

	mac_brew_pkg

	Mac OS software management using
Homebrew [https://brew.sh/]

	ebuildpkg

	Gentoo-based systems (utilizes the
portage python module as well as
emerge(1))

	freebsdpkg

	FreeBSD-based OSes using pkg_add(1)

	openbsdpkg

	OpenBSD-based OSes using pkg_add(1)

	pacmanpkg

	Arch Linux-based distros using
pacman(8)

	pkgin

	NetBSD-based OSes using pkgin(1)

	pkgng

	FreeBSD-based OSes using pkg(8)

	pkgutil

	Solaris-based OSes using OpenCSW [https://www.opencsw.org/]'s
pkgutil(1)

	solarispkg

	Solaris-based OSes using pkgadd(1M)

	solarisipspkg

	Solaris-based OSes using IPS pkg(1)

	win_pkg

	Salt's Windows Package Manager

	yumpkg

	RedHat-based distros and derivatives
using yum(8) or dnf(8)

	zypperpkg

	SUSE-based distros using zypper(8)

salt.modules.service

service is a virtual module that is fulfilled by one of the following
modules:

	Execution Module

	Used for

	debian_service

	Debian Wheezy and earlier

	freebsdservice

	FreeBSD-based OSes using service(8)

	gentoo_service

	Gentoo Linux using sysvinit and
rc-update(8)

	mac_service

	Mac OS hosts using launchctl(1)

	netbsdservice

	NetBSD-based OSes

	openbsdservice

	OpenBSD-based OSes

	rh_service

	RedHat-based distros and derivatives
using service(8) and
chkconfig(8). Supports both pure
sysvinit and mixed sysvinit/upstart
systems.

	service

	Fallback which simply wraps sysvinit
scripts

	smf_service

	Solaris-based OSes which use SMF

	systemd_service

	Linux distros which use systemd

	upstart_service

	Ubuntu-based distros using upstart

	win_service

	Windows

salt.modules.shadow

shadow is a virtual module that is fulfilled by one of the following
modules:

	Execution Module

	Used for

	aix_shadow

	AIX

	linux_shadow

	Linux

	bsd_shadow

	FreeBSD, OpenBSD, NetBSD

	solaris_shadow

	Solaris-based OSes

	win_shadow

	Windows

salt.modules.sysctl

sysctl is a virtual module that is fulfilled by one of the following modules:

	Execution Module

	Used for

	freebsd_sysctl

	FreeBSD

	linux_sysctl

	Linux

	mac_sysctl

	macOS

	netbsd_sysctl

	NetBSD

	openbsd_sysctl

	OpenBSD

salt.modules.user

user is a virtual module that is fulfilled by one of the following modules:

	Execution Module

	Used for

	useradd

	Linux, NetBSD, and OpenBSD systems using
useradd(8), userdel(8), and
usermod(8)

	pw_user

	FreeBSD-based OSes using pw(8)

	solaris_user

	Solaris-based OSes using
useradd(1M), userdel(1M), and
usermod(1M)

	mac_user

	MacOS

	win_useradd

	Windows

salt.modules.acme

ACME / Let's Encrypt module

New in version 2016.3.0.

This module currently looks for certbot script in the $PATH as
- certbot,
- lestsencrypt,
- certbot-auto,
- letsencrypt-auto
eventually falls back to /opt/letsencrypt/letsencrypt-auto

Note

Installation & configuration of the Let's Encrypt client can for example be done using
https://github.com/saltstack-formulas/letsencrypt-formula

Warning

Be sure to set at least accept-tos = True in cli.ini!

Most parameters will fall back to cli.ini defaults if None is given.

DNS plugins

This module currently supports the CloudFlare certbot DNS plugin. The DNS
plugin credentials file needs to be passed in using the
dns_plugin_credentials argument.

Make sure the appropriate certbot plugin for the wanted DNS provider is
installed before using this module.

	
salt.modules.acme.cert(name, aliases=None, email=None, webroot=None, test_cert=False, renew=None, keysize=None, server=None, owner='root', group='root', mode='0640', certname=None, preferred_challenges=None, tls_sni_01_port=None, tls_sni_01_address=None, http_01_port=None, http_01_address=None, dns_plugin=None, dns_plugin_credentials=None, manual_auth_hook=None, manual_cleanup_hook=None)

	Obtain/renew a certificate from an ACME CA, probably Let's Encrypt.

	Parameters:

	
	name -- Common Name of the certificate (DNS name of certificate)

	aliases -- subjectAltNames (Additional DNS names on certificate)

	email -- e-mail address for interaction with ACME provider

	webroot -- True or a full path to use to use webroot. Otherwise use standalone mode

	test_cert -- Request a certificate from the Happy Hacker Fake CA (mutually
exclusive with 'server')

	renew -- True/'force' to force a renewal, or a window of renewal before
expiry in days

	keysize -- RSA key bits

	server -- API endpoint to talk to

	owner -- owner of the private key file

	group -- group of the private key file

	mode -- mode of the private key file

	certname -- Name of the certificate to save

	preferred_challenges -- A sorted, comma delimited list of the preferred
challenge to use during authorization with the most preferred challenge
listed first.

	tls_sni_01_port -- Port used during tls-sni-01 challenge. This only affects
the port Certbot listens on. A conforming ACME server will still attempt
to connect on port 443.

	tls_sni_01_address -- The address the server listens to during tls-sni-01
challenge.

	http_01_port -- Port used in the http-01 challenge. This only affects
the port Certbot listens on. A conforming ACME server will still attempt
to connect on port 80.

	https_01_address -- The address the server listens to during http-01 challenge.

	dns_plugin -- Name of a DNS plugin to use (currently only 'cloudflare'
or 'digitalocean')

	dns_plugin_credentials -- Path to the credentials file if required by
the specified DNS plugin

	dns_plugin_propagate_seconds -- Number of seconds to wait for DNS propogations
before asking ACME servers to verify the DNS record. (default 10)

	manual_auth_hook -- Path to the manual authentication hook script.

	manual_cleanup_hook -- Path to the manual cleanup or post-authentication hook script.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	Dictionary with 'result' True/False/None, 'comment' and certificate's
expiry date ('not_after')

CLI Example:

salt 'gitlab.example.com' acme.cert dev.example.com "[gitlab.example.com]" test_cert=True renew=14 webroot=/opt/gitlab/embedded/service/gitlab-rails/public

	
salt.modules.acme.certs()

	Return a list of active certificates

CLI Example:

salt 'vhost.example.com' acme.certs

	
salt.modules.acme.expires(name)

	The expiry date of a certificate in ISO format

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name of certificate

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns:

	Expiry date in ISO format.

CLI Example:

salt 'gitlab.example.com' acme.expires dev.example.com

	
salt.modules.acme.has(name)

	Test if a certificate is in the Let's Encrypt Live directory

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name of certificate

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

Code example:

if __salt__['acme.has']('dev.example.com'):
 log.info('That is one nice certificate you have there!')

	
salt.modules.acme.info(name)

	Return information about a certificate

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name of certificate

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	Dictionary with information about the certificate.
If neither the tls nor the x509 module can be used to determine
the certificate information, the information will be retrieved as one
big text block under the key text using the openssl cli.

CLI Example:

salt 'gitlab.example.com' acme.info dev.example.com

	
salt.modules.acme.needs_renewal(name, window=None)

	Check if a certificate needs renewal

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name of certificate

	window (bool/str/int) -- Window in days to renew earlier or True/force to just return True

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns:

	Whether or not the certificate needs to be renewed.

Code example:

if __salt__['acme.needs_renewal']('dev.example.com'):
 __salt__['acme.cert']('dev.example.com', **kwargs)
else:
 log.info('Your certificate is still good')

	
salt.modules.acme.renew_by(name, window=None)

	Date in ISO format when a certificate should first be renewed

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name of certificate

	window (int [https://docs.python.org/3/library/functions.html#int]) -- number of days before expiry when renewal should take place

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns:

	Date of certificate renewal in ISO format.

salt.modules.aix_group

Manage groups on Solaris

Important

If you feel that Salt should be using this module to manage groups on a
minion, and it is using a different module (or gives an error similar to
'group.info' is not available), see here.

	
salt.modules.aix_group.add(name, gid=None, system=False, root=None, **kwargs)

	Add the specified group

CLI Example:

salt '*' group.add foo 3456

	
salt.modules.aix_group.adduser(name, username, root=None)

	Add a user in the group.

CLI Example:

salt '*' group.adduser foo bar

Verifies if a valid username 'bar' as a member of an existing group 'foo',
if not then adds it.

	
salt.modules.aix_group.chgid(name, gid)

	Change the gid for a named group

CLI Example:

salt '*' group.chgid foo 4376

	
salt.modules.aix_group.delete(name)

	Remove the named group

CLI Example:

salt '*' group.delete foo

	
salt.modules.aix_group.deluser(name, username, root=None)

	Remove a user from the group.

CLI Example:

salt '*' group.deluser foo bar

Removes a member user 'bar' from a group 'foo'. If group is not present
then returns True.

	
salt.modules.aix_group.getent(refresh=False)

	Return info on all groups

CLI Example:

salt '*' group.getent

	
salt.modules.aix_group.info(name)

	Return information about a group

CLI Example:

salt '*' group.info foo

	
salt.modules.aix_group.members(name, members_list, root=None)

	Replaces members of the group with a provided list.

CLI Example:

salt '*' group.members foo 'user1,user2,user3,...'

	Replaces a membership list for a local group 'foo'.
	foo:x:1234:user1,user2,user3,...

salt.modules.aix_shadow

Manage account locks on AIX systems

New in version 2018.3.0.

	depends:

	none

	
salt.modules.aix_shadow.locked(user)

	Query for all accounts which are flagged as locked.

CLI Example:

salt <minion_id> shadow.locked ALL

	
salt.modules.aix_shadow.login_failures(user)

	Query for all accounts which have 3 or more login failures.

CLI Example:

salt <minion_id> shadow.login_failures ALL

	
salt.modules.aix_shadow.unlock(user)

	Unlock user for locked account

CLI Example:

salt <minion_id> shadow.unlock user

salt.modules.aixpkg

Package support for AIX

Important

If you feel that Salt should be using this module to manage filesets or
rpm packages on a minion, and it is using a different module (or gives an
error similar to 'pkg.install' is not available), see here.

	
salt.modules.aixpkg.available_version(*names, **kwargs)

	This function is an alias of latest_version.

Return the latest available version of the named fileset/rpm package available for
upgrade or installation. If more than one fileset/rpm package name is
specified, a dict of name/version pairs is returned.

If the latest version of a given fileset/rpm package is already installed,
an empty string will be returned for that package.

Changed in version 3005.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	Note: currently only functional for rpm packages due to filesets do not have a specific location to check
	Requires yum of dnf available in order to query a repository

This function will always return an empty string for unfound fileset/rpm package.

	
salt.modules.aixpkg.install(name=None, refresh=False, pkgs=None, version=None, test=False, **kwargs)

	Install the named fileset(s)/rpm package(s).

Changed in version 3005:

	preference to install rpm packages are to use in the following order:
	/opt/freeware/bin/dnf
/opt/freeware/bin/yum
/usr/bin/yum
/usr/bin/rpm

	name
	The name of the fileset or rpm package to be installed.

	refresh
	Whether or not to update the yum database before executing.

	pkgs
	A list of filesets and/or rpm packages to install.
Must be passed as a python list. The name parameter will be
ignored if this option is passed.

	version
	Install a specific version of a fileset/rpm package.
(Unused at present).

	test
	Verify that command functions correctly.

Returns a dict containing the new fileset(s)/rpm package(s) names and versions:

	{'<package>': {'old': '<old-version>',
	'new': '<new-version>'}}

CLI Example:

salt '*' pkg.install /stage/middleware/AIX/bash-4.2-3.aix6.1.ppc.rpm
salt '*' pkg.install /stage/middleware/AIX/bash-4.2-3.aix6.1.ppc.rpm refresh=True
salt '*' pkg.install /stage/middleware/AIX/VIOS2211_update/tpc_4.1.1.85.bff
salt '*' pkg.install /cecc/repos/aix72/TL3/BASE/installp/ppc/bos.rte.printers_7.2.2.0.bff
salt '*' pkg.install /stage/middleware/AIX/Xlc/usr/sys/inst.images/xlC.rte
salt '*' pkg.install /stage/middleware/AIX/Firefox/ppc-AIX53/Firefox.base
salt '*' pkg.install /cecc/repos/aix72/TL3/BASE/installp/ppc/bos.net
salt '*' pkg.install pkgs='["foo", "bar"]'
salt '*' pkg.install libxml2

	
salt.modules.aixpkg.latest_version(*names, **kwargs)

	Return the latest available version of the named fileset/rpm package available for
upgrade or installation. If more than one fileset/rpm package name is
specified, a dict of name/version pairs is returned.

If the latest version of a given fileset/rpm package is already installed,
an empty string will be returned for that package.

Changed in version 3005.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	Note: currently only functional for rpm packages due to filesets do not have a specific location to check
	Requires yum of dnf available in order to query a repository

This function will always return an empty string for unfound fileset/rpm package.

	
salt.modules.aixpkg.list_pkgs(versions_as_list=False, **kwargs)

	List the filesets/rpm packages currently installed as a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

	
salt.modules.aixpkg.remove(name=None, pkgs=None, **kwargs)

	Remove specified fileset(s)/rpm package(s).

	name
	The name of the fileset or rpm package to be deleted.

Changed in version 3005:

	preference to install rpm packages are to use in the following order:
	/opt/freeware/bin/dnf
/opt/freeware/bin/yum
/usr/bin/yum
/usr/bin/rpm

	pkgs
	A list of filesets and/or rpm packages to delete.
Must be passed as a python list. The name parameter will be
ignored if this option is passed.

Returns a list containing the removed packages.

CLI Example:

salt '*' pkg.remove <fileset/rpm package name>
salt '*' pkg.remove tcsh
salt '*' pkg.remove xlC.rte
salt '*' pkg.remove Firefox.base.adt
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.aixpkg.upgrade_available(name, **kwargs)

	Check whether or not an upgrade is available for a given package

Changed in version 3005.

CLI Example:

salt '*' pkg.upgrade_available <package name>

	Note: currently only functional for rpm packages due to filesets do not have a specific location to check
	Requires yum of dnf available in order to query a repository

	
salt.modules.aixpkg.version(*names, **kwargs)

	Return the current installed version of the named fileset/rpm package
If more than one fileset/rpm package name is specified a dict of
name/version pairs is returned.

Changed in version 3005.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

salt.modules.aliases

Manage the information in the aliases file

	
salt.modules.aliases.get_target(alias)

	Return the target associated with an alias

CLI Example:

salt '*' aliases.get_target alias

	
salt.modules.aliases.has_target(alias, target)

	Return true if the alias/target is set

CLI Example:

salt '*' aliases.has_target alias target

	
salt.modules.aliases.list_aliases()

	Return the aliases found in the aliases file in this format:

{'alias': 'target'}

CLI Example:

salt '*' aliases.list_aliases

	
salt.modules.aliases.rm_alias(alias)

	Remove an entry from the aliases file

CLI Example:

salt '*' aliases.rm_alias alias

	
salt.modules.aliases.set_target(alias, target)

	Set the entry in the aliases file for the given alias, this will overwrite
any previous entry for the given alias or create a new one if it does not
exist.

CLI Example:

salt '*' aliases.set_target alias target

salt.modules.alternatives

Support for Alternatives system

	codeauthor:

	Radek Rada <radek.rada@gmail.com>

	
salt.modules.alternatives.auto(name)

	Trigger alternatives to set the path for <name> as
specified by priority.

CLI Example:

salt '*' alternatives.auto name

	
salt.modules.alternatives.check_exists(name, path)

	Check if the given path is an alternative for a name.

New in version 2015.8.4.

CLI Example:

salt '*' alternatives.check_exists name path

	
salt.modules.alternatives.check_installed(name, path)

	Check if the current highest-priority match for a given alternatives link
is set to the desired path

CLI Example:

salt '*' alternatives.check_installed name path

	
salt.modules.alternatives.display(name)

	Display alternatives settings for defined command name

CLI Example:

salt '*' alternatives.display editor

	
salt.modules.alternatives.install(name, link, path, priority)

	Install symbolic links determining default commands

CLI Example:

salt '*' alternatives.install editor /usr/bin/editor /usr/bin/emacs23 50

	
salt.modules.alternatives.remove(name, path)

	Remove symbolic links determining the default commands.

CLI Example:

salt '*' alternatives.remove name path

	
salt.modules.alternatives.set_(name, path)

	Manually set the alternative <path> for <name>.

CLI Example:

salt '*' alternatives.set name path

	
salt.modules.alternatives.show_current(name)

	Display the current highest-priority alternative for a given alternatives
link

CLI Example:

salt '*' alternatives.show_current editor

	
salt.modules.alternatives.show_link(name)

	Display master link for the alternative

New in version 2015.8.13,2016.3.4,2016.11.0.

CLI Example:

salt '*' alternatives.show_link editor

salt.modules.ansiblegate

Ansible Support

This module can have an optional minion-level
configuration in /etc/salt/minion.d/ as follows:

ansible_timeout: 1200

The timeout is how many seconds Salt should wait for
any Ansible module to respond.

	
salt.modules.ansiblegate.call(module, *args, **kwargs)

	Call an Ansible module by invoking it.

	Parameters:

	
	module -- the name of the module.

	args -- Arguments to pass to the module

	kwargs -- keywords to pass to the module

CLI Example:

salt * ansible.call ping data=foobar

	
salt.modules.ansiblegate.discover_playbooks(path=None, locations=None, playbook_extension=None, hosts_filename=None, syntax_check=False)

	
New in version 3005.

Discover Ansible playbooks stored under the given path or from multiple paths (locations)

This will search for files matching with the playbook file extension under the given
root path and will also look for files inside the first level of directories in this path.

The return of this function would be a dict like this:

{
 "/home/foobar/": {
 "my_ansible_playbook.yml": {
 "fullpath": "/home/foobar/playbooks/my_ansible_playbook.yml",
 "custom_inventory": "/home/foobar/playbooks/hosts"
 },
 "another_playbook.yml": {
 "fullpath": "/home/foobar/playbooks/another_playbook.yml",
 "custom_inventory": "/home/foobar/playbooks/hosts"
 },
 "lamp_simple/site.yml": {
 "fullpath": "/home/foobar/playbooks/lamp_simple/site.yml",
 "custom_inventory": "/home/foobar/playbooks/lamp_simple/hosts"
 },
 "lamp_proxy/site.yml": {
 "fullpath": "/home/foobar/playbooks/lamp_proxy/site.yml",
 "custom_inventory": "/home/foobar/playbooks/lamp_proxy/hosts"
 }
 },
 "/srv/playbooks/": {
 "example_playbook/example.yml": {
 "fullpath": "/srv/playbooks/example_playbook/example.yml",
 "custom_inventory": "/srv/playbooks/example_playbook/hosts"
 }
 }
}

	Parameters:

	
	path -- Path to discover playbooks from.

	locations -- List of paths to discover playbooks from.

	playbook_extension -- File extension of playbooks file to search for. Default: "yml"

	hosts_filename -- Filename of custom playbook inventory to search for. Default: "hosts"

	syntax_check -- Skip playbooks that do not pass "ansible-playbook --syntax-check" validation. Default: False

	Returns:

	The discovered playbooks under the given paths

CLI Example:

salt 'ansiblehost' ansible.discover_playbooks path=/srv/playbooks/
salt 'ansiblehost' ansible.discover_playbooks locations='["/srv/playbooks/", "/srv/foobar"]'

	
salt.modules.ansiblegate.help(module=None, *args)

	Display help on Ansible standard module.

	Parameters:

	module -- The module to get the help

CLI Example:

salt * ansible.help ping

	
salt.modules.ansiblegate.list_(pattern=None)

	Lists available modules.

CLI Example:

salt * ansible.list
salt * ansible.list '*win*' # To get all modules matching 'win' on it's name

	
salt.modules.ansiblegate.playbooks(playbook, rundir=None, check=False, diff=False, extra_vars=None, flush_cache=False, forks=5, inventory=None, limit=None, list_hosts=False, list_tags=False, list_tasks=False, module_path=None, skip_tags=None, start_at_task=None, syntax_check=False, tags=None, playbook_kwargs=None)

	Run Ansible Playbooks

	Parameters:

	
	playbook -- Which playbook to run.

	rundir -- Directory to run ansible-playbook in. (Default: None)

	check -- don't make any changes; instead, try to predict some
of the changes that may occur (Default: False)

	diff -- when changing (small) files and templates, show the
differences in those files; works great with --check
(default: False)

	extra_vars -- set additional variables as key=value or YAML/JSON, if
filename prepend with @, (default: None)

	flush_cache -- clear the fact cache for every host in inventory
(default: False)

	forks -- specify number of parallel processes to use
(Default: 5)

	inventory -- specify inventory host path or comma separated host
list. (Default: None) (Ansible's default is /etc/ansible/hosts)

	limit -- further limit selected hosts to an additional pattern (Default: None)

	list_hosts -- outputs a list of matching hosts; does not execute anything else
(Default: False)

	list_tags -- list all available tags (Default: False)

	list_tasks -- list all tasks that would be executed (Default: False)

	module_path -- prepend colon-separated path(s) to module library. (Default: None)

	skip_tags -- only run plays and tasks whose tags do not match these
values (Default: False)

	start_at_task -- start the playbook at the task matching this name (Default: None)

	tags -- only run plays and tasks tagged with these values (Default: None)

	Param:

	syntax_check: perform a syntax check on the playbook, but do not execute it
(Default: False)

	Returns:

	Playbook return

CLI Example:

salt 'ansiblehost' ansible.playbooks playbook=/srv/playbooks/play.yml

	
salt.modules.ansiblegate.targets(inventory='/etc/ansible/hosts', yaml=False, export=False)

	
New in version 3005.

Return the inventory from an Ansible inventory_file

	Parameters:

	
	inventory -- The inventory file to read the inventory from. Default: "/etc/ansible/hosts"

	yaml -- Return the inventory as yaml output. Default: False

	export -- Return inventory as export format. Default: False

CLI Example:

salt 'ansiblehost' ansible.targets
salt 'ansiblehost' ansible.targets inventory=my_custom_inventory

salt.modules.apache

Support for Apache

Note

The functions in here are generic functions designed to work with
all implementations of Apache. Debian-specific functions have been moved into
deb_apache.py, but will still load under the apache namespace when a
Debian-based system is detected.

	
salt.modules.apache.config(name, config, edit=True)

	Create VirtualHost configuration files

	name
	File for the virtual host

	config
	VirtualHost configurations

Note

This function is not meant to be used from the command line.
Config is meant to be an ordered dict of all of the apache configs.

CLI Example:

salt '*' apache.config /etc/httpd/conf.d/ports.conf config="[{'Listen': '22'}]"

	
salt.modules.apache.directives()

	Return list of directives together with expected arguments
and places where the directive is valid (apachectl -L)

CLI Example:

salt '*' apache.directives

	
salt.modules.apache.fullversion()

	Return server version (apachectl -V)

CLI Example:

salt '*' apache.fullversion

	
salt.modules.apache.modules()

	Return list of static and shared modules (apachectl -M)

CLI Example:

salt '*' apache.modules

	
salt.modules.apache.server_status(profile='default')

	Get Information from the Apache server-status handler

Note

The server-status handler is disabled by default.
In order for this function to work it needs to be enabled.
See http://httpd.apache.org/docs/2.2/mod/mod_status.html

The following configuration needs to exists in pillar/grains.
Each entry nested in apache.server-status is a profile of a vhost/server.
This would give support for multiple apache servers/vhosts.

apache.server-status:
 default:
 url: http://localhost/server-status
 user: someuser
 pass: password
 realm: 'authentication realm for digest passwords'
 timeout: 5

CLI Examples:

salt '*' apache.server_status
salt '*' apache.server_status other-profile

	
salt.modules.apache.servermods()

	Return list of modules compiled into the server (apachectl -l)

CLI Example:

salt '*' apache.servermods

	
salt.modules.apache.signal(signal=None)

	Signals httpd to start, restart, or stop.

CLI Example:

salt '*' apache.signal restart

	
salt.modules.apache.useradd(pwfile, user, password, opts='')

	Add HTTP user using the htpasswd command. If the htpasswd file does not
exist, it will be created. Valid options that can be passed are:

n Don't update file; display results on stdout.
m Force MD5 hashing of the password (default).
d Force CRYPT(3) hashing of the password.
p Do not hash the password (plaintext).
s Force SHA1 hashing of the password.

CLI Examples:

salt '*' apache.useradd /etc/httpd/htpasswd larry badpassword
salt '*' apache.useradd /etc/httpd/htpasswd larry badpass opts=ns

	
salt.modules.apache.userdel(pwfile, user)

	Delete HTTP user from the specified htpasswd file.

CLI Example:

salt '*' apache.userdel /etc/httpd/htpasswd larry

	
salt.modules.apache.version()

	Return server version (apachectl -v)

CLI Example:

salt '*' apache.version

	
salt.modules.apache.vhosts()

	Show the settings as parsed from the config file (currently
only shows the virtualhost settings) (apachectl -S).
Because each additional virtual host adds to the execution
time, this command may require a long timeout be specified
by using -t 10.

CLI Example:

salt -t 10 '*' apache.vhosts

salt.modules.apcups

Module for apcupsd

	
salt.modules.apcups.status()

	Return apcaccess output

CLI Example:

salt '*' apcups.status

	
salt.modules.apcups.status_battery()

	Return true if running on battery power

CLI Example:

salt '*' apcups.status_battery

	
salt.modules.apcups.status_charge()

	Return battery charge

CLI Example:

salt '*' apcups.status_charge

	
salt.modules.apcups.status_load()

	Return load

CLI Example:

salt '*' apcups.status_load

salt.modules.apf

Support for Advanced Policy Firewall (APF)

	maintainer:

	Mostafa Hussein <mostafa.hussein91@gmail.com>

	maturity:

	new

	depends:

	python-iptables

	platform:

	Linux

	
salt.modules.apf.allow(ip, port=None)

	Add host (IP/FQDN) to allow_hosts.rules and immediately load new rule into firewall

CLI Example:

salt '*' apf.allow 127.0.0.1

	
salt.modules.apf.deny(ip)

	Add host (IP/FQDN) to deny_hosts.rules and immediately load new rule into firewall

CLI Example:

salt '*' apf.deny 1.2.3.4

	
salt.modules.apf.disable()

	Stop (flush) all firewall rules

CLI Example:

salt '*' apf.disable

	
salt.modules.apf.enable()

	Load all firewall rules

CLI Example:

salt '*' apf.enable

	
salt.modules.apf.refresh()

	Refresh & resolve dns names in trust rules

CLI Example:

salt '*' apf.refresh

	
salt.modules.apf.reload()

	Stop (flush) & reload firewall rules

CLI Example:

salt '*' apf.reload

	
salt.modules.apf.remove(ip)

	Remove host from [glob]*_hosts.rules and immediately remove rule from firewall

CLI Example:

salt '*' apf.remove 1.2.3.4

	
salt.modules.apf.running()

	Check apf status

CLI Example:

salt '*' apf.running

salt.modules.apkpkg

Support for apk

Important

If you feel that Salt should be using this module to manage packages on a
minion, and it is using a different module (or gives an error similar to
'pkg.install' is not available), see here.

New in version 2017.7.0.

	
salt.modules.apkpkg.file_dict(*packages, **kwargs)

	List the files that belong to a package, grouped by package. Not
specifying any packages will return a list of _every_ file on the system's
package database (not generally recommended).

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

	
salt.modules.apkpkg.file_list(*packages, **kwargs)

	List the files that belong to a package. Not specifying any packages will
return a list of _every_ file on the system's package database (not
generally recommended).

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

	
salt.modules.apkpkg.install(name=None, refresh=False, pkgs=None, sources=None, **kwargs)

	Install the passed package, add refresh=True to update the apk database.

	name
	The name of the package to be installed. Note that this parameter is
ignored if either "pkgs" or "sources" is passed. Additionally, please
note that this option can only be used to install packages from a
software repository. To install a package file manually, use the
"sources" option.

CLI Example:

salt '*' pkg.install <package name>

	refresh
	Whether or not to refresh the package database before installing.

Multiple Package Installation Options:

	pkgs
	A list of packages to install from a software repository. Must be
passed as a python list.

CLI Example:

salt '*' pkg.install pkgs='["foo", "bar"]'

	sources
	A list of IPK packages to install. Must be passed as a list of dicts,
with the keys being package names, and the values being the source URI
or local path to the package. Dependencies are automatically resolved
and marked as auto-installed.

CLI Example:

salt '*' pkg.install sources='[{"foo": "salt://foo.deb"},{"bar": "salt://bar.deb"}]'

	install_recommends
	Whether to install the packages marked as recommended. Default is True.

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

	
salt.modules.apkpkg.latest_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	
salt.modules.apkpkg.list_pkgs(versions_as_list=False, **kwargs)

	List the packages currently installed in a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs
salt '*' pkg.list_pkgs versions_as_list=True

	
salt.modules.apkpkg.list_upgrades(refresh=True, **kwargs)

	List all available package upgrades.

CLI Example:

salt '*' pkg.list_upgrades

	
salt.modules.apkpkg.owner(*paths, **kwargs)

	Return the name of the package that owns the file. Multiple file paths can
be passed. Like pkg.version <salt.modules.apk.version, if a single
path is passed, a string will be returned, and if multiple paths are passed,
a dictionary of file/package name pairs will be returned.

If the file is not owned by a package, or is not present on the minion,
then an empty string will be returned for that path.

CLI Example:

salt '*' pkg.owns /usr/bin/apachectl
salt '*' pkg.owns /usr/bin/apachectl /usr/bin/basename

	
salt.modules.apkpkg.purge(name=None, pkgs=None, **kwargs)

	Alias to remove

	
salt.modules.apkpkg.refresh_db(**kwargs)

	Updates the package list

	True: Database updated successfully

	False: Problem updating database

CLI Example:

salt '*' pkg.refresh_db

	
salt.modules.apkpkg.remove(name=None, pkgs=None, purge=False, **kwargs)

	Remove packages using apk del.

	name
	The name of the package to be deleted.

Multiple Package Options:

	pkgs
	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.apkpkg.upgrade(name=None, pkgs=None, refresh=True, **kwargs)

	Upgrades all packages via apk upgrade or a specific package if name or
pkgs is specified. Name is ignored if pkgs is specified

Returns a dict containing the changes.

	{'<package>': {'old': '<old-version>',
	'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade

	
salt.modules.apkpkg.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

salt.modules.aptly

Aptly Debian repository manager.

New in version 2018.3.0.

	
salt.modules.aptly.cleanup_db(config_path='/etc/aptly.conf', dry_run=False)

	
	Remove data regarding unreferenced packages and delete files in the package pool that
	are no longer being used by packages.

	Parameters:

	dry_run (bool [https://docs.python.org/3/library/functions.html#bool]) -- Report potential changes without making any changes.

	Returns:

	A dictionary of the package keys and files that were removed.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' aptly.cleanup_db

	
salt.modules.aptly.delete_repo(name, config_path='/etc/aptly.conf', force=False)

	Remove the repository.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the repository.

	config_path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the configuration file for the aptly instance.

	force (bool [https://docs.python.org/3/library/functions.html#bool]) -- Whether to remove the repository even if it is used as the source
of an existing snapshot.

	Returns:

	A boolean representing whether all changes succeeded.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' aptly.delete_repo name="test-repo"

	
salt.modules.aptly.get_config(config_path='/etc/aptly.conf')

	Get the configuration data.

	Parameters:

	config_path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the configuration file for the aptly instance.

	Returns:

	A dictionary containing the configuration data.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' aptly.get_config

	
salt.modules.aptly.get_repo(name, config_path='/etc/aptly.conf', with_packages=False)

	Get the details of the repository.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the repository.

	config_path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the configuration file for the aptly instance.

	with_packages (bool [https://docs.python.org/3/library/functions.html#bool]) -- Return a list of packages in the repo.

	Returns:

	A dictionary containing information about the repository.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' aptly.get_repo name="test-repo"

	
salt.modules.aptly.list_mirrors(config_path='/etc/aptly.conf')

	Get a list of all the mirrors.

	Parameters:

	config_path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the configuration file for the aptly instance.

	Returns:

	A list of the mirror names.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' aptly.list_mirrors

	
salt.modules.aptly.list_published(config_path='/etc/aptly.conf')

	Get a list of all the published repositories.

	Parameters:

	config_path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the configuration file for the aptly instance.

	Returns:

	A list of the published repository names.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' aptly.list_published

	
salt.modules.aptly.list_repos(config_path='/etc/aptly.conf', with_packages=False)

	List all of the repos.

	Parameters:

	
	config_path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the configuration file for the aptly instance.

	with_packages (bool [https://docs.python.org/3/library/functions.html#bool]) -- Return a list of packages in the repo.

	Returns:

	A dictionary of the repositories.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' aptly.list_repos

	
salt.modules.aptly.list_snapshots(config_path='/etc/aptly.conf', sort_by_time=False)

	Get a list of all the snapshots.

	Parameters:

	
	config_path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the configuration file for the aptly instance.

	sort_by_time (bool [https://docs.python.org/3/library/functions.html#bool]) -- Whether to sort by creation time instead of by name.

	Returns:

	A list of the snapshot names.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' aptly.list_snapshots

	
salt.modules.aptly.new_repo(name, config_path='/etc/aptly.conf', comment=None, component=None, distribution=None, uploaders_file=None, from_snapshot=None, saltenv='base')

	Create the new repository.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the repository.

	config_path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the configuration file for the aptly instance.

	comment (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The description of the repository.

	component (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The default component to use when publishing.

	distribution (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The default distribution to use when publishing.

	uploaders_file (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The repository upload restrictions config.

	from_snapshot (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The snapshot to initialize the repository contents from.

	saltenv (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The environment the file resides in.

	Returns:

	A boolean representing whether all changes succeeded.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' aptly.new_repo name="test-repo" comment="Test main repo" component="main" distribution="trusty"

	
salt.modules.aptly.set_repo(name, config_path='/etc/aptly.conf', comment=None, component=None, distribution=None, uploaders_file=None, saltenv='base')

	Configure the repository settings.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the repository.

	config_path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the configuration file for the aptly instance.

	comment (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The description of the repository.

	component (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The default component to use when publishing.

	distribution (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The default distribution to use when publishing.

	uploaders_file (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The repository upload restrictions config.

	from_snapshot (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The snapshot to initialize the repository contents from.

	saltenv (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The environment the file resides in.

	Returns:

	A boolean representing whether all changes succeeded.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' aptly.set_repo name="test-repo" comment="Test universe repo" component="universe" distribution="xenial"

salt.modules.aptpkg

Support for APT (Advanced Packaging Tool)

Important

If you feel that Salt should be using this module to manage packages on a
minion, and it is using a different module (or gives an error similar to
'pkg.install' is not available), see here.

For repository management, the python-apt package must be installed.

	
class salt.modules.aptpkg.SourceEntry(line, file=None)

	
	
repo_line()

	Return the repo line for the sources file

	
str()

	

	
class salt.modules.aptpkg.SourcesList

	
	
add(type, uri, dist, orig_comps, architectures, signedby)

	

	
add_file(file)

	Add the lines of a file to self.list

	
remove(source)

	remove a source from the list of sources

	
save()

	write all of the sources from the list of sources
to the file.

	
salt.modules.aptpkg.add_repo_key(path=None, text=None, keyserver=None, keyid=None, saltenv='base', aptkey=True, keydir=None, keyfile=None)

	
New in version 2017.7.0.

Add a repo key using apt-key add.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path of the key file to import.

	text (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The key data to import, in string form.

	keyserver (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The server to download the repo key specified by the keyid.

	keyid (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The key id of the repo key to add.

	saltenv (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The environment the key file resides in.

	aptkey (bool [https://docs.python.org/3/library/functions.html#bool]) -- Use the binary apt-key.

	keydir (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The directory path to save keys. The default directory
is /etc/apt/keyrings/ which is the recommended path
for adding third party keys. This argument is only used
when aptkey is False.

	keyfile (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the key to add. This is only required when
aptkey is False and you are using a keyserver. This
argument is only used when aptkey is False.

	Returns:

	A boolean representing whether the repo key was added.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

Warning

The apt-key binary is deprecated and will last be available
in Debian 11 and Ubuntu 22.04. It is recommended to use aptkey=False
when using this module.

CLI Examples:

salt '*' pkg.add_repo_key 'salt://apt/sources/test.key'

salt '*' pkg.add_repo_key text="'$KEY1'"

salt '*' pkg.add_repo_key keyserver='keyserver.example' keyid='0000AAAA'

	
salt.modules.aptpkg.autoremove(list_only=False, purge=False)

	
New in version 2015.5.0.

Remove packages not required by another package using apt-get
autoremove.

	list_onlyFalse
	Only retrieve the list of packages to be auto-removed, do not actually
perform the auto-removal.

	purgeFalse
	Also remove package config data when autoremoving packages.

New in version 2015.8.0.

CLI Example:

salt '*' pkg.autoremove
salt '*' pkg.autoremove list_only=True
salt '*' pkg.autoremove purge=True

	
salt.modules.aptpkg.available_version(*names, **kwargs)

	This function is an alias of latest_version.

Changed in version 3007.0.

Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

A specific repo can be requested using the fromrepo keyword argument.

cache_valid_time

New in version 2016.11.0.

Skip refreshing the package database if refresh has already occurred within
<value> seconds

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package name> fromrepo=unstable
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	
salt.modules.aptpkg.del_repo(repo, **kwargs)

	Delete a repo from the sources.list / sources.list.d

If the .list file is in the sources.list.d directory
and the file that the repo exists in does not contain any other
repo configuration, the file itself will be deleted.

The repo passed in must be a fully formed repository definition
string.

CLI Examples:

salt '*' pkg.del_repo "myrepo definition"

	
salt.modules.aptpkg.del_repo_key(name=None, aptkey=True, keydir=None, **kwargs)

	
New in version 2015.8.0.

Remove a repo key using apt-key del

	name
	Repo from which to remove the key. Unnecessary if keyid is passed.

	keyid
	The KeyID of the GPG key to remove

	keyid_ppaFalse
	If set to True, the repo's GPG key ID will be looked up from
ppa.launchpad.net and removed.

Note

Setting this option to True requires that the name param
also be passed.

	aptkey
	Use the binary apt-key.

	keydir
	The directory path to save keys. The default directory
is /etc/apt/keyrings/ which is the recommended path
for adding third party keys.

Warning

The apt-key binary is deprecated and will last be available
in Debian 11 and Ubuntu 22.04. It is recommended to use aptkey=False
when using this module.

CLI Examples:

salt '*' pkg.del_repo_key keyid=0123ABCD
salt '*' pkg.del_repo_key name='ppa:foo/bar' keyid_ppa=True

	
salt.modules.aptpkg.file_dict(*packages, **kwargs)

	List the files that belong to a package, grouped by package. Not
specifying any packages will return a list of _every_ file on the system's
package database (not generally recommended).

CLI Examples:

salt '*' pkg.file_dict httpd
salt '*' pkg.file_dict httpd postfix
salt '*' pkg.file_dict

	
salt.modules.aptpkg.file_list(*packages, **kwargs)

	List the files that belong to a package. Not specifying any packages will
return a list of _every_ file on the system's package database (not
generally recommended).

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

	
salt.modules.aptpkg.get_repo(repo, **kwargs)

	Display a repo from the sources.list / sources.list.d

The repo passed in needs to be a complete repo entry.

CLI Examples:

salt '*' pkg.get_repo "myrepo definition"

	
salt.modules.aptpkg.get_repo_keys(aptkey=True, keydir=None)

	
New in version 2017.7.0.

List known repo key details.
:param bool aptkey: Use the binary apt-key.
:param str keydir: The directory path to save keys. The default directory
is /etc/apt/keyrings/ which is the recommended path
for adding third party keys. This argument is only used
when aptkey is False.

	Returns:

	A dictionary containing the repo keys.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Examples:

salt '*' pkg.get_repo_keys

	
salt.modules.aptpkg.get_selections(pattern=None, state=None)

	View package state from the dpkg database.

Returns a dict of dicts containing the state, and package names:

{'<host>':
 {'<state>': ['pkg1',
 ...
]
 },
 ...
}

CLI Example:

salt '*' pkg.get_selections
salt '*' pkg.get_selections 'python-*'
salt '*' pkg.get_selections state=hold
salt '*' pkg.get_selections 'openssh*' state=hold

	
salt.modules.aptpkg.hold(name=None, pkgs=None, sources=None, **kwargs)

	
New in version 2014.7.0.

Set package in 'hold' state, meaning it will not be upgraded.

	name
	The name of the package, e.g., 'tmux'

CLI Example:

salt '*' pkg.hold <package name>

	pkgs
	A list of packages to hold. Must be passed as a python list.

CLI Example:

salt '*' pkg.hold pkgs='["foo", "bar"]'

	
salt.modules.aptpkg.info_installed(*names, **kwargs)

	Return the information of the named package(s) installed on the system.

New in version 2015.8.1.

	names
	The names of the packages for which to return information.

	failhard
	Whether to throw an exception if none of the packages are installed.
Defaults to True.

New in version 2016.11.3.

CLI Example:

salt '*' pkg.info_installed <package1>
salt '*' pkg.info_installed <package1> <package2> <package3> ...
salt '*' pkg.info_installed <package1> failhard=false

	
salt.modules.aptpkg.install(name=None, refresh=False, fromrepo=None, skip_verify=False, debconf=None, pkgs=None, sources=None, reinstall=False, downloadonly=False, ignore_epoch=False, **kwargs)

	
Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands which modify installed packages from the
salt-minion daemon's control group. This is done to keep systemd
from killing any apt-get/dpkg commands spawned by Salt when the
salt-minion service is restarted. (see KillMode in the
systemd.kill(5) [https://www.freedesktop.org/software/systemd/man/systemd.kill.html] manpage for more information). If desired, usage of
systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by setting a config option called systemd.scope, with a value of
False (no quotes).

Install the passed package, add refresh=True to update the dpkg database.

	name
	The name of the package to be installed. Note that this parameter is
ignored if either "pkgs" or "sources" is passed. Additionally, please
note that this option can only be used to install packages from a
software repository. To install a package file manually, use the
"sources" option.

32-bit packages can be installed on 64-bit systems by appending the
architecture designation (:i386, etc.) to the end of the package
name.

CLI Example:

salt '*' pkg.install <package name>

	refresh
	Whether or not to refresh the package database before installing.

cache_valid_time

New in version 2016.11.0.

Skip refreshing the package database if refresh has already occurred within
<value> seconds

	fromrepo
	Specify a package repository to install from
(e.g., apt-get -t unstable install somepackage)

	skip_verify
	Skip the GPG verification check (e.g., --allow-unauthenticated, or
--force-bad-verify for install from package file).

	debconf
	Provide the path to a debconf answers file, processed before
installation.

	version
	Install a specific version of the package, e.g. 1.2.3~0ubuntu0. Ignored
if "pkgs" or "sources" is passed.

Changed in version 2018.3.0: version can now contain comparison operators (e.g. >1.2.3,
<=2.0, etc.)

	reinstallFalse
	Specifying reinstall=True will use apt-get install --reinstall
rather than simply apt-get install for requested packages that are
already installed.

If a version is specified with the requested package, then apt-get
install --reinstall will only be used if the installed version
matches the requested version.

New in version 2015.8.0.

	ignore_epochFalse
	Only used when the version of a package is specified using a comparison
operator (e.g. >4.1). If set to True, then the epoch will be
ignored when comparing the currently-installed version to the desired
version.

New in version 2018.3.0.

Multiple Package Installation Options:

	pkgs
	A list of packages to install from a software repository. Must be
passed as a python list.

CLI Example:

salt '*' pkg.install pkgs='["foo", "bar"]'
salt '*' pkg.install pkgs='["foo", {"bar": "1.2.3-0ubuntu0"}]'

	sources
	A list of DEB packages to install. Must be passed as a list of dicts,
with the keys being package names, and the values being the source URI
or local path to the package. Dependencies are automatically resolved
and marked as auto-installed.

32-bit packages can be installed on 64-bit systems by appending the
architecture designation (:i386, etc.) to the end of the package
name.

Changed in version 2014.7.0.

CLI Example:

salt '*' pkg.install sources='[{"foo": "salt://foo.deb"},{"bar": "salt://bar.deb"}]'

	force_yes
	Passes --force-yes to the apt-get command. Don't use this unless
you know what you're doing.

New in version 0.17.4.

	install_recommends
	Whether to install the packages marked as recommended. Default is True.

New in version 2015.5.0.

	only_upgrade
	Only upgrade the packages, if they are already installed. Default is False.

New in version 2015.5.0.

	force_conf_new
	Always install the new version of any configuration files.

New in version 2015.8.0.

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

	
salt.modules.aptpkg.latest_version(*names, **kwargs)

	
Changed in version 3007.0.

Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

A specific repo can be requested using the fromrepo keyword argument.

cache_valid_time

New in version 2016.11.0.

Skip refreshing the package database if refresh has already occurred within
<value> seconds

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package name> fromrepo=unstable
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	
salt.modules.aptpkg.list_downloaded(root=None, **kwargs)

	
New in version 3000.

List prefetched packages downloaded by apt in the local disk.

	root
	operate on a different root directory.

CLI Example:

salt '*' pkg.list_downloaded

	
salt.modules.aptpkg.list_pkgs(versions_as_list=False, removed=False, purge_desired=False, **kwargs)

	List the packages currently installed in a dict:

{'<package_name>': '<version>'}

	removed
	If True, then only packages which have been removed (but not
purged) will be returned.

	purge_desired
	If True, then only packages which have been marked to be purged,
but can't be purged due to their status as dependencies for other
installed packages, will be returned. Note that these packages will
appear in installed

Changed in version 2014.1.1: Packages in this state now correctly show up in the output of this
function.

CLI Example:

salt '*' pkg.list_pkgs
salt '*' pkg.list_pkgs versions_as_list=True

	
salt.modules.aptpkg.list_repo_pkgs(*args, **kwargs)

	
New in version 2017.7.0.

Returns all available packages. Optionally, package names (and name globs)
can be passed and the results will be filtered to packages matching those
names.

This function can be helpful in discovering the version or repo to specify
in a pkg.installed state.

The return data will be a dictionary mapping package names to a list of
version numbers, ordered from newest to oldest. For example:

{
 'bash': ['4.3-14ubuntu1.1',
 '4.3-14ubuntu1'],
 'nginx': ['1.10.0-0ubuntu0.16.04.4',
 '1.9.15-0ubuntu1']
}

CLI Examples:

salt '*' pkg.list_repo_pkgs
salt '*' pkg.list_repo_pkgs foo bar baz

	
salt.modules.aptpkg.list_repos(**kwargs)

	Lists all repos in the sources.list (and sources.lists.d) files

CLI Example:

salt '*' pkg.list_repos
salt '*' pkg.list_repos disabled=True

	
salt.modules.aptpkg.list_upgrades(refresh=True, dist_upgrade=True, **kwargs)

	List all available package upgrades.

	refresh
	Whether to refresh the package database before listing upgrades.
Default: True.

cache_valid_time

New in version 2016.11.0.

Skip refreshing the package database if refresh has already occurred within
<value> seconds

	dist_upgrade
	Whether to list the upgrades using dist-upgrade vs upgrade. Default is
to use dist-upgrade.

CLI Example:

salt '*' pkg.list_upgrades

	
salt.modules.aptpkg.mod_repo(repo, saltenv='base', aptkey=True, **kwargs)

	Modify one or more values for a repo. If the repo does not exist, it will
be created, so long as the definition is well formed. For Ubuntu the
ppa:<project>/repo format is acceptable. ppa: format can only be
used to create a new repository.

The following options are available to modify a repo definition:

	architectures
	A comma-separated list of supported architectures, e.g. amd64 If
this option is not set, all architectures (configured in the system)
will be used.

	comps
	A comma separated list of components for the repo, e.g. main

	file
	A file name to be used

	keyserver
	Keyserver to get gpg key from

	keyid
	Key ID or a list of key IDs to load with the keyserver argument

	key_url
	URL to a GPG key to add to the APT GPG keyring

	key_text
	GPG key in string form to add to the APT GPG keyring

New in version 2018.3.0.

	consolidateFalse
	If True, will attempt to de-duplicate and consolidate sources

	comments
	Sometimes you want to supply additional information, but not as
enabled configuration. All comments provided here will be joined
into a single string and appended to the repo configuration with a
comment marker (#) before it.

New in version 2015.8.9.

	refreshTrue
	Enable or disable (True or False) refreshing of the apt package
database. The previous refresh_db argument was deprecated in
favor of refresh`. The refresh_db argument will still
continue to work to ensure backwards compatibility, but please
change to using the preferred refresh.

Note

Due to the way keys are stored for APT, there is a known issue where
the key won't be updated unless another change is made at the same
time. Keys should be properly added on initial configuration.

CLI Examples:

salt '*' pkg.mod_repo 'myrepo definition' uri=http://new/uri
salt '*' pkg.mod_repo 'myrepo definition' comps=main,universe

	
salt.modules.aptpkg.normalize_name(name)

	Strips the architecture from the specified package name, if necessary.

CLI Example:

salt '*' pkg.normalize_name zsh:amd64

	
salt.modules.aptpkg.owner(*paths, **kwargs)

	
New in version 2014.7.0.

Return the name of the package that owns the file. Multiple file paths can
be passed. Like pkg.version, if a
single path is passed, a string will be returned, and if multiple paths are
passed, a dictionary of file/package name pairs will be returned.

If the file is not owned by a package, or is not present on the minion,
then an empty string will be returned for that path.

CLI Example:

salt '*' pkg.owner /usr/bin/apachectl
salt '*' pkg.owner /usr/bin/apachectl /usr/bin/basename

	
salt.modules.aptpkg.parse_arch(name)

	Parse name and architecture from the specified package name.

CLI Example:

salt '*' pkg.parse_arch zsh:amd64

	
salt.modules.aptpkg.purge(name=None, pkgs=None, **kwargs)

	
Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands which modify installed packages from the
salt-minion daemon's control group. This is done to keep systemd
from killing any apt-get/dpkg commands spawned by Salt when the
salt-minion service is restarted. (see KillMode in the
systemd.kill(5) [https://www.freedesktop.org/software/systemd/man/systemd.kill.html] manpage for more information). If desired, usage of
systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by setting a config option called systemd.scope, with a value of
False (no quotes).

Remove packages via apt-get purge along with all configuration files.

	name
	The name of the package to be deleted.

Multiple Package Options:

	pkgs
	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

	
salt.modules.aptpkg.refresh_db(cache_valid_time=0, failhard=False, **kwargs)

	Updates the APT database to latest packages based upon repositories

Returns a dict, with the keys being package databases and the values being
the result of the update attempt. Values can be one of the following:

	True: Database updated successfully

	False: Problem updating database

	None: Database already up-to-date

cache_valid_time

New in version 2016.11.0.

Skip refreshing the package database if refresh has already occurred within
<value> seconds

failhard

If False, return results of Err lines as False for the package database that
encountered the error.
If True, raise an error with a list of the package databases that encountered
errors.

CLI Example:

salt '*' pkg.refresh_db

	
salt.modules.aptpkg.remove(name=None, pkgs=None, **kwargs)

	
Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands which modify installed packages from the
salt-minion daemon's control group. This is done to keep systemd
from killing any apt-get/dpkg commands spawned by Salt when the
salt-minion service is restarted. (see KillMode in the
systemd.kill(5) [https://www.freedesktop.org/software/systemd/man/systemd.kill.html] manpage for more information). If desired, usage of
systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by setting a config option called systemd.scope, with a value of
False (no quotes).

Remove packages using apt-get remove.

	name
	The name of the package to be deleted.

Multiple Package Options:

	pkgs
	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.aptpkg.services_need_restart(**kwargs)

	
New in version 3003.

List services that use files which have been changed by the
package manager. It might be needed to restart them.

Requires checkrestart from the debian-goodies package.

CLI Examples:

salt '*' pkg.services_need_restart

	
salt.modules.aptpkg.set_selections(path=None, selection=None, clear=False, saltenv='base')

	Change package state in the dpkg database.

The state can be any one of, documented in dpkg(1):

	install

	hold

	deinstall

	purge

This command is commonly used to mark specific packages to be held from
being upgraded, that is, to be kept at a certain version. When a state is
changed to anything but being held, then it is typically followed by
apt-get -u dselect-upgrade.

Note: Be careful with the clear argument, since it will start
with setting all packages to deinstall state.

Returns a dict of dicts containing the package names, and the new and old
versions:

{'<host>':
 {'<package>': {'new': '<new-state>',
 'old': '<old-state>'}
 },
 ...
}

CLI Example:

salt '*' pkg.set_selections selection='{"install": ["netcat"]}'
salt '*' pkg.set_selections selection='{"hold": ["openssh-server", "openssh-client"]}'
salt '*' pkg.set_selections salt://path/to/file
salt '*' pkg.set_selections salt://path/to/file clear=True

	
salt.modules.aptpkg.show(*names, **kwargs)

	
New in version 2019.2.0.

Runs an apt-cache show on the passed package names, and returns the
results in a nested dictionary. The top level of the return data will be
the package name, with each package name mapping to a dictionary of version
numbers to any additional information returned by apt-cache show.

	filter
	An optional comma-separated list (or quoted Python list) of
case-insensitive keys on which to filter. This allows one to restrict
the information returned for each package to a smaller selection of
pertinent items.

	refreshFalse
	If True, the apt cache will be refreshed first. By default, no
refresh is performed.

CLI Examples:

salt myminion pkg.show gawk
salt myminion pkg.show 'nginx-*'
salt myminion pkg.show 'nginx-*' filter=description,provides

	
salt.modules.aptpkg.unhold(name=None, pkgs=None, sources=None, **kwargs)

	
New in version 2014.7.0.

Set package current in 'hold' state to install state,
meaning it will be upgraded.

	name
	The name of the package, e.g., 'tmux'

CLI Example:

salt '*' pkg.unhold <package name>

	pkgs
	A list of packages to unhold. Must be passed as a python list.

CLI Example:

salt '*' pkg.unhold pkgs='["foo", "bar"]'

	
salt.modules.aptpkg.upgrade(refresh=True, dist_upgrade=False, **kwargs)

	
Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands which modify installed packages from the
salt-minion daemon's control group. This is done to keep systemd
from killing any apt-get/dpkg commands spawned by Salt when the
salt-minion service is restarted. (see KillMode in the
systemd.kill(5) [https://www.freedesktop.org/software/systemd/man/systemd.kill.html] manpage for more information). If desired, usage of
systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by setting a config option called systemd.scope, with a value of
False (no quotes).

Upgrades all packages via apt-get upgrade or apt-get dist-upgrade
if dist_upgrade is True.

Returns a dictionary containing the changes:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

	dist_upgrade
	Whether to perform the upgrade using dist-upgrade vs upgrade. Default
is to use upgrade.

New in version 2014.7.0.

	refreshTrue
	If True, the apt cache will be refreshed first. By default,
this is True and a refresh is performed.

cache_valid_time

New in version 2016.11.0.

Skip refreshing the package database if refresh has already occurred within
<value> seconds

	download_only (or downloadonly)
	Only download the packages, don't unpack or install them. Use
downloadonly to be in line with yum and zypper module.

New in version 2018.3.0.

	force_conf_new
	Always install the new version of any configuration files.

New in version 2015.8.0.

	allow_downgrades
	Allow apt to downgrade packages without a prompt.

New in version 3005.

CLI Example:

salt '*' pkg.upgrade

	
salt.modules.aptpkg.upgrade_available(name, **kwargs)

	Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pkg.upgrade_available <package name>

	
salt.modules.aptpkg.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

	
salt.modules.aptpkg.version_cmp(pkg1, pkg2, ignore_epoch=False, **kwargs)

	Do a cmp-style comparison on two packages. Return -1 if pkg1 < pkg2, 0 if
pkg1 == pkg2, and 1 if pkg1 > pkg2. Return None if there was a problem
making the comparison.

	ignore_epochFalse
	Set to True to ignore the epoch when comparing versions

New in version 2015.8.10,2016.3.2.

CLI Example:

salt '*' pkg.version_cmp '0.2.4-0ubuntu1' '0.2.4.1-0ubuntu1'

salt.modules.archive

A module to wrap (non-Windows) archive calls

New in version 2014.1.0.

	
salt.modules.archive.cmd_unzip(zip_file, dest, excludes=None, options=None, template=None, runas=None, trim_output=False, password=None)

	
New in version 2015.5.0: In versions 2014.7.x and earlier, this function was known as
archive.unzip.

Uses the unzip command to unpack zip files. This command is part of the
Info-ZIP [http://www.info-zip.org/] suite of tools, and is typically packaged as simply unzip.

	zip_file
	Path of zip file to be unpacked

	dest
	The destination directory into which the file should be unpacked

	excludesNone
	Comma-separated list of files not to unpack. Can also be passed in a
Python list.

	templateNone
	Can be set to 'jinja' or another supported template engine to render
the command arguments before execution:

salt '*' archive.cmd_unzip template=jinja /tmp/zipfile.zip '/tmp/{{grains.id}}' excludes=file_1,file_2

	options
	Optional when using zip archives, ignored when usign other archives
files. This is mostly used to overwrite existing files with o.
This options are only used when unzip binary is used.

New in version 2016.3.1.

	runasNone
	Unpack the zip file as the specified user. Defaults to the user under
which the minion is running.

New in version 2015.5.0.

	trim_outputFalse
	The number of files we should output on success before the rest are trimmed, if this is
set to True then it will default to 100

	password
	Password to use with password protected zip files

Note

This is not considered secure. It is recommended to instead use
archive.unzip for
password-protected ZIP files. If a password is used here, then the
unzip command run to extract the ZIP file will not show up in the
minion log like most shell commands Salt runs do. However, the
password will still be present in the events logged to the minion
log at the debug log level. If the minion is logging at
debug (or more verbose), then be advised that the password will
appear in the log.

New in version 2016.11.0.

CLI Example:

salt '*' archive.cmd_unzip /tmp/zipfile.zip /home/strongbad/ excludes=file_1,file_2

	
salt.modules.archive.cmd_zip(zip_file, sources, template=None, cwd=None, runas=None)

	
New in version 2015.5.0: In versions 2014.7.x and earlier, this function was known as
archive.zip.

Uses the zip command to create zip files. This command is part of the
Info-ZIP [http://www.info-zip.org/] suite of tools, and is typically packaged as simply zip.

	zip_file
	Path of zip file to be created

	sources
	Comma-separated list of sources to include in the zip file. Sources can
also be passed in a Python list.

Changed in version 2017.7.0: Globbing is now supported for this argument

	templateNone
	Can be set to 'jinja' or another supported template engine to render
the command arguments before execution:

salt '*' archive.cmd_zip template=jinja /tmp/zipfile.zip /tmp/sourcefile1,/tmp/{{grains.id}}.txt

	cwdNone
	Use this argument along with relative paths in sources to create
zip files which do not contain the leading directories. If not
specified, the zip file will be created as if the cwd was /, and
creating a zip file of /foo/bar/baz.txt will contain the parent
directories foo and bar. To create a zip file containing just
baz.txt, the following command would be used:

salt '*' archive.cmd_zip /tmp/baz.zip baz.txt cwd=/foo/bar

New in version 2014.7.1.

	runasNone
	Create the zip file as the specified user. Defaults to the user under
which the minion is running.

New in version 2015.5.0.

CLI Example:

salt '*' archive.cmd_zip /tmp/zipfile.zip /tmp/sourcefile1,/tmp/sourcefile2
Globbing for sources (2017.7.0 and later)
salt '*' archive.cmd_zip /tmp/zipfile.zip '/tmp/sourcefile*'

	
salt.modules.archive.gunzip(gzipfile, template=None, runas=None, options=None)

	Uses the gunzip command to unpack gzip files

	templateNone
	Can be set to 'jinja' or another supported template engine to render
the command arguments before execution:

salt '*' archive.gunzip template=jinja /tmp/{{grains.id}}.txt.gz

	runasNone
	The user with which to run the gzip command line

	optionsNone
	Pass any additional arguments to gzip

New in version 2016.3.4.

CLI Example:

Create /tmp/sourcefile.txt
salt '*' archive.gunzip /tmp/sourcefile.txt.gz
salt '*' archive.gunzip /tmp/sourcefile.txt options='--verbose'

	
salt.modules.archive.gzip(sourcefile, template=None, runas=None, options=None)

	Uses the gzip command to create gzip files

	templateNone
	Can be set to 'jinja' or another supported template engine to render
the command arguments before execution:

salt '*' archive.gzip template=jinja /tmp/{{grains.id}}.txt

	runasNone
	The user with which to run the gzip command line

	optionsNone
	Pass any additional arguments to gzip

New in version 2016.3.4.

CLI Example:

Create /tmp/sourcefile.txt.gz
salt '*' archive.gzip /tmp/sourcefile.txt
salt '*' archive.gzip /tmp/sourcefile.txt options='-9 --verbose'

	
salt.modules.archive.is_encrypted(name, clean=False, saltenv='base', source_hash=None, use_etag=False)

	
New in version 2016.11.0.

Changed in version 3005.

Returns True if the zip archive is password-protected, False if
not. If the specified file is not a ZIP archive, an error will be raised.

	name
	The path / URL of the archive to check.

	cleanFalse
	Set this value to True to delete the path referred to by name
once the contents have been listed. This option should be used with
care.

Note

If there is an error listing the archive's contents, the cached
file will not be removed, to allow for troubleshooting.

	saltenvbase
	Specifies the fileserver environment from which to retrieve
archive. This is only applicable when archive is a file from
the salt:// fileserver.

	source_hash
	If name is an http(s)/ftp URL and the file exists in the minion's
file cache, this option can be passed to keep the minion from
re-downloading the archive if the cached copy matches the specified
hash.

New in version 2018.3.0.

	use_etag
	If True, remote http/https file sources will attempt to use the
ETag header to determine if the remote file needs to be downloaded.
This provides a lightweight mechanism for promptly refreshing files
changed on a web server without requiring a full hash comparison via
the source_hash parameter.

New in version 3005.

CLI Examples:

salt '*' archive.is_encrypted /path/to/myfile.zip
salt '*' archive.is_encrypted salt://foo.zip
salt '*' archive.is_encrypted salt://foo.zip saltenv=dev
salt '*' archive.is_encrypted https://domain.tld/myfile.zip clean=True
salt '*' archive.is_encrypted https://domain.tld/myfile.zip source_hash=f1d2d2f924e986ac86fdf7b36c94bcdf32beec15
salt '*' archive.is_encrypted ftp://10.1.2.3/foo.zip

	
salt.modules.archive.list_(name, archive_format=None, options=None, strip_components=None, clean=False, verbose=False, saltenv='base', source_hash=None, use_etag=False)

	
New in version 2016.11.0.

Changed in version 2016.11.2,3005: The rarfile [https://pypi.python.org/pypi/rarfile] Python module is now supported for listing the contents of
rar archives. This is necessary on minions with older releases of the
rar CLI tool, which do not support listing the contents in a
parsable format.

List the files and directories in an tar, zip, or rar archive.

Note

This function will only provide results for XZ-compressed archives if
the xz [http://tukaani.org/xz/] CLI command is available, as Python does not at this time
natively support XZ compression in its tarfile [https://docs.python.org/2/library/tarfile.html] module. Keep in mind
however that most Linux distros ship with xz [http://tukaani.org/xz/] already installed.

To check if a given minion has xz [http://tukaani.org/xz/], the following Salt command can be
run:

salt minion_id cmd.which xz

If None is returned, then xz [http://tukaani.org/xz/] is not present and must be installed.
It is widely available and should be packaged as either xz or
xz-utils.

	name
	Path/URL of archive

	archive_format
	Specify the format of the archive (tar, zip, or rar). If
this argument is omitted, the archive format will be guessed based on
the value of the name parameter.

	options
	For tar archives only. This function will, by default, try to use
the tarfile [https://docs.python.org/2/library/tarfile.html] module from the Python standard library to get a list of
files/directories. If this method fails, then it will fall back to
using the shell to decompress the archive to stdout and pipe the
results to tar -tf - to produce a list of filenames. XZ-compressed
archives are already supported automatically, but in the event that the
tar archive uses a different sort of compression not supported natively
by tarfile [https://docs.python.org/2/library/tarfile.html], this option can be used to specify a command that will
decompress the archive to stdout. For example:

salt minion_id archive.list /path/to/foo.tar.gz options='gzip --decompress --stdout'

Note

It is not necessary to manually specify options for gzip'ed
archives, as gzip compression is natively supported by tarfile [https://docs.python.org/2/library/tarfile.html].

	strip_components
	This argument specifies a number of top-level directories to strip from
the results. This is similar to the paths that would be extracted if
--strip-components (or --strip) were used when extracting tar
archives.

New in version 2016.11.2.

	cleanFalse
	Set this value to True to delete the path referred to by name
once the contents have been listed. This option should be used with
care.

Note

If there is an error listing the archive's contents, the cached
file will not be removed, to allow for troubleshooting.

	verboseFalse
	If False, this function will return a list of files/dirs in the
archive. If True, it will return a dictionary categorizing the
paths into separate keys containing the directory names, file names,
and also directories/files present in the top level of the archive.

Changed in version 2016.11.2: This option now includes symlinks in their own list. Before, they
were included with files.

	saltenvbase
	Specifies the fileserver environment from which to retrieve
archive. This is only applicable when archive is a file from
the salt:// fileserver.

	source_hash
	If name is an http(s)/ftp URL and the file exists in the minion's
file cache, this option can be passed to keep the minion from
re-downloading the archive if the cached copy matches the specified
hash.

New in version 2018.3.0.

	use_etag
	If True, remote http/https file sources will attempt to use the
ETag header to determine if the remote file needs to be downloaded.
This provides a lightweight mechanism for promptly refreshing files
changed on a web server without requiring a full hash comparison via
the source_hash parameter.

New in version 3005.

CLI Examples:

salt '*' archive.list /path/to/myfile.tar.gz
salt '*' archive.list /path/to/myfile.tar.gz strip_components=1
salt '*' archive.list salt://foo.tar.gz
salt '*' archive.list https://domain.tld/myfile.zip
salt '*' archive.list https://domain.tld/myfile.zip source_hash=f1d2d2f924e986ac86fdf7b36c94bcdf32beec15
salt '*' archive.list ftp://10.1.2.3/foo.rar

	
salt.modules.archive.rar(rarfile, sources, template=None, cwd=None, runas=None)

	Uses rar for Linux [http://www.rarlab.com/] to create rar files

	rarfile
	Path of rar file to be created

	sources
	Comma-separated list of sources to include in the rar file. Sources can
also be passed in a Python list.

Changed in version 2017.7.0: Globbing is now supported for this argument

	cwdNone
	Run the rar command from the specified directory. Use this argument
along with relative file paths to create rar files which do not
contain the leading directories. If not specified, this will default
to the home directory of the user under which the salt minion process
is running.

New in version 2014.7.1.

	templateNone
	Can be set to 'jinja' or another supported template engine to render
the command arguments before execution:

salt '*' archive.rar template=jinja /tmp/rarfile.rar '/tmp/sourcefile1,/tmp/{{grains.id}}.txt'

CLI Example:

salt '*' archive.rar /tmp/rarfile.rar /tmp/sourcefile1,/tmp/sourcefile2
Globbing for sources (2017.7.0 and later)
salt '*' archive.rar /tmp/rarfile.rar '/tmp/sourcefile*'

	
salt.modules.archive.tar(options, tarfile, sources=None, dest=None, cwd=None, template=None, runas=None)

	
Note

This function has changed for version 0.17.0. In prior versions, the
cwd and template arguments must be specified, with the source
directories/files coming as a space-separated list at the end of the
command. Beginning with 0.17.0, sources must be a comma-separated
list, and the cwd and template arguments are optional.

Uses the tar command to pack, unpack, etc. tar files

	options
	Options to pass to the tar command

Changed in version 2015.8.0: The mandatory - prefixing has been removed. An options string
beginning with a --long-option, would have uncharacteristically
needed its first - removed under the former scheme.

Also, tar will parse its options differently if short options are
used with or without a preceding -, so it is better to not
confuse the user into thinking they're using the non-- format,
when really they are using the with-- format.

	tarfile
	The filename of the tar archive to pack/unpack

	sources
	Comma delimited list of files to pack into the tarfile. Can also be
passed as a Python list.

Changed in version 2017.7.0: Globbing is now supported for this argument

	dest
	The destination directory into which to unpack the tarfile

	cwdNone
	The directory in which the tar command should be executed. If not
specified, will default to the home directory of the user under which
the salt minion process is running.

	templateNone
	Can be set to 'jinja' or another supported template engine to render
the command arguments before execution:

salt '*' archive.tar cjvf /tmp/salt.tar.bz2 {{grains.saltpath}} template=jinja

CLI Examples:

Create a tarfile
salt '*' archive.tar cjvf /tmp/tarfile.tar.bz2 /tmp/file_1,/tmp/file_2
Create a tarfile using globbing (2017.7.0 and later)
salt '*' archive.tar cjvf /tmp/tarfile.tar.bz2 '/tmp/file_*'
Unpack a tarfile
salt '*' archive.tar xf foo.tar dest=/target/directory

	
salt.modules.archive.unrar(rarfile, dest, excludes=None, template=None, runas=None, trim_output=False)

	Uses rar for Linux [http://www.rarlab.com/] to unpack rar files

	rarfile
	Name of rar file to be unpacked

	dest
	The destination directory into which to unpack the rar file

	templateNone
	Can be set to 'jinja' or another supported template engine to render
the command arguments before execution:

salt '*' archive.unrar template=jinja /tmp/rarfile.rar /tmp/{{grains.id}}/ excludes=file_1,file_2

	trim_outputFalse
	The number of files we should output on success before the rest are trimmed, if this is
set to True then it will default to 100

CLI Example:

salt '*' archive.unrar /tmp/rarfile.rar /home/strongbad/ excludes=file_1,file_2

	
salt.modules.archive.unzip(zip_file, dest, excludes=None, options=None, template=None, runas=None, trim_output=False, password=None, extract_perms=True)

	Uses the zipfile Python module to unpack zip files

Changed in version 2015.5.0: This function was rewritten to use Python's native zip file support.
The old functionality has been preserved in the new function
archive.cmd_unzip. For versions
2014.7.x and earlier, see the archive.cmd_zip documentation.

	zip_file
	Path of zip file to be unpacked

	dest
	The destination directory into which the file should be unpacked

	excludesNone
	Comma-separated list of files not to unpack. Can also be passed in a
Python list.

	options
	This options are only used when unzip binary is used. In this
function is ignored.

New in version 2016.3.1.

	templateNone
	Can be set to 'jinja' or another supported template engine to render
the command arguments before execution:

salt '*' archive.unzip template=jinja /tmp/zipfile.zip /tmp/{{grains.id}}/ excludes=file_1,file_2

	runasNone
	Unpack the zip file as the specified user. Defaults to the user under
which the minion is running.

	trim_outputFalse
	The number of files we should output on success before the rest are trimmed, if this is
set to True then it will default to 100

CLI Example:

salt '*' archive.unzip /tmp/zipfile.zip /home/strongbad/ excludes=file_1,file_2

	password
	Password to use with password protected zip files

Note

The password will be present in the events logged to the minion log
file at the debug log level. If the minion is logging at
debug (or more verbose), then be advised that the password will
appear in the log.

New in version 2016.3.0.

	extract_permsTrue
	The Python zipfile [https://docs.python.org/2/library/zipfile.html] module does not extract file/directory attributes
by default. When this argument is set to True, Salt will attempt to
apply the file permission attributes to the extracted files/folders.

On Windows, only the read-only flag will be extracted as set within the
zip file, other attributes (i.e. user/group permissions) are ignored.

Set this argument to False to disable this behavior.

New in version 2016.11.0.

CLI Example:

salt '*' archive.unzip /tmp/zipfile.zip /home/strongbad/ password='BadPassword'

	
salt.modules.archive.zip_(zip_file, sources, template=None, cwd=None, runas=None, zip64=False)

	Uses the zipfile Python module to create zip files

Changed in version 2015.5.0: This function was rewritten to use Python's native zip file support.
The old functionality has been preserved in the new function
archive.cmd_zip. For versions
2014.7.x and earlier, see the archive.cmd_zip documentation.

	zip_file
	Path of zip file to be created

	sources
	Comma-separated list of sources to include in the zip file. Sources can
also be passed in a Python list.

Changed in version 2017.7.0: Globbing is now supported for this argument

	templateNone
	Can be set to 'jinja' or another supported template engine to render
the command arguments before execution:

salt '*' archive.zip template=jinja /tmp/zipfile.zip /tmp/sourcefile1,/tmp/{{grains.id}}.txt

	cwdNone
	Use this argument along with relative paths in sources to create
zip files which do not contain the leading directories. If not
specified, the zip file will be created as if the cwd was /, and
creating a zip file of /foo/bar/baz.txt will contain the parent
directories foo and bar. To create a zip file containing just
baz.txt, the following command would be used:

salt '*' archive.zip /tmp/baz.zip baz.txt cwd=/foo/bar

	runasNone
	Create the zip file as the specified user. Defaults to the user under
which the minion is running.

	zip64False
	Used to enable ZIP64 support, necessary to create archives larger than
4 GByte in size.
If true, will create ZIP file with the ZIPp64 extension when the zipfile
is larger than 2 GB.
ZIP64 extension is disabled by default in the Python native zip support
because the default zip and unzip commands on Unix (the InfoZIP utilities)
don't support these extensions.

CLI Example:

salt '*' archive.zip /tmp/zipfile.zip /tmp/sourcefile1,/tmp/sourcefile2
Globbing for sources (2017.7.0 and later)
salt '*' archive.zip /tmp/zipfile.zip '/tmp/sourcefile*'

salt.modules.arista_pyeapi

Arista pyeapi

New in version 2019.2.0.

Execution module to interface the connection with Arista switches, connecting to
the remote network device using the
pyeapi [http://pyeapi.readthedocs.io/en/master/index.html] library. It is
flexible enough to execute the commands both when running under an Arista Proxy
Minion, as well as running under a Regular Minion by specifying the connection
arguments, i.e., device_type, host, username, password etc.

	codeauthor:

	Mircea Ulinic <ping@mirceaulinic.net>

	maturity:

	new

	depends:

	pyeapi

	platform:

	unix

Note

To understand how to correctly enable the eAPI on your switch, please check
https://eos.arista.com/arista-eapi-101/.

Dependencies

The pyeapi Execution module requires the Python Client for eAPI (pyeapi) to
be installed: pip install pyeapi.

Usage

This module can equally be used via the pyeapi
Proxy module or directly from an arbitrary (Proxy) Minion that is running on a
machine having access to the network device API, and the pyeapi library is
installed.

When running outside of the pyeapi Proxy
(i.e., from another Proxy Minion type, or regular Minion), the pyeapi connection
arguments can be either specified from the CLI when executing the command, or
in a configuration block under the pyeapi key in the configuration opts
(i.e., (Proxy) Minion configuration file), or Pillar. The module supports these
simultaneously. These fields are the exact same supported by the pyeapi
Proxy Module:

	transport: https
	Specifies the type of connection transport to use. Valid values for the
connection are socket, http_local, http, and https.

	host: localhost
	The IP address or DNS host name of the connection device.

	username: admin
	The username to pass to the device to authenticate the eAPI connection.

	password
	The password to pass to the device to authenticate the eAPI connection.

	port
	The TCP port of the endpoint for the eAPI connection. If this keyword is
not specified, the default value is automatically determined by the
transport type (80 for http, or 443 for https).

	enablepwd
	The enable mode password if required by the destination node.

Example (when not running in a pyeapi Proxy Minion):

pyeapi:
 username: test
 password: test

In case the username and password are the same on any device you are
targeting, the block above (besides other parameters specific to your
environment you might need) should suffice to be able to execute commands from
outside a pyeapi Proxy, e.g.:

salt '*' pyeapi.run_commands 'show version' 'show interfaces'
salt '*' pyeapi.config 'ntp server 1.2.3.4'

Note

Remember that the above applies only when not running in a pyeapi Proxy
Minion. If you want to use the pyeapi Proxy,
please follow the documentation notes for a proper setup.

	
salt.modules.arista_pyeapi.call(method, *args, **kwargs)

	Invoke an arbitrary pyeapi method.

	method
	The name of the pyeapi method to invoke.

	args
	A list of arguments to send to the method invoked.

	kwargs
	Key-value dictionary to send to the method invoked.

	transport: https
	Specifies the type of connection transport to use. Valid values for the
connection are socket, http_local, http, and https.

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

	host: localhost
	The IP address or DNS host name of the connection device.

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

	username: admin
	The username to pass to the device to authenticate the eAPI connection.

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

	password
	The password to pass to the device to authenticate the eAPI connection.

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

	port
	The TCP port of the endpoint for the eAPI connection. If this keyword is
not specified, the default value is automatically determined by the
transport type (80 for http, or 443 for https).

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

	enablepwd
	The enable mode password if required by the destination node.

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

CLI Example:

salt '*' pyeapi.call run_commands "['show version']"

	
salt.modules.arista_pyeapi.config(commands=None, config_file=None, template_engine='jinja', context=None, defaults=None, saltenv='base', **kwargs)

	Configures the node with the specified commands.

This method is used to send configuration commands to the node. It
will take either a string or a list and prepend the necessary commands
to put the session into config mode.

Returns the diff after the configuration commands are loaded.

	config_file
	The source file with the configuration commands to be sent to the
device.

The file can also be a template that can be rendered using the template
engine of choice.

This can be specified using the absolute path to the file, or using one
of the following URL schemes:

	salt://, to fetch the file from the Salt fileserver.

	http:// or https://

	ftp://

	s3://

	swift://

	commands
	The commands to send to the node in config mode. If the commands
argument is a string it will be cast to a list.
The list of commands will also be prepended with the necessary commands
to put the session in config mode.

Note

This argument is ignored when config_file is specified.

	template_engine: jinja
	The template engine to use when rendering the source file. Default:
jinja. To simply fetch the file without attempting to render, set
this argument to None.

	context
	Variables to add to the template context.

	defaults
	Default values of the context dict.

	transport: https
	Specifies the type of connection transport to use. Valid values for the
connection are socket, http_local, http, and https.

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

	host: localhost
	The IP address or DNS host name of the connection device.

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

	username: admin
	The username to pass to the device to authenticate the eAPI connection.

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

	password
	The password to pass to the device to authenticate the eAPI connection.

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

	port
	The TCP port of the endpoint for the eAPI connection. If this keyword is
not specified, the default value is automatically determined by the
transport type (80 for http, or 443 for https).

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

	enablepwd
	The enable mode password if required by the destination node.

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

CLI Example:

salt '*' pyeapi.config commands="['ntp server 1.2.3.4', 'ntp server 5.6.7.8']"
salt '*' pyeapi.config config_file=salt://config.txt
salt '*' pyeapi.config config_file=https://bit.ly/2LGLcDy context="{'servers': ['1.2.3.4']}"

	
salt.modules.arista_pyeapi.get_config(config='running-config', params=None, as_string=False, **kwargs)

	Retrieves the config from the device.

This method will retrieve the config from the node as either a string
or a list object. The config to retrieve can be specified as either
the startup-config or the running-config.

	config: running-config
	Specifies to return either the nodes startup-config
or running-config. The default value is the running-config.

	params
	A string of keywords to append to the command for retrieving the config.

	as_string: False
	Flag that determines the response. If True, then the configuration
is returned as a raw string. If False, then the configuration is
returned as a list. The default value is False.

	transport: https
	Specifies the type of connection transport to use. Valid values for the
connection are socket, http_local, http, and https.

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

	host: localhost
	The IP address or DNS host name of the connection device.

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

	username: admin
	The username to pass to the device to authenticate the eAPI connection.

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

	password
	The password to pass to the device to authenticate the eAPI connection.

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

	port
	The TCP port of the endpoint for the eAPI connection. If this keyword is
not specified, the default value is automatically determined by the
transport type (80 for http, or 443 for https).

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

	enablepwd
	The enable mode password if required by the destination node.

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

CLI Example:

salt '*' pyeapi.get_config
salt '*' pyeapi.get_config params='section snmp-server'
salt '*' pyeapi.get_config config='startup-config'

	
salt.modules.arista_pyeapi.get_connection(**kwargs)

	Return the connection object to the pyeapi Node.

Warning

This function returns an unserializable object, hence it is not meant
to be used on the CLI. This should mainly be used when invoked from
other modules for the low level connection with the network device.

	kwargs
	Key-value dictionary with the authentication details.

USAGE Example:

conn = __salt__['pyeapi.get_connection'](host='router1.example.com',
 username='example',
 password='example')
show_ver = conn.run_commands(['show version', 'show interfaces'])

	
salt.modules.arista_pyeapi.run_commands(*commands, **kwargs)

	Sends the commands over the transport to the device.

This function sends the commands to the device using the nodes
transport. This is a lower layer function that shouldn't normally
need to be used, preferring instead to use config() or enable().

	transport: https
	Specifies the type of connection transport to use. Valid values for the
connection are socket, http_local, http, and https.

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

	host: localhost
	The IP address or DNS host name of the connection device.

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

	username: admin
	The username to pass to the device to authenticate the eAPI connection.

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

	password
	The password to pass to the device to authenticate the eAPI connection.

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

	port
	The TCP port of the endpoint for the eAPI connection. If this keyword is
not specified, the default value is automatically determined by the
transport type (80 for http, or 443 for https).

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

	enablepwd
	The enable mode password if required by the destination node.

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

CLI Example:

salt '*' pyeapi.run_commands 'show version'
salt '*' pyeapi.run_commands 'show version' encoding=text
salt '*' pyeapi.run_commands 'show version' encoding=text host=cr1.thn.lon username=example password=weak

Output example:

veos1:
 |_

 architecture:
 i386
 bootupTimestamp:
 1527541728.53
 hardwareRevision:
 internalBuildId:
 63d2e89a-220d-4b8a-a9b3-0524fa8f9c5f
 internalVersion:
 4.18.1F-4591672.4181F
 isIntlVersion:
 False
 memFree:
 501468
 memTotal:
 1893316
 modelName:
 vEOS
 serialNumber:
 systemMacAddress:
 52:54:00:3f:e6:d0
 version:
 4.18.1F

	
salt.modules.arista_pyeapi.section(regex, config='running-config', **kwargs)

	Return a section of the config.

	regex
	A valid regular expression used to select sections of configuration to
return.

	config: running-config
	The configuration to return. Valid values for config are
running-config or startup-config. The default value is
running-config.

	transport: https
	Specifies the type of connection transport to use. Valid values for the
connection are socket, http_local, http, and https.

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

	host: localhost
	The IP address or DNS host name of the connection device.

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

	username: admin
	The username to pass to the device to authenticate the eAPI connection.

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

	password
	The password to pass to the device to authenticate the eAPI connection.

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

	port
	The TCP port of the endpoint for the eAPI connection. If this keyword is
not specified, the default value is automatically determined by the
transport type (80 for http, or 443 for https).

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

	enablepwd
	The enable mode password if required by the destination node.

Note

This argument does not need to be specified when running in a
pyeapi Proxy Minion.

CLI Example:

salt '*'

salt.modules.artifactory

Module for fetching artifacts from Artifactory

	
exception salt.modules.artifactory.ArtifactoryError(value)

	

	
salt.modules.artifactory.get_latest_release(artifactory_url, repository, group_id, artifact_id, packaging, target_dir='/tmp', target_file=None, classifier=None, username=None, password=None, use_literal_group_id=False)

	Gets the latest release of the artifact

	artifactory_url
	URL of artifactory instance

	repository
	Release repository in artifactory to retrieve artifact from, for example: libs-releases

	group_id
	Group Id of the artifact

	artifact_id
	Artifact Id of the artifact

	packaging
	Packaging type (jar,war,ear,etc)

	target_dir
	Target directory to download artifact to (default: /tmp)

	target_file
	Target file to download artifact to (by default it is target_dir/artifact_id-version.packaging)

	classifier
	Artifact classifier name (ex: sources,javadoc,etc). Optional parameter.

	username
	Artifactory username. Optional parameter.

	password
	Artifactory password. Optional parameter.

	
salt.modules.artifactory.get_latest_snapshot(artifactory_url, repository, group_id, artifact_id, packaging, target_dir='/tmp', target_file=None, classifier=None, username=None, password=None, use_literal_group_id=False)

	Gets latest snapshot of the given artifact

	artifactory_url
	URL of artifactory instance

	repository
	Snapshot repository in artifactory to retrieve artifact from, for example: libs-snapshots

	group_id
	Group Id of the artifact

	artifact_id
	Artifact Id of the artifact

	packaging
	Packaging type (jar,war,ear,etc)

	target_dir
	Target directory to download artifact to (default: /tmp)

	target_file
	Target file to download artifact to (by default it is target_dir/artifact_id-snapshot_version.packaging)

	classifier
	Artifact classifier name (ex: sources,javadoc,etc). Optional parameter.

	username
	Artifactory username. Optional parameter.

	password
	Artifactory password. Optional parameter.

	
salt.modules.artifactory.get_release(artifactory_url, repository, group_id, artifact_id, packaging, version, target_dir='/tmp', target_file=None, classifier=None, username=None, password=None, use_literal_group_id=False)

	Gets the specified release of the artifact

	artifactory_url
	URL of artifactory instance

	repository
	Release repository in artifactory to retrieve artifact from, for example: libs-releases

	group_id
	Group Id of the artifact

	artifact_id
	Artifact Id of the artifact

	packaging
	Packaging type (jar,war,ear,etc)

	version
	Version of the artifact

	target_dir
	Target directory to download artifact to (default: /tmp)

	target_file
	Target file to download artifact to (by default it is target_dir/artifact_id-version.packaging)

	classifier
	Artifact classifier name (ex: sources,javadoc,etc). Optional parameter.

	username
	Artifactory username. Optional parameter.

	password
	Artifactory password. Optional parameter.

	
salt.modules.artifactory.get_snapshot(artifactory_url, repository, group_id, artifact_id, packaging, version, snapshot_version=None, target_dir='/tmp', target_file=None, classifier=None, username=None, password=None, use_literal_group_id=False)

	Gets snapshot of the desired version of the artifact

	artifactory_url
	URL of artifactory instance

	repository
	Snapshot repository in artifactory to retrieve artifact from, for example: libs-snapshots

	group_id
	Group Id of the artifact

	artifact_id
	Artifact Id of the artifact

	packaging
	Packaging type (jar,war,ear,etc)

	version
	Version of the artifact

	target_dir
	Target directory to download artifact to (default: /tmp)

	target_file
	Target file to download artifact to (by default it is target_dir/artifact_id-snapshot_version.packaging)

	classifier
	Artifact classifier name (ex: sources,javadoc,etc). Optional parameter.

	username
	Artifactory username. Optional parameter.

	password
	Artifactory password. Optional parameter.

	
salt.modules.artifactory.set_basic_auth(url, username, password)

	Sets the username and password for a specific url. Helper method.

CLI Example:

salt.modules.at

Wrapper module for at(1)

Also, a 'tag' feature has been added to more
easily tag jobs.

	platform:

	linux,openbsd,freebsd

Changed in version 2017.7.0.

	
salt.modules.at.at(*args, **kwargs)

	Add a job to the queue.

The 'timespec' follows the format documented in the
at(1) manpage.

CLI Example:

salt '*' at.at <timespec> <cmd> [tag=<tag>] [runas=<user>]
salt '*' at.at 12:05am '/sbin/reboot' tag=reboot
salt '*' at.at '3:05am +3 days' 'bin/myscript' tag=nightly runas=jim
salt '*' at.at '"22:02"' 'bin/myscript' tag=nightly runas=jim

	
salt.modules.at.atc(jobid)

	Print the at(1) script that will run for the passed job
id. This is mostly for debugging so the output will
just be text.

CLI Example:

salt '*' at.atc <jobid>

	
salt.modules.at.atq(tag=None)

	List all queued and running jobs or only those with
an optional 'tag'.

CLI Example:

salt '*' at.atq
salt '*' at.atq [tag]
salt '*' at.atq [job number]

	
salt.modules.at.atrm(*args)

	Remove jobs from the queue.

CLI Example:

salt '*' at.atrm <jobid> <jobid> .. <jobid>
salt '*' at.atrm all
salt '*' at.atrm all [tag]

	
salt.modules.at.jobcheck(**kwargs)

	Check the job from queue.
The kwargs dict include 'hour minute day month year tag runas'
Other parameters will be ignored.

CLI Example:

salt '*' at.jobcheck runas=jam day=13
salt '*' at.jobcheck day=13 month=12 year=13 tag=rose

salt.modules.at_solaris

Wrapper for at(1) on Solaris-like systems

Note

we try to mirror the generic at module
where possible

	maintainer:

	jorge schrauwen <sjorge@blackdot.be>

	maturity:

	new

	platform:

	solaris,illumos,smartso

New in version 2017.7.0.

	
salt.modules.at_solaris.at(*args, **kwargs)

	Add a job to the queue.

The 'timespec' follows the format documented in the
at(1) manpage.

CLI Example:

salt '*' at.at <timespec> <cmd> [tag=<tag>] [runas=<user>]
salt '*' at.at 12:05am '/sbin/reboot' tag=reboot
salt '*' at.at '3:05am +3 days' 'bin/myscript' tag=nightly runas=jim

	
salt.modules.at_solaris.atc(jobid)

	Print the at(1) script that will run for the passed job
id. This is mostly for debugging so the output will
just be text.

CLI Example:

salt '*' at.atc <jobid>

	
salt.modules.at_solaris.atq(tag=None)

	List all queued and running jobs or only those with
an optional 'tag'.

CLI Example:

salt '*' at.atq
salt '*' at.atq [tag]
salt '*' at.atq [job number]

	
salt.modules.at_solaris.atrm(*args)

	Remove jobs from the queue.

CLI Example:

salt '*' at.atrm <jobid> <jobid> .. <jobid>
salt '*' at.atrm all
salt '*' at.atrm all [tag]

	
salt.modules.at_solaris.jobcheck(**kwargs)

	Check the job from queue.
The kwargs dict include 'hour minute day month year tag runas'
Other parameters will be ignored.

CLI Example:

salt '*' at.jobcheck runas=jam day=13
salt '*' at.jobcheck day=13 month=12 year=13 tag=rose

salt.modules.augeas_cfg

Manages configuration files via augeas

This module requires the augeas Python module.

Warning

Minimal installations of Debian and Ubuntu have been seen to have packaging
bugs with python-augeas, causing the augeas module to fail to import. If
the minion has the augeas module installed, but the functions in this
execution module fail to run due to being unavailable, first restart the
salt-minion service. If the problem persists past that, the following
command can be run from the master to determine what is causing the import
to fail:

salt minion-id cmd.run 'python -c "from augeas import Augeas"'

For affected Debian/Ubuntu hosts, installing libpython2.7 has been
known to resolve the issue.

	
salt.modules.augeas_cfg.execute(context=None, lens=None, commands=(), load_path=None)

	Execute Augeas commands

New in version 2014.7.0.

CLI Example:

salt '*' augeas.execute /files/etc/redis/redis.conf \
commands='["set bind 0.0.0.0", "set maxmemory 1G"]'

	context
	The Augeas context

	lens
	The Augeas lens to use

	commands
	The Augeas commands to execute

New in version 2016.3.0.

	load_path
	A colon-spearated list of directories that modules should be searched
in. This is in addition to the standard load path and the directories
in AUGEAS_LENS_LIB.

	
salt.modules.augeas_cfg.get(path, value='', load_path=None)

	Get a value for a specific augeas path

CLI Example:

salt '*' augeas.get /files/etc/hosts/1/ ipaddr

	path
	The path to get the value of

	value
	The optional value to get

New in version 2016.3.0.

	load_path
	A colon-spearated list of directories that modules should be searched
in. This is in addition to the standard load path and the directories
in AUGEAS_LENS_LIB.

	
salt.modules.augeas_cfg.ls(path, load_path=None)

	List the direct children of a node

CLI Example:

salt '*' augeas.ls /files/etc/passwd

	path
	The path to list

New in version 2016.3.0.

	load_path
	A colon-spearated list of directories that modules should be searched
in. This is in addition to the standard load path and the directories
in AUGEAS_LENS_LIB.

	
salt.modules.augeas_cfg.match(path, value='', load_path=None)

	Get matches for path expression

CLI Example:

salt '*' augeas.match /files/etc/services/service-name ssh

	path
	The path to match

	value
	The value to match on

New in version 2016.3.0.

	load_path
	A colon-spearated list of directories that modules should be searched
in. This is in addition to the standard load path and the directories
in AUGEAS_LENS_LIB.

	
salt.modules.augeas_cfg.remove(path, load_path=None)

	Get matches for path expression

CLI Example:

salt '*' augeas.remove \
/files/etc/sysctl.conf/net.ipv4.conf.all.log_martians

	path
	The path to remove

New in version 2016.3.0.

	load_path
	A colon-spearated list of directories that modules should be searched
in. This is in addition to the standard load path and the directories
in AUGEAS_LENS_LIB.

	
salt.modules.augeas_cfg.setvalue(*args)

	Set a value for a specific augeas path

CLI Example:

salt '*' augeas.setvalue /files/etc/hosts/1/canonical localhost

This will set the first entry in /etc/hosts to localhost

CLI Example:

salt '*' augeas.setvalue /files/etc/hosts/01/ipaddr 192.168.1.1 \
 /files/etc/hosts/01/canonical test

Adds a new host to /etc/hosts the ip address 192.168.1.1 and hostname test

CLI Example:

salt '*' augeas.setvalue prefix=/files/etc/sudoers/ \
 "spec[user = '%wheel']/user" "%wheel" \
 "spec[user = '%wheel']/host_group/host" 'ALL' \
 "spec[user = '%wheel']/host_group/command[1]" 'ALL' \
 "spec[user = '%wheel']/host_group/command[1]/tag" 'PASSWD' \
 "spec[user = '%wheel']/host_group/command[2]" '/usr/bin/apt-get' \
 "spec[user = '%wheel']/host_group/command[2]/tag" NOPASSWD

Ensures that the following line is present in /etc/sudoers:

%wheel ALL = PASSWD : ALL , NOPASSWD : /usr/bin/apt-get , /usr/bin/aptitude

	
salt.modules.augeas_cfg.tree(path, load_path=None)

	Returns recursively the complete tree of a node

CLI Example:

salt '*' augeas.tree /files/etc/

	path
	The base of the recursive listing

New in version 2016.3.0.

	load_path
	A colon-spearated list of directories that modules should be searched
in. This is in addition to the standard load path and the directories
in AUGEAS_LENS_LIB.

salt.modules.aws_sqs

Support for the Amazon Simple Queue Service.

	
salt.modules.aws_sqs.create_queue(name, region, opts=None, user=None)

	Creates a queue with the correct name.

	name
	Name of the SQS queue to create

	region
	Region to create the SQS queue in

	optsNone
	Any additional options to add to the command line

	userNone
	Run hg as a user other than what the minion runs as

CLI Example:

salt '*' aws_sqs.create_queue <sqs queue> <region>

	
salt.modules.aws_sqs.delete_message(queue, region, receipthandle, opts=None, user=None)

	Delete one or more messages from a queue in a region

	queue
	The name of the queue to delete messages from

	region
	Region where SQS queues exists

	receipthandle
	The ReceiptHandle of the message to delete. The ReceiptHandle
is obtained in the return from receive_message

	optsNone
	Any additional options to add to the command line

	userNone
	Run as a user other than what the minion runs as

CLI Example:

salt '*' aws_sqs.delete_message <sqs queue> <region> receipthandle='<sqs ReceiptHandle>'

New in version 2014.7.0.

	
salt.modules.aws_sqs.delete_queue(name, region, opts=None, user=None)

	Deletes a queue in the region.

	name
	Name of the SQS queue to deletes

	region
	Name of the region to delete the queue from

	optsNone
	Any additional options to add to the command line

	userNone
	Run hg as a user other than what the minion runs as

CLI Example:

salt '*' aws_sqs.delete_queue <sqs queue> <region>

	
salt.modules.aws_sqs.list_queues(region, opts=None, user=None)

	List the queues in the selected region.

	region
	Region to list SQS queues for

	optsNone
	Any additional options to add to the command line

	userNone
	Run hg as a user other than what the minion runs as

CLI Example:

salt '*' aws_sqs.list_queues <region>

	
salt.modules.aws_sqs.queue_exists(name, region, opts=None, user=None)

	Returns True or False on whether the queue exists in the region

	name
	Name of the SQS queue to search for

	region
	Name of the region to search for the queue in

	optsNone
	Any additional options to add to the command line

	userNone
	Run hg as a user other than what the minion runs as

CLI Example:

salt '*' aws_sqs.queue_exists <sqs queue> <region>

	
salt.modules.aws_sqs.receive_message(queue, region, num=1, opts=None, user=None)

	Receive one or more messages from a queue in a region

	queue
	The name of the queue to receive messages from

	region
	Region where SQS queues exists

	num1
	The max number of messages to receive

	optsNone
	Any additional options to add to the command line

	userNone
	Run as a user other than what the minion runs as

CLI Example:

salt '*' aws_sqs.receive_message <sqs queue> <region>
salt '*' aws_sqs.receive_message <sqs queue> <region> num=10

New in version 2014.7.0.

salt.modules.bamboohr

Support for BambooHR

New in version 2015.8.0.

Requires a subdomain and an apikey in /etc/salt/minion:

bamboohr:
 apikey: 012345678901234567890
 subdomain: mycompany

	
salt.modules.bamboohr.list_employees(order_by='id')

	Show all employees for this company.

CLI Example:

salt myminion bamboohr.list_employees

By default, the return data will be keyed by ID. However, it can be ordered
by any other field. Keep in mind that if the field that is chosen contains
duplicate values (i.e., location is used, for a company which only has one
location), then each duplicate value will be overwritten by the previous.
Therefore, it is advisable to only sort by fields that are guaranteed to be
unique.

CLI Examples:

salt myminion bamboohr.list_employees order_by=id
salt myminion bamboohr.list_employees order_by=displayName
salt myminion bamboohr.list_employees order_by=workEmail

	
salt.modules.bamboohr.list_meta_fields()

	Show all meta data fields for this company.

CLI Example:

salt myminion bamboohr.list_meta_fields

	
salt.modules.bamboohr.list_users(order_by='id')

	Show all users for this company.

CLI Example:

salt myminion bamboohr.list_users

By default, the return data will be keyed by ID. However, it can be ordered
by any other field. Keep in mind that if the field that is chosen contains
duplicate values (i.e., location is used, for a company which only has one
location), then each duplicate value will be overwritten by the previous.
Therefore, it is advisable to only sort by fields that are guaranteed to be
unique.

CLI Examples:

salt myminion bamboohr.list_users order_by=id
salt myminion bamboohr.list_users order_by=email

	
salt.modules.bamboohr.show_employee(emp_id, fields=None)

	Show all employees for this company.

CLI Example:

salt myminion bamboohr.show_employee 1138

By default, the fields normally returned from bamboohr.list_employees are
returned. These fields are:

	canUploadPhoto

	department

	displayName

	firstName

	id

	jobTitle

	lastName

	location

	mobilePhone

	nickname

	photoUploaded

	photoUrl

	workEmail

	workPhone

	workPhoneExtension

If needed, a different set of fields may be specified, separated by commas:

CLI Example:

salt myminion bamboohr.show_employee 1138 displayName,dateOfBirth

A list of available fields can be found at
http://www.bamboohr.com/api/documentation/employees.php

	
salt.modules.bamboohr.update_employee(emp_id, key=None, value=None, items=None)

	Update one or more items for this employee. Specifying an empty value will
clear it for that employee.

CLI Examples:

salt myminion bamboohr.update_employee 1138 nickname Curly
salt myminion bamboohr.update_employee 1138 nickname ''
salt myminion bamboohr.update_employee 1138 items='{"nickname": "Curly"}
salt myminion bamboohr.update_employee 1138 items='{"nickname": ""}

salt.modules.baredoc

Baredoc walks the installed module and state directories and generates
dictionaries and lists of the function names and their arguments.

New in version 3001.

	
salt.modules.baredoc.list_modules(name=False, names_only=False)

	Walk the Salt install tree for execution modules and return a
dictionary or a list of their functions as well as their arguments.

	Parameters:

	
	name -- specify a specific module to list. If not specified, all modules will be listed.

	names_only -- Return only a list of the callable functions instead of a dictionary with arguments

CLI Example:

salt myminion baredoc.list_modules

myminion:

[...]
 at:
- atq:
 tag: null
- atrm:
 args: args
- at:
 args: args
 kwargs: kwargs
- atc:
 jobid: null
- jobcheck:
 kwargs: kwargs
[...]

	
salt.modules.baredoc.list_states(name=False, names_only=False)

	Walk the Salt install tree for state modules and return a
dictionary or a list of their functions as well as their arguments.

	Parameters:

	
	name -- specify a specific module to list. If not specified, all modules will be listed.

	names_only -- Return only a list of the callable functions instead of a dictionary with arguments

CLI Example:

(example truncated for brevity)

salt myminion baredoc.list_states

myminion:

[...]
 at:
 - present:
 name: null
 timespec: null
 tag: null
 user: null
 job: null
 unique_tag: false
 - absent:
 name: null
 jobid: null
 kwargs: kwargs
 - watch:
 name: null
 timespec: null
 tag: null
 user: null
 job: null
 unique_tag: false
 - mod_watch:
 name: null
 kwargs: kwargs
[...]

	
salt.modules.baredoc.module_docs(*names)

	Return the docstrings for all modules. Optionally, specify a module or a
function to narrow the selection.

	Parameters:

	name -- specify a specific module to list.

CLI Example:

salt myminion baredoc.module_docs

	
salt.modules.baredoc.state_docs(*names)

	Return the docstrings for all state modules. Optionally, specify a state module or a
function to narrow the selection.

	Parameters:

	name -- specify a specific module to list.

CLI Example:

salt myminion baredoc.state_docs at

salt.modules.bcache

Module for managing BCache sets

BCache is a block-level caching mechanism similar to ZFS L2ARC/ZIL, dm-cache and fscache.
It works by formatting one block device as a cache set, then adding backend devices
(which need to be formatted as such) to the set and activating them.

It's available in Linux mainline kernel since 3.10

https://www.kernel.org/doc/Documentation/bcache.txt

This module needs the bcache userspace tools to function.

New in version 2016.3.0.

	
salt.modules.bcache.attach_(dev=None)

	Attach a backing devices to a cache set
If no dev is given, all backing devices will be attached.

CLI Example:

salt '*' bcache.attach sdc
salt '*' bcache.attach /dev/bcache1

	Returns:

	bool or None if nuttin' happened

	
salt.modules.bcache.back_make(dev, cache_mode='writeback', force=False, attach=True, bucket_size=None)

	Create a backing device for attachment to a set.
Because the block size must be the same, a cache set already needs to exist.

CLI Example:

salt '*' bcache.back_make sdc cache_mode=writeback attach=True

	Parameters:

	
	cache_mode -- writethrough, writeback, writearound or none.

	force -- Overwrite existing bcaches

	attach -- Immediately attach the backing device to the set

	bucket_size -- Size of a bucket (see kernel doc)

	
salt.modules.bcache.cache_make(dev, reserved=None, force=False, block_size=None, bucket_size=None, attach=True)

	Create BCache cache on a block device.
If blkdiscard is available the entire device will be properly cleared in advance.

CLI Example:

salt '*' bcache.cache_make sdb reserved=10% block_size=4096

	Parameters:

	
	reserved -- if dev is a full device, create a partition table with this size empty.

Note

this increases the amount of reserved space available to SSD garbage collectors,
potentially (vastly) increasing performance

	block_size -- Block size of the cache; defaults to devices' logical block size

	force -- Overwrite existing BCache sets

	attach -- Attach all existing backend devices immediately

	
salt.modules.bcache.config_(dev=None, **kwargs)

	Show or update config of a bcache device.

If no device is given, operate on the cache set itself.

CLI Example:

salt '*' bcache.config
salt '*' bcache.config bcache1
salt '*' bcache.config errors=panic journal_delay_ms=150
salt '*' bcache.config bcache1 cache_mode=writeback writeback_percent=15

	Returns:

	config or True/False

	
salt.modules.bcache.detach(dev=None)

	Detach a backing device(s) from a cache set
If no dev is given, all backing devices will be attached.

Detaching a backing device will flush its write cache.
This should leave the underlying device in a consistent state, but might take a while.

CLI Example:

salt '*' bcache.detach sdc
salt '*' bcache.detach bcache1

	
salt.modules.bcache.device(dev, stats=False, config=False, internals=False, superblock=False)

	Check the state of a single bcache device

CLI Example:

salt '*' bcache.device bcache0
salt '*' bcache.device /dev/sdc stats=True

	Parameters:

	
	stats -- include statistics

	settings -- include all settings

	internals -- include all internals

	superblock -- include superblock info

	
salt.modules.bcache.start()

	Trigger a start of the full bcache system through udev.

CLI Example:

salt '*' bcache.start

	
salt.modules.bcache.status(stats=False, config=False, internals=False, superblock=False, alldevs=False)

	Show the full status of the BCache system and optionally all its involved devices

CLI Example:

salt '*' bcache.status
salt '*' bcache.status stats=True
salt '*' bcache.status internals=True alldevs=True

	Parameters:

	
	stats -- include statistics

	config -- include settings

	internals -- include internals

	superblock -- include superblock

	
salt.modules.bcache.stop(dev=None)

	Stop a bcache device
If no device is given, all backing devices will be detached from the cache, which will subsequently be stopped.

Warning

'Stop' on an individual backing device means hard-stop;
no attempt at flushing will be done and the bcache device will seemingly 'disappear' from the device lists

CLI Example:

salt '*' bcache.stop

	
salt.modules.bcache.super_(dev)

	Read out BCache SuperBlock

CLI Example:

salt '*' bcache.device bcache0
salt '*' bcache.device /dev/sdc

	
salt.modules.bcache.uuid(dev=None)

	Return the bcache UUID of a block device.
If no device is given, the Cache UUID is returned.

CLI Example:

salt '*' bcache.uuid
salt '*' bcache.uuid /dev/sda
salt '*' bcache.uuid bcache0

salt.modules.beacons

Module for managing the Salt beacons on a minion

New in version 2015.8.0.

	
salt.modules.beacons.add(name, beacon_data, **kwargs)

	Add a beacon on the minion

	Parameters:

	
	name -- Name of the beacon to configure

	beacon_data -- Dictionary or list containing configuration for beacon.

	Returns:

	Boolean and status message on success or failure of add.

CLI Example:

salt '*' beacons.add ps "[{'processes': {'salt-master': 'stopped', 'apache2': 'stopped'}}]"

	
salt.modules.beacons.delete(name, **kwargs)

	Delete a beacon item

	Parameters:

	name -- Name of the beacon to delete

	Returns:

	Boolean and status message on success or failure of delete.

CLI Example:

salt '*' beacons.delete ps

salt '*' beacons.delete load

	
salt.modules.beacons.disable(**kwargs)

	Disable all beacons jobs on the minion

	Returns:

	Boolean and status message on success or failure of disable.

CLI Example:

salt '*' beacons.disable

	
salt.modules.beacons.disable_beacon(name, **kwargs)

	Disable a beacon on the minion

	Name:

	Name of the beacon to disable.

	Returns:

	Boolean and status message on success or failure of disable.

CLI Example:

salt '*' beacons.disable_beacon ps

	
salt.modules.beacons.enable(**kwargs)

	Enable all beacons on the minion

	Returns:

	Boolean and status message on success or failure of enable.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' beacons.enable

	
salt.modules.beacons.enable_beacon(name, **kwargs)

	Enable beacon on the minion

	Name:

	Name of the beacon to enable.

	Returns:

	Boolean and status message on success or failure of enable.

CLI Example:

salt '*' beacons.enable_beacon ps

	
salt.modules.beacons.list_(return_yaml=True, include_pillar=True, include_opts=True, **kwargs)

	List the beacons currently configured on the minion

	Parameters:

	
	return_yaml -- Whether to return YAML formatted output,
default True

	include_pillar -- Whether to include beacons that are
configured in pillar, default is True.

	include_opts -- Whether to include beacons that are
configured in opts, default is True.

	Returns:

	List of currently configured Beacons.

CLI Example:

salt '*' beacons.list

	
salt.modules.beacons.list_available(return_yaml=True, **kwargs)

	List the beacons currently available on the minion

	Parameters:

	return_yaml -- Whether to return YAML formatted output, default
True

	Returns:

	List of currently configured Beacons.

CLI Example:

salt '*' beacons.list_available

	
salt.modules.beacons.modify(name, beacon_data, **kwargs)

	Modify an existing beacon

	Parameters:

	
	name -- Name of the beacon to configure

	beacon_data -- Dictionary or list containing updated configuration for beacon.

	Returns:

	Boolean and status message on success or failure of modify.

CLI Example:

salt '*' beacons.modify ps "[{'salt-master': 'stopped'}, {'apache2': 'stopped'}]"

	
salt.modules.beacons.reset(**kwargs)

	Reset beacon configuration on the minion

CLI Example:

salt '*' beacons.reset

	
salt.modules.beacons.save(**kwargs)

	Save all configured beacons to the minion config

	Returns:

	Boolean and status message on success or failure of save.

CLI Example:

salt '*' beacons.save

salt.modules.bigip

	An execution module which can manipulate an f5 bigip via iControl REST
	
	maturity:

	develop

	platform:

	f5_bigip_11.6

	
salt.modules.bigip.add_pool_member(hostname, username, password, name, member)

	A function to connect to a bigip device and add a new member to an existing pool.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	name
	The name of the pool to modify

	member
	The name of the member to add
i.e. 10.1.1.2:80

CLI Example:

salt '*' bigip.add_pool_members bigip admin admin my-pool 10.2.2.1:80

	
salt.modules.bigip.commit_transaction(hostname, username, password, label)

	A function to connect to a bigip device and commit an existing transaction.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	label
	the label of this transaction stored within the grain:
bigip_f5_trans:<label>

CLI Example:

salt '*' bigip.commit_transaction bigip admin admin my_transaction

	
salt.modules.bigip.create_monitor(hostname, username, password, monitor_type, name, **kwargs)

	A function to connect to a bigip device and create a monitor.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	monitor_type
	The type of monitor to create

	name
	The name of the monitor to create

	kwargs
	Consult F5 BIGIP user guide for specific options for each monitor type.
Typically, tmsh arg names are used.

CLI Example:

salt '*' bigip.create_monitor bigip admin admin http my-http-monitor timeout=10 interval=5

	
salt.modules.bigip.create_node(hostname, username, password, name, address, trans_label=None)

	A function to connect to a bigip device and create a node.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	name
	The name of the node

	address
	The address of the node

	trans_label
	The label of the transaction stored within the grain:
bigip_f5_trans:<label>

CLI Example:

salt '*' bigip.create_node bigip admin admin 10.1.1.2

	
salt.modules.bigip.create_pool(hostname, username, password, name, members=None, allow_nat=None, allow_snat=None, description=None, gateway_failsafe_device=None, ignore_persisted_weight=None, ip_tos_to_client=None, ip_tos_to_server=None, link_qos_to_client=None, link_qos_to_server=None, load_balancing_mode=None, min_active_members=None, min_up_members=None, min_up_members_action=None, min_up_members_checking=None, monitor=None, profiles=None, queue_depth_limit=None, queue_on_connection_limit=None, queue_time_limit=None, reselect_tries=None, service_down_action=None, slow_ramp_time=None)

	A function to connect to a bigip device and create a pool.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	name
	The name of the pool to create.

	members
	List of comma delimited pool members to add to the pool.
i.e. 10.1.1.1:80,10.1.1.2:80,10.1.1.3:80

	allow_nat
	[yes | no]

	allow_snat
	[yes | no]

	description
	[string]

	gateway_failsafe_device
	[string]

	ignore_persisted_weight
	[enabled | disabled]

	ip_tos_to_client
	[pass-through | [integer]]

	ip_tos_to_server
	[pass-through | [integer]]

	link_qos_to_client
	[pass-through | [integer]]

	link_qos_to_server
	[pass-through | [integer]]

	load_balancing_mode
	[dynamic-ratio-member | dynamic-ratio-node |
fastest-app-response | fastest-node |
least-connections-members |
least-connections-node |
least-sessions |
observed-member | observed-node |
predictive-member | predictive-node |
ratio-least-connections-member |
ratio-least-connections-node |
ratio-member | ratio-node | ratio-session |
round-robin | weighted-least-connections-member |
weighted-least-connections-node]

	min_active_members
	[integer]

	min_up_members
	[integer]

	min_up_members_action
	[failover | reboot | restart-all]

	min_up_members_checking
	[enabled | disabled]

	monitor
	[name]

	profiles
	[none | profile_name]

	queue_depth_limit
	[integer]

	queue_on_connection_limit
	[enabled | disabled]

	queue_time_limit
	[integer]

	reselect_tries
	[integer]

	service_down_action
	[drop | none | reselect | reset]

	slow_ramp_time
	[integer]

CLI Example:

salt '*' bigip.create_pool bigip admin admin my-pool 10.1.1.1:80,10.1.1.2:80,10.1.1.3:80 monitor=http

	
salt.modules.bigip.create_profile(hostname, username, password, profile_type, name, **kwargs)

	A function to connect to a bigip device and create a profile.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	profile_type
	The type of profile to create

	name
	The name of the profile to create

	kwargs
	[arg=val] ... [arg=key1:val1,key2:val2] ...

Consult F5 BIGIP user guide for specific options for each monitor type.
Typically, tmsh arg names are used.

	Creating Complex Args
	Profiles can get pretty complicated in terms of the amount of possible
config options. Use the following shorthand to create complex arguments such
as lists, dictionaries, and lists of dictionaries. An option is also
provided to pass raw json as well.

	lists [i,i,i]:
	param='item1,item2,item3'

	Dictionary [k:v,k:v,k,v]:
	param='key-1:val-1,key-2:val2,key-3:va-3'

	List of Dictionaries [k:v,k:v|k:v,k:v|k:v,k:v]:
	param='key-1:val-1,key-2:val-2|key-1:val-1,key-2:val-2|key-1:val-1,key-2:val-2'

	JSON: 'j{ ... }j':
	cert-key-chain='j{ "default": { "cert": "default.crt", "chain": "default.crt", "key": "default.key" } }j'

	Escaping Delimiters:
	Use \, or \: or \| to escape characters which shouldn't
be treated as delimiters i.e. ciphers='DEFAULT\:!SSLv3'

CLI Example:

salt '*' bigip.create_profile bigip admin admin http my-http-profile defaultsFrom='/Common/http'
salt '*' bigip.create_profile bigip admin admin http my-http-profile defaultsFrom='/Common/http' \
 enforcement=maxHeaderCount:3200,maxRequests:10

	
salt.modules.bigip.create_virtual(hostname, username, password, name, destination, pool=None, address_status=None, auto_lasthop=None, bwc_policy=None, cmp_enabled=None, connection_limit=None, dhcp_relay=None, description=None, fallback_persistence=None, flow_eviction_policy=None, gtm_score=None, ip_forward=None, ip_protocol=None, internal=None, twelve_forward=None, last_hop_pool=None, mask=None, mirror=None, nat64=None, persist=None, profiles=None, policies=None, rate_class=None, rate_limit=None, rate_limit_mode=None, rate_limit_dst=None, rate_limit_src=None, rules=None, related_rules=None, reject=None, source=None, source_address_translation=None, source_port=None, state=None, traffic_classes=None, translate_address=None, translate_port=None, vlans=None)

	A function to connect to a bigip device and create a virtual server.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	name
	The name of the virtual to create

	destination
	[[virtual_address_name:port] | [ipv4:port] | [ipv6.port]]

	pool
	[[pool_name] | none]

	address_status
	[yes | no]

	auto_lasthop
	[default | enabled | disabled]

	bwc_policy
	[none] | string]

	cmp_enabled
	[yes | no]

	dhcp_relay
	[yes | no]

	connection_limit
	[integer]

	description
	[string]

	state
	[disabled | enabled]

	fallback_persistence
	[none | [profile name]]

	flow_eviction_policy
	[none | [eviction policy name]]

	gtm_score
	[integer]

	ip_forward
	[yes | no]

	ip_protocol
	[any | protocol]

	internal
	[yes | no]

	twelve_forward
	(12-forward)
[yes | no]

	last_hop-pool
	[[pool_name] | none]

	mask
	{ [ipv4] | [ipv6] }

	mirror
	{ [disabled | enabled | none] }

	nat64
	[enabled | disabled]

	persist
	[none | profile1,profile2,profile3 ...]

	profiles
	[none | default | profile1,profile2,profile3 ...]

	policies
	[none | default | policy1,policy2,policy3 ...]

	rate_class
	[name]

	rate_limit
	[integer]

	rate_limit_mode
	[destination | object | object-destination |
object-source | object-source-destination |
source | source-destination]

	rate_limit_dst
	[integer]

	rate_limitçsrc
	[integer]

	rules
	[none | [rule_one,rule_two ...]]

	related_rules
	[none | [rule_one,rule_two ...]]

	reject
	[yes | no]

	source
	{ [ipv4[/prefixlen]] | [ipv6[/prefixlen]] }

	source_address_translation
	[none | snat:pool_name | lsn | automap]

	source_port
	[change | preserve | preserve-strict]

	state
	[enabled | disabled]

	traffic_classes
	[none | default | class_one,class_two ...]

	translate_address
	[enabled | disabled]

	translate_port
	[enabled | disabled]

	vlans
	[none | default | [enabled|disabled]:vlan1,vlan2,vlan3 ...]

CLI Example:

salt '*' bigip.create_virtual bigip admin admin my-virtual-3 26.2.2.5:80 \
 pool=my-http-pool-http profiles=http,tcp

salt '*' bigip.create_virtual bigip admin admin my-virtual-3 43.2.2.5:80 \
 pool=test-http-pool-http profiles=http,websecurity persist=cookie,hash \
 policies=asm_auto_l7_policy__http-virtual \
 rules=_sys_APM_ExchangeSupport_helper,_sys_https_redirect \
 related_rules=_sys_APM_activesync,_sys_APM_ExchangeSupport_helper \
 source_address_translation=snat:my-snat-pool \
 translate_address=enabled translate_port=enabled \
 traffic_classes=my-class,other-class \
 vlans=enabled:external,internal

	
salt.modules.bigip.delete_monitor(hostname, username, password, monitor_type, name)

	A function to connect to a bigip device and delete an existing monitor.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	monitor_type
	The type of monitor to delete

	name
	The name of the monitor to delete

CLI Example:

salt '*' bigip.delete_monitor bigip admin admin http my-http-monitor

	
salt.modules.bigip.delete_node(hostname, username, password, name, trans_label=None)

	A function to connect to a bigip device and delete a specific node.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	name
	The name of the node which will be deleted.

	trans_label
	The label of the transaction stored within the grain:
bigip_f5_trans:<label>

CLI Example:

salt '*' bigip.delete_node bigip admin admin my-node

	
salt.modules.bigip.delete_pool(hostname, username, password, name)

	A function to connect to a bigip device and delete a specific pool.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	name
	The name of the pool which will be deleted

CLI Example

salt '*' bigip.delete_node bigip admin admin my-pool

	
salt.modules.bigip.delete_pool_member(hostname, username, password, name, member)

	A function to connect to a bigip device and delete a specific pool.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	name
	The name of the pool to modify

	member
	The name of the pool member to delete

CLI Example:

salt '*' bigip.delete_pool_member bigip admin admin my-pool 10.2.2.2:80

	
salt.modules.bigip.delete_profile(hostname, username, password, profile_type, name)

	A function to connect to a bigip device and delete an existing profile.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	profile_type
	The type of profile to delete

	name
	The name of the profile to delete

CLI Example:

salt '*' bigip.delete_profile bigip admin admin http my-http-profile

	
salt.modules.bigip.delete_transaction(hostname, username, password, label)

	A function to connect to a bigip device and delete an existing transaction.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	label
	The label of this transaction stored within the grain:
bigip_f5_trans:<label>

CLI Example:

salt '*' bigip.delete_transaction bigip admin admin my_transaction

	
salt.modules.bigip.delete_virtual(hostname, username, password, name)

	A function to connect to a bigip device and delete a specific virtual.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	name
	The name of the virtual to delete

CLI Example:

salt '*' bigip.delete_virtual bigip admin admin my-virtual

	
salt.modules.bigip.list_monitor(hostname, username, password, monitor_type, name=None)

	A function to connect to a bigip device and list an existing monitor. If no name is provided than all
monitors of the specified type will be listed.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	monitor_type
	The type of monitor(s) to list

	name
	The name of the monitor to list

CLI Example:

salt '*' bigip.list_monitor bigip admin admin http my-http-monitor

	
salt.modules.bigip.list_node(hostname, username, password, name=None, trans_label=None)

	A function to connect to a bigip device and list all nodes or a specific node.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	name
	The name of the node to list. If no name is specified than all nodes
will be listed.

	trans_label
	The label of the transaction stored within the grain:
bigip_f5_trans:<label>

CLI Example:

salt '*' bigip.list_node bigip admin admin my-node

	
salt.modules.bigip.list_pool(hostname, username, password, name=None)

	A function to connect to a bigip device and list all pools or a specific pool.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	name
	The name of the pool to list. If no name is specified then all pools
will be listed.

CLI Example:

salt '*' bigip.list_pool bigip admin admin my-pool

	
salt.modules.bigip.list_profile(hostname, username, password, profile_type, name=None)

	A function to connect to a bigip device and list an existing profile. If no name is provided than all
profiles of the specified type will be listed.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	profile_type
	The type of profile(s) to list

	name
	The name of the profile to list

CLI Example:

salt '*' bigip.list_profile bigip admin admin http my-http-profile

	
salt.modules.bigip.list_transaction(hostname, username, password, label)

	A function to connect to a bigip device and list an existing transaction.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	label
	the label of this transaction stored within the grain:
bigip_f5_trans:<label>

CLI Example:

salt '*' bigip.list_transaction bigip admin admin my_transaction

	
salt.modules.bigip.list_virtual(hostname, username, password, name=None)

	A function to connect to a bigip device and list all virtuals or a specific virtual.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	name
	The name of the virtual to list. If no name is specified than all
virtuals will be listed.

CLI Example:

salt '*' bigip.list_virtual bigip admin admin my-virtual

	
salt.modules.bigip.modify_monitor(hostname, username, password, monitor_type, name, **kwargs)

	A function to connect to a bigip device and modify an existing monitor.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	monitor_type
	The type of monitor to modify

	name
	The name of the monitor to modify

	kwargs
	Consult F5 BIGIP user guide for specific options for each monitor type.
Typically, tmsh arg names are used.

CLI Example:

salt '*' bigip.modify_monitor bigip admin admin http my-http-monitor timout=16 interval=6

	
salt.modules.bigip.modify_node(hostname, username, password, name, connection_limit=None, description=None, dynamic_ratio=None, logging=None, monitor=None, rate_limit=None, ratio=None, session=None, state=None, trans_label=None)

	A function to connect to a bigip device and modify an existing node.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	name
	The name of the node to modify

	connection_limit
	[integer]

	description
	[string]

	dynamic_ratio
	[integer]

	logging
	[enabled | disabled]

	monitor
	[[name] | none | default]

	rate_limit
	[integer]

	ratio
	[integer]

	session
	[user-enabled | user-disabled]

	state
	[user-down | user-up]

	trans_label
	The label of the transaction stored within the grain:
bigip_f5_trans:<label>

CLI Example:

salt '*' bigip.modify_node bigip admin admin 10.1.1.2 ratio=2 logging=enabled

	
salt.modules.bigip.modify_pool(hostname, username, password, name, allow_nat=None, allow_snat=None, description=None, gateway_failsafe_device=None, ignore_persisted_weight=None, ip_tos_to_client=None, ip_tos_to_server=None, link_qos_to_client=None, link_qos_to_server=None, load_balancing_mode=None, min_active_members=None, min_up_members=None, min_up_members_action=None, min_up_members_checking=None, monitor=None, profiles=None, queue_depth_limit=None, queue_on_connection_limit=None, queue_time_limit=None, reselect_tries=None, service_down_action=None, slow_ramp_time=None)

	A function to connect to a bigip device and modify an existing pool.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	name
	The name of the pool to modify.

	allow_nat
	[yes | no]

	allow_snat
	[yes | no]

	description
	[string]

	gateway_failsafe_device
	[string]

	ignore_persisted_weight
	[yes | no]

	ip_tos_to_client
	[pass-through | [integer]]

	ip_tos_to_server
	[pass-through | [integer]]

	link_qos_to_client
	[pass-through | [integer]]

	link_qos_to_server
	[pass-through | [integer]]

	load_balancing_mode
	[dynamic-ratio-member | dynamic-ratio-node |
fastest-app-response | fastest-node |
least-connections-members |
least-connections-node |
least-sessions |
observed-member | observed-node |
predictive-member | predictive-node |
ratio-least-connections-member |
ratio-least-connections-node |
ratio-member | ratio-node | ratio-session |
round-robin | weighted-least-connections-member |
weighted-least-connections-node]

	min_active_members
	[integer]

	min_up_members
	[integer]

	min_up_members_action
	[failover | reboot | restart-all]

	min_up_members_checking
	[enabled | disabled]

	monitor
	[name]

	profiles
	[none | profile_name]

	queue_on_connection_limit
	[enabled | disabled]

	queue_depth_limit
	[integer]

	queue_time_limit
	[integer]

	reselect_tries
	[integer]

	service_down_action
	[drop | none | reselect | reset]

	slow_ramp_time
	[integer]

CLI Example:

salt '*' bigip.modify_pool bigip admin admin my-pool 10.1.1.1:80,10.1.1.2:80,10.1.1.3:80 min_active_members=1

	
salt.modules.bigip.modify_pool_member(hostname, username, password, name, member, connection_limit=None, description=None, dynamic_ratio=None, inherit_profile=None, logging=None, monitor=None, priority_group=None, profiles=None, rate_limit=None, ratio=None, session=None, state=None)

	A function to connect to a bigip device and modify an existing member of a pool.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	name
	The name of the pool to modify

	member
	The name of the member to modify i.e. 10.1.1.2:80

	connection_limit
	[integer]

	description
	[string]

	dynamic_ratio
	[integer]

	inherit_profile
	[enabled | disabled]

	logging
	[enabled | disabled]

	monitor
	[name]

	priority_group
	[integer]

	profiles
	[none | profile_name]

	rate_limit
	[integer]

	ratio
	[integer]

	session
	[user-enabled | user-disabled]

	state
	[user-up | user-down]

CLI Example:

salt '*' bigip.modify_pool_member bigip admin admin my-pool 10.2.2.1:80 state=use-down session=user-disabled

	
salt.modules.bigip.modify_profile(hostname, username, password, profile_type, name, **kwargs)

	A function to connect to a bigip device and create a profile.

A function to connect to a bigip device and create a profile.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	profile_type
	The type of profile to create

	name
	The name of the profile to create

	kwargs
	[arg=val] ... [arg=key1:val1,key2:val2] ...

Consult F5 BIGIP user guide for specific options for each monitor type.
Typically, tmsh arg names are used.

Creating Complex Args

Profiles can get pretty complicated in terms of the amount of possible
config options. Use the following shorthand to create complex arguments such
as lists, dictionaries, and lists of dictionaries. An option is also
provided to pass raw json as well.

	lists [i,i,i]:
	param='item1,item2,item3'

	Dictionary [k:v,k:v,k,v]:
	param='key-1:val-1,key-2:val2,key-3:va-3'

	List of Dictionaries [k:v,k:v|k:v,k:v|k:v,k:v]:
	param='key-1:val-1,key-2:val-2|key-1:val-1,key-2:val-2|key-1:val-1,key-2:val-2'

	JSON: 'j{ ... }j':
	cert-key-chain='j{ "default": { "cert": "default.crt", "chain": "default.crt", "key": "default.key" } }j'

	Escaping Delimiters:
	Use \, or \: or \| to escape characters which shouldn't
be treated as delimiters i.e. ciphers='DEFAULT\:!SSLv3'

CLI Example:

salt '*' bigip.modify_profile bigip admin admin http my-http-profile defaultsFrom='/Common/http'

salt '*' bigip.modify_profile bigip admin admin http my-http-profile defaultsFrom='/Common/http' \
 enforcement=maxHeaderCount:3200,maxRequests:10

salt '*' bigip.modify_profile bigip admin admin client-ssl my-client-ssl-1 retainCertificate=false \
 ciphers='DEFAULT\:!SSLv3'
 cert_key_chain='j{ "default": { "cert": "default.crt", "chain": "default.crt", "key": "default.key" } }j'

	
salt.modules.bigip.modify_virtual(hostname, username, password, name, destination=None, pool=None, address_status=None, auto_lasthop=None, bwc_policy=None, cmp_enabled=None, connection_limit=None, dhcp_relay=None, description=None, fallback_persistence=None, flow_eviction_policy=None, gtm_score=None, ip_forward=None, ip_protocol=None, internal=None, twelve_forward=None, last_hop_pool=None, mask=None, mirror=None, nat64=None, persist=None, profiles=None, policies=None, rate_class=None, rate_limit=None, rate_limit_mode=None, rate_limit_dst=None, rate_limit_src=None, rules=None, related_rules=None, reject=None, source=None, source_address_translation=None, source_port=None, state=None, traffic_classes=None, translate_address=None, translate_port=None, vlans=None)

	A function to connect to a bigip device and modify an existing virtual server.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	name
	The name of the virtual to modify

	destination
	[[virtual_address_name:port] | [ipv4:port] | [ipv6.port]]

	pool
	[[pool_name] | none]

	address_status
	[yes | no]

	auto_lasthop
	[default | enabled | disabled]

	bwc_policy
	[none] | string]

	cmp_enabled
	[yes | no]

	dhcp_relay
	[yes | no}

	connection_limit
	[integer]

	description
	[string]

	state
	[disabled | enabled]

	fallback_persistence
	[none | [profile name]]

	flow_eviction_policy
	[none | [eviction policy name]]

	gtm_score
	[integer]

	ip_forward
	[yes | no]

	ip_protocol
	[any | protocol]

	internal
	[yes | no]

	twelve_forward
	(12-forward)
[yes | no]

	last_hop-pool
	[[pool_name] | none]

	mask
	{ [ipv4] | [ipv6] }

	mirror
	{ [disabled | enabled | none] }

	nat64
	[enabled | disabled]

	persist
	[none | profile1,profile2,profile3 ...]

	profiles
	[none | default | profile1,profile2,profile3 ...]

	policies
	[none | default | policy1,policy2,policy3 ...]

	rate_class
	[name]

	rate_limit
	[integer]

	rate_limitr_mode
	[destination | object | object-destination |
object-source | object-source-destination |
source | source-destination]

	rate_limit_dst
	[integer]

	rate_limit_src
	[integer]

	rules
	[none | [rule_one,rule_two ...]]

	related_rules
	[none | [rule_one,rule_two ...]]

	reject
	[yes | no]

	source
	{ [ipv4[/prefixlen]] | [ipv6[/prefixlen]] }

	source_address_translation
	[none | snat:pool_name | lsn | automap]

	source_port
	[change | preserve | preserve-strict]

	state
	[enabled | disable]

	traffic_classes
	[none | default | class_one,class_two ...]

	translate_address
	[enabled | disabled]

	translate_port
	[enabled | disabled]

	vlans
	[none | default | [enabled|disabled]:vlan1,vlan2,vlan3 ...]

CLI Example:

salt '*' bigip.modify_virtual bigip admin admin my-virtual source_address_translation=none
salt '*' bigip.modify_virtual bigip admin admin my-virtual rules=my-rule,my-other-rule

	
salt.modules.bigip.replace_pool_members(hostname, username, password, name, members)

	A function to connect to a bigip device and replace members of an existing pool with new members.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	name
	The name of the pool to modify

	members
	List of comma delimited pool members to replace existing members with.
i.e. 10.1.1.1:80,10.1.1.2:80,10.1.1.3:80

CLI Example:

salt '*' bigip.replace_pool_members bigip admin admin my-pool 10.2.2.1:80,10.2.2.2:80,10.2.2.3:80

	
salt.modules.bigip.start_transaction(hostname, username, password, label)

	A function to connect to a bigip device and start a new transaction.

	hostname
	The host/address of the bigip device

	username
	The iControl REST username

	password
	The iControl REST password

	label
	The name / alias for this transaction. The actual transaction
id will be stored within a grain called bigip_f5_trans:<label>

CLI Example:

salt '*' bigip.start_transaction bigip admin admin my_transaction

salt.modules.bluez_bluetooth

Support for Bluetooth (using BlueZ in Linux).

The following packages are required packages for this module:

bluez >= 5.7
bluez-libs >= 5.7
bluez-utils >= 5.7
pybluez >= 0.18

	
salt.modules.bluez_bluetooth.address_()

	Get the many addresses of the Bluetooth adapter

CLI Example:

salt '*' bluetooth.address

	
salt.modules.bluez_bluetooth.block(bdaddr)

	Block a specific bluetooth device by BD Address

CLI Example:

salt '*' bluetooth.block DE:AD:BE:EF:CA:FE

	
salt.modules.bluez_bluetooth.discoverable(dev)

	Enable this bluetooth device to be discoverable.

CLI Example:

salt '*' bluetooth.discoverable hci0

	
salt.modules.bluez_bluetooth.noscan(dev)

	Turn off scanning modes on this device.

CLI Example:

salt '*' bluetooth.noscan hci0

	
salt.modules.bluez_bluetooth.pair(address, key)

	Pair the bluetooth adapter with a device

CLI Example:

salt '*' bluetooth.pair DE:AD:BE:EF:CA:FE 1234

Where DE:AD:BE:EF:CA:FE is the address of the device to pair with, and 1234
is the passphrase.

TODO: This function is currently broken, as the bluez-simple-agent program
no longer ships with BlueZ >= 5.0. It needs to be refactored.

	
salt.modules.bluez_bluetooth.power(dev, mode)

	Power a bluetooth device on or off

CLI Examples:

salt '*' bluetooth.power hci0 on
salt '*' bluetooth.power hci0 off

	
salt.modules.bluez_bluetooth.scan()

	Scan for bluetooth devices in the area

CLI Example:

salt '*' bluetooth.scan

	
salt.modules.bluez_bluetooth.start()

	Start the bluetooth service.

CLI Example:

salt '*' bluetooth.start

	
salt.modules.bluez_bluetooth.stop()

	Stop the bluetooth service.

CLI Example:

salt '*' bluetooth.stop

	
salt.modules.bluez_bluetooth.unblock(bdaddr)

	Unblock a specific bluetooth device by BD Address

CLI Example:

salt '*' bluetooth.unblock DE:AD:BE:EF:CA:FE

	
salt.modules.bluez_bluetooth.unpair(address)

	Unpair the bluetooth adapter from a device

CLI Example:

salt '*' bluetooth.unpair DE:AD:BE:EF:CA:FE

Where DE:AD:BE:EF:CA:FE is the address of the device to unpair.

TODO: This function is currently broken, as the bluez-simple-agent program
no longer ships with BlueZ >= 5.0. It needs to be refactored.

	
salt.modules.bluez_bluetooth.version()

	Return Bluez version from bluetoothd -v

CLI Example:

salt '*' bluetoothd.version

salt.modules.boto3_elasticache

Execution module for Amazon Elasticache using boto3

New in version 2017.7.0.

	configuration:

	This module accepts explicit elasticache credentials but can
also utilize IAM roles assigned to the instance through Instance Profiles.
Dynamic credentials are then automatically obtained from AWS API and no
further configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

elasticache.keyid: GKTADJGHEIQSXMKKRBJ08H
elasticache.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

elasticache.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

	depends:

	boto3

	
salt.modules.boto3_elasticache.add_tags_to_resource(name, region=None, key=None, keyid=None, profile=None, **args)

	Add tags to an Elasticache resource.

Note that this function is essentially useless as it requires a full AWS ARN for the
resource being operated on, but there is no provided API or programmatic way to find
the ARN for a given object from its name or ID alone. It requires specific knowledge
about the account number, AWS partition, and other magic details to generate.

If you happen to have those at hand though, feel free to utilize this function...

Example:

salt myminion boto3_elasticache.add_tags_to_resource name'=arn:aws:elasticache:us-west-2:0123456789:snapshot:mySnapshot' Tags="[{'Key': 'TeamOwner', 'Value': 'infrastructure'}]"

	
salt.modules.boto3_elasticache.authorize_cache_security_group_ingress(name, region=None, key=None, keyid=None, profile=None, **args)

	Authorize network ingress from an ec2 security group to a cache security group.

Example:

salt myminion boto3_elasticache.authorize_cache_security_group_ingress mycachesecgrp EC2SecurityGroupName=someEC2sg EC2SecurityGroupOwnerId=SOMEOWNERID

	
salt.modules.boto3_elasticache.cache_cluster_exists(name, conn=None, region=None, key=None, keyid=None, profile=None)

	Check to see if a cache cluster exists.

Example:

salt myminion boto3_elasticache.cache_cluster_exists myelasticache

	
salt.modules.boto3_elasticache.cache_security_group_exists(name, region=None, key=None, keyid=None, profile=None)

	Check to see if an ElastiCache security group exists.

Example:

salt myminion boto3_elasticache.cache_security_group_exists mysecuritygroup

	
salt.modules.boto3_elasticache.cache_subnet_group_exists(name, region=None, key=None, keyid=None, profile=None)

	Check to see if an ElastiCache subnet group exists.

Example:

salt myminion boto3_elasticache.cache_subnet_group_exists my-subnet-group

	
salt.modules.boto3_elasticache.copy_snapshot(name, region=None, key=None, keyid=None, profile=None, **args)

	Make a copy of an existing snapshot.

Example:

salt myminion boto3_elasticache.copy_snapshot name=mySnapshot TargetSnapshotName=copyOfMySnapshot

	
salt.modules.boto3_elasticache.create_cache_cluster(name, wait=600, security_groups=None, region=None, key=None, keyid=None, profile=None, **args)

	Create a cache cluster.

Example:

salt myminion boto3_elasticache.create_cache_cluster name=myCacheCluster Engine=redis CacheNodeType=cache.t2.micro NumCacheNodes=1 SecurityGroupIds='[sg-11223344]' CacheSubnetGroupName=myCacheSubnetGroup

	
salt.modules.boto3_elasticache.create_cache_parameter_group(name, region=None, key=None, keyid=None, profile=None, **args)

	Create a cache parameter group.

Example:

salt myminion boto3_elasticache.create_cache_parameter_group name=myParamGroup CacheParameterGroupFamily=redis2.8 Description="My Parameter Group"

	
salt.modules.boto3_elasticache.create_cache_security_group(name, region=None, key=None, keyid=None, profile=None, **args)

	Create a cache security group.

Example:

salt myminion boto3_elasticache.create_cache_security_group mycachesecgrp Description='My Cache Security Group'

	
salt.modules.boto3_elasticache.create_cache_subnet_group(name, subnets=None, region=None, key=None, keyid=None, profile=None, **args)

	Create an ElastiCache subnet group

Example:

salt myminion boto3_elasticache.create_cache_subnet_group name=my-subnet-group CacheSubnetGroupDescription="description" subnets='[myVPCSubnet1,myVPCSubnet2]'

	
salt.modules.boto3_elasticache.create_replication_group(name, wait=600, security_groups=None, region=None, key=None, keyid=None, profile=None, **args)

	Create a replication group.
Params are extensive and variable - see
http://boto3.readthedocs.io/en/latest/reference/services/elasticache.html?#ElastiCache.Client.create_replication_group
for in-depth usage documentation.

Example:

salt myminion boto3_elasticache.create_replication_group name=myelasticache ReplicationGroupDescription=description

	
salt.modules.boto3_elasticache.delete_cache_cluster(name, wait=600, region=None, key=None, keyid=None, profile=None, **args)

	Delete a cache cluster.

Example:

salt myminion boto3_elasticache.delete myelasticache

	
salt.modules.boto3_elasticache.delete_cache_parameter_group(name, region=None, key=None, keyid=None, profile=None, **args)

	Delete a cache parameter group.

Example:

salt myminion boto3_elasticache.delete_cache_parameter_group myParamGroup

	
salt.modules.boto3_elasticache.delete_cache_security_group(name, region=None, key=None, keyid=None, profile=None, **args)

	Delete a cache security group.

Example:

salt myminion boto3_elasticache.delete_cache_security_group myelasticachesg

	
salt.modules.boto3_elasticache.delete_cache_subnet_group(name, region=None, key=None, keyid=None, profile=None, **args)

	Delete an ElastiCache subnet group.

Example:

salt myminion boto3_elasticache.delete_subnet_group my-subnet-group region=us-east-1

	
salt.modules.boto3_elasticache.delete_replication_group(name, wait=600, region=None, key=None, keyid=None, profile=None, **args)

	Delete an ElastiCache replication group, optionally taking a snapshot first.

Example:

salt myminion boto3_elasticache.delete_replication_group my-replication-group

	
salt.modules.boto3_elasticache.describe_cache_clusters(name=None, conn=None, region=None, key=None, keyid=None, profile=None, **args)

	Return details about all (or just one) Elasticache cache clusters.

Example:

salt myminion boto3_elasticache.describe_cache_clusters
salt myminion boto3_elasticache.describe_cache_clusters myelasticache

	
salt.modules.boto3_elasticache.describe_cache_parameter_groups(name=None, conn=None, region=None, key=None, keyid=None, profile=None)

	Return details about all (or just one) Elasticache cache clusters.

Example:

salt myminion boto3_elasticache.describe_cache_parameter_groups
salt myminion boto3_elasticache.describe_cache_parameter_groups myParameterGroup

	
salt.modules.boto3_elasticache.describe_cache_security_groups(name=None, conn=None, region=None, key=None, keyid=None, profile=None)

	Return details about all (or just one) Elasticache cache clusters.

Example:

salt myminion boto3_elasticache.describe_cache_security_groups
salt myminion boto3_elasticache.describe_cache_security_groups mycachesecgrp

	
salt.modules.boto3_elasticache.describe_cache_subnet_groups(name=None, conn=None, region=None, key=None, keyid=None, profile=None)

	Return details about all (or just one) Elasticache replication groups.

Example:

salt myminion boto3_elasticache.describe_cache_subnet_groups region=us-east-1

	
salt.modules.boto3_elasticache.describe_replication_groups(name=None, conn=None, region=None, key=None, keyid=None, profile=None)

	Return details about all (or just one) Elasticache replication groups.

Example:

salt myminion boto3_elasticache.describe_replication_groups
salt myminion boto3_elasticache.describe_replication_groups myelasticache

	
salt.modules.boto3_elasticache.list_cache_subnet_groups(region=None, key=None, keyid=None, profile=None)

	Return a list of all cache subnet group names

Example:

salt myminion boto3_elasticache.list_cache_subnet_groups region=us-east-1

	
salt.modules.boto3_elasticache.list_tags_for_resource(name, region=None, key=None, keyid=None, profile=None, **args)

	List tags on an Elasticache resource.

Note that this function is essentially useless as it requires a full AWS ARN for the
resource being operated on, but there is no provided API or programmatic way to find
the ARN for a given object from its name or ID alone. It requires specific knowledge
about the account number, AWS partition, and other magic details to generate.

If you happen to have those handy, feel free to utilize this however...

Example:

salt myminion boto3_elasticache.list_tags_for_resource name'=arn:aws:elasticache:us-west-2:0123456789:snapshot:mySnapshot'

	
salt.modules.boto3_elasticache.modify_cache_cluster(name, wait=600, security_groups=None, region=None, key=None, keyid=None, profile=None, **args)

	Update a cache cluster in place.

	Notes: {ApplyImmediately: False} is pretty danged silly in the context of salt.
	You can pass it, but for fairly obvious reasons the results over multiple
runs will be undefined and probably contrary to your desired state.
Reducing the number of nodes requires an EXPLICIT CacheNodeIdsToRemove be
passed, which until a reasonable heuristic for programmatically deciding
which nodes to remove has been established, MUST be decided and populated
intentionally before a state call, and removed again before the next. In
practice this is not particularly useful and should probably be avoided.

Example:

salt myminion boto3_elasticache.create_cache_cluster name=myCacheCluster NotificationTopicStatus=inactive

	
salt.modules.boto3_elasticache.modify_cache_subnet_group(name, subnets=None, region=None, key=None, keyid=None, profile=None, **args)

	Modify an ElastiCache subnet group

Example:

salt myminion boto3_elasticache.modify_cache_subnet_group name=my-subnet-group subnets='[myVPCSubnet3]'

	
salt.modules.boto3_elasticache.modify_replication_group(name, wait=600, security_groups=None, region=None, key=None, keyid=None, profile=None, **args)

	Modify a replication group.

Example:

salt myminion boto3_elasticache.modify_replication_group name=myelasticache ReplicationGroupDescription=newDescription

	
salt.modules.boto3_elasticache.remove_tags_from_resource(name, region=None, key=None, keyid=None, profile=None, **args)

	Remove tags from an Elasticache resource.

Note that this function is essentially useless as it requires a full AWS ARN for the
resource being operated on, but there is no provided API or programmatic way to find
the ARN for a given object from its name or ID alone. It requires specific knowledge
about the account number, AWS partition, and other magic details to generate.

If you happen to have those at hand though, feel free to utilize this function...

Example:

salt myminion boto3_elasticache.remove_tags_from_resource name'=arn:aws:elasticache:us-west-2:0123456789:snapshot:mySnapshot' TagKeys="['TeamOwner']"

	
salt.modules.boto3_elasticache.replication_group_exists(name, region=None, key=None, keyid=None, profile=None)

	Check to see if a replication group exists.

Example:

salt myminion boto3_elasticache.replication_group_exists myelasticache

	
salt.modules.boto3_elasticache.revoke_cache_security_group_ingress(name, region=None, key=None, keyid=None, profile=None, **args)

	Revoke network ingress from an ec2 security group to a cache security
group.

Example:

salt myminion boto3_elasticache.revoke_cache_security_group_ingress mycachesecgrp EC2SecurityGroupName=someEC2sg EC2SecurityGroupOwnerId=SOMEOWNERID

salt.modules.boto3_elasticsearch

Connection module for Amazon Elasticsearch Service

New in version 3001.

	configuration:

	This module accepts explicit IAM credentials but can also
utilize IAM roles assigned to the instance trough Instance Profiles.
Dynamic credentials are then automatically obtained from AWS API and no
further configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

es.keyid: GKTADJGHEIQSXMKKRBJ08H
es.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

es.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

	All methods return a dict with:
	'result' key containing a boolean indicating success or failure,
'error' key containing the errormessage returned by boto on error,
'response' key containing the data of the response returned by boto on success.

	codeauthor:

	Herbert Buurman <herbert.buurman@ogd.nl>

	depends:

	boto3

	
salt.modules.boto3_elasticsearch.add_tags(domain_name=None, arn=None, tags=None, region=None, key=None, keyid=None, profile=None)

	Attaches tags to an existing Elasticsearch domain.
Tags are a set of case-sensitive key value pairs.
An Elasticsearch domain may have up to 10 tags.

	Parameters:

	
	domain_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the Elasticsearch domain you want to add tags to.

	arn (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The ARN of the Elasticsearch domain you want to add tags to.
Specifying this overrides domain_name.

	tags (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- The dict of tags to add to the Elasticsearch domain.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	Dictionary with key 'result' and as value a boolean denoting success or failure.
Upon failure, also contains a key 'error' with the error message as value.

New in version 3001.

CLI Example:

salt myminion boto3_elasticsearch.add_tags domain_name=mydomain tags='{"foo": "bar", "baz": "qux"}'

	
salt.modules.boto3_elasticsearch.cancel_elasticsearch_service_software_update(domain_name, region=None, keyid=None, key=None, profile=None)

	Cancels a scheduled service software update for an Amazon ES domain. You can
only perform this operation before the AutomatedUpdateDate and when the UpdateStatus
is in the PENDING_UPDATE state.

	Parameters:

	domain_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the domain that you want to stop the latest
service software update on.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	Dictionary with key 'result' and as value a boolean denoting success or failure.
Upon success, also contains a key 'reponse' with the current service software options.
Upon failure, also contains a key 'error' with the error message as value.

New in version 3001.

	
salt.modules.boto3_elasticsearch.check_upgrade_eligibility(domain_name, elasticsearch_version, region=None, keyid=None, key=None, profile=None)

	Helper function to determine in one call if an Elasticsearch domain can be
upgraded to the specified Elasticsearch version.

This assumes that the Elasticsearch domain is at rest at the moment this function
is called. I.e. The domain is not in the process of :

	being created.

	being updated.

	another upgrade running, or a check thereof.

	being deleted.

Behind the scenes, this does 3 things:

	Check if elasticsearch_version is among the compatible elasticsearch versions.

	Perform a check if the Elasticsearch domain is eligible for the upgrade.

	Check the result of the check and return the result as a boolean.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Elasticsearch domain name to check.

	elasticsearch_version (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Elasticsearch version to upgrade to.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	Dictionary with key 'result' and as value a boolean denoting success or failure.
Upon success, also contains a key 'reponse' with boolean result of the check.
Upon failure, also contains a key 'error' with the error message as value.

New in version 3001.

CLI Example:

salt myminion boto3_elasticsearch.check_upgrade_eligibility mydomain '6.7'

	
salt.modules.boto3_elasticsearch.create_elasticsearch_domain(domain_name, elasticsearch_version=None, elasticsearch_cluster_config=None, ebs_options=None, access_policies=None, snapshot_options=None, vpc_options=None, cognito_options=None, encryption_at_rest_options=None, node_to_node_encryption_options=None, advanced_options=None, log_publishing_options=None, blocking=False, region=None, key=None, keyid=None, profile=None)

	Given a valid config, create a domain.

	Parameters:

	
	domain_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the Elasticsearch domain that you are creating.
Domain names are unique across the domains owned by an account within an
AWS region. Domain names must start with a letter or number and can contain
the following characters: a-z (lowercase), 0-9, and - (hyphen).

	elasticsearch_version (str [https://docs.python.org/3/library/stdtypes.html#str]) -- String of format X.Y to specify version for
the Elasticsearch domain eg. "1.5" or "2.3".

	elasticsearch_cluster_config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Dictionary specifying the configuration
options for an Elasticsearch domain. Keys (case sensitive) in here are:

	InstanceType (str): The instance type for an Elasticsearch cluster.

	InstanceCount (int): The instance type for an Elasticsearch cluster.

	DedicatedMasterEnabled (bool): Indicate whether a dedicated master
node is enabled.

	ZoneAwarenessEnabled (bool): Indicate whether zone awareness is enabled.
If this is not enabled, the Elasticsearch domain will only be in one
availability zone.

	ZoneAwarenessConfig (dict): Specifies the zone awareness configuration
for a domain when zone awareness is enabled.
Keys (case sensitive) in here are:

	AvailabilityZoneCount (int): An integer value to indicate the
number of availability zones for a domain when zone awareness is
enabled. This should be equal to number of subnets if VPC endpoints
is enabled. Allowed values: 2, 3

	DedicatedMasterType (str): The instance type for a dedicated master node.

	DedicatedMasterCount (int): Total number of dedicated master nodes,
active and on standby, for the cluster.

	ebs_options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Dict specifying the options to enable or disable and
specifying the type and size of EBS storage volumes.
Keys (case sensitive) in here are:

	EBSEnabled (bool): Specifies whether EBS-based storage is enabled.

	VolumeType (str): Specifies the volume type for EBS-based storage.

	VolumeSize (int): Integer to specify the size of an EBS volume.

	Iops (int): Specifies the IOPD for a Provisioned IOPS EBS volume (SSD).

	access_policies (str [https://docs.python.org/3/library/stdtypes.html#str] or dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Dict or JSON string with the IAM access policy.

	snapshot_options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Dict specifying the snapshot options.
Keys (case sensitive) in here are:

	AutomatedSnapshotStartHour (int): Specifies the time, in UTC format,
when the service takes a daily automated snapshot of the specified
Elasticsearch domain. Default value is 0 hours.

	vpc_options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Dict with the options to specify the subnets and security
groups for the VPC endpoint.
Keys (case sensitive) in here are:

	SubnetIds (list): The list of subnets for the VPC endpoint.

	SecurityGroupIds (list): The list of security groups for the VPC endpoint.

	cognito_options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Dict with options to specify the cognito user and
identity pools for Kibana authentication.
Keys (case sensitive) in here are:

	Enabled (bool): Specifies the option to enable Cognito for Kibana authentication.

	UserPoolId (str): Specifies the Cognito user pool ID for Kibana authentication.

	IdentityPoolId (str): Specifies the Cognito identity pool ID for Kibana authentication.

	RoleArn (str): Specifies the role ARN that provides Elasticsearch permissions
for accessing Cognito resources.

	encryption_at_rest_options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Dict specifying the encryption at rest
options. Keys (case sensitive) in here are:

	Enabled (bool): Specifies the option to enable Encryption At Rest.

	KmsKeyId (str): Specifies the KMS Key ID for Encryption At Rest options.

	node_to_node_encryption_options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Dict specifying the node to node
encryption options. Keys (case sensitive) in here are:

	Enabled (bool): Specify True to enable node-to-node encryption.

	advanced_options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Dict with option to allow references to indices
in an HTTP request body. Must be False when configuring access to individual
sub-resources. By default, the value is True.
See http://docs.aws.amazon.com/elasticsearch-service/latest/developerguide /es-createupdatedomains.html#es-createdomain-configure-advanced-options
for more information.

	log_publishing_options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Dict with options for various type of logs.
The keys denote the type of log file and can be one of the following:

	INDEX_SLOW_LOGS

	SEARCH_SLOW_LOGS

	ES_APPLICATION_LOGS

The value assigned to each key is a dict with the following case sensitive keys:

	CloudWatchLogsLogGroupArn (str): The ARN of the Cloudwatch log
group to which the log needs to be published.

	Enabled (bool): Specifies whether given log publishing option is enabled or not.

	blocking (bool [https://docs.python.org/3/library/functions.html#bool]) -- Whether or not to wait (block) until the Elasticsearch
domain has been created.

Note: Not all instance types allow enabling encryption at rest. See https://docs.aws.amazon.com /elasticsearch-service/latest/developerguide/aes-supported-instance-types.html

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	Dictionary with key 'result' and as value a boolean denoting success or failure.
Upon success, also contains a key 'reponse' with the domain status configuration.
Upon failure, also contains a key 'error' with the error message as value.

New in version 3001.

CLI Example:

salt myminion boto3_elasticsearch.create_elasticsearch_domain mydomain \
elasticsearch_cluster_config='{ \
 "InstanceType": "t2.micro.elasticsearch", \
 "InstanceCount": 1, \
 "DedicatedMasterEnabled": False, \
 "ZoneAwarenessEnabled": False}' \
ebs_options='{ \
 "EBSEnabled": True, \
 "VolumeType": "gp2", \
 "VolumeSize": 10, \
 "Iops": 0}' \
access_policies='{ \
 "Version": "2012-10-17", \
 "Statement": [\
 {"Effect": "Allow", \
 "Principal": {"AWS": "*"}, \
 "Action": "es:*", \
 "Resource": "arn:aws:es:us-east-1:111111111111:domain/mydomain/*", \
 "Condition": {"IpAddress": {"aws:SourceIp": ["127.0.0.1"]}}}]}' \
snapshot_options='{"AutomatedSnapshotStartHour": 0}' \
advanced_options='{"rest.action.multi.allow_explicit_index": "true"}'

	
salt.modules.boto3_elasticsearch.delete_elasticsearch_domain(domain_name, blocking=False, region=None, key=None, keyid=None, profile=None)

	Permanently deletes the specified Elasticsearch domain and all of its data.
Once a domain is deleted, it cannot be recovered.

	Parameters:

	
	domain_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the domain to delete.

	blocking (bool [https://docs.python.org/3/library/functions.html#bool]) -- Whether or not to wait (block) until the Elasticsearch
domain has been deleted.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	Dictionary with key 'result' and as value a boolean denoting success or failure.
Upon failure, also contains a key 'error' with the error message as value.

New in version 3001.

	
salt.modules.boto3_elasticsearch.delete_elasticsearch_service_role(region=None, keyid=None, key=None, profile=None)

	Deletes the service-linked role that Elasticsearch Service uses to manage and
maintain VPC domains. Role deletion will fail if any existing VPC domains use
the role. You must delete any such Elasticsearch domains before deleting the role.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	Dictionary with key 'result' and as value a boolean denoting success or failure.
Upon failure, also contains a key 'error' with the error message as value.

New in version 3001.

	
salt.modules.boto3_elasticsearch.describe_elasticsearch_domain(domain_name, region=None, keyid=None, key=None, profile=None)

	Given a domain name gets its status description.

	Parameters:

	domain_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the domain to get the status of.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	Dictionary ith key 'result' and as value a boolean denoting success or failure.
Upon success, also contains a key 'reponse' with the domain status information.
Upon failure, also contains a key 'error' with the error message as value.

New in version 3001.

	
salt.modules.boto3_elasticsearch.describe_elasticsearch_domain_config(domain_name, region=None, keyid=None, key=None, profile=None)

	Provides cluster configuration information about the specified Elasticsearch domain,
such as the state, creation date, update version, and update date for cluster options.

	Parameters:

	domain_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the domain to describe.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	Dictionary with key 'result' and as value a boolean denoting success or failure.
Upon success, also contains a key 'reponse' with the current configuration information.
Upon failure, also contains a key 'error' with the error message as value.

New in version 3001.

	
salt.modules.boto3_elasticsearch.describe_elasticsearch_domains(domain_names, region=None, keyid=None, key=None, profile=None)

	Returns domain configuration information about the specified Elasticsearch
domains, including the domain ID, domain endpoint, and domain ARN.

	Parameters:

	domain_names (list [https://docs.python.org/3/library/stdtypes.html#list]) -- List of domain names to get information for.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	Dictionary with key 'result' and as value a boolean denoting success or failure.
Upon success, also contains a key 'reponse' with the list of domain status information.
Upon failure, also contains a key 'error' with the error message as value.

New in version 3001.

CLI Example:

salt myminion boto3_elasticsearch.describe_elasticsearch_domains '["domain_a", "domain_b"]'

	
salt.modules.boto3_elasticsearch.describe_elasticsearch_instance_type_limits(instance_type, elasticsearch_version, domain_name=None, region=None, keyid=None, key=None, profile=None)

	Describe Elasticsearch Limits for a given InstanceType and ElasticsearchVersion.
When modifying existing Domain, specify the `` DomainName `` to know what Limits
are supported for modifying.

	Parameters:

	
	instance_type (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The instance type for an Elasticsearch cluster for
which Elasticsearch Limits are needed.

	elasticsearch_version (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Version of Elasticsearch for which Limits
are needed.

	domain_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Represents the name of the Domain that we are trying
to modify. This should be present only if we are querying for Elasticsearch
Limits for existing domain.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	Dictionary with key 'result' and as value a boolean denoting success or failure.
Upon success, also contains a key 'reponse' with the limits information.
Upon failure, also contains a key 'error' with the error message as value.

New in version 3001.

CLI Example:

salt myminion boto3_elasticsearch.describe_elasticsearch_instance_type_limits \
 instance_type=r3.8xlarge.elasticsearch \
 elasticsearch_version='6.2'

	
salt.modules.boto3_elasticsearch.describe_reserved_elasticsearch_instance_offerings(reserved_elasticsearch_instance_offering_id=None, region=None, keyid=None, key=None, profile=None)

	Lists available reserved Elasticsearch instance offerings.

	Parameters:

	reserved_elasticsearch_instance_offering_id (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The offering identifier
filter value. Use this parameter to show only the available offering that
matches the specified reservation identifier.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	Dictionary with key 'result' and as value a boolean denoting success or failure.
Upon success, also contains a key 'reponse' with the list of offerings information.
Upon failure, also contains a key 'error' with the error message as value.

New in version 3001.

	
salt.modules.boto3_elasticsearch.describe_reserved_elasticsearch_instances(reserved_elasticsearch_instance_id=None, region=None, keyid=None, key=None, profile=None)

	Returns information about reserved Elasticsearch instances for this account.

	Parameters:

	reserved_elasticsearch_instance_id (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The reserved instance identifier
filter value. Use this parameter to show only the reservation that matches
the specified reserved Elasticsearch instance ID.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	Dictionary with key 'result' and as value a boolean denoting success or failure.
Upon success, also contains a key 'reponse' with a list of information on
reserved instances.
Upon failure, also contains a key 'error' with the error message as value.

	Note:

	Version 1.9.174 of boto3 has a bug in that reserved_elasticsearch_instance_id
is considered a required argument, even though the documentation says otherwise.

New in version 3001.

	
salt.modules.boto3_elasticsearch.exists(domain_name, region=None, key=None, keyid=None, profile=None)

	Given a domain name, check to see if the given domain exists.

	Parameters:

	domain_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the domain to check.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	Dictionary with key 'result' and as value a boolean denoting success or failure.
Upon failure, also contains a key 'error' with the error message as value.

New in version 3001.

	
salt.modules.boto3_elasticsearch.get_compatible_elasticsearch_versions(domain_name=None, region=None, keyid=None, key=None, profile=None)

	Returns a list of upgrade compatible Elastisearch versions. You can optionally
pass a domain_name to get all upgrade compatible Elasticsearch versions
for that specific domain.

	Parameters:

	domain_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of an Elasticsearch domain.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	Dictionary with key 'result' and as value a boolean denoting success or failure.
Upon success, also contains a key 'reponse' with a list of compatible versions.
Upon failure, also contains a key 'error' with the error message as value.

New in version 3001.

	
salt.modules.boto3_elasticsearch.get_upgrade_history(domain_name, region=None, keyid=None, key=None, profile=None)

	Retrieves the complete history of the last 10 upgrades that were performed on the domain.

	Parameters:

	domain_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of an Elasticsearch domain. Domain names are
unique across the domains owned by an account within an AWS region. Domain
names start with a letter or number and can contain the following characters:
a-z (lowercase), 0-9, and - (hyphen).

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	Dictionary with key 'result' and as value a boolean denoting success or failure.
Upon success, also contains a key 'reponse' with a list of upgrade histories.
Upon failure, also contains a key 'error' with the error message as value.

New in version 3001.

	
salt.modules.boto3_elasticsearch.get_upgrade_status(domain_name, region=None, keyid=None, key=None, profile=None)

	Retrieves the latest status of the last upgrade or upgrade eligibility check
that was performed on the domain.

	Parameters:

	domain_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of an Elasticsearch domain. Domain names are
unique across the domains owned by an account within an AWS region. Domain
names start with a letter or number and can contain the following characters:
a-z (lowercase), 0-9, and - (hyphen).

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	Dictionary with key 'result' and as value a boolean denoting success or failure.
Upon success, also contains a key 'reponse' with upgrade status information.
Upon failure, also contains a key 'error' with the error message as value.

New in version 3001.

	
salt.modules.boto3_elasticsearch.list_domain_names(region=None, keyid=None, key=None, profile=None)

	Returns the name of all Elasticsearch domains owned by the current user's account.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	Dictionary with key 'result' and as value a boolean denoting success or failure.
Upon success, also contains a key 'reponse' with a list of domain names.
Upon failure, also contains a key 'error' with the error message as value.

New in version 3001.

	
salt.modules.boto3_elasticsearch.list_elasticsearch_instance_types(elasticsearch_version, domain_name=None, region=None, keyid=None, key=None, profile=None)

	List all Elasticsearch instance types that are supported for given ElasticsearchVersion.

	Parameters:

	
	elasticsearch_version (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Version of Elasticsearch for which list of
supported elasticsearch instance types are needed.

	domain_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- DomainName represents the name of the Domain that we
are trying to modify. This should be present only if we are querying for
list of available Elasticsearch instance types when modifying existing domain.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	Dictionary with key 'result' and as value a boolean denoting success or failure.
Upon success, also contains a key 'reponse' with a list of Elasticsearch instance types.
Upon failure, also contains a key 'error' with the error message as value.

New in version 3001.

	
salt.modules.boto3_elasticsearch.list_elasticsearch_versions(region=None, keyid=None, key=None, profile=None)

	List all supported Elasticsearch versions.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	Dictionary with key 'result' and as value a boolean denoting success or failure.
Upon success, also contains a key 'reponse' with a list of Elasticsearch versions.
Upon failure, also contains a key 'error' with the error message as value.

New in version 3001.

	
salt.modules.boto3_elasticsearch.list_tags(domain_name=None, arn=None, region=None, key=None, keyid=None, profile=None)

	Returns all tags for the given Elasticsearch domain.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	Dictionary with key 'result' and as value a boolean denoting success or failure.
Upon success, also contains a key 'reponse' with a dict of tags.
Upon failure, also contains a key 'error' with the error message as value.

New in version 3001.

	
salt.modules.boto3_elasticsearch.purchase_reserved_elasticsearch_instance_offering(reserved_elasticsearch_instance_offering_id, reservation_name, instance_count=None, region=None, keyid=None, key=None, profile=None)

	Allows you to purchase reserved Elasticsearch instances.

	Parameters:

	
	reserved_elasticsearch_instance_offering_id (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The ID of the reserved
Elasticsearch instance offering to purchase.

	reservation_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A customer-specified identifier to track this reservation.

	instance_count (int [https://docs.python.org/3/library/functions.html#int]) -- The number of Elasticsearch instances to reserve.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	Dictionary with key 'result' and as value a boolean denoting success or failure.
Upon success, also contains a key 'reponse' with purchase information.
Upon failure, also contains a key 'error' with the error message as value.

New in version 3001.

	
salt.modules.boto3_elasticsearch.remove_tags(tag_keys, domain_name=None, arn=None, region=None, key=None, keyid=None, profile=None)

	Removes the specified set of tags from the specified Elasticsearch domain.

	Parameters:

	
	tag_keys (list [https://docs.python.org/3/library/stdtypes.html#list]) -- List with tag keys you want to remove from the Elasticsearch domain.

	domain_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the Elasticsearch domain you want to remove tags from.

	arn (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The ARN of the Elasticsearch domain you want to remove tags from.
Specifying this overrides domain_name.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	Dictionary with key 'result' and as value a boolean denoting success or failure.
Upon failure, also contains a key 'error' with the error message as value.

New in version 3001.

CLI Example:

salt myminion boto3_elasticsearch.remove_tags '["foo", "bar"]' domain_name=my_domain

	
salt.modules.boto3_elasticsearch.start_elasticsearch_service_software_update(domain_name, region=None, keyid=None, key=None, profile=None)

	Schedules a service software update for an Amazon ES domain.

	Parameters:

	domain_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the domain that you want to update to the
latest service software.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	Dictionary with key 'result' and as value a boolean denoting success or failure.
Upon success, also contains a key 'reponse' with service software information.
Upon failure, also contains a key 'error' with the error message as value.

New in version 3001.

	
salt.modules.boto3_elasticsearch.update_elasticsearch_domain_config(domain_name, elasticsearch_cluster_config=None, ebs_options=None, vpc_options=None, access_policies=None, snapshot_options=None, cognito_options=None, advanced_options=None, log_publishing_options=None, blocking=False, region=None, key=None, keyid=None, profile=None)

	Modifies the cluster configuration of the specified Elasticsearch domain,
for example setting the instance type and the number of instances.

	Parameters:

	
	domain_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the Elasticsearch domain that you are creating.
Domain names are unique across the domains owned by an account within an
AWS region. Domain names must start with a letter or number and can contain
the following characters: a-z (lowercase), 0-9, and - (hyphen).

	elasticsearch_cluster_config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Dictionary specifying the configuration
options for an Elasticsearch domain. Keys (case sensitive) in here are:

	InstanceType (str): The instance type for an Elasticsearch cluster.

	InstanceCount (int): The instance type for an Elasticsearch cluster.

	DedicatedMasterEnabled (bool): Indicate whether a dedicated master
node is enabled.

	ZoneAwarenessEnabled (bool): Indicate whether zone awareness is enabled.

	ZoneAwarenessConfig (dict): Specifies the zone awareness configuration
for a domain when zone awareness is enabled.
Keys (case sensitive) in here are:

	AvailabilityZoneCount (int): An integer value to indicate the
number of availability zones for a domain when zone awareness is
enabled. This should be equal to number of subnets if VPC endpoints
is enabled.

	DedicatedMasterType (str): The instance type for a dedicated master node.

	DedicatedMasterCount (int): Total number of dedicated master nodes,
active and on standby, for the cluster.

	ebs_options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Dict specifying the options to enable or disable and
specifying the type and size of EBS storage volumes.
Keys (case sensitive) in here are:

	EBSEnabled (bool): Specifies whether EBS-based storage is enabled.

	VolumeType (str): Specifies the volume type for EBS-based storage.

	VolumeSize (int): Integer to specify the size of an EBS volume.

	Iops (int): Specifies the IOPD for a Provisioned IOPS EBS volume (SSD).

	snapshot_options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Dict specifying the snapshot options.
Keys (case sensitive) in here are:

	AutomatedSnapshotStartHour (int): Specifies the time, in UTC format,
when the service takes a daily automated snapshot of the specified
Elasticsearch domain. Default value is 0 hours.

	vpc_options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Dict with the options to specify the subnets and security
groups for the VPC endpoint.
Keys (case sensitive) in here are:

	SubnetIds (list): The list of subnets for the VPC endpoint.

	SecurityGroupIds (list): The list of security groups for the VPC endpoint.

	cognito_options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Dict with options to specify the cognito user and
identity pools for Kibana authentication.
Keys (case sensitive) in here are:

	Enabled (bool): Specifies the option to enable Cognito for Kibana authentication.

	UserPoolId (str): Specifies the Cognito user pool ID for Kibana authentication.

	IdentityPoolId (str): Specifies the Cognito identity pool ID for Kibana authentication.

	RoleArn (str): Specifies the role ARN that provides Elasticsearch permissions
for accessing Cognito resources.

	advanced_options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Dict with option to allow references to indices
in an HTTP request body. Must be False when configuring access to individual
sub-resources. By default, the value is True.
See http://docs.aws.amazon.com/elasticsearch-service/latest/developerguide /es-createupdatedomains.html#es-createdomain-configure-advanced-options
for more information.

	access_policies (str/dict) -- Dict or JSON string with the IAM access policy.

	log_publishing_options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Dict with options for various type of logs.
The keys denote the type of log file and can be one of the following:

INDEX_SLOW_LOGS, SEARCH_SLOW_LOGS, ES_APPLICATION_LOGS.

The value assigned to each key is a dict with the following case sensitive keys:

	CloudWatchLogsLogGroupArn (str): The ARN of the Cloudwatch log
group to which the log needs to be published.

	Enabled (bool): Specifies whether given log publishing option
is enabled or not.

	blocking (bool [https://docs.python.org/3/library/functions.html#bool]) -- Whether or not to wait (block) until the Elasticsearch
domain has been updated.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	Dictionary with key 'result' and as value a boolean denoting success or failure.
Upon success, also contains a key 'reponse' with the domain configuration.
Upon failure, also contains a key 'error' with the error message as value.

New in version 3001.

CLI Example:

salt myminion boto3_elasticsearch.update_elasticsearch_domain_config mydomain \
 elasticsearch_cluster_config='{\
 "InstanceType": "t2.micro.elasticsearch", \
 "InstanceCount": 1, \
 "DedicatedMasterEnabled": false,
 "ZoneAwarenessEnabled": false}' \
 ebs_options='{\
 "EBSEnabled": true, \
 "VolumeType": "gp2", \
 "VolumeSize": 10, \
 "Iops": 0}' \
 access_policies='{"Version": "2012-10-17", "Statement": [{\
 "Effect": "Allow", "Principal": {"AWS": "*"}, "Action": "es:*", \
 "Resource": "arn:aws:es:us-east-1:111111111111:domain/mydomain/*", \
 "Condition": {"IpAddress": {"aws:SourceIp": ["127.0.0.1"]}}}]}' \
 snapshot_options='{"AutomatedSnapshotStartHour": 0}' \
 advanced_options='{"rest.action.multi.allow_explicit_index": "true"}'

	
salt.modules.boto3_elasticsearch.upgrade_elasticsearch_domain(domain_name, target_version, perform_check_only=None, blocking=False, region=None, keyid=None, key=None, profile=None)

	Allows you to either upgrade your domain or perform an Upgrade eligibility
check to a compatible Elasticsearch version.

	Parameters:

	
	domain_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of an Elasticsearch domain. Domain names are
unique across the domains owned by an account within an AWS region. Domain
names start with a letter or number and can contain the following characters:
a-z (lowercase), 0-9, and - (hyphen).

	target_version (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The version of Elasticsearch that you intend to
upgrade the domain to.

	perform_check_only (bool [https://docs.python.org/3/library/functions.html#bool]) -- This flag, when set to True, indicates that
an Upgrade Eligibility Check needs to be performed. This will not actually
perform the Upgrade.

	blocking (bool [https://docs.python.org/3/library/functions.html#bool]) -- Whether or not to wait (block) until the Elasticsearch
domain has been upgraded.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns:

	Dictionary with key 'result' and as value a boolean denoting success or failure.
Upon success, also contains a key 'reponse' with the domain configuration.
Upon failure, also contains a key 'error' with the error message as value.

New in version 3001.

CLI Example:

salt myminion boto3_elasticsearch.upgrade_elasticsearch_domain mydomain \
target_version='6.7' \
perform_check_only=True

	
salt.modules.boto3_elasticsearch.wait_for_upgrade(domain_name, region=None, keyid=None, key=None, profile=None)

	Block until an upgrade-in-progress for domain name is finished.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the domain to wait for.

	Rtype dict:

	

	Returns:

	Dictionary with key 'result' and as value a boolean denoting success or failure.
Upon failure, also contains a key 'error' with the error message as value.

New in version 3001.

salt.modules.boto3_route53

Execution module for Amazon Route53 written against Boto 3

New in version 2017.7.0.

	configuration:

	This module accepts explicit route53 credentials but can also
utilize IAM roles assigned to the instance through Instance Profiles.
Dynamic credentials are then automatically obtained from AWS API and no
further configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

route53.keyid: GKTADJGHEIQSXMKKRBJ08H
route53.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

route53.region: us-east-1

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

Note that Route53 essentially ignores all (valid) settings for 'region',
since there is only one Endpoint (in us-east-1 if you care) and any (valid)
region setting will just send you there. It is entirely safe to set it to
None as well.

	depends:

	boto3

	
salt.modules.boto3_route53.associate_vpc_with_hosted_zone(HostedZoneId=None, Name=None, VPCId=None, VPCName=None, VPCRegion=None, Comment=None, region=None, key=None, keyid=None, profile=None)

	Associates an Amazon VPC with a private hosted zone.

To perform the association, the VPC and the private hosted zone must already exist. You can't
convert a public hosted zone into a private hosted zone. If you want to associate a VPC from
one AWS account with a zone from a another, the AWS account owning the hosted zone must first
submit a CreateVPCAssociationAuthorization (using create_vpc_association_authorization() or by
other means, such as the AWS console). With that done, the account owning the VPC can then call
associate_vpc_with_hosted_zone() to create the association.

Note that if both sides happen to be within the same account, associate_vpc_with_hosted_zone()
is enough on its own, and there is no need for the CreateVPCAssociationAuthorization step.

Also note that looking up hosted zones by name (e.g. using the Name parameter) only works
within a single account - if you're associating a VPC to a zone in a different account, as
outlined above, you unfortunately MUST use the HostedZoneId parameter exclusively.

	HostedZoneId
	The unique Zone Identifier for the Hosted Zone.

	Name
	The domain name associated with the Hosted Zone(s).

	VPCId
	When working with a private hosted zone, either the VPC ID or VPC Name to associate with is
required. Exclusive with VPCName.

	VPCName
	When working with a private hosted zone, either the VPC ID or VPC Name to associate with is
required. Exclusive with VPCId.

	VPCRegion
	When working with a private hosted zone, the region of the associated VPC is required. If
not provided, an effort will be made to determine it from VPCId or VPCName, if possible. If
this fails, you'll need to provide an explicit value for VPCRegion.

	Comment
	Any comments you want to include about the change being made.

CLI Example:

salt myminion boto3_route53.associate_vpc_with_hosted_zone Name=example.org. VPCName=myVPC VPCRegion=us-east-1 Comment="Whoo-hoo! I added another VPC."

	
salt.modules.boto3_route53.change_resource_record_sets(HostedZoneId=None, Name=None, PrivateZone=None, ChangeBatch=None, region=None, key=None, keyid=None, profile=None)

	See the AWS Route53 API docs [https://docs.aws.amazon.com/Route53/latest/APIReference/API_ChangeResourceRecordSets.html] as well as the Boto3 documentation [http://boto3.readthedocs.io/en/latest/reference/services/route53.html#Route53.Client.change_resource_record_sets] for all the details...

The syntax for a ChangeBatch parameter is as follows, but note that the permutations of allowed
parameters and combinations thereof are quite varied, so perusal of the above linked docs is
highly recommended for any non-trival configurations.

{
 "Comment": "string",
 "Changes": [
 {
 "Action": "CREATE"|"DELETE"|"UPSERT",
 "ResourceRecordSet": {
 "Name": "string",
 "Type": "SOA"|"A"|"TXT"|"NS"|"CNAME"|"MX"|"NAPTR"|"PTR"|"SRV"|"SPF"|"AAAA",
 "SetIdentifier": "string",
 "Weight": 123,
 "Region": "us-east-1"|"us-east-2"|"us-west-1"|"us-west-2"|"ca-central-1"|"eu-west-1"|"eu-west-2"|"eu-central-1"|"ap-southeast-1"|"ap-southeast-2"|"ap-northeast-1"|"ap-northeast-2"|"sa-east-1"|"cn-north-1"|"ap-south-1",
 "GeoLocation": {
 "ContinentCode": "string",
 "CountryCode": "string",
 "SubdivisionCode": "string"
 },
 "Failover": "PRIMARY"|"SECONDARY",
 "TTL": 123,
 "ResourceRecords": [
 {
 "Value": "string"
 },
],
 "AliasTarget": {
 "HostedZoneId": "string",
 "DNSName": "string",
 "EvaluateTargetHealth": True|False
 },
 "HealthCheckId": "string",
 "TrafficPolicyInstanceId": "string"
 }
 },
]
}

CLI Example:

foo='{
 "Name": "my-cname.example.org.",
 "TTL": 600,
 "Type": "CNAME",
 "ResourceRecords": [
 {
 "Value": "my-host.example.org"
 }
]
 }'
foo=`echo $foo` # Remove newlines
salt myminion boto3_route53.change_resource_record_sets DomainName=example.org. keyid=A1234567890ABCDEF123 key=xblahblahblah ChangeBatch="{'Changes': [{'Action': 'UPSERT', 'ResourceRecordSet': $foo}]}"

	
salt.modules.boto3_route53.create_hosted_zone(Name, VPCId=None, VPCName=None, VPCRegion=None, CallerReference=None, Comment='', PrivateZone=False, DelegationSetId=None, region=None, key=None, keyid=None, profile=None)

	Create a new Route53 Hosted Zone. Returns a Python data structure with information about the
newly created Hosted Zone.

	Name
	The name of the domain. This should be a fully-specified domain, and should terminate with
a period. This is the name you have registered with your DNS registrar. It is also the name
you will delegate from your registrar to the Amazon Route 53 delegation servers returned in
response to this request.

	VPCId
	When creating a private hosted zone, either the VPC ID or VPC Name to associate with is
required. Exclusive with VPCName. Ignored if passed for a non-private zone.

	VPCName
	When creating a private hosted zone, either the VPC ID or VPC Name to associate with is
required. Exclusive with VPCId. Ignored if passed for a non-private zone.

	VPCRegion
	When creating a private hosted zone, the region of the associated VPC is required. If not
provided, an effort will be made to determine it from VPCId or VPCName, if possible. If
this fails, you'll need to provide an explicit value for this option. Ignored if passed for
a non-private zone.

	CallerReference
	A unique string that identifies the request and that allows create_hosted_zone() calls to be
retried without the risk of executing the operation twice. This is a required parameter
when creating new Hosted Zones. Maximum length of 128.

	Comment
	Any comments you want to include about the hosted zone.

	PrivateZone
	Boolean - Set to True if creating a private hosted zone.

	DelegationSetId
	If you want to associate a reusable delegation set with this hosted zone, the ID that Amazon
Route 53 assigned to the reusable delegation set when you created it. Note that XXX TODO
create_delegation_set() is not yet implemented, so you'd need to manually create any
delegation sets before utilizing this.

	region
	Region endpoint to connect to.

	key
	AWS key to bind with.

	keyid
	AWS keyid to bind with.

	profile
	Dict, or pillar key pointing to a dict, containing AWS region/key/keyid.

CLI Example:

salt myminion boto3_route53.create_hosted_zone example.org.

	
salt.modules.boto3_route53.delete_hosted_zone(Id, region=None, key=None, keyid=None, profile=None)

	Delete a Route53 hosted zone.

CLI Example:

salt myminion boto3_route53.delete_hosted_zone Z1234567890

	
salt.modules.boto3_route53.delete_hosted_zone_by_domain(Name, PrivateZone=None, region=None, key=None, keyid=None, profile=None)

	Delete a Route53 hosted zone by domain name, and PrivateZone status if provided.

CLI Example:

salt myminion boto3_route53.delete_hosted_zone_by_domain example.org.

	
salt.modules.boto3_route53.disassociate_vpc_from_hosted_zone(HostedZoneId=None, Name=None, VPCId=None, VPCName=None, VPCRegion=None, Comment=None, region=None, key=None, keyid=None, profile=None)

	Disassociates an Amazon VPC from a private hosted zone.

You can't disassociate the last VPC from a private hosted zone. You also can't convert a
private hosted zone into a public hosted zone.

Note that looking up hosted zones by name (e.g. using the Name parameter) only works XXX FACTCHECK
within a single AWS account - if you're disassociating a VPC in one account from a hosted zone
in a different account you unfortunately MUST use the HostedZoneId parameter exclusively. XXX FIXME DOCU

	HostedZoneId
	The unique Zone Identifier for the Hosted Zone.

	Name
	The domain name associated with the Hosted Zone(s).

	VPCId
	When working with a private hosted zone, either the VPC ID or VPC Name to associate with is
required. Exclusive with VPCName.

	VPCName
	When working with a private hosted zone, either the VPC ID or VPC Name to associate with is
required. Exclusive with VPCId.

	VPCRegion
	When working with a private hosted zone, the region of the associated VPC is required. If
not provided, an effort will be made to determine it from VPCId or VPCName, if possible. If
this fails, you'll need to provide an explicit value for VPCRegion.

	Comment
	Any comments you want to include about the change being made.

CLI Example:

salt myminion boto3_route53.disassociate_vpc_from_hosted_zone Name=example.org. VPCName=myVPC VPCRegion=us-east-1 Comment="Whoops! Don't wanna talk to this-here zone no more."

	
salt.modules.boto3_route53.find_hosted_zone(Id=None, Name=None, PrivateZone=None, region=None, key=None, keyid=None, profile=None)

	Find a hosted zone with the given characteristics.

	Id
	The unique Zone Identifier for the Hosted Zone. Exclusive with Name.

	Name
	The domain name associated with the Hosted Zone. Exclusive with Id.
Note this has the potential to match more then one hosted zone (e.g. a public and a private
if both exist) which will raise an error unless PrivateZone has also been passed in order
split the different.

	PrivateZone
	Boolean - Set to True if searching for a private hosted zone.

	region
	Region to connect to.

	key
	Secret key to be used.

	keyid
	Access key to be used.

	profile
	Dict, or pillar key pointing to a dict, containing AWS region/key/keyid.

CLI Example:

salt myminion boto3_route53.find_hosted_zone Name=salt.org. profile='{"region": "us-east-1", "keyid": "A12345678AB", "key": "xblahblahblah"}'

	
salt.modules.boto3_route53.get_hosted_zone(Id, region=None, key=None, keyid=None, profile=None)

	Return detailed info about the given zone.

	Id
	The unique Zone Identifier for the Hosted Zone.

	region
	Region to connect to.

	key
	Secret key to be used.

	keyid
	Access key to be used.

	profile
	Dict, or pillar key pointing to a dict, containing AWS region/key/keyid.

CLI Example:

salt myminion boto3_route53.get_hosted_zone Z1234567690 profile='{"region": "us-east-1", "keyid": "A12345678AB", "key": "xblahblahblah"}'

	
salt.modules.boto3_route53.get_hosted_zones_by_domain(Name, region=None, key=None, keyid=None, profile=None)

	Find any zones with the given domain name and return detailed info about them.
Note that this can return multiple Route53 zones, since a domain name can be used in
both public and private zones.

	Name
	The domain name associated with the Hosted Zone(s).

	region
	Region to connect to.

	key
	Secret key to be used.

	keyid
	Access key to be used.

	profile
	Dict, or pillar key pointing to a dict, containing AWS region/key/keyid.

CLI Example:

salt myminion boto3_route53.get_hosted_zones_by_domain salt.org. profile='{"region": "us-east-1", "keyid": "A12345678AB", "key": "xblahblahblah"}'

	
salt.modules.boto3_route53.get_resource_records(HostedZoneId=None, Name=None, StartRecordName=None, StartRecordType=None, PrivateZone=None, region=None, key=None, keyid=None, profile=None)

	Get all resource records from a given zone matching the provided StartRecordName (if given) or all
records in the zone (if not), optionally filtered by a specific StartRecordType. This will return
any and all RRs matching, regardless of their special AWS flavors (weighted, geolocation, alias,
etc.) so your code should be prepared for potentially large numbers of records back from this
function - for example, if you've created a complex geolocation mapping with lots of entries all
over the world providing the same server name to many different regional clients.

If you want EXACTLY ONE record to operate on, you'll need to implement any logic required to
pick the specific RR you care about from those returned.

Note that if you pass in Name without providing a value for PrivateZone (either True or
False), CommandExecutionError can be raised in the case of both public and private zones
matching the domain. XXX FIXME DOCU

CLI Example:

salt myminion boto3_route53.get_records test.example.org example.org A

	
salt.modules.boto3_route53.list_hosted_zones(DelegationSetId=None, region=None, key=None, keyid=None, profile=None)

	Return detailed info about all zones in the bound account.

	DelegationSetId
	If you're using reusable delegation sets and you want to list all of the hosted zones that
are associated with a reusable delegation set, specify the ID of that delegation set.

	region
	Region to connect to.

	key
	Secret key to be used.

	keyid
	Access key to be used.

	profile
	Dict, or pillar key pointing to a dict, containing AWS region/key/keyid.

CLI Example:

salt myminion boto3_route53.describe_hosted_zones profile='{"region": "us-east-1", "keyid": "A12345678AB", "key": "xblahblahblah"}'

	
salt.modules.boto3_route53.update_hosted_zone_comment(Id=None, Name=None, Comment=None, PrivateZone=None, region=None, key=None, keyid=None, profile=None)

	Update the comment on an existing Route 53 hosted zone.

	Id
	The unique Zone Identifier for the Hosted Zone.

	Name
	The domain name associated with the Hosted Zone(s).

	Comment
	Any comments you want to include about the hosted zone.

	PrivateZone
	Boolean - Set to True if changing a private hosted zone.

CLI Example:

salt myminion boto3_route53.update_hosted_zone_comment Name=example.org. Comment="This is an example comment for an example zone"

salt.modules.boto3_sns

Connection module for Amazon SNS

	configuration:

	This module accepts explicit sns credentials but can also
utilize IAM roles assigned to the instance through Instance Profiles. Dynamic
credentials are then automatically obtained from AWS API and no further
configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

sns.keyid: GKTADJGHEIQSXMKKRBJ08H
sns.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

sns.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

	depends:

	boto3

	
salt.modules.boto3_sns.create_topic(Name, region=None, key=None, keyid=None, profile=None)

	Create an SNS topic.

CLI Example:

salt myminion boto3_sns.create_topic mytopic region=us-east-1

	
salt.modules.boto3_sns.delete_topic(TopicArn, region=None, key=None, keyid=None, profile=None)

	Delete an SNS topic.

CLI Example:

salt myminion boto3_sns.delete_topic mytopic region=us-east-1

	
salt.modules.boto3_sns.describe_topic(name, region=None, key=None, keyid=None, profile=None)

	Returns details about a specific SNS topic, specified by name or ARN.

CLI Example:

salt my_favorite_client boto3_sns.describe_topic a_sns_topic_of_my_choice

	
salt.modules.boto3_sns.get_subscription_attributes(SubscriptionArn, region=None, key=None, keyid=None, profile=None)

	Returns all of the properties of a subscription.

CLI Example:

salt myminion boto3_sns.get_subscription_attributes somesubscription region=us-west-1

	
salt.modules.boto3_sns.get_topic_attributes(TopicArn, region=None, key=None, keyid=None, profile=None)

	Returns all of the properties of a topic. Topic properties returned might differ based on the
authorization of the user.

CLI Example:

salt myminion boto3_sns.get_topic_attributes someTopic region=us-west-1

	
salt.modules.boto3_sns.list_subscriptions(region=None, key=None, keyid=None, profile=None)

	Returns a list of the requester's topics

CLI Example:

salt myminion boto3_sns.list_subscriptions region=us-east-1

	
salt.modules.boto3_sns.list_subscriptions_by_topic(TopicArn, region=None, key=None, keyid=None, profile=None)

	Returns a list of the subscriptions to a specific topic

CLI Example:

salt myminion boto3_sns.list_subscriptions_by_topic mytopic region=us-east-1

	
salt.modules.boto3_sns.list_topics(region=None, key=None, keyid=None, profile=None)

	Returns a list of the requester's topics

CLI Example:

salt myminion boto3_sns.list_topics

	
salt.modules.boto3_sns.set_subscription_attributes(SubscriptionArn, AttributeName, AttributeValue, region=None, key=None, keyid=None, profile=None)

	Set an attribute of a subscription to a new value.

CLI Example:

salt myminion boto3_sns.set_subscription_attributes someSubscription RawMessageDelivery jsonStringValue

	
salt.modules.boto3_sns.set_topic_attributes(TopicArn, AttributeName, AttributeValue, region=None, key=None, keyid=None, profile=None)

	Set an attribute of a topic to a new value.

CLI Example:

salt myminion boto3_sns.set_topic_attributes someTopic DisplayName myDisplayNameValue

	
salt.modules.boto3_sns.subscribe(TopicArn, Protocol, Endpoint, region=None, key=None, keyid=None, profile=None)

	Subscribe to a Topic.

CLI Example:

salt myminion boto3_sns.subscribe mytopic https https://www.example.com/sns-endpoint

	
salt.modules.boto3_sns.topic_exists(name, region=None, key=None, keyid=None, profile=None)

	Check to see if an SNS topic exists.

CLI Example:

salt myminion boto3_sns.topic_exists mytopic region=us-east-1

	
salt.modules.boto3_sns.unsubscribe(SubscriptionArn, region=None, key=None, keyid=None, profile=None)

	Unsubscribe a specific SubscriptionArn of a topic.

CLI Example:

salt myminion boto3_sns.unsubscribe my_subscription_arn region=us-east-1

salt.modules.boto_apigateway

Connection module for Amazon APIGateway

New in version 2016.11.0.

	depends:

	
	boto >= 2.8.0

	boto3 >= 1.2.1

	botocore >= 1.4.49

	configuration:

	This module accepts explicit Lambda credentials but can also
utilize IAM roles assigned to the instance trough Instance Profiles.
Dynamic credentials are then automatically obtained from AWS API and no
further configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

apigateway.keyid: GKTADJGHEIQSXMKKRBJ08H
apigateway.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

apigateway.region: us-west-2

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-west-2

Changed in version 2015.8.0: All methods now return a dictionary. Create and delete methods return:

created: true

or

created: false
error:
 message: error message

Request methods (e.g., describe_apigateway) return:

apigateway:
 - {...}
 - {...}

or

error:
 message: error message

	
salt.modules.boto_apigateway.activate_api_deployment(restApiId, stageName, deploymentId, region=None, key=None, keyid=None, profile=None)

	Activates previously deployed deployment for a given stage

CLI Example:

salt myminion boto_apigateway.activate_api_deployent restApiId stagename deploymentId

	
salt.modules.boto_apigateway.api_exists(name, description=None, region=None, key=None, keyid=None, profile=None)

	Check to see if the given Rest API Name and optionally description exists.

CLI Example:

salt myminion boto_apigateway.exists myapi_name

	
salt.modules.boto_apigateway.api_model_exists(restApiId, modelName, region=None, key=None, keyid=None, profile=None)

	Check to see if the given modelName exists in the given restApiId

CLI Example:

salt myminion boto_apigateway.api_model_exists restApiId modelName

	
salt.modules.boto_apigateway.associate_api_key_stagekeys(apiKey, stagekeyslist, region=None, key=None, keyid=None, profile=None)

	associate the given stagekeyslist to the given apiKey.

CLI Example:

salt myminion boto_apigateway.associate_stagekeys_api_key \
 api_key '["restapi id/stage name", ...]'

	
salt.modules.boto_apigateway.attach_usage_plan_to_apis(plan_id, apis, region=None, key=None, keyid=None, profile=None)

	Attaches given usage plan to each of the apis provided in a list of apiId and stage values

New in version 2017.7.0.

	apis
	a list of dictionaries, where each dictionary contains the following:

	apiId
	a string, which is the id of the created API in AWS ApiGateway

	stage
	a string, which is the stage that the created API is deployed to.

CLI Example:

salt myminion boto_apigateway.attach_usage_plan_to_apis plan_id='usage plan id' apis='[{"apiId": "some id 1", "stage": "some stage 1"}]'

	
salt.modules.boto_apigateway.create_api(name, description, cloneFrom=None, region=None, key=None, keyid=None, profile=None)

	Create a new REST API Service with the given name

Returns {created: True} if the rest api was created and returns
{created: False} if the rest api was not created.

CLI Example:

salt myminion boto_apigateway.create_api myapi_name api_description

	
salt.modules.boto_apigateway.create_api_deployment(restApiId, stageName, stageDescription='', description='', cacheClusterEnabled=False, cacheClusterSize='0.5', variables=None, region=None, key=None, keyid=None, profile=None)

	Creates a new API deployment.

CLI Example:

salt myminion boto_apigateway.create_api_deployent restApiId stagename stageDescription='' \
description='' cacheClusterEnabled=True|False cacheClusterSize=0.5 variables='{"name": "value"}'

	
salt.modules.boto_apigateway.create_api_integration(restApiId, resourcePath, httpMethod, integrationType, integrationHttpMethod, uri, credentials, requestParameters=None, requestTemplates=None, region=None, key=None, keyid=None, profile=None)

	Creates an integration for a given method in a given API.
If integrationType is MOCK, uri and credential parameters will be ignored.

uri is in the form of (substitute APIGATEWAY_REGION and LAMBDA_FUNC_ARN)
"arn:aws:apigateway:APIGATEWAY_REGION:lambda:path/2015-03-31/functions/LAMBDA_FUNC_ARN/invocations"

credentials is in the form of an iam role name or role arn.

CLI Example:

salt myminion boto_apigateway.create_api_integration restApiId resourcePath httpMethod \
 integrationType integrationHttpMethod uri credentials ['{}' ['{}']]

	
salt.modules.boto_apigateway.create_api_integration_response(restApiId, resourcePath, httpMethod, statusCode, selectionPattern, responseParameters=None, responseTemplates=None, region=None, key=None, keyid=None, profile=None)

	Creates an integration response for a given method in a given API

CLI Example:

salt myminion boto_apigateway.create_api_integration_response restApiId resourcePath httpMethod \
 statusCode selectionPattern ['{}' ['{}']]

	
salt.modules.boto_apigateway.create_api_key(name, description, enabled=True, stageKeys=None, region=None, key=None, keyid=None, profile=None)

	Create an API key given name and description.

An optional enabled argument can be provided. If provided, the
valid values are True|False. This argument defaults to True.

An optional stageKeys argument can be provided in the form of
list of dictionary with 'restApiId' and 'stageName' as keys.

CLI Example:

salt myminion boto_apigateway.create_api_key name description

salt myminion boto_apigateway.create_api_key name description enabled=False

salt myminion boto_apigateway.create_api_key name description \
 stageKeys='[{"restApiId": "id", "stageName": "stagename"}]'

	
salt.modules.boto_apigateway.create_api_method(restApiId, resourcePath, httpMethod, authorizationType, apiKeyRequired=False, requestParameters=None, requestModels=None, region=None, key=None, keyid=None, profile=None)

	Creates API method for a resource in the given API

CLI Example:

salt myminion boto_apigateway.create_api_method restApiId resourcePath, httpMethod, authorizationType, \
 apiKeyRequired=False, requestParameters='{"name", "value"}', requestModels='{"content-type", "value"}'

	
salt.modules.boto_apigateway.create_api_method_response(restApiId, resourcePath, httpMethod, statusCode, responseParameters=None, responseModels=None, region=None, key=None, keyid=None, profile=None)

	Create API method response for a method on a given resource in the given API

CLI Example:

salt myminion boto_apigateway.create_api_method_response restApiId resourcePath httpMethod \
 statusCode responseParameters='{"name", "True|False"}' responseModels='{"content-type", "model"}'

	
salt.modules.boto_apigateway.create_api_model(restApiId, modelName, modelDescription, schema, contentType='application/json', region=None, key=None, keyid=None, profile=None)

	Create a new model in a given API with a given schema, currently only contentType supported is
'application/json'

CLI Example:

salt myminion boto_apigateway.create_api_model restApiId modelName modelDescription '<schema>' 'content-type'

	
salt.modules.boto_apigateway.create_api_resources(restApiId, path, region=None, key=None, keyid=None, profile=None)

	Given rest api id, and an absolute resource path, create all the resources and
return all resources in the resourcepath, returns False on failure.

CLI Example:

salt myminion boto_apigateway.create_api_resources myapi_id resource_path

	
salt.modules.boto_apigateway.create_api_stage(restApiId, stageName, deploymentId, description='', cacheClusterEnabled=False, cacheClusterSize='0.5', variables=None, region=None, key=None, keyid=None, profile=None)

	Creates a new API stage for a given restApiId and deploymentId.

CLI Example:

salt myminion boto_apigateway.create_api_stage restApiId stagename deploymentId \
 description='' cacheClusterEnabled=True|False cacheClusterSize='0.5' variables='{"name": "value"}'

	
salt.modules.boto_apigateway.create_usage_plan(name, description=None, throttle=None, quota=None, region=None, key=None, keyid=None, profile=None)

	Creates a new usage plan with throttling and quotas optionally applied

New in version 2017.7.0.

	name
	Name of the usage plan

	throttle
	A dictionary consisting of the following keys:

	rateLimit
	requests per second at steady rate, float

	burstLimit
	maximum number of requests per second, integer

	quota
	A dictionary consisting of the following keys:

	limit
	number of allowed requests per specified quota period [required if quota parameter is present]

	offset
	number of requests to be subtracted from limit at the beginning of the period [optional]

	period
	quota period, must be one of DAY, WEEK, or MONTH. [required if quota parameter is present

CLI Example:

salt myminion boto_apigateway.create_usage_plan name='usage plan name' throttle='{"rateLimit": 10.0, "burstLimit": 10}'

	
salt.modules.boto_apigateway.delete_api(name, description=None, region=None, key=None, keyid=None, profile=None)

	Delete all REST API Service with the given name and an optional API description

Returns {deleted: True, count: deleted_count} if apis were deleted, and
returns {deleted: False} if error or not found.

CLI Example:

salt myminion boto_apigateway.delete_api myapi_name

salt myminion boto_apigateway.delete_api myapi_name description='api description'

	
salt.modules.boto_apigateway.delete_api_deployment(restApiId, deploymentId, region=None, key=None, keyid=None, profile=None)

	Deletes API deployment for a given restApiId and deploymentID

CLI Example:

salt myminion boto_apigateway.delete_api_deployent restApiId deploymentId

	
salt.modules.boto_apigateway.delete_api_integration(restApiId, resourcePath, httpMethod, region=None, key=None, keyid=None, profile=None)

	Deletes an integration for a given method in a given API

CLI Example:

salt myminion boto_apigateway.delete_api_integration restApiId resourcePath httpMethod

	
salt.modules.boto_apigateway.delete_api_integration_response(restApiId, resourcePath, httpMethod, statusCode, region=None, key=None, keyid=None, profile=None)

	Deletes an integration response for a given method in a given API

CLI Example:

salt myminion boto_apigateway.delete_api_integration_response restApiId resourcePath httpMethod statusCode

	
salt.modules.boto_apigateway.delete_api_key(apiKey, region=None, key=None, keyid=None, profile=None)

	Deletes a given apiKey

CLI Example:

salt myminion boto_apigateway.delete_api_key apikeystring

	
salt.modules.boto_apigateway.delete_api_method(restApiId, resourcePath, httpMethod, region=None, key=None, keyid=None, profile=None)

	Delete API method for a resource in the given API

CLI Example:

salt myminion boto_apigateway.delete_api_method restApiId resourcePath httpMethod

	
salt.modules.boto_apigateway.delete_api_method_response(restApiId, resourcePath, httpMethod, statusCode, region=None, key=None, keyid=None, profile=None)

	Delete API method response for a resource in the given API

CLI Example:

salt myminion boto_apigateway.delete_api_method_response restApiId resourcePath httpMethod statusCode

	
salt.modules.boto_apigateway.delete_api_model(restApiId, modelName, region=None, key=None, keyid=None, profile=None)

	Delete a model identified by name in a given API

CLI Example:

salt myminion boto_apigateway.delete_api_model restApiId modelName

	
salt.modules.boto_apigateway.delete_api_resources(restApiId, path, region=None, key=None, keyid=None, profile=None)

	Given restApiId and an absolute resource path, delete the resources starting
from the absolute resource path. If resourcepath is the root resource '/',
the function will return False. Returns False on failure.

CLI Example:

salt myminion boto_apigateway.delete_api_resources myapi_id, resource_path

	
salt.modules.boto_apigateway.delete_api_stage(restApiId, stageName, region=None, key=None, keyid=None, profile=None)

	Deletes stage identified by stageName from API identified by restApiId

CLI Example:

salt myminion boto_apigateway.delete_api_stage restApiId stageName

	
salt.modules.boto_apigateway.delete_usage_plan(plan_id, region=None, key=None, keyid=None, profile=None)

	Deletes usage plan identified by plan_id

New in version 2017.7.0.

CLI Example:

salt myminion boto_apigateway.delete_usage_plan plan_id='usage plan id'

	
salt.modules.boto_apigateway.describe_api_deployment(restApiId, deploymentId, region=None, key=None, keyid=None, profile=None)

	Get API deployment for a given restApiId and deploymentId.

CLI Example:

salt myminion boto_apigateway.describe_api_deployent restApiId deploymentId

	
salt.modules.boto_apigateway.describe_api_deployments(restApiId, region=None, key=None, keyid=None, profile=None)

	Gets information about the defined API Deployments. Return list of api deployments.

CLI Example:

salt myminion boto_apigateway.describe_api_deployments restApiId

	
salt.modules.boto_apigateway.describe_api_integration(restApiId, resourcePath, httpMethod, region=None, key=None, keyid=None, profile=None)

	Get an integration for a given method in a given API

CLI Example:

salt myminion boto_apigateway.describe_api_integration restApiId resourcePath httpMethod

	
salt.modules.boto_apigateway.describe_api_integration_response(restApiId, resourcePath, httpMethod, statusCode, region=None, key=None, keyid=None, profile=None)

	Get an integration response for a given method in a given API

CLI Example:

salt myminion boto_apigateway.describe_api_integration_response restApiId resourcePath httpMethod statusCode

	
salt.modules.boto_apigateway.describe_api_key(apiKey, region=None, key=None, keyid=None, profile=None)

	Gets info about the given api key

CLI Example:

salt myminion boto_apigateway.describe_api_key apigw_api_key

	
salt.modules.boto_apigateway.describe_api_keys(region=None, key=None, keyid=None, profile=None)

	Gets information about the defined API Keys. Return list of apiKeys.

CLI Example:

salt myminion boto_apigateway.describe_api_keys

	
salt.modules.boto_apigateway.describe_api_method(restApiId, resourcePath, httpMethod, region=None, key=None, keyid=None, profile=None)

	Get API method for a resource in the given API

CLI Example:

salt myminion boto_apigateway.describe_api_method restApiId resourcePath httpMethod

	
salt.modules.boto_apigateway.describe_api_method_response(restApiId, resourcePath, httpMethod, statusCode, region=None, key=None, keyid=None, profile=None)

	Get API method response for a resource in the given API

CLI Example:

salt myminion boto_apigateway.describe_api_method_response restApiId resourcePath httpMethod statusCode

	
salt.modules.boto_apigateway.describe_api_model(restApiId, modelName, flatten=True, region=None, key=None, keyid=None, profile=None)

	Get a model by name for a given API

CLI Example:

salt myminion boto_apigateway.describe_api_model restApiId modelName [True]

	
salt.modules.boto_apigateway.describe_api_models(restApiId, region=None, key=None, keyid=None, profile=None)

	Get all models for a given API

CLI Example:

salt myminion boto_apigateway.describe_api_models restApiId

	
salt.modules.boto_apigateway.describe_api_resource(restApiId, path, region=None, key=None, keyid=None, profile=None)

	Given rest api id, and an absolute resource path, returns the resource id for
the given path.

CLI Example:

salt myminion boto_apigateway.describe_api_resource myapi_id resource_path

	
salt.modules.boto_apigateway.describe_api_resource_method(restApiId, resourcePath, httpMethod, region=None, key=None, keyid=None, profile=None)

	Given rest api id, resource path, and http method (must be one of DELETE,
GET, HEAD, OPTIONS, PATCH, POST, PUT), return the method for the
api/resource path if defined. Return False if method is not defined.

CLI Example:

salt myminion boto_apigateway.describe_api_resource_method myapi_id resource_path httpmethod

	
salt.modules.boto_apigateway.describe_api_resources(restApiId, region=None, key=None, keyid=None, profile=None)

	Given rest api id, return all resources for this api.

CLI Example:

salt myminion boto_apigateway.describe_api_resources myapi_id

	
salt.modules.boto_apigateway.describe_api_stage(restApiId, stageName, region=None, key=None, keyid=None, profile=None)

	Get API stage for a given apiID and stage name

CLI Example:

salt myminion boto_apigateway.describe_api_stage restApiId stageName

	
salt.modules.boto_apigateway.describe_api_stages(restApiId, deploymentId, region=None, key=None, keyid=None, profile=None)

	Get all API stages for a given apiID and deploymentID

CLI Example:

salt myminion boto_apigateway.describe_api_stages restApiId deploymentId

	
salt.modules.boto_apigateway.describe_apis(name=None, description=None, region=None, key=None, keyid=None, profile=None)

	Returns all rest apis in the defined region. If optional parameter name is included,
returns all rest apis matching the name in the defined region.

CLI Example:

salt myminion boto_apigateway.describe_apis

salt myminion boto_apigateway.describe_apis name='api name'

salt myminion boto_apigateway.describe_apis name='api name' description='desc str'

	
salt.modules.boto_apigateway.describe_usage_plans(name=None, plan_id=None, region=None, key=None, keyid=None, profile=None)

	Returns a list of existing usage plans, optionally filtered to match a given plan name

New in version 2017.7.0.

CLI Example:

salt myminion boto_apigateway.describe_usage_plans
salt myminion boto_apigateway.describe_usage_plans name='usage plan name'
salt myminion boto_apigateway.describe_usage_plans plan_id='usage plan id'

	
salt.modules.boto_apigateway.detach_usage_plan_from_apis(plan_id, apis, region=None, key=None, keyid=None, profile=None)

	Detaches given usage plan from each of the apis provided in a list of apiId and stage value

New in version 2017.7.0.

	apis
	a list of dictionaries, where each dictionary contains the following:

	apiId
	a string, which is the id of the created API in AWS ApiGateway

	stage
	a string, which is the stage that the created API is deployed to.

CLI Example:

salt myminion boto_apigateway.detach_usage_plan_to_apis plan_id='usage plan id' apis='[{"apiId": "some id 1", "stage": "some stage 1"}]'

	
salt.modules.boto_apigateway.disable_api_key(apiKey, region=None, key=None, keyid=None, profile=None)

	disable the given apiKey.

CLI Example:

salt myminion boto_apigateway.enable_api_key api_key

	
salt.modules.boto_apigateway.disassociate_api_key_stagekeys(apiKey, stagekeyslist, region=None, key=None, keyid=None, profile=None)

	disassociate the given stagekeyslist to the given apiKey.

CLI Example:

salt myminion boto_apigateway.disassociate_stagekeys_api_key \
 api_key '["restapi id/stage name", ...]'

	
salt.modules.boto_apigateway.enable_api_key(apiKey, region=None, key=None, keyid=None, profile=None)

	enable the given apiKey.

CLI Example:

salt myminion boto_apigateway.enable_api_key api_key

	
salt.modules.boto_apigateway.flush_api_stage_cache(restApiId, stageName, region=None, key=None, keyid=None, profile=None)

	Flushes cache for the stage identified by stageName from API identified by restApiId

CLI Example:

salt myminion boto_apigateway.flush_api_stage_cache restApiId stageName

	
salt.modules.boto_apigateway.overwrite_api_stage_variables(restApiId, stageName, variables, region=None, key=None, keyid=None, profile=None)

	Overwrite the stage variables for the given restApiId and stage name with the given variables,
variables must be in the form of a dictionary. Overwrite will always remove all the existing
stage variables associated with the given restApiId and stage name, follow by the adding of all the
variables specified in the variables dictionary

CLI Example:

salt myminion boto_apigateway.overwrite_api_stage_variables restApiId stageName variables='{"name": "value"}'

	
salt.modules.boto_apigateway.update_api_key_description(apiKey, description, region=None, key=None, keyid=None, profile=None)

	update the given apiKey with the given description.

CLI Example:

salt myminion boto_apigateway.update_api_key_description api_key description

	
salt.modules.boto_apigateway.update_api_model_schema(restApiId, modelName, schema, region=None, key=None, keyid=None, profile=None)

	update the schema (in python dictionary format) for the given model in the given restApiId

CLI Example:

salt myminion boto_apigateway.update_api_model_schema restApiId modelName schema

	
salt.modules.boto_apigateway.update_usage_plan(plan_id, throttle=None, quota=None, region=None, key=None, keyid=None, profile=None)

	Updates an existing usage plan with throttling and quotas

New in version 2017.7.0.

	plan_id
	Id of the created usage plan

	throttle
	A dictionary consisting of the following keys:

	rateLimit
	requests per second at steady rate, float

	burstLimit
	maximum number of requests per second, integer

	quota
	A dictionary consisting of the following keys:

	limit
	number of allowed requests per specified quota period [required if quota parameter is present]

	offset
	number of requests to be subtracted from limit at the beginning of the period [optional]

	period
	quota period, must be one of DAY, WEEK, or MONTH. [required if quota parameter is present

CLI Example:

salt myminion boto_apigateway.update_usage_plan plan_id='usage plan id' throttle='{"rateLimit": 10.0, "burstLimit": 10}'

salt.modules.boto_asg

Connection module for Amazon Autoscale Groups

New in version 2014.7.0.

	configuration:

	This module accepts explicit autoscale credentials but can also
utilize IAM roles assigned to the instance through Instance Profiles.
Dynamic credentials are then automatically obtained from AWS API and no
further configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

asg.keyid: GKTADJGHEIQSXMKKRBJ08H
asg.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

asg.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

	depends:

	boto

	depends:

	boto3

	
salt.modules.boto_asg.create(name, launch_config_name, availability_zones, min_size, max_size, desired_capacity=None, load_balancers=None, default_cooldown=None, health_check_type=None, health_check_period=None, placement_group=None, vpc_zone_identifier=None, tags=None, termination_policies=None, suspended_processes=None, scaling_policies=None, scheduled_actions=None, region=None, notification_arn=None, notification_types=None, key=None, keyid=None, profile=None)

	Create an autoscale group.

CLI Example:

salt myminion boto_asg.create myasg mylc '["us-east-1a", "us-east-1e"]' 1 10 load_balancers='["myelb", "myelb2"]' tags='[{"key": "Name", value="myasg", "propagate_at_launch": True}]'

	
salt.modules.boto_asg.create_launch_configuration(name, image_id, key_name=None, vpc_id=None, vpc_name=None, security_groups=None, user_data=None, instance_type='m1.small', kernel_id=None, ramdisk_id=None, block_device_mappings=None, instance_monitoring=False, spot_price=None, instance_profile_name=None, ebs_optimized=False, associate_public_ip_address=None, volume_type=None, delete_on_termination=True, iops=None, use_block_device_types=False, region=None, key=None, keyid=None, profile=None)

	Create a launch configuration.

CLI Example:

salt myminion boto_asg.create_launch_configuration mylc image_id=ami-0b9c9f62 key_name='mykey' security_groups='["mygroup"]' instance_type='c3.2xlarge'

	
salt.modules.boto_asg.delete(name, force=False, region=None, key=None, keyid=None, profile=None)

	Delete an autoscale group.

CLI Example:

salt myminion boto_asg.delete myasg region=us-east-1

	
salt.modules.boto_asg.delete_launch_configuration(name, region=None, key=None, keyid=None, profile=None)

	Delete a launch configuration.

CLI Example:

salt myminion boto_asg.delete_launch_configuration mylc

	
salt.modules.boto_asg.describe_launch_configuration(name, region=None, key=None, keyid=None, profile=None)

	Dump details of a given launch configuration.

CLI Example:

salt myminion boto_asg.describe_launch_configuration mylc

	
salt.modules.boto_asg.enter_standby(name, instance_ids, should_decrement_desired_capacity=False, region=None, key=None, keyid=None, profile=None)

	Switch desired instances to StandBy mode

New in version 2016.11.0.

CLI Example:

salt-call boto_asg.enter_standby my_autoscale_group_name '["i-xxxxxx"]'

	
salt.modules.boto_asg.exists(name, region=None, key=None, keyid=None, profile=None)

	Check to see if an autoscale group exists.

CLI Example:

salt myminion boto_asg.exists myasg region=us-east-1

	
salt.modules.boto_asg.exit_standby(name, instance_ids, should_decrement_desired_capacity=False, region=None, key=None, keyid=None, profile=None)

	Exit desired instances from StandBy mode

New in version 2016.11.0.

CLI Example:

salt-call boto_asg.exit_standby my_autoscale_group_name '["i-xxxxxx"]'

	
salt.modules.boto_asg.get_all_groups(region=None, key=None, keyid=None, profile=None)

	Return all AutoScale Groups visible in the account
(as a list of boto.ec2.autoscale.group.AutoScalingGroup).

New in version 2016.11.0.

CLI Example:

salt-call boto_asg.get_all_groups region=us-east-1 --output yaml

	
salt.modules.boto_asg.get_all_launch_configurations(region=None, key=None, keyid=None, profile=None)

	Fetch and return all Launch Configuration with details.

CLI Example:

salt myminion boto_asg.get_all_launch_configurations

	
salt.modules.boto_asg.get_cloud_init_mime(cloud_init)

	Get a mime multipart encoded string from a cloud-init dict. Currently
supports boothooks, scripts and cloud-config.

CLI Example:

salt myminion boto.get_cloud_init_mime <cloud init>

	
salt.modules.boto_asg.get_config(name, region=None, key=None, keyid=None, profile=None)

	Get the configuration for an autoscale group.

CLI Example:

salt myminion boto_asg.get_config myasg region=us-east-1

	
salt.modules.boto_asg.get_instances(name, lifecycle_state='InService', health_status='Healthy', attribute='private_ip_address', attributes=None, region=None, key=None, keyid=None, profile=None)

	return attribute of all instances in the named autoscale group.

CLI Example:

salt-call boto_asg.get_instances my_autoscale_group_name

	
salt.modules.boto_asg.get_scaling_policy_arn(as_group, scaling_policy_name, region=None, key=None, keyid=None, profile=None)

	Return the arn for a scaling policy in a specific autoscale group or None
if not found. Mainly used as a helper method for boto_cloudwatch_alarm, for
linking alarms to scaling policies.

CLI Example:

salt '*' boto_asg.get_scaling_policy_arn mygroup mypolicy

	
salt.modules.boto_asg.launch_configuration_exists(name, region=None, key=None, keyid=None, profile=None)

	Check for a launch configuration's existence.

CLI Example:

salt myminion boto_asg.launch_configuration_exists mylc

	
salt.modules.boto_asg.list_groups(region=None, key=None, keyid=None, profile=None)

	Return all AutoScale Groups visible in the account
(as a list of names).

New in version 2016.11.0.

CLI Example:

salt-call boto_asg.list_groups region=us-east-1

	
salt.modules.boto_asg.list_launch_configurations(region=None, key=None, keyid=None, profile=None)

	List all Launch Configurations.

CLI Example:

salt myminion boto_asg.list_launch_configurations

	
salt.modules.boto_asg.update(name, launch_config_name, availability_zones, min_size, max_size, desired_capacity=None, load_balancers=None, default_cooldown=None, health_check_type=None, health_check_period=None, placement_group=None, vpc_zone_identifier=None, tags=None, termination_policies=None, suspended_processes=None, scaling_policies=None, scheduled_actions=None, notification_arn=None, notification_types=None, region=None, key=None, keyid=None, profile=None)

	Update an autoscale group.

CLI Example:

salt myminion boto_asg.update myasg mylc '["us-east-1a", "us-east-1e"]' 1 10 load_balancers='["myelb", "myelb2"]' tags='[{"key": "Name", value="myasg", "propagate_at_launch": True}]'

salt.modules.boto_cfn

Connection module for Amazon Cloud Formation

New in version 2015.5.0.

	configuration:

	This module accepts explicit AWS credentials but can also utilize
IAM roles assigned to the instance through Instance Profiles. Dynamic
credentials are then automatically obtained from AWS API and no further
configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

cfn.keyid: GKTADJGHEIQSXMKKRBJ08H
cfn.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

cfn.region: us-east-1

	depends:

	boto

	
salt.modules.boto_cfn.create(name, template_body=None, template_url=None, parameters=None, notification_arns=None, disable_rollback=None, timeout_in_minutes=None, capabilities=None, tags=None, on_failure=None, stack_policy_body=None, stack_policy_url=None, region=None, key=None, keyid=None, profile=None)

	Create a CFN stack.

CLI Example:

salt myminion boto_cfn.create mystack template_url='https://s3.amazonaws.com/bucket/template.cft' region=us-east-1

	
salt.modules.boto_cfn.delete(name, region=None, key=None, keyid=None, profile=None)

	Delete a CFN stack.

CLI Example:

salt myminion boto_cfn.delete mystack region=us-east-1

	
salt.modules.boto_cfn.describe(name, region=None, key=None, keyid=None, profile=None)

	Describe a stack.

New in version 2015.8.0.

CLI Example:

salt myminion boto_cfn.describe mystack region=us-east-1

	
salt.modules.boto_cfn.exists(name, region=None, key=None, keyid=None, profile=None)

	Check to see if a stack exists.

CLI Example:

salt myminion boto_cfn.exists mystack region=us-east-1

	
salt.modules.boto_cfn.get_template(name, region=None, key=None, keyid=None, profile=None)

	Check to see if attributes are set on a CFN stack.

CLI Example:

salt myminion boto_cfn.get_template mystack

	
salt.modules.boto_cfn.update_stack(name, template_body=None, template_url=None, parameters=None, notification_arns=None, disable_rollback=False, timeout_in_minutes=None, capabilities=None, tags=None, use_previous_template=None, stack_policy_during_update_body=None, stack_policy_during_update_url=None, stack_policy_body=None, stack_policy_url=None, region=None, key=None, keyid=None, profile=None)

	Update a CFN stack.

New in version 2015.8.0.

CLI Example:

salt myminion boto_cfn.update_stack mystack template_url='https://s3.amazonaws.com/bucket/template.cft' region=us-east-1

	
salt.modules.boto_cfn.validate_template(template_body=None, template_url=None, region=None, key=None, keyid=None, profile=None)

	Validate cloudformation template

New in version 2015.8.0.

CLI Example:

salt myminion boto_cfn.validate_template mystack-template

salt.modules.boto_cloudfront

Connection module for Amazon CloudFront

New in version 2018.3.0.

	depends:

	boto3

	configuration:

	This module accepts explicit AWS credentials but can also
utilize IAM roles assigned to the instance through Instance Profiles or
it can read them from the ~/.aws/credentials file or from these
environment variables: AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY.
Dynamic credentials are then automatically obtained from AWS API and no
further configuration is necessary. More information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
 iam-roles-for-amazon-ec2.html

http://boto3.readthedocs.io/en/latest/guide/
 configuration.html#guide-configuration

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

cloudfront.keyid: GKTADJGHEIQSXMKKRBJ08H
cloudfront.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

cloudfront.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

	
salt.modules.boto_cloudfront.create_distribution(name, config, tags=None, region=None, key=None, keyid=None, profile=None)

	Create a CloudFront distribution with the given name, config, and (optionally) tags.

	name
	Name for the CloudFront distribution

	config
	Configuration for the distribution

	tags
	Tags to associate with the distribution

	region
	Region to connect to

	key
	Secret key to use

	keyid
	Access key to use

	profile
	A dict with region, key, and keyid,
or a pillar key (string) that contains such a dict.

CLI Example:

salt myminion boto_cloudfront.create_distribution name=mydistribution profile=awsprofile config='{"Comment":"partial configuration","Enabled":true}'

	
salt.modules.boto_cloudfront.export_distributions(region=None, key=None, keyid=None, profile=None)

	Get details of all CloudFront distributions.
Produces results that can be used to create an SLS file.

CLI Example:

salt-call boto_cloudfront.export_distributions --out=txt | sed "s/local: //" > cloudfront_distributions.sls

	
salt.modules.boto_cloudfront.get_distribution(name, region=None, key=None, keyid=None, profile=None)

	Get information about a CloudFront distribution (configuration, tags) with a given name.

	name
	Name of the CloudFront distribution

	region
	Region to connect to

	key
	Secret key to use

	keyid
	Access key to use

	profile
	A dict with region, key, and keyid,
or a pillar key (string) that contains such a dict.

CLI Example:

salt myminion boto_cloudfront.get_distribution name=mydistribution profile=awsprofile

	
salt.modules.boto_cloudfront.update_distribution(name, config, tags=None, region=None, key=None, keyid=None, profile=None)

	Update the config (and optionally tags) for the CloudFront distribution with the given name.

	name
	Name of the CloudFront distribution

	config
	Configuration for the distribution

	tags
	Tags to associate with the distribution

	region
	Region to connect to

	key
	Secret key to use

	keyid
	Access key to use

	profile
	A dict with region, key, and keyid,
or a pillar key (string) that contains such a dict.

CLI Example:

salt myminion boto_cloudfront.update_distribution name=mydistribution profile=awsprofile config='{"Comment":"partial configuration","Enabled":true}'

salt.modules.boto_cloudtrail

Connection module for Amazon CloudTrail

New in version 2016.3.0.

	depends:

	
	boto

	boto3

The dependencies listed above can be installed via package or pip.

	configuration:

	This module accepts explicit Lambda credentials but can also
utilize IAM roles assigned to the instance through Instance Profiles.
Dynamic credentials are then automatically obtained from AWS API and no
further configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

cloudtrail.keyid: GKTADJGHEIQSXMKKRBJ08H
cloudtrail.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

cloudtrail.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

	
salt.modules.boto_cloudtrail.add_tags(Name, region=None, key=None, keyid=None, profile=None, **kwargs)

	Add tags to a trail

Returns {tagged: true} if the trail was tagged and returns
{tagged: False} if the trail was not tagged.

CLI Example:

salt myminion boto_cloudtrail.add_tags my_trail tag_a=tag_value tag_b=tag_value

	
salt.modules.boto_cloudtrail.create(Name, S3BucketName, S3KeyPrefix=None, SnsTopicName=None, IncludeGlobalServiceEvents=None, IsMultiRegionTrail=None, EnableLogFileValidation=None, CloudWatchLogsLogGroupArn=None, CloudWatchLogsRoleArn=None, KmsKeyId=None, region=None, key=None, keyid=None, profile=None)

	Given a valid config, create a trail.

Returns {created: true} if the trail was created and returns
{created: False} if the trail was not created.

CLI Example:

salt myminion boto_cloudtrail.create my_trail my_bucket

	
salt.modules.boto_cloudtrail.delete(Name, region=None, key=None, keyid=None, profile=None)

	Given a trail name, delete it.

Returns {deleted: true} if the trail was deleted and returns
{deleted: false} if the trail was not deleted.

CLI Example:

salt myminion boto_cloudtrail.delete mytrail

	
salt.modules.boto_cloudtrail.describe(Name, region=None, key=None, keyid=None, profile=None)

	Given a trail name describe its properties.

Returns a dictionary of interesting properties.

CLI Example:

salt myminion boto_cloudtrail.describe mytrail

	
salt.modules.boto_cloudtrail.exists(Name, region=None, key=None, keyid=None, profile=None)

	Given a trail name, check to see if the given trail exists.

Returns True if the given trail exists and returns False if the given
trail does not exist.

CLI Example:

salt myminion boto_cloudtrail.exists mytrail

	
salt.modules.boto_cloudtrail.list(region=None, key=None, keyid=None, profile=None)

	List all trails

Returns list of trails

CLI Example:

policies:
 - {...}
 - {...}

	
salt.modules.boto_cloudtrail.list_tags(Name, region=None, key=None, keyid=None, profile=None)

	List tags of a trail

	Returns:

	
	{...}

	{...}

	Return type:

	tags

CLI Example:

salt myminion boto_cloudtrail.list_tags my_trail

	
salt.modules.boto_cloudtrail.remove_tags(Name, region=None, key=None, keyid=None, profile=None, **kwargs)

	Remove tags from a trail

Returns {tagged: true} if the trail was tagged and returns
{tagged: False} if the trail was not tagged.

CLI Example:

salt myminion boto_cloudtrail.remove_tags my_trail tag_a=tag_value tag_b=tag_value

	
salt.modules.boto_cloudtrail.start_logging(Name, region=None, key=None, keyid=None, profile=None)

	Start logging for a trail

Returns {started: true} if the trail was started and returns
{started: False} if the trail was not started.

CLI Example:

salt myminion boto_cloudtrail.start_logging my_trail

	
salt.modules.boto_cloudtrail.status(Name, region=None, key=None, keyid=None, profile=None)

	Given a trail name describe its properties.

Returns a dictionary of interesting properties.

CLI Example:

salt myminion boto_cloudtrail.describe mytrail

	
salt.modules.boto_cloudtrail.stop_logging(Name, region=None, key=None, keyid=None, profile=None)

	Stop logging for a trail

Returns {stopped: true} if the trail was stopped and returns
{stopped: False} if the trail was not stopped.

CLI Example:

salt myminion boto_cloudtrail.stop_logging my_trail

	
salt.modules.boto_cloudtrail.update(Name, S3BucketName, S3KeyPrefix=None, SnsTopicName=None, IncludeGlobalServiceEvents=None, IsMultiRegionTrail=None, EnableLogFileValidation=None, CloudWatchLogsLogGroupArn=None, CloudWatchLogsRoleArn=None, KmsKeyId=None, region=None, key=None, keyid=None, profile=None)

	Given a valid config, update a trail.

Returns {created: true} if the trail was created and returns
{created: False} if the trail was not created.

CLI Example:

salt myminion boto_cloudtrail.update my_trail my_bucket

salt.modules.boto_cloudwatch

Connection module for Amazon CloudWatch

New in version 2014.7.0.

	configuration:

	This module accepts explicit credentials but can also utilize
IAM roles assigned to the instance through Instance Profiles. Dynamic
credentials are then automatically obtained from AWS API and no further
configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

cloudwatch.keyid: GKTADJGHEIQSXMKKRBJ08H
cloudwatch.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

cloudwatch.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

	depends:

	boto

	
salt.modules.boto_cloudwatch.convert_to_arn(arns, region=None, key=None, keyid=None, profile=None)

	Convert a list of strings into actual arns. Converts convenience names such
as 'scaling_policy:...'

CLI Example:

salt '*' convert_to_arn 'scaling_policy:'

	
salt.modules.boto_cloudwatch.create_or_update_alarm(connection=None, name=None, metric=None, namespace=None, statistic=None, comparison=None, threshold=None, period=None, evaluation_periods=None, unit=None, description='', dimensions=None, alarm_actions=None, insufficient_data_actions=None, ok_actions=None, region=None, key=None, keyid=None, profile=None)

	Create or update a cloudwatch alarm.

	Params are the same as:
	https://boto.readthedocs.io/en/latest/ref/cloudwatch.html#boto.ec2.cloudwatch.alarm.MetricAlarm.

Dimensions must be a dict. If the value of Dimensions is a string, it will
be json decoded to produce a dict. alarm_actions, insufficient_data_actions,
and ok_actions must be lists of string. If the passed-in value is a string,
it will be split on "," to produce a list. The strings themselves for
alarm_actions, insufficient_data_actions, and ok_actions must be Amazon
resource names (ARN's); however, this method also supports an arn lookup
notation, as follows:

arn:aws:.... ARN as per http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
scaling_policy:<as_name>:<scaling_policy_name> The named autoscale group scaling policy, for the named group (e.g. scaling_policy:my-asg:ScaleDown)

This is convenient for setting up autoscaling as follows. First specify a
boto_asg.present state for an ASG with scaling_policies, and then set up
boto_cloudwatch_alarm.present states which have alarm_actions that
reference the scaling_policy.

CLI Example:

salt myminion boto_cloudwatch.create_alarm name=myalarm ... region=us-east-1

	
salt.modules.boto_cloudwatch.delete_alarm(name, region=None, key=None, keyid=None, profile=None)

	Delete a cloudwatch alarm

CLI example to delete a queue:

salt myminion boto_cloudwatch.delete_alarm myalarm region=us-east-1

	
salt.modules.boto_cloudwatch.get_alarm(name, region=None, key=None, keyid=None, profile=None)

	Get alarm details. Also can be used to check to see if an alarm exists.

CLI Example:

salt myminion boto_cloudwatch.get_alarm myalarm region=us-east-1

	
salt.modules.boto_cloudwatch.get_all_alarms(region=None, prefix=None, key=None, keyid=None, profile=None)

	Get all alarm details. Produces results that can be used to create an sls
file.

If prefix parameter is given, alarm names in the output will be prepended
with the prefix; alarms that have the prefix will be skipped. This can be
used to convert existing alarms to be managed by salt, as follows:

	
	Make a "backup" of all existing alarms
	$ salt-call boto_cloudwatch.get_all_alarms --out=txt | sed "s/local: //" > legacy_alarms.sls

	
	Get all alarms with new prefixed names
	$ salt-call boto_cloudwatch.get_all_alarms "prefix=**MANAGED BY SALT** " --out=txt | sed "s/local: //" > managed_alarms.sls

	
	Insert the managed alarms into cloudwatch
	$ salt-call state.template managed_alarms.sls

	Manually verify that the new alarms look right

	Delete the original alarms
$ sed s/present/absent/ legacy_alarms.sls > remove_legacy_alarms.sls
$ salt-call state.template remove_legacy_alarms.sls

	Get all alarms again, verify no changes
$ salt-call boto_cloudwatch.get_all_alarms --out=txt | sed "s/local: //" > final_alarms.sls
$ diff final_alarms.sls managed_alarms.sls

CLI Example:

salt myminion boto_cloudwatch.get_all_alarms region=us-east-1 --out=txt

salt.modules.boto_cloudwatch_event

Connection module for Amazon CloudWatch Events

New in version 2016.11.0.

	configuration:

	This module accepts explicit credentials but can also utilize
IAM roles assigned to the instance through Instance Profiles. Dynamic
credentials are then automatically obtained from AWS API and no further
configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

cloudwatch_event.keyid: GKTADJGHEIQSXMKKRBJ08H
cloudwatch_event.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

cloudwatch_event.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

	depends:

	boto3

	
salt.modules.boto_cloudwatch_event.create_or_update(Name, ScheduleExpression=None, EventPattern=None, Description=None, RoleArn=None, State=None, region=None, key=None, keyid=None, profile=None)

	Given a valid config, create an event rule.

Returns {created: true} if the rule was created and returns
{created: False} if the rule was not created.

CLI Example:

salt myminion boto_cloudwatch_event.create_or_update my_rule

	
salt.modules.boto_cloudwatch_event.delete(Name, region=None, key=None, keyid=None, profile=None)

	Given a rule name, delete it.

Returns {deleted: true} if the rule was deleted and returns
{deleted: false} if the rule was not deleted.

CLI Example:

salt myminion boto_cloudwatch_event.delete myrule

	
salt.modules.boto_cloudwatch_event.describe(Name, region=None, key=None, keyid=None, profile=None)

	Given a rule name describe its properties.

Returns a dictionary of interesting properties.

CLI Example:

salt myminion boto_cloudwatch_event.describe myrule

	
salt.modules.boto_cloudwatch_event.exists(Name, region=None, key=None, keyid=None, profile=None)

	Given a rule name, check to see if the given rule exists.

Returns True if the given rule exists and returns False if the given
rule does not exist.

CLI Example:

salt myminion boto_cloudwatch_event.exists myevent region=us-east-1

	
salt.modules.boto_cloudwatch_event.list_rules(region=None, key=None, keyid=None, profile=None)

	List, with details, all Cloudwatch Event rules visible in the current scope.

CLI Example:

salt myminion boto_cloudwatch_event.list_rules region=us-east-1

	
salt.modules.boto_cloudwatch_event.list_targets(Rule, region=None, key=None, keyid=None, profile=None)

	Given a rule name list the targets of that rule.

Returns a dictionary of interesting properties.

CLI Example:

salt myminion boto_cloudwatch_event.list_targets myrule

	
salt.modules.boto_cloudwatch_event.put_targets(Rule, Targets, region=None, key=None, keyid=None, profile=None)

	Add the given targets to the given rule

Returns a dictionary describing any failures.

CLI Example:

salt myminion boto_cloudwatch_event.put_targets myrule [{'Id': 'target1', 'Arn': 'arn:***'}]

	
salt.modules.boto_cloudwatch_event.remove_targets(Rule, Ids, region=None, key=None, keyid=None, profile=None)

	Given a rule name remove the named targets from the target list

Returns a dictionary describing any failures.

CLI Example:

salt myminion boto_cloudwatch_event.remove_targets myrule ['Target1']

salt.modules.boto_cognitoidentity

Connection module for Amazon CognitoIdentity

New in version 2016.11.0.

	configuration:

	This module accepts explicit CognitoIdentity credentials but can also
utilize IAM roles assigned to the instance trough Instance Profiles.
Dynamic credentials are then automatically obtained from AWS API and no
further configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

cognitoidentity.keyid: GKTADJGHEIQSXMKKRBJ08H
cognitoidentity.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

cognitoidentity.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

Changed in version 2015.8.0: All methods now return a dictionary. Create, delete, set, and
update methods return:

created: true

or

created: false
error:
 message: error message

Request methods (e.g., describe_identity_pools) return:

identity_pools:
 - {...}
 - {...}

or

error:
 message: error message

	depends:

	boto3

	
salt.modules.boto_cognitoidentity.create_identity_pool(IdentityPoolName, AllowUnauthenticatedIdentities=False, SupportedLoginProviders=None, DeveloperProviderName=None, OpenIdConnectProviderARNs=None, region=None, key=None, keyid=None, profile=None)

	Creates a new identity pool. All parameters except for IdentityPoolName is optional.
SupportedLoginProviders should be a dictionary mapping provider names to provider app
IDs. OpenIdConnectProviderARNs should be a list of OpenID Connect provider ARNs.

Returns the created identity pool if successful

CLI Example:

salt myminion boto_cognitoidentity.create_identity_pool my_id_pool_name DeveloperProviderName=custom_developer_provider

	
salt.modules.boto_cognitoidentity.delete_identity_pools(IdentityPoolName, IdentityPoolId=None, region=None, key=None, keyid=None, profile=None)

	Given an identity pool name, (optionally if an identity pool id is given,
the given name will be ignored)

Deletes all identity pools matching the given name, or the specific identity pool with
the given identity pool id.

CLI Example:

salt myminion boto_cognitoidentity.delete_identity_pools my_id_pool_name
salt myminion boto_cognitoidentity.delete_identity_pools '' IdentityPoolId=my_id_pool_id

	
salt.modules.boto_cognitoidentity.describe_identity_pools(IdentityPoolName, IdentityPoolId=None, region=None, key=None, keyid=None, profile=None)

	Given an identity pool name, (optionally if an identity pool id is given,
the given name will be ignored)

Returns a list of matched identity pool name's pool properties

CLI Example:

salt myminion boto_cognitoidentity.describe_identity_pools my_id_pool_name
salt myminion boto_cognitoidentity.describe_identity_pools '' IdentityPoolId=my_id_pool_id

	
salt.modules.boto_cognitoidentity.get_identity_pool_roles(IdentityPoolName, IdentityPoolId=None, region=None, key=None, keyid=None, profile=None)

	Given an identity pool name, (optionally if an identity pool id if given,
the given name will be ignored)

Returns a list of matched identity pool name's associated roles

CLI Example:

salt myminion boto_cognitoidentity.get_identity_pool_roles my_id_pool_name
salt myminion boto_cognitoidentity.get_identity_pool_roles '' IdentityPoolId=my_id_pool_id

	
salt.modules.boto_cognitoidentity.set_identity_pool_roles(IdentityPoolId, AuthenticatedRole=None, UnauthenticatedRole=None, region=None, key=None, keyid=None, profile=None)

	Given an identity pool id, set the given AuthenticatedRole and UnauthenticatedRole (the Role
can be an iam arn, or a role name) If AuthenticatedRole or UnauthenticatedRole is not given,
the authenticated and/or the unauthenticated role associated previously with the pool will be
cleared.

Returns set True if successful, set False if unsuccessful with the associated errors.

CLI Example:

salt myminion boto_cognitoidentity.set_identity_pool_roles my_id_pool_roles # this clears the roles
salt myminion boto_cognitoidentity.set_identity_pool_roles my_id_pool_id AuthenticatedRole=my_auth_role UnauthenticatedRole=my_unauth_role # this set both roles
salt myminion boto_cognitoidentity.set_identity_pool_roles my_id_pool_id AuthenticatedRole=my_auth_role # this will set the auth role and clear the unauth role
salt myminion boto_cognitoidentity.set_identity_pool_roles my_id_pool_id UnauthenticatedRole=my_unauth_role # this will set the unauth role and clear the auth role

	
salt.modules.boto_cognitoidentity.update_identity_pool(IdentityPoolId, IdentityPoolName=None, AllowUnauthenticatedIdentities=False, SupportedLoginProviders=None, DeveloperProviderName=None, OpenIdConnectProviderARNs=None, region=None, key=None, keyid=None, profile=None)

	Updates the given IdentityPoolId's properties. All parameters except for IdentityPoolId,
is optional. SupportedLoginProviders should be a dictionary mapping provider names to
provider app IDs. OpenIdConnectProviderARNs should be a list of OpenID Connect provider
ARNs.

To clear SupportedLoginProviders pass '{}'

To clear OpenIdConnectProviderARNs pass '[]'

boto3 api prevents DeveloperProviderName to be updated after it has been set for the first time.

Returns the updated identity pool if successful

CLI Example:

salt myminion boto_cognitoidentity.update_identity_pool my_id_pool_id my_id_pool_name DeveloperProviderName=custom_developer_provider

salt.modules.boto_datapipeline

Connection module for Amazon Data Pipeline

New in version 2016.3.0.

	depends:

	boto3

	
salt.modules.boto_datapipeline.activate_pipeline(pipeline_id, region=None, key=None, keyid=None, profile=None)

	Start processing pipeline tasks. This function is idempotent.

CLI Example:

salt myminion boto_datapipeline.activate_pipeline my_pipeline_id

	
salt.modules.boto_datapipeline.create_pipeline(name, unique_id, description='', region=None, key=None, keyid=None, profile=None)

	Create a new, empty pipeline. This function is idempotent.

CLI Example:

salt myminion boto_datapipeline.create_pipeline my_name my_unique_id

	
salt.modules.boto_datapipeline.delete_pipeline(pipeline_id, region=None, key=None, keyid=None, profile=None)

	Delete a pipeline, its pipeline definition, and its run history. This function is idempotent.

CLI Example:

salt myminion boto_datapipeline.delete_pipeline my_pipeline_id

	
salt.modules.boto_datapipeline.describe_pipelines(pipeline_ids, region=None, key=None, keyid=None, profile=None)

	Retrieve metadata about one or more pipelines.

CLI Example:

salt myminion boto_datapipeline.describe_pipelines ['my_pipeline_id']

	
salt.modules.boto_datapipeline.get_pipeline_definition(pipeline_id, version='latest', region=None, key=None, keyid=None, profile=None)

	Get the definition of the specified pipeline.

CLI Example:

salt myminion boto_datapipeline.get_pipeline_definition my_pipeline_id

	
salt.modules.boto_datapipeline.list_pipelines(region=None, key=None, keyid=None, profile=None)

	Get a list of pipeline ids and names for all pipelines.

CLI Example:

salt myminion boto_datapipeline.list_pipelines profile=myprofile

	
salt.modules.boto_datapipeline.pipeline_id_from_name(name, region=None, key=None, keyid=None, profile=None)

	Get the pipeline id, if it exists, for the given name.

CLI Example:

salt myminion boto_datapipeline.pipeline_id_from_name my_pipeline_name

	
salt.modules.boto_datapipeline.put_pipeline_definition(pipeline_id, pipeline_objects, parameter_objects=None, parameter_values=None, region=None, key=None, keyid=None, profile=None)

	Add tasks, schedules, and preconditions to the specified pipeline. This function is
idempotent and will replace an existing definition.

CLI Example:

salt myminion boto_datapipeline.put_pipeline_definition my_pipeline_id my_pipeline_objects

salt.modules.boto_dynamodb

Connection module for Amazon DynamoDB

New in version 2015.5.0.

	configuration:

	This module accepts explicit DynamoDB credentials but can also
utilize IAM roles assigned to the instance through Instance Profiles.
Dynamic credentials are then automatically obtained from AWS API and no
further configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

keyid: GKTADJGHEIQSXMKKRBJ08H
key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

	depends:

	boto

	
salt.modules.boto_dynamodb.create_global_secondary_index(table_name, global_index, region=None, key=None, keyid=None, profile=None)

	Creates a single global secondary index on a DynamoDB table.

CLI Example:

salt myminion boto_dynamodb.create_global_secondary_index table_name /
index_name

	
salt.modules.boto_dynamodb.create_table(table_name, region=None, key=None, keyid=None, profile=None, read_capacity_units=None, write_capacity_units=None, hash_key=None, hash_key_data_type=None, range_key=None, range_key_data_type=None, local_indexes=None, global_indexes=None)

	Creates a DynamoDB table.

CLI Example:

salt myminion boto_dynamodb.create_table table_name /
region=us-east-1 /
hash_key=id /
hash_key_data_type=N /
range_key=created_at /
range_key_data_type=N /
read_capacity_units=1 /
write_capacity_units=1

	
salt.modules.boto_dynamodb.delete(table_name, region=None, key=None, keyid=None, profile=None)

	Delete a DynamoDB table.

CLI Example:

salt myminion boto_dynamodb.delete table_name region=us-east-1

	
salt.modules.boto_dynamodb.describe(table_name, region=None, key=None, keyid=None, profile=None)

	Describe a DynamoDB table.

CLI Example:

salt myminion boto_dynamodb.describe table_name region=us-east-1

	
salt.modules.boto_dynamodb.exists(table_name, region=None, key=None, keyid=None, profile=None)

	Check to see if a table exists.

CLI Example:

salt myminion boto_dynamodb.exists table_name region=us-east-1

	
salt.modules.boto_dynamodb.extract_index(index_data, global_index=False)

	Instantiates and returns an AllIndex object given a valid index
configuration

CLI Example:

salt myminion boto_dynamodb.extract_index index

	
salt.modules.boto_dynamodb.list_tags_of_resource(resource_arn, region=None, key=None, keyid=None, profile=None)

	Returns a dictionary of all tags currently attached to a given resource.

CLI Example:

salt myminion boto_dynamodb.list_tags_of_resource resource_arn=arn:aws:dynamodb:us-east-1:012345678901:table/my-table

New in version 3006.0.

	
salt.modules.boto_dynamodb.tag_resource(resource_arn, tags, region=None, key=None, keyid=None, profile=None)

	Sets given tags (provided as list or dict) on the given resource.

CLI Example:

salt myminion boto_dynamodb.tag_resource resource_arn=arn:aws:dynamodb:us-east-1:012345678901:table/my-table tags='{Name: my-table, Owner: Ops}'

New in version 3006.0.

	
salt.modules.boto_dynamodb.untag_resource(resource_arn, tag_keys, region=None, key=None, keyid=None, profile=None)

	Removes given tags (provided as list) from the given resource.

CLI Example:

salt myminion boto_dynamodb.untag_resource resource_arn=arn:aws:dynamodb:us-east-1:012345678901:table/my-table tag_keys='[Name, Owner]'

New in version 3006.0.

	
salt.modules.boto_dynamodb.update(table_name, throughput=None, global_indexes=None, region=None, key=None, keyid=None, profile=None)

	Update a DynamoDB table.

CLI Example:

salt myminion boto_dynamodb.update table_name region=us-east-1

	
salt.modules.boto_dynamodb.update_global_secondary_index(table_name, global_indexes, region=None, key=None, keyid=None, profile=None)

	Updates the throughput of the given global secondary indexes.

CLI Example:

salt myminion boto_dynamodb.update_global_secondary_index table_name /
indexes

salt.modules.boto_ec2

Connection module for Amazon EC2

New in version 2015.8.0.

	configuration:

	This module accepts explicit EC2 credentials but can also
utilize IAM roles assigned to the instance through Instance Profiles.
Dynamic credentials are then automatically obtained from AWS API and no
further configuration is necessary. More Information available here [http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html].

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

ec2.keyid: GKTADJGHEIQSXMKKRBJ08H
ec2.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

ec2.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid, and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

	depends:

	boto

	
salt.modules.boto_ec2.allocate_eip_address(domain=None, region=None, key=None, keyid=None, profile=None)

	Allocate a new Elastic IP address and associate it with your account.

	domain
	(string) Optional param - if set to exactly 'vpc', the address will be
allocated to the VPC. The default simply maps the EIP to your
account container.

	returns
	(dict) dict of 'interesting' information about the newly allocated EIP,
with probably the most interesting keys being 'public_ip'; and
'allocation_id' iff 'domain=vpc' was passed.

CLI Example:

salt-call boto_ec2.allocate_eip_address domain=vpc

New in version 2016.3.0.

	
salt.modules.boto_ec2.assign_private_ip_addresses(network_interface_name=None, network_interface_id=None, private_ip_addresses=None, secondary_private_ip_address_count=None, allow_reassignment=False, region=None, key=None, keyid=None, profile=None)

	Assigns one or more secondary private IP addresses to a network interface.

	network_interface_id
	(string) - ID of the network interface to associate the IP with (exclusive with 'network_interface_name')

	network_interface_name
	(string) - Name of the network interface to associate the IP with (exclusive with 'network_interface_id')

	private_ip_addresses
	(list) - Assigns the specified IP addresses as secondary IP addresses to the network interface (exclusive with 'secondary_private_ip_address_count')

	secondary_private_ip_address_count
	(int) - The number of secondary IP addresses to assign to the network interface. (exclusive with 'private_ip_addresses')

	allow_reassociation
	(bool) – Allow a currently associated EIP to be re-associated with the new instance or interface.

	returns
	(bool) - True on success, False on failure.

CLI Example:

salt myminion boto_ec2.assign_private_ip_addresses network_interface_name=my_eni private_ip_addresses=private_ip
salt myminion boto_ec2.assign_private_ip_addresses network_interface_name=my_eni secondary_private_ip_address_count=2

New in version 2017.7.0.

	
salt.modules.boto_ec2.associate_eip_address(instance_id=None, instance_name=None, public_ip=None, allocation_id=None, network_interface_id=None, network_interface_name=None, private_ip_address=None, allow_reassociation=False, region=None, key=None, keyid=None, profile=None)

	Associate an Elastic IP address with a currently running instance or a network interface.
This requires exactly one of either 'public_ip' or 'allocation_id', depending
on whether you’re associating a VPC address or a plain EC2 address.

	instance_id
	(string) – ID of the instance to associate with (exclusive with 'instance_name')

	instance_name
	(string) – Name tag of the instance to associate with (exclusive with 'instance_id')

	public_ip
	(string) – Public IP address, for standard EC2 based allocations.

	allocation_id
	(string) – Allocation ID for a VPC-based EIP.

	network_interface_id
	(string) - ID of the network interface to associate the EIP with

	network_interface_name
	(string) - Name of the network interface to associate the EIP with

	private_ip_address
	(string) – The primary or secondary private IP address to associate with the Elastic IP address.

	allow_reassociation
	(bool) – Allow a currently associated EIP to be re-associated with the new instance or interface.

	returns
	(bool) - True on success, False on failure.

CLI Example:

salt myminion boto_ec2.associate_eip_address instance_name=bubba.ho.tep allocation_id=eipalloc-ef382c8a

New in version 2016.3.0.

	
salt.modules.boto_ec2.attach_network_interface(device_index, name=None, network_interface_id=None, instance_name=None, instance_id=None, region=None, key=None, keyid=None, profile=None)

	Attach an Elastic Network Interface.

New in version 2016.3.0.

CLI Example:

salt myminion boto_ec2.attach_network_interface my_eni instance_name=salt-master device_index=0

	
salt.modules.boto_ec2.attach_volume(volume_id, instance_id, device, region=None, key=None, keyid=None, profile=None)

	Attach an EBS volume to an EC2 instance.
..

	volume_id
	(string) – The ID of the EBS volume to be attached.

	instance_id
	(string) – The ID of the EC2 instance to attach the volume to.

	device
	(string) – The device on the instance through which the volume is exposed (e.g. /dev/sdh)

	returns
	(bool) - True on success, False on failure.

CLI Example:

salt-call boto_ec2.attach_volume vol-12345678 i-87654321 /dev/sdh

	
salt.modules.boto_ec2.create_image(ami_name, instance_id=None, instance_name=None, tags=None, region=None, key=None, keyid=None, profile=None, description=None, no_reboot=False, dry_run=False, filters=None)

	Given instance properties that define exactly one instance, create AMI and return AMI-id.

CLI Examples:

salt myminion boto_ec2.create_image ami_name instance_name=myinstance
salt myminion boto_ec2.create_image another_ami_name tags='{"mytag": "value"}' description='this is my ami'

	
salt.modules.boto_ec2.create_key(key_name, save_path, region=None, key=None, keyid=None, profile=None)

	Creates a key and saves it to a given path.
Returns the private key.

CLI Example:

salt myminion boto_ec2.create_key mykey /root/

	
salt.modules.boto_ec2.create_network_interface(name, subnet_id=None, subnet_name=None, private_ip_address=None, description=None, groups=None, region=None, key=None, keyid=None, profile=None)

	Create an Elastic Network Interface.

New in version 2016.3.0.

CLI Example:

salt myminion boto_ec2.create_network_interface my_eni subnet-12345 description=my_eni groups=['my_group']

	
salt.modules.boto_ec2.create_tags(resource_ids, tags, region=None, key=None, keyid=None, profile=None)

	Create new metadata tags for the specified resource ids.

New in version 2016.11.0.

	resource_ids
	(string) or (list) – List of resource IDs. A plain string will be converted to a list of one element.

	tags
	(dict) – Dictionary of name/value pairs. To create only a tag name, pass '' as the value.

	returns
	(bool) - True on success, False on failure.

CLI Example:

salt-call boto_ec2.create_tags vol-12345678 '{"Name": "myVolume01"}'

	
salt.modules.boto_ec2.create_volume(zone_name, size=None, snapshot_id=None, volume_type=None, iops=None, encrypted=False, kms_key_id=None, wait_for_creation=False, region=None, key=None, keyid=None, profile=None)

	Create an EBS volume to an availability zone.

	zone_name
	(string) – The Availability zone name of the EBS volume to be created.

	size
	
	(int) – The size of the new volume, in GiB. If you're creating the
	volume from a snapshot and don't specify a volume size, the
default is the snapshot size.

	snapshot_id
	(string) – The snapshot ID from which the new volume will be created.

	volume_type
	
	(string) - The type of the volume. Valid volume types for AWS can be found here:
	http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html

	iops
	(int) - The provisioned IOPS you want to associate with this volume.

	encrypted
	(bool) - Specifies whether the volume should be encrypted.

	kms_key_id
	
	(string) - If encrypted is True, this KMS Key ID may be specified to
	encrypt volume with this key
e.g.: arn:aws:kms:us-east-1:012345678910:key/abcd1234-a123-456a-a12b-a123b4cd56ef

	wait_for_creation
	(bool) - Whether or not to wait for volume creation to complete.

	returns
	(string) - created volume id on success, error message on failure.

CLI Example:

salt-call boto_ec2.create_volume us-east-1a size=10
salt-call boto_ec2.create_volume us-east-1a snapshot_id=snap-0123abcd

	
salt.modules.boto_ec2.delete_key(key_name, region=None, key=None, keyid=None, profile=None)

	Deletes a key. Always returns True

CLI Example:

salt myminion boto_ec2.delete_key mykey

	
salt.modules.boto_ec2.delete_network_interface(name=None, network_interface_id=None, region=None, key=None, keyid=None, profile=None)

	Create an Elastic Network Interface.

New in version 2016.3.0.

CLI Example:

salt myminion boto_ec2.create_network_interface my_eni subnet-12345 description=my_eni groups=['my_group']

	
salt.modules.boto_ec2.delete_tags(resource_ids, tags, region=None, key=None, keyid=None, profile=None)

	Delete metadata tags for the specified resource ids.

New in version 2016.11.0.

	resource_ids
	(string) or (list) – List of resource IDs. A plain string will be converted to a list of one element.

	tags
	
	(dict) or (list) – Either a dictionary containing name/value pairs or a list containing just tag names.
	If you pass in a dictionary, the values must match the actual tag values or the tag
will not be deleted. If you pass in a value of None for the tag value, all tags with
that name will be deleted.

	returns
	(bool) - True on success, False on failure.

CLI Example:

salt-call boto_ec2.delete_tags vol-12345678 '{"Name": "myVolume01"}'
salt-call boto_ec2.delete_tags vol-12345678 '["Name","MountPoint"]'

	
salt.modules.boto_ec2.delete_volume(volume_id, instance_id=None, device=None, force=False, region=None, key=None, keyid=None, profile=None)

	Detach an EBS volume from an EC2 instance.

New in version 2016.11.0.

	volume_id
	(string) – The ID of the EBS volume to be deleted.

	force
	(bool) – Forces deletion even if the device has not yet been detached from its instance.

	returns
	(bool) - True on success, False on failure.

CLI Example:

salt-call boto_ec2.delete_volume vol-12345678

	
salt.modules.boto_ec2.detach_network_interface(name=None, network_interface_id=None, attachment_id=None, force=False, region=None, key=None, keyid=None, profile=None)

	Detach an Elastic Network Interface.

New in version 2016.3.0.

CLI Example:

salt myminion boto_ec2.detach_network_interface my_eni

	
salt.modules.boto_ec2.detach_volume(volume_id, instance_id=None, device=None, force=False, wait_for_detachement=False, region=None, key=None, keyid=None, profile=None)

	Detach an EBS volume from an EC2 instance.

New in version 2016.11.0.

	volume_id
	(string) – The ID of the EBS volume to be detached.

	instance_id
	(string) – The ID of the EC2 instance from which it will be detached.

	device
	(string) – The device on the instance through which the volume is exposted (e.g. /dev/sdh)

	force
	
	(bool) – Forces detachment if the previous detachment attempt did not occur cleanly.
	This option can lead to data loss or a corrupted file system. Use this option
only as a last resort to detach a volume from a failed instance. The instance
will not have an opportunity to flush file system caches nor file system meta data.
If you use this option, you must perform file system check and repair procedures.

	wait_for_detachement
	(bool) - Whether or not to wait for volume detachement to complete.

	returns
	(bool) - True on success, False on failure.

CLI Example:

salt-call boto_ec2.detach_volume vol-12345678 i-87654321

	
salt.modules.boto_ec2.disassociate_eip_address(public_ip=None, association_id=None, region=None, key=None, keyid=None, profile=None)

	Disassociate an Elastic IP address from a currently running instance. This
requires exactly one of either 'association_id' or 'public_ip', depending
on whether you’re dealing with a VPC or EC2 Classic address.

	public_ip
	(string) – Public IP address, for EC2 Classic allocations.

	association_id
	(string) – Association ID for a VPC-bound EIP.

	returns
	(bool) - True on success, False on failure.

CLI Example:

salt myminion boto_ec2.disassociate_eip_address association_id=eipassoc-e3ba2d16

New in version 2016.3.0.

	
salt.modules.boto_ec2.exists(instance_id=None, name=None, tags=None, region=None, key=None, keyid=None, profile=None, in_states=None, filters=None)

	Given an instance id, check to see if the given instance id exists.

Returns True if the given instance with the given id, name, or tags
exists; otherwise, False is returned.

CLI Example:

salt myminion boto_ec2.exists myinstance

	
salt.modules.boto_ec2.find_images(ami_name=None, executable_by=None, owners=None, image_ids=None, tags=None, region=None, key=None, keyid=None, profile=None, return_objs=False)

	Given image properties, find and return matching AMI ids

CLI Examples:

salt myminion boto_ec2.find_images tags='{"mytag": "value"}'

	
salt.modules.boto_ec2.find_instances(instance_id=None, name=None, tags=None, region=None, key=None, keyid=None, profile=None, return_objs=False, in_states=None, filters=None)

	Given instance properties, find and return matching instance ids

CLI Examples:

salt myminion boto_ec2.find_instances # Lists all instances
salt myminion boto_ec2.find_instances name=myinstance
salt myminion boto_ec2.find_instances tags='{"mytag": "value"}'
salt myminion boto_ec2.find_instances filters='{"vpc-id": "vpc-12345678"}'

	
salt.modules.boto_ec2.get_all_eip_addresses(addresses=None, allocation_ids=None, region=None, key=None, keyid=None, profile=None)

	Get public addresses of some, or all EIPs associated with the current account.

	addresses
	(list) - Optional list of addresses. If provided, only the addresses
associated with those in the list will be returned.

	allocation_ids
	(list) - Optional list of allocation IDs. If provided, only the
addresses associated with the given allocation IDs will be returned.

	returns
	(list) - A list of the requested EIP addresses

CLI Example:

salt-call boto_ec2.get_all_eip_addresses

New in version 2016.3.0.

	
salt.modules.boto_ec2.get_all_tags(filters=None, region=None, key=None, keyid=None, profile=None)

	Describe all tags matching the filter criteria, or all tags in the account otherwise.

New in version 2018.3.0.

	filters
	(dict) - Additional constraints on which volumes to return. Note that valid filters vary
extensively depending on the resource type. When in doubt, search first without a filter
and then use the returned data to help fine-tune your search. You can generally garner the
resource type from its ID (e.g. vol-XXXXX is a volume, i-XXXXX is an instance, etc.

CLI Example:

salt-call boto_ec2.get_all_tags '{"tag:Name": myInstanceNameTag, resource-type: instance}'

	
salt.modules.boto_ec2.get_all_volumes(volume_ids=None, filters=None, return_objs=False, region=None, key=None, keyid=None, profile=None)

	Get a list of all EBS volumes, optionally filtered by provided 'filters' param

New in version 2016.11.0.

	volume_ids
	(list) - Optional list of volume_ids. If provided, only the volumes
associated with those in the list will be returned.

	filters
	(dict) - Additional constraints on which volumes to return. Valid filters are:

	attachment.attach-time - The time stamp when the attachment initiated.

	attachment.delete-on-termination - Whether the volume is deleted on instance termination.

	attachment.device - The device name that is exposed to the instance (for example, /dev/sda1).

	attachment.instance-id - The ID of the instance the volume is attached to.

	attachment.status - The attachment state (attaching | attached | detaching | detached).

	availability-zone - The Availability Zone in which the volume was created.

	create-time - The time stamp when the volume was created.

	encrypted - The encryption status of the volume.

	size - The size of the volume, in GiB.

	snapshot-id - The snapshot from which the volume was created.

	status - The status of the volume (creating | available | in-use | deleting | deleted | error).

	tag:key=value - The key/value combination of a tag assigned to the resource.

	volume-id - The volume ID.

	volume-type - The Amazon EBS volume type. This can be gp2 for General
Purpose SSD, io1 for Provisioned IOPS SSD, st1 for Throughput
Optimized HDD, sc1 for Cold HDD, or standard for Magnetic volumes.

	return_objs
	(bool) - Changes the return type from list of volume IDs to list of
boto.ec2.volume.Volume objects

	returns
	(list) - A list of the requested values: Either the volume IDs or, if
return_objs is True, boto.ec2.volume.Volume objects.

CLI Example:

salt-call boto_ec2.get_all_volumes filters='{"tag:Name": "myVolume01"}'

	
salt.modules.boto_ec2.get_attribute(attribute, instance_name=None, instance_id=None, region=None, key=None, keyid=None, profile=None, filters=None)

	Get an EC2 instance attribute.

CLI Example:

salt myminion boto_ec2.get_attribute sourceDestCheck instance_name=my_instance

	Available attributes:
	
	instanceType

	kernel

	ramdisk

	userData

	disableApiTermination

	instanceInitiatedShutdownBehavior

	rootDeviceName

	blockDeviceMapping

	productCodes

	sourceDestCheck

	groupSet

	ebsOptimized

	sriovNetSupport

	
salt.modules.boto_ec2.get_eip_address_info(addresses=None, allocation_ids=None, region=None, key=None, keyid=None, profile=None)

	Get 'interesting' info about some, or all EIPs associated with the current account.

	addresses
	(list) - Optional list of addresses. If provided, only the addresses
associated with those in the list will be returned.

	allocation_ids
	(list) - Optional list of allocation IDs. If provided, only the
addresses associated with the given allocation IDs will be returned.

	returns
	(list of dicts) - A list of dicts, each containing the info for one of the requested EIPs.

CLI Example:

salt-call boto_ec2.get_eip_address_info addresses=52.4.2.15

New in version 2016.3.0.

	
salt.modules.boto_ec2.get_id(name=None, tags=None, region=None, key=None, keyid=None, profile=None, in_states=None, filters=None)

	Given instance properties, return the instance id if it exists.

CLI Example:

salt myminion boto_ec2.get_id myinstance

	
salt.modules.boto_ec2.get_key(key_name, region=None, key=None, keyid=None, profile=None)

	Check to see if a key exists. Returns fingerprint and name if
it does and False if it doesn't

CLI Example:

salt myminion boto_ec2.get_key mykey

	
salt.modules.boto_ec2.get_keys(keynames=None, filters=None, region=None, key=None, keyid=None, profile=None)

	Gets all keys or filters them by name and returns a list.
keynames (list):: A list of the names of keypairs to retrieve.
If not provided, all key pairs will be returned.
filters (dict) :: Optional filters that can be used to limit the
results returned. Filters are provided in the form of a dictionary
consisting of filter names as the key and filter values as the
value. The set of allowable filter names/values is dependent on
the request being performed. Check the EC2 API guide for details.

CLI Example:

salt myminion boto_ec2.get_keys

	
salt.modules.boto_ec2.get_network_interface(name=None, network_interface_id=None, region=None, key=None, keyid=None, profile=None)

	Get an Elastic Network Interface.

New in version 2016.3.0.

CLI Example:

salt myminion boto_ec2.get_network_interface name=my_eni

	
salt.modules.boto_ec2.get_network_interface_id(name, region=None, key=None, keyid=None, profile=None)

	Get an Elastic Network Interface id from its name tag.

New in version 2016.3.0.

CLI Example:

salt myminion boto_ec2.get_network_interface_id name=my_eni

	
salt.modules.boto_ec2.get_tags(instance_id=None, keyid=None, key=None, profile=None, region=None)

	Given an instance_id, return a list of tags associated with that instance.

	returns
	(list) - list of tags as key/value pairs

CLI Example:

salt myminion boto_ec2.get_tags instance_id

	
salt.modules.boto_ec2.get_unassociated_eip_address(domain='standard', region=None, key=None, keyid=None, profile=None)

	Return the first unassociated EIP

	domain
	Indicates whether the address is an EC2 address or a VPC address
(standard|vpc).

CLI Example:

salt-call boto_ec2.get_unassociated_eip_address

New in version 2016.3.0.

	
salt.modules.boto_ec2.get_zones(region=None, key=None, keyid=None, profile=None)

	Get a list of AZs for the configured region.

CLI Example:

salt myminion boto_ec2.get_zones

	
salt.modules.boto_ec2.import_key(key_name, public_key_material, region=None, key=None, keyid=None, profile=None)

	Imports the public key from an RSA key pair that you created with a third-party tool.
Supported formats:
- OpenSSH public key format (e.g., the format in ~/.ssh/authorized_keys)
- Base64 encoded DER format
- SSH public key file format as specified in RFC4716
- DSA keys are not supported. Make sure your key generator is set up to create RSA keys.
Supported lengths: 1024, 2048, and 4096.

CLI Example:

salt myminion boto_ec2.import mykey publickey

	
salt.modules.boto_ec2.modify_network_interface_attribute(name=None, network_interface_id=None, attr=None, value=None, region=None, key=None, keyid=None, profile=None)

	Modify an attribute of an Elastic Network Interface.

New in version 2016.3.0.

CLI Example:

salt myminion boto_ec2.modify_network_interface_attribute my_eni attr=description value='example description'

	
salt.modules.boto_ec2.release_eip_address(public_ip=None, allocation_id=None, region=None, key=None, keyid=None, profile=None)

	Free an Elastic IP address. Pass either a public IP address to release an
EC2 Classic EIP, or an AllocationId to release a VPC EIP.

	public_ip
	(string) - The public IP address - for EC2 elastic IPs.

	allocation_id
	(string) - The Allocation ID - for VPC elastic IPs.

	returns
	(bool) - True on success, False on failure

CLI Example:

salt myminion boto_ec2.release_eip_address allocation_id=eipalloc-ef382c8a

New in version 2016.3.0.

	
salt.modules.boto_ec2.run(image_id, name=None, tags=None, key_name=None, security_groups=None, user_data=None, instance_type='m1.small', placement=None, kernel_id=None, ramdisk_id=None, monitoring_enabled=None, vpc_id=None, vpc_name=None, subnet_id=None, subnet_name=None, private_ip_address=None, block_device_map=None, disable_api_termination=None, instance_initiated_shutdown_behavior=None, placement_group=None, client_token=None, security_group_ids=None, security_group_names=None, additional_info=None, tenancy=None, instance_profile_arn=None, instance_profile_name=None, ebs_optimized=None, network_interface_id=None, network_interface_name=None, region=None, key=None, keyid=None, profile=None, network_interfaces=None)

	Create and start an EC2 instance.

Returns True if the instance was created; otherwise False.

CLI Example:

salt myminion boto_ec2.run ami-b80c2b87 name=myinstance

	image_id
	(string) – The ID of the image to run.

	name
	(string) - The name of the instance.

	tags
	(dict of key: value pairs) - tags to apply to the instance.

	key_name
	(string) – The name of the key pair with which to launch instances.

	security_groups
	(list of strings) – The names of the EC2 classic security groups with
which to associate instances

	user_data
	(string) – The Base64-encoded MIME user data to be made available to the
instance(s) in this reservation.

	instance_type
	(string) – The type of instance to run. Note that some image types
(e.g. hvm) only run on some instance types.

	placement
	(string) – The Availability Zone to launch the instance into.

	kernel_id
	(string) – The ID of the kernel with which to launch the instances.

	ramdisk_id
	(string) – The ID of the RAM disk with which to launch the instances.

	monitoring_enabled
	(bool) – Enable detailed CloudWatch monitoring on the instance.

	vpc_id
	(string) - ID of a VPC to bind the instance to. Exclusive with vpc_name.

	vpc_name
	(string) - Name of a VPC to bind the instance to. Exclusive with vpc_id.

	subnet_id
	(string) – The subnet ID within which to launch the instances for VPC.

	subnet_name
	(string) – The name of a subnet within which to launch the instances for VPC.

	private_ip_address
	(string) – If you’re using VPC, you can optionally use this parameter to
assign the instance a specific available IP address from the subnet
(e.g. 10.0.0.25).

	block_device_map
	(boto.ec2.blockdevicemapping.BlockDeviceMapping) – A BlockDeviceMapping
data structure describing the EBS volumes associated with the Image.
(string) - A string representation of a BlockDeviceMapping structure
(dict) - A dict describing a BlockDeviceMapping structure

YAML example:

device-maps:
 /dev/sdb:
 ephemeral_name: ephemeral0
 /dev/sdc:
 ephemeral_name: ephemeral1
 /dev/sdd:
 ephemeral_name: ephemeral2
 /dev/sde:
 ephemeral_name: ephemeral3
 /dev/sdf:
 size: 20
 volume_type: gp2

	disable_api_termination
	(bool) – If True, the instances will be locked and will not be able to
be terminated via the API.

	instance_initiated_shutdown_behavior
	(string) – Specifies whether the instance stops or terminates on
instance-initiated shutdown. Valid values are: stop, terminate

	placement_group
	(string) – If specified, this is the name of the placement group in
which the instance(s) will be launched.

	client_token
	(string) – Unique, case-sensitive identifier you provide to ensure
idempotency of the request. Maximum 64 ASCII characters.

	security_group_ids
	(list of strings) – The ID(s) of the VPC security groups with which to
associate instances.

	security_group_names
	(list of strings) – The name(s) of the VPC security groups with which to
associate instances.

	additional_info
	(string) – Specifies additional information to make available to the
instance(s).

	tenancy
	(string) – The tenancy of the instance you want to launch. An instance
with a tenancy of ‘dedicated’ runs on single-tenant hardware and can
only be launched into a VPC. Valid values are:”default” or “dedicated”.
NOTE: To use dedicated tenancy you MUST specify a VPC subnet-ID as well.

	instance_profile_arn
	(string) – The Amazon resource name (ARN) of the IAM Instance Profile
(IIP) to associate with the instances.

	instance_profile_name
	(string) – The name of the IAM Instance Profile (IIP) to associate with
the instances.

	ebs_optimized
	(bool) – Whether the instance is optimized for EBS I/O. This
optimization provides dedicated throughput to Amazon EBS and an
optimized configuration stack to provide optimal EBS I/O performance.
This optimization isn’t available with all instance types.

	network_interfaces
	(boto.ec2.networkinterface.NetworkInterfaceCollection) – A
NetworkInterfaceCollection data structure containing the ENI
specifications for the instance.

	network_interface_id
	(string) - ID of the network interface to attach to the instance

	network_interface_name
	(string) - Name of the network interface to attach to the instance

	
salt.modules.boto_ec2.set_attribute(attribute, attribute_value, instance_name=None, instance_id=None, region=None, key=None, keyid=None, profile=None, filters=None)

	Set an EC2 instance attribute.
Returns whether the operation succeeded or not.

CLI Example:

salt myminion boto_ec2.set_attribute sourceDestCheck False instance_name=my_instance

	Available attributes:
	
	instanceType

	kernel

	ramdisk

	userData

	disableApiTermination

	instanceInitiatedShutdownBehavior

	rootDeviceName

	blockDeviceMapping

	productCodes

	sourceDestCheck

	groupSet

	ebsOptimized

	sriovNetSupport

	
salt.modules.boto_ec2.set_volumes_tags(tag_maps, authoritative=False, dry_run=False, region=None, key=None, keyid=None, profile=None)

	
New in version 2016.11.0.

	tag_maps (list)
	List of dicts of filters and tags, where 'filters' is a dict suitable for passing to the
'filters' argument of get_all_volumes() above, and 'tags' is a dict of tags to be set on
volumes (via create_tags/delete_tags) as matched by the given filters. The filter syntax
is extended to permit passing either a list of volume_ids or an instance_name (with
instance_name being the Name tag of the instance to which the desired volumes are mapped).
Each mapping in the list is applied separately, so multiple sets of volumes can be all
tagged differently with one call to this function. If filtering by instance Name, You may
additionally limit the instances matched by passing in a list of desired instance states.
The default set of states is ('pending', 'rebooting', 'running', 'stopping', 'stopped').

YAML example fragment:

- filters:
 attachment.instance_id: i-abcdef12
 tags:
 Name: dev-int-abcdef12.aws-foo.com
- filters:
 attachment.device: /dev/sdf
 tags:
 ManagedSnapshots: true
 BillingGroup: bubba.hotep@aws-foo.com
 in_states:
 - stopped
 - terminated
- filters:
 instance_name: prd-foo-01.aws-foo.com
 tags:
 Name: prd-foo-01.aws-foo.com
 BillingGroup: infra-team@aws-foo.com
- filters:
 volume_ids: [vol-12345689, vol-abcdef12]
 tags:
 BillingGroup: infra-team@aws-foo.com

	authoritative (bool)
	If true, any existing tags on the matched volumes, and not explicitly requested here, will
be removed.

	dry_run (bool)
	If true, don't change anything, just return a dictionary describing any changes which
would have been applied.

	returns (dict)
	A dict describing status and any changes.

	
salt.modules.boto_ec2.terminate(instance_id=None, name=None, region=None, key=None, keyid=None, profile=None, filters=None)

	Terminate the instance described by instance_id or name.

CLI Example:

salt myminion boto_ec2.terminate name=myinstance
salt myminion boto_ec2.terminate instance_id=i-a46b9f

	
salt.modules.boto_ec2.unassign_private_ip_addresses(network_interface_name=None, network_interface_id=None, private_ip_addresses=None, region=None, key=None, keyid=None, profile=None)

	Unassigns one or more secondary private IP addresses from a network interface

	network_interface_id
	(string) - ID of the network interface to associate the IP with (exclusive with 'network_interface_name')

	network_interface_name
	(string) - Name of the network interface to associate the IP with (exclusive with 'network_interface_id')

	private_ip_addresses
	(list) - Assigns the specified IP addresses as secondary IP addresses to the network interface.

	returns
	(bool) - True on success, False on failure.

CLI Example:

salt myminion boto_ec2.unassign_private_ip_addresses network_interface_name=my_eni private_ip_addresses=private_ip

New in version 2017.7.0.

salt.modules.boto_efs

Connection module for Amazon EFS

New in version 2017.7.0.

	configuration:

	This module accepts explicit EFS credentials but can also
utilize IAM roles assigned to the instance through Instance Profiles or
it can read them from the ~/.aws/credentials file or from these
environment variables: AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY.
Dynamic credentials are then automatically obtained from AWS API and no
further configuration is necessary. More information available at:

http://docs.aws.amazon.com/efs/latest/ug/
 access-control-managing-permissions.html

http://boto3.readthedocs.io/en/latest/guide/
 configuration.html#guide-configuration

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file

efs.keyid: GKTADJGHEIQSXMKKRBJ08H
efs.key: askd+ghsdfjkghWupU/asdflkdfklgjsdfjajkghs

A region may also be specified in the configuration

efs.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid, and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askd+ghsdfjkghWupU/asdflkdfklgjsdfjajkghs
 region: us-east-1

	depends:

	boto3

	
salt.modules.boto_efs.create_file_system(name, performance_mode='generalPurpose', keyid=None, key=None, profile=None, region=None, creation_token=None, **kwargs)

	Creates a new, empty file system.

	name
	(string) - The name for the new file system

	performance_mode
	(string) - The PerformanceMode of the file system. Can be either
generalPurpose or maxIO

	creation_token
	(string) - A unique name to be used as reference when creating an EFS.
This will ensure idempotency. Set to name if not specified otherwise

	returns
	(dict) - A dict of the data for the elastic file system

CLI Example:

salt 'my-minion' boto_efs.create_file_system efs-name generalPurpose

	
salt.modules.boto_efs.create_mount_target(filesystemid, subnetid, ipaddress=None, securitygroups=None, keyid=None, key=None, profile=None, region=None, **kwargs)

	Creates a mount target for a file system.
You can then mount the file system on EC2 instances via the mount target.

You can create one mount target in each Availability Zone in your VPC.
All EC2 instances in a VPC within a given Availability Zone share a
single mount target for a given file system.

If you have multiple subnets in an Availability Zone,
you create a mount target in one of the subnets.
EC2 instances do not need to be in the same subnet as the mount target
in order to access their file system.

	filesystemid
	(string) - ID of the file system for which to create the mount target.

	subnetid
	(string) - ID of the subnet to add the mount target in.

	ipaddress
	
	(string) - Valid IPv4 address within the address range
	of the specified subnet.

	securitygroups
	
	(list[string]) - Up to five VPC security group IDs,
	of the form sg-xxxxxxxx.
These must be for the same VPC as subnet specified.

	returns
	(dict) - A dict of the response data

CLI Example:

salt 'my-minion' boto_efs.create_mount_target filesystemid subnetid

	
salt.modules.boto_efs.create_tags(filesystemid, tags, keyid=None, key=None, profile=None, region=None, **kwargs)

	Creates or overwrites tags associated with a file system.
Each tag is a key-value pair. If a tag key specified in the request
already exists on the file system, this operation overwrites
its value with the value provided in the request.

	filesystemid
	(string) - ID of the file system for whose tags will be modified.

	tags
	(dict) - The tags to add to the file system

CLI Example:

salt 'my-minion' boto_efs.create_tags

	
salt.modules.boto_efs.delete_file_system(filesystemid, keyid=None, key=None, profile=None, region=None, **kwargs)

	Deletes a file system, permanently severing access to its contents.
Upon return, the file system no longer exists and you can't access
any contents of the deleted file system. You can't delete a file system
that is in use. That is, if the file system has any mount targets,
you must first delete them.

	filesystemid
	(string) - ID of the file system to delete.

CLI Example:

salt 'my-minion' boto_efs.delete_file_system filesystemid

	
salt.modules.boto_efs.delete_mount_target(mounttargetid, keyid=None, key=None, profile=None, region=None, **kwargs)

	Deletes the specified mount target.

This operation forcibly breaks any mounts of the file system via the
mount target that is being deleted, which might disrupt instances or
applications using those mounts. To avoid applications getting cut off
abruptly, you might consider unmounting any mounts of the mount target,
if feasible. The operation also deletes the associated network interface.
Uncommitted writes may be lost, but breaking a mount target using this
operation does not corrupt the file system itself.
The file system you created remains.
You can mount an EC2 instance in your VPC via another mount target.

	mounttargetid
	(string) - ID of the mount target to delete

CLI Example:

salt 'my-minion' boto_efs.delete_mount_target mounttargetid

	
salt.modules.boto_efs.delete_tags(filesystemid, tags, keyid=None, key=None, profile=None, region=None, **kwargs)

	Deletes the specified tags from a file system.

	filesystemid
	(string) - ID of the file system for whose tags will be removed.

	tags
	(list[string]) - The tag keys to delete to the file system

CLI Example:

salt 'my-minion' boto_efs.delete_tags

	
salt.modules.boto_efs.get_file_systems(filesystemid=None, keyid=None, key=None, profile=None, region=None, creation_token=None, **kwargs)

	Get all EFS properties or a specific instance property
if filesystemid is specified

	filesystemid
	(string) - ID of the file system to retrieve properties

	creation_token
	(string) - A unique token that identifies an EFS.
If fileysystem created via create_file_system this would
either be explictitly passed in or set to name.
You can limit your search with this.

	returns
	(list[dict]) - list of all elastic file system properties

CLI Example:

salt 'my-minion' boto_efs.get_file_systems efs-id

	
salt.modules.boto_efs.get_mount_targets(filesystemid=None, mounttargetid=None, keyid=None, key=None, profile=None, region=None, **kwargs)

	Get all the EFS mount point properties for a specific filesystemid or
the properties for a specific mounttargetid. One or the other must be
specified

	filesystemid
	
	(string) - ID of the file system whose mount targets to list
	Must be specified if mounttargetid is not

	mounttargetid
	
	(string) - ID of the mount target to have its properties returned
	Must be specified if filesystemid is not

	returns
	(list[dict]) - list of all mount point properties

CLI Example:

salt 'my-minion' boto_efs.get_mount_targets

	
salt.modules.boto_efs.get_tags(filesystemid, keyid=None, key=None, profile=None, region=None, **kwargs)

	Return the tags associated with an EFS instance.

	filesystemid
	(string) - ID of the file system whose tags to list

	returns
	(list) - list of tags as key/value pairs

CLI Example:

salt 'my-minion' boto_efs.get_tags efs-id

	
salt.modules.boto_efs.set_security_groups(mounttargetid, securitygroup, keyid=None, key=None, profile=None, region=None, **kwargs)

	Modifies the set of security groups in effect for a mount target

	mounttargetid
	(string) - ID of the mount target whose security groups will be modified

	securitygroups
	(list[string]) - list of no more than 5 VPC security group IDs.

CLI Example:

salt 'my-minion' boto_efs.set_security_groups my-mount-target-id my-sec-group

salt.modules.boto_elasticache

Connection module for Amazon Elasticache

New in version 2014.7.0.

	configuration:

	This module accepts explicit elasticache credentials but can
also utilize IAM roles assigned to the instance through Instance Profiles.
Dynamic credentials are then automatically obtained from AWS API and no
further configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

elasticache.keyid: GKTADJGHEIQSXMKKRBJ08H
elasticache.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

elasticache.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

	depends:

	boto

	
salt.modules.boto_elasticache.authorize_cache_security_group_ingress(name, ec2_security_group_name, ec2_security_group_owner_id, region=None, key=None, keyid=None, profile=None)

	Authorize network ingress from an ec2 security group to a cache security
group.

CLI Example:

salt myminion boto_elasticache.authorize_cache_security_group_ingress myelasticachesg myec2sg 879879

	
salt.modules.boto_elasticache.create(name, num_cache_nodes=None, engine=None, cache_node_type=None, replication_group_id=None, engine_version=None, cache_parameter_group_name=None, cache_subnet_group_name=None, cache_security_group_names=None, security_group_ids=None, snapshot_arns=None, preferred_availability_zone=None, preferred_maintenance_window=None, port=None, notification_topic_arn=None, auto_minor_version_upgrade=None, wait=None, region=None, key=None, keyid=None, profile=None)

	Create a cache cluster.

CLI Example:

salt myminion boto_elasticache.create myelasticache 1 redis cache.t1.micro
cache_security_group_names='["myelasticachesg"]'

	
salt.modules.boto_elasticache.create_cache_security_group(name, description, region=None, key=None, keyid=None, profile=None)

	Create a cache security group.

CLI Example:

salt myminion boto_elasticache.create_cache_security_group myelasticachesg 'My Cache Security Group'

	
salt.modules.boto_elasticache.create_replication_group(name, primary_cluster_id, replication_group_description, wait=None, region=None, key=None, keyid=None, profile=None)

	Create replication group.

CLI Example:

salt myminion boto_elasticache.create_replication_group myelasticache myprimarycluster description

	
salt.modules.boto_elasticache.create_subnet_group(name, description, subnet_ids=None, subnet_names=None, tags=None, region=None, key=None, keyid=None, profile=None)

	Create an ElastiCache subnet group

CLI example to create an ElastiCache subnet group:

salt myminion boto_elasticache.create_subnet_group my-subnet-group "group description" subnet_ids='[subnet-12345678, subnet-87654321]' region=us-east-1

	
salt.modules.boto_elasticache.delete(name, wait=False, region=None, key=None, keyid=None, profile=None)

	Delete a cache cluster.

CLI Example:

salt myminion boto_elasticache.delete myelasticache

	
salt.modules.boto_elasticache.delete_cache_security_group(name, region=None, key=None, keyid=None, profile=None)

	Delete a cache security group.

CLI Example:

salt myminion boto_elasticache.delete_cache_security_group myelasticachesg 'My Cache Security Group'

	
salt.modules.boto_elasticache.delete_replication_group(name, region=None, key=None, keyid=None, profile=None)

	Delete an ElastiCache replication group.

CLI Example:

salt myminion boto_elasticache.delete_replication_group my-replication-group region=us-east-1

	
salt.modules.boto_elasticache.delete_subnet_group(name, region=None, key=None, keyid=None, profile=None)

	Delete an ElastiCache subnet group.

CLI Example:

salt myminion boto_elasticache.delete_subnet_group my-subnet-group region=us-east-1

	
salt.modules.boto_elasticache.describe_replication_group(name, region=None, key=None, keyid=None, profile=None, parameter=None)

	Get replication group information.

CLI Example:

salt myminion boto_elasticache.describe_replication_group mygroup

	
salt.modules.boto_elasticache.exists(name, region=None, key=None, keyid=None, profile=None)

	Check to see if a cache cluster exists.

CLI Example:

salt myminion boto_elasticache.exists myelasticache

	
salt.modules.boto_elasticache.get_all_cache_subnet_groups(name=None, region=None, key=None, keyid=None, profile=None)

	Return a list of all cache subnet groups with details

CLI Example:

salt myminion boto_elasticache.get_all_subnet_groups region=us-east-1

	
salt.modules.boto_elasticache.get_cache_subnet_group(name, region=None, key=None, keyid=None, profile=None)

	Get information about a cache subnet group.

CLI Example:

salt myminion boto_elasticache.get_cache_subnet_group mycache_subnet_group

	
salt.modules.boto_elasticache.get_config(name, region=None, key=None, keyid=None, profile=None)

	Get the configuration for a cache cluster.

CLI Example:

salt myminion boto_elasticache.get_config myelasticache

	
salt.modules.boto_elasticache.get_group_host(name, region=None, key=None, keyid=None, profile=None)

	Get hostname from replication cache group

CLI Example:

salt myminion boto_elasticache.get_group_host myelasticachegroup

	
salt.modules.boto_elasticache.get_node_host(name, region=None, key=None, keyid=None, profile=None)

	Get hostname from cache node

CLI Example:

salt myminion boto_elasticache.get_node_host myelasticache

	
salt.modules.boto_elasticache.group_exists(name, region=None, key=None, keyid=None, profile=None)

	Check to see if a replication group exists.

CLI Example:

salt myminion boto_elasticache.group_exists myelasticache

	
salt.modules.boto_elasticache.list_cache_subnet_groups(name=None, region=None, key=None, keyid=None, profile=None)

	Return a list of all cache subnet group names

CLI Example:

salt myminion boto_elasticache.list_subnet_groups region=us-east-1

	
salt.modules.boto_elasticache.revoke_cache_security_group_ingress(name, ec2_security_group_name, ec2_security_group_owner_id, region=None, key=None, keyid=None, profile=None)

	Revoke network ingress from an ec2 security group to a cache security
group.

CLI Example:

salt myminion boto_elasticache.revoke_cache_security_group_ingress myelasticachesg myec2sg 879879

	
salt.modules.boto_elasticache.subnet_group_exists(name, tags=None, region=None, key=None, keyid=None, profile=None)

	Check to see if an ElastiCache subnet group exists.

CLI Example:

salt myminion boto_elasticache.subnet_group_exists my-param-group region=us-east-1

salt.modules.boto_elasticsearch_domain

Connection module for Amazon Elasticsearch Service

New in version 2016.11.0.

	configuration:

	This module accepts explicit AWS credentials but can also
utilize IAM roles assigned to the instance trough Instance Profiles.
Dynamic credentials are then automatically obtained from AWS API and no
further configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

lambda.keyid: GKTADJGHEIQSXMKKRBJ08H
lambda.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

lambda.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

Create and delete methods return:

created: true

or

created: false
error:
 message: error message

Request methods (e.g., describe_function) return:

domain:
 - {...}
 - {...}

or

error:
 message: error message

	depends:

	boto3

	
salt.modules.boto_elasticsearch_domain.add_tags(DomainName=None, ARN=None, region=None, key=None, keyid=None, profile=None, **kwargs)

	Add tags to a domain

Returns {tagged: true} if the domain was tagged and returns
{tagged: False} if the domain was not tagged.

CLI Example:

salt myminion boto_elasticsearch_domain.add_tags mydomain tag_a=tag_value tag_b=tag_value

	
salt.modules.boto_elasticsearch_domain.create(DomainName, ElasticsearchClusterConfig=None, EBSOptions=None, AccessPolicies=None, SnapshotOptions=None, AdvancedOptions=None, region=None, key=None, keyid=None, profile=None, ElasticsearchVersion=None)

	Given a valid config, create a domain.

Returns {created: true} if the domain was created and returns
{created: False} if the domain was not created.

CLI Example:

salt myminion boto_elasticsearch_domain.create mydomain \
 {'InstanceType': 't2.micro.elasticsearch', 'InstanceCount': 1, \
 'DedicatedMasterEnabled': false, 'ZoneAwarenessEnabled': false} \
 {'EBSEnabled': true, 'VolumeType': 'gp2', 'VolumeSize': 10, \
 'Iops': 0} \
 {"Version": "2012-10-17", "Statement": [{"Effect": "Allow", "Principal": {"AWS": "*"}, "Action": "es:*", \
 "Resource": "arn:aws:es:us-east-1:111111111111:domain/mydomain/*", \
 "Condition": {"IpAddress": {"aws:SourceIp": ["127.0.0.1"]}}}]} \
 {"AutomatedSnapshotStartHour": 0} \
 {"rest.action.multi.allow_explicit_index": "true"}

	
salt.modules.boto_elasticsearch_domain.delete(DomainName, region=None, key=None, keyid=None, profile=None)

	Given a domain name, delete it.

Returns {deleted: true} if the domain was deleted and returns
{deleted: false} if the domain was not deleted.

CLI Example:

salt myminion boto_elasticsearch_domain.delete mydomain

	
salt.modules.boto_elasticsearch_domain.describe(DomainName, region=None, key=None, keyid=None, profile=None)

	Given a domain name describe its properties.

Returns a dictionary of interesting properties.

CLI Example:

salt myminion boto_elasticsearch_domain.describe mydomain

	
salt.modules.boto_elasticsearch_domain.exists(DomainName, region=None, key=None, keyid=None, profile=None)

	Given a domain name, check to see if the given domain exists.

Returns True if the given domain exists and returns False if the given
function does not exist.

CLI Example:

salt myminion boto_elasticsearch_domain.exists mydomain

	
salt.modules.boto_elasticsearch_domain.list_tags(DomainName=None, ARN=None, region=None, key=None, keyid=None, profile=None)

	List tags of a trail

	Returns:

	
	{...}

	{...}

	Return type:

	tags

CLI Example:

salt myminion boto_cloudtrail.list_tags my_trail

	
salt.modules.boto_elasticsearch_domain.remove_tags(TagKeys, DomainName=None, ARN=None, region=None, key=None, keyid=None, profile=None)

	Remove tags from a trail

Returns {tagged: true} if the trail was tagged and returns
{tagged: False} if the trail was not tagged.

CLI Example:

salt myminion boto_cloudtrail.remove_tags my_trail tag_a=tag_value tag_b=tag_value

	
salt.modules.boto_elasticsearch_domain.status(DomainName, region=None, key=None, keyid=None, profile=None)

	Given a domain name describe its status.

Returns a dictionary of interesting properties.

CLI Example:

salt myminion boto_elasticsearch_domain.status mydomain

	
salt.modules.boto_elasticsearch_domain.update(DomainName, ElasticsearchClusterConfig=None, EBSOptions=None, AccessPolicies=None, SnapshotOptions=None, AdvancedOptions=None, region=None, key=None, keyid=None, profile=None)

	Update the named domain to the configuration.

Returns {updated: true} if the domain was updated and returns
{updated: False} if the domain was not updated.

CLI Example:

salt myminion boto_elasticsearch_domain.update mydomain \
 {'InstanceType': 't2.micro.elasticsearch', 'InstanceCount': 1, \
 'DedicatedMasterEnabled': false, 'ZoneAwarenessEnabled': false} \
 {'EBSEnabled': true, 'VolumeType': 'gp2', 'VolumeSize': 10, \
 'Iops': 0} \
 {"Version": "2012-10-17", "Statement": [{"Effect": "Allow", "Principal": {"AWS": "*"}, "Action": "es:*", \
 "Resource": "arn:aws:es:us-east-1:111111111111:domain/mydomain/*", \
 "Condition": {"IpAddress": {"aws:SourceIp": ["127.0.0.1"]}}}]} \
 {"AutomatedSnapshotStartHour": 0} \
 {"rest.action.multi.allow_explicit_index": "true"}

salt.modules.boto_elb

Connection module for Amazon ELB

New in version 2014.7.0.

	configuration:

	This module accepts explicit elb credentials but can also utilize
IAM roles assigned to the instance through Instance Profiles. Dynamic
credentials are then automatically obtained from AWS API and no further
configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

elb.keyid: GKTADJGHEIQSXMKKRBJ08H
elb.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

elb.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

	depends:

	boto >= 2.33.0

	
salt.modules.boto_elb.apply_security_groups(name, security_groups, region=None, key=None, keyid=None, profile=None)

	Apply security groups to ELB.

CLI Example:

salt myminion boto_elb.apply_security_groups myelb '["mysecgroup1"]'

	
salt.modules.boto_elb.attach_subnets(name, subnets, region=None, key=None, keyid=None, profile=None)

	Attach ELB to subnets.

CLI Example:

salt myminion boto_elb.attach_subnets myelb '["mysubnet"]'

	
salt.modules.boto_elb.create(name, availability_zones, listeners, subnets=None, security_groups=None, scheme='internet-facing', region=None, key=None, keyid=None, profile=None)

	Create an ELB

CLI example to create an ELB:

salt myminion boto_elb.create myelb '["us-east-1a", "us-east-1e"]' '{"elb_port": 443, "elb_protocol": "HTTPS", ...}' region=us-east-1

	
salt.modules.boto_elb.create_listeners(name, listeners, region=None, key=None, keyid=None, profile=None)

	Create listeners on an ELB.

CLI Example:

salt myminion boto_elb.create_listeners myelb '[["HTTPS", "HTTP", 443, 80, "arn:aws:iam::11 11111:server-certificate/mycert"]]'

	
salt.modules.boto_elb.create_policy(name, policy_name, policy_type, policy, region=None, key=None, keyid=None, profile=None)

	Create an ELB policy.

New in version 2016.3.0.

CLI Example:

salt myminion boto_elb.create_policy myelb mypolicy LBCookieStickinessPolicyType '{"CookieExpirationPeriod": 3600}'

	
salt.modules.boto_elb.delete(name, region=None, key=None, keyid=None, profile=None)

	Delete an ELB.

CLI example to delete an ELB:

salt myminion boto_elb.delete myelb region=us-east-1

	
salt.modules.boto_elb.delete_listeners(name, ports, region=None, key=None, keyid=None, profile=None)

	Delete listeners on an ELB.

CLI Example:

salt myminion boto_elb.delete_listeners myelb '[80,443]'

	
salt.modules.boto_elb.delete_policy(name, policy_name, region=None, key=None, keyid=None, profile=None)

	Delete an ELB policy.

New in version 2016.3.0.

CLI Example:

salt myminion boto_elb.delete_policy myelb mypolicy

	
salt.modules.boto_elb.delete_tags(name, tags, region=None, key=None, keyid=None, profile=None)

	Add the tags on an ELB

	name
	name of the ELB

	tags
	list of tags to remove

CLI Example:

salt myminion boto_elb.delete_tags my-elb-name ['TagToRemove1', 'TagToRemove2']

	
salt.modules.boto_elb.deregister_instances(name, instances, region=None, key=None, keyid=None, profile=None)

	Deregister instances with an ELB. Instances is either a string
instance id or a list of string instance id's.

Returns:

	True: instance(s) deregistered successfully

	False: instance(s) failed to be deregistered

	None: instance(s) not valid or not registered, no action taken

CLI Example:

salt myminion boto_elb.deregister_instances myelb instance_id
salt myminion boto_elb.deregister_instances myelb "[instance_id, instance_id]"

	
salt.modules.boto_elb.detach_subnets(name, subnets, region=None, key=None, keyid=None, profile=None)

	Detach ELB from subnets.

CLI Example:

salt myminion boto_elb.detach_subnets myelb '["mysubnet"]'

	
salt.modules.boto_elb.disable_availability_zones(name, availability_zones, region=None, key=None, keyid=None, profile=None)

	Disable availability zones for ELB.

CLI Example:

salt myminion boto_elb.disable_availability_zones myelb '["us-east-1a"]'

	
salt.modules.boto_elb.enable_availability_zones(name, availability_zones, region=None, key=None, keyid=None, profile=None)

	Enable availability zones for ELB.

CLI Example:

salt myminion boto_elb.enable_availability_zones myelb '["us-east-1a"]'

	
salt.modules.boto_elb.exists(name, region=None, key=None, keyid=None, profile=None)

	Check to see if an ELB exists.

CLI Example:

salt myminion boto_elb.exists myelb region=us-east-1

	
salt.modules.boto_elb.get_all_elbs(region=None, key=None, keyid=None, profile=None)

	Return all load balancers associated with an account

CLI Example:

salt myminion boto_elb.get_all_elbs region=us-east-1

	
salt.modules.boto_elb.get_attributes(name, region=None, key=None, keyid=None, profile=None)

	Check to see if attributes are set on an ELB.

CLI Example:

salt myminion boto_elb.get_attributes myelb

	
salt.modules.boto_elb.get_elb_config(name, region=None, key=None, keyid=None, profile=None)

	Get an ELB configuration.

CLI Example:

salt myminion boto_elb.exists myelb region=us-east-1

	
salt.modules.boto_elb.get_health_check(name, region=None, key=None, keyid=None, profile=None)

	Get the health check configured for this ELB.

CLI Example:

salt myminion boto_elb.get_health_check myelb

	
salt.modules.boto_elb.get_instance_health(name, region=None, key=None, keyid=None, profile=None, instances=None)

	Get a list of instances and their health state

CLI Example:

salt myminion boto_elb.get_instance_health myelb
salt myminion boto_elb.get_instance_health myelb region=us-east-1 instances="[instance_id,instance_id]"

	
salt.modules.boto_elb.list_elbs(region=None, key=None, keyid=None, profile=None)

	Return names of all load balancers associated with an account

CLI Example:

salt myminion boto_elb.list_elbs region=us-east-1

	
salt.modules.boto_elb.listener_dict_to_tuple(listener)

	Convert an ELB listener dict into a listener tuple used by certain parts of
the AWS ELB API.

CLI Example:

salt myminion boto_elb.listener_dict_to_tuple '{"elb_port":80,"instance_port":80,"elb_protocol":"HTTP"}'

	
salt.modules.boto_elb.register_instances(name, instances, region=None, key=None, keyid=None, profile=None)

	Register instances with an ELB. Instances is either a string
instance id or a list of string instance id's.

Returns:

	True: instance(s) registered successfully

	False: instance(s) failed to be registered

CLI Example:

salt myminion boto_elb.register_instances myelb instance_id
salt myminion boto_elb.register_instances myelb "[instance_id,instance_id]"

	
salt.modules.boto_elb.set_attributes(name, attributes, region=None, key=None, keyid=None, profile=None)

	Set attributes on an ELB.

	name (string)
	Name of the ELB instance to set attributes for

	attributes
	A dict of attributes to set.

Valid attributes are:

	access_log (dict)
	
	enabled (bool)
	Enable storage of access logs.

	s3_bucket_name (string)
	The name of the S3 bucket to place logs.

	s3_bucket_prefix (string)
	Prefix for the log file name.

	emit_interval (int)
	Interval for storing logs in S3 in minutes. Valid values are
5 and 60.

	connection_draining (dict)
	
	enabled (bool)
	Enable connection draining.

	timeout (int)
	Maximum allowed time in seconds for sending existing
connections to an instance that is deregistering or unhealthy.
Default is 300.

	cross_zone_load_balancing (dict)
	
	enabled (bool)
	Enable cross-zone load balancing.

CLI example to set attributes on an ELB:

salt myminion boto_elb.set_attributes myelb '{"access_log": {"enabled": "true", "s3_bucket_name": "mybucket", "s3_bucket_prefix": "mylogs/", "emit_interval": "5"}}' region=us-east-1

	
salt.modules.boto_elb.set_backend_policy(name, port, policies=None, region=None, key=None, keyid=None, profile=None)

	Set the policies of an ELB backend server.

CLI Example:

salt myminion boto_elb.set_backend_policy myelb 443 "[policy1,policy2]"

	
salt.modules.boto_elb.set_health_check(name, health_check, region=None, key=None, keyid=None, profile=None)

	Set attributes on an ELB.

CLI example to set attributes on an ELB:

salt myminion boto_elb.set_health_check myelb '{"target": "HTTP:80/"}'

	
salt.modules.boto_elb.set_instances(name, instances, test=False, region=None, key=None, keyid=None, profile=None)

	Set the instances assigned to an ELB to exactly the list given

CLI Example:

salt myminion boto_elb.set_instances myelb region=us-east-1 instances="[instance_id,instance_id]"

	
salt.modules.boto_elb.set_listener_policy(name, port, policies=None, region=None, key=None, keyid=None, profile=None)

	Set the policies of an ELB listener.

New in version 2016.3.0.

CLI Example:

salt myminion boto_elb.set_listener_policy myelb 443 "[policy1,policy2]"

	
salt.modules.boto_elb.set_tags(name, tags, region=None, key=None, keyid=None, profile=None)

	Add the tags on an ELB

New in version 2016.3.0.

	name
	name of the ELB

	tags
	dict of name/value pair tags

CLI Example:

salt myminion boto_elb.set_tags my-elb-name "{'Tag1': 'Value', 'Tag2': 'Another Value'}"

salt.modules.boto_elbv2

Connection module for Amazon ALB

New in version 2017.7.0.

	configuration:

	This module accepts explicit elb credentials but can also utilize
IAM roles assigned to the instance through Instance Profiles. Dynamic
credentials are then automatically obtained from AWS API and no further
configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

elbv2.keyid: GKTADJGHEIQSXMKKRBJ08H
elbv2.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
elbv2.region: us-west-2

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

	depends:

	boto3

	
salt.modules.boto_elbv2.create_target_group(name, protocol, port, vpc_id, region=None, key=None, keyid=None, profile=None, health_check_protocol='HTTP', health_check_port='traffic-port', health_check_path='/', health_check_interval_seconds=30, health_check_timeout_seconds=5, healthy_threshold_count=5, unhealthy_threshold_count=2)

	Create target group if not present.

	name
	(string) - The name of the target group.

	protocol
	(string) - The protocol to use for routing traffic to the targets

	port
	(int) - The port on which the targets receive traffic. This port is used unless
you specify a port override when registering the traffic.

	vpc_id
	(string) - The identifier of the virtual private cloud (VPC).

	health_check_protocol
	(string) - The protocol the load balancer uses when performing health check on
targets. The default is the HTTP protocol.

	health_check_port
	(string) - The port the load balancer uses when performing health checks on
targets. The default is 'traffic-port', which indicates the port on which each
target receives traffic from the load balancer.

	health_check_path
	(string) - The ping path that is the destination on the targets for health
checks. The default is /.

	health_check_interval_seconds
	(integer) - The approximate amount of time, in seconds, between health checks
of an individual target. The default is 30 seconds.

	health_check_timeout_seconds
	(integer) - The amount of time, in seconds, during which no response from a
target means a failed health check. The default is 5 seconds.

	healthy_threshold_count
	(integer) - The number of consecutive health checks successes required before
considering an unhealthy target healthy. The default is 5.

	unhealthy_threshold_count
	(integer) - The number of consecutive health check failures required before
considering a target unhealthy. The default is 2.

	returns
	(bool) - True on success, False on failure.

CLI Example:

salt myminion boto_elbv2.create_target_group learn1give1 protocol=HTTP port=54006 vpc_id=vpc-deadbeef

	
salt.modules.boto_elbv2.delete_target_group(name, region=None, key=None, keyid=None, profile=None)

	Delete target group.

	name
	(string) - Target Group Name or Amazon Resource Name (ARN).

	returns
	(bool) - True on success, False on failure.

CLI Example:

salt myminion boto_elbv2.delete_target_group arn:aws:elasticloadbalancing:us-west-2:644138682826:targetgroup/learn1give1-api/414788a16b5cf163

	
salt.modules.boto_elbv2.deregister_targets(name, targets, region=None, key=None, keyid=None, profile=None)

	Deregister targets to a target froup of an ALB. targets is either a
instance id string or a list of instance id's.

Returns:

	True: instance(s) deregistered successfully

	False: instance(s) failed to be deregistered

CLI Example:

salt myminion boto_elbv2.deregister_targets myelb instance_id
salt myminion boto_elbv2.deregister_targets myelb "[instance_id,instance_id]"

	
salt.modules.boto_elbv2.describe_target_health(name, targets=None, region=None, key=None, keyid=None, profile=None)

	Get the curret health check status for targets in a target group.

CLI Example:

salt myminion boto_elbv2.describe_target_health arn:aws:elasticloadbalancing:us-west-2:644138682826:targetgroup/learn1give1-api/414788a16b5cf163 targets=["i-isdf23ifjf"]

	
salt.modules.boto_elbv2.register_targets(name, targets, region=None, key=None, keyid=None, profile=None)

	Register targets to a target froup of an ALB. targets is either a
instance id string or a list of instance id's.

Returns:

	True: instance(s) registered successfully

	False: instance(s) failed to be registered

CLI Example:

salt myminion boto_elbv2.register_targets myelb instance_id
salt myminion boto_elbv2.register_targets myelb "[instance_id,instance_id]"

	
salt.modules.boto_elbv2.target_group_exists(name, region=None, key=None, keyid=None, profile=None)

	Check to see if an target group exists.

CLI Example:

salt myminion boto_elbv2.target_group_exists arn:aws:elasticloadbalancing:us-west-2:644138682826:targetgroup/learn1give1-api/414788a16b5cf163

salt.modules.boto_iam

Connection module for Amazon IAM

New in version 2014.7.0.

	configuration:

	This module accepts explicit iam credentials but can also utilize
IAM roles assigned to the instance through Instance Profiles. Dynamic
credentials are then automatically obtained from AWS API and no further
configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

iam.keyid: GKTADJGHEIQSXMKKRBJ08H
iam.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
iam.region: us-east-1

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

	depends:

	boto

	
salt.modules.boto_iam.add_user_to_group(user_name, group_name, region=None, key=None, keyid=None, profile=None)

	Add user to group.

New in version 2015.8.0.

CLI Example:

salt myminion boto_iam.add_user_to_group myuser mygroup

	
salt.modules.boto_iam.associate_profile_to_role(profile_name, role_name, region=None, key=None, keyid=None, profile=None)

	Associate an instance profile with an IAM role.

CLI Example:

salt myminion boto_iam.associate_profile_to_role myirole myiprofile

	
salt.modules.boto_iam.attach_group_policy(policy_name, group_name, region=None, key=None, keyid=None, profile=None)

	Attach a managed policy to a group.

CLI Example:

salt myminion boto_iam.attach_group_policy mypolicy mygroup

	
salt.modules.boto_iam.attach_role_policy(policy_name, role_name, region=None, key=None, keyid=None, profile=None)

	Attach a managed policy to a role.

CLI Example:

salt myminion boto_iam.attach_role_policy mypolicy myrole

	
salt.modules.boto_iam.attach_user_policy(policy_name, user_name, region=None, key=None, keyid=None, profile=None)

	Attach a managed policy to a user.

CLI Example:

salt myminion boto_iam.attach_user_policy mypolicy myuser

	
salt.modules.boto_iam.build_policy(region=None, key=None, keyid=None, profile=None)

	Build a default assume role policy.

New in version 2015.8.0.

CLI Example:

salt myminion boto_iam.build_policy

	
salt.modules.boto_iam.create_access_key(user_name, region=None, key=None, keyid=None, profile=None)

	Create access key id for a user.

New in version 2015.8.0.

CLI Example:

salt myminion boto_iam.create_access_key myuser

	
salt.modules.boto_iam.create_group(group_name, path=None, region=None, key=None, keyid=None, profile=None)

	Create a group.

New in version 2015.8.0.

CLI Example:

salt myminion boto_iam.create_group group

	
salt.modules.boto_iam.create_instance_profile(name, region=None, key=None, keyid=None, profile=None)

	Create an instance profile.

CLI Example:

salt myminion boto_iam.create_instance_profile myiprofile

	
salt.modules.boto_iam.create_login_profile(user_name, password, region=None, key=None, keyid=None, profile=None)

	Creates a login profile for the specified user, give the user the
ability to access AWS services and the AWS Management Console.

New in version 2015.8.0.

CLI Example:

salt myminion boto_iam.create_login_profile user_name password

	
salt.modules.boto_iam.create_policy(policy_name, policy_document, path=None, description=None, region=None, key=None, keyid=None, profile=None)

	Create a policy.

CLI Example:

salt myminios boto_iam.create_policy mypolicy '{"Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Action": ["s3:Get*", "s3:List*"], "Resource": ["arn:aws:s3:::my-bucket/shared/*"]},]}'

	
salt.modules.boto_iam.create_policy_version(policy_name, policy_document, set_as_default=None, region=None, key=None, keyid=None, profile=None)

	Create a policy version.

CLI Example:

salt myminios boto_iam.create_policy_version mypolicy '{"Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Action": ["s3:Get*", "s3:List*"], "Resource": ["arn:aws:s3:::my-bucket/shared/*"]},]}'

	
salt.modules.boto_iam.create_role(name, policy_document=None, path=None, region=None, key=None, keyid=None, profile=None)

	Create an instance role.

CLI Example:

salt myminion boto_iam.create_role myrole

	
salt.modules.boto_iam.create_role_policy(role_name, policy_name, policy, region=None, key=None, keyid=None, profile=None)

	Create or modify a role policy.

CLI Example:

salt myminion boto_iam.create_role_policy myirole mypolicy '{"MyPolicy": "Statement": [{"Action": ["sqs:*"], "Effect": "Allow", "Resource": ["arn:aws:sqs:*:*:*"], "Sid": "MyPolicySqs1"}]}'

	
salt.modules.boto_iam.create_saml_provider(name, saml_metadata_document, region=None, key=None, keyid=None, profile=None)

	Create SAML provider

CLI Example:

salt myminion boto_iam.create_saml_provider my_saml_provider_name saml_metadata_document

	
salt.modules.boto_iam.create_user(user_name, path=None, region=None, key=None, keyid=None, profile=None)

	Create a user.

New in version 2015.8.0.

CLI Example:

salt myminion boto_iam.create_user myuser

	
salt.modules.boto_iam.deactivate_mfa_device(user_name, serial, region=None, key=None, keyid=None, profile=None)

	Deactivates the specified MFA device and removes it from association with
the user.

New in version 2016.3.0.

CLI Example:

salt myminion boto_iam.deactivate_mfa_device user_name serial_num

	
salt.modules.boto_iam.delete_access_key(access_key_id, user_name=None, region=None, key=None, keyid=None, profile=None)

	Delete access key id from a user.

New in version 2015.8.0.

CLI Example:

salt myminion boto_iam.delete_access_key myuser

	
salt.modules.boto_iam.delete_group(group_name, region=None, key=None, keyid=None, profile=None)

	Delete a group policy.

CLI Example:

salt myminion boto_iam.delete_group mygroup

	
salt.modules.boto_iam.delete_group_policy(group_name, policy_name, region=None, key=None, keyid=None, profile=None)

	Delete a group policy.

CLI Example:

salt myminion boto_iam.delete_group_policy mygroup mypolicy

	
salt.modules.boto_iam.delete_instance_profile(name, region=None, key=None, keyid=None, profile=None)

	Delete an instance profile.

CLI Example:

salt myminion boto_iam.delete_instance_profile myiprofile

	
salt.modules.boto_iam.delete_login_profile(user_name, region=None, key=None, keyid=None, profile=None)

	Deletes a login profile for the specified user.

New in version 2016.3.0.

CLI Example:

salt myminion boto_iam.delete_login_profile user_name

	
salt.modules.boto_iam.delete_policy(policy_name, region=None, key=None, keyid=None, profile=None)

	Delete a policy.

CLI Example:

salt myminion boto_iam.delete_policy mypolicy

	
salt.modules.boto_iam.delete_policy_version(policy_name, version_id, region=None, key=None, keyid=None, profile=None)

	Delete a policy version.

CLI Example:

salt myminion boto_iam.delete_policy_version mypolicy v1

	
salt.modules.boto_iam.delete_role(name, region=None, key=None, keyid=None, profile=None)

	Delete an IAM role.

CLI Example:

salt myminion boto_iam.delete_role myirole

	
salt.modules.boto_iam.delete_role_policy(role_name, policy_name, region=None, key=None, keyid=None, profile=None)

	Delete a role policy.

CLI Example:

salt myminion boto_iam.delete_role_policy myirole mypolicy

	
salt.modules.boto_iam.delete_saml_provider(name, region=None, key=None, keyid=None, profile=None)

	Delete SAML provider

CLI Example:

salt myminion boto_iam.delete_saml_provider my_saml_provider_name

	
salt.modules.boto_iam.delete_server_cert(cert_name, region=None, key=None, keyid=None, profile=None)

	Deletes a certificate from Amazon.

New in version 2015.8.0.

CLI Example:

salt myminion boto_iam.delete_server_cert mycert_name

	
salt.modules.boto_iam.delete_user(user_name, region=None, key=None, keyid=None, profile=None)

	Delete a user.

New in version 2015.8.0.

CLI Example:

salt myminion boto_iam.delete_user myuser

	
salt.modules.boto_iam.delete_user_policy(user_name, policy_name, region=None, key=None, keyid=None, profile=None)

	Delete a user policy.

CLI Example:

salt myminion boto_iam.delete_user_policy myuser mypolicy

	
salt.modules.boto_iam.delete_virtual_mfa_device(serial, region=None, key=None, keyid=None, profile=None)

	Deletes the specified virtual MFA device.

CLI Example:

salt myminion boto_iam.delete_virtual_mfa_device serial_num

	
salt.modules.boto_iam.describe_role(name, region=None, key=None, keyid=None, profile=None)

	Get information for a role.

CLI Example:

salt myminion boto_iam.describe_role myirole

	
salt.modules.boto_iam.detach_group_policy(policy_name, group_name, region=None, key=None, keyid=None, profile=None)

	Detach a managed policy to a group.

CLI Example:

salt myminion boto_iam.detach_group_policy mypolicy mygroup

	
salt.modules.boto_iam.detach_role_policy(policy_name, role_name, region=None, key=None, keyid=None, profile=None)

	Detach a managed policy to a role.

CLI Example:

salt myminion boto_iam.detach_role_policy mypolicy myrole

	
salt.modules.boto_iam.detach_user_policy(policy_name, user_name, region=None, key=None, keyid=None, profile=None)

	Detach a managed policy to a user.

CLI Example:

salt myminion boto_iam.detach_user_policy mypolicy myuser

	
salt.modules.boto_iam.disassociate_profile_from_role(profile_name, role_name, region=None, key=None, keyid=None, profile=None)

	Disassociate an instance profile from an IAM role.

CLI Example:

salt myminion boto_iam.disassociate_profile_from_role myirole myiprofile

	
salt.modules.boto_iam.export_roles(path_prefix='/', region=None, key=None, keyid=None, profile=None)

	Get all IAM role details. Produces results that can be used to create an
sls file.

CLI Example:

salt-call boto_iam.export_roles --out=txt | sed "s/local: //" > iam_roles.sls

	
salt.modules.boto_iam.export_users(path_prefix='/', region=None, key=None, keyid=None, profile=None)

	Get all IAM user details. Produces results that can be used to create an
sls file.

New in version 2016.3.0.

CLI Example:

salt-call boto_iam.export_users --out=txt | sed "s/local: //" > iam_users.sls

	
salt.modules.boto_iam.get_account_id(region=None, key=None, keyid=None, profile=None)

	Get a the AWS account id associated with the used credentials.

CLI Example:

salt myminion boto_iam.get_account_id

	
salt.modules.boto_iam.get_account_policy(region=None, key=None, keyid=None, profile=None)

	Get account policy for the AWS account.

New in version 2015.8.0.

CLI Example:

salt myminion boto_iam.get_account_policy

	
salt.modules.boto_iam.get_all_access_keys(user_name, marker=None, max_items=None, region=None, key=None, keyid=None, profile=None)

	Get all access keys from a user.

New in version 2015.8.0.

CLI Example:

salt myminion boto_iam.get_all_access_keys myuser

	
salt.modules.boto_iam.get_all_group_policies(group_name, region=None, key=None, keyid=None, profile=None)

	Get a list of policy names from a group.

CLI Example:

salt myminion boto_iam.get_all_group_policies mygroup

	
salt.modules.boto_iam.get_all_groups(path_prefix='/', region=None, key=None, keyid=None, profile=None)

	Get and return all IAM group details, starting at the optional path.

New in version 2016.3.0.

CLI Example:

salt-call boto_iam.get_all_groups

	
salt.modules.boto_iam.get_all_instance_profiles(path_prefix='/', region=None, key=None, keyid=None, profile=None)

	Get and return all IAM instance profiles, starting at the optional path.

New in version 2016.11.0.

CLI Example:

salt-call boto_iam.get_all_instance_profiles

	
salt.modules.boto_iam.get_all_mfa_devices(user_name, region=None, key=None, keyid=None, profile=None)

	Get all MFA devices associated with an IAM user.

New in version 2016.3.0.

CLI Example:

salt myminion boto_iam.get_all_mfa_devices user_name

	
salt.modules.boto_iam.get_all_roles(path_prefix=None, region=None, key=None, keyid=None, profile=None)

	Get and return all IAM role details, starting at the optional path.

New in version 2016.3.0.

CLI Example:

salt-call boto_iam.get_all_roles

	
salt.modules.boto_iam.get_all_user_policies(user_name, marker=None, max_items=None, region=None, key=None, keyid=None, profile=None)

	Get all user policies.

New in version 2015.8.0.

CLI Example:

salt myminion boto_iam.get_all_user_policies myuser

	
salt.modules.boto_iam.get_all_users(path_prefix='/', region=None, key=None, keyid=None, profile=None)

	Get and return all IAM user details, starting at the optional path.

New in version 2016.3.0.

CLI Example:

salt-call boto_iam.get_all_users

	
salt.modules.boto_iam.get_group(group_name, region=None, key=None, keyid=None, profile=None)

	Get group information.

New in version 2015.8.0.

CLI Example:

salt myminion boto_iam.get_group mygroup

	
salt.modules.boto_iam.get_group_members(group_name, region=None, key=None, keyid=None, profile=None)

	Get group information.

New in version 2016.3.0.

CLI Example:

salt myminion boto_iam.get_group mygroup

	
salt.modules.boto_iam.get_group_policy(group_name, policy_name, region=None, key=None, keyid=None, profile=None)

	Retrieves the specified policy document for the specified group.

New in version 2015.8.0.

CLI Example:

salt myminion boto_iam.get_group_policy mygroup policyname

	
salt.modules.boto_iam.get_policy(policy_name, region=None, key=None, keyid=None, profile=None)

	Check to see if policy exists.

CLI Example:

salt myminion boto_iam.instance_profile_exists myiprofile

	
salt.modules.boto_iam.get_policy_version(policy_name, version_id, region=None, key=None, keyid=None, profile=None)

	Check to see if policy exists.

CLI Example:

salt myminion boto_iam.instance_profile_exists myiprofile

	
salt.modules.boto_iam.get_role_policy(role_name, policy_name, region=None, key=None, keyid=None, profile=None)

	Get a role policy.

CLI Example:

salt myminion boto_iam.get_role_policy myirole mypolicy

	
salt.modules.boto_iam.get_saml_provider(name, region=None, key=None, keyid=None, profile=None)

	Get SAML provider document.

CLI Example:

salt myminion boto_iam.get_saml_provider arn

	
salt.modules.boto_iam.get_saml_provider_arn(name, region=None, key=None, keyid=None, profile=None)

	Get SAML provider

CLI Example:

salt myminion boto_iam.get_saml_provider_arn my_saml_provider_name

	
salt.modules.boto_iam.get_server_certificate(cert_name, region=None, key=None, keyid=None, profile=None)

	Returns certificate information from Amazon

New in version 2015.8.0.

CLI Example:

salt myminion boto_iam.get_server_certificate mycert_name

	
salt.modules.boto_iam.get_user(user_name=None, region=None, key=None, keyid=None, profile=None)

	Get user information.

New in version 2015.8.0.

CLI Example:

salt myminion boto_iam.get_user myuser

	
salt.modules.boto_iam.get_user_policy(user_name, policy_name, region=None, key=None, keyid=None, profile=None)

	Retrieves the specified policy document for the specified user.

New in version 2015.8.0.

CLI Example:

salt myminion boto_iam.get_user_policy myuser mypolicyname

	
salt.modules.boto_iam.instance_profile_exists(name, region=None, key=None, keyid=None, profile=None)

	Check to see if an instance profile exists.

CLI Example:

salt myminion boto_iam.instance_profile_exists myiprofile

	
salt.modules.boto_iam.list_attached_group_policies(group_name, path_prefix=None, entity_filter=None, region=None, key=None, keyid=None, profile=None)

	List entities attached to the given group.

CLI Example:

salt myminion boto_iam.list_entities_for_policy mypolicy

	
salt.modules.boto_iam.list_attached_role_policies(role_name, path_prefix=None, entity_filter=None, region=None, key=None, keyid=None, profile=None)

	List entities attached to the given role.

CLI Example:

salt myminion boto_iam.list_entities_for_policy mypolicy

	
salt.modules.boto_iam.list_attached_user_policies(user_name, path_prefix=None, entity_filter=None, region=None, key=None, keyid=None, profile=None)

	List entities attached to the given user.

CLI Example:

salt myminion boto_iam.list_entities_for_policy mypolicy

	
salt.modules.boto_iam.list_entities_for_policy(policy_name, path_prefix=None, entity_filter=None, region=None, key=None, keyid=None, profile=None)

	List entities that a policy is attached to.

CLI Example:

salt myminion boto_iam.list_entities_for_policy mypolicy

	
salt.modules.boto_iam.list_instance_profiles(path_prefix='/', region=None, key=None, keyid=None, profile=None)

	List all IAM instance profiles, starting at the optional path.

New in version 2016.11.0.

CLI Example:

salt-call boto_iam.list_instance_profiles

	
salt.modules.boto_iam.list_policies(region=None, key=None, keyid=None, profile=None)

	List policies.

CLI Example:

salt myminion boto_iam.list_policies

	
salt.modules.boto_iam.list_policy_versions(policy_name, region=None, key=None, keyid=None, profile=None)

	List versions of a policy.

CLI Example:

salt myminion boto_iam.list_policy_versions mypolicy

	
salt.modules.boto_iam.list_role_policies(role_name, region=None, key=None, keyid=None, profile=None)

	Get a list of policy names from a role.

CLI Example:

salt myminion boto_iam.list_role_policies myirole

	
salt.modules.boto_iam.list_saml_providers(region=None, key=None, keyid=None, profile=None)

	List SAML providers.

CLI Example:

salt myminion boto_iam.list_saml_providers

	
salt.modules.boto_iam.policy_exists(policy_name, region=None, key=None, keyid=None, profile=None)

	Check to see if policy exists.

CLI Example:

salt myminion boto_iam.instance_profile_exists myiprofile

	
salt.modules.boto_iam.policy_version_exists(policy_name, version_id, region=None, key=None, keyid=None, profile=None)

	Check to see if policy exists.

CLI Example:

salt myminion boto_iam.instance_profile_exists myiprofile

	
salt.modules.boto_iam.profile_associated(role_name, profile_name, region, key, keyid, profile)

	Check to see if an instance profile is associated with an IAM role.

CLI Example:

salt myminion boto_iam.profile_associated myirole myiprofile

	
salt.modules.boto_iam.put_group_policy(group_name, policy_name, policy_json, region=None, key=None, keyid=None, profile=None)

	Adds or updates the specified policy document for the specified group.

New in version 2015.8.0.

CLI Example:

salt myminion boto_iam.put_group_policy mygroup policyname policyrules

	
salt.modules.boto_iam.put_user_policy(user_name, policy_name, policy_json, region=None, key=None, keyid=None, profile=None)

	Adds or updates the specified policy document for the specified user.

New in version 2015.8.0.

CLI Example:

salt myminion boto_iam.put_user_policy myuser policyname policyrules

	
salt.modules.boto_iam.remove_user_from_group(group_name, user_name, region=None, key=None, keyid=None, profile=None)

	Remove user from group.

New in version 2015.8.0.

CLI Example:

salt myminion boto_iam.remove_user_from_group mygroup myuser

	
salt.modules.boto_iam.role_exists(name, region=None, key=None, keyid=None, profile=None)

	Check to see if an IAM role exists.

CLI Example:

salt myminion boto_iam.role_exists myirole

	
salt.modules.boto_iam.set_default_policy_version(policy_name, version_id, region=None, key=None, keyid=None, profile=None)

	Set the default version of a policy.

CLI Example:

salt myminion boto_iam.set_default_policy_version mypolicy v1

	
salt.modules.boto_iam.update_account_password_policy(allow_users_to_change_password=None, hard_expiry=None, max_password_age=None, minimum_password_length=None, password_reuse_prevention=None, require_lowercase_characters=None, require_numbers=None, require_symbols=None, require_uppercase_characters=None, region=None, key=None, keyid=None, profile=None)

	Update the password policy for the AWS account.

New in version 2015.8.0.

CLI Example:

salt myminion boto_iam.update_account_password_policy True

	
salt.modules.boto_iam.update_assume_role_policy(role_name, policy_document, region=None, key=None, keyid=None, profile=None)

	Update an assume role policy for a role.

New in version 2015.8.0.

CLI Example:

salt myminion boto_iam.update_assume_role_policy myrole '{"Statement":"..."}'

	
salt.modules.boto_iam.update_saml_provider(name, saml_metadata_document, region=None, key=None, keyid=None, profile=None)

	Update SAML provider.

CLI Example:

salt myminion boto_iam.update_saml_provider my_saml_provider_name saml_metadata_document

	
salt.modules.boto_iam.upload_server_cert(cert_name, cert_body, private_key, cert_chain=None, path=None, region=None, key=None, keyid=None, profile=None)

	Upload a certificate to Amazon.

New in version 2015.8.0.

CLI Example:

salt myminion boto_iam.upload_server_cert mycert_name crt priv_key

	Parameters:

	
	cert_name -- The name for the server certificate. Do not include the path in this value.

	cert_body -- The contents of the public key certificate in PEM-encoded format.

	private_key -- The contents of the private key in PEM-encoded format.

	cert_chain -- The contents of the certificate chain. This is typically a concatenation of the PEM-encoded public key certificates of the chain.

	path -- The path for the server certificate.

	region -- The name of the region to connect to.

	key -- The key to be used in order to connect

	keyid -- The keyid to be used in order to connect

	profile -- The profile that contains a dict of region, key, keyid

	Returns:

	True / False

	
salt.modules.boto_iam.user_exists_in_group(user_name, group_name, region=None, key=None, keyid=None, profile=None)

	Check if user exists in group.

New in version 2015.8.0.

CLI Example:

salt myminion boto_iam.user_exists_in_group myuser mygroup

salt.modules.boto_iot

Connection module for Amazon IoT

New in version 2016.3.0.

	depends:

	
	boto

	boto3

The dependencies listed above can be installed via package or pip.

	configuration:

	This module accepts explicit Lambda credentials but can also
utilize IAM roles assigned to the instance through Instance Profiles.
Dynamic credentials are then automatically obtained from AWS API and no
further configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

iot.keyid: GKTADJGHEIQSXMKKRBJ08H
iot.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

iot.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

	
salt.modules.boto_iot.attach_principal_policy(policyName, principal, region=None, key=None, keyid=None, profile=None)

	Attach the specified policy to the specified principal (certificate or other
credential.)

Returns {attached: true} if the policy was attached
{attached: False} if the policy was not attached.

CLI Example:

salt myminion boto_iot.attach_principal_policy mypolicy mycognitoID

	
salt.modules.boto_iot.create_policy(policyName, policyDocument, region=None, key=None, keyid=None, profile=None)

	Given a valid config, create a policy.

Returns {created: true} if the policy was created and returns
{created: False} if the policy was not created.

CLI Example:

salt myminion boto_iot.create_policy my_policy \
 '{"Version":"2015-12-12",\
 "Statement":[{"Effect":"Allow",\
 "Action":["iot:Publish"],\
 "Resource":["arn:::::topic/foo/bar"]}]}'

	
salt.modules.boto_iot.create_policy_version(policyName, policyDocument, setAsDefault=False, region=None, key=None, keyid=None, profile=None)

	Given a valid config, create a new version of a policy.

Returns {created: true} if the policy version was created and returns
{created: False} if the policy version was not created.

CLI Example:

salt myminion boto_iot.create_policy_version my_policy \
 '{"Statement":[{"Effect":"Allow","Action":["iot:Publish"],"Resource":["arn:::::topic/foo/bar"]}]}'

	
salt.modules.boto_iot.create_thing_type(thingTypeName, thingTypeDescription, searchableAttributesList, region=None, key=None, keyid=None, profile=None)

	Given a valid config, create a thing type.

Returns {created: true} if the thing type was created and returns
{created: False} if the thing type was not created.

New in version 2016.11.0.

CLI Example:

salt myminion boto_iot.create_thing_type mythingtype \
 thingtype_description_string '["searchable_attr_1", "searchable_attr_2"]'

	
salt.modules.boto_iot.create_topic_rule(ruleName, sql, actions, description, ruleDisabled=False, region=None, key=None, keyid=None, profile=None)

	Given a valid config, create a topic rule.

Returns {created: true} if the rule was created and returns
{created: False} if the rule was not created.

CLI Example:

salt myminion boto_iot.create_topic_rule my_rule "SELECT * FROM 'some/thing'" \
 '[{"lambda":{"functionArn":"arn:::::something"}},{"sns":{\
 "targetArn":"arn:::::something","roleArn":"arn:::::something"}}]'

	
salt.modules.boto_iot.delete_policy(policyName, region=None, key=None, keyid=None, profile=None)

	Given a policy name, delete it.

Returns {deleted: true} if the policy was deleted and returns
{deleted: false} if the policy was not deleted.

CLI Example:

salt myminion boto_iot.delete_policy mypolicy

	
salt.modules.boto_iot.delete_policy_version(policyName, policyVersionId, region=None, key=None, keyid=None, profile=None)

	Given a policy name and version, delete it.

Returns {deleted: true} if the policy version was deleted and returns
{deleted: false} if the policy version was not deleted.

CLI Example:

salt myminion boto_iot.delete_policy_version mypolicy version

	
salt.modules.boto_iot.delete_thing_type(thingTypeName, region=None, key=None, keyid=None, profile=None)

	Given a thing type name, delete it.

Returns {deleted: true} if the thing type was deleted and returns
{deleted: false} if the thing type was not deleted.

New in version 2016.11.0.

CLI Example:

salt myminion boto_iot.delete_thing_type mythingtype

	
salt.modules.boto_iot.delete_topic_rule(ruleName, region=None, key=None, keyid=None, profile=None)

	Given a rule name, delete it.

Returns {deleted: true} if the rule was deleted and returns
{deleted: false} if the rule was not deleted.

CLI Example:

salt myminion boto_iot.delete_rule myrule

	
salt.modules.boto_iot.deprecate_thing_type(thingTypeName, undoDeprecate=False, region=None, key=None, keyid=None, profile=None)

	Given a thing type name, deprecate it when undoDeprecate is False
and undeprecate it when undoDeprecate is True.

Returns {deprecated: true} if the thing type was deprecated and returns
{deprecated: false} if the thing type was not deprecated.

New in version 2016.11.0.

CLI Example:

salt myminion boto_iot.deprecate_thing_type mythingtype

	
salt.modules.boto_iot.describe_policy(policyName, region=None, key=None, keyid=None, profile=None)

	Given a policy name describe its properties.

Returns a dictionary of interesting properties.

CLI Example:

salt myminion boto_iot.describe_policy mypolicy

	
salt.modules.boto_iot.describe_policy_version(policyName, policyVersionId, region=None, key=None, keyid=None, profile=None)

	Given a policy name and version describe its properties.

Returns a dictionary of interesting properties.

CLI Example:

salt myminion boto_iot.describe_policy_version mypolicy version

	
salt.modules.boto_iot.describe_thing_type(thingTypeName, region=None, key=None, keyid=None, profile=None)

	Given a thing type name describe its properties.

Returns a dictionary of interesting properties.

New in version 2016.11.0.

CLI Example:

salt myminion boto_iot.describe_thing_type mythingtype

	
salt.modules.boto_iot.describe_topic_rule(ruleName, region=None, key=None, keyid=None, profile=None)

	Given a topic rule name describe its properties.

Returns a dictionary of interesting properties.

CLI Example:

salt myminion boto_iot.describe_topic_rule myrule

	
salt.modules.boto_iot.detach_principal_policy(policyName, principal, region=None, key=None, keyid=None, profile=None)

	Detach the specified policy from the specified principal (certificate or other
credential.)

Returns {detached: true} if the policy was detached
{detached: False} if the policy was not detached.

CLI Example:

salt myminion boto_iot.detach_principal_policy mypolicy mycognitoID

	
salt.modules.boto_iot.list_policies(region=None, key=None, keyid=None, profile=None)

	List all policies

Returns list of policies

CLI Example:

salt myminion boto_iot.list_policies

Example Return:

policies:
 - {...}
 - {...}

	
salt.modules.boto_iot.list_policy_versions(policyName, region=None, key=None, keyid=None, profile=None)

	List the versions available for the given policy.

CLI Example:

salt myminion boto_iot.list_policy_versions mypolicy

Example Return:

policyVersions:
 - {...}
 - {...}

	
salt.modules.boto_iot.list_principal_policies(principal, region=None, key=None, keyid=None, profile=None)

	List the policies attached to the given principal.

CLI Example:

salt myminion boto_iot.list_principal_policies myprincipal

Example Return:

policies:
 - {...}
 - {...}

	
salt.modules.boto_iot.list_topic_rules(topic=None, ruleDisabled=None, region=None, key=None, keyid=None, profile=None)

	List all rules (for a given topic, if specified)

Returns list of rules

CLI Example:

salt myminion boto_iot.list_topic_rules

Example Return:

rules:
 - {...}
 - {...}

	
salt.modules.boto_iot.policy_exists(policyName, region=None, key=None, keyid=None, profile=None)

	Given a policy name, check to see if the given policy exists.

Returns True if the given policy exists and returns False if the given
policy does not exist.

CLI Example:

salt myminion boto_iot.policy_exists mypolicy

	
salt.modules.boto_iot.policy_version_exists(policyName, policyVersionId, region=None, key=None, keyid=None, profile=None)

	Given a policy name and version ID, check to see if the given policy version exists.

Returns True if the given policy version exists and returns False if the given
policy version does not exist.

CLI Example:

salt myminion boto_iot.policy_version_exists mypolicy versionid

	
salt.modules.boto_iot.replace_topic_rule(ruleName, sql, actions, description, ruleDisabled=False, region=None, key=None, keyid=None, profile=None)

	Given a valid config, replace a topic rule with the new values.

Returns {created: true} if the rule was created and returns
{created: False} if the rule was not created.

CLI Example:

salt myminion boto_iot.replace_topic_rule my_rule 'SELECT * FROM some.thing' \
 '[{"lambda":{"functionArn":"arn:::::something"}},{"sns":{\
 "targetArn":"arn:::::something","roleArn":"arn:::::something"}}]'

	
salt.modules.boto_iot.set_default_policy_version(policyName, policyVersionId, region=None, key=None, keyid=None, profile=None)

	Sets the specified version of the specified policy as the policy's default
(operative) version. This action affects all certificates that the policy is
attached to.

Returns {changed: true} if the policy version was set
{changed: False} if the policy version was not set.

CLI Example:

salt myminion boto_iot.set_default_policy_version mypolicy versionid

	
salt.modules.boto_iot.thing_type_exists(thingTypeName, region=None, key=None, keyid=None, profile=None)

	Given a thing type name, check to see if the given thing type exists

Returns True if the given thing type exists and returns False if the
given thing type does not exist.

New in version 2016.11.0.

CLI Example:

salt myminion boto_iot.thing_type_exists mythingtype

	
salt.modules.boto_iot.topic_rule_exists(ruleName, region=None, key=None, keyid=None, profile=None)

	Given a rule name, check to see if the given rule exists.

Returns True if the given rule exists and returns False if the given
rule does not exist.

CLI Example:

salt myminion boto_iot.topic_rule_exists myrule

salt.modules.boto_kinesis

Connection module for Amazon Kinesis

New in version 2017.7.0.

	configuration:

	This module accepts explicit Kinesis credentials but can also
utilize IAM roles assigned to the instance trough Instance Profiles.
Dynamic credentials are then automatically obtained from AWS API and no
further configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

kinesis.keyid: GKTADJGHEIQSXMKKRBJ08H
kinesis.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

kinesis.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

	depends:

	boto3

	
salt.modules.boto_kinesis.create_stream(stream_name, num_shards, region=None, key=None, keyid=None, profile=None)

	Create a stream with name stream_name and initial number of shards num_shards.

CLI Example:

salt myminion boto_kinesis.create_stream my_stream N region=us-east-1

	
salt.modules.boto_kinesis.decrease_stream_retention_period(stream_name, retention_hours, region=None, key=None, keyid=None, profile=None)

	Decrease stream retention period to retention_hours

CLI Example:

salt myminion boto_kinesis.decrease_stream_retention_period my_stream N region=us-east-1

	
salt.modules.boto_kinesis.delete_stream(stream_name, region=None, key=None, keyid=None, profile=None)

	Delete the stream with name stream_name. This cannot be undone! All data will be lost!!

CLI Example:

salt myminion boto_kinesis.delete_stream my_stream region=us-east-1

	
salt.modules.boto_kinesis.disable_enhanced_monitoring(stream_name, metrics, region=None, key=None, keyid=None, profile=None)

	Disable enhanced monitoring for the specified shard-level metrics on stream stream_name

CLI Example:

salt myminion boto_kinesis.disable_enhanced_monitoring my_stream ["metrics", "to", "disable"] region=us-east-1

	
salt.modules.boto_kinesis.enable_enhanced_monitoring(stream_name, metrics, region=None, key=None, keyid=None, profile=None)

	Enable enhanced monitoring for the specified shard-level metrics on stream stream_name

CLI Example:

salt myminion boto_kinesis.enable_enhanced_monitoring my_stream ["metrics", "to", "enable"] region=us-east-1

	
salt.modules.boto_kinesis.exists(stream_name, region=None, key=None, keyid=None, profile=None)

	Check if the stream exists. Returns False and the error if it does not.

CLI Example:

salt myminion boto_kinesis.exists my_stream region=us-east-1

	
salt.modules.boto_kinesis.get_info_for_reshard(stream_details)

	Collect some data: number of open shards, key range, etc.
Modifies stream_details to add a sorted list of OpenShards.
Returns (min_hash_key, max_hash_key, stream_details)

CLI Example:

salt myminion boto_kinesis.get_info_for_reshard existing_stream_details

	
salt.modules.boto_kinesis.get_stream_when_active(stream_name, region=None, key=None, keyid=None, profile=None)

	Get complete stream info from AWS, returning only when the stream is in the ACTIVE state.
Continues to retry when stream is updating or creating.
If the stream is deleted during retries, the loop will catch the error and break.

CLI Example:

salt myminion boto_kinesis.get_stream_when_active my_stream region=us-east-1

	
salt.modules.boto_kinesis.increase_stream_retention_period(stream_name, retention_hours, region=None, key=None, keyid=None, profile=None)

	Increase stream retention period to retention_hours

CLI Example:

salt myminion boto_kinesis.increase_stream_retention_period my_stream N region=us-east-1

	
salt.modules.boto_kinesis.list_streams(region=None, key=None, keyid=None, profile=None)

	Return a list of all streams visible to the current account

CLI Example:

salt myminion boto_kinesis.list_streams

	
salt.modules.boto_kinesis.long_int(hash_key)

	The hash key is a 128-bit int, sent as a string.
It's necessary to convert to int/long for comparison operations.
This helper method handles python 2/3 incompatibility

CLI Example:

salt myminion boto_kinesis.long_int some_MD5_hash_as_string

	Returns:

	long object if python 2.X, int object if python 3.X

	
salt.modules.boto_kinesis.reshard(stream_name, desired_size, force=False, region=None, key=None, keyid=None, profile=None)

	Reshard a kinesis stream. Each call to this function will wait until the stream is ACTIVE,
then make a single split or merge operation. This function decides where to split or merge
with the assumption that the ultimate goal is a balanced partition space.

For safety, user must past in force=True; otherwise, the function will dry run.

CLI Example:

salt myminion boto_kinesis.reshard my_stream N True region=us-east-1

	Returns:

	True if a split or merge was found/performed, False if nothing is needed

salt.modules.boto_kms

Connection module for Amazon KMS

New in version 2015.8.0.

	configuration:

	This module accepts explicit kms credentials but can also utilize
IAM roles assigned to the instance through Instance Profiles. Dynamic
credentials are then automatically obtained from AWS API and no further
configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

kms.keyid: GKTADJGHEIQSXMKKRBJ08H
kms.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

kms.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

	myprofile:
	keyid: GKTADJGHEIQSXMKKRBJ08H
key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
region: us-east-1

	depends:

	boto

	
salt.modules.boto_kms.create_alias(alias_name, target_key_id, region=None, key=None, keyid=None, profile=None)

	Create a display name for a key.

CLI Example:

salt myminion boto_kms.create_alias 'alias/mykey' key_id

	
salt.modules.boto_kms.create_grant(key_id, grantee_principal, retiring_principal=None, operations=None, constraints=None, grant_tokens=None, region=None, key=None, keyid=None, profile=None)

	Adds a grant to a key to specify who can access the key and under what
conditions.

CLI Example:

salt myminion boto_kms.create_grant 'alias/mykey' 'arn:aws:iam::1111111:/role/myrole' operations='["Encrypt","Decrypt"]'

	
salt.modules.boto_kms.create_key(policy=None, description=None, key_usage=None, region=None, key=None, keyid=None, profile=None)

	Creates a master key.

CLI Example:

salt myminion boto_kms.create_key '{"Statement":...}' "My master key"

	
salt.modules.boto_kms.decrypt(ciphertext_blob, encryption_context=None, grant_tokens=None, region=None, key=None, keyid=None, profile=None)

	Decrypt ciphertext.

CLI Example:

salt myminion boto_kms.decrypt encrypted_ciphertext

	
salt.modules.boto_kms.describe_key(key_id, region=None, key=None, keyid=None, profile=None)

	Get detailed information about a key.

CLI Example:

salt myminion boto_kms.describe_key 'alias/mykey'

	
salt.modules.boto_kms.disable_key(key_id, region=None, key=None, keyid=None, profile=None)

	Mark key as disabled.

CLI Example:

salt myminion boto_kms.disable_key 'alias/mykey'

	
salt.modules.boto_kms.disable_key_rotation(key_id, region=None, key=None, keyid=None, profile=None)

	Disable key rotation for specified key.

CLI Example:

salt myminion boto_kms.disable_key_rotation 'alias/mykey'

	
salt.modules.boto_kms.enable_key(key_id, region=None, key=None, keyid=None, profile=None)

	Mark key as enabled.

CLI Example:

salt myminion boto_kms.enable_key 'alias/mykey'

	
salt.modules.boto_kms.enable_key_rotation(key_id, region=None, key=None, keyid=None, profile=None)

	Disable key rotation for specified key.

CLI Example:

salt myminion boto_kms.enable_key_rotation 'alias/mykey'

	
salt.modules.boto_kms.encrypt(key_id, plaintext, encryption_context=None, grant_tokens=None, region=None, key=None, keyid=None, profile=None)

	Encrypt plaintext into cipher text using specified key.

CLI Example:

salt myminion boto_kms.encrypt 'alias/mykey' 'myplaindata' '{"aws:username":"myuser"}'

	
salt.modules.boto_kms.generate_data_key(key_id, encryption_context=None, number_of_bytes=None, key_spec=None, grant_tokens=None, region=None, key=None, keyid=None, profile=None)

	Generate a secure data key.

CLI Example:

salt myminion boto_kms.generate_data_key 'alias/mykey' number_of_bytes=1024 key_spec=AES_128

	
salt.modules.boto_kms.generate_data_key_without_plaintext(key_id, encryption_context=None, number_of_bytes=None, key_spec=None, grant_tokens=None, region=None, key=None, keyid=None, profile=None)

	Generate a secure data key without a plaintext copy of the key.

CLI Example:

salt myminion boto_kms.generate_data_key_without_plaintext 'alias/mykey' number_of_bytes=1024 key_spec=AES_128

	
salt.modules.boto_kms.generate_random(number_of_bytes=None, region=None, key=None, keyid=None, profile=None)

	Generate a random string.

CLI Example:

salt myminion boto_kms.generate_random number_of_bytes=1024

	
salt.modules.boto_kms.get_key_policy(key_id, policy_name, region=None, key=None, keyid=None, profile=None)

	Get the policy for the specified key.

CLI Example:

salt myminion boto_kms.get_key_policy 'alias/mykey' mypolicy

	
salt.modules.boto_kms.get_key_rotation_status(key_id, region=None, key=None, keyid=None, profile=None)

	Get status of whether or not key rotation is enabled for a key.

CLI Example:

salt myminion boto_kms.get_key_rotation_status 'alias/mykey'

	
salt.modules.boto_kms.key_exists(key_id, region=None, key=None, keyid=None, profile=None)

	Check for the existence of a key.

CLI Example:

salt myminion boto_kms.key_exists 'alias/mykey'

	
salt.modules.boto_kms.list_grants(key_id, limit=None, marker=None, region=None, key=None, keyid=None, profile=None)

	List grants for the specified key.

CLI Example:

salt myminion boto_kms.list_grants 'alias/mykey'

	
salt.modules.boto_kms.list_key_policies(key_id, limit=None, marker=None, region=None, key=None, keyid=None, profile=None)

	List key_policies for the specified key.

CLI Example:

salt myminion boto_kms.list_key_policies 'alias/mykey'

	
salt.modules.boto_kms.put_key_policy(key_id, policy_name, policy, region=None, key=None, keyid=None, profile=None)

	Attach a key policy to the specified key.

CLI Example:

salt myminion boto_kms.put_key_policy 'alias/mykey' default '{"Statement":...}'

	
salt.modules.boto_kms.re_encrypt(ciphertext_blob, destination_key_id, source_encryption_context=None, destination_encryption_context=None, grant_tokens=None, region=None, key=None, keyid=None, profile=None)

	Reencrypt encrypted data with a new master key.

CLI Example:

salt myminion boto_kms.re_encrypt 'encrypted_data' 'alias/mynewkey' default '{"Statement":...}'

	
salt.modules.boto_kms.revoke_grant(key_id, grant_id, region=None, key=None, keyid=None, profile=None)

	Revoke a grant from a key.

CLI Example:

salt myminion boto_kms.revoke_grant 'alias/mykey' 8u89hf-j09j...

	
salt.modules.boto_kms.update_key_description(key_id, description, region=None, key=None, keyid=None, profile=None)

	Update a key's description.

CLI Example:

salt myminion boto_kms.update_key_description 'alias/mykey' 'My key'

salt.modules.boto_lambda

Connection module for Amazon Lambda

New in version 2016.3.0.

	depends:

	

	boto

	boto3

The dependencies listed above can be installed via package or pip.

	configuration:

	This module accepts explicit Lambda credentials but can also
utilize IAM roles assigned to the instance through Instance Profiles.
Dynamic credentials are then automatically obtained from AWS API and no
further configuration is necessary. More Information available here [http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html].

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

lambda.keyid: GKTADJGHEIQSXMKKRBJ08H
lambda.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

lambda.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

Changed in version 2015.8.0: All methods now return a dictionary. Create and delete methods return:

created: true

or

created: false
error:
 message: error message

Request methods (e.g., describe_function) return:

function:
 - {...}
 - {...}

or

error:
 message: error message

	
salt.modules.boto_lambda.add_permission(FunctionName, StatementId, Action, Principal, SourceArn=None, SourceAccount=None, Qualifier=None, region=None, key=None, keyid=None, profile=None)

	Add a permission to a lambda function.

Returns {added: true} if the permission was added and returns
{added: False} if the permission was not added.

CLI Example:

salt myminion boto_lamba.add_permission my_function my_id "lambda:*" \
 s3.amazonaws.com aws:arn::::bucket-name \
 aws-account-id

	
salt.modules.boto_lambda.alias_exists(FunctionName, Name, region=None, key=None, keyid=None, profile=None)

	Given a function name and alias name, check to see if the given alias exists.

Returns True if the given alias exists and returns False if the given
alias does not exist.

CLI Example:

salt myminion boto_lambda.alias_exists myfunction myalias

	
salt.modules.boto_lambda.create_alias(FunctionName, Name, FunctionVersion, Description='', region=None, key=None, keyid=None, profile=None)

	Given a valid config, create an alias to a function.

Returns {created: true} if the alias was created and returns
{created: False} if the alias was not created.

CLI Example:

salt myminion boto_lamba.create_alias my_function my_alias $LATEST "An alias"

	
salt.modules.boto_lambda.create_event_source_mapping(EventSourceArn, FunctionName, StartingPosition, Enabled=True, BatchSize=100, region=None, key=None, keyid=None, profile=None)

	Identifies a stream as an event source for a Lambda function. It can be
either an Amazon Kinesis stream or an Amazon DynamoDB stream. AWS Lambda
invokes the specified function when records are posted to the stream.

Returns {created: true} if the event source mapping was created and returns
{created: False} if the event source mapping was not created.

CLI Example:

salt myminion boto_lamba.create_event_source_mapping arn::::eventsource myfunction LATEST

	
salt.modules.boto_lambda.create_function(FunctionName, Runtime, Role, Handler, ZipFile=None, S3Bucket=None, S3Key=None, S3ObjectVersion=None, Description='', Timeout=3, MemorySize=128, Publish=False, WaitForRole=False, RoleRetries=5, region=None, key=None, keyid=None, profile=None, VpcConfig=None, Environment=None)

	
New in version 2017.7.0.

Given a valid config, create a function.

	Environment
	The parent object that contains your environment's configuration
settings. This is a dictionary of the form:

{
 'Variables': {
 'VariableName': 'VariableValue'
 }
}

Returns {'created': True} if the function was created and {created:
False} if the function was not created.

CLI Example:

salt myminion boto_lamba.create_function my_function python2.7 my_role my_file.my_function my_function.zip
salt myminion boto_lamba.create_function my_function python2.7 my_role my_file.my_function salt://files/my_function.zip

	
salt.modules.boto_lambda.delete_alias(FunctionName, Name, region=None, key=None, keyid=None, profile=None)

	Given a function name and alias name, delete the alias.

Returns {deleted: true} if the alias was deleted and returns
{deleted: false} if the alias was not deleted.

CLI Example:

salt myminion boto_lambda.delete_alias myfunction myalias

	
salt.modules.boto_lambda.delete_event_source_mapping(UUID=None, EventSourceArn=None, FunctionName=None, region=None, key=None, keyid=None, profile=None)

	Given an event source mapping ID or an event source ARN and FunctionName,
delete the event source mapping

Returns {deleted: true} if the mapping was deleted and returns
{deleted: false} if the mapping was not deleted.

CLI Example:

salt myminion boto_lambda.delete_event_source_mapping 260c423d-e8b5-4443-8d6a-5e91b9ecd0fa

	
salt.modules.boto_lambda.delete_function(FunctionName, Qualifier=None, region=None, key=None, keyid=None, profile=None)

	Given a function name and optional version qualifier, delete it.

Returns {deleted: true} if the function was deleted and returns
{deleted: false} if the function was not deleted.

CLI Example:

salt myminion boto_lambda.delete_function myfunction

	
salt.modules.boto_lambda.describe_alias(FunctionName, Name, region=None, key=None, keyid=None, profile=None)

	Given a function name and alias name describe the properties of the alias.

Returns a dictionary of interesting properties.

CLI Example:

salt myminion boto_lambda.describe_alias myalias

	
salt.modules.boto_lambda.describe_event_source_mapping(UUID=None, EventSourceArn=None, FunctionName=None, region=None, key=None, keyid=None, profile=None)

	Given an event source mapping ID or an event source ARN and FunctionName,
obtain the current settings of that mapping.

Returns a dictionary of interesting properties.

CLI Example:

salt myminion boto_lambda.describe_event_source_mapping uuid

	
salt.modules.boto_lambda.describe_function(FunctionName, region=None, key=None, keyid=None, profile=None)

	Given a function name describe its properties.

Returns a dictionary of interesting properties.

CLI Example:

salt myminion boto_lambda.describe_function myfunction

	
salt.modules.boto_lambda.event_source_mapping_exists(UUID=None, EventSourceArn=None, FunctionName=None, region=None, key=None, keyid=None, profile=None)

	Given an event source mapping ID or an event source ARN and FunctionName,
check whether the mapping exists.

Returns True if the given alias exists and returns False if the given
alias does not exist.

CLI Example:

salt myminion boto_lambda.alias_exists myfunction myalias

	
salt.modules.boto_lambda.function_exists(FunctionName, region=None, key=None, keyid=None, profile=None)

	Given a function name, check to see if the given function name exists.

Returns True if the given function exists and returns False if the given
function does not exist.

CLI Example:

salt myminion boto_lambda.function_exists myfunction

	
salt.modules.boto_lambda.get_event_source_mapping_ids(EventSourceArn, FunctionName, region=None, key=None, keyid=None, profile=None)

	Given an event source and function name, return a list of mapping IDs

CLI Example:

salt myminion boto_lambda.get_event_source_mapping_ids arn:::: myfunction

	
salt.modules.boto_lambda.get_permissions(FunctionName, Qualifier=None, region=None, key=None, keyid=None, profile=None)

	Get resource permissions for the given lambda function

Returns dictionary of permissions, by statement ID

CLI Example:

salt myminion boto_lamba.get_permissions my_function

permissions: {...}

	
salt.modules.boto_lambda.list_function_versions(FunctionName, region=None, key=None, keyid=None, profile=None)

	List the versions available for the given function.

Returns list of function versions

CLI Example:

versions:
 - {...}
 - {...}

	
salt.modules.boto_lambda.list_functions(region=None, key=None, keyid=None, profile=None)

	List all Lambda functions visible in the current scope.

CLI Example:

salt myminion boto_lambda.list_functions

	
salt.modules.boto_lambda.remove_permission(FunctionName, StatementId, Qualifier=None, region=None, key=None, keyid=None, profile=None)

	Remove a permission from a lambda function.

Returns {removed: true} if the permission was removed and returns
{removed: False} if the permission was not removed.

CLI Example:

salt myminion boto_lamba.remove_permission my_function my_id

	
salt.modules.boto_lambda.update_alias(FunctionName, Name, FunctionVersion=None, Description=None, region=None, key=None, keyid=None, profile=None)

	Update the named alias to the configuration.

Returns {updated: true} if the alias was updated and returns
{updated: False} if the alias was not updated.

CLI Example:

salt myminion boto_lamba.update_alias my_lambda my_alias $LATEST

	
salt.modules.boto_lambda.update_event_source_mapping(UUID, FunctionName=None, Enabled=None, BatchSize=None, region=None, key=None, keyid=None, profile=None)

	Update the event source mapping identified by the UUID.

Returns {updated: true} if the alias was updated and returns
{updated: False} if the alias was not updated.

CLI Example:

salt myminion boto_lamba.update_event_source_mapping uuid FunctionName=new_function

	
salt.modules.boto_lambda.update_function_code(FunctionName, ZipFile=None, S3Bucket=None, S3Key=None, S3ObjectVersion=None, Publish=False, region=None, key=None, keyid=None, profile=None)

	Upload the given code to the named lambda function.

Returns {updated: true} if the function was updated and returns
{updated: False} if the function was not updated.

CLI Example:

salt myminion boto_lamba.update_function_code my_function ZipFile=function.zip

	
salt.modules.boto_lambda.update_function_config(FunctionName, Role=None, Handler=None, Description=None, Timeout=None, MemorySize=None, region=None, key=None, keyid=None, profile=None, VpcConfig=None, WaitForRole=False, RoleRetries=5, Environment=None)

	
New in version 2017.7.0.

Update the named lambda function to the configuration.

	Environment
	The parent object that contains your environment's configuration
settings. This is a dictionary of the form:

{
 'Variables': {
 'VariableName': 'VariableValue'
 }
}

Returns {'updated': True} if the function was updated, and
{'updated': False} if the function was not updated.

CLI Example:

salt myminion boto_lamba.update_function_config my_function my_role my_file.my_function "my lambda function"

salt.modules.boto_rds

Connection module for Amazon RDS

New in version 2015.8.0.

	configuration:

	This module accepts explicit rds credentials but can also
utilize IAM roles assigned to the instance through Instance Profiles.
Dynamic credentials are then automatically obtained from AWS API and no
further configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

rds.keyid: GKTADJGHEIQSXMKKRBJ08H
rds.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

rds.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

	depends:

	boto3

	
salt.modules.boto_rds.create(name, allocated_storage, db_instance_class, engine, master_username, master_user_password, db_name=None, db_security_groups=None, vpc_security_group_ids=None, vpc_security_groups=None, availability_zone=None, db_subnet_group_name=None, preferred_maintenance_window=None, db_parameter_group_name=None, backup_retention_period=None, preferred_backup_window=None, port=None, multi_az=None, engine_version=None, auto_minor_version_upgrade=None, license_model=None, iops=None, option_group_name=None, character_set_name=None, publicly_accessible=None, wait_status=None, tags=None, db_cluster_identifier=None, storage_type=None, tde_credential_arn=None, tde_credential_password=None, storage_encrypted=None, kms_key_id=None, domain=None, copy_tags_to_snapshot=None, monitoring_interval=None, monitoring_role_arn=None, domain_iam_role_name=None, region=None, promotion_tier=None, key=None, keyid=None, profile=None)

	Create an RDS Instance

CLI example to create an RDS Instance:

salt myminion boto_rds.create myrds 10 db.t2.micro MySQL sqlusr sqlpassw

	
salt.modules.boto_rds.create_option_group(name, engine_name, major_engine_version, option_group_description, tags=None, region=None, key=None, keyid=None, profile=None)

	Create an RDS option group

CLI example to create an RDS option group:

salt myminion boto_rds.create_option_group my-opt-group mysql 5.6 "group description"

	
salt.modules.boto_rds.create_parameter_group(name, db_parameter_group_family, description, tags=None, region=None, key=None, keyid=None, profile=None)

	Create an RDS parameter group

CLI example to create an RDS parameter group:

salt myminion boto_rds.create_parameter_group my-param-group mysql5.6 "group description"

	
salt.modules.boto_rds.create_read_replica(name, source_name, db_instance_class=None, availability_zone=None, port=None, auto_minor_version_upgrade=None, iops=None, option_group_name=None, publicly_accessible=None, tags=None, db_subnet_group_name=None, storage_type=None, copy_tags_to_snapshot=None, monitoring_interval=None, monitoring_role_arn=None, region=None, key=None, keyid=None, profile=None)

	Create an RDS read replica

CLI example to create an RDS read replica:

salt myminion boto_rds.create_read_replica replicaname source_name

	
salt.modules.boto_rds.create_subnet_group(name, description, subnet_ids, tags=None, region=None, key=None, keyid=None, profile=None)

	Create an RDS subnet group

CLI example to create an RDS subnet group:

salt myminion boto_rds.create_subnet_group my-subnet-group "group description" '[subnet-12345678, subnet-87654321]' region=us-east-1

	
salt.modules.boto_rds.delete(name, skip_final_snapshot=None, final_db_snapshot_identifier=None, region=None, key=None, keyid=None, profile=None, tags=None, wait_for_deletion=True, timeout=180)

	Delete an RDS instance.

CLI Example:

salt myminion boto_rds.delete myrds skip_final_snapshot=True region=us-east-1

	
salt.modules.boto_rds.delete_option_group(name, region=None, key=None, keyid=None, profile=None)

	Delete an RDS option group.

CLI Example:

salt myminion boto_rds.delete_option_group my-opt-group region=us-east-1

	
salt.modules.boto_rds.delete_parameter_group(name, region=None, key=None, keyid=None, profile=None)

	Delete an RDS parameter group.

CLI Example:

salt myminion boto_rds.delete_parameter_group my-param-group region=us-east-1

	
salt.modules.boto_rds.delete_subnet_group(name, region=None, key=None, keyid=None, profile=None)

	Delete an RDS subnet group.

CLI Example:

salt myminion boto_rds.delete_subnet_group my-subnet-group region=us-east-1

	
salt.modules.boto_rds.describe(name, tags=None, region=None, key=None, keyid=None, profile=None)

	Return RDS instance details.

CLI Example:

salt myminion boto_rds.describe myrds

	
salt.modules.boto_rds.describe_db_instances(name=None, filters=None, jmespath='DBInstances', region=None, key=None, keyid=None, profile=None)

	Return a detailed listing of some, or all, DB Instances visible in the
current scope. Arbitrary subelements or subsections of the returned dataset
can be selected by passing in a valid JMSEPath filter as well.

CLI Example:

salt myminion boto_rds.describe_db_instances jmespath='DBInstances[*].DBInstanceIdentifier'

	
salt.modules.boto_rds.describe_db_subnet_groups(name=None, filters=None, jmespath='DBSubnetGroups', region=None, key=None, keyid=None, profile=None)

	Return a detailed listing of some, or all, DB Subnet Groups visible in the
current scope. Arbitrary subelements or subsections of the returned dataset
can be selected by passing in a valid JMSEPath filter as well.

CLI Example:

salt myminion boto_rds.describe_db_subnet_groups

	
salt.modules.boto_rds.describe_parameter_group(name, Filters=None, MaxRecords=None, Marker=None, region=None, key=None, keyid=None, profile=None)

	Returns a list of DBParameterGroup descriptions.
CLI example to description of parameter group:

salt myminion boto_rds.describe_parameter_group parametergroupname region=us-east-1

	
salt.modules.boto_rds.describe_parameters(name, Source=None, MaxRecords=None, Marker=None, region=None, key=None, keyid=None, profile=None)

	Returns a list of DBParameterGroup parameters.
CLI example to description of parameters

salt myminion boto_rds.describe_parameters parametergroupname region=us-east-1

	
salt.modules.boto_rds.exists(name, tags=None, region=None, key=None, keyid=None, profile=None)

	Check to see if an RDS exists.

CLI Example:

salt myminion boto_rds.exists myrds region=us-east-1

	
salt.modules.boto_rds.get_endpoint(name, tags=None, region=None, key=None, keyid=None, profile=None)

	Return the endpoint of an RDS instance.

CLI Example:

salt myminion boto_rds.get_endpoint myrds

	
salt.modules.boto_rds.modify_db_instance(name, allocated_storage=None, allow_major_version_upgrade=None, apply_immediately=None, auto_minor_version_upgrade=None, backup_retention_period=None, ca_certificate_identifier=None, character_set_name=None, copy_tags_to_snapshot=None, db_cluster_identifier=None, db_instance_class=None, db_name=None, db_parameter_group_name=None, db_port_number=None, db_security_groups=None, db_subnet_group_name=None, domain=None, domain_iam_role_name=None, engine_version=None, iops=None, kms_key_id=None, license_model=None, master_user_password=None, monitoring_interval=None, monitoring_role_arn=None, multi_az=None, new_db_instance_identifier=None, option_group_name=None, preferred_backup_window=None, preferred_maintenance_window=None, promotion_tier=None, publicly_accessible=None, storage_encrypted=None, storage_type=None, tde_credential_arn=None, tde_credential_password=None, vpc_security_group_ids=None, region=None, key=None, keyid=None, profile=None)

	Modify settings for a DB instance.
CLI example to description of parameters

salt myminion boto_rds.modify_db_instance db_instance_identifier region=us-east-1

	
salt.modules.boto_rds.option_group_exists(name, tags=None, region=None, key=None, keyid=None, profile=None)

	Check to see if an RDS option group exists.

CLI Example:

salt myminion boto_rds.option_group_exists myoptiongr region=us-east-1

	
salt.modules.boto_rds.parameter_group_exists(name, tags=None, region=None, key=None, keyid=None, profile=None)

	Check to see if an RDS parameter group exists.

CLI Example:

salt myminion boto_rds.parameter_group_exists myparametergroup region=us-east-1

	
salt.modules.boto_rds.subnet_group_exists(name, tags=None, region=None, key=None, keyid=None, profile=None)

	Check to see if an RDS subnet group exists.

CLI Example:

salt myminion boto_rds.subnet_group_exists my-param-group region=us-east-1

	
salt.modules.boto_rds.update_parameter_group(name, parameters, apply_method='pending-reboot', tags=None, region=None, key=None, keyid=None, profile=None)

	Update an RDS parameter group.

CLI Example:

salt myminion boto_rds.update_parameter_group my-param-group parameters='{"back_log":1, "binlog_cache_size":4096}' region=us-east-1

salt.modules.boto_route53

Connection module for Amazon Route53

New in version 2014.7.0.

	configuration:

	This module accepts explicit route53 credentials but can also
utilize IAM roles assigned to the instance through Instance Profiles.
Dynamic credentials are then automatically obtained from AWS API and no
further configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

route53.keyid: GKTADJGHEIQSXMKKRBJ08H
route53.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

route53.region: us-east-1

If a region is not specified, the default is 'universal', which is what the boto_route53
library expects, rather than None.

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

	depends:

	boto

	
salt.modules.boto_route53.add_record(name, value, zone, record_type, identifier=None, ttl=None, region=None, key=None, keyid=None, profile=None, wait_for_sync=True, split_dns=False, private_zone=False, retry_on_rate_limit=None, rate_limit_retries=None, retry_on_errors=True, error_retries=5)

	Add a record to a zone.

CLI Example:

salt myminion boto_route53.add_record test.example.org 1.1.1.1 example.org A

	retry_on_errors
	Continue to query if the zone exists after an error is
raised. The previously used argument retry_on_rate_limit
was deprecated for this argument. Users can still use
retry_on_rate_limit to ensure backwards compatibility,
but please migrate to using the favored retry_on_errors
argument instead.

	error_retries
	Number of times to attempt to query if the zone exists.
The previously used argument rate_limit_retries was
deprecated for this arguments. Users can still use
rate_limit_retries to ensure backwards compatibility,
but please migrate to using the favored error_retries
argument instead.

	
salt.modules.boto_route53.create_healthcheck(ip_addr=None, fqdn=None, region=None, key=None, keyid=None, profile=None, port=53, hc_type='TCP', resource_path='', string_match=None, request_interval=30, failure_threshold=3, retry_on_errors=True, error_retries=5)

	Create a Route53 healthcheck

New in version 2018.3.0.

ip_addr

IP address to check. ip_addr or fqdn is required.

fqdn

Domain name of the endpoint to check. ip_addr or fqdn is required

port

Port to check

hc_type

Healthcheck type. HTTP | HTTPS | HTTP_STR_MATCH | HTTPS_STR_MATCH | TCP

resource_path

Path to check

string_match

If hc_type is HTTP_STR_MATCH or HTTPS_STR_MATCH, the string to search for in the
response body from the specified resource

request_interval

The number of seconds between the time that Amazon Route 53 gets a response from
your endpoint and the time that it sends the next health-check request.

failure_threshold

The number of consecutive health checks that an endpoint must pass or fail for
Amazon Route 53 to change the current status of the endpoint from unhealthy to
healthy or vice versa.

region

Region endpoint to connect to

key

AWS key

keyid

AWS keyid

profile

AWS pillar profile

CLI Example:

salt myminion boto_route53.create_healthcheck 192.168.0.1
salt myminion boto_route53.create_healthcheck 192.168.0.1 port=443 hc_type=HTTPS resource_path=/ fqdn=blog.saltstack.furniture

	
salt.modules.boto_route53.create_hosted_zone(domain_name, caller_ref=None, comment='', private_zone=False, vpc_id=None, vpc_name=None, vpc_region=None, region=None, key=None, keyid=None, profile=None)

	Create a new Route53 Hosted Zone. Returns a Python data structure with information about the
newly created Hosted Zone.

	domain_name
	The name of the domain. This must be fully-qualified, terminating with a period. This is
the name you have registered with your domain registrar. It is also the name you will
delegate from your registrar to the Amazon Route 53 delegation servers returned in response
to this request.

	caller_ref
	A unique string that identifies the request and that allows create_hosted_zone() calls to
be retried without the risk of executing the operation twice. It can take several minutes
for the change to replicate globally, and change from PENDING to INSYNC status. Thus it's
best to provide some value for this where possible, since duplicate calls while the first
is in PENDING status will be accepted and can lead to multiple copies of the zone being
created. On the other hand, if a zone is created with a given caller_ref, then deleted,
a second attempt to create a zone with the same caller_ref will fail until that caller_ref
is flushed from the Route53 system, which can take upwards of 24 hours.

	comment
	Any comments you want to include about the hosted zone.

	private_zone
	Set True if creating a private hosted zone.

	vpc_id
	When creating a private hosted zone, either the VPC ID or VPC Name to associate with is
required. Exclusive with vpe_name. Ignored when creating a non-private zone.

	vpc_name
	When creating a private hosted zone, either the VPC ID or VPC Name to associate with is
required. Exclusive with vpe_id. Ignored when creating a non-private zone.

	vpc_region
	When creating a private hosted zone, the region of the associated VPC is required. If not
provided, an effort will be made to determine it from vpc_id or vpc_name, where possible.
If this fails, you'll need to provide an explicit value for this option. Ignored when
creating a non-private zone.

	region
	Region endpoint to connect to.

	key
	AWS key to bind with.

	keyid
	AWS keyid to bind with.

	profile
	Dict, or pillar key pointing to a dict, containing AWS region/key/keyid.

CLI Example:

salt myminion boto_route53.create_hosted_zone example.org

	
salt.modules.boto_route53.create_zone(zone, private=False, vpc_id=None, vpc_region=None, region=None, key=None, keyid=None, profile=None)

	Create a Route53 hosted zone.

New in version 2015.8.0.

	zone
	DNS zone to create

	private
	True/False if the zone will be a private zone

	vpc_id
	VPC ID to associate the zone to (required if private is True)

	vpc_region
	VPC Region (required if private is True)

	region
	region endpoint to connect to

	key
	AWS key

	keyid
	AWS keyid

	profile
	AWS pillar profile

CLI Example:

salt myminion boto_route53.create_zone example.org

	
salt.modules.boto_route53.delete_record(name, zone, record_type, identifier=None, all_records=False, region=None, key=None, keyid=None, profile=None, wait_for_sync=True, split_dns=False, private_zone=False, retry_on_rate_limit=None, rate_limit_retries=None, retry_on_errors=True, error_retries=5)

	Modify a record in a zone.

CLI Example:

salt myminion boto_route53.delete_record test.example.org example.org A

	retry_on_errors
	Continue to query if the zone exists after an error is
raised. The previously used argument retry_on_rate_limit
was deprecated for this argument. Users can still use
retry_on_rate_limit to ensure backwards compatibility,
but please migrate to using the favored retry_on_errors
argument instead.

	error_retries
	Number of times to attempt to query if the zone exists.
The previously used argument rate_limit_retries was
deprecated for this arguments. Users can still use
rate_limit_retries to ensure backwards compatibility,
but please migrate to using the favored error_retries
argument instead.

	
salt.modules.boto_route53.delete_zone(zone, region=None, key=None, keyid=None, profile=None)

	Delete a Route53 hosted zone.

New in version 2015.8.0.

CLI Example:

salt myminion boto_route53.delete_zone example.org

	
salt.modules.boto_route53.describe_hosted_zones(zone_id=None, domain_name=None, region=None, key=None, keyid=None, profile=None)

	Return detailed info about one, or all, zones in the bound account.
If neither zone_id nor domain_name is provided, return all zones.
Note that the return format is slightly different between the 'all'
and 'single' description types.

	zone_id
	The unique identifier for the Hosted Zone

	domain_name
	The FQDN of the Hosted Zone (including final period)

	region
	Region to connect to.

	key
	Secret key to be used.

	keyid
	Access key to be used.

	profile
	A dict with region, key and keyid, or a pillar key (string) that
contains a dict with region, key and keyid.

CLI Example:

salt myminion boto_route53.describe_hosted_zones domain_name=foo.bar.com. profile='{"region": "us-east-1", "keyid": "A12345678AB", "key": "xblahblahblah"}'

	
salt.modules.boto_route53.get_record(name, zone, record_type, fetch_all=False, region=None, key=None, keyid=None, profile=None, split_dns=False, private_zone=False, identifier=None, retry_on_rate_limit=None, rate_limit_retries=None, retry_on_errors=True, error_retries=5)

	Get a record from a zone.

CLI Example:

salt myminion boto_route53.get_record test.example.org example.org A

	retry_on_errors
	Continue to query if the zone exists after an error is
raised. The previously used argument retry_on_rate_limit
was deprecated for this argument. Users can still use
retry_on_rate_limit to ensure backwards compatibility,
but please migrate to using the favored retry_on_errors
argument instead.

	error_retries
	Number of times to attempt to query if the zone exists.
The previously used argument rate_limit_retries was
deprecated for this arguments. Users can still use
rate_limit_retries to ensure backwards compatibility,
but please migrate to using the favored error_retries
argument instead.

	
salt.modules.boto_route53.list_all_zones_by_id(region=None, key=None, keyid=None, profile=None)

	List, by their IDs, all hosted zones in the bound account.

	region
	Region to connect to.

	key
	Secret key to be used.

	keyid
	Access key to be used.

	profile
	A dict with region, key and keyid, or a pillar key (string) that
contains a dict with region, key and keyid.

CLI Example:

salt myminion boto_route53.list_all_zones_by_id

	
salt.modules.boto_route53.list_all_zones_by_name(region=None, key=None, keyid=None, profile=None)

	List, by their FQDNs, all hosted zones in the bound account.

	region
	Region to connect to.

	key
	Secret key to be used.

	keyid
	Access key to be used.

	profile
	A dict with region, key and keyid, or a pillar key (string) that
contains a dict with region, key and keyid.

CLI Example:

salt myminion boto_route53.list_all_zones_by_name

	
salt.modules.boto_route53.update_record(name, value, zone, record_type, identifier=None, ttl=None, region=None, key=None, keyid=None, profile=None, wait_for_sync=True, split_dns=False, private_zone=False, retry_on_rate_limit=None, rate_limit_retries=None, retry_on_errors=True, error_retries=5)

	Modify a record in a zone.

CLI Example:

salt myminion boto_route53.modify_record test.example.org 1.1.1.1 example.org A

	retry_on_errors
	Continue to query if the zone exists after an error is
raised. The previously used argument retry_on_rate_limit
was deprecated for this argument. Users can still use
retry_on_rate_limit to ensure backwards compatibility,
but please migrate to using the favored retry_on_errors
argument instead.

	error_retries
	Number of times to attempt to query if the zone exists.
The previously used argument rate_limit_retries was
deprecated for this arguments. Users can still use
rate_limit_retries to ensure backwards compatibility,
but please migrate to using the favored error_retries
argument instead.

	
salt.modules.boto_route53.zone_exists(zone, region=None, key=None, keyid=None, profile=None, retry_on_rate_limit=None, rate_limit_retries=None, retry_on_errors=True, error_retries=5)

	Check for the existence of a Route53 hosted zone.

New in version 2015.8.0.

CLI Example:

salt myminion boto_route53.zone_exists example.org

	retry_on_errors
	Continue to query if the zone exists after an error is
raised. The previously used argument retry_on_rate_limit
was deprecated for this argument. Users can still use
retry_on_rate_limit to ensure backwards compatibility,
but please migrate to using the favored retry_on_errors
argument instead.

	error_retries
	Number of times to attempt to query if the zone exists.
The previously used argument rate_limit_retries was
deprecated for this arguments. Users can still use
rate_limit_retries to ensure backwards compatibility,
but please migrate to using the favored error_retries
argument instead.

salt.modules.boto_s3

Connection module for Amazon S3 using boto3

New in version 2018.3.0.

	configuration:

	This module accepts explicit AWS credentials but can also
utilize IAM roles assigned to the instance through Instance Profiles or
it can read them from the ~/.aws/credentials file or from these
environment variables: AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY.
Dynamic credentials are then automatically obtained from AWS API and no
further configuration is necessary. More information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
 iam-roles-for-amazon-ec2.html

http://boto3.readthedocs.io/en/latest/guide/
 configuration.html#guide-configuration

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

s3.keyid: GKTADJGHEIQSXMKKRBJ08H
s3.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

s3.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

	depends:

	boto3

	
salt.modules.boto_s3.get_object_metadata(name, extra_args=None, region=None, key=None, keyid=None, profile=None)

	Get metadata about an S3 object.
Returns None if the object does not exist.

You can pass AWS SSE-C related args and/or RequestPayer in extra_args.

CLI Example:

salt myminion boto_s3.get_object_metadata \
 my_bucket/path/to/object \
 region=us-east-1 \
 key=key \
 keyid=keyid \
 profile=profile \

	
salt.modules.boto_s3.upload_file(source, name, extra_args=None, region=None, key=None, keyid=None, profile=None)

	Upload a local file as an S3 object.

CLI Example:

salt myminion boto_s3.upload_file \
 /path/to/local/file \
 my_bucket/path/to/object \
 region=us-east-1 \
 key=key \
 keyid=keyid \
 profile=profile \

salt.modules.boto_s3_bucket

Connection module for Amazon S3 Buckets

New in version 2016.3.0.

	depends:

	
	boto

	boto3

The dependencies listed above can be installed via package or pip.

	configuration:

	This module accepts explicit Lambda credentials but can also
utilize IAM roles assigned to the instance through Instance Profiles.
Dynamic credentials are then automatically obtained from AWS API and no
further configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

s3.keyid: GKTADJGHEIQSXMKKRBJ08H
s3.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

s3.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

	
salt.modules.boto_s3_bucket.create(Bucket, ACL=None, LocationConstraint=None, GrantFullControl=None, GrantRead=None, GrantReadACP=None, GrantWrite=None, GrantWriteACP=None, region=None, key=None, keyid=None, profile=None)

	Given a valid config, create an S3 Bucket.

Returns {created: true} if the bucket was created and returns
{created: False} if the bucket was not created.

CLI Example:

salt myminion boto_s3_bucket.create my_bucket \
 GrantFullControl='emailaddress=example@example.com' \
 GrantRead='uri="http://acs.amazonaws.com/groups/global/AllUsers"' \
 GrantReadACP='emailaddress="exampl@example.com",id="2345678909876432"' \
 LocationConstraint=us-west-1

	
salt.modules.boto_s3_bucket.delete(Bucket, MFA=None, RequestPayer=None, Force=False, region=None, key=None, keyid=None, profile=None)

	Given a bucket name, delete it, optionally emptying it first.

Returns {deleted: true} if the bucket was deleted and returns
{deleted: false} if the bucket was not deleted.

CLI Example:

salt myminion boto_s3_bucket.delete mybucket

	
salt.modules.boto_s3_bucket.delete_cors(Bucket, region=None, key=None, keyid=None, profile=None)

	Delete the CORS configuration for the given bucket

Returns {deleted: true} if CORS was deleted and returns
{deleted: False} if CORS was not deleted.

CLI Example:

salt myminion boto_s3_bucket.delete_cors my_bucket

	
salt.modules.boto_s3_bucket.delete_lifecycle_configuration(Bucket, region=None, key=None, keyid=None, profile=None)

	Delete the lifecycle configuration for the given bucket

Returns {deleted: true} if Lifecycle was deleted and returns
{deleted: False} if Lifecycle was not deleted.

CLI Example:

salt myminion boto_s3_bucket.delete_lifecycle_configuration my_bucket

	
salt.modules.boto_s3_bucket.delete_objects(Bucket, Delete, MFA=None, RequestPayer=None, region=None, key=None, keyid=None, profile=None)

	Delete objects in a given S3 bucket.

Returns {deleted: true} if all objects were deleted
and {deleted: false, failed: [key, ...]} otherwise

CLI Example:

salt myminion boto_s3_bucket.delete_objects mybucket '{Objects: [Key: myobject]}'

	
salt.modules.boto_s3_bucket.delete_policy(Bucket, region=None, key=None, keyid=None, profile=None)

	Delete the policy from the given bucket

Returns {deleted: true} if policy was deleted and returns
{deleted: False} if policy was not deleted.

CLI Example:

salt myminion boto_s3_bucket.delete_policy my_bucket

	
salt.modules.boto_s3_bucket.delete_replication(Bucket, region=None, key=None, keyid=None, profile=None)

	Delete the replication config from the given bucket

Returns {deleted: true} if replication configuration was deleted and returns
{deleted: False} if replication configuration was not deleted.

CLI Example:

salt myminion boto_s3_bucket.delete_replication my_bucket

	
salt.modules.boto_s3_bucket.delete_tagging(Bucket, region=None, key=None, keyid=None, profile=None)

	Delete the tags from the given bucket

Returns {deleted: true} if tags were deleted and returns
{deleted: False} if tags were not deleted.

CLI Example:

salt myminion boto_s3_bucket.delete_tagging my_bucket

	
salt.modules.boto_s3_bucket.delete_website(Bucket, region=None, key=None, keyid=None, profile=None)

	Remove the website configuration from the given bucket

Returns {deleted: true} if website configuration was deleted and returns
{deleted: False} if website configuration was not deleted.

CLI Example:

salt myminion boto_s3_bucket.delete_website my_bucket

	
salt.modules.boto_s3_bucket.describe(Bucket, region=None, key=None, keyid=None, profile=None)

	Given a bucket name describe its properties.

Returns a dictionary of interesting properties.

CLI Example:

salt myminion boto_s3_bucket.describe mybucket

	
salt.modules.boto_s3_bucket.empty(Bucket, MFA=None, RequestPayer=None, region=None, key=None, keyid=None, profile=None)

	Delete all objects in a given S3 bucket.

Returns {deleted: true} if all objects were deleted
and {deleted: false, failed: [key, ...]} otherwise

CLI Example:

salt myminion boto_s3_bucket.empty mybucket

	
salt.modules.boto_s3_bucket.exists(Bucket, region=None, key=None, keyid=None, profile=None)

	Given a bucket name, check to see if the given bucket exists.

Returns True if the given bucket exists and returns False if the given
bucket does not exist.

CLI Example:

salt myminion boto_s3_bucket.exists mybucket

	
salt.modules.boto_s3_bucket.list(region=None, key=None, keyid=None, profile=None)

	List all buckets owned by the authenticated sender of the request.

Returns list of buckets

CLI Example:

Owner: {...}
Buckets:
 - {...}
 - {...}

	
salt.modules.boto_s3_bucket.list_object_versions(Bucket, Delimiter=None, EncodingType=None, Prefix=None, region=None, key=None, keyid=None, profile=None)

	List objects in a given S3 bucket.

Returns a list of objects.

CLI Example:

salt myminion boto_s3_bucket.list_object_versions mybucket

	
salt.modules.boto_s3_bucket.list_objects(Bucket, Delimiter=None, EncodingType=None, Prefix=None, FetchOwner=False, StartAfter=None, region=None, key=None, keyid=None, profile=None)

	List objects in a given S3 bucket.

Returns a list of objects.

CLI Example:

salt myminion boto_s3_bucket.list_objects mybucket

	
salt.modules.boto_s3_bucket.put_acl(Bucket, ACL=None, AccessControlPolicy=None, GrantFullControl=None, GrantRead=None, GrantReadACP=None, GrantWrite=None, GrantWriteACP=None, region=None, key=None, keyid=None, profile=None)

	Given a valid config, update the ACL for a bucket.

Returns {updated: true} if the ACL was updated and returns
{updated: False} if the ACL was not updated.

CLI Example:

salt myminion boto_s3_bucket.put_acl my_bucket 'public' \
 GrantFullControl='emailaddress=example@example.com' \
 GrantRead='uri="http://acs.amazonaws.com/groups/global/AllUsers"' \
 GrantReadACP='emailaddress="exampl@example.com",id="2345678909876432"'

	
salt.modules.boto_s3_bucket.put_cors(Bucket, CORSRules, region=None, key=None, keyid=None, profile=None)

	Given a valid config, update the CORS rules for a bucket.

Returns {updated: true} if CORS was updated and returns
{updated: False} if CORS was not updated.

CLI Example:

salt myminion boto_s3_bucket.put_cors my_bucket '[{\
 "AllowedHeaders":[],\
 "AllowedMethods":["GET"],\
 "AllowedOrigins":["*"],\
 "ExposeHeaders":[],\
 "MaxAgeSeconds":123,\
}]'

	
salt.modules.boto_s3_bucket.put_lifecycle_configuration(Bucket, Rules, region=None, key=None, keyid=None, profile=None)

	Given a valid config, update the Lifecycle rules for a bucket.

Returns {updated: true} if Lifecycle was updated and returns
{updated: False} if Lifecycle was not updated.

CLI Example:

salt myminion boto_s3_bucket.put_lifecycle_configuration my_bucket '[{\
 "Expiration": {...},\
 "ID": "idstring",\
 "Prefix": "prefixstring",\
 "Status": "enabled",\
 "Transitions": [{...},],\
 "NoncurrentVersionTransitions": [{...},],\
 "NoncurrentVersionExpiration": {...},\
}]'

	
salt.modules.boto_s3_bucket.put_logging(Bucket, TargetBucket=None, TargetPrefix=None, TargetGrants=None, region=None, key=None, keyid=None, profile=None)

	Given a valid config, update the logging parameters for a bucket.

Returns {updated: true} if parameters were updated and returns
{updated: False} if parameters were not updated.

CLI Example:

salt myminion boto_s3_bucket.put_logging my_bucket log_bucket '[{...}]' prefix

	
salt.modules.boto_s3_bucket.put_notification_configuration(Bucket, TopicConfigurations=None, QueueConfigurations=None, LambdaFunctionConfigurations=None, region=None, key=None, keyid=None, profile=None)

	Given a valid config, update the notification parameters for a bucket.

Returns {updated: true} if parameters were updated and returns
{updated: False} if parameters were not updated.

CLI Example:

salt myminion boto_s3_bucket.put_notification_configuration my_bucket
 [{...}] \
 [{...}] \
 [{...}]

	
salt.modules.boto_s3_bucket.put_policy(Bucket, Policy, region=None, key=None, keyid=None, profile=None)

	Given a valid config, update the policy for a bucket.

Returns {updated: true} if policy was updated and returns
{updated: False} if policy was not updated.

CLI Example:

salt myminion boto_s3_bucket.put_policy my_bucket {...}

	
salt.modules.boto_s3_bucket.put_replication(Bucket, Role, Rules, region=None, key=None, keyid=None, profile=None)

	Given a valid config, update the replication configuration for a bucket.

Returns {updated: true} if replication configuration was updated and returns
{updated: False} if replication configuration was not updated.

CLI Example:

salt myminion boto_s3_bucket.put_replication my_bucket my_role [...]

	
salt.modules.boto_s3_bucket.put_request_payment(Bucket, Payer, region=None, key=None, keyid=None, profile=None)

	Given a valid config, update the request payment configuration for a bucket.

Returns {updated: true} if request payment configuration was updated and returns
{updated: False} if request payment configuration was not updated.

CLI Example:

salt myminion boto_s3_bucket.put_request_payment my_bucket Requester

	
salt.modules.boto_s3_bucket.put_tagging(Bucket, region=None, key=None, keyid=None, profile=None, **kwargs)

	Given a valid config, update the tags for a bucket.

Returns {updated: true} if tags were updated and returns
{updated: False} if tags were not updated.

CLI Example:

salt myminion boto_s3_bucket.put_tagging my_bucket my_role [...]

	
salt.modules.boto_s3_bucket.put_versioning(Bucket, Status, MFADelete=None, MFA=None, region=None, key=None, keyid=None, profile=None)

	Given a valid config, update the versioning configuration for a bucket.

Returns {updated: true} if versioning configuration was updated and returns
{updated: False} if versioning configuration was not updated.

CLI Example:

salt myminion boto_s3_bucket.put_versioning my_bucket Enabled

	
salt.modules.boto_s3_bucket.put_website(Bucket, ErrorDocument=None, IndexDocument=None, RedirectAllRequestsTo=None, RoutingRules=None, region=None, key=None, keyid=None, profile=None)

	Given a valid config, update the website configuration for a bucket.

Returns {updated: true} if website configuration was updated and returns
{updated: False} if website configuration was not updated.

CLI Example:

salt myminion boto_s3_bucket.put_website my_bucket IndexDocument='{"Suffix":"index.html"}'

salt.modules.boto_secgroup

Connection module for Amazon Security Groups

New in version 2014.7.0.

	configuration:

	This module accepts explicit ec2 credentials but can
also utilize IAM roles assigned to the instance through Instance Profiles.
Dynamic credentials are then automatically obtained from AWS API and no
further configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

secgroup.keyid: GKTADJGHEIQSXMKKRBJ08H
secgroup.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

secgroup.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

	depends:

	boto

	
salt.modules.boto_secgroup.authorize(name=None, source_group_name=None, source_group_owner_id=None, ip_protocol=None, from_port=None, to_port=None, cidr_ip=None, group_id=None, source_group_group_id=None, region=None, key=None, keyid=None, profile=None, vpc_id=None, vpc_name=None, egress=False)

	Add a new rule to an existing security group.

CLI Example:

salt myminion boto_secgroup.authorize mysecgroup ip_protocol=tcp from_port=80 to_port=80 cidr_ip='['10.0.0.0/8', '192.168.0.0/24']'

	
salt.modules.boto_secgroup.convert_to_group_ids(groups, vpc_id=None, vpc_name=None, region=None, key=None, keyid=None, profile=None)

	Given a list of security groups and a vpc_id, convert_to_group_ids will
convert all list items in the given list to security group ids.

CLI Example:

salt myminion boto_secgroup.convert_to_group_ids mysecgroup vpc-89yhh7h

	
salt.modules.boto_secgroup.create(name, description, vpc_id=None, vpc_name=None, region=None, key=None, keyid=None, profile=None)

	Create a security group.

CLI Example:

salt myminion boto_secgroup.create mysecgroup 'My Security Group'

	
salt.modules.boto_secgroup.delete(name=None, group_id=None, region=None, key=None, keyid=None, profile=None, vpc_id=None, vpc_name=None)

	Delete a security group.

CLI Example:

salt myminion boto_secgroup.delete mysecgroup

	
salt.modules.boto_secgroup.delete_tags(tags, name=None, group_id=None, vpc_name=None, vpc_id=None, region=None, key=None, keyid=None, profile=None)

	Deletes tags from a security group.

New in version 2016.3.0.

	tags
	a list of tags to remove

	name
	the name of the security group

	group_id
	the group id of the security group (in lie of a name/vpc combo)

	vpc_name
	the name of the vpc to search the named group for

	vpc_id
	the id of the vpc, in lieu of the vpc_name

	region
	the amazon region

	key
	amazon key

	keyid
	amazon keyid

	profile
	amazon profile

CLI Example:

salt myminion boto_secgroup.delete_tags ['TAG_TO_DELETE1','TAG_TO_DELETE2'] security_group_name vpc_id=vpc-13435 profile=my_aws_profile

	
salt.modules.boto_secgroup.exists(name=None, region=None, key=None, keyid=None, profile=None, vpc_id=None, vpc_name=None, group_id=None)

	Check to see if a security group exists.

CLI Example:

salt myminion boto_secgroup.exists mysecgroup

	
salt.modules.boto_secgroup.get_all_security_groups(groupnames=None, group_ids=None, filters=None, region=None, key=None, keyid=None, profile=None)

	Return a list of all Security Groups matching the given criteria and
filters.

Note that the groupnames argument only functions correctly for EC2
Classic and default VPC Security Groups. To find groups by name in other
VPCs you'll want to use the group-name filter instead.

The valid keys for the filters argument can be found in AWS's API
documentation [https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeSecurityGroups.html].

CLI Example:

salt myminion boto_secgroup.get_all_security_groups filters='{group-name: mygroup}'

	
salt.modules.boto_secgroup.get_config(name=None, group_id=None, region=None, key=None, keyid=None, profile=None, vpc_id=None, vpc_name=None)

	Get the configuration for a security group.

CLI Example:

salt myminion boto_secgroup.get_config mysecgroup

	
salt.modules.boto_secgroup.get_group_id(name, vpc_id=None, vpc_name=None, region=None, key=None, keyid=None, profile=None)

	Get a Group ID given a Group Name or Group Name and VPC ID

CLI Example:

salt myminion boto_secgroup.get_group_id mysecgroup

	
salt.modules.boto_secgroup.revoke(name=None, source_group_name=None, source_group_owner_id=None, ip_protocol=None, from_port=None, to_port=None, cidr_ip=None, group_id=None, source_group_group_id=None, region=None, key=None, keyid=None, profile=None, vpc_id=None, vpc_name=None, egress=False)

	Remove a rule from an existing security group.

CLI Example:

salt myminion boto_secgroup.revoke mysecgroup ip_protocol=tcp from_port=80 to_port=80 cidr_ip='10.0.0.0/8'

	
salt.modules.boto_secgroup.set_tags(tags, name=None, group_id=None, vpc_name=None, vpc_id=None, region=None, key=None, keyid=None, profile=None)

	Sets tags on a security group.

New in version 2016.3.0.

	tags
	a dict of key:value pair of tags to set on the security group

	name
	the name of the security group

	group_id
	the group id of the security group (in lie of a name/vpc combo)

	vpc_name
	the name of the vpc to search the named group for

	vpc_id
	the id of the vpc, in lieu of the vpc_name

	region
	the amazon region

	key
	amazon key

	keyid
	amazon keyid

	profile
	amazon profile

CLI Example:

salt myminion boto_secgroup.set_tags "{'TAG1': 'Value1', 'TAG2': 'Value2'}" security_group_name vpc_id=vpc-13435 profile=my_aws_profile

salt.modules.boto_sns

Connection module for Amazon SNS

	configuration:

	This module accepts explicit sns credentials but can also
utilize IAM roles assigned to the instance through Instance Profiles. Dynamic
credentials are then automatically obtained from AWS API and no further
configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

sns.keyid: GKTADJGHEIQSXMKKRBJ08H
sns.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

sns.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

	depends:

	boto

	
salt.modules.boto_sns.create(name, region=None, key=None, keyid=None, profile=None)

	Create an SNS topic.

CLI example to create a topic:

salt myminion boto_sns.create mytopic region=us-east-1

	
salt.modules.boto_sns.delete(name, region=None, key=None, keyid=None, profile=None)

	Delete an SNS topic.

CLI example to delete a topic:

salt myminion boto_sns.delete mytopic region=us-east-1

	
salt.modules.boto_sns.exists(name, region=None, key=None, keyid=None, profile=None)

	Check to see if an SNS topic exists.

CLI Example:

salt myminion boto_sns.exists mytopic region=us-east-1

	
salt.modules.boto_sns.get_all_subscriptions_by_topic(name, region=None, key=None, keyid=None, profile=None)

	Get list of all subscriptions to a specific topic.

CLI example to delete a topic:

salt myminion boto_sns.get_all_subscriptions_by_topic mytopic region=us-east-1

	
salt.modules.boto_sns.get_all_topics(region=None, key=None, keyid=None, profile=None)

	Returns a list of the all topics..

CLI Example:

salt myminion boto_sns.get_all_topics

	
salt.modules.boto_sns.get_arn(name, region=None, key=None, keyid=None, profile=None)

	Returns the full ARN for a given topic name.

CLI Example:

salt myminion boto_sns.get_arn mytopic

	
salt.modules.boto_sns.subscribe(topic, protocol, endpoint, region=None, key=None, keyid=None, profile=None)

	Subscribe to a Topic.

CLI example to delete a topic:

salt myminion boto_sns.subscribe mytopic https https://www.example.com/sns-endpoint region=us-east-1

	
salt.modules.boto_sns.unsubscribe(topic, subscription_arn, region=None, key=None, keyid=None, profile=None)

	Unsubscribe a specific SubscriptionArn of a topic.

CLI Example:

salt myminion boto_sns.unsubscribe my_topic my_subscription_arn region=us-east-1

New in version 2016.11.0.

salt.modules.boto_sqs

Connection module for Amazon SQS

New in version 2014.7.0.

	configuration:

	This module accepts explicit sqs credentials but can also utilize
IAM roles assigned to the instance through Instance Profiles. Dynamic
credentials are then automatically obtained from AWS API and no further
configuration is necessary. More information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

sqs.keyid: GKTADJGHEIQSXMKKRBJ08H
sqs.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

sqs.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

	depends:

	boto3

	
salt.modules.boto_sqs.create(name, attributes=None, region=None, key=None, keyid=None, profile=None)

	Create an SQS queue.

CLI Example:

salt myminion boto_sqs.create myqueue region=us-east-1

	
salt.modules.boto_sqs.delete(name, region=None, key=None, keyid=None, profile=None)

	Delete an SQS queue.

CLI Example:

salt myminion boto_sqs.delete myqueue region=us-east-1

	
salt.modules.boto_sqs.exists(name, region=None, key=None, keyid=None, profile=None)

	Check to see if a queue exists.

CLI Example:

salt myminion boto_sqs.exists myqueue region=us-east-1

	
salt.modules.boto_sqs.get_attributes(name, region=None, key=None, keyid=None, profile=None)

	Return attributes currently set on an SQS queue.

CLI Example:

salt myminion boto_sqs.get_attributes myqueue

	
salt.modules.boto_sqs.list_(prefix='', region=None, key=None, keyid=None, profile=None)

	Return a list of the names of all visible queues.

New in version 2016.11.0.

CLI Example:

salt myminion boto_sqs.list region=us-east-1

	
salt.modules.boto_sqs.set_attributes(name, attributes, region=None, key=None, keyid=None, profile=None)

	Set attributes on an SQS queue.

CLI Example:

salt myminion boto_sqs.set_attributes myqueue '{ReceiveMessageWaitTimeSeconds: 20}' region=us-east-1

salt.modules.boto_ssm

Connection module for Amazon SSM

	configuration:

	This module uses IAM roles assigned to the instance through
Instance Profiles. Dynamic credentials are then automatically obtained
from AWS API and no further configuration is necessary. More Information
available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

	depends:

	boto3

	
salt.modules.boto_ssm.delete_parameter(Name, region=None, key=None, keyid=None, profile=None)

	Removes a parameter from the SSM parameter store

New in version 3000.

salt-call boto_ssm.delete_parameter test-param

	
salt.modules.boto_ssm.get_parameter(name, withdecryption=False, resp_json=False, region=None, key=None, keyid=None, profile=None)

	Retrieves a parameter from SSM Parameter Store

New in version 3000.

salt-call boto_ssm.get_parameter test-param withdescription=True

	
salt.modules.boto_ssm.put_parameter(Name, Value, Description=None, Type='String', KeyId=None, Overwrite=False, AllowedPattern=None, region=None, key=None, keyid=None, profile=None)

	Sets a parameter in the SSM parameter store

New in version 3000.

salt-call boto_ssm.put_parameter test-param test_value Type=SecureString KeyId=alias/aws/ssm Description='test encrypted key'

salt.modules.boto_vpc

Connection module for Amazon VPC

New in version 2014.7.0.

	depends:

	

	boto >= 2.8.0

	boto3 >= 1.2.6

	configuration:

	This module accepts explicit VPC credentials but can also
utilize IAM roles assigned to the instance through Instance Profiles.
Dynamic credentials are then automatically obtained from AWS API and no
further configuration is necessary. More Information available here [http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html].

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

vpc.keyid: GKTADJGHEIQSXMKKRBJ08H
vpc.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

A region may also be specified in the configuration:

vpc.region: us-east-1

If a region is not specified, the default is us-east-1.

It's also possible to specify key, keyid and region via a profile, either
as a passed in dict, or as a string to pull from pillars or minion config:

myprofile:
 keyid: GKTADJGHEIQSXMKKRBJ08H
 key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs
 region: us-east-1

Changed in version 2015.8.0: All methods now return a dictionary. Create and delete methods return:

created: true

or

created: false
error:
 message: error message

Request methods (e.g., describe_vpc) return:

vpcs:
 - {...}
 - {...}

or

error:
 message: error message

New in version 2016.11.0.

Functions to request, accept, delete and describe VPC peering connections.
Named VPC peering connections can be requested using these modules.
VPC owner accounts can accept VPC peering connections (named or otherwise).

Examples showing creation of VPC peering connection

Create a named VPC peering connection
salt myminion boto_vpc.request_vpc_peering_connection vpc-4a3e622e vpc-be82e9da name=my_vpc_connection
Without a name
salt myminion boto_vpc.request_vpc_peering_connection vpc-4a3e622e vpc-be82e9da
Specify a region
salt myminion boto_vpc.request_vpc_peering_connection vpc-4a3e622e vpc-be82e9da region=us-west-2

Check to see if VPC peering connection is pending

salt myminion boto_vpc.is_peering_connection_pending name=salt-vpc
Specify a region
salt myminion boto_vpc.is_peering_connection_pending name=salt-vpc region=us-west-2
specify an id
salt myminion boto_vpc.is_peering_connection_pending conn_id=pcx-8a8939e3

Accept VPC peering connection

salt myminion boto_vpc.accept_vpc_peering_connection name=salt-vpc
Specify a region
salt myminion boto_vpc.accept_vpc_peering_connection name=salt-vpc region=us-west-2
specify an id
salt myminion boto_vpc.accept_vpc_peering_connection conn_id=pcx-8a8939e3

Deleting VPC peering connection via this module

Delete a named VPC peering connection
salt myminion boto_vpc.delete_vpc_peering_connection name=salt-vpc
Specify a region
salt myminion boto_vpc.delete_vpc_peering_connection name=salt-vpc region=us-west-2
specify an id
salt myminion boto_vpc.delete_vpc_peering_connection conn_id=pcx-8a8939e3

	
salt.modules.boto_vpc.accept_vpc_peering_connection(conn_id='', name='', region=None, key=None, keyid=None, profile=None, dry_run=False)

	Request a VPC peering connection between two VPCs.

New in version 2016.11.0.

	Parameters:

	
	conn_id -- The ID to use. String type.

	name -- The name of this VPC peering connection. String type.

	region -- The AWS region to use. Type string.

	key -- The key to use for this connection. Type string.

	keyid -- The key id to use.

	profile -- The profile to use.

	dry_run -- The dry_run flag to set.

	Returns:

	dict

Warning: Please specify either the vpc_peering_connection_id or
name but not both. Specifying both will result in an error!

CLI Example:

salt myminion boto_vpc.accept_vpc_peering_connection name=salt-vpc
Specify a region
salt myminion boto_vpc.accept_vpc_peering_connection name=salt-vpc region=us-west-2
specify an id
salt myminion boto_vpc.accept_vpc_peering_connection conn_id=pcx-8a8939e3

	
salt.modules.boto_vpc.associate_dhcp_options_to_vpc(dhcp_options_id, vpc_id=None, vpc_name=None, region=None, key=None, keyid=None, profile=None)

	Given valid DHCP options id and a valid VPC id, associate the DHCP options record with the VPC.

Returns True if the DHCP options record were associated and returns False if the DHCP options record was not associated.

CLI Example:

salt myminion boto_vpc.associate_dhcp_options_to_vpc 'dhcp-a0bl34pp' 'vpc-6b1fe402'

	
salt.modules.boto_vpc.associate_network_acl_to_subnet(network_acl_id=None, subnet_id=None, network_acl_name=None, subnet_name=None, region=None, key=None, keyid=None, profile=None)

	Given a network acl and subnet ids or names, associate a network acl to a subnet.

CLI Example:

salt myminion boto_vpc.associate_network_acl_to_subnet \
 network_acl_id='acl-5fb85d36' subnet_id='subnet-6a1fe403'

salt myminion boto_vpc.associate_network_acl_to_subnet \
 network_acl_id='myacl' subnet_id='mysubnet'

	
salt.modules.boto_vpc.associate_route_table(route_table_id=None, subnet_id=None, route_table_name=None, subnet_name=None, region=None, key=None, keyid=None, profile=None)

	Given a route table and subnet name or id, associates the route table with the subnet.

CLI Example:

salt myminion boto_vpc.associate_route_table 'rtb-1f382e7d' 'subnet-6a1fe403'

salt myminion boto_vpc.associate_route_table route_table_name='myrtb' \
 subnet_name='mysubnet'

	
salt.modules.boto_vpc.check_vpc(vpc_id=None, vpc_name=None, region=None, key=None, keyid=None, profile=None)

	Check whether a VPC with the given name or id exists.
Returns the vpc_id or None. Raises SaltInvocationError if
both vpc_id and vpc_name are None. Optionally raise a
CommandExecutionError if the VPC does not exist.

New in version 2016.3.0.

CLI Example:

salt myminion boto_vpc.check_vpc vpc_name=myvpc profile=awsprofile

	
salt.modules.boto_vpc.create(cidr_block, instance_tenancy=None, vpc_name=None, enable_dns_support=None, enable_dns_hostnames=None, tags=None, region=None, key=None, keyid=None, profile=None)

	Given a valid CIDR block, create a VPC.

An optional instance_tenancy argument can be provided. If provided, the
valid values are 'default' or 'dedicated'

An optional vpc_name argument can be provided.

Returns {created: true} if the VPC was created and returns
{created: False} if the VPC was not created.

CLI Example:

salt myminion boto_vpc.create '10.0.0.0/24'

	
salt.modules.boto_vpc.create_customer_gateway(vpn_connection_type, ip_address, bgp_asn, customer_gateway_name=None, tags=None, region=None, key=None, keyid=None, profile=None)

	Given a valid VPN connection type, a static IP address and a customer
gateway’s Border Gateway Protocol (BGP) Autonomous System Number,
create a customer gateway.

Returns the customer gateway id if the customer gateway was created and
returns False if the customer gateway was not created.

CLI Example:

salt myminion boto_vpc.create_customer_gateway 'ipsec.1', '12.1.2.3', 65534

	
salt.modules.boto_vpc.create_dhcp_options(domain_name=None, domain_name_servers=None, ntp_servers=None, netbios_name_servers=None, netbios_node_type=None, dhcp_options_name=None, tags=None, vpc_id=None, vpc_name=None, region=None, key=None, keyid=None, profile=None)

	Given valid DHCP options, create a DHCP options record, optionally associating it with
an existing VPC.

Returns True if the DHCP options record was created and returns False if the DHCP options record was not deleted.

Changed in version 2015.8.0: Added vpc_name and vpc_id arguments

CLI Example:

salt myminion boto_vpc.create_dhcp_options domain_name='example.com' \
 domain_name_servers='[1.2.3.4]' ntp_servers='[5.6.7.8]' \
 netbios_name_servers='[10.0.0.1]' netbios_node_type=1 \
 vpc_name='myvpc'

	
salt.modules.boto_vpc.create_internet_gateway(internet_gateway_name=None, vpc_id=None, vpc_name=None, tags=None, region=None, key=None, keyid=None, profile=None)

	Create an Internet Gateway, optionally attaching it to an existing VPC.

Returns the internet gateway id if the internet gateway was created and
returns False if the internet gateways was not created.

New in version 2015.8.0.

CLI Example:

salt myminion boto_vpc.create_internet_gateway \
 internet_gateway_name=myigw vpc_name=myvpc

	
salt.modules.boto_vpc.create_nat_gateway(subnet_id=None, subnet_name=None, allocation_id=None, region=None, key=None, keyid=None, profile=None)

	Create a NAT Gateway within an existing subnet. If allocation_id is
specified, the elastic IP address it references is associated with the
gateway. Otherwise, a new allocation_id is created and used.

This function requires boto3 to be installed.

Returns the nat gateway id if the nat gateway was created and
returns False if the nat gateway was not created.

New in version 2016.11.0.

CLI Example:

salt myminion boto_vpc.create_nat_gateway subnet_name=mysubnet

	
salt.modules.boto_vpc.create_network_acl(vpc_id=None, vpc_name=None, network_acl_name=None, subnet_id=None, subnet_name=None, tags=None, region=None, key=None, keyid=None, profile=None)

	Given a vpc_id, creates a network acl.

Returns the network acl id if successful, otherwise returns False.

Changed in version 2015.8.0: Added vpc_name, subnet_id, and subnet_name arguments

CLI Example:

salt myminion boto_vpc.create_network_acl 'vpc-6b1fe402'

	
salt.modules.boto_vpc.create_network_acl_entry(network_acl_id=None, rule_number=None, protocol=None, rule_action=None, cidr_block=None, egress=None, network_acl_name=None, icmp_code=None, icmp_type=None, port_range_from=None, port_range_to=None, region=None, key=None, keyid=None, profile=None)

	Creates a network acl entry.

CLI Example:

salt myminion boto_vpc.create_network_acl_entry 'acl-5fb85d36' '32767' \
 'all' 'deny' '0.0.0.0/0' egress=true

	
salt.modules.boto_vpc.create_route(route_table_id=None, destination_cidr_block=None, route_table_name=None, gateway_id=None, internet_gateway_name=None, instance_id=None, interface_id=None, vpc_peering_connection_id=None, vpc_peering_connection_name=None, region=None, key=None, keyid=None, profile=None, nat_gateway_id=None, nat_gateway_subnet_name=None, nat_gateway_subnet_id=None)

	Creates a route.

If a nat gateway is specified, boto3 must be installed

CLI Example:

salt myminion boto_vpc.create_route 'rtb-1f382e7d' '10.0.0.0/16' gateway_id='vgw-a1b2c3'

	
salt.modules.boto_vpc.create_route_table(vpc_id=None, vpc_name=None, route_table_name=None, tags=None, region=None, key=None, keyid=None, profile=None)

	Creates a route table.

Changed in version 2015.8.0: Added vpc_name argument

CLI Examples:

salt myminion boto_vpc.create_route_table vpc_id='vpc-6b1fe402' \
 route_table_name='myroutetable'
salt myminion boto_vpc.create_route_table vpc_name='myvpc' \
 route_table_name='myroutetable'

	
salt.modules.boto_vpc.create_subnet(vpc_id=None, cidr_block=None, vpc_name=None, availability_zone=None, subnet_name=None, tags=None, region=None, key=None, keyid=None, profile=None, auto_assign_public_ipv4=False)

	Given a valid VPC ID or Name and a CIDR block, create a subnet for the VPC.

An optional availability zone argument can be provided.

Returns True if the VPC subnet was created and returns False if the VPC subnet was not created.

Changed in version 2015.8.0: Added vpc_name argument

CLI Examples:

salt myminion boto_vpc.create_subnet vpc_id='vpc-6b1fe402' \
 subnet_name='mysubnet' cidr_block='10.0.0.0/25'
salt myminion boto_vpc.create_subnet vpc_name='myvpc' \
 subnet_name='mysubnet', cidr_block='10.0.0.0/25'

	
salt.modules.boto_vpc.customer_gateway_exists(customer_gateway_id=None, customer_gateway_name=None, region=None, key=None, keyid=None, profile=None)

	Given a customer gateway ID, check if the customer gateway ID exists.

Returns True if the customer gateway ID exists; Returns False otherwise.

CLI Example:

salt myminion boto_vpc.customer_gateway_exists cgw-b6a247df
salt myminion boto_vpc.customer_gateway_exists customer_gatway_name=mycgw

	
salt.modules.boto_vpc.delete(vpc_id=None, name=None, vpc_name=None, tags=None, region=None, key=None, keyid=None, profile=None)

	Given a VPC ID or VPC name, delete the VPC.

Returns {deleted: true} if the VPC was deleted and returns
{deleted: false} if the VPC was not deleted.

CLI Example:

salt myminion boto_vpc.delete vpc_id='vpc-6b1fe402'
salt myminion boto_vpc.delete name='myvpc'

	
salt.modules.boto_vpc.delete_customer_gateway(customer_gateway_id=None, customer_gateway_name=None, region=None, key=None, keyid=None, profile=None)

	Given a customer gateway ID or name, delete the customer gateway.

Returns True if the customer gateway was deleted and returns False if the customer gateway was not deleted.

Changed in version 2015.8.0: Added customer_gateway_name argument

CLI Example:

salt myminion boto_vpc.delete_customer_gateway 'cgw-b6a247df'

	
salt.modules.boto_vpc.delete_dhcp_options(dhcp_options_id=None, dhcp_options_name=None, region=None, key=None, keyid=None, profile=None)

	Delete dhcp options by id or name.

New in version 2015.8.0.

CLI Example:

salt myminion boto_vpc.delete_dhcp_options 'dopt-b6a247df'

	
salt.modules.boto_vpc.delete_internet_gateway(internet_gateway_id=None, internet_gateway_name=None, detach=False, region=None, key=None, keyid=None, profile=None)

	Delete an internet gateway (by name or id).

Returns True if the internet gateway was deleted and otherwise False.

New in version 2015.8.0.

CLI Examples:

salt myminion boto_vpc.delete_internet_gateway internet_gateway_id=igw-1a2b3c
salt myminion boto_vpc.delete_internet_gateway internet_gateway_name=myigw

	
salt.modules.boto_vpc.delete_nat_gateway(nat_gateway_id, release_eips=False, region=None, key=None, keyid=None, profile=None, wait_for_delete=False, wait_for_delete_retries=5)

	Delete a nat gateway (by id).

Returns True if the internet gateway was deleted and otherwise False.

This function requires boto3 to be installed.

New in version 2016.11.0.

	nat_gateway_id
	Id of the NAT Gateway

	release_eips
	whether to release the elastic IPs associated with the given NAT Gateway Id

	region
	Region to connect to.

	key
	Secret key to be used.

	keyid
	Access key to be used.

	profile
	A dict with region, key and keyid, or a pillar key (string) that
contains a dict with region, key and keyid.

	wait_for_delete
	whether to wait for delete of the NAT gateway to be in failed or deleted
state after issuing the delete call.

	wait_for_delete_retries
	NAT gateway may take some time to be go into deleted or failed state.
During the deletion process, subsequent release of elastic IPs may fail;
this state will automatically retry this number of times to ensure
the NAT gateway is in deleted or failed state before proceeding.

CLI Examples:

salt myminion boto_vpc.delete_nat_gateway nat_gateway_id=igw-1a2b3c

	
salt.modules.boto_vpc.delete_network_acl(network_acl_id=None, network_acl_name=None, disassociate=False, region=None, key=None, keyid=None, profile=None)

	Delete a network acl based on the network_acl_id or network_acl_name provided.

CLI Examples:

salt myminion boto_vpc.delete_network_acl network_acl_id='acl-5fb85d36' \
 disassociate=false

salt myminion boto_vpc.delete_network_acl network_acl_name='myacl' \
 disassociate=true

	
salt.modules.boto_vpc.delete_network_acl_entry(network_acl_id=None, rule_number=None, egress=None, network_acl_name=None, region=None, key=None, keyid=None, profile=None)

	Deletes a network acl entry.

CLI Example:

salt myminion boto_vpc.delete_network_acl_entry 'acl-5fb85d36' '32767'

	
salt.modules.boto_vpc.delete_route(route_table_id=None, destination_cidr_block=None, route_table_name=None, region=None, key=None, keyid=None, profile=None)

	Deletes a route.

CLI Example:

salt myminion boto_vpc.delete_route 'rtb-1f382e7d' '10.0.0.0/16'

	
salt.modules.boto_vpc.delete_route_table(route_table_id=None, route_table_name=None, region=None, key=None, keyid=None, profile=None)

	Deletes a route table.

CLI Examples:

salt myminion boto_vpc.delete_route_table route_table_id='rtb-1f382e7d'
salt myminion boto_vpc.delete_route_table route_table_name='myroutetable'

	
salt.modules.boto_vpc.delete_subnet(subnet_id=None, subnet_name=None, region=None, key=None, keyid=None, profile=None)

	Given a subnet ID or name, delete the subnet.

Returns True if the subnet was deleted and returns False if the subnet was not deleted.

Changed in version 2015.8.0: Added subnet_name argument

CLI Example:

salt myminion boto_vpc.delete_subnet 'subnet-6a1fe403'

	
salt.modules.boto_vpc.delete_vpc_peering_connection(conn_id=None, conn_name=None, region=None, key=None, keyid=None, profile=None, dry_run=False)

	Delete a VPC peering connection.

New in version 2016.11.0.

	conn_id
	The connection ID to check. Exclusive with conn_name.

	conn_name
	The connection name to check. Exclusive with conn_id.

	region
	Region to connect to.

	key
	Secret key to be used.

	keyid
	Access key to be used.

	profile
	A dict with region, key and keyid, or a pillar key (string) that
contains a dict with region, key and keyid.

	dry_run
	If True, skip application and simply return projected status.

CLI Example:

Create a named VPC peering connection
salt myminion boto_vpc.delete_vpc_peering_connection conn_name=salt-vpc
Specify a region
salt myminion boto_vpc.delete_vpc_peering_connection conn_name=salt-vpc region=us-west-2
specify an id
salt myminion boto_vpc.delete_vpc_peering_connection conn_id=pcx-8a8939e3

	
salt.modules.boto_vpc.describe(vpc_id=None, vpc_name=None, region=None, key=None, keyid=None, profile=None)

	Describe a VPC's properties. If no VPC ID/Name is spcified then describe the default VPC.

Returns a dictionary of interesting properties.

Changed in version 2015.8.0: Added vpc_name argument

CLI Example:

salt myminion boto_vpc.describe vpc_id=vpc-123456
salt myminion boto_vpc.describe vpc_name=myvpc

	
salt.modules.boto_vpc.describe_nat_gateways(nat_gateway_id=None, subnet_id=None, subnet_name=None, vpc_id=None, vpc_name=None, states=('pending', 'available'), region=None, key=None, keyid=None, profile=None)

	Return a description of nat gateways matching the selection criteria

This function requires boto3 to be installed.

CLI Example:

salt myminion boto_vpc.describe_nat_gateways nat_gateway_id='nat-03b02643b43216fe7'
salt myminion boto_vpc.describe_nat_gateways subnet_id='subnet-5b05942d'

	
salt.modules.boto_vpc.describe_route_tables(route_table_id=None, route_table_name=None, vpc_id=None, tags=None, region=None, key=None, keyid=None, profile=None)

	Given route table properties, return details of all matching route tables.

This function requires boto3 to be installed.

New in version 2016.11.0.

CLI Example:

salt myminion boto_vpc.describe_route_tables vpc_id='vpc-a6a9efc3'

	
salt.modules.boto_vpc.describe_subnet(subnet_id=None, subnet_name=None, region=None, key=None, keyid=None, profile=None)

	Given a subnet id or name, describe its properties.

Returns a dictionary of interesting properties.

New in version 2015.8.0.

CLI Examples:

salt myminion boto_vpc.describe_subnet subnet_id=subnet-123456
salt myminion boto_vpc.describe_subnet subnet_name=mysubnet

	
salt.modules.boto_vpc.describe_subnets(subnet_ids=None, subnet_names=None, vpc_id=None, cidr=None, region=None, key=None, keyid=None, profile=None)

	Given a VPC ID or subnet CIDR, returns a list of associated subnets and
their details. Return all subnets if VPC ID or CIDR are not provided.
If a subnet id or CIDR is provided, only its associated subnet details will be
returned.

New in version 2015.8.0.

CLI Examples:

salt myminion boto_vpc.describe_subnets

salt myminion boto_vpc.describe_subnets subnet_ids=['subnet-ba1987ab', 'subnet-ba1987cd']

salt myminion boto_vpc.describe_subnets vpc_id=vpc-123456

salt myminion boto_vpc.describe_subnets cidr=10.0.0.0/21

	
salt.modules.boto_vpc.describe_vpc_peering_connection(name, region=None, key=None, keyid=None, profile=None)

	Returns any VPC peering connection id(s) for the given VPC
peering connection name.

VPC peering connection ids are only returned for connections that
are in the active, pending-acceptance or provisioning
state.

New in version 2016.11.0.

	Parameters:

	
	name -- The string name for this VPC peering connection

	region -- The aws region to use

	key -- Your aws key

	keyid -- The key id associated with this aws account

	profile -- The profile to use

	Returns:

	dict

CLI Example:

salt myminion boto_vpc.describe_vpc_peering_connection salt-vpc
Specify a region
salt myminion boto_vpc.describe_vpc_peering_connection salt-vpc region=us-west-2

	
salt.modules.boto_vpc.describe_vpcs(vpc_id=None, name=None, cidr=None, tags=None, region=None, key=None, keyid=None, profile=None)

	Describe all VPCs, matching the filter criteria if provided.

Returns a list of dictionaries with interesting properties.

New in version 2015.8.0.

CLI Example:

salt myminion boto_vpc.describe_vpcs

	
salt.modules.boto_vpc.dhcp_options_exists(dhcp_options_id=None, name=None, dhcp_options_name=None, tags=None, region=None, key=None, keyid=None, profile=None)

	Check if a dhcp option exists.

Returns True if the dhcp option exists; Returns False otherwise.

CLI Example:

salt myminion boto_vpc.dhcp_options_exists dhcp_options_id='dhcp-a0bl34pp'

	
salt.modules.boto_vpc.disassociate_network_acl(subnet_id=None, vpc_id=None, subnet_name=None, vpc_name=None, region=None, key=None, keyid=None, profile=None)

	Given a subnet ID, disassociates a network acl.

CLI Example:

salt myminion boto_vpc.disassociate_network_acl 'subnet-6a1fe403'

	
salt.modules.boto_vpc.disassociate_route_table(association_id, region=None, key=None, keyid=None, profile=None)

	Disassociates a route table.

	association_id
	The Route Table Association ID to disassociate

CLI Example:

salt myminion boto_vpc.disassociate_route_table 'rtbassoc-d8ccddba'

	
salt.modules.boto_vpc.exists(vpc_id=None, name=None, cidr=None, tags=None, region=None, key=None, keyid=None, profile=None)

	Given a VPC ID, check to see if the given VPC ID exists.

Returns True if the given VPC ID exists and returns False if the given
VPC ID does not exist.

CLI Example:

salt myminion boto_vpc.exists myvpc

	
salt.modules.boto_vpc.get_dhcp_options(dhcp_options_name=None, dhcp_options_id=None, region=None, key=None, keyid=None, profile=None)

	Return a dict with the current values of the requested DHCP options set

CLI Example:

salt myminion boto_vpc.get_dhcp_options 'myfunnydhcpoptionsname'

New in version 2016.3.0.

	
salt.modules.boto_vpc.get_id(name=None, cidr=None, tags=None, region=None, key=None, keyid=None, profile=None)

	Given VPC properties, return the VPC id if a match is found.

CLI Example:

salt myminion boto_vpc.get_id myvpc

	
salt.modules.boto_vpc.get_resource_id(resource, name=None, resource_id=None, region=None, key=None, keyid=None, profile=None)

	Get an AWS id for a VPC resource by type and name.

New in version 2015.8.0.

CLI Example:

salt myminion boto_vpc.get_resource_id internet_gateway myigw

	
salt.modules.boto_vpc.get_subnet_association(subnets, region=None, key=None, keyid=None, profile=None)

	Given a subnet (aka: a vpc zone identifier) or list of subnets, returns
vpc association.

Returns a VPC ID if the given subnets are associated with the same VPC ID.
Returns False on an error or if the given subnets are associated with
different VPC IDs.

CLI Examples:

salt myminion boto_vpc.get_subnet_association subnet-61b47516

salt myminion boto_vpc.get_subnet_association ['subnet-61b47516','subnet-2cb9785b']

	
salt.modules.boto_vpc.is_peering_connection_pending(conn_id=None, conn_name=None, region=None, key=None, keyid=None, profile=None)

	Check if a VPC peering connection is in the pending state.

New in version 2016.11.0.

	conn_id
	The connection ID to check. Exclusive with conn_name.

	conn_name
	The connection name to check. Exclusive with conn_id.

	region
	Region to connect to.

	key
	Secret key to be used.

	keyid
	Access key to be used.

	profile
	A dict with region, key and keyid, or a pillar key (string) that
contains a dict with region, key and keyid.

CLI Example:

salt myminion boto_vpc.is_peering_connection_pending conn_name=salt-vpc
Specify a region
salt myminion boto_vpc.is_peering_connection_pending conn_name=salt-vpc region=us-west-2
specify an id
salt myminion boto_vpc.is_peering_connection_pending conn_id=pcx-8a8939e3

	
salt.modules.boto_vpc.nat_gateway_exists(nat_gateway_id=None, subnet_id=None, subnet_name=None, vpc_id=None, vpc_name=None, states=('pending', 'available'), region=None, key=None, keyid=None, profile=None)

	Checks if a nat gateway exists.

This function requires boto3 to be installed.

New in version 2016.11.0.

CLI Example:

salt myminion boto_vpc.nat_gateway_exists nat_gateway_id='nat-03b02643b43216fe7'
salt myminion boto_vpc.nat_gateway_exists subnet_id='subnet-5b05942d'

	
salt.modules.boto_vpc.network_acl_exists(network_acl_id=None, name=None, network_acl_name=None, tags=None, region=None, key=None, keyid=None, profile=None)

	Checks if a network acl exists.

Returns True if the network acl exists or returns False if it doesn't exist.

CLI Example:

salt myminion boto_vpc.network_acl_exists network_acl_id='acl-5fb85d36'

	
salt.modules.boto_vpc.peering_connection_pending_from_vpc(conn_id=None, conn_name=None, vpc_id=None, vpc_name=None, region=None, key=None, keyid=None, profile=None)

	Check if a VPC peering connection is in the pending state, and requested from the given VPC.

New in version 2016.11.0.

	conn_id
	The connection ID to check. Exclusive with conn_name.

	conn_name
	The connection name to check. Exclusive with conn_id.

	vpc_id
	Is this the ID of the requesting VPC for this peering connection. Exclusive with vpc_name.

	vpc_name
	Is this the Name of the requesting VPC for this peering connection. Exclusive with vpc_id.

	region
	Region to connect to.

	key
	Secret key to be used.

	keyid
	Access key to be used.

	profile
	A dict with region, key and keyid, or a pillar key (string) that
contains a dict with region, key and keyid.

CLI Example:

salt myminion boto_vpc.is_peering_connection_pending name=salt-vpc

	
salt.modules.boto_vpc.replace_network_acl_entry(network_acl_id=None, rule_number=None, protocol=None, rule_action=None, cidr_block=None, egress=None, network_acl_name=None, icmp_code=None, icmp_type=None, port_range_from=None, port_range_to=None, region=None, key=None, keyid=None, profile=None)

	Replaces a network acl entry.

CLI Example:

salt myminion boto_vpc.replace_network_acl_entry 'acl-5fb85d36' '32767' \
 'all' 'deny' '0.0.0.0/0' egress=true

	
salt.modules.boto_vpc.replace_route(route_table_id=None, destination_cidr_block=None, route_table_name=None, gateway_id=None, instance_id=None, interface_id=None, region=None, key=None, keyid=None, profile=None, vpc_peering_connection_id=None)

	Replaces a route.

CLI Example:

salt myminion boto_vpc.replace_route 'rtb-1f382e7d' '10.0.0.0/16' gateway_id='vgw-a1b2c3'

	
salt.modules.boto_vpc.replace_route_table_association(association_id, route_table_id, region=None, key=None, keyid=None, profile=None)

	Replaces a route table association.

CLI Example:

salt myminion boto_vpc.replace_route_table_association 'rtbassoc-d8ccddba' 'rtb-1f382e7d'

	
salt.modules.boto_vpc.request_vpc_peering_connection(requester_vpc_id=None, requester_vpc_name=None, peer_vpc_id=None, peer_vpc_name=None, name=None, peer_owner_id=None, peer_region=None, region=None, key=None, keyid=None, profile=None, dry_run=False)

	Request a VPC peering connection between two VPCs.

New in version 2016.11.0.

	requester_vpc_id
	ID of the requesting VPC. Exclusive with requester_vpc_name.

	requester_vpc_name
	Name tag of the requesting VPC. Exclusive with requester_vpc_id.

	peer_vpc_id
	ID of the VPC to create VPC peering connection with. This can be a VPC in
another account. Exclusive with peer_vpc_name.

	peer_vpc_name
	Name tag of the VPC to create VPC peering connection with. This can only
be a VPC in the same account and same region, else resolving it into a
vpc ID will almost certainly fail. Exclusive with peer_vpc_id.

	name
	The name to use for this VPC peering connection.

	peer_owner_id
	ID of the owner of the peer VPC. Defaults to your account ID, so a value
is required if peering with a VPC in a different account.

	peer_region
	Region of peer VPC. For inter-region vpc peering connections. Not required
for intra-region peering connections.

New in version 3005.

	region
	Region to connect to.

	key
	Secret key to be used.

	keyid
	Access key to be used.

	profile
	A dict with region, key and keyid, or a pillar key (string) that
contains a dict with region, key and keyid.

	dry_run
	If True, skip application and return status.

CLI Example:

Create a named VPC peering connection
salt myminion boto_vpc.request_vpc_peering_connection vpc-4a3e622e vpc-be82e9da name=my_vpc_connection
Without a name
salt myminion boto_vpc.request_vpc_peering_connection vpc-4a3e622e vpc-be82e9da
Specify a region
salt myminion boto_vpc.request_vpc_peering_connection vpc-4a3e622e vpc-be82e9da region=us-west-2

	
salt.modules.boto_vpc.resource_exists(resource, name=None, resource_id=None, tags=None, region=None, key=None, keyid=None, profile=None)

	Given a resource type and name, return {exists: true} if it exists,
{exists: false} if it does not exist, or {error: {message: error text}
on error.

New in version 2015.8.0.

CLI Example:

salt myminion boto_vpc.resource_exists internet_gateway myigw

	
salt.modules.boto_vpc.route_exists(destination_cidr_block, route_table_name=None, route_table_id=None, gateway_id=None, instance_id=None, interface_id=None, tags=None, region=None, key=None, keyid=None, profile=None, vpc_peering_connection_id=None)

	Checks if a route exists.

New in version 2015.8.0.

CLI Example:

salt myminion boto_vpc.route_exists destination_cidr_block='10.0.0.0/20' gateway_id='local' route_table_name='test'

	
salt.modules.boto_vpc.route_table_exists(route_table_id=None, name=None, route_table_name=None, tags=None, region=None, key=None, keyid=None, profile=None)

	Checks if a route table exists.

CLI Example:

salt myminion boto_vpc.route_table_exists route_table_id='rtb-1f382e7d'

	
salt.modules.boto_vpc.subnet_exists(subnet_id=None, name=None, subnet_name=None, cidr=None, tags=None, zones=None, region=None, key=None, keyid=None, profile=None)

	Check if a subnet exists.

Returns True if the subnet exists, otherwise returns False.

Changed in version 2015.8.0: Added subnet_name argument
Deprecated name argument

CLI Example:

salt myminion boto_vpc.subnet_exists subnet_id='subnet-6a1fe403'

salt.modules.bower

Manage and query Bower packages

This module manages the installed packages using Bower.
Note that npm, git and bower must be installed for this module to be
available.

	
salt.modules.bower.install(pkg, dir, pkgs=None, runas=None, env=None)

	Install a Bower package.

If no package is specified, the dependencies (from bower.json) of the
package in the given directory will be installed.

	pkg
	A package name in any format accepted by Bower, including a version
identifier

	dir
	The target directory in which to install the package

	pkgs
	A list of package names in the same format as the pkg parameter

	runas
	The user to run Bower with

	env
	Environment variables to set when invoking Bower. Uses the same env
format as the cmd.run execution
function.

CLI Example:

salt '*' bower.install underscore /path/to/project

salt '*' bower.install jquery#2.0 /path/to/project

	
salt.modules.bower.list_(dir, runas=None, env=None)

	List installed Bower packages.

	dir
	The directory whose packages will be listed

	runas
	The user to run Bower with

	env
	Environment variables to set when invoking Bower. Uses the same env
format as the cmd.run execution
function.

CLI Example:

salt '*' bower.list /path/to/project

	
salt.modules.bower.prune(dir, runas=None, env=None)

	
New in version 2017.7.0.

Remove extraneous local Bower packages, i.e. those not referenced in bower.json

	dir
	The directory whose packages will be pruned

	runas
	The user to run Bower with

	env
	Environment variables to set when invoking Bower. Uses the same env
format as the cmd.run execution
function.

CLI Example:

salt '*' bower.prune /path/to/project

	
salt.modules.bower.uninstall(pkg, dir, runas=None, env=None)

	Uninstall a Bower package.

	pkg
	A package name in any format accepted by Bower

	dir
	The target directory from which to uninstall the package

	runas
	The user to run Bower with

	env
	Environment variables to set when invoking Bower. Uses the same env
format as the cmd.run execution
function.

CLI Example:

salt '*' bower.uninstall underscore /path/to/project

salt.modules.bridge

Module for gathering and managing bridging information

	
salt.modules.bridge.add(br=None)

	Creates a bridge

CLI Example:

salt '*' bridge.add br0

	
salt.modules.bridge.addif(br=None, iface=None)

	Adds an interface to a bridge

CLI Example:

salt '*' bridge.addif br0 eth0

	
salt.modules.bridge.delete(br=None)

	Deletes a bridge

CLI Example:

salt '*' bridge.delete br0

	
salt.modules.bridge.delif(br=None, iface=None)

	Removes an interface from a bridge

CLI Example:

salt '*' bridge.delif br0 eth0

	
salt.modules.bridge.find_interfaces(*args)

	Returns the bridge to which the interfaces are bond to

CLI Example:

salt '*' bridge.find_interfaces eth0 [eth1...]

	
salt.modules.bridge.interfaces(br=None)

	Returns interfaces attached to a bridge

CLI Example:

salt '*' bridge.interfaces br0

	
salt.modules.bridge.list_()

	Returns the machine's bridges list

CLI Example:

salt '*' bridge.list

	
salt.modules.bridge.show(br=None)

	Returns bridges interfaces along with enslaved physical interfaces. If
no interface is given, all bridges are shown, else only the specified
bridge values are returned.

CLI Example:

salt '*' bridge.show
salt '*' bridge.show br0

	
salt.modules.bridge.stp(br=None, state='disable', iface=None)

	Sets Spanning Tree Protocol state for a bridge

CLI Example:

salt '*' bridge.stp br0 enable
salt '*' bridge.stp br0 disable

For BSD-like operating systems, it is required to add the interface on
which to enable the STP.

CLI Example:

salt '*' bridge.stp bridge0 enable fxp0
salt '*' bridge.stp bridge0 disable fxp0

salt.modules.bsd_shadow

Manage the password database on BSD systems

Important

If you feel that Salt should be using this module to manage passwords on a
minion, and it is using a different module (or gives an error similar to
'shadow.info' is not available), see here.

	
salt.modules.bsd_shadow.default_hash()

	Returns the default hash used for unset passwords

CLI Example:

salt '*' shadow.default_hash

	
salt.modules.bsd_shadow.del_password(name)

	
New in version 2015.8.2.

Delete the password from name user

CLI Example:

salt '*' shadow.del_password username

	
salt.modules.bsd_shadow.gen_password(password, crypt_salt=None, algorithm='sha512')

	Generate hashed password

Note

When called this function is called directly via remote-execution,
the password argument may be displayed in the system's process list.
This may be a security risk on certain systems.

	password
	Plaintext password to be hashed.

	crypt_salt
	Crpytographic salt. If not given, a random 8-character salt will be
generated.

	algorithm
	The following hash algorithms are supported:

	md5

	blowfish (not in mainline glibc, only available in distros that add it)

	sha256

	sha512 (default)

CLI Example:

salt '*' shadow.gen_password 'I_am_password'
salt '*' shadow.gen_password 'I_am_password' crypt_salt='I_am_salt' algorithm=sha256

	
salt.modules.bsd_shadow.info(name)

	Return information for the specified user

CLI Example:

salt '*' shadow.info someuser

	
salt.modules.bsd_shadow.set_change(name, change)

	Sets the time at which the password expires (in seconds since the UNIX
epoch). See man 8 usermod on NetBSD and OpenBSD or man 8 pw on
FreeBSD.

A value of 0 sets the password to never expire.

CLI Example:

salt '*' shadow.set_change username 1419980400

	
salt.modules.bsd_shadow.set_expire(name, expire)

	Sets the time at which the account expires (in seconds since the UNIX
epoch). See man 8 usermod on NetBSD and OpenBSD or man 8 pw on
FreeBSD.

A value of 0 sets the account to never expire.

CLI Example:

salt '*' shadow.set_expire username 1419980400

	
salt.modules.bsd_shadow.set_password(name, password)

	Set the password for a named user. The password must be a properly defined
hash. A password hash can be generated with gen_password().

It is important to make sure that a supported cipher is used.

CLI Example:

salt '*' shadow.set_password someuser '1UYCIxa628.9qXjpQCjM4a..'

salt.modules.btrfs

Module for managing BTRFS file systems.

	
salt.modules.btrfs.add(mountpoint, *devices, **kwargs)

	Add a devices to a BTRFS filesystem.

General options:

	nodiscard: Do not perform whole device TRIM

	force: Force overwrite existing filesystem on the disk

CLI Example:

salt '*' btrfs.add /mountpoint /dev/sda1 /dev/sda2

	
salt.modules.btrfs.convert(device, permanent=False, keeplf=False)

	Convert ext2/3/4 to BTRFS. Device should be mounted.

Filesystem can be converted temporarily so the further processing and rollback is possible,
or permanently, where previous extended filesystem image gets deleted. Please note, permanent
conversion takes a while as BTRFS filesystem needs to be properly rebalanced afterwards.

General options:

	permanent: Specify if the migration should be permanent (false by default)

	
	keeplf: Keep lost+found of the partition (removed by default,
	but still in the image, if not permanent migration)

CLI Example:

salt '*' btrfs.convert /dev/sda1
salt '*' btrfs.convert /dev/sda1 permanent=True

	
salt.modules.btrfs.defragment(path)

	Defragment mounted BTRFS filesystem.
In order to defragment a filesystem, device should be properly mounted and writable.

If passed a device name, then defragmented whole filesystem, mounted on in.
If passed a moun tpoint of the filesystem, then only this mount point is defragmented.

CLI Example:

salt '*' btrfs.defragment /dev/sda1
salt '*' btrfs.defragment /path/on/filesystem

	
salt.modules.btrfs.delete(mountpoint, *devices, **kwargs)

	Remove devices from a BTRFS filesystem.

CLI Example:

salt '*' btrfs.delete /mountpoint /dev/sda1 /dev/sda2

	
salt.modules.btrfs.devices()

	Get known BTRFS formatted devices on the system.

CLI Example:

salt '*' btrfs.devices

	
salt.modules.btrfs.features()

	List currently available BTRFS features.

CLI Example:

salt '*' btrfs.mkfs_features

	
salt.modules.btrfs.info(device)

	Get BTRFS filesystem information.

CLI Example:

salt '*' btrfs.info /dev/sda1

	
salt.modules.btrfs.mkfs(*devices, **kwargs)

	Create a file system on the specified device. By default wipes out with force.

General options:

	allocsize: Specify the BTRFS offset from the start of the device.

	bytecount: Specify the size of the resultant filesystem.

	nodesize: Node size.

	leafsize: Specify the nodesize, the tree block size in which btrfs stores data.

	noforce: Prevent force overwrite when an existing filesystem is detected on the device.

	sectorsize: Specify the sectorsize, the minimum data block allocation unit.

	nodiscard: Do not perform whole device TRIM operation by default.

	uuid: Pass UUID or pass True to generate one.

Options:

	
	dto: (raid0|raid1|raid5|raid6|raid10|single|dup)
	Specify how the data must be spanned across the devices specified.

	
	mto: (raid0|raid1|raid5|raid6|raid10|single|dup)
	Specify how metadata must be spanned across the devices specified.

	fts: Features (call salt <host> btrfs.features for full list of available features)

See the mkfs.btrfs(8) manpage for a more complete description of corresponding options description.

CLI Example:

salt '*' btrfs.mkfs /dev/sda1
salt '*' btrfs.mkfs /dev/sda1 noforce=True

	
salt.modules.btrfs.properties(obj, type=None, set=None)

	List properties for given btrfs object. The object can be path of BTRFS device,
mount point, or any directories/files inside the BTRFS filesystem.

General options:

	type: Possible types are s[ubvol], f[ilesystem], i[node] and d[evice].

	force: Force overwrite existing filesystem on the disk

	set: <key=value,key1=value1...> Options for a filesystem properties.

CLI Example:

salt '*' btrfs.properties /mountpoint
salt '*' btrfs.properties /dev/sda1 type=subvol set='ro=false,label="My Storage"'

	
salt.modules.btrfs.resize(mountpoint, size)

	Resize filesystem.

General options:

	mountpoint: Specify the BTRFS mountpoint to resize.

	size: ([+/-]<newsize>[kKmMgGtTpPeE]|max) Specify the new size of the target.

CLI Example:

salt '*' btrfs.resize /mountpoint size=+1g
salt '*' btrfs.resize /dev/sda1 size=max

	
salt.modules.btrfs.subvolume_create(name, dest=None, qgroupids=None)

	Create subvolume name in dest.

Return True if the subvolume is created, False is the subvolume is
already there.

	name
	Name of the new subvolume

	dest
	If not given, the subvolume will be created in the current
directory, if given will be in /dest/name

	qgroupids
	Add the newly created subcolume to a qgroup. This parameter
is a list

CLI Example:

salt '*' btrfs.subvolume_create var
salt '*' btrfs.subvolume_create var dest=/mnt
salt '*' btrfs.subvolume_create var qgroupids='[200]'

	
salt.modules.btrfs.subvolume_delete(name=None, names=None, commit=None)

	Delete the subvolume(s) from the filesystem

The user can remove one single subvolume (name) or multiple of
then at the same time (names). One of the two parameters needs to
specified.

Please, refer to the documentation to understand the implication
on the transactions, and when the subvolume is really deleted.

Return True if the subvolume is deleted, False is the subvolume
was already missing.

	name
	Name of the subvolume to remove

	names
	List of names of subvolumes to remove

	commit
	
	'after': Wait for transaction commit at the end

	'each': Wait for transaction commit after each delete

CLI Example:

salt '*' btrfs.subvolume_delete /var/volumes/tmp
salt '*' btrfs.subvolume_delete /var/volumes/tmp commit=after

	
salt.modules.btrfs.subvolume_exists(path)

	Check if a subvolume is present in the filesystem.

	path
	Mount point for the subvolume (full path)

CLI Example:

salt '*' btrfs.subvolume_exists /mnt/var

	
salt.modules.btrfs.subvolume_find_new(name, last_gen)

	List the recently modified files in a subvolume

	name
	Name of the subvolume

	last_gen
	Last transid marker from where to compare

CLI Example:

salt '*' btrfs.subvolume_find_new /var/volumes/tmp 1024

	
salt.modules.btrfs.subvolume_get_default(path)

	Get the default subvolume of the filesystem path

	path
	Mount point for the subvolume

CLI Example:

salt '*' btrfs.subvolume_get_default /var/volumes/tmp

	
salt.modules.btrfs.subvolume_list(path, parent_id=False, absolute=False, ogeneration=False, generation=False, subvolumes=False, uuid=False, parent_uuid=False, sent_subvolume_uuid=False, snapshots=False, readonly=False, deleted=False, generation_cmp=None, ogeneration_cmp=None, sort=None)

	List the subvolumes present in the filesystem.

	path
	Mount point for the subvolume

	parent_id
	Print parent ID

	absolute
	Print all the subvolumes in the filesystem and distinguish
between absolute and relative path with respect to the given
<path>

	ogeneration
	Print the ogeneration of the subvolume

	generation
	Print the generation of the subvolume

	subvolumes
	Print only subvolumes below specified <path>

	uuid
	Print the UUID of the subvolume

	parent_uuid
	Print the parent uuid of subvolumes (and snapshots)

	sent_subvolume_uuid
	Print the UUID of the sent subvolume, where the subvolume is
the result of a receive operation

	snapshots
	Only snapshot subvolumes in the filesystem will be listed

	readonly
	Only readonly subvolumes in the filesystem will be listed

	deleted
	Only deleted subvolumens that are ye not cleaned

	generation_cmp
	List subvolumes in the filesystem that its generation is >=,
<= or = value. '+' means >= value, '-' means <= value, If
there is neither '+' nor '-', it means = value

	ogeneration_cmp
	List subvolumes in the filesystem that its ogeneration is >=,
<= or = value

	sort
	List subvolumes in order by specified items. Possible values:
* rootid
* gen
* ogen
* path
You can add '+' or '-' in front of each items, '+' means
ascending, '-' means descending. The default is ascending. You
can combite it in a list.

CLI Example:

salt '*' btrfs.subvolume_list /var/volumes/tmp
salt '*' btrfs.subvolume_list /var/volumes/tmp path=True
salt '*' btrfs.subvolume_list /var/volumes/tmp sort='[-rootid]'

	
salt.modules.btrfs.subvolume_set_default(subvolid, path)

	Set the subvolume as default

	subvolid
	ID of the new default subvolume

	path
	Mount point for the filesystem

CLI Example:

salt '*' btrfs.subvolume_set_default 257 /var/volumes/tmp

	
salt.modules.btrfs.subvolume_show(path)

	Show information of a given subvolume

	path
	Mount point for the filesystem

CLI Example:

salt '*' btrfs.subvolume_show /var/volumes/tmp

	
salt.modules.btrfs.subvolume_snapshot(source, dest=None, name=None, read_only=False)

	Create a snapshot of a source subvolume

	source
	Source subvolume from where to create the snapshot

	dest
	If only dest is given, the subvolume will be named as the
basename of the source

	name
	Name of the snapshot

	read_only
	Create a read only snapshot

CLI Example:

salt '*' btrfs.subvolume_snapshot /var/volumes/tmp dest=/.snapshots
salt '*' btrfs.subvolume_snapshot /var/volumes/tmp name=backup

	
salt.modules.btrfs.subvolume_sync(path, subvolids=None, sleep=None)

	Wait until given subvolume are completely removed from the
filesystem after deletion.

	path
	Mount point for the filesystem

	subvolids
	List of IDs of subvolumes to wait for

	sleep
	Sleep N seconds betwenn checks (default: 1)

CLI Example:

salt '*' btrfs.subvolume_sync /var/volumes/tmp
salt '*' btrfs.subvolume_sync /var/volumes/tmp subvolids='[257]'

	
salt.modules.btrfs.usage(path)

	Show in which disk the chunks are allocated.

CLI Example:

salt '*' btrfs.usage /your/mountpoint

	
salt.modules.btrfs.version()

	Return BTRFS version.

CLI Example:

salt '*' btrfs.version

salt.modules.cabal

Manage and query Cabal packages

New in version 2015.8.0.

	
salt.modules.cabal.install(pkg=None, pkgs=None, user=None, install_global=False, env=None)

	Install a cabal package.

	pkg
	A package name in format accepted by cabal-install. See:
https://wiki.haskell.org/Cabal-Install

	pkgs
	A list of packages names in same format as pkg

	user
	The user to run cabal install with

	install_global
	Install package globally instead of locally

	env
	Environment variables to set when invoking cabal. Uses the
same env format as the cmd.run execution function

CLI Example:

salt '*' cabal.install shellcheck
salt '*' cabal.install shellcheck-0.3.5

	
salt.modules.cabal.list_(pkg=None, user=None, installed=False, env=None)

	List packages matching a search string.

	pkg
	Search string for matching package names

	user
	The user to run cabal list with

	installed
	If True, only return installed packages.

	env
	Environment variables to set when invoking cabal. Uses the
same env format as the cmd.run execution function

CLI Example:

salt '*' cabal.list
salt '*' cabal.list ShellCheck

	
salt.modules.cabal.uninstall(pkg, user=None, env=None)

	Uninstall a cabal package.

	pkg
	The package to uninstall

	user
	The user to run ghc-pkg unregister with

	env
	Environment variables to set when invoking cabal. Uses the
same env format as the cmd.run execution function

CLI Example:

salt '*' cabal.uninstall ShellCheck

	
salt.modules.cabal.update(user=None, env=None)

	Updates list of known packages.

	user
	The user to run cabal update with

	env
	Environment variables to set when invoking cabal. Uses the
same env format as the cmd.run execution function.

CLI Example:

salt '*' cabal.update

salt.modules.capirca_acl

Capirca ACL

Generate ACL (firewall) configuration for network devices.

New in version 2017.7.0.

	codeauthor:

	Mircea Ulinic <ping@mirceaulinic.net> & Robert Ankeny <robankeny@google.com>

	maturity:

	new

	depends:

	capirca

	platform:

	unix

Dependencies

The firewall configuration is generated by Capirca [https://github.com/google/capirca].

To install Capirca, execute: pip install capirca.

	
salt.modules.capirca_acl.get_filter_config(platform, filter_name, filter_options=None, terms=None, prepend=True, pillar_key='acl', pillarenv=None, saltenv=None, merge_pillar=True, only_lower_merge=False, revision_id=None, revision_no=None, revision_date=True, revision_date_format='%Y/%m/%d')

	Return the configuration of a policy filter.

	platform
	The name of the Capirca platform.

	filter_name
	The name of the policy filter.

	filter_options
	Additional filter options. These options are platform-specific.
See the complete list of options [https://github.com/google/capirca/wiki/Policy-format#header-section].

	terms
	List of terms for this policy filter.
If not specified or empty, will try to load the configuration from the pillar,
unless merge_pillar is set as False.

	prepend: True
	When merge_pillar is set as True, the final list of terms generated by merging
the terms from terms with those defined in the pillar (if any): new terms are prepended
at the beginning, while existing ones will preserve the position. To add the new terms
at the end of the list, set this argument to False.

	pillar_key: acl
	The key in the pillar containing the default attributes values. Default: acl.

	pillarenv
	Query the master to generate fresh pillar data on the fly,
specifically from the requested pillar environment.

	saltenv
	Included only for compatibility with
pillarenv_from_saltenv, and is otherwise ignored.

	merge_pillar: True
	Merge the CLI variables with the pillar. Default: True.

	only_lower_merge: False
	Specify if it should merge only the terms fields. Otherwise it will try
to merge also filters fields. Default: False.

	revision_id
	Add a comment in the filter config having the description for the changes applied.

	revision_no
	The revision count.

	revision_date: True
	Boolean flag: display the date when the filter configuration was generated. Default: True.

	revision_date_format: %Y/%m/%d
	The date format to be used when generating the perforce data. Default: %Y/%m/%d (<year>/<month>/<day>).

CLI Example:

salt '*' capirca.get_filter_config ciscoxr my-filter pillar_key=netacl

Output Example:

! $Id:$
! $Date:$
! $Revision:$
no ipv4 access-list my-filter
ipv4 access-list my-filter
 remark $Id:$
 remark my-term
 deny ipv4 any eq 1234 any
 deny ipv4 any eq 1235 any
 remark my-other-term
 permit tcp any range 5678 5680 any
exit

The filter configuration has been loaded from the pillar, having the following structure:

netacl:
 - my-filter:
 terms:
 - my-term:
 source_port: [1234, 1235]
 action: reject
 - my-other-term:
 source_port:
 - [5678, 5680]
 protocol: tcp
 action: accept

	
salt.modules.capirca_acl.get_filter_pillar(filter_name, pillar_key='acl', pillarenv=None, saltenv=None)

	Helper that can be used inside a state SLS,
in order to get the filter configuration given its name.

	filter_name
	The name of the filter.

	pillar_key
	The root key of the whole policy config.

	pillarenv
	Query the master to generate fresh pillar data on the fly,
specifically from the requested pillar environment.

	saltenv
	Included only for compatibility with
pillarenv_from_saltenv, and is otherwise ignored.

	
salt.modules.capirca_acl.get_policy_config(platform, filters=None, prepend=True, pillar_key='acl', pillarenv=None, saltenv=None, merge_pillar=True, only_lower_merge=False, revision_id=None, revision_no=None, revision_date=True, revision_date_format='%Y/%m/%d')

	Return the configuration of the whole policy.

	platform
	The name of the Capirca platform.

	filters
	List of filters for this policy.
If not specified or empty, will try to load the configuration from the pillar,
unless merge_pillar is set as False.

	prepend: True
	When merge_pillar is set as True, the final list of filters generated by merging
the filters from filters with those defined in the pillar (if any): new filters are prepended
at the beginning, while existing ones will preserve the position. To add the new filters
at the end of the list, set this argument to False.

	pillar_key: acl
	The key in the pillar containing the default attributes values. Default: acl.

	pillarenv
	Query the master to generate fresh pillar data on the fly,
specifically from the requested pillar environment.

	saltenv
	Included only for compatibility with
pillarenv_from_saltenv, and is otherwise ignored.

	merge_pillar: True
	Merge the CLI variables with the pillar. Default: True.

	only_lower_merge: False
	Specify if it should merge only the filters and terms fields. Otherwise it will try
to merge everything at the policy level. Default: False.

	revision_id
	Add a comment in the policy config having the description for the changes applied.

	revision_no
	The revision count.

	revision_date: True
	Boolean flag: display the date when the policy configuration was generated. Default: True.

	revision_date_format: %Y/%m/%d
	The date format to be used when generating the perforce data. Default: %Y/%m/%d (<year>/<month>/<day>).

CLI Example:

salt '*' capirca.get_policy_config juniper pillar_key=netacl

Output Example:

firewall {
 family inet {
 replace:
 /*
 ** $Id:$
 ** $Date:$
 ** $Revision:$
 **
 */
 filter my-filter {
 term my-term {
 from {
 source-port [1234 1235];
 }
 then {
 reject;
 }
 }
 term my-other-term {
 from {
 protocol tcp;
 source-port 5678-5680;
 }
 then accept;
 }
 }
 }
}
firewall {
 family inet {
 replace:
 /*
 ** $Id:$
 ** $Date:$
 ** $Revision:$
 **
 */
 filter my-other-filter {
 interface-specific;
 term dummy-term {
 from {
 protocol [tcp udp];
 }
 then {
 reject;
 }
 }
 }
 }
}

The policy configuration has been loaded from the pillar, having the following structure:

netacl:
 - my-filter:
 options:
 - not-interface-specific
 terms:
 - my-term:
 source_port: [1234, 1235]
 action: reject
 - my-other-term:
 source_port:
 - [5678, 5680]
 protocol: tcp
 action: accept
 - my-other-filter:
 terms:
 - dummy-term:
 protocol:
 - tcp
 - udp
 action: reject

	
salt.modules.capirca_acl.get_term_config(platform, filter_name, term_name, filter_options=None, pillar_key='acl', pillarenv=None, saltenv=None, merge_pillar=True, revision_id=None, revision_no=None, revision_date=True, revision_date_format='%Y/%m/%d', source_service=None, destination_service=None, **term_fields)

	Return the configuration of a single policy term.

	platform
	The name of the Capirca platform.

	filter_name
	The name of the policy filter.

	term_name
	The name of the term.

	filter_options
	Additional filter options. These options are platform-specific.
E.g.: inet6, bridge, object-group,
See the complete list of options [https://github.com/google/capirca/wiki/Policy-format#header-section].

	pillar_key: acl
	The key in the pillar containing the default attributes values. Default: acl.
If the pillar contains the following structure:

firewall:
 - my-filter:
 terms:
 - my-term:
 source_port: 1234
 source_address:
 - 1.2.3.4/32
 - 5.6.7.8/32

The pillar_key field would be specified as firewall.

	pillarenv
	Query the master to generate fresh pillar data on the fly,
specifically from the requested pillar environment.

	saltenv
	Included only for compatibility with
pillarenv_from_saltenv, and is otherwise ignored.

	merge_pillar: True
	Merge the CLI variables with the pillar. Default: True.

	revision_id
	Add a comment in the term config having the description for the changes applied.

	revision_no
	The revision count.

	revision_date: True
	Boolean flag: display the date when the term configuration was generated. Default: True.

	revision_date_format: %Y/%m/%d
	The date format to be used when generating the perforce data. Default: %Y/%m/%d (<year>/<month>/<day>).

	source_service
	A special service to choose from. This is a helper so the user is able to
select a source just using the name, instead of specifying a source_port and protocol.

As this module is available on Unix platforms only,
it reads the IANA [http://www.iana.org/assignments/port-numbers] port assignment from /etc/services.

If the user requires additional shortcuts to be referenced, they can add entries under /etc/services,
which can be managed using the file state.

	destination_service
	A special service to choose from. This is a helper so the user is able to
select a source just using the name, instead of specifying a destination_port and protocol.
Allows the same options as source_service.

	term_fields
	Term attributes.
To see what fields are supported, please consult the list of supported keywords [https://github.com/google/capirca/wiki/Policy-format#keywords].
Some platforms have few other optional [https://github.com/google/capirca/wiki/Policy-format#optionally-supported-keywords] keywords.

Note

The following fields are accepted:

	action

	address

	address_exclude

	comment

	counter

	expiration

	destination_address

	destination_address_exclude

	destination_port

	destination_prefix

	forwarding_class

	forwarding_class_except

	logging

	log_name

	loss_priority

	option

	policer

	port

	precedence

	principals

	protocol

	protocol_except

	qos

	pan_application

	routing_instance

	source_address

	source_address_exclude

	source_port

	source_prefix

	verbatim

	packet_length

	fragment_offset

	hop_limit

	icmp_type

	ether_type

	traffic_class_count

	traffic_type

	translated

	dscp_set

	dscp_match

	dscp_except

	next_ip

	flexible_match_range

	source_prefix_except

	destination_prefix_except

	vpn

	source_tag

	destination_tag

	source_interface

	destination_interface

	flattened

	flattened_addr

	flattened_saddr

	flattened_daddr

	priority

Note

The following fields can be also a single value and a list of values:

	action

	address

	address_exclude

	comment

	destination_address

	destination_address_exclude

	destination_port

	destination_prefix

	forwarding_class

	forwarding_class_except

	logging

	option

	port

	precedence

	principals

	protocol

	protocol_except

	pan_application

	source_address

	source_address_exclude

	source_port

	source_prefix

	verbatim

	icmp_type

	ether_type

	traffic_type

	dscp_match

	dscp_except

	flexible_match_range

	source_prefix_except

	destination_prefix_except

	source_tag

	destination_tag

	source_service

	destination_service

Example: destination_address can be either defined as:

destination_address: 172.17.17.1/24

or as a list of destination IP addresses:

destination_address:
 - 172.17.17.1/24
 - 172.17.19.1/24

or a list of services to be matched:

source_service:
 - ntp
 - snmp
 - ldap
 - bgpd

Note

The port fields source_port and destination_port can be used as above to select either
a single value, either a list of values, but also they can select port ranges. Example:

source_port:
 - [1000, 2000]
 - [3000, 4000]

With the configuration above, the user is able to select the 1000-2000 and 3000-4000 source port ranges.

CLI Example:

salt '*' capirca.get_term_config arista filter-name term-name source_address=1.2.3.4 destination_address=5.6.7.8 action=accept

Output Example:

! $Date: 2017/03/22 $
no ip access-list filter-name
ip access-list filter-name
 remark term-name
 permit ip host 1.2.3.4 host 5.6.7.8
exit

	
salt.modules.capirca_acl.get_term_pillar(filter_name, term_name, pillar_key='acl', pillarenv=None, saltenv=None)

	Helper that can be used inside a state SLS,
in order to get the term configuration given its name,
under a certain filter uniquely identified by its name.

	filter_name
	The name of the filter.

	term_name
	The name of the term.

	pillar_key: acl
	The root key of the whole policy config. Default: acl.

	pillarenv
	Query the master to generate fresh pillar data on the fly,
specifically from the requested pillar environment.

	saltenv
	Included only for compatibility with
pillarenv_from_saltenv, and is otherwise ignored.

salt.modules.cassandra_cql

Cassandra Database Module

New in version 2015.5.0.

This module works with Cassandra v2 and v3 and hence generates
queries based on the internal schema of said version.

	depends:

	DataStax Python Driver for Apache Cassandra
https://github.com/datastax/python-driver
pip install cassandra-driver

	referenced by:

	Salt's cassandra_cql returner

	configuration:

	The Cassandra cluster members and connection port can either be specified
in the master or minion config, the minion's pillar or be passed to the module.

Example configuration in the config for a single node:

cassandra:
 cluster: 192.168.50.10
 port: 9000

Example configuration in the config for a cluster:

cassandra:
 cluster:
 - 192.168.50.10
 - 192.168.50.11
 - 192.168.50.12
 port: 9000
 username: cas_admin

Changed in version 2016.11.0.

Added support for ssl_options and protocol_version.

Example configuration with
ssl options [http://datastax.github.io/python-driver/api/cassandra/cluster.html#cassandra.cluster.Cluster.ssl_options]:

If ssl_options are present in cassandra config the cassandra_cql returner
will use SSL. SSL isn't used if ssl_options isn't specified.

cassandra:
 cluster:
 - 192.168.50.10
 - 192.168.50.11
 - 192.168.50.12
 port: 9000
 username: cas_admin

 ssl_options:
 ca_certs: /etc/ssl/certs/ca-bundle.trust.crt

 # SSL version should be one from the ssl module
 # This is an optional parameter
 ssl_version: PROTOCOL_TLSv1

Additionally you can also specify the protocol_version to
use [http://datastax.github.io/python-driver/api/cassandra/cluster.html#cassandra.cluster.Cluster.ssl_options].

cassandra:
 cluster:
 - 192.168.50.10
 - 192.168.50.11
 - 192.168.50.12
 port: 9000
 username: cas_admin

 # defaults to 4, if not set
 protocol_version: 3

Also all configuration could be passed directly to module as arguments.

salt minion1 cassandra_cql.info contact_points=delme-nextgen-01 port=9042 cql_user=cassandra cql_pass=cassandra protocol_version=4

salt minion1 cassandra_cql.info ssl_options='{"ca_certs": /path/to/-ca.crt}'

We can also provide the load balancing policy as arguments

salt minion1 cassandra_cql.cql_query "alter user cassandra with password 'cassandra2' ;" contact_points=scylladb cql_user=user1 cql_pass=password port=9142 protocol_version=4 ssl_options='{"ca_certs": path-to-client-ca.crt}' load_balancing_policy=DCAwareRoundRobinPolicy load_balancing_policy_args='{"local_dc": "datacenter1"}'

	
salt.modules.cassandra_cql.cql_query(query, contact_points=None, port=None, cql_user=None, cql_pass=None, protocol_version=None, load_balancing_policy=None, load_balancing_policy_args=None, ssl_options=None)

	Run a query on a Cassandra cluster and return a dictionary.

	Parameters:

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The query to execute.

	contact_points (str [https://docs.python.org/3/library/stdtypes.html#str] | list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The Cassandra cluster addresses, can either be a string or a list of IPs.

	cql_user (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Cassandra user if authentication is turned on.

	cql_pass (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Cassandra user password if authentication is turned on.

	port (int [https://docs.python.org/3/library/functions.html#int]) -- The Cassandra cluster port, defaults to None.

	params (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The parameters for the query, optional.

	protocol_version (int [https://docs.python.org/3/library/functions.html#int]) -- Cassandra protocol version to use.

	load_balancing_policy (str [https://docs.python.org/3/library/stdtypes.html#str]) -- cassandra.policy class name to use

	load_balancing_policy_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- cassandra.policy constructor args

	ssl_options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Cassandra protocol version to use.

	Returns:

	A dictionary from the return values of the query

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]

CLI Example:

salt 'cassandra-server' cassandra_cql.cql_query "SELECT * FROM users_by_name WHERE first_name = 'jane'"

	
salt.modules.cassandra_cql.cql_query_with_prepare(query, statement_name, statement_arguments, asynchronous=False, callback_errors=None, contact_points=None, port=None, cql_user=None, cql_pass=None, protocol_version=None, load_balancing_policy=None, load_balancing_policy_args=None, ssl_options=None, **kwargs)

	Run a query on a Cassandra cluster and return a dictionary.

This function should not be used asynchronously for SELECTs -- it will not
return anything and we don't currently have a mechanism for handling a future
that will return results.

	Parameters:

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The query to execute.

	statement_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name to assign the prepared statement in the __context__ dictionary

	statement_arguments (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) -- Bind parameters for the SQL statement

	asynchronous (bool [https://docs.python.org/3/library/functions.html#bool]) -- Run this query in asynchronous mode

	async (bool [https://docs.python.org/3/library/functions.html#bool]) -- Run this query in asynchronous mode (an alias to 'asynchronous')
NOTE: currently it overrides 'asynchronous' and it will be dropped in version 3001!

	callback_errors (Function callable) -- Function to call after query runs if there is an error

	contact_points (str [https://docs.python.org/3/library/stdtypes.html#str] | list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The Cassandra cluster addresses, can either be a string or a list of IPs.

	cql_user (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Cassandra user if authentication is turned on.

	cql_pass (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Cassandra user password if authentication is turned on.

	port (int [https://docs.python.org/3/library/functions.html#int]) -- The Cassandra cluster port, defaults to None.

	params (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The parameters for the query, optional.

	protocol_version -- Cassandra protocol version to use.

	load_balancing_policy (str [https://docs.python.org/3/library/stdtypes.html#str]) -- cassandra.policy class name to use

	load_balancing_policy_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- cassandra.policy constructor args

	ssl_options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Cassandra protocol version to use.

	Returns:

	A dictionary from the return values of the query

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]

CLI Example:

Insert data asynchronously
salt this-node cassandra_cql.cql_query_with_prepare "name_insert" "INSERT INTO USERS (first_name, last_name) VALUES (?, ?)" statement_arguments=['John','Doe'], asynchronous=True

Select data, should not be asynchronous because there is not currently a facility to return data from a future
salt this-node cassandra_cql.cql_query_with_prepare "name_select" "SELECT * FROM USERS WHERE first_name=?" statement_arguments=['John']

	
salt.modules.cassandra_cql.create_keyspace(keyspace, replication_strategy='SimpleStrategy', replication_factor=1, replication_datacenters=None, contact_points=None, port=None, cql_user=None, cql_pass=None, protocol_version=None, load_balancing_policy=None, load_balancing_policy_args=None, ssl_options=None)

	Create a new keyspace in Cassandra.

	Parameters:

	
	keyspace (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The keyspace name

	replication_strategy (str [https://docs.python.org/3/library/stdtypes.html#str]) -- either SimpleStrategy or NetworkTopologyStrategy

	replication_factor (int [https://docs.python.org/3/library/functions.html#int]) -- number of replicas of data on multiple nodes. not used if using NetworkTopologyStrategy

	replication_datacenters (str [https://docs.python.org/3/library/stdtypes.html#str] | dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]) -- string or dict of datacenter names to replication factors, required if using
NetworkTopologyStrategy (will be a dict if coming from state file).

	contact_points (str [https://docs.python.org/3/library/stdtypes.html#str] | list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The Cassandra cluster addresses, can either be a string or a list of IPs.

	cql_user (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Cassandra user if authentication is turned on.

	cql_pass (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Cassandra user password if authentication is turned on.

	port (int [https://docs.python.org/3/library/functions.html#int]) -- The Cassandra cluster port, defaults to None.

	protocol_version (int [https://docs.python.org/3/library/functions.html#int]) -- Cassandra protocol version to use.

	load_balancing_policy (str [https://docs.python.org/3/library/stdtypes.html#str]) -- cassandra.policy class name to use

	load_balancing_policy_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- cassandra.policy constructor args

	ssl_options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Cassandra protocol version to use.

	Returns:

	The info for the keyspace or False if it does not exist.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

CLI Example:
salt 'minion1' cassandra_cql.create_keyspace keyspace=newkeyspace

salt 'minion1' cassandra_cql.create_keyspace keyspace=newkeyspace replication_strategy=NetworkTopologyStrategy replication_datacenters='{"datacenter_1": 3, "datacenter_2": 2}'

	
salt.modules.cassandra_cql.create_user(username, password, superuser=False, contact_points=None, port=None, cql_user=None, cql_pass=None, protocol_version=None, load_balancing_policy=None, load_balancing_policy_args=None, ssl_options=None)

	Create a new cassandra user with credentials and superuser status.

	Parameters:

	
	username (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the new user.

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The password of the new user.

	superuser (bool [https://docs.python.org/3/library/functions.html#bool]) -- Is the new user going to be a superuser? default: False

	contact_points (str [https://docs.python.org/3/library/stdtypes.html#str] | list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The Cassandra cluster addresses, can either be a string or a list of IPs.

	cql_user (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Cassandra user if authentication is turned on.

	cql_pass (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Cassandra user password if authentication is turned on.

	port (int [https://docs.python.org/3/library/functions.html#int]) -- The Cassandra cluster port, defaults to None.

	protocol_version (int [https://docs.python.org/3/library/functions.html#int]) -- Cassandra protocol version to use.

	load_balancing_policy (str [https://docs.python.org/3/library/stdtypes.html#str]) -- cassandra.policy class name to use

	load_balancing_policy_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- cassandra.policy constructor args

	ssl_options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Cassandra protocol version to use.

	Returns:

	

	Return type:

	

CLI Example:

salt 'minion1' cassandra_cql.create_user username=joe password=secret

salt 'minion1' cassandra_cql.create_user username=joe password=secret superuser=True

salt 'minion1' cassandra_cql.create_user username=joe password=secret superuser=True contact_points=minion1

	
salt.modules.cassandra_cql.drop_keyspace(keyspace, contact_points=None, port=None, cql_user=None, cql_pass=None, protocol_version=None, load_balancing_policy=None, load_balancing_policy_args=None, ssl_options=None)

	Drop a keyspace if it exists in a Cassandra cluster.

	Parameters:

	
	keyspace (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The keyspace to drop.

	contact_points (str [https://docs.python.org/3/library/stdtypes.html#str] | list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The Cassandra cluster addresses, can either be a string or a list of IPs.

	cql_user (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Cassandra user if authentication is turned on.

	cql_pass (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Cassandra user password if authentication is turned on.

	port (int [https://docs.python.org/3/library/functions.html#int]) -- The Cassandra cluster port, defaults to None.

	protocol_version (int [https://docs.python.org/3/library/functions.html#int]) -- Cassandra protocol version to use.

	load_balancing_policy (str [https://docs.python.org/3/library/stdtypes.html#str]) -- cassandra.policy class name to use

	load_balancing_policy_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- cassandra.policy constructor args

	ssl_options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Cassandra protocol version to use.

	Returns:

	The info for the keyspace or False if it does not exist.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt 'minion1' cassandra_cql.drop_keyspace keyspace=test

salt 'minion1' cassandra_cql.drop_keyspace keyspace=test contact_points=minion1

	
salt.modules.cassandra_cql.grant_permission(username, resource=None, resource_type='keyspace', permission=None, contact_points=None, port=None, cql_user=None, cql_pass=None, protocol_version=None, load_balancing_policy=None, load_balancing_policy_args=None, ssl_options=None)

	Grant permissions to a user.

	Parameters:

	
	username (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the user to grant permissions to.

	resource (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The resource (keyspace or table), if None, permissions for all resources are granted.

	resource_type (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The resource_type (keyspace or table), defaults to 'keyspace'.

	permission (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A permission name (e.g. select), if None, all permissions are granted.

	contact_points (str [https://docs.python.org/3/library/stdtypes.html#str] | list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The Cassandra cluster addresses, can either be a string or a list of IPs.

	cql_user (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Cassandra user if authentication is turned on.

	cql_pass (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Cassandra user password if authentication is turned on.

	port (int [https://docs.python.org/3/library/functions.html#int]) -- The Cassandra cluster port, defaults to None.

	protocol_version (int [https://docs.python.org/3/library/functions.html#int]) -- Cassandra protocol version to use.

	load_balancing_policy (str [https://docs.python.org/3/library/stdtypes.html#str]) -- cassandra.policy class name to use

	load_balancing_policy_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- cassandra.policy constructor args

	ssl_options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Cassandra protocol version to use.

	Returns:

	

	Return type:

	

CLI Example:

salt 'minion1' cassandra_cql.grant_permission

salt 'minion1' cassandra_cql.grant_permission username=joe resource=test_keyspace permission=select

salt 'minion1' cassandra_cql.grant_permission username=joe resource=test_table resource_type=table permission=select contact_points=minion1

	
salt.modules.cassandra_cql.info(contact_points=None, port=None, cql_user=None, cql_pass=None, protocol_version=None, load_balancing_policy=None, load_balancing_policy_args=None, ssl_options=None)

	Show the Cassandra information for this cluster.

	Parameters:

	
	contact_points (str [https://docs.python.org/3/library/stdtypes.html#str] | list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The Cassandra cluster addresses, can either be a string or a list of IPs.

	cql_user (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Cassandra user if authentication is turned on.

	cql_pass (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Cassandra user password if authentication is turned on.

	port (int [https://docs.python.org/3/library/functions.html#int]) -- The Cassandra cluster port, defaults to None.

	protocol_version (int [https://docs.python.org/3/library/functions.html#int]) -- Cassandra protocol version to use.

	load_balancing_policy (str [https://docs.python.org/3/library/stdtypes.html#str]) -- cassandra.policy class name to use

	load_balancing_policy_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- cassandra.policy constructor args

	ssl_options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Cassandra protocol version to use.

	Returns:

	The information for this Cassandra cluster.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt 'minion1' cassandra_cql.info

salt 'minion1' cassandra_cql.info contact_points=minion1

	
salt.modules.cassandra_cql.keyspace_exists(keyspace, contact_points=None, port=None, cql_user=None, cql_pass=None, protocol_version=None, load_balancing_policy=None, load_balancing_policy_args=None, ssl_options=None)

	Check if a keyspace exists in a Cassandra cluster.

:param keyspace The keyspace name to check for.
:type keyspace: str
:param contact_points: The Cassandra cluster addresses, can either be a string or a list of IPs.
:type contact_points: str | list[str]
:param cql_user: The Cassandra user if authentication is turned on.
:type cql_user: str
:param cql_pass: The Cassandra user password if authentication is turned on.
:type cql_pass: str
:param port: The Cassandra cluster port, defaults to None.
:type port: int
:param protocol_version: Cassandra protocol version to use.
:type protocol_version: int
:param load_balancing_policy: cassandra.policy class name to use
:type load_balancing_policy: str
:param load_balancing_policy_args: cassandra.policy constructor args
:type load_balancing_policy_args: dict
:param ssl_options: Cassandra protocol version to use.
:type ssl_options: dict
:return: The info for the keyspace or False if it does not exist.
:rtype: dict

CLI Example:

salt 'minion1' cassandra_cql.keyspace_exists keyspace=system

	
salt.modules.cassandra_cql.list_column_families(keyspace=None, contact_points=None, port=None, cql_user=None, cql_pass=None, protocol_version=None, load_balancing_policy=None, load_balancing_policy_args=None, ssl_options=None)

	List column families in a Cassandra cluster for all keyspaces or just the provided one.

	Parameters:

	
	keyspace (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The keyspace to provide the column families for, optional.

	contact_points (str [https://docs.python.org/3/library/stdtypes.html#str] | list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The Cassandra cluster addresses, can either be a string or a list of IPs.

	cql_user (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Cassandra user if authentication is turned on.

	cql_pass (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Cassandra user password if authentication is turned on.

	port (int [https://docs.python.org/3/library/functions.html#int]) -- The Cassandra cluster port, defaults to None.

	protocol_version (int [https://docs.python.org/3/library/functions.html#int]) -- Cassandra protocol version to use.

	load_balancing_policy (str [https://docs.python.org/3/library/stdtypes.html#str]) -- cassandra.policy class name to use

	load_balancing_policy_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- cassandra.policy constructor args

	ssl_options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Cassandra protocol version to use.

	Returns:

	The column families in this Cassandra cluster.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]

CLI Example:

salt 'minion1' cassandra_cql.list_column_families

salt 'minion1' cassandra_cql.list_column_families contact_points=minion1

salt 'minion1' cassandra_cql.list_column_families keyspace=system

	
salt.modules.cassandra_cql.list_keyspaces(contact_points=None, port=None, cql_user=None, cql_pass=None, protocol_version=None, load_balancing_policy=None, load_balancing_policy_args=None, ssl_options=None)

	List keyspaces in a Cassandra cluster.

	Parameters:

	
	contact_points (str [https://docs.python.org/3/library/stdtypes.html#str] | list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The Cassandra cluster addresses, can either be a string or a list of IPs.

	cql_user (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Cassandra user if authentication is turned on.

	cql_pass (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Cassandra user password if authentication is turned on.

	port (int [https://docs.python.org/3/library/functions.html#int]) -- The Cassandra cluster port, defaults to None.

	protocol_version (int [https://docs.python.org/3/library/functions.html#int]) -- Cassandra protocol version to use.

	load_balancing_policy (str [https://docs.python.org/3/library/stdtypes.html#str]) -- cassandra.policy class name to use

	load_balancing_policy_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- cassandra.policy constructor args

	ssl_options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Cassandra protocol version to use.

	Returns:

	The keyspaces in this Cassandra cluster.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]

CLI Example:

salt 'minion1' cassandra_cql.list_keyspaces

salt 'minion1' cassandra_cql.list_keyspaces contact_points=minion1 port=9000

	
salt.modules.cassandra_cql.list_permissions(username=None, resource=None, resource_type='keyspace', permission=None, contact_points=None, port=None, cql_user=None, cql_pass=None, protocol_version=None, load_balancing_policy=None, load_balancing_policy_args=None, ssl_options=None)

	List permissions.

	Parameters:

	
	username (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the user to list permissions for.

	resource (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The resource (keyspace or table), if None, permissions for all resources are listed.

	resource_type (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The resource_type (keyspace or table), defaults to 'keyspace'.

	permission (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A permission name (e.g. select), if None, all permissions are listed.

	contact_points (str [https://docs.python.org/3/library/stdtypes.html#str] | list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The Cassandra cluster addresses, can either be a string or a list of IPs.

	cql_user (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Cassandra user if authentication is turned on.

	cql_pass (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Cassandra user password if authentication is turned on.

	port (int [https://docs.python.org/3/library/functions.html#int]) -- The Cassandra cluster port, defaults to None.

	protocol_version (int [https://docs.python.org/3/library/functions.html#int]) -- Cassandra protocol version to use.

	load_balancing_policy (str [https://docs.python.org/3/library/stdtypes.html#str]) -- cassandra.policy class name to use

	load_balancing_policy_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- cassandra.policy constructor args

	ssl_options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Cassandra protocol version to use.

	Returns:

	Dictionary of permissions.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt 'minion1' cassandra_cql.list_permissions

salt 'minion1' cassandra_cql.list_permissions username=joe resource=test_keyspace permission=select

salt 'minion1' cassandra_cql.list_permissions username=joe resource=test_table resource_type=table permission=select contact_points=minion1

	
salt.modules.cassandra_cql.list_users(contact_points=None, port=None, cql_user=None, cql_pass=None, protocol_version=None, load_balancing_policy=None, load_balancing_policy_args=None, ssl_options=None)

	List existing users in this Cassandra cluster.

	Parameters:

	
	contact_points (str [https://docs.python.org/3/library/stdtypes.html#str] | list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The Cassandra cluster addresses, can either be a string or a list of IPs.

	port (int [https://docs.python.org/3/library/functions.html#int]) -- The Cassandra cluster port, defaults to None.

	cql_user (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Cassandra user if authentication is turned on.

	cql_pass (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Cassandra user password if authentication is turned on.

	protocol_version (int [https://docs.python.org/3/library/functions.html#int]) -- Cassandra protocol version to use.

	load_balancing_policy (str [https://docs.python.org/3/library/stdtypes.html#str]) -- cassandra.policy class name to use

	load_balancing_policy_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- cassandra.policy constructor args

	ssl_options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Cassandra protocol version to use.

	Returns:

	The list of existing users.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt 'minion1' cassandra_cql.list_users

salt 'minion1' cassandra_cql.list_users contact_points=minion1

	
salt.modules.cassandra_cql.version(contact_points=None, port=None, cql_user=None, cql_pass=None, protocol_version=None, load_balancing_policy=None, load_balancing_policy_args=None, ssl_options=None)

	Show the Cassandra version.

	Parameters:

	
	contact_points (str [https://docs.python.org/3/library/stdtypes.html#str] | list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The Cassandra cluster addresses, can either be a string or a list of IPs.

	cql_user (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Cassandra user if authentication is turned on.

	cql_pass (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The Cassandra user password if authentication is turned on.

	port (int [https://docs.python.org/3/library/functions.html#int]) -- The Cassandra cluster port, defaults to None.

	protocol_version (int [https://docs.python.org/3/library/functions.html#int]) -- Cassandra protocol version to use.

	load_balancing_policy (str [https://docs.python.org/3/library/stdtypes.html#str]) -- cassandra.policy class name to use

	load_balancing_policy_args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- cassandra.policy constructor args

	ssl_options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Cassandra protocol version to use.

	Returns:

	The version for this Cassandra cluster.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt 'minion1' cassandra_cql.version

salt 'minion1' cassandra_cql.version contact_points=minion1

salt.modules.celery

Support for scheduling celery tasks. The worker is independent of salt and thus can run in a different
virtualenv or on a different python version, as long as broker, backend and serializer configurations match.
Also note that celery and packages required by the celery broker, e.g. redis must be installed to load
the salt celery execution module.

Note

A new app (and thus new connections) is created for each task execution

	
salt.modules.celery.run_task(task_name, args=None, kwargs=None, broker=None, backend=None, wait_for_result=False, timeout=None, propagate=True, interval=0.5, no_ack=True, raise_timeout=True, config=None)

	Execute celery tasks. For celery specific parameters see celery documentation.

CLI Example:

salt '*' celery.run_task tasks.sleep args=[4] broker=redis://localhost \
backend=redis://localhost wait_for_result=true

	task_name
	The task name, e.g. tasks.sleep

	args
	Task arguments as a list

	kwargs
	Task keyword arguments

	broker
	Broker for celeryapp, see celery documentation

	backend
	Result backend for celeryapp, see celery documentation

	wait_for_result
	Wait until task result is read from result backend and return result, Default: False

	timeout
	Timeout waiting for result from celery, see celery AsyncResult.get documentation

	propagate
	Propagate exceptions from celery task, see celery AsyncResult.get documentation, Default: True

	interval
	Interval to check for task result, see celery AsyncResult.get documentation, Default: 0.5

	no_ack
	see celery AsyncResult.get documentation. Default: True

	raise_timeout
	Raise timeout exception if waiting for task result times out. Default: False

	config
	Config dict for celery app, See celery documentation

salt.modules.ceph

Module to provide ceph control with salt.

	depends:

	
	ceph_cfg Python module

New in version 2016.11.0.

	
salt.modules.ceph.ceph_version()

	Get the version of ceph installed

CLI Example:

salt '*' ceph.ceph_version

	
salt.modules.ceph.cluster_quorum(**kwargs)

	Get the cluster's quorum status

CLI Example:

salt '*' ceph.cluster_quorum \
 'cluster_name'='ceph' \
 'cluster_uuid'='cluster_uuid'

	cluster_uuid
	The cluster UUID. Defaults to value found in ceph config file.

	cluster_name
	The cluster name. Defaults to ceph.

	
salt.modules.ceph.cluster_status(**kwargs)

	Get the cluster status, including health if in quorum

CLI Example:

salt '*' ceph.cluster_status \
 'cluster_name'='ceph' \
 'cluster_uuid'='cluster_uuid'

	cluster_uuid
	The cluster UUID. Defaults to value found in ceph config file.

	cluster_name
	The cluster name. Defaults to ceph.

	
salt.modules.ceph.keyring_auth_add(**kwargs)

	Add keyring to authorized list

CLI Example:

salt '*' ceph.keyring_auth_add \
 'keyring_type'='admin' \
 'cluster_name'='ceph' \
 'cluster_uuid'='cluster_uuid'

	keyring_type (required)
	One of admin, mon, osd, rgw, mds

	cluster_uuid
	The cluster UUID. Defaults to value found in ceph config file.

	cluster_name
	The cluster name. Defaults to ceph.

	
salt.modules.ceph.keyring_auth_del(**kwargs)

	Remove keyring from authorised list

CLI Example:

salt '*' ceph.keyring_osd_auth_del \
 'keyring_type'='admin' \
 'cluster_name'='ceph' \
 'cluster_uuid'='cluster_uuid'

	keyring_type (required)
	One of admin, mon, osd, rgw, mds

	cluster_uuid
	The cluster UUID. Defaults to value found in ceph config file.

	cluster_name
	The cluster name. Defaults to ceph.

	
salt.modules.ceph.keyring_auth_list(**kwargs)

	List all cephx authorization keys

CLI Example:

salt '*' ceph.keyring_auth_list \
 'cluster_name'='ceph' \
 'cluster_uuid'='cluster_uuid'

	cluster_name
	The cluster name. Defaults to ceph.

	cluster_uuid
	The cluster UUID. Defaults to value found in ceph config file.

	
salt.modules.ceph.keyring_create(**kwargs)

	Create keyring for cluster

CLI Example:

salt '*' ceph.keyring_create \
 'keyring_type'='admin' \
 'cluster_name'='ceph' \
 'cluster_uuid'='cluster_uuid'

	keyring_type (required)
	One of admin, mon, osd, rgw, mds

	cluster_uuid
	The cluster UUID. Defaults to value found in ceph config file.

	cluster_name
	The cluster name. Defaults to ceph.

	
salt.modules.ceph.keyring_present(**kwargs)

	Returns True if the keyring is present on disk, otherwise False

CLI Example:

salt '*' ceph.keyring_present \
 'keyring_type'='admin' \
 'cluster_name'='ceph' \
 'cluster_uuid'='cluster_uuid'

	keyring_type (required)
	One of admin, mon, osd, rgw, mds

	cluster_uuid
	The cluster UUID. Defaults to value found in ceph config file.

	cluster_name
	The cluster name. Defaults to ceph.

	
salt.modules.ceph.keyring_purge(**kwargs)

	Delete keyring for cluster

CLI Example:

salt '*' ceph.keyring_purge \
 'keyring_type'='admin' \
 'cluster_name'='ceph' \
 'cluster_uuid'='cluster_uuid'

	keyring_type (required)
	One of admin, mon, osd, rgw, mds

	cluster_uuid
	The cluster UUID. Defaults to value found in ceph config file.

	cluster_name
	The cluster name. Defaults to ceph.

If no ceph config file is found, this command will fail.

	
salt.modules.ceph.keyring_save(**kwargs)

	Create save keyring locally

CLI Example:

salt '*' ceph.keyring_save \
 'keyring_type'='admin' \
 'cluster_name'='ceph' \
 'cluster_uuid'='cluster_uuid'

	keyring_type (required)
	One of admin, mon, osd, rgw, mds

	cluster_uuid
	The cluster UUID. Defaults to value found in ceph config file.

	cluster_name
	The cluster name. Defaults to ceph.

	
salt.modules.ceph.mds_create(**kwargs)

	Create a mds

CLI Example:

salt '*' ceph.mds_create \
 'name' = 'mds.name' \
 'port' = 1000, \
 'addr' = 'fqdn.example.org' \
 'cluster_name'='ceph' \
 'cluster_uuid'='cluster_uuid'

	name (required)
	The MDS name (must start with mds.)

	port (required)
	Port to which the MDS will listen

	addr (required)
	Address or IP address for the MDS to listen

	cluster_uuid
	The cluster UUID. Defaults to value found in ceph config file.

	cluster_name
	The cluster name. Defaults to ceph.

	
salt.modules.ceph.mds_destroy(**kwargs)

	Remove a mds

CLI Example:

salt '*' ceph.mds_destroy \
 'name' = 'mds.name' \
 'cluster_name'='ceph' \
 'cluster_uuid'='cluster_uuid'

	name (required)
	The MDS name (must start with mds.)

	cluster_uuid
	The cluster UUID. Defaults to value found in ceph config file.

	cluster_name
	The cluster name. Defaults to ceph.

	
salt.modules.ceph.mon_active(**kwargs)

	Returns True if the mon daemon is running, otherwise False

CLI Example:

salt '*' ceph.mon_active \
 'cluster_name'='ceph' \
 'cluster_uuid'='cluster_uuid'

	cluster_uuid
	The cluster UUID. Defaults to value found in ceph config file.

	cluster_name
	The cluster name. Defaults to ceph.

	
salt.modules.ceph.mon_create(**kwargs)

	Create a mon node

CLI Example:

salt '*' ceph.mon_create \
 'cluster_name'='ceph' \
 'cluster_uuid'='cluster_uuid'

	cluster_uuid
	The cluster UUID. Defaults to value found in ceph config file.

	cluster_name
	The cluster name. Defaults to ceph.

	
salt.modules.ceph.mon_is(**kwargs)

	Returns True if the target is a mon node, otherwise False

CLI Example:

salt '*' ceph.mon_is \
 'cluster_name'='ceph' \
 'cluster_uuid'='cluster_uuid'

	cluster_name
	The cluster name. Defaults to ceph.

	cluster_uuid
	The cluster UUID. Defaults to value found in ceph config file.

	
salt.modules.ceph.mon_quorum(**kwargs)

	Returns True if the mon daemon is in the quorum, otherwise False

CLI Example:

salt '*' ceph.mon_quorum \
 'cluster_name'='ceph' \
 'cluster_uuid'='cluster_uuid'

	cluster_uuid
	The cluster UUID. Defaults to value found in ceph config file.

	cluster_name
	The cluster name. Defaults to ceph.

	
salt.modules.ceph.mon_status(**kwargs)

	Get status from mon daemon

CLI Example:

salt '*' ceph.mon_status \
 'cluster_name'='ceph' \
 'cluster_uuid'='cluster_uuid'

	cluster_uuid
	The cluster UUID. Defaults to value found in ceph config file.

	cluster_name
	The cluster name. Defaults to ceph.

	
salt.modules.ceph.osd_activate(**kwargs)

	Activate an OSD

CLI Example:

salt '*' ceph.osd_activate 'osd_dev'='/dev/vdc'

	
salt.modules.ceph.osd_discover()

	List all OSD by cluster

CLI Example:

salt '*' ceph.osd_discover

	
salt.modules.ceph.osd_prepare(**kwargs)

	Prepare an OSD

CLI Example:

salt '*' ceph.osd_prepare 'osd_dev'='/dev/vdc' \
 'journal_dev'='device' \
 'cluster_name'='ceph' \
 'cluster_uuid'='cluster_uuid' \
 'osd_fs_type'='xfs' \
 'osd_uuid'='2a143b73-6d85-4389-a9e9-b8a78d9e1e07' \
 'journal_uuid'='4562a5db-ff6f-4268-811d-12fd4a09ae98'

	cluster_uuid
	The device to store the osd data on.

	journal_dev
	The journal device. defaults to osd_dev.

	cluster_name
	The cluster name. Defaults to ceph.

	cluster_uuid
	The cluster date will be added too. Defaults to the value found in local config.

	osd_fs_type
	set the file system to store OSD data with. Defaults to "xfs".

	osd_uuid
	set the OSD data UUID. If set will return if OSD with data UUID already exists.

	journal_uuid
	set the OSD journal UUID. If set will return if OSD with journal UUID already exists.

	
salt.modules.ceph.partition_is(dev)

	Check whether a given device path is a partition or a full disk.

CLI Example:

salt '*' ceph.partition_is /dev/sdc1

	
salt.modules.ceph.partition_list()

	List partitions by disk

CLI Example:

salt '*' ceph.partition_list

	
salt.modules.ceph.partition_list_journal()

	List all OSD journal partitions by partition

CLI Example:

salt '*' ceph.partition_list_journal

	
salt.modules.ceph.partition_list_osd()

	List all OSD data partitions by partition

CLI Example:

salt '*' ceph.partition_list_osd

	
salt.modules.ceph.pool_add(pool_name, **kwargs)

	Create a pool

CLI Example:

salt '*' ceph.pool_add pool_name \
 'cluster_name'='ceph' \
 'cluster_uuid'='cluster_uuid'

	cluster_name
	The cluster name. Defaults to ceph.

	cluster_uuid
	The cluster UUID. Defaults to value found in ceph config file.

	pg_num
	Default to 8

	pgp_num
	Default to pg_num

	pool_type
	can take values "replicated" or "erasure"

	erasure_code_profile
	The "erasure_code_profile"

	crush_ruleset
	The crush map rule set

	
salt.modules.ceph.pool_del(pool_name, **kwargs)

	Delete a pool

CLI Example:

salt '*' ceph.pool_del pool_name \
 'cluster_name'='ceph' \
 'cluster_uuid'='cluster_uuid'

	cluster_name
	The cluster name. Defaults to ceph.

	cluster_uuid
	The cluster UUID. Defaults to value found in ceph config file.

	
salt.modules.ceph.pool_list(**kwargs)

	List all pools

CLI Example:

salt '*' ceph.pool_list \
 'cluster_name'='ceph' \
 'cluster_uuid'='cluster_uuid'

	cluster_name
	The cluster name. Defaults to ceph.

	cluster_uuid
	The cluster UUID. Defaults to value found in ceph config file.

	
salt.modules.ceph.purge(**kwargs)

	purge ceph configuration on the node

CLI Example:

salt '*' ceph.purge \
 'cluster_name'='ceph' \
 'cluster_uuid'='cluster_uuid'

	cluster_name
	The cluster name. Defaults to ceph.

	cluster_uuid
	The cluster UUID. Defaults to value found in ceph config file.

	
salt.modules.ceph.rgw_create(**kwargs)

	Create a rgw

CLI Example:

salt '*' ceph.rgw_create \
 'name' = 'rgw.name' \
 'cluster_name'='ceph' \
 'cluster_uuid'='cluster_uuid'

	name (required)
	The RGW client name. Must start with rgw.

	cluster_uuid
	The cluster UUID. Defaults to value found in ceph config file.

	cluster_name
	The cluster name. Defaults to ceph.

	
salt.modules.ceph.rgw_destroy(**kwargs)

	Remove a rgw

CLI Example:

salt '*' ceph.rgw_destroy \
 'name' = 'rgw.name' \
 'cluster_name'='ceph' \
 'cluster_uuid'='cluster_uuid'

	name (required)
	The RGW client name (must start with rgw.)

	cluster_uuid
	The cluster UUID. Defaults to value found in ceph config file.

	cluster_name
	The cluster name. Defaults to ceph.

	
salt.modules.ceph.rgw_pools_create(**kwargs)

	Create pools for rgw

CLI Example:

salt '*' ceph.rgw_pools_create

	cluster_uuid
	The cluster UUID. Defaults to value found in ceph config file.

	cluster_name
	The cluster name. Defaults to ceph.

	
salt.modules.ceph.rgw_pools_missing(**kwargs)

	Show pools missing for rgw

CLI Example:

salt '*' ceph.rgw_pools_missing

	cluster_uuid
	The cluster UUID. Defaults to value found in ceph config file.

	cluster_name
	The cluster name. Defaults to ceph.

	
salt.modules.ceph.zap(target=None, **kwargs)

	Destroy the partition table and content of a given disk.

salt '*' ceph.osd_prepare 'dev'='/dev/vdc' \
 'cluster_name'='ceph' \
 'cluster_uuid'='cluster_uuid'

	dev
	The block device to format.

	cluster_name
	The cluster name. Defaults to ceph.

	cluster_uuid
	The cluster UUID. Defaults to value found in ceph config file.

salt.modules.chassis

Glue execution module to link to the fx2 proxymodule.

Depends: iDRAC Remote execution module (salt.modules.dracr)

For documentation on commands that you can direct to a Dell chassis via proxy,
look in the documentation for salt.modules.dracr.

This execution module calls through to a function in the fx2 proxy module
called chconfig. That function looks up the function passed in the cmd
parameter in salt.modules.dracr and calls it.

New in version 2015.8.2.

	
salt.modules.chassis.chassis_credentials()

	

	
salt.modules.chassis.cmd(cmd, *args, **kwargs)

	

salt.modules.chef

Execute chef in server or solo mode

	
salt.modules.chef.client(whyrun=False, localmode=False, logfile=None, **kwargs)

	Execute a chef client run and return a dict with the stderr, stdout,
return code, and pid.

CLI Example:

salt '*' chef.client server=https://localhost

	server
	The chef server URL

	client_key
	Set the client key file location

	config
	The configuration file to use

	config-file-jail
	Directory under which config files are allowed to be loaded
(no client.rb or knife.rb outside this path will be loaded).

	environment
	Set the Chef Environment on the node

	group
	Group to set privilege to

	json-attributes
	Load attributes from a JSON file or URL

	localmode
	Point chef-client at local repository if True

	log_level
	Set the log level (debug, info, warn, error, fatal)

	logfile
	Set the log file location

	node-name
	The node name for this client

	override-runlist
	Replace current run list with specified items for a single run

	pid
	Set the PID file location, defaults to /tmp/chef-client.pid

	run-lock-timeout
	Set maximum duration to wait for another client run to finish,
default is indefinitely.

	runlist
	Permanently replace current run list with specified items

	user
	User to set privilege to

	validation_key
	Set the validation key file location, used for registering new clients

	whyrun
	Enable whyrun mode when set to True

	
salt.modules.chef.solo(whyrun=False, logfile=None, **kwargs)

	Execute a chef solo run and return a dict with the stderr, stdout,
return code, and pid.

CLI Example:

salt '*' chef.solo override-runlist=test

	config
	The configuration file to use

	environment
	Set the Chef Environment on the node

	group
	Group to set privilege to

	json-attributes
	Load attributes from a JSON file or URL

	log_level
	Set the log level (debug, info, warn, error, fatal)

	logfile
	Set the log file location

	node-name
	The node name for this client

	override-runlist
	Replace current run list with specified items for a single run

	recipe-url
	Pull down a remote gzipped tarball of recipes and untar it to
the cookbook cache

	run-lock-timeout
	Set maximum duration to wait for another client run to finish,
default is indefinitely.

	user
	User to set privilege to

	whyrun
	Enable whyrun mode when set to True

salt.modules.chocolatey

A module that wraps calls to the Chocolatey package manager
(http://chocolatey.org)

New in version 2014.1.0.

	
salt.modules.chocolatey.add_source(name, source_location, username=None, password=None, priority=None)

	Instructs Chocolatey to add a source.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the source to be added as a chocolatey repository.

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Location of the source you want to work with.

	username (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Provide username for chocolatey sources that need authentication
credentials.

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Provide password for chocolatey sources that need authentication
credentials.

	priority (int [https://docs.python.org/3/library/functions.html#int]) -- The priority order of this source as compared to other sources,
lower is better. Defaults to 0 (no priority). All priorities
above 0 will be evaluated first, then zero-based values will be
evaluated in config file order.

CLI Example:

salt '*' chocolatey.add_source <source name> <source_location>
salt '*' chocolatey.add_source <source name> <source_location> priority=100
salt '*' chocolatey.add_source <source name> <source_location> user=<user> password=<password>

	
salt.modules.chocolatey.bootstrap(force=False, source=None, version=None)

	Download and install the latest version of the Chocolatey package manager
via the official bootstrap.

Chocolatey requires Windows PowerShell and the .NET v4.0 runtime. Depending
on the host's version of Windows, chocolatey.bootstrap will attempt to
ensure these prerequisites are met by downloading and executing the
appropriate installers from Microsoft.

Note

If PowerShell is installed, you may have to restart the host machine for
Chocolatey to work.

Note

If you're installing offline using the source parameter, the PowerShell
and .NET requirements must already be met on the target. This shouldn't
be a problem on Windows versions 2012/8 and later

Note

If you're installing chocolatey version 2.0+ the system requires .NET
4.8. Installing this requires a reboot, therefore this module will not
automatically install .NET 4.8.

	Parameters:

	
	force (bool [https://docs.python.org/3/library/functions.html#bool]) -- Run the bootstrap process even if Chocolatey is found in the path.

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The location of the .nupkg file or .ps1 file to run from an
alternate location. This can be one of the following types of URLs:

	salt://

	http(s)://

	ftp://

	file:// - A local file on the system

New in version 3001.

	version (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The version of chocolatey to install. The latest version is
installed if this value is None. Default is None

New in version 3007.1.

	Returns:

	The stdout of the Chocolatey installation script

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

To bootstrap Chocolatey
salt '*' chocolatey.bootstrap
salt '*' chocolatey.bootstrap force=True

To bootstrap Chocolatey offline from a file on the salt master
salt '*' chocolatey.bootstrap source=salt://files/chocolatey.nupkg

To bootstrap Chocolatey from a file on C:\Temp
salt '*' chocolatey.bootstrap source=C:\Temp\chocolatey.nupkg

To bootstrap Chocolatey version 1.4.0
salt '*' chocolatey.bootstrap version=1.4.0

	
salt.modules.chocolatey.chocolatey_version(refresh=False)

	Returns the version of Chocolatey installed on the minion.

	Parameters:

	refresh (bool [https://docs.python.org/3/library/functions.html#bool]) -- Refresh the cached version of chocolatey

New in version 3007.1.

CLI Example:

salt '*' chocolatey.chocolatey_version

	
salt.modules.chocolatey.disable_source(name)

	Instructs Chocolatey to disable a source.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name of the source repository to disable.

CLI Example:

salt '*' chocolatey.disable_source <name>

	
salt.modules.chocolatey.enable_source(name)

	Instructs Chocolatey to enable a source.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name of the source repository to enable.

CLI Example:

salt '*' chocolatey.enable_source <name>

	
salt.modules.chocolatey.install(name, version=None, source=None, force=False, pre_versions=False, install_args=None, override_args=False, force_x86=False, package_args=None, allow_multiple=False, execution_timeout=None)

	Instructs Chocolatey to install a package.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the package to be installed. Only accepts a single
argument. Required.

	version (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Install a specific version of the package. Defaults to latest
version. Default is None.

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Chocolatey repository (directory, share or remote URL feed) the
package comes from. Defaults to the official Chocolatey feed.
Default is None.

Alternate Sources:

	cygwin

	python

	ruby

	webpi

	windowsfeatures

	force (bool [https://docs.python.org/3/library/functions.html#bool]) -- Reinstall the current version of an existing package. Do not use
with allow_multiple. Default is False.

	pre_versions (bool [https://docs.python.org/3/library/functions.html#bool]) -- Include pre-release packages. Default is False.

	install_args (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A list of install arguments you want to pass to the installation
process, i.e. product key or feature list. Default is None.

	override_args (bool [https://docs.python.org/3/library/functions.html#bool]) -- Set to true if you want to override the original install arguments
(for the native installer) in the package and use your own. When
this is set to False install_args will be appended to the end of
the default arguments. Default is None.

	force_x86 (bool [https://docs.python.org/3/library/functions.html#bool]) -- Force x86 (32bit) installation on 64bit systems. Default is
False.

	package_args (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Arguments you want to pass to the package. Default is None.

	allow_multiple (bool [https://docs.python.org/3/library/functions.html#bool]) -- Allow multiple versions of the package to be installed. Do not use
with force. Does not work with all packages. Default is
False.

New in version 2017.7.0.

	execution_timeout (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Chocolatey execution timeout value you want to pass to the
installation process. Default is None.

New in version 2018.3.0.

	Returns:

	The output of the chocolatey command

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' chocolatey.install <package name>
salt '*' chocolatey.install <package name> version=<package version>
salt '*' chocolatey.install <package name> install_args=<args> override_args=True

	
salt.modules.chocolatey.install_cygwin(name, install_args=None, override_args=False)

	Instructs Chocolatey to install a package via Cygwin.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the package to be installed. Only accepts a single
argument.

	install_args (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A list of install arguments you want to pass to the installation
process, i.e. product key or feature list

	override_args (bool [https://docs.python.org/3/library/functions.html#bool]) -- Set to True if you want to override the original install
arguments (for the native installer) in the package and use your
own. When this is set to False install_args will be appended to
the end of the default arguments

CLI Example:

salt '*' chocolatey.install_cygwin <package name>
salt '*' chocolatey.install_cygwin <package name> install_args=<args> override_args=True

	
salt.modules.chocolatey.install_gem(name, version=None, install_args=None, override_args=False)

	Instructs Chocolatey to install a package via Ruby's Gems.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the package to be installed. Only accepts a single
argument.

	version (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Install a specific version of the package. Defaults to the latest
version available.

	install_args (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A list of install arguments you want to pass to the installation
process, i.e. product key or feature list

	override_args (bool [https://docs.python.org/3/library/functions.html#bool]) -- Set to True if you want to override the original install
arguments (for the native installer) in the package and use your
own. When this is set to False install_args will be appended to
the end of the default arguments

CLI Example:

salt '*' chocolatey.install_gem <package name>
salt '*' chocolatey.install_gem <package name> version=<package version>
salt '*' chocolatey.install_gem <package name> install_args=<args> override_args=True

	
salt.modules.chocolatey.install_missing(name, version=None, source=None)

	Instructs Chocolatey to install a package if it doesn't already exist.

Changed in version 2014.7.0: If the minion has Chocolatey >= 0.9.8.24 installed, this function calls
chocolatey.install instead, as
installmissing is deprecated as of that version and will be removed
in Chocolatey 1.0.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the package to be installed. Only accepts a single
argument.

	version (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Install a specific version of the package. Defaults to the latest
version available.

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Chocolatey repository (directory, share or remote URL feed) the
package comes from. Defaults to the official Chocolatey feed.

CLI Example:

salt '*' chocolatey.install_missing <package name>
salt '*' chocolatey.install_missing <package name> version=<package version>

	
salt.modules.chocolatey.install_python(name, version=None, install_args=None, override_args=False)

	Instructs Chocolatey to install a package via Python's easy_install.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the package to be installed. Only accepts a single
argument.

	version (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Install a specific version of the package. Defaults to the latest
version available.

	install_args (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A list of install arguments you want to pass to the installation
process, i.e. product key or feature list.

	override_args (bool [https://docs.python.org/3/library/functions.html#bool]) -- Set to True if you want to override the original install
arguments (for the native installer) in the package and use your
own. When this is set to False install_args will be appended to
the end of the default arguments.

CLI Example:

salt '*' chocolatey.install_python <package name>
salt '*' chocolatey.install_python <package name> version=<package version>
salt '*' chocolatey.install_python <package name> install_args=<args> override_args=True

	
salt.modules.chocolatey.install_webpi(name, install_args=None, override_args=False)

	Instructs Chocolatey to install a package via the Microsoft Web PI service.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the package to be installed. Only accepts a single
argument.

	install_args (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A list of install arguments you want to pass to the installation
process, i.e. product key or feature list.

	override_args (bool [https://docs.python.org/3/library/functions.html#bool]) -- Set to True if you want to override the original install
arguments (for the native installer) in the package and use your
own. When this is set to False install_args will be appended to
the end of the default arguments.

CLI Example:

salt '*' chocolatey.install_webpi <package name>
salt '*' chocolatey.install_webpi <package name> install_args=<args> override_args=True

	
salt.modules.chocolatey.install_windowsfeatures(name)

	Instructs Chocolatey to install a Windows Feature via the Deployment Image
Servicing and Management tool.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the feature to be installed. Only accepts a single
argument.

CLI Example:

salt '*' chocolatey.install_windowsfeatures <package name>

	
salt.modules.chocolatey.list_(narrow=None, all_versions=False, pre_versions=False, source=None, local_only=False, exact=False)

	Instructs Chocolatey to pull a vague package list from the repository.

	Parameters:

	
	narrow (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Term used to narrow down results. Searches against
name/description/tag. Default is None.

	all_versions (bool [https://docs.python.org/3/library/functions.html#bool]) -- Display all available package versions in results. Default is False.

	pre_versions (bool [https://docs.python.org/3/library/functions.html#bool]) -- Display pre-release packages in results. Default is False.

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Chocolatey repository (directory, share or remote URL feed) the
package comes from. Defaults to the official Chocolatey feed if
None is passed. Default is None.

	local_only (bool [https://docs.python.org/3/library/functions.html#bool]) -- Only display packages that are installed locally. Default is False.

	exact (bool [https://docs.python.org/3/library/functions.html#bool]) -- Only display packages that match narrow exactly. Default is
False.

New in version 2017.7.0.

	Returns:

	A dictionary of results.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' chocolatey.list <narrow>
salt '*' chocolatey.list <narrow> all_versions=True

	
salt.modules.chocolatey.list_sources()

	Returns the list of installed sources.

CLI Example:

salt '*' chocolatey.list_sources

	
salt.modules.chocolatey.list_webpi()

	Instructs Chocolatey to pull a full package list from the Microsoft Web PI
repository.

	Returns:

	List of webpi packages

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' chocolatey.list_webpi

	
salt.modules.chocolatey.list_windowsfeatures()

	Instructs Chocolatey to pull a full package list from the Windows Features
list, via the Deployment Image Servicing and Management tool.

	Returns:

	List of Windows Features

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' chocolatey.list_windowsfeatures

	
salt.modules.chocolatey.unbootstrap()

	Uninstall chocolatey from the system by doing the following:

	Delete the Chocolatey Directory

	Remove Chocolatey from the path

	Remove Chocolatey environment variables

New in version 3001.

	Returns:

	A list of items that were removed, otherwise an empty list

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt * chocolatey.unbootstrap

	
salt.modules.chocolatey.uninstall(name, version=None, uninstall_args=None, override_args=False, force=False)

	Instructs Chocolatey to uninstall a package.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the package to be uninstalled. Only accepts a single
argument.

	version (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Uninstalls a specific version of the package. Defaults to the latest
version installed.

	uninstall_args (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A list of uninstall arguments you want to pass to the uninstallation
process, i.e. product key or feature list.

	override_args -- Set to True if you want to override the original uninstall
arguments (for the native uninstaller) in the package and use your
own. When this is set to False uninstall_args will be appended
to the end of the default arguments.

CLI Example:

salt '*' chocolatey.uninstall <package name>
salt '*' chocolatey.uninstall <package name> version=<package version>
salt '*' chocolatey.uninstall <package name> version=<package version> uninstall_args=<args> override_args=True

	
salt.modules.chocolatey.update(name, source=None, pre_versions=False)

	Instructs Chocolatey to update packages on the system.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the package to update, or "all" to update everything
installed on the system.

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Chocolatey repository (directory, share or remote URL feed) the
package comes from. Defaults to the official Chocolatey feed.

	pre_versions (bool [https://docs.python.org/3/library/functions.html#bool]) -- Include pre-release packages in comparison. Defaults to False.

CLI Example:

salt "*" chocolatey.update all
salt "*" chocolatey.update <package name> pre_versions=True

	
salt.modules.chocolatey.upgrade(name, version=None, source=None, force=False, pre_versions=False, install_args=None, override_args=False, force_x86=False, package_args=None)

	
New in version 2016.3.4.

Instructs Chocolatey to upgrade packages on the system. (update is being
deprecated). This command will install the package if not installed.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the package to update, or "all" to update everything
installed on the system.

	version (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Install a specific version of the package. Defaults to latest
version.

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Chocolatey repository (directory, share or remote URL feed) the
package comes from. Defaults to the official Chocolatey feed.

	force (bool [https://docs.python.org/3/library/functions.html#bool]) -- Reinstall the same version already installed.

	pre_versions (bool [https://docs.python.org/3/library/functions.html#bool]) -- Include pre-release packages in comparison. Defaults to False.

	install_args (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A list of install arguments you want to pass to the installation
process, i.e. product key or feature list.

	override_args (bool [https://docs.python.org/3/library/functions.html#bool]) -- Set to True if you want to override the original install
arguments (for the native installer) in the package and use your
own. When this is set to False install_args will be appended to
the end of the default arguments.

	force_x86 (bool [https://docs.python.org/3/library/functions.html#bool]) -- Force x86 (32bit) installation on 64bit systems. Defaults to
False.

	package_args (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A list of arguments you want to pass to the package.

	Returns:

	Results of the chocolatey command

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt "*" chocolatey.upgrade all
salt "*" chocolatey.upgrade <package name> pre_versions=True

	
salt.modules.chocolatey.version(name, check_remote=False, source=None, pre_versions=False)

	Instructs Chocolatey to check an installed package version, and optionally
compare it to one available from a remote feed.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the package to check. Required.

	check_remote (bool [https://docs.python.org/3/library/functions.html#bool]) -- Get the version number of the latest package from the remote feed.
Default is False.

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Chocolatey repository (directory, share or remote URL feed) the
package comes from. Defaults to the official Chocolatey feed.
Default is None.

	pre_versions (bool [https://docs.python.org/3/library/functions.html#bool]) -- Include pre-release packages in comparison. Default is False.

	Returns:

	A dictionary of currently installed software and versions

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt "*" chocolatey.version <package name>
salt "*" chocolatey.version <package name> check_remote=True

salt.modules.chronos

Module providing a simple management interface to a chronos cluster.

Currently this only works when run through a proxy minion.

New in version 2015.8.2.

	
salt.modules.chronos.has_job(name)

	Return whether the given job is currently configured.

CLI Example:

salt chronos-minion-id chronos.has_job my-job

	
salt.modules.chronos.job(name)

	Return the current server configuration for the specified job.

CLI Example:

salt chronos-minion-id chronos.job my-job

	
salt.modules.chronos.jobs()

	Return a list of the currently installed job names.

CLI Example:

salt chronos-minion-id chronos.jobs

	
salt.modules.chronos.rm_job(name)

	Remove the specified job from the server.

CLI Example:

salt chronos-minion-id chronos.rm_job my-job

	
salt.modules.chronos.update_job(name, config)

	Update the specified job with the given configuration.

CLI Example:

salt chronos-minion-id chronos.update_job my-job '<config yaml>'

salt.modules.chroot

Module for chroot
:maintainer: Alberto Planas <aplanas@suse.com>
:maturity: new
:depends: None
:platform: Linux

	
salt.modules.chroot.apply_(root, mods=None, **kwargs)

	Apply an state inside a chroot.

This function will call chroot.highstate or chroot.sls based
on the arguments passed to this function. It exists as a more
intuitive way of applying states.

	root
	Path to the chroot environment

For a formal description of the possible parameters accepted in
this function, check state.apply_ documentation.

CLI Example:

salt myminion chroot.apply /chroot
salt myminion chroot.apply /chroot stuff
salt myminion chroot.apply /chroot stuff pillar='{"foo": "bar"}'

	
salt.modules.chroot.call(root, function, *args, **kwargs)

	Executes a Salt function inside a chroot environment.

The chroot does not need to have Salt installed, but Python is
required.

	root
	Path to the chroot environment

	function
	Salt execution module function

CLI Example:

salt myminion chroot.call /chroot test.ping
salt myminion chroot.call /chroot ssh.set_auth_key user key=mykey

	
salt.modules.chroot.create(root)

	Create a basic chroot environment.

Note that this environment is not functional. The caller needs to
install the minimal required binaries, including Python if
chroot.call is called.

	root
	Path to the chroot environment

CLI Example:

salt myminion chroot.create /chroot

	
salt.modules.chroot.exist(root)

	Return True if the chroot environment is present.

	root
	Path to the chroot environment

CLI Example:

salt myminion chroot.exist /chroot

	
salt.modules.chroot.highstate(root, **kwargs)

	Retrieve the state data from the salt master for this minion and
execute it inside the chroot.

	root
	Path to the chroot environment

For a formal description of the possible parameters accepted in
this function, check state.highstate documentation.

CLI Example:

salt myminion chroot.highstate /chroot
salt myminion chroot.highstate /chroot pillar='{"foo": "bar"}'

	
salt.modules.chroot.in_chroot()

	Return True if the process is inside a chroot jail

New in version 3004.

CLI Example:

salt myminion chroot.in_chroot

	
salt.modules.chroot.sls(root, mods, saltenv='base', test=None, exclude=None, **kwargs)

	Execute the states in one or more SLS files inside the chroot.

	root
	Path to the chroot environment

	saltenv
	Specify a salt fileserver environment to be used when applying
states

	mods
	List of states to execute

	test
	Run states in test-only (dry-run) mode

	exclude
	Exclude specific states from execution. Accepts a list of sls
names, a comma-separated string of sls names, or a list of
dictionaries containing sls or id keys. Glob-patterns
may be used to match multiple states.

For a formal description of the possible parameters accepted in
this function, check state.sls documentation.

CLI Example:

salt '*' chroot.sls /chroot stuff pillar='{"foo": "bar"}'

salt.modules.cimc

Module to provide Cisco UCS compatibility to Salt

	codeauthor:

	Spencer Ervin <spencer_ervin@hotmail.com>

	maturity:

	new

	depends:

	none

	platform:

	unix

Configuration

This module accepts connection configuration details either as
parameters, or as configuration settings in pillar as a Salt proxy.
Options passed into opts will be ignored if options are passed into pillar.

See also

Cisco UCS Proxy Module

About

This execution module was designed to handle connections to a Cisco UCS server.
This module adds support to send connections directly to the device through the
rest API.

	
salt.modules.cimc.activate_backup_image(reset=False)

	Activates the firmware backup image.

CLI Example:

	Parameters:

	reset (bool [https://docs.python.org/3/library/functions.html#bool]) -- Reset the CIMC device on activate.

salt '*' cimc.activate_backup_image
salt '*' cimc.activate_backup_image reset=True

	
salt.modules.cimc.create_user(uid=None, username=None, password=None, priv=None)

	Create a CIMC user with username and password.

	Parameters:

	
	uid (int [https://docs.python.org/3/library/functions.html#int]) -- The user ID slot to create the user account in.

	username (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the user.

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The clear text password of the user.

	priv (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The privilege level of the user.

CLI Example:

salt '*' cimc.create_user 11 username=admin password=foobar priv=admin

	
salt.modules.cimc.get_bios_defaults()

	Get the default values of BIOS tokens.

CLI Example:

salt '*' cimc.get_bios_defaults

	
salt.modules.cimc.get_bios_settings()

	Get the C240 server BIOS token values.

CLI Example:

salt '*' cimc.get_bios_settings

	
salt.modules.cimc.get_boot_order()

	Retrieves the configured boot order table.

CLI Example:

salt '*' cimc.get_boot_order

	
salt.modules.cimc.get_cpu_details()

	Get the CPU product ID details.

CLI Example:

salt '*' cimc.get_cpu_details

	
salt.modules.cimc.get_disks()

	Get the HDD product ID details.

CLI Example:

salt '*' cimc.get_disks

	
salt.modules.cimc.get_ethernet_interfaces()

	Get the adapter Ethernet interface details.

CLI Example:

salt '*' cimc.get_ethernet_interfaces

	
salt.modules.cimc.get_fibre_channel_interfaces()

	Get the adapter fibre channel interface details.

CLI Example:

salt '*' cimc.get_fibre_channel_interfaces

	
salt.modules.cimc.get_firmware()

	Retrieves the current running firmware versions of server components.

CLI Example:

salt '*' cimc.get_firmware

	
salt.modules.cimc.get_hostname()

	Retrieves the hostname from the device.

New in version 2019.2.0.

CLI Example:

salt '*' cimc.get_hostname

	
salt.modules.cimc.get_ldap()

	Retrieves LDAP server details.

CLI Example:

salt '*' cimc.get_ldap

	
salt.modules.cimc.get_management_interface()

	Retrieve the management interface details.

CLI Example:

salt '*' cimc.get_management_interface

	
salt.modules.cimc.get_memory_token()

	Get the memory RAS BIOS token.

CLI Example:

salt '*' cimc.get_memory_token

	
salt.modules.cimc.get_memory_unit()

	Get the IMM/Memory unit product ID details.

CLI Example:

salt '*' cimc.get_memory_unit

	
salt.modules.cimc.get_network_adapters()

	Get the list of network adapters and configuration details.

CLI Example:

salt '*' cimc.get_network_adapters

	
salt.modules.cimc.get_ntp()

	Retrieves the current running NTP configuration.

CLI Example:

salt '*' cimc.get_ntp

	
salt.modules.cimc.get_pci_adapters()

	Get the PCI adapter product ID details.

CLI Example:

salt '*' cimc.get_disks

	
salt.modules.cimc.get_power_configuration()

	Get the configuration of the power settings from the device. This is only available
on some C-Series servers.

New in version 2019.2.0.

CLI Example:

salt '*' cimc.get_power_configuration

	
salt.modules.cimc.get_power_supplies()

	Retrieves the power supply unit details.

CLI Example:

salt '*' cimc.get_power_supplies

	
salt.modules.cimc.get_snmp_config()

	Get the snmp configuration details.

CLI Example:

salt '*' cimc.get_snmp_config

	
salt.modules.cimc.get_syslog()

	Get the Syslog client-server details.

CLI Example:

salt '*' cimc.get_syslog

	
salt.modules.cimc.get_syslog_settings()

	Get the Syslog configuration settings from the system.

New in version 2019.2.0.

CLI Example:

salt '*' cimc.get_syslog_settings

	
salt.modules.cimc.get_system_info()

	Get the system information.

CLI Example:

salt '*' cimc.get_system_info

	
salt.modules.cimc.get_users()

	Get the CIMC users.

CLI Example:

salt '*' cimc.get_users

	
salt.modules.cimc.get_vic_adapters()

	Get the VIC adapter general profile details.

CLI Example:

salt '*' cimc.get_vic_adapters

	
salt.modules.cimc.get_vic_uplinks()

	Get the VIC adapter uplink port details.

CLI Example:

salt '*' cimc.get_vic_uplinks

	
salt.modules.cimc.mount_share(name=None, remote_share=None, remote_file=None, mount_type='nfs', username=None, password=None)

	Mounts a remote file through a remote share. Currently, this feature is supported in version 1.5 or greater.
The remote share can be either NFS, CIFS, or WWW.

	Some of the advantages of CIMC Mounted vMedia include:
	Communication between mounted media and target stays local (inside datacenter)
Media mounts can be scripted/automated
No vKVM requirements for media connection
Multiple share types supported
Connections supported through all CIMC interfaces

Note: CIMC Mounted vMedia is enabled through BIOS configuration.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the volume on the CIMC device.

	remote_share (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The file share link that will be used to mount the share. This can be NFS, CIFS, or WWW. This

	file. (must be the directory path and not the full path to the remote) --

	remote_file (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the remote file to mount. It must reside within remote_share.

	mount_type (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The type of share to mount. Valid options are nfs, cifs, and www.

	username (str [https://docs.python.org/3/library/stdtypes.html#str]) -- An optional requirement to pass credentials to the remote share. If not provided, an

	made. (unauthenticated connection attempt will be) --

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- An optional requirement to pass a password to the remote share. If not provided, an

	made. --

CLI Example:

salt '*' cimc.mount_share name=WIN7 remote_share=10.xxx.27.xxx:/nfs remote_file=sl1huu.iso

salt '*' cimc.mount_share name=WIN7 remote_share=10.xxx.27.xxx:/nfs remote_file=sl1huu.iso username=bob password=badpassword

	
salt.modules.cimc.reboot()

	Power cycling the server.

CLI Example:

salt '*' cimc.reboot

	
salt.modules.cimc.set_hostname(hostname=None)

	Sets the hostname on the server.

New in version 2019.2.0.

	Parameters:

	hostname (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The new hostname to set.

CLI Example:

salt '*' cimc.set_hostname foobar

	
salt.modules.cimc.set_logging_levels(remote=None, local=None)

	Sets the logging levels of the CIMC devices. The logging levels must match
the following options: emergency, alert, critical, error, warning, notice,
informational, debug.

New in version 2019.2.0.

	Parameters:

	
	remote (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The logging level for SYSLOG logs.

	local (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The logging level for the local device.

CLI Example:

salt '*' cimc.set_logging_levels remote=error local=notice

	
salt.modules.cimc.set_ntp_server(server1='', server2='', server3='', server4='')

	Sets the NTP servers configuration. This will also enable the client NTP service.

	Parameters:

	
	server1 (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The first IP address or FQDN of the NTP servers.

	server2 (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The second IP address or FQDN of the NTP servers.

	server3 (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The third IP address or FQDN of the NTP servers.

	server4 (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The fourth IP address or FQDN of the NTP servers.

CLI Example:

salt '*' cimc.set_ntp_server 10.10.10.1

salt '*' cimc.set_ntp_server 10.10.10.1 foo.bar.com

	
salt.modules.cimc.set_power_configuration(policy=None, delayType=None, delayValue=None)

	Sets the power configuration on the device. This is only available for some
C-Series servers.

New in version 2019.2.0.

	Parameters:

	
	policy (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The action to be taken when chassis power is restored after

	following (delayed with this option. This can be one of the) -- reset: The server is allowed to boot up normally when power is
restored. The server can restart immediately or, optionally, after a
fixed or random delay.

stay-off: The server remains off until it is manually restarted.

last-state: The server restarts and the system attempts to restore
any processes that were running before power was lost.

	delayType (str [https://docs.python.org/3/library/stdtypes.html#str]) -- If the selected policy is reset, the restart can be

	following -- fixed: The server restarts after a fixed delay.

random: The server restarts after a random delay.

	delayValue (int [https://docs.python.org/3/library/functions.html#int]) -- If a fixed delay is selected, once chassis power is

	rebooting (restored and the Cisco IMC has finished) --

	for (the system waits) --

	an (the specified number of seconds before restarting the server. Enter) --

	240. (integer between 0 and) --

CLI Example:

salt '*' cimc.set_power_configuration stay-off

salt '*' cimc.set_power_configuration reset fixed 0

	
salt.modules.cimc.set_syslog_server(server=None, type='primary')

	Set the SYSLOG server on the host.

	Parameters:

	
	server (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The hostname or IP address of the SYSLOG server.

	type (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specifies the type of SYSLOG server. This can either be primary (default) or secondary.

CLI Example:

salt '*' cimc.set_syslog_server foo.bar.com

salt '*' cimc.set_syslog_server foo.bar.com primary

salt '*' cimc.set_syslog_server foo.bar.com secondary

	
salt.modules.cimc.set_user(uid=None, username=None, password=None, priv=None, status=None)

	Sets a CIMC user with specified configurations.

New in version 2019.2.0.

	Parameters:

	
	uid (int [https://docs.python.org/3/library/functions.html#int]) -- The user ID slot to create the user account in.

	username (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the user.

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The clear text password of the user.

	priv (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The privilege level of the user.

	status (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The account status of the user.

CLI Example:

salt '*' cimc.set_user 11 username=admin password=foobar priv=admin active

	
salt.modules.cimc.tftp_update_bios(server=None, path=None)

	Update the BIOS firmware through TFTP.

	Parameters:

	
	server (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IP address or hostname of the TFTP server.

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The TFTP path and filename for the BIOS image.

CLI Example:

salt '*' cimc.tftp_update_bios foo.bar.com HP-SL2.cap

	
salt.modules.cimc.tftp_update_cimc(server=None, path=None)

	Update the CIMC firmware through TFTP.

	Parameters:

	
	server (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IP address or hostname of the TFTP server.

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The TFTP path and filename for the CIMC image.

CLI Example:

salt '*' cimc.tftp_update_cimc foo.bar.com HP-SL2.bin

salt.modules.ciscoconfparse_mod

Execution module for ciscoconfparse [http://www.pennington.net/py/ciscoconfparse/index.html]

New in version 2019.2.0.

This module can be used for basic configuration parsing, audit or validation
for a variety of network platforms having Cisco IOS style configuration (one
space indentation), including: Cisco IOS, Cisco Nexus, Cisco IOS-XR,
Cisco IOS-XR, Cisco ASA, Arista EOS, Brocade, HP Switches, Dell PowerConnect
Switches, or Extreme Networks devices. In newer versions, ciscoconfparse
provides support for brace-delimited configuration style as well, for platforms
such as: Juniper Junos, Palo Alto, or F5 Networks.

See http://www.pennington.net/py/ciscoconfparse/index.html for further details.

	depends:

	ciscoconfparse

This module depends on the Python library with the same name,
ciscoconfparse - to install execute: pip install ciscoconfparse.

	
salt.modules.ciscoconfparse_mod.filter_lines(config=None, config_path=None, parent_regex=None, child_regex=None, saltenv='base')

	Return a list of detailed matches, for the configuration blocks (parent-child
relationship) whose parent respects the regular expressions configured via
the parent_regex argument, and the child matches the child_regex
regular expression. The result is a list of dictionaries with the following
keys:

	match: a boolean value that tells whether child_regex matched any
children lines.

	parent: the parent line (as text).

	child: the child line (as text). If no child line matched, this field
will be None.

Note that the return list contains the elements that matched the parent
condition, the parent_regex regular expression. Therefore, the parent
field will always have a valid value, while match and child may
default to False and None respectively when there is not child match.

CLI Example:

salt '*' ciscoconfparse.filter_lines config_path=https://bit.ly/2mAdq7z parent_regex='Gigabit' child_regex='shutdown'

Example output (for the example above):

[
 {
 'parent': 'interface GigabitEthernet1',
 'match': False,
 'child': None
 },
 {
 'parent': 'interface GigabitEthernet2',
 'match': True,
 'child': ' shutdown'
 },
 {
 'parent': 'interface GigabitEthernet3',
 'match': True,
 'child': ' shutdown'
 }
]

	
salt.modules.ciscoconfparse_mod.find_lines(config=None, config_path=None, regex=None, saltenv='base')

	Return all the lines (as text) that match the expression in the regex
argument.

	config
	The configuration sent as text.

Note

This argument is ignored when config_path is specified.

	config_path
	The absolute or remote path to the file with the configuration to be
parsed. This argument supports the usual Salt filesystem URIs, e.g.,
salt://, https://, ftp://, s3://, etc.

	regex
	The regular expression to match the lines against.

	saltenv: base
	Salt fileserver environment from which to retrieve the file. This
argument is ignored when config_path is not a salt:// URL.

CLI Example:

salt '*' ciscoconfparse.find_lines config_path=https://bit.ly/2mAdq7z regex='ip address'

Output example:

cisco-ios-router:
 - ip address dhcp
 - ip address 172.20.0.1 255.255.255.0
 - no ip address

	
salt.modules.ciscoconfparse_mod.find_lines_w_child(config=None, config_path=None, parent_regex=None, child_regex=None, ignore_ws=False, saltenv='base')

	Return a list of parent lines (as text) matching the regular expression
parent_regex that have children lines matching child_regex.

	config
	The configuration sent as text.

Note

This argument is ignored when config_path is specified.

	config_path
	The absolute or remote path to the file with the configuration to be
parsed. This argument supports the usual Salt filesystem URIs, e.g.,
salt://, https://, ftp://, s3://, etc.

	parent_regex
	The regular expression to match the parent lines against.

	child_regex
	The regular expression to match the child lines against.

	ignore_ws: False
	Whether to ignore the white spaces.

	saltenv: base
	Salt fileserver environment from which to retrieve the file. This
argument is ignored when config_path is not a salt:// URL.

CLI Example:

salt '*' ciscoconfparse.find_lines_w_child config_path=https://bit.ly/2mAdq7z parent_line='line con' child_line='stopbits'
salt '*' ciscoconfparse.find_lines_w_child config_path=https://bit.ly/2uIRxau parent_regex='ge-(.*)' child_regex='unit \d+'

	
salt.modules.ciscoconfparse_mod.find_lines_wo_child(config=None, config_path=None, parent_regex=None, child_regex=None, ignore_ws=False, saltenv='base')

	Return a list of parent ciscoconfparse.IOSCfgLine lines as text, which
matched the parent_regex and whose children did not match child_regex.
Only the parent ciscoconfparse.IOSCfgLine text lines will be returned.
For simplicity, this method only finds oldest ancestors without immediate
children that match.

	config
	The configuration sent as text.

Note

This argument is ignored when config_path is specified.

	config_path
	The absolute or remote path to the file with the configuration to be
parsed. This argument supports the usual Salt filesystem URIs, e.g.,
salt://, https://, ftp://, s3://, etc.

	parent_regex
	The regular expression to match the parent lines against.

	child_regex
	The regular expression to match the child lines against.

	ignore_ws: False
	Whether to ignore the white spaces.

	saltenv: base
	Salt fileserver environment from which to retrieve the file. This
argument is ignored when config_path is not a salt:// URL.

CLI Example:

salt '*' ciscoconfparse.find_lines_wo_child config_path=https://bit.ly/2mAdq7z parent_line='line con' child_line='stopbits'

	
salt.modules.ciscoconfparse_mod.find_objects(config=None, config_path=None, regex=None, saltenv='base')

	Return all the line objects that match the expression in the regex
argument.

Warning

This function is mostly valuable when invoked from other Salt
components (i.e., execution modules, states, templates etc.). For CLI
usage, please consider using
ciscoconfparse.find_lines

	config
	The configuration sent as text.

Note

This argument is ignored when config_path is specified.

	config_path
	The absolute or remote path to the file with the configuration to be
parsed. This argument supports the usual Salt filesystem URIs, e.g.,
salt://, https://, ftp://, s3://, etc.

	regex
	The regular expression to match the lines against.

	saltenv: base
	Salt fileserver environment from which to retrieve the file. This
argument is ignored when config_path is not a salt:// URL.

Usage example:

objects = __salt__['ciscoconfparse.find_objects'](config_path='salt://path/to/config.txt',
 regex='Gigabit')
for obj in objects:
 print(obj.text)

	
salt.modules.ciscoconfparse_mod.find_objects_w_child(config=None, config_path=None, parent_regex=None, child_regex=None, ignore_ws=False, saltenv='base')

	Parse through the children of all parent lines matching parent_regex,
and return a list of child objects, which matched the child_regex.

Warning

This function is mostly valuable when invoked from other Salt
components (i.e., execution modules, states, templates etc.). For CLI
usage, please consider using
ciscoconfparse.find_lines_w_child

	config
	The configuration sent as text.

Note

This argument is ignored when config_path is specified.

	config_path
	The absolute or remote path to the file with the configuration to be
parsed. This argument supports the usual Salt filesystem URIs, e.g.,
salt://, https://, ftp://, s3://, etc.

	parent_regex
	The regular expression to match the parent lines against.

	child_regex
	The regular expression to match the child lines against.

	ignore_ws: False
	Whether to ignore the white spaces.

	saltenv: base
	Salt fileserver environment from which to retrieve the file. This
argument is ignored when config_path is not a salt:// URL.

Usage example:

objects = __salt__['ciscoconfparse.find_objects_w_child'](config_path='https://bit.ly/2mAdq7z',
 parent_regex='line con',
 child_regex='stopbits')
for obj in objects:
 print(obj.text)

	
salt.modules.ciscoconfparse_mod.find_objects_wo_child(config=None, config_path=None, parent_regex=None, child_regex=None, ignore_ws=False, saltenv='base')

	Return a list of parent ciscoconfparse.IOSCfgLine objects, which matched
the parent_regex and whose children did not match child_regex.
Only the parent ciscoconfparse.IOSCfgLine objects will be returned. For
simplicity, this method only finds oldest ancestors without immediate
children that match.

Warning

This function is mostly valuable when invoked from other Salt
components (i.e., execution modules, states, templates etc.). For CLI
usage, please consider using
ciscoconfparse.find_lines_wo_child

	config
	The configuration sent as text.

Note

This argument is ignored when config_path is specified.

	config_path
	The absolute or remote path to the file with the configuration to be
parsed. This argument supports the usual Salt filesystem URIs, e.g.,
salt://, https://, ftp://, s3://, etc.

	parent_regex
	The regular expression to match the parent lines against.

	child_regex
	The regular expression to match the child lines against.

	ignore_ws: False
	Whether to ignore the white spaces.

	saltenv: base
	Salt fileserver environment from which to retrieve the file. This
argument is ignored when config_path is not a salt:// URL.

Usage example:

objects = __salt__['ciscoconfparse.find_objects_wo_child'](config_path='https://bit.ly/2mAdq7z',
 parent_regex='line con',
 child_regex='stopbits')
for obj in objects:
 print(obj.text)

salt.modules.cisconso

Execution module for Cisco Network Services Orchestrator Proxy minions

New in version 2016.11.0.

For documentation on setting up the cisconso proxy minion look in the documentation
for salt.proxy.cisconso.

	
salt.modules.cisconso.apply_rollback(datastore, name)

	Apply a system rollback

	Parameters:

	
	datastore (DatastoreType (str enum).) -- The datastore, e.g. running, operational.
One of the NETCONF store IETF types

	name (str) -- an ID of the rollback to restore

salt cisco-nso cisconso.apply_rollback 52

	
salt.modules.cisconso.get_data(datastore, path)

	Get the configuration of the device tree at the given path

	Parameters:

	
	datastore (DatastoreType (str enum).) -- The datastore, e.g. running, operational.
One of the NETCONF store IETF types

	path (list, str OR tuple) -- The device path to set the value at,
a list of element names in order, / separated

	Returns:

	The network configuration at that tree

	Return type:

	dict

salt cisco-nso cisconso.get_data running 'devices/ex0'

	
salt.modules.cisconso.get_rollback(name)

	Get the backup of stored a configuration rollback

	Parameters:

	name (str) -- Typically an ID of the backup

	Return type:

	str

	Returns:

	the contents of the rollback snapshot

salt cisco-nso cisconso.get_rollback 52

	
salt.modules.cisconso.get_rollbacks()

	Get a list of stored configuration rollbacks

salt cisco-nso cisconso.get_rollbacks

	
salt.modules.cisconso.info()

	Return system information for grains of the NSO proxy minion

salt '*' cisconso.info

	
salt.modules.cisconso.set_data_value(datastore, path, data)

	Set a data entry in a datastore

	Parameters:

	
	datastore (DatastoreType (str enum).) -- The datastore, e.g. running, operational.
One of the NETCONF store IETF types

	path (list, str OR tuple) -- The device path to set the value at,
a list of element names in order, / separated

	data (dict) -- The new value at the given path

	Return type:

	bool

	Returns:

	True if successful, otherwise error.

salt cisco-nso cisconso.set_data_value running 'devices/ex0/routes' 10.0.0.20/24

salt.modules.cloud

Salt-specific interface for calling Salt Cloud directly

	
salt.modules.cloud.action(fun=None, cloudmap=None, names=None, provider=None, instance=None, **kwargs)

	Execute a single action on the given provider/instance

CLI Example:

salt minionname cloud.action start instance=myinstance
salt minionname cloud.action stop instance=myinstance
salt minionname cloud.action show_image provider=my-ec2-config image=ami-1624987f

	
salt.modules.cloud.create(provider, names, opts=None, **kwargs)

	Create an instance using Salt Cloud

CLI Example:

salt minionname cloud.create my-ec2-config myinstance image=ami-1624987f size='t1.micro' ssh_username=ec2-user securitygroup=default delvol_on_destroy=True

	
salt.modules.cloud.destroy(names)

	Destroy the named VM(s)

CLI Example:

salt minionname cloud.destroy myinstance

	
salt.modules.cloud.full_query(query_type='list_nodes_full')

	List all available cloud provider data

CLI Example:

salt minionname cloud.full_query

	
salt.modules.cloud.get_instance(name, provider=None)

	Return details on an instance.

Similar to the cloud action show_instance
but returns only the instance details.

CLI Example:

salt minionname cloud.get_instance myinstance

SLS Example:

{{ salt['cloud.get_instance']('myinstance')['mac_address'] }}

	
salt.modules.cloud.has_instance(name, provider=None)

	Return true if the instance is found on a provider

CLI Example:

salt minionname cloud.has_instance myinstance

	
salt.modules.cloud.list_images(provider='all')

	List cloud provider images for the given providers

CLI Example:

salt minionname cloud.list_images my-gce-config

	
salt.modules.cloud.list_locations(provider='all')

	List cloud provider locations for the given providers

CLI Example:

salt minionname cloud.list_locations my-gce-config

	
salt.modules.cloud.list_sizes(provider='all')

	List cloud provider sizes for the given providers

CLI Example:

salt minionname cloud.list_sizes my-gce-config

	
salt.modules.cloud.map_run(path=None, **kwargs)

	Execute a salt cloud map file

Cloud Map data can be retrieved from several sources:

	a local file (provide the path to the file to the 'path' argument)

	a JSON-formatted map directly (provide the appropriately formatted to using the 'map_data' argument)

	the Salt Pillar (provide the map name of under 'pillar:cloud:maps' to the 'map_pillar' argument)

Note

Only one of these sources can be read at a time. The options are listed
in their order of precedence.

CLI Examples:

salt minionname cloud.map_run /path/to/cloud.map
salt minionname cloud.map_run path=/path/to/cloud.map
salt minionname cloud.map_run map_pillar='<map_pillar>'
 .. versionchanged:: 2018.3.1
salt minionname cloud.map_run map_data='<actual map data>'

	
salt.modules.cloud.network_create(provider, names, **kwargs)

	Create private network

CLI Example:

salt minionname cloud.network_create my-nova names=['salt'] cidr='192.168.100.0/24'

	
salt.modules.cloud.network_list(provider)

	List private networks

CLI Example:

salt minionname cloud.network_list my-nova

	
salt.modules.cloud.profile_(profile, names, vm_overrides=None, opts=None, **kwargs)

	Spin up an instance using Salt Cloud

CLI Example:

salt minionname cloud.profile my-gce-config myinstance

	
salt.modules.cloud.query(query_type='list_nodes')

	List cloud provider data for all providers

CLI Examples:

salt minionname cloud.query
salt minionname cloud.query list_nodes_full
salt minionname cloud.query list_nodes_select

	
salt.modules.cloud.select_query(query_type='list_nodes_select')

	List selected nodes

CLI Example:

salt minionname cloud.select_query

	
salt.modules.cloud.virtual_interface_create(provider, names, **kwargs)

	Attach private interfaces to a server

CLI Example:

salt minionname cloud.virtual_interface_create my-nova names=['salt-master'] net_name='salt'

	
salt.modules.cloud.virtual_interface_list(provider, names, **kwargs)

	List virtual interfaces on a server

CLI Example:

salt minionname cloud.virtual_interface_list my-nova names=['salt-master']

	
salt.modules.cloud.volume_attach(provider, names, **kwargs)

	Attach volume to a server

CLI Example:

salt minionname cloud.volume_attach my-nova myblock server_name=myserver device='/dev/xvdf'

	
salt.modules.cloud.volume_create(provider, names, **kwargs)

	Create volume

CLI Example:

salt minionname cloud.volume_create my-nova myblock size=100 voltype=SSD

	
salt.modules.cloud.volume_delete(provider, names, **kwargs)

	Delete volume

CLI Example:

salt minionname cloud.volume_delete my-nova myblock

	
salt.modules.cloud.volume_detach(provider, names, **kwargs)

	Detach volume from a server

CLI Example:

salt minionname cloud.volume_detach my-nova myblock server_name=myserver

	
salt.modules.cloud.volume_list(provider)

	List block storage volumes

CLI Example:

salt minionname cloud.volume_list my-nova

salt.modules.cmdmod

A module for shelling out.

Keep in mind that this module is insecure, in that it can give whomever has
access to the master root execution access to all salt minions.

	
salt.modules.cmdmod.exec_code(lang, code, cwd=None, args=None, **kwargs)

	Pass in two strings, the first naming the executable language, aka -
python2, python3, ruby, perl, lua, etc. the second string containing
the code you wish to execute. The stdout will be returned.

All parameters from cmd.run_all except python_shell can be used.

CLI Example:

salt '*' cmd.exec_code ruby 'puts "cheese"'
salt '*' cmd.exec_code ruby 'puts "cheese"' args='["arg1", "arg2"]' env='{"FOO": "bar"}'

	
salt.modules.cmdmod.exec_code_all(lang, code, cwd=None, args=None, **kwargs)

	Pass in two strings, the first naming the executable language, aka -
python2, python3, ruby, perl, lua, etc. the second string containing
the code you wish to execute. All cmd artifacts (stdout, stderr, retcode, pid)
will be returned.

All parameters from cmd.run_all except python_shell can be used.

CLI Example:

salt '*' cmd.exec_code_all ruby 'puts "cheese"'
salt '*' cmd.exec_code_all ruby 'puts "cheese"' args='["arg1", "arg2"]' env='{"FOO": "bar"}'

	
salt.modules.cmdmod.has_exec(cmd)

	Returns true if the executable is available on the minion, false otherwise

CLI Example:

salt '*' cmd.has_exec cat

	
salt.modules.cmdmod.powershell(cmd, cwd=None, stdin=None, runas=None, shell='powershell', env=None, clean_env=False, template=None, rstrip=True, umask=None, output_encoding=None, output_loglevel='debug', hide_output=False, timeout=None, reset_system_locale=True, ignore_retcode=False, saltenv=None, use_vt=False, password=None, depth=None, encode_cmd=False, success_retcodes=None, success_stdout=None, success_stderr=None, **kwargs)

	Execute the passed PowerShell command and return the output as a dictionary.

Other cmd.* functions (besides cmd.powershell_all)
return the raw text output of the command. This
function appends | ConvertTo-JSON to the command and then parses the
JSON into a Python dictionary. If you want the raw textual result of your
PowerShell command you should use cmd.run with the shell=powershell
option.

For example:

salt '*' cmd.run '$PSVersionTable.CLRVersion' shell=powershell
salt '*' cmd.run 'Get-NetTCPConnection' shell=powershell

New in version 2016.3.0.

Warning

This passes the cmd argument directly to PowerShell
without any further processing! Be absolutely sure that you
have properly sanitized the command passed to this function
and do not use untrusted inputs.

In addition to the normal cmd.run parameters, this command offers the
depth parameter to change the Windows default depth for the
ConvertTo-JSON powershell command. The Windows default is 2. If you need
more depth, set that here.

Note

For some commands, setting the depth to a value greater than 4 greatly
increases the time it takes for the command to return and in many cases
returns useless data.

	Parameters:

	
	cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The powershell command to run.

	cwd (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The directory from which to execute the command. Defaults
to the home directory of the user specified by runas (or the user
under which Salt is running if runas is not specified).

	stdin (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string of standard input can be specified for the
command to be run using the stdin parameter. This can be useful in cases
where sensitive information must be read from standard input.

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specify an alternate user to run the command. The default
behavior is to run as the user under which Salt is running. If running
on a Windows minion you must also use the password argument, and
the target user account must be in the Administrators group.

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Windows only. Required when specifying runas. This
parameter will be ignored on non-Windows platforms.

New in version 2016.3.0.

	shell (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specify an alternate shell. Defaults to "powershell". Can
also use "pwsh" for powershell core if present on the system

	python_shell (bool [https://docs.python.org/3/library/functions.html#bool]) -- If False, let python handle the positional
arguments. Set to True to use shell features, such as pipes or
redirection.

	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Environment variables to be set prior to execution.

Note

When passing environment variables on the CLI, they should be
passed as the string representation of a dictionary.

salt myminion cmd.powershell 'some command' env='{"FOO": "bar"}'

Note

When using environment variables on Window's, case-sensitivity
matters, i.e. Window's uses Path as opposed to PATH for other
systems.

	clean_env (bool [https://docs.python.org/3/library/functions.html#bool]) -- Attempt to clean out all other shell environment
variables and set only those provided in the 'env' argument to this
function.

	template (str [https://docs.python.org/3/library/stdtypes.html#str]) -- If this setting is applied then the named templating
engine will be used to render the downloaded file. Currently jinja,
mako, and wempy are supported.

	rstrip (bool [https://docs.python.org/3/library/functions.html#bool]) -- Strip all whitespace off the end of output before it is
returned.

	umask (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The umask (in octal) to use when running the command.

	output_encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Control the encoding used to decode the
command's output.

Note

This should not need to be used in most cases. By default, Salt
will try to use the encoding detected from the system locale, and
will fall back to UTF-8 if this fails. This should only need to be
used in cases where the output of the command is encoded in
something other than the system locale or UTF-8.

To see the encoding Salt has detected from the system locale, check
the locale line in the output of test.versions_report.

New in version 2018.3.0.

	output_loglevel (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Control the loglevel at which the output from
the command is logged to the minion log.

Note

The command being run will still be logged at the debug
loglevel regardless, unless quiet is used for this value.

	ignore_retcode (bool [https://docs.python.org/3/library/functions.html#bool]) -- If the exit code of the command is nonzero,
this is treated as an error condition, and the output from the command
will be logged to the minion log. However, there are some cases where
programs use the return code for signaling and a nonzero exit code
doesn't necessarily mean failure. Pass this argument as True to
skip logging the output if the command has a nonzero exit code.

	hide_output (bool [https://docs.python.org/3/library/functions.html#bool]) -- If True, suppress stdout and stderr in the
return data.

Note

This is separate from output_loglevel, which only handles how
Salt logs to the minion log.

New in version 2018.3.0.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) -- A timeout in seconds for the executed process to return.

	use_vt (bool [https://docs.python.org/3/library/functions.html#bool]) -- Use VT utils (saltstack) to stream the command output
more interactively to the console and the logs. This is experimental.

	reset_system_locale (bool [https://docs.python.org/3/library/functions.html#bool]) -- Resets the system locale

	saltenv (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The salt environment to use. Default is 'base'

	depth (int [https://docs.python.org/3/library/functions.html#int]) -- The number of levels of contained objects to be included.
Default is 2. Values greater than 4 seem to greatly increase the time
it takes for the command to complete for some commands. eg: dir

New in version 2016.3.4.

	encode_cmd (bool [https://docs.python.org/3/library/functions.html#bool]) -- Encode the command before executing. Use in cases
where characters may be dropped or incorrectly converted when executed.
Default is False.

	success_retcodes (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	non-zero return codes that should be considered a success. If the
return code returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 2019.2.0.

	success_stdout (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	strings that when found in standard out should be considered a success.
If stdout returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 3004.

	success_stderr (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	strings that when found in standard error should be considered a success.
If stderr returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 3004.

	stdin_raw_newlines (bool [https://docs.python.org/3/library/functions.html#bool]) --
	False
	If True, Salt will not automatically convert the characters \n
present in the stdin value to newlines.

New in version 2019.2.0.

	Returns:

	
	dict:

	A dictionary of data returned by the powershell command.

CLI Example:

salt '*' cmd.powershell "$PSVersionTable.CLRVersion"

	
salt.modules.cmdmod.powershell_all(cmd, cwd=None, stdin=None, runas=None, shell='powershell', env=None, clean_env=False, template=None, rstrip=True, umask=None, output_encoding=None, output_loglevel='debug', quiet=False, timeout=None, reset_system_locale=True, ignore_retcode=False, saltenv=None, use_vt=False, password=None, depth=None, encode_cmd=False, force_list=False, success_retcodes=None, success_stdout=None, success_stderr=None, **kwargs)

	Execute the passed PowerShell command and return a dictionary with a result
field representing the output of the command, as well as other fields
showing us what the PowerShell invocation wrote to stderr, the process
id, and the exit code of the invocation.

This function appends | ConvertTo-JSON to the command before actually
invoking powershell.

An unquoted empty string is not valid JSON, but it's very normal for the
Powershell output to be exactly that. Therefore, we do not attempt to parse
empty Powershell output (which would result in an exception). Instead we
treat this as a special case and one of two things will happen:

	If the value of the force_list parameter is True, then the
result field of the return dictionary will be an empty list.

	If the value of the force_list parameter is False, then the
return dictionary will not have a result key added to it. We aren't
setting result to None in this case, because None is the
Python representation of "null" in JSON. (We likewise can't use False
for the equivalent reason.)

If Powershell's output is not an empty string and Python cannot parse its
content, then a CommandExecutionError exception will be raised.

If Powershell's output is not an empty string, Python is able to parse its
content, and the type of the resulting Python object is other than list
then one of two things will happen:

	If the value of the force_list parameter is True, then the
result field will be a singleton list with the Python object as its
sole member.

	If the value of the force_list parameter is False, then the value
of result will be the unmodified Python object.

If Powershell's output is not an empty string, Python is able to parse its
content, and the type of the resulting Python object is list, then the
value of result will be the unmodified Python object. The
force_list parameter has no effect in this case.

Note

An example of why the force_list parameter is useful is as
follows: The Powershell command dir x | Convert-ToJson results in

	no output when x is an empty directory.

	a dictionary object when x contains just one item.

	a list of dictionary objects when x contains multiple items.

By setting force_list to True we will always end up with a
list of dictionary items, representing files, no matter how many files
x contains. Conversely, if force_list is False, we will end
up with no result key in our return dictionary when x is an empty
directory, and a dictionary object when x contains just one file.

If you want a similar function but with a raw textual result instead of a
Python dictionary, you should use cmd.run_all in combination with
shell=powershell.

The remaining fields in the return dictionary are described in more detail
in the Returns section.

Example:

salt '*' cmd.run_all '$PSVersionTable.CLRVersion' shell=powershell
salt '*' cmd.run_all 'Get-NetTCPConnection' shell=powershell

New in version 2018.3.0.

Warning

This passes the cmd argument directly to PowerShell without any further
processing! Be absolutely sure that you have properly sanitized the
command passed to this function and do not use untrusted inputs.

In addition to the normal cmd.run parameters, this command offers the
depth parameter to change the Windows default depth for the
ConvertTo-JSON powershell command. The Windows default is 2. If you need
more depth, set that here.

Note

For some commands, setting the depth to a value greater than 4 greatly
increases the time it takes for the command to return and in many cases
returns useless data.

	Parameters:

	
	cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The powershell command to run.

	cwd (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The directory from which to execute the command. Defaults
to the home directory of the user specified by runas (or the user
under which Salt is running if runas is not specified).

	stdin (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string of standard input can be specified for the
command to be run using the stdin parameter. This can be useful in
cases where sensitive information must be read from standard input.

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specify an alternate user to run the command. The default
behavior is to run as the user under which Salt is running. If running
on a Windows minion you must also use the password argument, and
the target user account must be in the Administrators group.

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Windows only. Required when specifying runas. This
parameter will be ignored on non-Windows platforms.

	shell (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specify an alternate shell. Defaults to "powershell". Can
also use "pwsh" for powershell core if present on the system

	python_shell (bool [https://docs.python.org/3/library/functions.html#bool]) -- If False, let python handle the positional
arguments. Set to True to use shell features, such as pipes or
redirection.

	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Environment variables to be set prior to execution.

Note

When passing environment variables on the CLI, they should be
passed as the string representation of a dictionary.

salt myminion cmd.powershell_all 'some command' env='{"FOO": "bar"}'

Note

When using environment variables on Window's, case-sensitivity
matters, i.e. Window's uses Path as opposed to PATH for other
systems.

	clean_env (bool [https://docs.python.org/3/library/functions.html#bool]) -- Attempt to clean out all other shell environment
variables and set only those provided in the 'env' argument to this
function.

	template (str [https://docs.python.org/3/library/stdtypes.html#str]) -- If this setting is applied then the named templating
engine will be used to render the downloaded file. Currently jinja,
mako, and wempy are supported.

	rstrip (bool [https://docs.python.org/3/library/functions.html#bool]) -- Strip all whitespace off the end of output before it is
returned.

	umask (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The umask (in octal) to use when running the command.

	output_encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Control the encoding used to decode the
command's output.

Note

This should not need to be used in most cases. By default, Salt
will try to use the encoding detected from the system locale, and
will fall back to UTF-8 if this fails. This should only need to be
used in cases where the output of the command is encoded in
something other than the system locale or UTF-8.

To see the encoding Salt has detected from the system locale, check
the locale line in the output of test.versions_report.

New in version 2018.3.0.

	output_loglevel (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Control the loglevel at which the output from
the command is logged to the minion log.

Note

The command being run will still be logged at the debug
loglevel regardless, unless quiet is used for this value.

	ignore_retcode (bool [https://docs.python.org/3/library/functions.html#bool]) -- If the exit code of the command is nonzero,
this is treated as an error condition, and the output from the command
will be logged to the minion log. However, there are some cases where
programs use the return code for signaling and a nonzero exit code
doesn't necessarily mean failure. Pass this argument as True to
skip logging the output if the command has a nonzero exit code.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) -- A timeout in seconds for the executed process to
return.

	use_vt (bool [https://docs.python.org/3/library/functions.html#bool]) -- Use VT utils (saltstack) to stream the command output
more interactively to the console and the logs. This is experimental.

	reset_system_locale (bool [https://docs.python.org/3/library/functions.html#bool]) -- Resets the system locale

	ignore_retcode -- If the exit code of the command is nonzero,
this is treated as an error condition, and the output from the command
will be logged to the minion log. However, there are some cases where
programs use the return code for signaling and a nonzero exit code
doesn't necessarily mean failure. Pass this argument as True to
skip logging the output if the command has a nonzero exit code.

	saltenv (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The salt environment to use. Default is 'base'

	depth (int [https://docs.python.org/3/library/functions.html#int]) -- The number of levels of contained objects to be included.
Default is 2. Values greater than 4 seem to greatly increase the time
it takes for the command to complete for some commands. eg: dir

	encode_cmd (bool [https://docs.python.org/3/library/functions.html#bool]) -- Encode the command before executing. Use in cases
where characters may be dropped or incorrectly converted when executed.
Default is False.

	force_list (bool [https://docs.python.org/3/library/functions.html#bool]) -- The purpose of this parameter is described in the
preamble of this function's documentation. Default value is False.

	success_retcodes (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	non-zero return codes that should be considered a success. If the
return code returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 2019.2.0.

	success_stdout (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	strings that when found in standard out should be considered a success.
If stdout returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 3004.

	success_stderr (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	strings that when found in standard error should be considered a success.
If stderr returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 3004.

	stdin_raw_newlines (bool [https://docs.python.org/3/library/functions.html#bool]) --
	False
	If True, Salt will not automatically convert the characters \n
present in the stdin value to newlines.

New in version 2019.2.0.

	Returns:

	A dictionary with the following entries:

	result
	For a complete description of this field, please refer to this
function's preamble. This key will not be added to the dictionary
when force_list is False and Powershell's output is the empty
string.

	stderr
	What the PowerShell invocation wrote to stderr.

	pid
	The process id of the PowerShell invocation

	retcode
	This is the exit code of the invocation of PowerShell.
If the final execution status (in PowerShell) of our command
(with | ConvertTo-JSON appended) is False this should be non-0.
Likewise if PowerShell exited with $LASTEXITCODE set to some
non-0 value, then retcode will end up with this value.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' cmd.powershell_all "$PSVersionTable.CLRVersion"

CLI Example:

salt '*' cmd.powershell_all "dir mydirectory" force_list=True

	
salt.modules.cmdmod.retcode(cmd, cwd=None, stdin=None, runas=None, group=None, shell='/bin/sh', python_shell=None, env=None, clean_env=False, template=None, umask=None, output_encoding=None, output_loglevel='debug', log_callback=None, timeout=None, reset_system_locale=True, ignore_retcode=False, saltenv=None, use_vt=False, password=None, success_retcodes=None, success_stdout=None, success_stderr=None, **kwargs)

	Execute a shell command and return the command's return code.

	Parameters:

	
	cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The command to run. ex: ls -lart /home

	cwd (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The directory from which to execute the command. Defaults
to the home directory of the user specified by runas (or the user
under which Salt is running if runas is not specified).

	stdin (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string of standard input can be specified for the
command to be run using the stdin parameter. This can be useful in
cases where sensitive information must be read from standard input.

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specify an alternate user to run the command. The default
behavior is to run as the user under which Salt is running. If running
on a Windows minion you must also use the password argument, and
the target user account must be in the Administrators group.

Warning

For versions 2018.3.3 and above on macosx while using runas,
to pass special characters to the command you need to escape
the characters on the shell.

Example:

cmd.retcode 'echo '\''h=\"baz\"'\''' runas=macuser

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Windows only. Required when specifying runas. This
parameter will be ignored on non-Windows platforms.

New in version 2016.3.0.

	group (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Group to run command as. Not currently supported
on Windows.

	shell (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specify an alternate shell. Defaults to the system's
default shell.

	python_shell (bool [https://docs.python.org/3/library/functions.html#bool]) -- If False, let python handle the positional
arguments. Set to True to use shell features, such as pipes or
redirection.

	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Environment variables to be set prior to execution.

Note

When passing environment variables on the CLI, they should be
passed as the string representation of a dictionary.

salt myminion cmd.retcode 'some command' env='{"FOO": "bar"}'

Note

When using environment variables on Window's, case-sensitivity
matters, i.e. Window's uses Path as opposed to PATH for other
systems.

	clean_env (bool [https://docs.python.org/3/library/functions.html#bool]) -- Attempt to clean out all other shell environment
variables and set only those provided in the 'env' argument to this
function.

	template (str [https://docs.python.org/3/library/stdtypes.html#str]) -- If this setting is applied then the named templating
engine will be used to render the downloaded file. Currently jinja,
mako, and wempy are supported.

	rstrip (bool [https://docs.python.org/3/library/functions.html#bool]) -- Strip all whitespace off the end of output before it is
returned.

	umask (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The umask (in octal) to use when running the command.

	output_encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Control the encoding used to decode the
command's output.

Note

This should not need to be used in most cases. By default, Salt
will try to use the encoding detected from the system locale, and
will fall back to UTF-8 if this fails. This should only need to be
used in cases where the output of the command is encoded in
something other than the system locale or UTF-8.

To see the encoding Salt has detected from the system locale, check
the locale line in the output of test.versions_report.

New in version 2018.3.0.

	output_loglevel (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Control the loglevel at which the output from
the command is logged to the minion log.

Note

The command being run will still be logged at the debug
loglevel regardless, unless quiet is used for this value.

	ignore_retcode (bool [https://docs.python.org/3/library/functions.html#bool]) -- If the exit code of the command is nonzero,
this is treated as an error condition, and the output from the command
will be logged to the minion log. However, there are some cases where
programs use the return code for signaling and a nonzero exit code
doesn't necessarily mean failure. Pass this argument as True to
skip logging the output if the command has a nonzero exit code.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) -- A timeout in seconds for the executed process to return.

	use_vt (bool [https://docs.python.org/3/library/functions.html#bool]) -- Use VT utils (saltstack) to stream the command output
more interactively to the console and the logs. This is experimental.

	success_retcodes (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	non-zero return codes that should be considered a success. If the
return code returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 2019.2.0.

	success_stdout (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	strings that when found in standard out should be considered a success.
If stdout returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 3004.

	success_stderr (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	strings that when found in standard error should be considered a success.
If stderr returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 3004.

	stdin_raw_newlines (bool [https://docs.python.org/3/library/functions.html#bool]) --
	False
	If True, Salt will not automatically convert the characters \n
present in the stdin value to newlines.

New in version 2019.2.0.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	Return type:

	None

	Returns:

	Return Code as an int or None if there was an exception.

CLI Example:

salt '*' cmd.retcode "file /bin/bash"

The template arg can be set to 'jinja' or another supported template
engine to render the command arguments before execution.
For example:

salt '*' cmd.retcode template=jinja "file {{grains.pythonpath[0]}}/python"

A string of standard input can be specified for the command to be run using
the stdin parameter. This can be useful in cases where sensitive
information must be read from standard input.

salt '*' cmd.retcode "grep f" stdin='one\ntwo\nthree\nfour\nfive\n'

	
salt.modules.cmdmod.run(cmd, cwd=None, stdin=None, runas=None, group=None, shell='/bin/sh', python_shell=None, env=None, clean_env=False, template=None, rstrip=True, umask=None, output_encoding=None, output_loglevel='debug', log_callback=None, hide_output=False, timeout=None, reset_system_locale=True, ignore_retcode=False, saltenv=None, use_vt=False, redirect_stderr=True, bg=False, password=None, encoded_cmd=False, raise_err=False, prepend_path=None, success_retcodes=None, success_stdout=None, success_stderr=None, **kwargs)

	Execute the passed command and return the output as a string

	Parameters:

	
	cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The command to run. ex: ls -lart /home

	cwd (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The directory from which to execute the command. Defaults
to the home directory of the user specified by runas (or the user
under which Salt is running if runas is not specified).

	stdin (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string of standard input can be specified for the
command to be run using the stdin parameter. This can be useful in
cases where sensitive information must be read from standard input.

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specify an alternate user to run the command. The default
behavior is to run as the user under which Salt is running.

Warning

For versions 2018.3.3 and above on macosx while using runas,
on linux while using run, to pass special characters to the
command you need to escape the characters on the shell.

Example:

cmd.run 'echo '\''h=\"baz\"'\''' runas=macuser

	group (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Group to run command as. Not currently supported
on Windows.

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Windows only. Required when specifying runas. This
parameter will be ignored on non-Windows platforms.

New in version 2016.3.0.

	shell (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specify an alternate shell. Defaults to the system's
default shell.

	python_shell (bool [https://docs.python.org/3/library/functions.html#bool]) -- If False, let python handle the positional
arguments. Set to True to use shell features, such as pipes or
redirection.

	bg (bool [https://docs.python.org/3/library/functions.html#bool]) -- If True, run command in background and do not await or
deliver its results

New in version 2016.3.0.

	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Environment variables to be set prior to execution.

Note

When passing environment variables on the CLI, they should be
passed as the string representation of a dictionary.

salt myminion cmd.run 'some command' env='{"FOO": "bar"}'

Note

When using environment variables on Window's, case-sensitivity
matters, i.e. Window's uses Path as opposed to PATH for other
systems.

	clean_env (bool [https://docs.python.org/3/library/functions.html#bool]) -- Attempt to clean out all other shell environment
variables and set only those provided in the 'env' argument to this
function.

	prepend_path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- $PATH segment to prepend (trailing ':' not
necessary) to $PATH

New in version 2018.3.0.

	template (str [https://docs.python.org/3/library/stdtypes.html#str]) -- If this setting is applied then the named templating
engine will be used to render the downloaded file. Currently jinja,
mako, and wempy are supported.

	rstrip (bool [https://docs.python.org/3/library/functions.html#bool]) -- Strip all whitespace off the end of output before it is
returned.

	umask (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The umask (in octal) to use when running the command.

	output_encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Control the encoding used to decode the
command's output.

Note

This should not need to be used in most cases. By default, Salt
will try to use the encoding detected from the system locale, and
will fall back to UTF-8 if this fails. This should only need to be
used in cases where the output of the command is encoded in
something other than the system locale or UTF-8.

To see the encoding Salt has detected from the system locale, check
the locale line in the output of test.versions_report.

New in version 2018.3.0.

	output_loglevel (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Control the loglevel at which the output from
the command is logged to the minion log.

Note

The command being run will still be logged at the debug
loglevel regardless, unless quiet is used for this value.

	ignore_retcode (bool [https://docs.python.org/3/library/functions.html#bool]) -- If the exit code of the command is nonzero,
this is treated as an error condition, and the output from the command
will be logged to the minion log. However, there are some cases where
programs use the return code for signaling and a nonzero exit code
doesn't necessarily mean failure. Pass this argument as True to
skip logging the output if the command has a nonzero exit code.

	hide_output (bool [https://docs.python.org/3/library/functions.html#bool]) -- If True, suppress stdout and stderr in the
return data.

Note

This is separate from output_loglevel, which only handles how
Salt logs to the minion log.

New in version 2018.3.0.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) -- A timeout in seconds for the executed process to return.

	use_vt (bool [https://docs.python.org/3/library/functions.html#bool]) -- Use VT utils (saltstack) to stream the command output
more interactively to the console and the logs. This is experimental.

	redirect_stderr (bool [https://docs.python.org/3/library/functions.html#bool]) -- If set to True, then stderr will be
redirected to stdout. This is helpful for cases where obtaining both
the retcode and output is desired. Default is True

New in version 3006.9.

	encoded_cmd (bool [https://docs.python.org/3/library/functions.html#bool]) -- Specify if the supplied command is encoded.
Only applies to shell 'powershell' and 'pwsh'.

New in version 2018.3.0.

Older versions of powershell seem to return raw xml data in the return.
To avoid raw xml data in the return, prepend your command with the
following before encoding:

$ProgressPreference='SilentlyContinue'; <your command>

The following powershell code block will encode the Write-Output
command so that it will not have the raw xml data in the return:

target string
$Command = '$ProgressPreference="SilentlyContinue"; Write-Output "hello"'

Convert to Base64 encoded string
$Encoded = [convert]::ToBase64String([System.Text.encoding]::Unicode.GetBytes($command))

Write-Output $Encoded

	raise_err (bool [https://docs.python.org/3/library/functions.html#bool]) -- If True and the command has a nonzero exit code,
a CommandExecutionError exception will be raised.

Warning

This function does not process commands through a shell
unless the python_shell flag is set to True. This means that any
shell-specific functionality such as 'echo' or the use of pipes,
redirection or &&, should either be migrated to cmd.shell or
have the python_shell=True flag set here.

The use of python_shell=True means that the shell will accept _any_ input
including potentially malicious commands such as 'good_command;rm -rf /'.
Be absolutely certain that you have sanitized your input prior to using
python_shell=True

	Parameters:

	
	success_retcodes (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	non-zero return codes that should be considered a success. If the
return code returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 2019.2.0.

	success_stdout (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	strings that when found in standard out should be considered a success.
If stdout returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 3004.

	success_stderr (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	strings that when found in standard error should be considered a success.
If stderr returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 3004.

	stdin_raw_newlines (bool [https://docs.python.org/3/library/functions.html#bool]) --
	False
	If True, Salt will not automatically convert the characters \\n
present in the stdin value to newlines.

New in version 2019.2.0.

	windows_codepage (int [https://docs.python.org/3/library/functions.html#int]) --
	65001
	Only applies to Windows: the minion uses C:WindowsSystem32chcp.com to
verify or set the code page before the command cmd is executed.
Code page 65001 corresponds with UTF-8 and allows international localization of Windows.

New in version 3002.

CLI Example:

salt '*' cmd.run "ls -l | awk '/foo/{print \\$2}'"

The template arg can be set to 'jinja' or another supported template
engine to render the command arguments before execution.
For example:

salt '*' cmd.run template=jinja "ls -l /tmp/{{grains.id}} | awk '/foo/{print \\$2}'"

Specify an alternate shell with the shell parameter:

salt '*' cmd.run "Get-ChildItem C:\\ " shell='powershell'

A string of standard input can be specified for the command to be run using
the stdin parameter. This can be useful in cases where sensitive
information must be read from standard input.

salt '*' cmd.run "grep f" stdin='one\\ntwo\\nthree\\nfour\\nfive\\n'

If an equal sign (=) appears in an argument to a Salt command it is
interpreted as a keyword argument in the format key=val. That
processing can be bypassed in order to pass an equal sign through to the
remote shell command by manually specifying the kwarg:

salt '*' cmd.run cmd='sed -e s/=/:/g'

	
salt.modules.cmdmod.run_all(cmd, cwd=None, stdin=None, runas=None, group=None, shell='/bin/sh', python_shell=None, env=None, clean_env=False, template=None, rstrip=True, umask=None, output_encoding=None, output_loglevel='debug', log_callback=None, hide_output=False, timeout=None, reset_system_locale=True, ignore_retcode=False, saltenv=None, use_vt=False, redirect_stderr=False, password=None, encoded_cmd=False, prepend_path=None, success_retcodes=None, success_stdout=None, success_stderr=None, **kwargs)

	Execute the passed command and return a dict of return data

	Parameters:

	
	cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The command to run. ex: ls -lart /home

	cwd (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The directory from which to execute the command. Defaults
to the home directory of the user specified by runas (or the user
under which Salt is running if runas is not specified).

	stdin (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string of standard input can be specified for the
command to be run using the stdin parameter. This can be useful in
cases where sensitive information must be read from standard input.

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specify an alternate user to run the command. The default
behavior is to run as the user under which Salt is running. If running
on a Windows minion you must also use the password argument, and
the target user account must be in the Administrators group.

Warning

For versions 2018.3.3 and above on macosx while using runas,
to pass special characters to the command you need to escape
the characters on the shell.

Example:

cmd.run_all 'echo '\''h=\"baz\"'\''' runas=macuser

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Windows only. Required when specifying runas. This
parameter will be ignored on non-Windows platforms.

New in version 2016.3.0.

	group (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Group to run command as. Not currently supported
on Windows.

	shell (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specify an alternate shell. Defaults to the system's
default shell.

	python_shell (bool [https://docs.python.org/3/library/functions.html#bool]) -- If False, let python handle the positional
arguments. Set to True to use shell features, such as pipes or
redirection.

	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Environment variables to be set prior to execution.

Note

When passing environment variables on the CLI, they should be
passed as the string representation of a dictionary.

salt myminion cmd.run_all 'some command' env='{"FOO": "bar"}'

Note

When using environment variables on Window's, case-sensitivity
matters, i.e. Window's uses Path as opposed to PATH for other
systems.

	clean_env (bool [https://docs.python.org/3/library/functions.html#bool]) -- Attempt to clean out all other shell environment
variables and set only those provided in the 'env' argument to this
function.

	prepend_path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- $PATH segment to prepend (trailing ':' not
necessary) to $PATH

New in version 2018.3.0.

	template (str [https://docs.python.org/3/library/stdtypes.html#str]) -- If this setting is applied then the named templating
engine will be used to render the downloaded file. Currently jinja,
mako, and wempy are supported.

	rstrip (bool [https://docs.python.org/3/library/functions.html#bool]) -- Strip all whitespace off the end of output before it is
returned.

	umask (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The umask (in octal) to use when running the command.

	output_encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Control the encoding used to decode the
command's output.

Note

This should not need to be used in most cases. By default, Salt
will try to use the encoding detected from the system locale, and
will fall back to UTF-8 if this fails. This should only need to be
used in cases where the output of the command is encoded in
something other than the system locale or UTF-8.

To see the encoding Salt has detected from the system locale, check
the locale line in the output of test.versions_report.

New in version 2018.3.0.

	output_loglevel (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Control the loglevel at which the output from
the command is logged to the minion log.

Note

The command being run will still be logged at the debug
loglevel regardless, unless quiet is used for this value.

	ignore_retcode (bool [https://docs.python.org/3/library/functions.html#bool]) -- If the exit code of the command is nonzero,
this is treated as an error condition, and the output from the command
will be logged to the minion log. However, there are some cases where
programs use the return code for signaling and a nonzero exit code
doesn't necessarily mean failure. Pass this argument as True to
skip logging the output if the command has a nonzero exit code.

	hide_output (bool [https://docs.python.org/3/library/functions.html#bool]) -- If True, suppress stdout and stderr in the
return data.

Note

This is separate from output_loglevel, which only handles how
Salt logs to the minion log.

New in version 2018.3.0.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) -- A timeout in seconds for the executed process to
return.

	use_vt (bool [https://docs.python.org/3/library/functions.html#bool]) -- Use VT utils (saltstack) to stream the command output
more interactively to the console and the logs. This is experimental.

	encoded_cmd (bool [https://docs.python.org/3/library/functions.html#bool]) -- Specify if the supplied command is encoded.
Only applies to shell 'powershell' and 'pwsh'.

New in version 2018.3.0.

Older versions of powershell seem to return raw xml data in the return.
To avoid raw xml data in the return, prepend your command with the
following before encoding:

$ProgressPreference='SilentlyContinue'; <your command>

The following powershell code block will encode the Write-Output
command so that it will not have the raw xml data in the return:

target string
$Command = '$ProgressPreference="SilentlyContinue"; Write-Output "hello"'

Convert to Base64 encoded string
$Encoded = [convert]::ToBase64String([System.Text.encoding]::Unicode.GetBytes($command))

Write-Output $Encoded

	redirect_stderr (bool [https://docs.python.org/3/library/functions.html#bool]) -- If set to True, then stderr will be
redirected to stdout. This is helpful for cases where obtaining both
the retcode and output is desired, but it is not desired to have the
output separated into both stdout and stderr.

New in version 2015.8.2.

	password -- Windows only. Required when specifying runas. This
parameter will be ignored on non-Windows platforms.

New in version 2016.3.0.

	bg (bool [https://docs.python.org/3/library/functions.html#bool]) -- If True, run command in background and do not await or
deliver its results

New in version 2016.3.6.

	success_retcodes (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	non-zero return codes that should be considered a success. If the
return code returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 2019.2.0.

	success_stdout (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	strings that when found in standard out should be considered a success.
If stdout returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 3004.

	success_stderr (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	strings that when found in standard error should be considered a success.
If stderr returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 3004.

	stdin_raw_newlines (bool [https://docs.python.org/3/library/functions.html#bool]) --
	False
	If True, Salt will not automatically convert the characters \n
present in the stdin value to newlines.

New in version 2019.2.0.

CLI Example:

salt '*' cmd.run_all "ls -l | awk '/foo/{print \$2}'"

The template arg can be set to 'jinja' or another supported template
engine to render the command arguments before execution.
For example:

salt '*' cmd.run_all template=jinja "ls -l /tmp/{{grains.id}} | awk '/foo/{print \$2}'"

A string of standard input can be specified for the command to be run using
the stdin parameter. This can be useful in cases where sensitive
information must be read from standard input.

salt '*' cmd.run_all "grep f" stdin='one\ntwo\nthree\nfour\nfive\n'

	
salt.modules.cmdmod.run_bg(cmd, cwd=None, runas=None, group=None, shell='/bin/sh', python_shell=None, env=None, clean_env=False, template=None, umask=None, timeout=None, output_encoding=None, output_loglevel='debug', log_callback=None, reset_system_locale=True, ignore_retcode=False, saltenv=None, password=None, prepend_path=None, success_retcodes=None, success_stdout=None, success_stderr=None, **kwargs)

	
New in version 2016.3.0.

Execute the passed command in the background and return its PID

Note

If the init system is systemd and the backgrounded task should run even
if the salt-minion process is restarted, prepend systemd-run
--scope to the command. This will reparent the process in its own
scope separate from salt-minion, and will not be affected by restarting
the minion service.

	Parameters:

	
	cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The command to run. ex: ls -lart /home

	cwd (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The directory from which to execute the command. Defaults
to the home directory of the user specified by runas (or the user
under which Salt is running if runas is not specified).

	group (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Group to run command as. Not currently supported
on Windows.

	shell (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Shell to execute under. Defaults to the system default
shell.

	output_encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Control the encoding used to decode the
command's output.

Note

This should not need to be used in most cases. By default, Salt
will try to use the encoding detected from the system locale, and
will fall back to UTF-8 if this fails. This should only need to be
used in cases where the output of the command is encoded in
something other than the system locale or UTF-8.

To see the encoding Salt has detected from the system locale, check
the locale line in the output of test.versions_report.

New in version 2018.3.0.

	output_loglevel (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Control the loglevel at which the output from
the command is logged to the minion log.

Note

The command being run will still be logged at the debug
loglevel regardless, unless quiet is used for this value.

	ignore_retcode (bool [https://docs.python.org/3/library/functions.html#bool]) -- If the exit code of the command is nonzero,
this is treated as an error condition, and the output from the command
will be logged to the minion log. However, there are some cases where
programs use the return code for signaling and a nonzero exit code
doesn't necessarily mean failure. Pass this argument as True to
skip logging the output if the command has a nonzero exit code.

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specify an alternate user to run the command. The default
behavior is to run as the user under which Salt is running. If running
on a Windows minion you must also use the password argument, and
the target user account must be in the Administrators group.

Warning

For versions 2018.3.3 and above on macosx while using runas,
to pass special characters to the command you need to escape
the characters on the shell.

Example:

cmd.run_bg 'echo '\''h=\"baz\"'\''' runas=macuser

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Windows only. Required when specifying runas. This
parameter will be ignored on non-Windows platforms.

New in version 2016.3.0.

	shell -- Specify an alternate shell. Defaults to the system's
default shell.

	python_shell (bool [https://docs.python.org/3/library/functions.html#bool]) -- If False, let python handle the positional
arguments. Set to True to use shell features, such as pipes or
redirection.

	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Environment variables to be set prior to execution.

Note

When passing environment variables on the CLI, they should be
passed as the string representation of a dictionary.

salt myminion cmd.run_bg 'some command' env='{"FOO": "bar"}'

Note

When using environment variables on Window's, case-sensitivity
matters, i.e. Window's uses Path as opposed to PATH for other
systems.

	clean_env (bool [https://docs.python.org/3/library/functions.html#bool]) -- Attempt to clean out all other shell environment
variables and set only those provided in the 'env' argument to this
function.

	prepend_path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- $PATH segment to prepend (trailing ':' not
necessary) to $PATH

New in version 2018.3.0.

	template (str [https://docs.python.org/3/library/stdtypes.html#str]) -- If this setting is applied then the named templating
engine will be used to render the downloaded file. Currently jinja,
mako, and wempy are supported.

	umask (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The umask (in octal) to use when running the command.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) -- A timeout in seconds for the executed process to return.

Warning

This function does not process commands through a shell unless the
python_shell argument is set to True. This means that any
shell-specific functionality such as 'echo' or the use of pipes,
redirection or &&, should either be migrated to cmd.shell or have the
python_shell=True flag set here.

The use of python_shell=True means that the shell will accept _any_
input including potentially malicious commands such as 'good_command;rm
-rf /'. Be absolutely certain that you have sanitized your input prior
to using python_shell=True.

	Parameters:

	
	success_retcodes (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	non-zero return codes that should be considered a success. If the
return code returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 2019.2.0.

	success_stdout (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	strings that when found in standard out should be considered a success.
If stdout returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 3004.

	success_stderr (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	strings that when found in standard error should be considered a success.
If stderr returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 3004.

	stdin_raw_newlines (bool [https://docs.python.org/3/library/functions.html#bool]) --
	False
	If True, Salt will not automatically convert the characters \\n
present in the stdin value to newlines.

New in version 2019.2.0.

CLI Example:

salt '*' cmd.run_bg "fstrim-all"

The template arg can be set to 'jinja' or another supported template
engine to render the command arguments before execution.
For example:

salt '*' cmd.run_bg template=jinja "ls -l /tmp/{{grains.id}} | awk '/foo/{print \\$2}'"

Specify an alternate shell with the shell parameter:

salt '*' cmd.run_bg "Get-ChildItem C:\\ " shell='powershell'

If an equal sign (=) appears in an argument to a Salt command it is
interpreted as a keyword argument in the format key=val. That
processing can be bypassed in order to pass an equal sign through to the
remote shell command by manually specifying the kwarg:

salt '*' cmd.run_bg cmd='ls -lR / | sed -e s/=/:/g > /tmp/dontwait'

	
salt.modules.cmdmod.run_chroot(root, cmd, cwd=None, stdin=None, runas=None, group=None, shell='/bin/sh', python_shell=True, binds=None, env=None, clean_env=False, template=None, rstrip=True, umask=None, output_encoding=None, output_loglevel='quiet', log_callback=None, hide_output=False, timeout=None, reset_system_locale=True, ignore_retcode=False, saltenv=None, use_vt=False, bg=False, success_retcodes=None, success_stdout=None, success_stderr=None, **kwargs)

	
New in version 2014.7.0.

This function runs cmd.run_all wrapped
within a chroot, with dev and proc mounted in the chroot

	Parameters:

	
	root (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Path to the root of the jail to use.

	stdin (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string of standard input can be specified for
the command to be run using the stdin parameter. This can
be useful in cases where sensitive information must be read
from standard input.:

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- User to run script as.

	group (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Group to run script as.

	shell (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Shell to execute under. Defaults to the system
default shell.

	cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The command to run. ex: ls -lart /home

	cwd (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The directory from which to execute the command. Defaults
to the home directory of the user specified by runas (or the user
under which Salt is running if runas is not specified).

	runas -- Specify an alternate user to run the command. The default
behavior is to run as the user under which Salt is running. If running
on a Windows minion you must also use the password argument, and
the target user account must be in the Administrators group.

	shell -- Specify an alternate shell. Defaults to the system's
default shell.

	python_shell (bool [https://docs.python.org/3/library/functions.html#bool]) -- If False, let python handle the positional
arguments. Set to True to use shell features, such as pipes or
redirection.

	binds (list [https://docs.python.org/3/library/stdtypes.html#list]) -- List of directories that will be exported inside
the chroot with the bind option.

New in version 3000.

	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Environment variables to be set prior to execution.

Note

When passing environment variables on the CLI, they should be
passed as the string representation of a dictionary.

salt myminion cmd.run_chroot 'some command' env='{"FOO": "bar"}'

Note

When using environment variables on Window's, case-sensitivity
matters, i.e. Window's uses Path as opposed to PATH for other
systems.

	clean_env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Attempt to clean out all other shell environment
variables and set only those provided in the 'env' argument to this
function.

	template (str [https://docs.python.org/3/library/stdtypes.html#str]) -- If this setting is applied then the named templating
engine will be used to render the downloaded file. Currently jinja,
mako, and wempy are supported.

	rstrip (bool [https://docs.python.org/3/library/functions.html#bool]) -- Strip all whitespace off the end of output
before it is returned.

	umask (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The umask (in octal) to use when running the
command.

	output_encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Control the encoding used to decode the
command's output.

Note

This should not need to be used in most cases. By default, Salt
will try to use the encoding detected from the system locale, and
will fall back to UTF-8 if this fails. This should only need to be
used in cases where the output of the command is encoded in
something other than the system locale or UTF-8.

To see the encoding Salt has detected from the system locale, check
the locale line in the output of test.versions_report.

New in version 2018.3.0.

	output_loglevel (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Control the loglevel at which the output from
the command is logged to the minion log.

Note

The command being run will still be logged at the debug
loglevel regardless, unless quiet is used for this value.

	ignore_retcode (bool [https://docs.python.org/3/library/functions.html#bool]) -- If the exit code of the command is nonzero,
this is treated as an error condition, and the output from the command
will be logged to the minion log. However, there are some cases where
programs use the return code for signaling and a nonzero exit code
doesn't necessarily mean failure. Pass this argument as True to
skip logging the output if the command has a nonzero exit code.

	hide_output (bool [https://docs.python.org/3/library/functions.html#bool]) -- If True, suppress stdout and stderr in the
return data.

Note

This is separate from output_loglevel, which only handles how
Salt logs to the minion log.

New in version 2018.3.0.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) -- A timeout in seconds for the executed process to return.

	use_vt (bool [https://docs.python.org/3/library/functions.html#bool]) -- Use VT utils (saltstack) to stream the command output more
interactively to the console and the logs. This is experimental.

	success_retcodes --
	This parameter will allow a list of
	non-zero return codes that should be considered a success. If the
return code returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 2019.2.0.

	success_stdout (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	strings that when found in standard out should be considered a success.
If stdout returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 3004.

	success_stderr (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	strings that when found in standard error should be considered a success.
If stderr returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 3004.

	Parar str stdin:

	A string of standard input can be specified for the
command to be run using the stdin parameter. This can be useful in
cases where sensitive information must be read from standard input.

CLI Example:

salt '*' cmd.run_chroot /var/lib/lxc/container_name/rootfs 'sh /tmp/bootstrap.sh'

	
salt.modules.cmdmod.run_stderr(cmd, cwd=None, stdin=None, runas=None, group=None, shell='/bin/sh', python_shell=None, env=None, clean_env=False, template=None, rstrip=True, umask=None, output_encoding=None, output_loglevel='debug', log_callback=None, hide_output=False, timeout=None, reset_system_locale=True, ignore_retcode=False, saltenv=None, use_vt=False, password=None, prepend_path=None, success_retcodes=None, success_stdout=None, success_stderr=None, **kwargs)

	Execute a command and only return the standard error

	Parameters:

	
	cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The command to run. ex: ls -lart /home

	cwd (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The directory from which to execute the command. Defaults
to the home directory of the user specified by runas (or the user
under which Salt is running if runas is not specified).

	stdin (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string of standard input can be specified for the
command to be run using the stdin parameter. This can be useful in
cases where sensitive information must be read from standard input.

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specify an alternate user to run the command. The default
behavior is to run as the user under which Salt is running. If running
on a Windows minion you must also use the password argument, and
the target user account must be in the Administrators group.

Warning

For versions 2018.3.3 and above on macosx while using runas,
to pass special characters to the command you need to escape
the characters on the shell.

Example:

cmd.run_stderr 'echo '\''h=\"baz\"'\''' runas=macuser

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Windows only. Required when specifying runas. This
parameter will be ignored on non-Windows platforms.

New in version 2016.3.0.

	group (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Group to run command as. Not currently supported
on Windows.

	shell (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specify an alternate shell. Defaults to the system's
default shell.

	python_shell (bool [https://docs.python.org/3/library/functions.html#bool]) -- If False, let python handle the positional
arguments. Set to True to use shell features, such as pipes or
redirection.

	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Environment variables to be set prior to execution.

Note

When passing environment variables on the CLI, they should be
passed as the string representation of a dictionary.

salt myminion cmd.run_stderr 'some command' env='{"FOO": "bar"}'

Note

When using environment variables on Window's, case-sensitivity
matters, i.e. Window's uses Path as opposed to PATH for other
systems.

	clean_env (bool [https://docs.python.org/3/library/functions.html#bool]) -- Attempt to clean out all other shell environment
variables and set only those provided in the 'env' argument to this
function.

	prepend_path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- $PATH segment to prepend (trailing ':' not
necessary) to $PATH

New in version 2018.3.0.

	template (str [https://docs.python.org/3/library/stdtypes.html#str]) -- If this setting is applied then the named templating
engine will be used to render the downloaded file. Currently jinja,
mako, and wempy are supported.

	rstrip (bool [https://docs.python.org/3/library/functions.html#bool]) -- Strip all whitespace off the end of output before it is
returned.

	umask (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The umask (in octal) to use when running the command.

	output_encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Control the encoding used to decode the
command's output.

Note

This should not need to be used in most cases. By default, Salt
will try to use the encoding detected from the system locale, and
will fall back to UTF-8 if this fails. This should only need to be
used in cases where the output of the command is encoded in
something other than the system locale or UTF-8.

To see the encoding Salt has detected from the system locale, check
the locale line in the output of test.versions_report.

New in version 2018.3.0.

	output_loglevel (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Control the loglevel at which the output from
the command is logged to the minion log.

Note

The command being run will still be logged at the debug
loglevel regardless, unless quiet is used for this value.

	ignore_retcode (bool [https://docs.python.org/3/library/functions.html#bool]) -- If the exit code of the command is nonzero,
this is treated as an error condition, and the output from the command
will be logged to the minion log. However, there are some cases where
programs use the return code for signaling and a nonzero exit code
doesn't necessarily mean failure. Pass this argument as True to
skip logging the output if the command has a nonzero exit code.

	hide_output (bool [https://docs.python.org/3/library/functions.html#bool]) -- If True, suppress stdout and stderr in the
return data.

Note

This is separate from output_loglevel, which only handles how
Salt logs to the minion log.

New in version 2018.3.0.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) -- A timeout in seconds for the executed process to
return.

	use_vt (bool [https://docs.python.org/3/library/functions.html#bool]) -- Use VT utils (saltstack) to stream the command output
more interactively to the console and the logs. This is experimental.

	success_retcodes (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	non-zero return codes that should be considered a success. If the
return code returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 2019.2.0.

	success_stdout (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	strings that when found in standard out should be considered a success.
If stdout returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 3004.

	success_stderr (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	strings that when found in standard error should be considered a success.
If stderr returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 3004.

	stdin_raw_newlines (bool [https://docs.python.org/3/library/functions.html#bool]) --
	False
	If True, Salt will not automatically convert the characters \n
present in the stdin value to newlines.

New in version 2019.2.0.

CLI Example:

salt '*' cmd.run_stderr "ls -l | awk '/foo/{print \$2}'"

The template arg can be set to 'jinja' or another supported template
engine to render the command arguments before execution.
For example:

salt '*' cmd.run_stderr template=jinja "ls -l /tmp/{{grains.id}} | awk '/foo/{print \$2}'"

A string of standard input can be specified for the command to be run using
the stdin parameter. This can be useful in cases where sensitive
information must be read from standard input.

salt '*' cmd.run_stderr "grep f" stdin='one\ntwo\nthree\nfour\nfive\n'

	
salt.modules.cmdmod.run_stdout(cmd, cwd=None, stdin=None, runas=None, group=None, shell='/bin/sh', python_shell=None, env=None, clean_env=False, template=None, rstrip=True, umask=None, output_encoding=None, output_loglevel='debug', log_callback=None, hide_output=False, timeout=None, reset_system_locale=True, ignore_retcode=False, saltenv=None, use_vt=False, password=None, prepend_path=None, success_retcodes=None, success_stdout=None, success_stderr=None, **kwargs)

	Execute a command, and only return the standard out

	Parameters:

	
	cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The command to run. ex: ls -lart /home

	cwd (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The directory from which to execute the command. Defaults
to the home directory of the user specified by runas (or the user
under which Salt is running if runas is not specified).

	stdin (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string of standard input can be specified for the
command to be run using the stdin parameter. This can be useful in
cases where sensitive information must be read from standard input.

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specify an alternate user to run the command. The default
behavior is to run as the user under which Salt is running. If running
on a Windows minion you must also use the password argument, and
the target user account must be in the Administrators group.

Warning

For versions 2018.3.3 and above on macosx while using runas,
to pass special characters to the command you need to escape
the characters on the shell.

Example:

cmd.run_stdout 'echo '\''h=\"baz\"'\''' runas=macuser

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Windows only. Required when specifying runas. This
parameter will be ignored on non-Windows platforms.

New in version 2016.3.0.

	group (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Group to run command as. Not currently supported
on Windows.

	shell (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specify an alternate shell. Defaults to the system's
default shell.

	python_shell (bool [https://docs.python.org/3/library/functions.html#bool]) -- If False, let python handle the positional
arguments. Set to True to use shell features, such as pipes or
redirection.

	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Environment variables to be set prior to execution.

Note

When passing environment variables on the CLI, they should be
passed as the string representation of a dictionary.

salt myminion cmd.run_stdout 'some command' env='{"FOO": "bar"}'

Note

When using environment variables on Window's, case-sensitivity
matters, i.e. Window's uses Path as opposed to PATH for other
systems.

	clean_env (bool [https://docs.python.org/3/library/functions.html#bool]) -- Attempt to clean out all other shell environment
variables and set only those provided in the 'env' argument to this
function.

	prepend_path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- $PATH segment to prepend (trailing ':' not necessary)
to $PATH

New in version 2018.3.0.

	template (str [https://docs.python.org/3/library/stdtypes.html#str]) -- If this setting is applied then the named templating
engine will be used to render the downloaded file. Currently jinja,
mako, and wempy are supported.

	rstrip (bool [https://docs.python.org/3/library/functions.html#bool]) -- Strip all whitespace off the end of output before it is
returned.

	umask (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The umask (in octal) to use when running the command.

	output_encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Control the encoding used to decode the
command's output.

Note

This should not need to be used in most cases. By default, Salt
will try to use the encoding detected from the system locale, and
will fall back to UTF-8 if this fails. This should only need to be
used in cases where the output of the command is encoded in
something other than the system locale or UTF-8.

To see the encoding Salt has detected from the system locale, check
the locale line in the output of test.versions_report.

New in version 2018.3.0.

	output_loglevel (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Control the loglevel at which the output from
the command is logged to the minion log.

Note

The command being run will still be logged at the debug
loglevel regardless, unless quiet is used for this value.

	ignore_retcode (bool [https://docs.python.org/3/library/functions.html#bool]) -- If the exit code of the command is nonzero,
this is treated as an error condition, and the output from the command
will be logged to the minion log. However, there are some cases where
programs use the return code for signaling and a nonzero exit code
doesn't necessarily mean failure. Pass this argument as True to
skip logging the output if the command has a nonzero exit code.

	hide_output (bool [https://docs.python.org/3/library/functions.html#bool]) -- If True, suppress stdout and stderr in the
return data.

Note

This is separate from output_loglevel, which only handles how
Salt logs to the minion log.

New in version 2018.3.0.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) -- A timeout in seconds for the executed process to
return.

	use_vt (bool [https://docs.python.org/3/library/functions.html#bool]) -- Use VT utils (saltstack) to stream the command output
more interactively to the console and the logs. This is experimental.

	success_retcodes (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	non-zero return codes that should be considered a success. If the
return code returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 2019.2.0.

	success_stdout (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	strings that when found in standard out should be considered a success.
If stdout returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 3004.

	success_stderr (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	strings that when found in standard error should be considered a success.
If stderr returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 3004.

	stdin_raw_newlines (bool [https://docs.python.org/3/library/functions.html#bool]) --
	False
	If True, Salt will not automatically convert the characters \n
present in the stdin value to newlines.

New in version 2019.2.0.

CLI Example:

salt '*' cmd.run_stdout "ls -l | awk '/foo/{print \$2}'"

The template arg can be set to 'jinja' or another supported template
engine to render the command arguments before execution.
For example:

salt '*' cmd.run_stdout template=jinja "ls -l /tmp/{{grains.id}} | awk '/foo/{print \$2}'"

A string of standard input can be specified for the command to be run using
the stdin parameter. This can be useful in cases where sensitive
information must be read from standard input.

salt '*' cmd.run_stdout "grep f" stdin='one\ntwo\nthree\nfour\nfive\n'

	
salt.modules.cmdmod.script(source, args=None, cwd=None, stdin=None, runas=None, group=None, shell='/bin/sh', python_shell=None, env=None, template=None, umask=None, output_encoding=None, output_loglevel='debug', log_callback=None, hide_output=False, timeout=None, reset_system_locale=True, saltenv=None, use_vt=False, bg=False, password=None, success_retcodes=None, success_stdout=None, success_stderr=None, **kwargs)

	Download a script from a remote location and execute the script locally.
The script can be located on the salt master file server or on an HTTP/FTP
server.

The script will be executed directly, so it can be written in any available
programming language.

	Parameters:

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The location of the script to download. If the file is
located on the master in the directory named spam, and is called eggs,
the source string is salt://spam/eggs

	args (str [https://docs.python.org/3/library/stdtypes.html#str]) -- String of command line args to pass to the script. Only
used if no args are specified as part of the name argument. To pass a
string containing spaces in YAML, you will need to doubly-quote it:

salt myminion cmd.script salt://foo.sh "arg1 'arg two' arg3"

	cwd (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The directory from which to execute the command. Defaults
to the directory returned from Python's tempfile.mkstemp.

	stdin (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string of standard input can be specified for the
command to be run using the stdin parameter. This can be useful in
cases where sensitive information must be read from standard input.

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specify an alternate user to run the command. The default
behavior is to run as the user under which Salt is running. If running
on a Windows minion you must also use the password argument, and
the target user account must be in the Administrators group.

Note

For Window's users, specifically Server users, it may be necessary
to specify your runas user using the User Logon Name instead of the
legacy logon name. Traditionally, logons would be in the following
format.

Domain/user

In the event this causes issues when executing scripts, use the UPN
format which looks like the following.

user@domain.local

More information <https://github.com/saltstack/salt/issues/55080>

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Windows only. Required when specifying runas. This
parameter will be ignored on non-Windows platforms.

New in version 2016.3.0.

	group (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Group to run script as. Not currently supported
on Windows.

	shell (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specify an alternate shell. Defaults to the system's
default shell.

	python_shell (bool [https://docs.python.org/3/library/functions.html#bool]) -- If False, let python handle the positional
arguments. Set to True to use shell features, such as pipes or
redirection.

	bg (bool [https://docs.python.org/3/library/functions.html#bool]) -- If True, run script in background and do not await or
deliver its results

	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Environment variables to be set prior to execution.

Note

When passing environment variables on the CLI, they should be
passed as the string representation of a dictionary.

salt myminion cmd.script 'some command' env='{"FOO": "bar"}'

Note

When using environment variables on Window's, case-sensitivity
matters, i.e. Window's uses Path as opposed to PATH for other
systems.

	template (str [https://docs.python.org/3/library/stdtypes.html#str]) -- If this setting is applied then the named templating
engine will be used to render the downloaded file. Currently jinja,
mako, and wempy are supported.

	umask (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The umask (in octal) to use when running the command.

	output_encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Control the encoding used to decode the
command's output.

Note

This should not need to be used in most cases. By default, Salt
will try to use the encoding detected from the system locale, and
will fall back to UTF-8 if this fails. This should only need to be
used in cases where the output of the command is encoded in
something other than the system locale or UTF-8.

To see the encoding Salt has detected from the system locale, check
the locale line in the output of test.versions_report.

New in version 2018.3.0.

	output_loglevel (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Control the loglevel at which the output from
the command is logged to the minion log.

Note

The command being run will still be logged at the debug
loglevel regardless, unless quiet is used for this value.

	ignore_retcode (bool [https://docs.python.org/3/library/functions.html#bool]) -- If the exit code of the command is nonzero,
this is treated as an error condition, and the output from the command
will be logged to the minion log. However, there are some cases where
programs use the return code for signaling and a nonzero exit code
doesn't necessarily mean failure. Pass this argument as True to
skip logging the output if the command has a nonzero exit code.

	hide_output (bool [https://docs.python.org/3/library/functions.html#bool]) -- If True, suppress stdout and stderr in the
return data.

Note

This is separate from output_loglevel, which only handles how
Salt logs to the minion log.

New in version 2018.3.0.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) -- If the command has not terminated after timeout
seconds, send the subprocess sigterm, and if sigterm is ignored, follow
up with sigkill

	use_vt (bool [https://docs.python.org/3/library/functions.html#bool]) -- Use VT utils (saltstack) to stream the command output
more interactively to the console and the logs. This is experimental.

	success_retcodes (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	non-zero return codes that should be considered a success. If the
return code returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 2019.2.0.

	success_stdout (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	strings that when found in standard out should be considered a success.
If stdout returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 3004.

	success_stderr (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	strings that when found in standard error should be considered a success.
If stderr returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 3004.

	stdin_raw_newlines (bool [https://docs.python.org/3/library/functions.html#bool]) --
	False
	If True, Salt will not automatically convert the characters \n
present in the stdin value to newlines.

New in version 2019.2.0.

CLI Example:

salt '*' cmd.script salt://scripts/runme.sh
salt '*' cmd.script salt://scripts/runme.sh 'arg1 arg2 "arg 3"'
salt '*' cmd.script salt://scripts/windows_task.ps1 args=' -Input c:\tmp\infile.txt' shell='powershell'

salt '*' cmd.script salt://scripts/runme.sh stdin='one\ntwo\nthree\nfour\nfive\n'

	
salt.modules.cmdmod.script_retcode(source, args=None, cwd=None, stdin=None, runas=None, group=None, shell='/bin/sh', python_shell=None, env=None, template='jinja', umask=None, timeout=None, reset_system_locale=True, saltenv=None, output_encoding=None, output_loglevel='debug', log_callback=None, use_vt=False, password=None, success_retcodes=None, success_stdout=None, success_stderr=None, **kwargs)

	Download a script from a remote location and execute the script locally.
The script can be located on the salt master file server or on an HTTP/FTP
server.

The script will be executed directly, so it can be written in any available
programming language.

The script can also be formatted as a template, the default is jinja.

Only evaluate the script return code and do not block for terminal output

	Parameters:

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The location of the script to download. If the file is
located on the master in the directory named spam, and is called eggs,
the source string is salt://spam/eggs

	args (str [https://docs.python.org/3/library/stdtypes.html#str]) -- String of command line args to pass to the script. Only
used if no args are specified as part of the name argument. To pass a
string containing spaces in YAML, you will need to doubly-quote it:
"arg1 'arg two' arg3"

	cwd (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The directory from which to execute the command. Defaults
to the home directory of the user specified by runas (or the user
under which Salt is running if runas is not specified).

	stdin (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string of standard input can be specified for the
command to be run using the stdin parameter. This can be useful in
cases where sensitive information must be read from standard input.

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specify an alternate user to run the command. The default
behavior is to run as the user under which Salt is running. If running
on a Windows minion you must also use the password argument, and
the target user account must be in the Administrators group.

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Windows only. Required when specifying runas. This
parameter will be ignored on non-Windows platforms.

New in version 2016.3.0.

	group (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Group to run script as. Not currently supported
on Windows.

	shell (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specify an alternate shell. Defaults to the system's
default shell.

	python_shell (bool [https://docs.python.org/3/library/functions.html#bool]) -- If False, let python handle the positional
arguments. Set to True to use shell features, such as pipes or
redirection.

	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Environment variables to be set prior to execution.

Note

When passing environment variables on the CLI, they should be
passed as the string representation of a dictionary.

salt myminion cmd.script_retcode 'some command' env='{"FOO": "bar"}'

Note

When using environment variables on Window's, case-sensitivity
matters, i.e. Window's uses Path as opposed to PATH for other
systems.

	template (str [https://docs.python.org/3/library/stdtypes.html#str]) -- If this setting is applied then the named templating
engine will be used to render the downloaded file. Currently jinja,
mako, and wempy are supported.

	umask (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The umask (in octal) to use when running the command.

	output_encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Control the encoding used to decode the
command's output.

Note

This should not need to be used in most cases. By default, Salt
will try to use the encoding detected from the system locale, and
will fall back to UTF-8 if this fails. This should only need to be
used in cases where the output of the command is encoded in
something other than the system locale or UTF-8.

To see the encoding Salt has detected from the system locale, check
the locale line in the output of test.versions_report.

New in version 2018.3.0.

	output_loglevel (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Control the loglevel at which the output from
the command is logged to the minion log.

Note

The command being run will still be logged at the debug
loglevel regardless, unless quiet is used for this value.

	ignore_retcode (bool [https://docs.python.org/3/library/functions.html#bool]) -- If the exit code of the command is nonzero,
this is treated as an error condition, and the output from the command
will be logged to the minion log. However, there are some cases where
programs use the return code for signaling and a nonzero exit code
doesn't necessarily mean failure. Pass this argument as True to
skip logging the output if the command has a nonzero exit code.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) -- If the command has not terminated after timeout
seconds, send the subprocess sigterm, and if sigterm is ignored, follow
up with sigkill

	use_vt (bool [https://docs.python.org/3/library/functions.html#bool]) -- Use VT utils (saltstack) to stream the command output
more interactively to the console and the logs. This is experimental.

	success_retcodes (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	non-zero return codes that should be considered a success. If the
return code returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 2019.2.0.

	success_stdout (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	strings that when found in standard out should be considered a success.
If stdout returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 3004.

	success_stderr (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	strings that when found in standard error should be considered a success.
If stderr returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 3004.

	stdin_raw_newlines (bool [https://docs.python.org/3/library/functions.html#bool]) --
	False
	If True, Salt will not automatically convert the characters \n
present in the stdin value to newlines.

New in version 2019.2.0.

CLI Example:

salt '*' cmd.script_retcode salt://scripts/runme.sh
salt '*' cmd.script_retcode salt://scripts/runme.sh 'arg1 arg2 "arg 3"'
salt '*' cmd.script_retcode salt://scripts/windows_task.ps1 args=' -Input c:\tmp\infile.txt' shell='powershell'

A string of standard input can be specified for the command to be run using
the stdin parameter. This can be useful in cases where sensitive
information must be read from standard input.

salt '*' cmd.script_retcode salt://scripts/runme.sh stdin='one\ntwo\nthree\nfour\nfive\n'

	
salt.modules.cmdmod.shell(cmd, cwd=None, stdin=None, runas=None, group=None, shell='/bin/sh', env=None, clean_env=False, template=None, rstrip=True, umask=None, output_encoding=None, output_loglevel='debug', log_callback=None, hide_output=False, timeout=None, reset_system_locale=True, ignore_retcode=False, saltenv=None, use_vt=False, bg=False, password=None, prepend_path=None, success_retcodes=None, success_stdout=None, success_stderr=None, **kwargs)

	Execute the passed command and return the output as a string.

New in version 2015.5.0.

	Parameters:

	
	cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The command to run. ex: ls -lart /home

	cwd (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The directory from which to execute the command. Defaults
to the home directory of the user specified by runas (or the user
under which Salt is running if runas is not specified).

	stdin (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string of standard input can be specified for the
command to be run using the stdin parameter. This can be useful in
cases where sensitive information must be read from standard input.

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specify an alternate user to run the command. The default
behavior is to run as the user under which Salt is running. If running
on a Windows minion you must also use the password argument, and
the target user account must be in the Administrators group.

Warning

For versions 2018.3.3 and above on macosx while using runas,
to pass special characters to the command you need to escape
the characters on the shell.

Example:

cmd.shell 'echo '\''h=\"baz\"'\''' runas=macuser

	group (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Group to run command as. Not currently supported
on Windows.

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Windows only. Required when specifying runas. This
parameter will be ignored on non-Windows platforms.

New in version 2016.3.0.

	shell (int [https://docs.python.org/3/library/functions.html#int]) -- Shell to execute under. Defaults to the system default
shell.

	bg (bool [https://docs.python.org/3/library/functions.html#bool]) -- If True, run command in background and do not await or
deliver its results

	env (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Environment variables to be set prior to execution.

Note

When passing environment variables on the CLI, they should be
passed as the string representation of a dictionary.

salt myminion cmd.shell 'some command' env='{"FOO": "bar"}'

Note

When using environment variables on Window's, case-sensitivity
matters, i.e. Window's uses Path as opposed to PATH for other
systems.

	clean_env (bool [https://docs.python.org/3/library/functions.html#bool]) -- Attempt to clean out all other shell environment
variables and set only those provided in the 'env' argument to this
function.

	prepend_path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- $PATH segment to prepend (trailing ':' not necessary)
to $PATH

New in version 2018.3.0.

	template (str [https://docs.python.org/3/library/stdtypes.html#str]) -- If this setting is applied then the named templating
engine will be used to render the downloaded file. Currently jinja,
mako, and wempy are supported.

	rstrip (bool [https://docs.python.org/3/library/functions.html#bool]) -- Strip all whitespace off the end of output before it is
returned.

	umask (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The umask (in octal) to use when running the command.

	output_encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Control the encoding used to decode the
command's output.

Note

This should not need to be used in most cases. By default, Salt
will try to use the encoding detected from the system locale, and
will fall back to UTF-8 if this fails. This should only need to be
used in cases where the output of the command is encoded in
something other than the system locale or UTF-8.

To see the encoding Salt has detected from the system locale, check
the locale line in the output of test.versions_report.

New in version 2018.3.0.

	output_loglevel (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Control the loglevel at which the output from
the command is logged to the minion log.

Note

The command being run will still be logged at the debug
loglevel regardless, unless quiet is used for this value.

	ignore_retcode (bool [https://docs.python.org/3/library/functions.html#bool]) -- If the exit code of the command is nonzero,
this is treated as an error condition, and the output from the command
will be logged to the minion log. However, there are some cases where
programs use the return code for signaling and a nonzero exit code
doesn't necessarily mean failure. Pass this argument as True to
skip logging the output if the command has a nonzero exit code.

	hide_output (bool [https://docs.python.org/3/library/functions.html#bool]) -- If True, suppress stdout and stderr in the
return data.

Note

This is separate from output_loglevel, which only handles how
Salt logs to the minion log.

New in version 2018.3.0.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) -- A timeout in seconds for the executed process to
return.

	use_vt (bool [https://docs.python.org/3/library/functions.html#bool]) -- Use VT utils (saltstack) to stream the command output
more interactively to the console and the logs. This is experimental.

Warning

This passes the cmd argument directly to the shell without any further
processing! Be absolutely sure that you have properly sanitized the
command passed to this function and do not use untrusted inputs.

	Parameters:

	
	success_retcodes (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	non-zero return codes that should be considered a success. If the
return code returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 2019.2.0.

	success_stdout (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	strings that when found in standard out should be considered a success.
If stdout returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 3004.

	success_stderr (list [https://docs.python.org/3/library/stdtypes.html#list]) --
	This parameter will allow a list of
	strings that when found in standard error should be considered a success.
If stderr returned from the run matches any in the provided list,
the return code will be overridden with zero.

New in version 3004.

	stdin_raw_newlines (bool [https://docs.python.org/3/library/functions.html#bool]) --
	False
	If True, Salt will not automatically convert the characters \n
present in the stdin value to newlines.

New in version 2019.2.0.

CLI Example:

salt '*' cmd.shell "ls -l | awk '/foo/{print \$2}'"

The template arg can be set to 'jinja' or another supported template
engine to render the command arguments before execution.
For example:

salt '*' cmd.shell template=jinja "ls -l /tmp/{{grains.id}} | awk '/foo/{print \$2}'"

Specify an alternate shell with the shell parameter:

salt '*' cmd.shell "Get-ChildItem C:\ " shell='powershell'

A string of standard input can be specified for the command to be run using
the stdin parameter. This can be useful in cases where sensitive
information must be read from standard input.

salt '*' cmd.shell "grep f" stdin='one\ntwo\nthree\nfour\nfive\n'

If an equal sign (=) appears in an argument to a Salt command it is
interpreted as a keyword argument in the format key=val. That
processing can be bypassed in order to pass an equal sign through to the
remote shell command by manually specifying the kwarg:

salt '*' cmd.shell cmd='sed -e s/=/:/g'

	
salt.modules.cmdmod.shell_info(shell, list_modules=False)

	
New in version 2016.11.0.

Provides information about a shell or script languages which often use
#!. The values returned are dependent on the shell or scripting
languages all return the installed, path, version,
version_raw

	Parameters:

	
	shell (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name of the shell. Support shells/script languages include

	bash --

	cmd --

	perl --

	php --

	powershell --

	python --

	zsh (ruby and) --

	list_modules (bool [https://docs.python.org/3/library/functions.html#bool]) -- True to list modules available to the shell.

	modules. (Currently only lists powershell) --

	Returns:

	A dictionary of information about the shell

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

{'version': '<2 or 3 numeric components dot-separated>',
 'version_raw': '<full version string>',
 'path': '<full path to binary>',
 'installed': <True, False or None>,
 '<attribute>': '<attribute value>'}

Note

	installed is always returned, if None or False also
returns error and may also return stdout for diagnostics.

	version is for use in determine if a shell/script language has a
particular feature set, not for package management.

	The shell must be within the executable search path.

CLI Example:

salt '*' cmd.shell_info bash
salt '*' cmd.shell_info powershell

	Codeauthor:

	Damon Atkins <https://github.com/damon-atkins>

	
salt.modules.cmdmod.shells()

	Lists the valid shells on this system via the /etc/shells file

New in version 2015.5.0.

CLI Example:

salt '*' cmd.shells

	
salt.modules.cmdmod.tty(device, echo='')

	Echo a string to a specific tty

CLI Example:

salt '*' cmd.tty tty0 'This is a test'
salt '*' cmd.tty pts3 'This is a test'

	
salt.modules.cmdmod.which(cmd)

	Returns the path of an executable available on the minion, None otherwise

CLI Example:

salt '*' cmd.which cat

	
salt.modules.cmdmod.which_bin(cmds)

	Returns the first command found in a list of commands

CLI Example:

salt '*' cmd.which_bin '[pip2, pip, pip-python]'

salt.modules.composer

Use composer to install PHP dependencies for a directory

	
salt.modules.composer.did_composer_install(dir)

	Test to see if the vendor directory exists in this directory

	dir
	Directory location of the composer.json file

CLI Example:

salt '*' composer.did_composer_install /var/www/application

	
salt.modules.composer.install(directory, composer=None, php=None, runas=None, prefer_source=None, prefer_dist=None, no_scripts=None, no_plugins=None, optimize=None, no_dev=None, quiet=False, composer_home='/root', env=None)

	Install composer dependencies for a directory.

If composer has not been installed globally making it available in the
system PATH & making it executable, the composer and php parameters
will need to be set to the location of the executables.

	directory
	Directory location of the composer.json file.

	composer
	Location of the composer.phar file. If not set composer will
just execute "composer" as if it is installed globally.
(i.e. /path/to/composer.phar)

	php
	Location of the php executable to use with composer.
(i.e. /usr/bin/php)

	runas
	Which system user to run composer as.

	prefer_source
	--prefer-source option of composer.

	prefer_dist
	--prefer-dist option of composer.

	no_scripts
	--no-scripts option of composer.

	no_plugins
	--no-plugins option of composer.

	optimize
	--optimize-autoloader option of composer. Recommended for production.

	no_dev
	--no-dev option for composer. Recommended for production.

	quiet
	--quiet option for composer. Whether or not to return output from composer.

	composer_home
	$COMPOSER_HOME environment variable

	env
	A list of environment variables to be set prior to execution.

CLI Example:

salt '*' composer.install /var/www/application

salt '*' composer.install /var/www/application no_dev=True optimize=True

	
salt.modules.composer.selfupdate(composer=None, php=None, runas=None, quiet=False, composer_home='/root')

	Update composer itself.

If composer has not been installed globally making it available in the
system PATH & making it executable, the composer and php parameters
will need to be set to the location of the executables.

	composer
	Location of the composer.phar file. If not set composer will
just execute "composer" as if it is installed globally.
(i.e. /path/to/composer.phar)

	php
	Location of the php executable to use with composer.
(i.e. /usr/bin/php)

	runas
	Which system user to run composer as.

	quiet
	--quiet option for composer. Whether or not to return output from composer.

	composer_home
	$COMPOSER_HOME environment variable

CLI Example:

salt '*' composer.selfupdate

	
salt.modules.composer.update(directory, composer=None, php=None, runas=None, prefer_source=None, prefer_dist=None, no_scripts=None, no_plugins=None, optimize=None, no_dev=None, quiet=False, composer_home='/root', env=None)

	Update composer dependencies for a directory.

If composer install has not yet been run, this runs composer install
instead.

If composer has not been installed globally making it available in the
system PATH & making it executable, the composer and php parameters
will need to be set to the location of the executables.

	directory
	Directory location of the composer.json file.

	composer
	Location of the composer.phar file. If not set composer will
just execute "composer" as if it is installed globally.
(i.e. /path/to/composer.phar)

	php
	Location of the php executable to use with composer.
(i.e. /usr/bin/php)

	runas
	Which system user to run composer as.

	prefer_source
	--prefer-source option of composer.

	prefer_dist
	--prefer-dist option of composer.

	no_scripts
	--no-scripts option of composer.

	no_plugins
	--no-plugins option of composer.

	optimize
	--optimize-autoloader option of composer. Recommended for production.

	no_dev
	--no-dev option for composer. Recommended for production.

	quiet
	--quiet option for composer. Whether or not to return output from composer.

	composer_home
	$COMPOSER_HOME environment variable

	env
	A list of environment variables to be set prior to execution.

CLI Example:

salt '*' composer.update /var/www/application

salt '*' composer.update /var/www/application no_dev=True optimize=True

salt.modules.config

Return config information

	
salt.modules.config.backup_mode(backup='')

	Return the backup mode

CLI Example:

salt '*' config.backup_mode

	
salt.modules.config.dot_vals(value)

	Pass in a configuration value that should be preceded by the module name
and a dot, this will return a list of all read key/value pairs

CLI Example:

salt '*' config.dot_vals host

	
salt.modules.config.gather_bootstrap_script(bootstrap=None)

	Download the salt-bootstrap script, and return its location

	bootstrap
	URL of alternate bootstrap script

CLI Example:

salt '*' config.gather_bootstrap_script

	
salt.modules.config.get(key, default='', delimiter=':', merge=None, omit_opts=False, omit_pillar=False, omit_master=False, omit_grains=False)

	
New in version 0.14.0.

Attempt to retrieve the named value from the minion config file, pillar,
grains or the master config. If the named value is not available, return
the value specified by the default argument. If this argument is not
specified, default falls back to an empty string.

Values can also be retrieved from nested dictionaries. Assume the below
data structure:

{'pkg': {'apache': 'httpd'}}

To retrieve the value associated with the apache key, in the
sub-dictionary corresponding to the pkg key, the following command can
be used:

salt myminion config.get pkg:apache

The : (colon) is used to represent a nested dictionary level.

Changed in version 2015.5.0: The delimiter argument was added, to allow delimiters other than
: to be used.

This function traverses these data stores in this order, returning the
first match found:

	Minion configuration

	Minion's grains

	Minion's pillar data

	Master configuration (requires pillar_opts to be set to
True in Minion config file in order to work)

This means that if there is a value that is going to be the same for the
majority of minions, it can be configured in the Master config file, and
then overridden using the grains, pillar, or Minion config file.

Adding config options to the Master or Minion configuration file is easy:

my-config-option: value
cafe-menu:
 - egg and bacon
 - egg sausage and bacon
 - egg and spam
 - egg bacon and spam
 - egg bacon sausage and spam
 - spam bacon sausage and spam
 - spam egg spam spam bacon and spam
 - spam sausage spam spam bacon spam tomato and spam

Note

Minion configuration options built into Salt (like those defined
here) will always be defined in
the Minion configuration and thus cannot be overridden by grains or
pillar data. However, additional (user-defined) configuration options
(as in the above example) will not be in the Minion configuration by
default and thus can be overridden using grains/pillar data by leaving
the option out of the minion config file.

Arguments

	delimiter
	
New in version 2015.5.0.

Override the delimiter used to separate nested levels of a data
structure.

	merge
	
New in version 2015.5.0.

If passed, this parameter will change the behavior of the function so
that, instead of traversing each data store above in order and
returning the first match, the data stores are first merged together
and then searched. The pillar data is merged into the master config
data, then the grains are merged, followed by the Minion config data.
The resulting data structure is then searched for a match. This allows
for configurations to be more flexible.

Note

The merging described above does not mean that grain data will end
up in the Minion's pillar data, or pillar data will end up in the
master config data, etc. The data is just combined for the purposes
of searching an amalgam of the different data stores.

The supported merge strategies are as follows:

	recurse - If a key exists in both dictionaries, and the new value
is not a dictionary, it is replaced. Otherwise, the sub-dictionaries
are merged together into a single dictionary, recursively on down,
following the same criteria. For example:

>>> dict1 = {'foo': {'bar': 1, 'qux': True},
 'hosts': ['a', 'b', 'c'],
 'only_x': None}
>>> dict2 = {'foo': {'baz': 2, 'qux': False},
 'hosts': ['d', 'e', 'f'],
 'only_y': None}
>>> merged
{'foo': {'bar': 1, 'baz': 2, 'qux': False},
 'hosts': ['d', 'e', 'f'],
 'only_dict1': None,
 'only_dict2': None}

	overwrite - If a key exists in the top level of both
dictionaries, the new value completely overwrites the old. For
example:

>>> dict1 = {'foo': {'bar': 1, 'qux': True},
 'hosts': ['a', 'b', 'c'],
 'only_x': None}
>>> dict2 = {'foo': {'baz': 2, 'qux': False},
 'hosts': ['d', 'e', 'f'],
 'only_y': None}
>>> merged
{'foo': {'baz': 2, 'qux': False},
 'hosts': ['d', 'e', 'f'],
 'only_dict1': None,
 'only_dict2': None}

CLI Example:

salt '*' config.get pkg:apache
salt '*' config.get lxc.container_profile:centos merge=recurse

	
salt.modules.config.items()

	Return the complete config from the currently running minion process.
This includes defaults for values not set in the config file.

CLI Example:

salt '*' config.items

	
salt.modules.config.manage_mode(mode)

	Return a mode value, normalized to a string

CLI Example:

salt '*' config.manage_mode

	
salt.modules.config.merge(value, default='', omit_opts=False, omit_master=False, omit_pillar=False)

	Retrieves an option based on key, merging all matches.

Same as option() except that it merges all matches, rather than taking
the first match.

CLI Example:

salt '*' config.merge schedule

	
salt.modules.config.option(value, default=None, omit_opts=False, omit_grains=False, omit_pillar=False, omit_master=False, omit_all=False, wildcard=False)

	Returns the setting for the specified config value. The priority for
matches is the same as in config.get,
only this function does not recurse into nested data structures. Another
difference between this function and config.get is that it comes with a set of "sane defaults".
To view these, you can run the following command:

salt '*' config.option '*' omit_all=True wildcard=True

	default
	The default value if no match is found. If not specified, then the
fallback default will be an empty string, unless wildcard=True, in
which case the return will be an empty dictionary.

	omit_optsFalse
	Pass as True to exclude matches from the minion configuration file

	omit_grainsFalse
	Pass as True to exclude matches from the grains

	omit_pillarFalse
	Pass as True to exclude matches from the pillar data

	omit_masterFalse
	Pass as True to exclude matches from the master configuration file

	omit_allTrue
	Shorthand to omit all of the above and return matches only from the
"sane defaults".

New in version 3000.

	wildcardFalse
	If used, this will perform pattern matching on keys. Note that this
will also significantly change the return data. Instead of only a value
being returned, a dictionary mapping the matched keys to their values
is returned. For example, using wildcard=True with a key of
'foo.ba* could return a dictionary like so:

{'foo.bar': True, 'foo.baz': False}

New in version 3000.

CLI Example:

salt '*' config.option redis.host

	
salt.modules.config.valid_fileproto(uri)

	Returns a boolean value based on whether or not the URI passed has a valid
remote file protocol designation

CLI Example:

salt '*' config.valid_fileproto salt://path/to/file

salt.modules.consul

Interact with Consul

https://www.consul.io

	
salt.modules.consul.acl_clone(consul_url=None, token=None, **kwargs)

	Information about an ACL token.

	Parameters:

	
	consul_url -- The Consul server URL.

	id -- Unique identifier for the ACL to update.

	Returns:

	Boolean, message of success or
failure, and new ID of cloned ACL.

CLI Example:

salt '*' consul.acl_info id='c1c4d223-91cb-3d1f-1ee8-f2af9e7b6716'

	
salt.modules.consul.acl_create(consul_url=None, token=None, **kwargs)

	Create a new ACL token.

	Parameters:

	
	consul_url -- The Consul server URL.

	name -- Meaningful indicator of the ACL's purpose.

	type -- Type is either client or management. A management
token is comparable to a root user and has the
ability to perform any action including creating,
modifying, and deleting ACLs.

	rules -- The Consul server URL.

	Returns:

	Boolean & message of success or failure.

CLI Example:

salt '*' consul.acl_create

	
salt.modules.consul.acl_delete(consul_url=None, token=None, **kwargs)

	Delete an ACL token.

	Parameters:

	
	consul_url -- The Consul server URL.

	id -- Unique identifier for the ACL to update.

	Returns:

	Boolean & message of success or failure.

CLI Example:

salt '*' consul.acl_delete id='c1c4d223-91cb-3d1f-1ee8-f2af9e7b6716'

	
salt.modules.consul.acl_info(consul_url=None, **kwargs)

	Information about an ACL token.

	Parameters:

	
	consul_url -- The Consul server URL.

	id -- Unique identifier for the ACL to update.

	Returns:

	Information about the ACL requested.

CLI Example:

salt '*' consul.acl_info id='c1c4d223-91cb-3d1f-1ee8-f2af9e7b6716'

	
salt.modules.consul.acl_list(consul_url=None, token=None, **kwargs)

	List the ACL tokens.

	Parameters:

	consul_url -- The Consul server URL.

	Returns:

	List of ACLs

CLI Example:

salt '*' consul.acl_list

	
salt.modules.consul.acl_update(consul_url=None, token=None, **kwargs)

	Update an ACL token.

	Parameters:

	
	consul_url -- The Consul server URL.

	name -- Meaningful indicator of the ACL's purpose.

	id -- Unique identifier for the ACL to update.

	type -- Type is either client or management. A management
token is comparable to a root user and has the
ability to perform any action including creating,
modifying, and deleting ACLs.

	rules -- The Consul server URL.

	Returns:

	Boolean & message of success or failure.

CLI Example:

salt '*' consul.acl_update

	
salt.modules.consul.agent_check_deregister(consul_url=None, token=None, checkid=None)

	The agent will take care of deregistering the check from the Catalog.

	Parameters:

	
	consul_url -- The Consul server URL.

	checkid -- The ID of the check to deregister from Consul.

	Returns:

	Boolean and message indicating success or failure.

CLI Example:

salt '*' consul.agent_check_deregister checkid='Memory Utilization'

	
salt.modules.consul.agent_check_fail(consul_url=None, token=None, checkid=None, **kwargs)

	This endpoint is used with a check that is of the TTL type. When this
is called, the status of the check is set to critical and the
TTL clock is reset.

	Parameters:

	
	consul_url -- The Consul server URL.

	checkid -- The ID of the check to deregister from Consul.

	note -- A human-readable message with the status of the check.

	Returns:

	Boolean and message indicating success or failure.

CLI Example:

salt '*' consul.agent_check_fail checkid='redis_check1' note='Forcing check into critical state.'

	
salt.modules.consul.agent_check_pass(consul_url=None, token=None, checkid=None, **kwargs)

	This endpoint is used with a check that is of the TTL type. When this
is called, the status of the check is set to passing and the TTL
clock is reset.

	Parameters:

	
	consul_url -- The Consul server URL.

	checkid -- The ID of the check to mark as passing.

	note -- A human-readable message with the status of the check.

	Returns:

	Boolean and message indicating success or failure.

CLI Example:

salt '*' consul.agent_check_pass checkid='redis_check1' note='Forcing check into passing state.'

	
salt.modules.consul.agent_check_register(consul_url=None, token=None, **kwargs)

	The register endpoint is used to add a new check to the local agent.

	Parameters:

	
	consul_url -- The Consul server URL.

	name -- The description of what the check is for.

	id -- The unique name to use for the check, if not
provided 'name' is used.

	notes -- Human readable description of the check.

	script -- If script is provided, the check type is
a script, and Consul will evaluate that script
based on the interval parameter.

	http -- Check will perform an HTTP GET request against
the value of HTTP (expected to be a URL) based
on the interval parameter.

	ttl -- If a TTL type is used, then the TTL update endpoint
must be used periodically to update the state of the check.

	interval -- Interval at which the check should run.

	Returns:

	Boolean and message indicating success or failure.

CLI Example:

salt '*' consul.agent_check_register name='Memory Utilization' script='/usr/local/bin/check_mem.py' interval='15s'

	
salt.modules.consul.agent_check_warn(consul_url=None, token=None, checkid=None, **kwargs)

	This endpoint is used with a check that is of the TTL type. When this
is called, the status of the check is set to warning and the TTL
clock is reset.

	Parameters:

	
	consul_url -- The Consul server URL.

	checkid -- The ID of the check to deregister from Consul.

	note -- A human-readable message with the status of the check.

	Returns:

	Boolean and message indicating success or failure.

CLI Example:

salt '*' consul.agent_check_warn checkid='redis_check1' note='Forcing check into warning state.'

	
salt.modules.consul.agent_checks(consul_url=None, token=None)

	Returns the checks the local agent is managing

	Parameters:

	consul_url -- The Consul server URL.

	Returns:

	Returns the checks the local agent is managing

CLI Example:

salt '*' consul.agent_checks

	
salt.modules.consul.agent_join(consul_url=None, token=None, address=None, **kwargs)

	Triggers the local agent to join a node

	Parameters:

	
	consul_url -- The Consul server URL.

	address -- The address for the agent to connect to.

	wan -- Causes the agent to attempt to join using the WAN pool.

	Returns:

	Boolean and message indicating success or failure.

CLI Example:

salt '*' consul.agent_join address='192.168.1.1'

	
salt.modules.consul.agent_leave(consul_url=None, token=None, node=None)

	Used to instruct the agent to force a node into the left state.

	Parameters:

	
	consul_url -- The Consul server URL.

	node -- The node the agent will force into left state

	Returns:

	Boolean and message indicating success or failure.

CLI Example:

salt '*' consul.agent_leave node='web1.example.com'

	
salt.modules.consul.agent_maintenance(consul_url=None, token=None, **kwargs)

	Manages node maintenance mode

	Parameters:

	
	consul_url -- The Consul server URL.

	enable -- The enable flag is required.
Acceptable values are either true
(to enter maintenance mode) or
false (to resume normal operation).

	reason -- If provided, its value should be a
text string explaining the reason for
placing the node into maintenance mode.

	Returns:

	Boolean and message indicating success or failure.

CLI Example:

salt '*' consul.agent_maintenance enable='False' reason='Upgrade in progress'

	
salt.modules.consul.agent_members(consul_url=None, token=None, **kwargs)

	Returns the members as seen by the local serf agent

	Parameters:

	consul_url -- The Consul server URL.

	Returns:

	Returns the members as seen by the local serf agent

CLI Example:

salt '*' consul.agent_members

	
salt.modules.consul.agent_self(consul_url=None, token=None)

	Returns the local node configuration

	Parameters:

	consul_url -- The Consul server URL.

	Returns:

	Returns the local node configuration

CLI Example:

salt '*' consul.agent_self

	
salt.modules.consul.agent_service_deregister(consul_url=None, token=None, serviceid=None)

	Used to remove a service.

	Parameters:

	
	consul_url -- The Consul server URL.

	serviceid -- A serviceid describing the service.

	Returns:

	Boolean and message indicating success or failure.

CLI Example:

salt '*' consul.agent_service_deregister serviceid='redis'

	
salt.modules.consul.agent_service_maintenance(consul_url=None, token=None, serviceid=None, **kwargs)

	Used to place a service into maintenance mode.

	Parameters:

	
	consul_url -- The Consul server URL.

	serviceid -- A name of the service.

	enable -- Whether the service should be enabled or disabled.

	reason -- A human readable message of why the service was
enabled or disabled.

	Returns:

	Boolean and message indicating success or failure.

CLI Example:

salt '*' consul.agent_service_deregister serviceid='redis' enable='True' reason='Down for upgrade'

	
salt.modules.consul.agent_service_register(consul_url=None, token=None, **kwargs)

	The used to add a new service, with an optional
health check, to the local agent.

	Parameters:

	
	consul_url -- The Consul server URL.

	name -- A name describing the service.

	address -- The address used by the service, defaults
to the address of the agent.

	port -- The port used by the service.

	id -- Unique ID to identify the service, if not
provided the value of the name parameter is used.

	tags -- Identifying tags for service, string or list.

	script -- If script is provided, the check type is
a script, and Consul will evaluate that script
based on the interval parameter.

	http -- Check will perform an HTTP GET request against
the value of HTTP (expected to be a URL) based
on the interval parameter.

	check_ttl -- If a TTL type is used, then the TTL update
endpoint must be used periodically to update
the state of the check.

	check_interval -- Interval at which the check should run.

	Returns:

	Boolean and message indicating success or failure.

CLI Example:

salt '*' consul.agent_service_register name='redis' tags='["master", "v1"]' address="127.0.0.1" port="8080" check_script="/usr/local/bin/check_redis.py" interval="10s"

	
salt.modules.consul.agent_services(consul_url=None, token=None)

	Returns the services the local agent is managing

	Parameters:

	consul_url -- The Consul server URL.

	Returns:

	Returns the services the local agent is managing

CLI Example:

salt '*' consul.agent_services

	
salt.modules.consul.catalog_datacenters(consul_url=None, token=None)

	Return list of available datacenters from catalog.

	Parameters:

	consul_url -- The Consul server URL.

	Returns:

	The list of available datacenters.

CLI Example:

salt '*' consul.catalog_datacenters

	
salt.modules.consul.catalog_deregister(consul_url=None, token=None, **kwargs)

	Deregisters a node, service, or check

	Parameters:

	
	consul_url -- The Consul server URL.

	node -- The node to deregister.

	datacenter -- By default, the datacenter of the agent is queried;
however, the dc can be provided using the "dc" parameter.

	checkid -- The ID of the health check to deregister.

	serviceid -- The ID of the service to deregister.

	Returns:

	Boolean & message of success or failure.

CLI Example:

salt '*' consul.catalog_register node='node1' serviceid='redis_server1' checkid='redis_check1'

	
salt.modules.consul.catalog_node(consul_url=None, token=None, node=None, **kwargs)

	Information about the registered node.

	Parameters:

	
	consul_url -- The Consul server URL.

	node -- The node to request information about.

	dc -- By default, the datacenter of the agent is queried;
however, the dc can be provided using the "dc" parameter.

	Returns:

	Information about the requested node.

CLI Example:

salt '*' consul.catalog_service service='redis'

	
salt.modules.consul.catalog_nodes(consul_url=None, token=None, **kwargs)

	Return list of available nodes from catalog.

	Parameters:

	
	consul_url -- The Consul server URL.

	dc -- By default, the datacenter of the agent is queried;
however, the dc can be provided using the "dc" parameter.

	Returns:

	The list of available nodes.

CLI Example:

salt '*' consul.catalog_nodes

	
salt.modules.consul.catalog_register(consul_url=None, token=None, **kwargs)

	Registers a new node, service, or check

	Parameters:

	
	consul_url -- The Consul server URL.

	dc -- By default, the datacenter of the agent is queried;
however, the dc can be provided using the "dc" parameter.

	node -- The node to register.

	address -- The address of the node.

	service -- The service that will be registered.

	service_address -- The address that the service listens on.

	service_port -- The port for the service.

	service_id -- A unique identifier for the service, if this is not
provided "name" will be used.

	service_tags -- Any tags associated with the service.

	check -- The name of the health check to register

	check_status -- The initial status of the check,
must be one of unknown, passing, warning, or critical.

	check_service -- The service that the check is performed against.

	check_id -- Unique identifier for the service.

	check_notes -- An opaque field that is meant to hold human-readable text.

	Returns:

	Boolean & message of success or failure.

CLI Example:

salt '*' consul.catalog_register node='node1' address='192.168.1.1' service='redis' service_address='127.0.0.1' service_port='8080' service_id='redis_server1'

	
salt.modules.consul.catalog_service(consul_url=None, token=None, service=None, **kwargs)

	Information about the registered service.

	Parameters:

	
	consul_url -- The Consul server URL.

	dc -- By default, the datacenter of the agent is queried;
however, the dc can be provided using the "dc" parameter.

	tag -- Filter returned services with tag parameter.

	Returns:

	Information about the requested service.

CLI Example:

salt '*' consul.catalog_service service='redis'

	
salt.modules.consul.catalog_services(consul_url=None, token=None, **kwargs)

	Return list of available services rom catalog.

	Parameters:

	
	consul_url -- The Consul server URL.

	dc -- By default, the datacenter of the agent is queried;
however, the dc can be provided using the "dc" parameter.

	Returns:

	The list of available services.

CLI Example:

salt '*' consul.catalog_services

	
salt.modules.consul.delete(consul_url=None, token=None, key=None, **kwargs)

	Delete values from Consul

	Parameters:

	
	consul_url -- The Consul server URL.

	key -- The key to use as the starting point for the list.

	recurse -- Delete values recursively beginning at the value of key.

	cas -- This flag is used to turn the DELETE into
a Check-And-Set operation.

	Returns:

	Boolean & message of success or failure.

CLI Example:

salt '*' consul.delete key='web'
salt '*' consul.delete key='web' recurse='True'

	
salt.modules.consul.event_fire(consul_url=None, token=None, name=None, **kwargs)

	List the ACL tokens.

	Parameters:

	
	consul_url -- The Consul server URL.

	name -- The name of the event to fire.

	dc -- By default, the datacenter of the agent is queried;
however, the dc can be provided using the "dc" parameter.

	node -- Filter by node name.

	service -- Filter by service name.

	tag -- Filter by tag name.

	Returns:

	List of ACLs

CLI Example:

salt '*' consul.event_fire name='deploy'

	
salt.modules.consul.event_list(consul_url=None, token=None, **kwargs)

	List the recent events.

	Parameters:

	
	consul_url -- The Consul server URL.

	name -- The name of the event to fire.

	Returns:

	List of ACLs

CLI Example:

salt '*' consul.event_list

	
salt.modules.consul.get(consul_url=None, key=None, token=None, recurse=False, decode=False, raw=False)

	Get key from Consul

	Parameters:

	
	consul_url -- The Consul server URL.

	key -- The key to use as the starting point for the list.

	recurse -- Return values recursively beginning at the value of key.

	decode -- By default values are stored as Base64 encoded values,
decode will return the whole key with the value decoded.

	raw -- Simply return the decoded value of the key.

	Returns:

	The keys in Consul.

CLI Example:

salt '*' consul.get key='web/key1'
salt '*' consul.get key='web' recurse=True
salt '*' consul.get key='web' recurse=True decode=True

By default values stored in Consul are base64 encoded, passing the
decode option will show them as the decoded values.

salt '*' consul.get key='web' recurse=True decode=True raw=True

By default Consult will return other information about the key, the raw
option will return only the raw value.

	
salt.modules.consul.health_checks(consul_url=None, token=None, service=None, **kwargs)

	Health information about the registered service.

	Parameters:

	
	consul_url -- The Consul server URL.

	service -- The service to request health information about.

	dc -- By default, the datacenter of the agent is queried;
however, the dc can be provided using the "dc" parameter.

	Returns:

	Health information about the requested node.

CLI Example:

salt '*' consul.health_checks service='redis1'

	
salt.modules.consul.health_node(consul_url=None, token=None, node=None, **kwargs)

	Health information about the registered node.

	Parameters:

	
	consul_url -- The Consul server URL.

	node -- The node to request health information about.

	dc -- By default, the datacenter of the agent is queried;
however, the dc can be provided using the "dc" parameter.

	Returns:

	Health information about the requested node.

CLI Example:

salt '*' consul.health_node node='node1'

	
salt.modules.consul.health_service(consul_url=None, token=None, service=None, **kwargs)

	Health information about the registered service.

	Parameters:

	
	consul_url -- The Consul server URL.

	service -- The service to request health information about.

	dc -- By default, the datacenter of the agent is queried;
however, the dc can be provided using the "dc" parameter.

	tag -- Filter returned services with tag parameter.

	passing -- Filter results to only nodes with all
checks in the passing state.

	Returns:

	Health information about the requested node.

CLI Example:

salt '*' consul.health_service service='redis1'

salt '*' consul.health_service service='redis1' passing='True'

	
salt.modules.consul.health_state(consul_url=None, token=None, state=None, **kwargs)

	Returns the checks in the state provided on the path.

	Parameters:

	
	consul_url -- The Consul server URL.

	state -- The state to show checks for. The supported states
are any, unknown, passing, warning, or critical.
The any state is a wildcard that can be used to
return all checks.

	dc -- By default, the datacenter of the agent is queried;
however, the dc can be provided using the "dc" parameter.

	Returns:

	The checks in the provided state.

CLI Example:

salt '*' consul.health_state state='redis1'

salt '*' consul.health_state service='redis1' passing='True'

	
salt.modules.consul.list_(consul_url=None, token=None, key=None, **kwargs)

	List keys in Consul

	Parameters:

	
	consul_url -- The Consul server URL.

	key -- The key to use as the starting point for the list.

	Returns:

	The list of keys.

CLI Example:

salt '*' consul.list
salt '*' consul.list key='web'

	
salt.modules.consul.put(consul_url=None, token=None, key=None, value=None, **kwargs)

	Put values into Consul

	Parameters:

	
	consul_url -- The Consul server URL.

	key -- The key to use as the starting point for the list.

	value -- The value to set the key to.

	flags -- This can be used to specify an unsigned value
between 0 and 2^64-1. Clients can choose to use
this however makes sense for their application.

	cas -- This flag is used to turn the PUT into a
Check-And-Set operation.

	acquire -- This flag is used to turn the PUT into a
lock acquisition operation.

	release -- This flag is used to turn the PUT into a
lock release operation.

	Returns:

	Boolean & message of success or failure.

CLI Example:

salt '*' consul.put key='web/key1' value="Hello there"

salt '*' consul.put key='web/key1' value="Hello there" acquire='d5d371f4-c380-5280-12fd-8810be175592'

salt '*' consul.put key='web/key1' value="Hello there" release='d5d371f4-c380-5280-12fd-8810be175592'

	
salt.modules.consul.session_create(consul_url=None, token=None, **kwargs)

	Used to create a session.

	Parameters:

	
	consul_url -- The Consul server URL.

	lockdelay -- Duration string using a "s" suffix for seconds.
The default is 15s.

	node -- Must refer to a node that is already registered,
if specified. By default, the agent's own node
name is used.

	name -- A human-readable name for the session

	checks -- A list of associated health checks. It is highly
recommended that, if you override this list, you
include the default "serfHealth".

	behavior -- Can be set to either release or delete. This controls
the behavior when a session is invalidated. By default,
this is release, causing any locks that are held to be
released. Changing this to delete causes any locks that
are held to be deleted. delete is useful for creating
ephemeral key/value entries.

	ttl -- Session is invalidated if it is not renewed before
the TTL expires

	Returns:

	Boolean and message indicating success or failure.

CLI Example:

salt '*' consul.session_create node='node1' name='my-session' behavior='delete' ttl='3600s'

	
salt.modules.consul.session_destroy(consul_url=None, token=None, session=None, **kwargs)

	Destroy session

	Parameters:

	
	consul_url -- The Consul server URL.

	session -- The ID of the session to destroy.

	dc -- By default, the datacenter of the agent is queried;
however, the dc can be provided using the "dc" parameter.

	Returns:

	Boolean & message of success or failure.

CLI Example:

salt '*' consul.session_destroy session='c1c4d223-91cb-3d1f-1ee8-f2af9e7b6716'

	
salt.modules.consul.session_info(consul_url=None, token=None, session=None, **kwargs)

	Information about a session

	Parameters:

	
	consul_url -- The Consul server URL.

	session -- The ID of the session to return information about.

	dc -- By default, the datacenter of the agent is queried;
however, the dc can be provided using the "dc" parameter.

	Returns:

	Boolean & message of success or failure.

CLI Example:

salt '*' consul.session_info session='c1c4d223-91cb-3d1f-1ee8-f2af9e7b6716'

	
salt.modules.consul.session_list(consul_url=None, token=None, return_list=False, **kwargs)

	Used to list sessions.

	Parameters:

	
	consul_url -- The Consul server URL.

	dc -- By default, the datacenter of the agent is queried;
however, the dc can be provided using the "dc" parameter.

	return_list -- By default, all information about the sessions is
returned, using the return_list parameter will return
a list of session IDs.

	Returns:

	A list of all available sessions.

CLI Example:

salt '*' consul.session_list

	
salt.modules.consul.status_leader(consul_url=None, token=None)

	Returns the current Raft leader

	Parameters:

	consul_url -- The Consul server URL.

	Returns:

	The address of the Raft leader.

CLI Example:

salt '*' consul.status_leader

	
salt.modules.consul.status_peers(consul_url, token=None)

	Returns the current Raft peer set

	Parameters:

	consul_url -- The Consul server URL.

	Returns:

	Retrieves the Raft peers for the
datacenter in which the agent is running.

CLI Example:

salt '*' consul.status_peers

salt.modules.container_resource

Common resources for LXC and systemd-nspawn containers

New in version 2015.8.0.

These functions are not designed to be called directly, but instead from the
lxc, nspawn, and
docker execution modules. They provide for
common logic to be re-used for common actions.

	
salt.modules.container_resource.cache_file(source)

	Wrapper for cp.cache_file which raises an error if the file was unable to
be cached.

CLI Example:

salt myminion container_resource.cache_file salt://foo/bar/baz.txt

	
salt.modules.container_resource.copy_to(name, source, dest, container_type=None, path=None, exec_driver=None, overwrite=False, makedirs=False)

	Common logic for copying files to containers

	path
	path to the container parent (for LXC only)
default: /var/lib/lxc (system default)

CLI Example:

salt myminion container_resource.copy_to mycontainer /local/file/path /container/file/path container_type=docker exec_driver=nsenter

	
salt.modules.container_resource.run(name, cmd, container_type=None, exec_driver=None, output=None, no_start=False, stdin=None, python_shell=True, output_loglevel='debug', ignore_retcode=False, path=None, use_vt=False, keep_env=None)

	Common logic for running shell commands in containers

	path
	path to the container parent (for LXC only)
default: /var/lib/lxc (system default)

CLI Example:

salt myminion container_resource.run mycontainer 'ps aux' container_type=docker exec_driver=nsenter output=stdout

salt.modules.cp

Minion side functions for salt-cp

	
salt.modules.cp.cache_dest(url, saltenv=None)

	
New in version 3000.

Changed in version 3005: saltenv will use value from config if not explicitly set

Returns the expected cache path for the file, if cached using
cp.cache_file.

Note

This only returns the _expected_ path, it does not tell you if the URL
is really cached. To check if the URL is cached, use
cp.is_cached instead.

CLI Examples:

salt '*' cp.cache_dest https://foo.com/bar.rpm
salt '*' cp.cache_dest salt://my/file
salt '*' cp.cache_dest salt://my/file saltenv=dev

	
salt.modules.cp.cache_dir(path, saltenv=None, include_empty=False, include_pat=None, exclude_pat=None)

	
Changed in version 3005: saltenv will use value from config if not explicitly set

Download and cache everything under a directory from the master

	include_patNone
	Glob or regex to narrow down the files cached from the given path. If
matching with a regex, the regex must be prefixed with E@,
otherwise the expression will be interpreted as a glob.

New in version 2014.7.0.

	exclude_patNone
	Glob or regex to exclude certain files from being cached from the given
path. If matching with a regex, the regex must be prefixed with E@,
otherwise the expression will be interpreted as a glob.

Note

If used with include_pat, files matching this pattern will be
excluded from the subset of files defined by include_pat.

New in version 2014.7.0.

CLI Examples:

salt '*' cp.cache_dir salt://path/to/dir
salt '*' cp.cache_dir salt://path/to/dir include_pat='E@*.py$'

	
salt.modules.cp.cache_file(path, saltenv=None, source_hash=None, verify_ssl=True, use_etag=False)

	
Changed in version 3005: saltenv will use value from config if not explicitly set

Used to cache a single file on the Minion

Returns the location of the new cached file on the Minion

	source_hash
	If name is an http(s) or ftp URL and the file exists in the
minion's file cache, this option can be passed to keep the minion from
re-downloading the file if the cached copy matches the specified hash.

New in version 2018.3.0.

	verify_ssl
	If False, remote https file sources (https://) and source_hash
will not attempt to validate the servers certificate. Default is True.

New in version 3002.

	use_etag
	If True, remote http/https file sources will attempt to use the
ETag header to determine if the remote file needs to be downloaded.
This provides a lightweight mechanism for promptly refreshing files
changed on a web server without requiring a full hash comparison via
the source_hash parameter.

New in version 3005.

CLI Example:

salt '*' cp.cache_file salt://path/to/file

There are two ways of defining the fileserver environment (a.k.a.
saltenv) from which to cache the file. One is to use the saltenv
parameter, and the other is to use a querystring syntax in the salt://
URL. The below two examples are equivalent:

salt '*' cp.cache_file salt://foo/bar.conf saltenv=config
salt '*' cp.cache_file salt://foo/bar.conf?saltenv=config

If the path being cached is a salt:// URI, and the path does not exist,
then False will be returned.

Note

It may be necessary to quote the URL when using the querystring method,
depending on the shell being used to run the command.

	
salt.modules.cp.cache_file_ssh(path, saltenv=None, source_hash=None, verify_ssl=True, use_etag=False)

	This function is an alias of cache_file.

Changed in version 3005: saltenv will use value from config if not explicitly set

Used to cache a single file on the Minion

Returns the location of the new cached file on the Minion

	source_hash
	If name is an http(s) or ftp URL and the file exists in the
minion's file cache, this option can be passed to keep the minion from
re-downloading the file if the cached copy matches the specified hash.

New in version 2018.3.0.

	verify_ssl
	If False, remote https file sources (https://) and source_hash
will not attempt to validate the servers certificate. Default is True.

New in version 3002.

	use_etag
	If True, remote http/https file sources will attempt to use the
ETag header to determine if the remote file needs to be downloaded.
This provides a lightweight mechanism for promptly refreshing files
changed on a web server without requiring a full hash comparison via
the source_hash parameter.

New in version 3005.

CLI Example:

salt '*' cp.cache_file salt://path/to/file

There are two ways of defining the fileserver environment (a.k.a.
saltenv) from which to cache the file. One is to use the saltenv
parameter, and the other is to use a querystring syntax in the salt://
URL. The below two examples are equivalent:

salt '*' cp.cache_file salt://foo/bar.conf saltenv=config
salt '*' cp.cache_file salt://foo/bar.conf?saltenv=config

If the path being cached is a salt:// URI, and the path does not exist,
then False will be returned.

Note

It may be necessary to quote the URL when using the querystring method,
depending on the shell being used to run the command.

	
salt.modules.cp.cache_files(paths, saltenv=None)

	
Changed in version 3005: saltenv will use value from config if not explicitly set

Used to gather many files from the Master, the gathered files will be
saved in the minion cachedir reflective to the paths retrieved from the
Master

CLI Example:

salt '*' cp.cache_files salt://pathto/file1,salt://pathto/file1

There are two ways of defining the fileserver environment (a.k.a.
saltenv) from which to cache the files. One is to use the saltenv
parameter, and the other is to use a querystring syntax in the salt://
URL. The below two examples are equivalent:

salt '*' cp.cache_files salt://foo/bar.conf,salt://foo/baz.conf saltenv=config
salt '*' cp.cache_files salt://foo/bar.conf?saltenv=config,salt://foo/baz.conf?saltenv=config

The querystring method is less useful when all files are being cached from
the same environment, but is a good way of caching files from multiple
different environments in the same command. For example, the below command
will cache the first file from the config1 environment, and the second
one from the config2 environment.

salt '*' cp.cache_files salt://foo/bar.conf?saltenv=config1,salt://foo/bar.conf?saltenv=config2

Note

It may be necessary to quote the URL when using the querystring method,
depending on the shell being used to run the command.

	
salt.modules.cp.cache_local_file(path)

	Cache a local file on the minion in the localfiles cache

CLI Example:

salt '*' cp.cache_local_file /etc/hosts

	
salt.modules.cp.cache_master(saltenv=None)

	
Changed in version 3005: saltenv will use value from config if not explicitly set

Retrieve all of the files on the master and cache them locally

CLI Example:

salt '*' cp.cache_master

	
salt.modules.cp.envs()

	List available environments for fileserver

CLI Example:

salt '*' cp.envs

	
salt.modules.cp.get_dir(path, dest, saltenv=None, template=None, gzip=None, **kwargs)

	
Changed in version 3005: saltenv will use value from config if not explicitly set

Used to recursively copy a directory from the salt master

CLI Example:

salt '*' cp.get_dir salt://path/to/dir/ /minion/dest

get_dir supports the same template and gzip arguments as get_file.

	
salt.modules.cp.get_file(path, dest, saltenv=None, makedirs=False, template=None, gzip=None, **kwargs)

	
Changed in version 3005: saltenv will use value from config if not explicitly set

Changed in version 2018.3.0: dest can now be a directory

Used to get a single file from the salt master

CLI Example:

salt '*' cp.get_file salt://path/to/file /minion/dest

Template rendering can be enabled on both the source and destination file
names like so:

salt '*' cp.get_file "salt://{{grains.os}}/vimrc" /etc/vimrc template=jinja

This example would instruct all Salt minions to download the vimrc from a
directory with the same name as their os grain and copy it to /etc/vimrc

For larger files, the cp.get_file module also supports gzip compression.
Because gzip is CPU-intensive, this should only be used in scenarios where
the compression ratio is very high (e.g. pretty-printed JSON or YAML
files).

Use the gzip named argument to enable it. Valid values are 1..9, where 1
is the lightest compression and 9 the heaviest. 1 uses the least CPU on
the master (and minion), 9 uses the most.

There are two ways of defining the fileserver environment (a.k.a.
saltenv) from which to retrieve the file. One is to use the saltenv
parameter, and the other is to use a querystring syntax in the salt://
URL. The below two examples are equivalent:

salt '*' cp.get_file salt://foo/bar.conf /etc/foo/bar.conf saltenv=config
salt '*' cp.get_file salt://foo/bar.conf?saltenv=config /etc/foo/bar.conf

Note

It may be necessary to quote the URL when using the querystring method,
depending on the shell being used to run the command.

	
salt.modules.cp.get_file_str(path, saltenv=None)

	
Changed in version 3005: saltenv will use value from config if not explicitly set

Download a file from a URL to the Minion cache directory and return the
contents of that file

Returns False if Salt was unable to cache a file from a URL.

CLI Example:

salt '*' cp.get_file_str salt://my/file

	
salt.modules.cp.get_template(path, dest, template='jinja', saltenv=None, makedirs=False, **kwargs)

	
Changed in version 3005: saltenv will use value from config if not explicitly set

Render a file as a template before setting it down.
Warning, order is not the same as in fileclient.cp for
non breaking old API.

CLI Example:

salt '*' cp.get_template salt://path/to/template /minion/dest

	
salt.modules.cp.get_url(path, dest='', saltenv=None, makedirs=False, source_hash=None)

	
Changed in version 3005: saltenv will use value from config if not explicitly set

Changed in version 2018.3.0: dest can now be a directory

Used to get a single file from a URL.

	path
	A URL to download a file from. Supported URL schemes are: salt://,
http://, https://, ftp://, s3://, swift:// and
file:// (local filesystem). If no scheme was specified, this is
equivalent of using file://.
If a file:// URL is given, the function just returns absolute path
to that file on a local filesystem.
The function returns False if Salt was unable to fetch a file from
a salt:// URL.

	dest
	The default behaviour is to write the fetched file to the given
destination path. If this parameter is omitted or set as empty string
(''), the function places the remote file on the local filesystem
inside the Minion cache directory and returns the path to that file.

Note

To simply return the file contents instead, set destination to
None. This works with salt://, http://, https://
and file:// URLs. The files fetched by http:// and
https:// will not be cached.

	saltenv
	Salt fileserver environment from which to retrieve the file. Ignored if
path is not a salt:// URL.

	source_hash
	If path is an http(s) or ftp URL and the file exists in the
minion's file cache, this option can be passed to keep the minion from
re-downloading the file if the cached copy matches the specified hash.

New in version 2018.3.0.

CLI Example:

salt '*' cp.get_url salt://my/file /tmp/this_file_is_mine
salt '*' cp.get_url http://www.slashdot.org /tmp/index.html

	
salt.modules.cp.hash_file(path, saltenv=None)

	
Changed in version 3005: saltenv will use value from config if not explicitly set

Return the hash of a file, to get the hash of a file on the
salt master file server prepend the path with salt://<file on server>
otherwise, prepend the file with / for a local file.

CLI Example:

salt '*' cp.hash_file salt://path/to/file

	
salt.modules.cp.hash_file_ssh(path, saltenv=None)

	This function is an alias of hash_file.

Changed in version 3005: saltenv will use value from config if not explicitly set

Return the hash of a file, to get the hash of a file on the
salt master file server prepend the path with salt://<file on server>
otherwise, prepend the file with / for a local file.

CLI Example:

salt '*' cp.hash_file salt://path/to/file

	
salt.modules.cp.is_cached(path, saltenv=None)

	
Changed in version 3005: saltenv will use value from config if not explicitly set

Returns the full path to a file if it is cached locally on the minion
otherwise returns a blank string

CLI Example:

salt '*' cp.is_cached salt://path/to/file

	
salt.modules.cp.list_master(saltenv=None, prefix='')

	
Changed in version 3005: saltenv will use value from config if not explicitly set

List all of the files stored on the master

CLI Example:

salt '*' cp.list_master

	
salt.modules.cp.list_master_dirs(saltenv=None, prefix='')

	
Changed in version 3005: saltenv will use value from config if not explicitly set

List all of the directories stored on the master

CLI Example:

salt '*' cp.list_master_dirs

	
salt.modules.cp.list_master_symlinks(saltenv=None, prefix='')

	
Changed in version 3005: saltenv will use value from config if not explicitly set

List all of the symlinks stored on the master

CLI Example:

salt '*' cp.list_master_symlinks

	
salt.modules.cp.list_minion(saltenv=None)

	
Changed in version 3005: saltenv will use value from config if not explicitly set

List all of the files cached on the minion

CLI Example:

salt '*' cp.list_minion

	
salt.modules.cp.list_states(saltenv=None)

	
Changed in version 3005: saltenv will use value from config if not explicitly set

List all of the available state files in an environment

CLI Example:

salt '*' cp.list_states

	
salt.modules.cp.push(path, keep_symlinks=False, upload_path=None, remove_source=False)

	WARNING Files pushed to the master will have global read permissions..

Push a file from the minion up to the master, the file will be saved to
the salt master in the master's minion files cachedir
(defaults to /var/cache/salt/master/minions/minion-id/files)

Since this feature allows a minion to push a file up to the master server
it is disabled by default for security purposes. To enable, set
file_recv to True in the master configuration file, and restart the
master.

	keep_symlinks
	Keep the path value without resolving its canonical form

	upload_path
	Provide a different path inside the master's minion files cachedir

	remove_source
	Remove the source file on the minion

New in version 2016.3.0.

CLI Example:

salt '*' cp.push /etc/fstab
salt '*' cp.push /etc/system-release keep_symlinks=True
salt '*' cp.push /etc/fstab upload_path='/new/path/fstab'
salt '*' cp.push /tmp/filename remove_source=True

	
salt.modules.cp.push_dir(path, glob=None, upload_path=None)

	Push a directory from the minion up to the master, the files will be saved
to the salt master in the master's minion files cachedir (defaults to
/var/cache/salt/master/minions/minion-id/files). It also has a glob
for matching specific files using globbing.

New in version 2014.7.0.

Since this feature allows a minion to push files up to the master server it
is disabled by default for security purposes. To enable, set file_recv
to True in the master configuration file, and restart the master.

	upload_path
	Provide a different path and directory name inside the master's minion
files cachedir

CLI Example:

salt '*' cp.push /usr/lib/mysql
salt '*' cp.push /usr/lib/mysql upload_path='/newmysql/path'
salt '*' cp.push_dir /etc/modprobe.d/ glob='*.conf'

	
salt.modules.cp.recv(files, dest)

	Used with salt-cp, pass the files dict, and the destination.

This function receives small fast copy files from the master via salt-cp.
It does not work via the CLI.

CLI Example:

salt '*' cp.recv

	
salt.modules.cp.recv_chunked(dest, chunk, append=False, compressed=True, mode=None)

	This function receives files copied to the minion using salt-cp and is
not intended to be used directly on the CLI.

CLI Example:

salt '*' cp.recv_chunked

	
salt.modules.cp.stat_file(path, saltenv=None, octal=True)

	
Changed in version 3005: saltenv will use value from config if not explicitly set

Return the permissions of a file, to get the permissions of a file on the
salt master file server prepend the path with salt://<file on server>
otherwise, prepend the file with / for a local file.

CLI Example:

salt '*' cp.stat_file salt://path/to/file

salt.modules.cpan

Manage Perl modules using CPAN

New in version 2015.5.0.

	
salt.modules.cpan.install(module)

	Install a Perl module from CPAN

CLI Example:

salt '*' cpan.install Template::Alloy

	
salt.modules.cpan.list_()

	List installed Perl modules, and the version installed

CLI Example:

salt '*' cpan.list

	
salt.modules.cpan.remove(module, details=False)

	Attempt to remove a Perl module that was installed from CPAN. Because the
cpan command doesn't actually support "uninstall"-like functionality,
this function will attempt to do what it can, with what it has from CPAN.

Until this function is declared stable, USE AT YOUR OWN RISK!

CLI Example:

salt '*' cpan.remove Old::Package

	
salt.modules.cpan.show(module)

	Show information about a specific Perl module

CLI Example:

salt '*' cpan.show Template::Alloy

	
salt.modules.cpan.show_config()

	Return a dict of CPAN configuration values

CLI Example:

salt '*' cpan.show_config

salt.modules.cron

Work with cron

Note

Salt does not escape cron metacharacters automatically. You should
backslash-escape percent characters and any other metacharacters that might
be interpreted incorrectly by the shell.

	
salt.modules.cron.get_entry(user, identifier=None, cmd=None)

	Return the specified entry from user's crontab.
identifier will be used if specified, otherwise will lookup cmd
Either identifier or cmd should be specified.

	user:
	User's crontab to query

	identifier:
	Search for line with identifier

	cmd:
	Search for cron line with cmd

CLI Example:

salt '*' cron.get_entry root identifier=task1

	
salt.modules.cron.list_tab(user)

	Return the contents of the specified user's crontab

CLI Example:

salt '*' cron.list_tab root

	
salt.modules.cron.ls(user)

	This function is an alias of list_tab.

Return the contents of the specified user's crontab

CLI Example:

salt '*' cron.list_tab root

	
salt.modules.cron.raw_cron(user)

	Return the contents of the user's crontab

CLI Example:

salt '*' cron.raw_cron root

	
salt.modules.cron.rm(user, cmd, minute=None, hour=None, daymonth=None, month=None, dayweek=None, identifier=None)

	This function is an alias of rm_job.

Remove a cron job for a specified user. If any of the day/time params are
specified, the job will only be removed if the specified params match.

CLI Example:

salt '*' cron.rm_job root /usr/local/weekly
salt '*' cron.rm_job root /usr/bin/foo dayweek=1

	
salt.modules.cron.rm_env(user, name)

	Remove cron environment variable for a specified user.

CLI Example:

salt '*' cron.rm_env root MAILTO

	
salt.modules.cron.rm_job(user, cmd, minute=None, hour=None, daymonth=None, month=None, dayweek=None, identifier=None)

	Remove a cron job for a specified user. If any of the day/time params are
specified, the job will only be removed if the specified params match.

CLI Example:

salt '*' cron.rm_job root /usr/local/weekly
salt '*' cron.rm_job root /usr/bin/foo dayweek=1

	
salt.modules.cron.rm_special(user, cmd, special=None, identifier=None)

	Remove a special cron job for a specified user.

CLI Example:

salt '*' cron.rm_special root /usr/bin/foo

	
salt.modules.cron.set_env(user, name, value=None)

	Set up an environment variable in the crontab.

CLI Example:

salt '*' cron.set_env root MAILTO user@example.com

	
salt.modules.cron.set_job(user, minute, hour, daymonth, month, dayweek, cmd, commented=False, comment=None, identifier=None)

	Sets a cron job up for a specified user.

CLI Example:

salt '*' cron.set_job root '*' '*' '*' '*' 1 /usr/local/weekly

	
salt.modules.cron.set_special(user, special, cmd, commented=False, comment=None, identifier=None)

	Set up a special command in the crontab.

CLI Example:

salt '*' cron.set_special root @hourly 'echo foobar'

	
salt.modules.cron.write_cron_file(user, path)

	Writes the contents of a file to a user's crontab

CLI Example:

salt '*' cron.write_cron_file root /tmp/new_cron

Changed in version 2015.8.9.

Note

Some OS' do not support specifying user via the crontab command i.e. (Solaris, AIX)

	
salt.modules.cron.write_cron_file_verbose(user, path)

	Writes the contents of a file to a user's crontab and return error message on error

CLI Example:

salt '*' cron.write_cron_file_verbose root /tmp/new_cron

Changed in version 2015.8.9.

Note

Some OS' do not support specifying user via the crontab command i.e. (Solaris, AIX)

salt.modules.cryptdev

Salt module to manage Unix cryptsetup jobs and the crypttab file

New in version 2018.3.0.

	
salt.modules.cryptdev.active()

	List existing device-mapper device details.

	
salt.modules.cryptdev.close(name)

	Close a crypt device using cryptsetup.

CLI Example:

salt '*' cryptdev.close foo

	
salt.modules.cryptdev.crypttab(config='/etc/crypttab')

	List the contents of the crypttab

CLI Example:

salt '*' cryptdev.crypttab

	
salt.modules.cryptdev.open(name, device, keyfile)

	Open a crypt device using cryptsetup. The keyfile must not be
None or 'none', because cryptsetup will otherwise ask for the
password interactively.

CLI Example:

salt '*' cryptdev.open foo /dev/sdz1 /path/to/keyfile

	
salt.modules.cryptdev.rm_crypttab(name, config='/etc/crypttab')

	Remove the named mapping from the crypttab. If the described entry does not
exist, nothing is changed, but the command succeeds by returning
'absent'. If a line is removed, it returns 'change'.

CLI Example:

salt '*' cryptdev.rm_crypttab foo

	
salt.modules.cryptdev.set_crypttab(name, device, password='none', options='', config='/etc/crypttab', test=False, match_on='name')

	Verify that this device is represented in the crypttab, change the device to
match the name passed, or add the name if it is not present.

CLI Example:

salt '*' cryptdev.set_crypttab foo /dev/sdz1 mypassword swap,size=256

salt.modules.csf

Support for Config Server Firewall (CSF)

	maintainer:

	Mostafa Hussein <mostafa.hussein91@gmail.com>

	maturity:

	new

	platform:

	Linux

	
salt.modules.csf.allow(ip, port=None, proto='tcp', direction='in', port_origin='d', ip_origin='s', ttl=None, comment='')

	Add an rule to csf allowed hosts
See _access_rule().
1- Add an IP:

CLI Example:

salt '*' csf.allow 127.0.0.1
salt '*' csf.allow 127.0.0.1 comment="Allow localhost"

	
salt.modules.csf.allow_port(port, proto='tcp', direction='both')

	Like allow_ports, but it will append to the
existing entry instead of replacing it.
Takes a single port instead of a list of ports.

CLI Example:

salt '*' csf.allow_port 22 proto='tcp' direction='in'

	
salt.modules.csf.allow_ports(ports, proto='tcp', direction='in')

	Fully replace the incoming or outgoing ports
line in the csf.conf file - e.g. TCP_IN, TCP_OUT,
UDP_IN, UDP_OUT, etc.

CLI Example:

salt '*' csf.allow_ports ports="[22,80,443,4505,4506]" proto='tcp' direction='in'

	
salt.modules.csf.build_directions(direction)

	

	
salt.modules.csf.deny(ip, port=None, proto='tcp', direction='in', port_origin='d', ip_origin='d', ttl=None, comment='')

	Add an rule to csf denied hosts
See _access_rule().
1- Deny an IP:

CLI Example:

salt '*' csf.deny 127.0.0.1
salt '*' csf.deny 127.0.0.1 comment="Too localhosty"

	
salt.modules.csf.disable()

	Disable csf permanently

CLI Example:

salt '*' csf.disable

	
salt.modules.csf.disable_testing_mode()

	

	
salt.modules.csf.enable()

	Activate csf if not running

CLI Example:

salt '*' csf.enable

	
salt.modules.csf.enable_testing_mode()

	

	
salt.modules.csf.exists(method, ip, port=None, proto='tcp', direction='in', port_origin='d', ip_origin='d', ttl=None, comment='')

	Returns true a rule for the ip already exists
based on the method supplied. Returns false if
not found.

CLI Example:

salt '*' csf.exists allow 1.2.3.4
salt '*' csf.exists tempdeny 1.2.3.4

	
salt.modules.csf.get_option(option)

	

	
salt.modules.csf.get_ports(proto='tcp', direction='in')

	Lists ports from csf.conf based on direction and protocol.
e.g. - TCP_IN, TCP_OUT, UDP_IN, UDP_OUT, etc..

CLI Example:

salt '*' csf.allow_port 22 proto='tcp' direction='in'

	
salt.modules.csf.get_skipped_nics(ipv6=False)

	

	
salt.modules.csf.get_testing_status()

	

	
salt.modules.csf.reload()

	Restart csf

CLI Example:

salt '*' csf.reload

	
salt.modules.csf.remove_rule(method, ip, port=None, proto='tcp', direction='in', port_origin='d', ip_origin='s', ttl=None, comment='')

	

	
salt.modules.csf.remove_temp_rule(ip)

	

	
salt.modules.csf.running()

	Check csf status

CLI Example:

salt '*' csf.running

	
salt.modules.csf.set_option(option, value)

	

	
salt.modules.csf.skip_nic(nic, ipv6=False)

	

	
salt.modules.csf.skip_nics(nics, ipv6=False)

	

	
salt.modules.csf.split_option(option)

	

	
salt.modules.csf.tempallow(ip=None, ttl=None, port=None, direction=None, comment='')

	Add an rule to the temporary ip allow list.
See _access_rule().
1- Add an IP:

CLI Example:

salt '*' csf.tempallow 127.0.0.1 3600 port=22 direction='in' comment='# Temp dev ssh access'

	
salt.modules.csf.tempdeny(ip=None, ttl=None, port=None, direction=None, comment='')

	Add a rule to the temporary ip deny list.
See _access_rule().
1- Add an IP:

CLI Example:

salt '*' csf.tempdeny 127.0.0.1 300 port=22 direction='in' comment='# Brute force attempt'

	
salt.modules.csf.unallow(ip)

	Remove a rule from the csf denied hosts
See _access_rule().
1- Deny an IP:

CLI Example:

salt '*' csf.unallow 127.0.0.1

	
salt.modules.csf.undeny(ip)

	Remove a rule from the csf denied hosts
See _access_rule().
1- Deny an IP:

CLI Example:

salt '*' csf.undeny 127.0.0.1

salt.modules.cyg

Manage cygwin packages.

Module file to accompany the cyg state.

	
salt.modules.cyg.check_valid_package(package, cyg_arch='x86_64', mirrors=None)

	Check if the package is valid on the given mirrors.

	Parameters:

	
	package -- The name of the package

	cyg_arch -- The cygwin architecture

	mirrors -- any mirrors to check

Returns (bool): True if Valid, otherwise False

CLI Example:

salt '*' cyg.check_valid_package <package name>

	
salt.modules.cyg.install(packages=None, cyg_arch='x86_64', mirrors=None)

	Install one or several packages.

	packagesNone
	The packages to install

	cyg_archx86_64
	Specify the architecture to install the package under
Current options are x86 and x86_64

CLI Example:

salt '*' cyg.install dos2unix
salt '*' cyg.install dos2unix mirrors="[{'http://mirror': 'http://url/to/public/key}]'

	
salt.modules.cyg.list_(package='', cyg_arch='x86_64')

	List locally installed packages.

	package''
	package name to check. else all

	cyg_arch :
	Cygwin architecture to use
Options are x86 and x86_64

CLI Example:

salt '*' cyg.list

	
salt.modules.cyg.uninstall(packages, cyg_arch='x86_64', mirrors=None)

	Uninstall one or several packages.

	packages
	The packages to uninstall.

	cyg_archx86_64
	Specify the architecture to remove the package from
Current options are x86 and x86_64

CLI Example:

salt '*' cyg.uninstall dos2unix
salt '*' cyg.uninstall dos2unix mirrors="[{'http://mirror': 'http://url/to/public/key}]"

	
salt.modules.cyg.update(cyg_arch='x86_64', mirrors=None)

	Update all packages.

	cyg_archx86_64
	Specify the cygwin architecture update
Current options are x86 and x86_64

CLI Example:

salt '*' cyg.update
salt '*' cyg.update dos2unix mirrors="[{'http://mirror': 'http://url/to/public/key}]"

salt.modules.daemontools

daemontools service module. This module will create daemontools type
service watcher.

This module is compatible with the service states,
so it can be used to maintain services using the provider argument:

myservice:
 service.running:
 - provider: daemontools

	
salt.modules.daemontools.available(name)

	Returns True if the specified service is available, otherwise returns
False.

CLI Example:

salt '*' daemontools.available foo

	
salt.modules.daemontools.disabled(name)

	Return True if the named service is enabled, false otherwise

New in version 2015.5.6.

CLI Example:

salt '*' daemontools.disabled <service name>

	
salt.modules.daemontools.enabled(name, **kwargs)

	Return True if the named service is enabled, false otherwise
A service is considered enabled if in your service directory:
- an executable ./run file exist
- a file named "down" does not exist

New in version 2015.5.7.

	name
	Service name

CLI Example:

salt '*' daemontools.enabled <service name>

	
salt.modules.daemontools.full_restart(name)

	Calls daemontools.restart() function

CLI Example:

salt '*' daemontools.full_restart <service name>

	
salt.modules.daemontools.get_all()

	Return a list of all available services

CLI Example:

salt '*' daemontools.get_all

	
salt.modules.daemontools.missing(name)

	The inverse of daemontools.available.
Returns True if the specified service is not available, otherwise returns
False.

CLI Example:

salt '*' daemontools.missing foo

	
salt.modules.daemontools.reload_(name)

	Wrapper for term()

CLI Example:

salt '*' daemontools.reload <service name>

	
salt.modules.daemontools.restart(name)

	Restart service via daemontools. This will stop/start service

CLI Example:

salt '*' daemontools.restart <service name>

	
salt.modules.daemontools.start(name)

	Starts service via daemontools

CLI Example:

salt '*' daemontools.start <service name>

	
salt.modules.daemontools.status(name, sig=None)

	Return the status for a service via daemontools, return pid if running

CLI Example:

salt '*' daemontools.status <service name>

	
salt.modules.daemontools.stop(name)

	Stops service via daemontools

CLI Example:

salt '*' daemontools.stop <service name>

	
salt.modules.daemontools.term(name)

	Send a TERM to service via daemontools

CLI Example:

salt '*' daemontools.term <service name>

salt.modules.data

Manage a local persistent data structure that can hold any arbitrary data
specific to the minion

	
salt.modules.data.cas(key, value, old_value)

	Check and set a value in the minion datastore

CLI Example:

salt '*' data.cas <key> <value> <old_value>

	
salt.modules.data.clear()

	Clear out all of the data in the minion datastore, this function is
destructive!

CLI Example:

salt '*' data.clear

	
salt.modules.data.dump(new_data)

	Replace the entire datastore with a passed data structure

CLI Example:

salt '*' data.dump '{'eggs': 'spam'}'

	
salt.modules.data.get(key, default=None)

	Get a (list of) value(s) from the minion datastore

New in version 2015.8.0.

CLI Example:

salt '*' data.get key
salt '*' data.get '["key1", "key2"]'

	
salt.modules.data.has_key(key)

	Check if key is in the minion datastore

New in version 2015.8.0.

CLI Example:

salt '*' data.has_key <mykey>

	
salt.modules.data.items()

	Get items from the minion datastore

New in version 2015.8.0.

CLI Example:

salt '*' data.items

	
salt.modules.data.keys()

	Get all keys from the minion datastore

New in version 2015.8.0.

CLI Example:

salt '*' data.keys

	
salt.modules.data.load()

	Return all of the data in the minion datastore

CLI Example:

salt '*' data.load

	
salt.modules.data.pop(key, default=None)

	Pop (return & delete) a value from the minion datastore

New in version 2015.5.2.

CLI Example:

salt '*' data.pop <key> "there was no val"

	
salt.modules.data.update(key, value)

	Update a key with a value in the minion datastore

CLI Example:

salt '*' data.update <key> <value>

	
salt.modules.data.values()

	Get values from the minion datastore

New in version 2015.8.0.

CLI Example:

salt '*' data.values

salt.modules.datadog_api

An execution module that interacts with the Datadog API

	depends:

	datadog [https://pypi.python.org/pypi/datadog] Python module

Note

The following parameters are required for all functions:

	api_key
	The datadog API key

	app_key
	The datadog application key

Full argument reference is available on the Datadog API reference page
https://docs.datadoghq.com/api/

	
salt.modules.datadog_api.cancel_downtime(api_key=None, app_key=None, scope=None, id=None)

	Cancel a downtime by id or by scope.

CLI Example:

salt-call datadog.cancel_downtime scope='host:app01' \
 api_key='0123456789' \
 app_key='9876543210'`

Arguments - Either scope or id is required.

	Parameters:

	
	id -- The downtime ID

	scope -- The downtime scope

	
salt.modules.datadog_api.post_event(api_key=None, app_key=None, title=None, text=None, date_happened=None, priority=None, host=None, tags=None, alert_type=None, aggregation_key=None, source_type_name=None)

	Post an event to the Datadog stream.

CLI Example

salt-call datadog.post_event api_key='0123456789' \
 app_key='9876543210' \
 title='Salt Highstate' \
 text="Salt highstate was run on $(salt-call grains.get id)" \
 tags='["service:salt", "event:highstate"]'

Required arguments

	Parameters:

	
	title -- The event title. Limited to 100 characters.

	text -- The body of the event. Limited to 4000 characters. The text
supports markdown.

Optional arguments

	Parameters:

	
	date_happened -- POSIX timestamp of the event.

	priority -- The priority of the event ('normal' or 'low').

	host -- Host name to associate with the event.

	tags -- A list of tags to apply to the event.

	alert_type -- "error", "warning", "info" or "success".

	aggregation_key -- An arbitrary string to use for aggregation,
max length of 100 characters.

	source_type_name -- The type of event being posted.

	
salt.modules.datadog_api.schedule_downtime(scope, api_key=None, app_key=None, monitor_id=None, start=None, end=None, message=None, recurrence=None, timezone=None, test=False)

	Schedule downtime for a scope of monitors.

CLI Example:

salt-call datadog.schedule_downtime 'host:app2' \
 stop=$(date --date='30 minutes' +%s) \
 app_key='0123456789' \
 api_key='9876543210'

Optional arguments

	Parameters:

	
	monitor_id -- The ID of the monitor

	start -- Start time in seconds since the epoch

	end -- End time in seconds since the epoch

	message -- A message to send in a notification for this downtime

	recurrence -- Repeat this downtime periodically

	timezone -- Specify the timezone

salt.modules.ddns

Support for RFC 2136 dynamic DNS updates.

	depends:

	
	dnspython Python module

	configuration:

	If you want to use TSIG authentication for the server, there
are a couple of optional configuration parameters made available to
support this (the keyname is only needed if the keyring contains more
than one key):

keyfile: keyring file (default=None)
keyname: key name in file (default=None)
keyalgorithm: algorithm used to create the key
 (default='HMAC-MD5.SIG-ALG.REG.INT').
 Other possible values: hmac-sha1, hmac-sha224, hmac-sha256,
 hmac-sha384, hmac-sha512

The keyring file needs to be in json format and the key name needs to end
with an extra period in the file, similar to this:

{"keyname.": "keycontent"}

	
salt.modules.ddns.add_host(zone, name, ttl, ip, nameserver='127.0.0.1', replace=True, timeout=5, port=53, **kwargs)

	Add, replace, or update the A and PTR (reverse) records for a host.

CLI Example:

salt ns1 ddns.add_host example.com host1 60 10.1.1.1

	
salt.modules.ddns.delete(zone, name, rdtype=None, data=None, nameserver='127.0.0.1', timeout=5, port=53, **kwargs)

	Delete a DNS record.

CLI Example:

salt ns1 ddns.delete example.com host1 A

	
salt.modules.ddns.delete_host(zone, name, nameserver='127.0.0.1', timeout=5, port=53, **kwargs)

	Delete the forward and reverse records for a host.

Returns true if any records are deleted.

CLI Example:

salt ns1 ddns.delete_host example.com host1

	
salt.modules.ddns.update(zone, name, ttl, rdtype, data, nameserver='127.0.0.1', timeout=5, replace=False, port=53, **kwargs)

	Add, replace, or update a DNS record.
nameserver must be an IP address and the minion running this module
must have update privileges on that server.
If replace is true, first deletes all records for this name and type.

CLI Example:

salt ns1 ddns.update example.com host1 60 A 10.0.0.1

salt.modules.deb_apache

Warning

This module will be removed from Salt in version 3009 in favor of
the apache Salt Extension [https://github.com/salt-extensions/saltext-apache].

Support for Apache

Please note: The functions in here are Debian-specific. Placing them in this
separate file will allow them to load only on Debian-based systems, while still
loading under the apache namespace.

	
salt.modules.deb_apache.a2disconf(conf)

	
New in version 2016.3.0.

Runs a2disconf for the given conf.

This will only be functional on Debian-based operating systems (Ubuntu,
Mint, etc).

CLI Examples:

salt '*' apache.a2disconf security

	
salt.modules.deb_apache.a2dismod(mod)

	Runs a2dismod for the given mod.

This will only be functional on Debian-based operating systems (Ubuntu,
Mint, etc).

CLI Examples:

salt '*' apache.a2dismod vhost_alias

	
salt.modules.deb_apache.a2dissite(site)

	Runs a2dissite for the given site.

This will only be functional on Debian-based operating systems (Ubuntu,
Mint, etc).

CLI Examples:

salt '*' apache.a2dissite example.com

	
salt.modules.deb_apache.a2enconf(conf)

	
New in version 2016.3.0.

Runs a2enconf for the given conf.

This will only be functional on Debian-based operating systems (Ubuntu,
Mint, etc).

CLI Examples:

salt '*' apache.a2enconf security

	
salt.modules.deb_apache.a2enmod(mod)

	Runs a2enmod for the given mod.

This will only be functional on Debian-based operating systems (Ubuntu,
Mint, etc).

CLI Examples:

salt '*' apache.a2enmod vhost_alias

	
salt.modules.deb_apache.a2ensite(site)

	Runs a2ensite for the given site.

This will only be functional on Debian-based operating systems (Ubuntu,
Mint, etc).

CLI Examples:

salt '*' apache.a2ensite example.com

	
salt.modules.deb_apache.check_conf_enabled(conf)

	
New in version 2016.3.0.

Checks to see if the specific conf symlink is in /etc/apache2/conf-enabled.

This will only be functional on Debian-based operating systems (Ubuntu,
Mint, etc).

CLI Examples:

salt '*' apache.check_conf_enabled security
salt '*' apache.check_conf_enabled security.conf

	
salt.modules.deb_apache.check_mod_enabled(mod)

	Checks to see if the specific mod symlink is in /etc/apache2/mods-enabled.

This will only be functional on Debian-based operating systems (Ubuntu,
Mint, etc).

CLI Examples:

salt '*' apache.check_mod_enabled status
salt '*' apache.check_mod_enabled status.load
salt '*' apache.check_mod_enabled status.conf

	
salt.modules.deb_apache.check_site_enabled(site)

	Checks to see if the specific site symlink is in /etc/apache2/sites-enabled.

This will only be functional on Debian-based operating systems (Ubuntu,
Mint, etc).

CLI Examples:

salt '*' apache.check_site_enabled example.com
salt '*' apache.check_site_enabled example.com.conf

salt.modules.deb_postgres

Module to provide Postgres compatibility to salt for debian family specific tools.

	
salt.modules.deb_postgres.cluster_create(version, name='main', port=None, locale=None, encoding=None, datadir=None, allow_group_access=None, data_checksums=None, wal_segsize=None)

	Adds a cluster to the Postgres server.

CLI Example:

salt '*' postgres.cluster_create '9.3'

salt '*' postgres.cluster_create '9.3' 'main'

salt '*' postgres.cluster_create '9.3' locale='fr_FR'

salt '*' postgres.cluster_create '11' data_checksums=True wal_segsize='32'

	
salt.modules.deb_postgres.cluster_exists(version, name='main')

	Checks if a given version and name of a cluster exists.

CLI Example:

salt '*' postgres.cluster_exists '9.3'

salt '*' postgres.cluster_exists '9.3' 'main'

	
salt.modules.deb_postgres.cluster_list(verbose=False)

	Return a list of cluster of Postgres server (tuples of version and name).

CLI Example:

salt '*' postgres.cluster_list

salt '*' postgres.cluster_list verbose=True

	
salt.modules.deb_postgres.cluster_remove(version, name='main', stop=False)

	Remove a cluster on a Postgres server. By default it doesn't try
to stop the cluster.

CLI Example:

salt '*' postgres.cluster_remove '9.3'

salt '*' postgres.cluster_remove '9.3' 'main'

salt '*' postgres.cluster_remove '9.3' 'main' stop=True

salt.modules.debconfmod

Support for Debconf

	
salt.modules.debconfmod.get_selections(fetchempty=True)

	Answers to debconf questions for all packages in the following format:

{'package': [['question', 'type', 'value'], ...]}

CLI Example:

salt '*' debconf.get_selections

	
salt.modules.debconfmod.set_(package, question, type, value, *extra)

	Set answers to debconf questions for a package.

CLI Example:

salt '*' debconf.set <package> <question> <type> <value> [<value> ...]

	
salt.modules.debconfmod.set_file(path, saltenv='base', **kwargs)

	Set answers to debconf questions from a file.

CLI Example:

salt '*' debconf.set_file salt://pathto/pkg.selections

	
salt.modules.debconfmod.set_template(path, template, context, defaults, saltenv='base', **kwargs)

	Set answers to debconf questions from a template.

	path
	location of the file containing the package selections

	template
	template format

	context
	variables to add to the template environment

	default
	default values for the template environment

CLI Example:

salt '*' debconf.set_template salt://pathto/pkg.selections.jinja jinja None None

	
salt.modules.debconfmod.show(name)

	Answers to debconf questions for a package in the following format:

[['question', 'type', 'value'], ...]

If debconf doesn't know about a package, we return None.

CLI Example:

salt '*' debconf.show <package name>

salt.modules.debian_ip

The networking module for Debian-based distros

References:

	http://www.debian.org/doc/manuals/debian-reference/ch05.en.html

	
salt.modules.debian_ip.apply_network_settings(**settings)

	Apply global network configuration.

CLI Example:

salt '*' ip.apply_network_settings

	
salt.modules.debian_ip.build_bond(iface, **settings)

	Create a bond script in /etc/modprobe.d with the passed settings
and load the bonding kernel module.

CLI Example:

salt '*' ip.build_bond bond0 mode=balance-alb

	
salt.modules.debian_ip.build_interface(iface, iface_type, enabled, **settings)

	Build an interface script for a network interface.

CLI Example:

salt '*' ip.build_interface eth0 eth <settings>

	
salt.modules.debian_ip.build_network_settings(**settings)

	Build the global network script.

CLI Example:

salt '*' ip.build_network_settings <settings>

	
salt.modules.debian_ip.build_routes(iface, **settings)

	Add route scripts for a network interface using up commands.

CLI Example:

salt '*' ip.build_routes eth0 <settings>

	
salt.modules.debian_ip.down(iface, iface_type)

	Shutdown a network interface

CLI Example:

salt '*' ip.down eth0 eth

	
salt.modules.debian_ip.get_bond(iface)

	Return the content of a bond script

CLI Example:

salt '*' ip.get_bond bond0

	
salt.modules.debian_ip.get_interface(iface)

	Return the contents of an interface script

CLI Example:

salt '*' ip.get_interface eth0

	
salt.modules.debian_ip.get_network_settings()

	Return the contents of the global network script.

CLI Example:

salt '*' ip.get_network_settings

	
salt.modules.debian_ip.get_routes(iface)

	Return the routes for the interface

CLI Example:

salt '*' ip.get_routes eth0

	
salt.modules.debian_ip.up(iface, iface_type)

	Start up a network interface

CLI Example:

salt '*' ip.up eth0 eth

salt.modules.debian_service

Service support for Debian systems (uses update-rc.d and /sbin/service)

Important

If you feel that Salt should be using this module to manage services on a
minion, and it is using a different module (or gives an error similar to
'service.start' is not available), see here.

	
salt.modules.debian_service.available(name)

	Returns True if the specified service is available, otherwise returns
False.

CLI Example:

salt '*' service.available sshd

	
salt.modules.debian_service.disable(name, **kwargs)

	Disable the named service to start at boot

CLI Example:

salt '*' service.disable <service name>

	
salt.modules.debian_service.disabled(name)

	Return True if the named service is disabled, false otherwise

CLI Example:

salt '*' service.disabled <service name>

	
salt.modules.debian_service.enable(name, **kwargs)

	Enable the named service to start at boot

CLI Example:

salt '*' service.enable <service name>

	
salt.modules.debian_service.enabled(name, **kwargs)

	Return True if the named service is enabled, false otherwise

CLI Example:

salt '*' service.enabled <service name>

	
salt.modules.debian_service.force_reload(name)

	Force-reload the named service

CLI Example:

salt '*' service.force_reload <service name>

	
salt.modules.debian_service.get_all()

	Return all available boot services

CLI Example:

salt '*' service.get_all

	
salt.modules.debian_service.get_disabled()

	Return a set of services that are installed but disabled

CLI Example:

salt '*' service.get_disabled

	
salt.modules.debian_service.get_enabled()

	Return a list of service that are enabled on boot

CLI Example:

salt '*' service.get_enabled

	
salt.modules.debian_service.missing(name)

	The inverse of service.available.
Returns True if the specified service is not available, otherwise returns
False.

CLI Example:

salt '*' service.missing sshd

	
salt.modules.debian_service.reload_(name)

	Reload the named service

CLI Example:

salt '*' service.reload <service name>

	
salt.modules.debian_service.restart(name)

	Restart the named service

CLI Example:

salt '*' service.restart <service name>

	
salt.modules.debian_service.start(name)

	Start the specified service

CLI Example:

salt '*' service.start <service name>

	
salt.modules.debian_service.status(name, sig=None)

	Return the status for a service.
If the name contains globbing, a dict mapping service name to True/False
values is returned.

Changed in version 2018.3.0: The service name can now be a glob (e.g. salt*)

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service to check

	sig (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Signature to use to find the service via ps

	Returns:

	True if running, False otherwise
dict: Maps service name to True if running, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.status <service name> [service signature]

	
salt.modules.debian_service.stop(name)

	Stop the specified service

CLI Example:

salt '*' service.stop <service name>

salt.modules.debuild_pkgbuild

Debian Package builder system

New in version 2015.8.0.

This system allows for all of the components to build debs safely in chrooted
environments. This also provides a function to generate debian repositories

This module implements the pkgbuild interface

	
salt.modules.debuild_pkgbuild.build(runas, tgt, dest_dir, spec, sources, deps, env, template, saltenv='base', log_dir='/var/log/salt/pkgbuild')

	Given the package destination directory, the tarball containing debian files (e.g. control)
and package sources, use pbuilder to safely build the platform package

CLI Example:

Debian

salt '*' pkgbuild.make_src_pkg deb-8-x86_64 /var/www/html
 https://raw.githubusercontent.com/saltstack/libnacl/master/pkg/deb/python-libnacl.control
 https://pypi.python.org/packages/source/l/libnacl/libnacl-1.3.5.tar.gz

This example command should build the libnacl package for Debian using pbuilder
and place it in /var/www/html/ on the minion

	
salt.modules.debuild_pkgbuild.make_repo(repodir, keyid=None, env=None, use_passphrase=False, gnupghome='/etc/salt/gpgkeys', runas='root', timeout=15.0)

	Make a package repository and optionally sign it and packages present

Given the repodir (directory to create repository in), create a Debian
repository and optionally sign it and packages present. This state is
best used with onchanges linked to your package building states.

	repodir
	The directory to find packages that will be in the repository.

	keyid
	
Changed in version 2016.3.0.

Optional Key ID to use in signing packages and repository.
This consists of the last 8 hex digits of the GPG key ID.

Utilizes Public and Private keys associated with keyid which have
been loaded into the minion's Pillar data. Leverages gpg-agent and
gpg-preset-passphrase for caching keys, etc.
These pillar values are assumed to be filenames which are present
in gnupghome. The pillar keys shown below have to match exactly.

For example, contents from a Pillar data file with named Public
and Private keys as follows:

gpg_pkg_priv_keyname: gpg_pkg_key.pem
gpg_pkg_pub_keyname: gpg_pkg_key.pub

	env
	
Changed in version 2016.3.0.

A dictionary of environment variables to be utilized in creating the
repository.

	use_passphraseFalse
	
New in version 2016.3.0.

Use a passphrase with the signing key presented in keyid.
Passphrase is received from Pillar data which could be passed on the
command line with pillar parameter. For example:

pillar='{ "gpg_passphrase" : "my_passphrase" }'

	gnupghome/etc/salt/gpgkeys
	
New in version 2016.3.0.

Location where GPG related files are stored, used with keyid.

	runasroot
	
New in version 2016.3.0.

User to create the repository as, and optionally sign packages.

Note

Ensure the user has correct permissions to any files and
directories which are to be utilized.

	timeout15.0
	
New in version 2016.3.4.

Timeout in seconds to wait for the prompt for inputting the passphrase.

CLI Example:

salt '*' pkgbuild.make_repo /var/www/html

	
salt.modules.debuild_pkgbuild.make_src_pkg(dest_dir, spec, sources, env=None, saltenv='base', runas='root')

	Create a platform specific source package from the given platform spec/control file and sources

CLI Example:

Debian

salt '*' pkgbuild.make_src_pkg /var/www/html/
 https://raw.githubusercontent.com/saltstack/libnacl/master/pkg/deb/python-libnacl.control.tar.xz
 https://pypi.python.org/packages/source/l/libnacl/libnacl-1.3.5.tar.gz

This example command should build the libnacl SOURCE package and place it in
/var/www/html/ on the minion

	dest_dir
	Absolute path for directory to write source package

	spec
	Absolute path to spec file or equivalent

	sources
	Absolute path to source files to build source package from

	envNone
	A list or dictionary of environment variables to be set prior to execution.
Example:

- env:
 - DEB_BUILD_OPTIONS: 'nocheck'

Warning

The above illustrates a common PyYAML pitfall, that yes,
no, on, off, true, and false are all loaded as
boolean True and False values, and must be enclosed in
quotes to be used as strings. More info on this (and other) PyYAML
idiosyncrasies can be found here.

saltenv: base

Salt environment variables

	runasroot
	
New in version 2019.2.1.

User to create the files and directories

Note

Ensure the user has correct permissions to any files and
directories which are to be utilized.

salt.modules.defaults

Module to work with salt formula defaults files

	
salt.modules.defaults.deepcopy(source)

	Allows deep copy of objects in formulas.

By default, Python does not copy objects,
it creates bindings between a target and an object.

It is more typical to use this in a templating language in formulas,
instead of directly on the command-line.

	
salt.modules.defaults.get(key, default='')

	defaults.get is used much like pillar.get except that it will read
a default value for a pillar from defaults.json or defaults.yaml
files that are stored in the root of a salt formula.

CLI Example:

salt '*' defaults.get core:users:root

The defaults is computed from pillar key. The first entry is considered as
the formula namespace.

For example, querying core:users:root will try to load
salt://core/defaults.yaml and salt://core/defaults.json.

	
salt.modules.defaults.merge(dest, src, merge_lists=False, in_place=True, convert_none=True)

	Allows deep merging of dicts in formulas.

	merge_listsFalse
	If True, it will also merge lists instead of replace their items.

	in_placeTrue
	If True, it will merge into dest dict,
if not it will make a new copy from that dict and return it.

	convert_noneTrue
	If True, it will convert src and dest to empty dicts if they are None.
If True and dest is None but in_place is True, raises TypeError.
If False it will make a new copy from that dict and return it.

New in version 3005.

CLI Example:

salt '*' defaults.merge '{a: b}' '{d: e}'

It is more typical to use this in a templating language in formulas,
instead of directly on the command-line.

	
salt.modules.defaults.update(dest, defaults, merge_lists=True, in_place=True, convert_none=True)

	Allows setting defaults for group of data set e.g. group for nodes.

This function is a combination of defaults.merge
and defaults.deepcopy to avoid redundant in jinja.

Example:

group01:
 defaults:
 enabled: True
 extra:
 - test
 - stage
 nodes:
 host01:
 index: foo
 upstream: bar
 host02:
 index: foo2
 upstream: bar2

{% do salt['defaults.update'](group01.nodes, group01.defaults) %}

Each node will look like the following:

host01:
 enabled: True
 index: foo
 upstream: bar
 extra:
 - test
 - stage

	merge_listsTrue
	If True, it will also merge lists instead of replace their items.

	in_placeTrue
	If True, it will merge into dest dict.
if not it will make a new copy from that dict and return it.

	convert_noneTrue
	If True, it will convert src and dest to empty dicts if they are None.
If True and dest is None but in_place is True, raises TypeError.
If False it will make a new copy from that dict and return it.

New in version 3005.

It is more typical to use this in a templating language in formulas,
instead of directly on the command-line.

salt.modules.devinfo

Module for devinfo
:maintainer: Alberto Planas <aplanas@suse.com>
:maturity: new
:depends: None
:platform: Linux

	
salt.modules.devinfo.filter_(udev_in=None, udev_ex=None)

	Returns a list of devices, filtered under udev keys.

	udev_in
	A dictionary of key:values that are expected in the device
udev information

	udev_ex
	A dictionary of key:values that are not expected in the device
udev information (excluded)

The key is a lower case string, joined by dots, that represent a
path in the udev information dictionary. For example, 'e.id_bus'
will represent the udev entry udev['E']['ID_BUS']

If the udev entry is a list, the algorithm will check that at
least one item match one item of the value of the parameters.

Returns list of devices that match udev_in and do not match
udev_ex.

CLI Example:

salt '*' devinfo.filter udev_in='{"e.id_bus": "ata"}'

	
salt.modules.devinfo.hwinfo(items=None, short=True, listmd=False, devices=None)

	Probe for hardware

	items
	List of hardware items to inspect. Default ['bios', 'cpu', 'disk',
'memory', 'network', 'partition']

	short
	Show only a summary. Default True.

	listmd
	Report RAID devices. Default False.

	devices
	List of devices to show information from. Default None.

CLI Example:

salt '*' devinfo.hwinfo
salt '*' devinfo.hwinfo items='["disk"]' short=no
salt '*' devinfo.hwinfo items='["disk"]' short=no devices='["/dev/sda"]'
salt '*' devinfo.hwinfo devices=/dev/sda

salt.modules.devmap

Device-Mapper module

	
salt.modules.devmap.multipath_flush(device)

	Device-Mapper Multipath flush

CLI Example:

salt '*' devmap.multipath_flush mpath1

	
salt.modules.devmap.multipath_list()

	Device-Mapper Multipath list

CLI Example:

salt '*' devmap.multipath_list

salt.modules.dig

Compendium of generic DNS utilities.
The 'dig' command line tool must be installed in order to use this module.

	
salt.modules.dig.A(host, nameserver=None)

	Return the A record for host.

Always returns a list.

CLI Example:

salt ns1 dig.A www.google.com

	
salt.modules.dig.AAAA(host, nameserver=None)

	Return the AAAA record for host.

Always returns a list.

CLI Example:

salt ns1 dig.AAAA www.google.com

	
salt.modules.dig.CNAME(host, nameserver=None)

	Return the CNAME record for host.

New in version 3005.

CLI Example:

salt ns1 dig.CNAME mail.google.com

	
salt.modules.dig.MX(domain, resolve=False, nameserver=None)

	Return a list of lists for the MX of domain.

If the resolve argument is True, resolve IPs for the servers.

It's limited to one IP, because although in practice it's very rarely a
round robin, it is an acceptable configuration and pulling just one IP lets
the data be similar to the non-resolved version. If you think an MX has
multiple IPs, don't use the resolver here, resolve them in a separate step.

CLI Example:

salt ns1 dig.MX google.com

	
salt.modules.dig.NS(domain, resolve=True, nameserver=None)

	Return a list of IPs of the nameservers for domain

If resolve is False, don't resolve names.

CLI Example:

salt ns1 dig.NS google.com

	
salt.modules.dig.PTR(host, nameserver=None)

	
New in version 3006.0.

Return the PTR record for host.

Always returns a list.

CLI Example:

salt ns1 dig.PTR 1.2.3.4

	
salt.modules.dig.SPF(domain, record='SPF', nameserver=None)

	Return the allowed IPv4 ranges in the SPF record for domain.

If record is SPF and the SPF record is empty, the TXT record will be
searched automatically. If you know the domain uses TXT and not SPF,
specifying that will save a lookup.

CLI Example:

salt ns1 dig.SPF google.com

	
salt.modules.dig.TXT(host, nameserver=None)

	Return the TXT record for host.

Always returns a list.

CLI Example:

salt ns1 dig.TXT google.com

	
salt.modules.dig.a(host, nameserver=None)

	Return the A record for host.

Always returns a list.

CLI Example:

salt ns1 dig.A www.google.com

	
salt.modules.dig.aaaa(host, nameserver=None)

	Return the AAAA record for host.

Always returns a list.

CLI Example:

salt ns1 dig.AAAA www.google.com

	
salt.modules.dig.check_ip(addr)

	Check if address is a valid IP. returns True if valid, otherwise False.

CLI Example:

salt ns1 dig.check_ip 127.0.0.1
salt ns1 dig.check_ip 1111:2222:3333:4444:5555:6666:7777:8888

	
salt.modules.dig.cname(host, nameserver=None)

	Return the CNAME record for host.

New in version 3005.

CLI Example:

salt ns1 dig.CNAME mail.google.com

	
salt.modules.dig.mx(domain, resolve=False, nameserver=None)

	Return a list of lists for the MX of domain.

If the resolve argument is True, resolve IPs for the servers.

It's limited to one IP, because although in practice it's very rarely a
round robin, it is an acceptable configuration and pulling just one IP lets
the data be similar to the non-resolved version. If you think an MX has
multiple IPs, don't use the resolver here, resolve them in a separate step.

CLI Example:

salt ns1 dig.MX google.com

	
salt.modules.dig.ns(domain, resolve=True, nameserver=None)

	Return a list of IPs of the nameservers for domain

If resolve is False, don't resolve names.

CLI Example:

salt ns1 dig.NS google.com

	
salt.modules.dig.ptr(host, nameserver=None)

	
New in version 3006.0.

Return the PTR record for host.

Always returns a list.

CLI Example:

salt ns1 dig.PTR 1.2.3.4

	
salt.modules.dig.spf(domain, record='SPF', nameserver=None)

	Return the allowed IPv4 ranges in the SPF record for domain.

If record is SPF and the SPF record is empty, the TXT record will be
searched automatically. If you know the domain uses TXT and not SPF,
specifying that will save a lookup.

CLI Example:

salt ns1 dig.SPF google.com

salt.modules.disk

Module for managing disks and blockdevices

	
salt.modules.disk.blkid(device=None, token=None)

	Return block device attributes: UUID, LABEL, etc. This function only works
on systems where blkid is available.

	device
	Device name from the system

	token
	Any valid token used for the search

CLI Example:

salt '*' disk.blkid
salt '*' disk.blkid /dev/sda
salt '*' disk.blkid token='UUID=6a38ee5-7235-44e7-8b22-816a403bad5d'
salt '*' disk.blkid token='TYPE=ext4'

	
salt.modules.disk.dump(device, args=None)

	Return all contents of dumpe2fs for a specified device

	device
	The device path to dump.

	args
	A list of attributes to return. Returns all by default.

CLI Example:

salt '*' disk.dump /dev/sda1

	
salt.modules.disk.format_(device, fs_type='ext4', inode_size=None, lazy_itable_init=None, fat=None, force=False)

	Format a filesystem onto a device

New in version 2016.11.0.

	device
	The device in which to create the new filesystem

	fs_type
	The type of filesystem to create

	inode_size
	Size of the inodes

This option is only enabled for ext and xfs filesystems

	lazy_itable_init
	If enabled and the uninit_bg feature is enabled, the inode table will
not be fully initialized by mke2fs. This speeds up filesystem
initialization noticeably, but it requires the kernel to finish
initializing the filesystem in the background when the filesystem
is first mounted. If the option value is omitted, it defaults to 1 to
enable lazy inode table zeroing.

This option is only enabled for ext filesystems

	fat
	FAT size option. Can be 12, 16 or 32, and can only be used on
fat or vfat filesystems.

	force
	Force mke2fs to create a filesystem, even if the specified device is
not a partition on a block special device. This option is only enabled
for ext and xfs filesystems

This option is dangerous, use it with caution.

CLI Example:

salt '*' disk.format /dev/sdX1

	
salt.modules.disk.fstype(device)

	Return the filesystem name of the specified device

New in version 2016.11.0.

	device
	The name of the device

CLI Example:

salt '*' disk.fstype /dev/sdX1

	
salt.modules.disk.get_fstype_from_path(path)

	Return the filesystem type of the underlying device for a specified path.

New in version 3006.0.

	path
	The path for the function to evaluate.

CLI Example:

salt '*' disk.get_fstype_from_path /root

	
salt.modules.disk.hdparms(disks, args='aAbBcCdgHiJkMmNnQrRuW')

	Retrieve disk parameters.

New in version 2016.3.0.

	disks
	Single disk or list of disks to query.

	args
	Sequence of hdparm flags to fetch.

CLI Example:

salt '*' disk.hdparms /dev/sda

	
salt.modules.disk.hpa(disks, size=None)

	Get/set Host Protected Area settings

T13 INCITS 346-2001 (1367D) defines the BEER (Boot Engineering Extension Record)
and PARTIES (Protected Area Run Time Interface Extension Services), allowing
for a Host Protected Area on a disk.

It's often used by OEMS to hide parts of a disk, and for overprovisioning SSD's

Warning

Setting the HPA might clobber your data, be very careful with this on active disks!

New in version 2016.3.0.

CLI Example:

salt '*' disk.hpa /dev/sda
salt '*' disk.hpa /dev/sda 5%
salt '*' disk.hpa /dev/sda 10543256

	
salt.modules.disk.inodeusage(args=None)

	Return inode usage information for volumes mounted on this minion

	args
	Sequence of flags to pass to the df command.

CLI Example:

salt '*' disk.inodeusage

	
salt.modules.disk.iostat(interval=1, count=5, disks=None)

	Gather and return (averaged) IO stats.

New in version 2016.3.0.

Changed in version 2016.11.4: Added support for AIX

CLI Example:

salt '*' disk.iostat 1 5 disks=sda

	
salt.modules.disk.percent(args=None)

	Return partition information for volumes mounted on this minion

	args
	Specify a single partition for which to return data.

CLI Example:

salt '*' disk.percent /var

	
salt.modules.disk.resize2fs(device)

	Resizes the filesystem.

CLI Example:

salt '*' disk.resize2fs /dev/sda1

	
salt.modules.disk.smart_attributes(dev, attributes=None, values=None)

	Fetch SMART attributes
Providing attributes will deliver only requested attributes
Providing values will deliver only requested values for attributes

Default is the Backblaze recommended
set (https://www.backblaze.com/blog/hard-drive-smart-stats/):
(5,187,188,197,198)

New in version 2016.3.0.

CLI Example:

salt '*' disk.smart_attributes /dev/sda
salt '*' disk.smart_attributes /dev/sda attributes=(5,187,188,197,198)

	
salt.modules.disk.tune(device, **kwargs)

	Set attributes for the specified device

CLI Example:

salt '*' disk.tune /dev/sda1 read-ahead=1024 read-write=True

Valid options are: read-ahead, filesystem-read-ahead,
read-only, read-write.

See the blockdev(8) manpage for a more complete description of these
options.

	
salt.modules.disk.usage(args=None)

	Return usage information for volumes mounted on this minion

	args
	Sequence of flags to pass to the df command.

Changed in version 2019.2.0: Default for SunOS changed to 1 kilobyte blocks

CLI Example:

salt '*' disk.usage

	
salt.modules.disk.wipe(device)

	Remove the filesystem information

CLI Example:

salt '*' disk.wipe /dev/sda1

salt.modules.djangomod

Manage Django sites

	
salt.modules.djangomod.collectstatic(settings_module, bin_env=None, no_post_process=False, ignore=None, dry_run=False, clear=False, link=False, no_default_ignore=False, pythonpath=None, env=None, runas=None)

	Collect static files from each of your applications into a single location
that can easily be served in production.

CLI Example:

salt '*' django.collectstatic <settings_module>

	
salt.modules.djangomod.command(settings_module, command, bin_env=None, pythonpath=None, env=None, runas=None, *args, **kwargs)

	Run arbitrary django management command

CLI Example:

salt '*' django.command <settings_module> <command>

	
salt.modules.djangomod.createsuperuser(settings_module, username, email, bin_env=None, database=None, pythonpath=None, env=None, runas=None)

	Create a super user for the database.
This function defaults to use the --noinput flag which prevents the
creation of a password for the superuser.

CLI Example:

salt '*' django.createsuperuser <settings_module> user user@example.com

	
salt.modules.djangomod.loaddata(settings_module, fixtures, bin_env=None, database=None, pythonpath=None, env=None)

	Load fixture data

	Fixtures:
	comma separated list of fixtures to load

CLI Example:

salt '*' django.loaddata <settings_module> <comma delimited list of fixtures>

	
salt.modules.djangomod.migrate(settings_module, app_label=None, migration_name=None, bin_env=None, database=None, pythonpath=None, env=None, noinput=True, runas=None)

	Run migrate

Execute the Django-Admin migrate command (requires Django 1.7 or higher).

New in version 3000.

	settings_module
	Specifies the settings module to use.
The settings module should be in Python package syntax, e.g. mysite.settings.
If this isn’t provided, django-admin will use the DJANGO_SETTINGS_MODULE
environment variable.

	app_label
	Specific app to run migrations for, instead of all apps.
This may involve running other apps’ migrations too, due to dependencies.

	migration_name
	Named migration to be applied to a specific app.
Brings the database schema to a state where the named migration is applied,
but no later migrations in the same app are applied. This may involve
unapplying migrations if you have previously migrated past the named migration.
Use the name zero to unapply all migrations for an app.

	bin_env
	Path to pip (or to a virtualenv). This can be used to specify the path
to the pip to use when more than one Python release is installed (e.g.
/usr/bin/pip-2.7 or /usr/bin/pip-2.6. If a directory path is
specified, it is assumed to be a virtualenv.

	database
	Database to migrate. Defaults to 'default'.

	pythonpath
	Adds the given filesystem path to the Python import search path.
If this isn’t provided, django-admin will use the PYTHONPATH environment variable.

	env
	A list of environment variables to be set prior to execution.

Example:

module.run:
 - name: django.migrate
 - settings_module: my_django_app.settings
 - env:
 - DATABASE_USER: 'mydbuser'

	noinput
	Suppresses all user prompts. Defaults to True.

	runas
	The user name to run the command as.

CLI Example:

salt '*' django.migrate <settings_module>
salt '*' django.migrate <settings_module> <app_label>
salt '*' django.migrate <settings_module> <app_label> <migration_name>

	
salt.modules.djangomod.syncdb(settings_module, bin_env=None, migrate=False, database=None, pythonpath=None, env=None, noinput=True, runas=None)

	Run syncdb

Execute the Django-Admin syncdb command, if South is available on the
minion the migrate option can be passed as True calling the
migrations to run after the syncdb completes

NOTE: The syncdb command was deprecated in Django 1.7 and removed in Django 1.9.
For Django versions 1.9 or higher use the migrate command instead.

CLI Example:

salt '*' django.syncdb <settings_module>

salt.modules.dnsmasq

Module for managing dnsmasq

	
salt.modules.dnsmasq.fullversion()

	Shows installed version of dnsmasq and compile options.

CLI Example:

salt '*' dnsmasq.fullversion

	
salt.modules.dnsmasq.get_config(config_file='/etc/dnsmasq.conf')

	Dumps all options from the config file.

	config_file
	The location of the config file from which to obtain contents.
Defaults to /etc/dnsmasq.conf.

CLI Examples:

salt '*' dnsmasq.get_config
salt '*' dnsmasq.get_config config_file=/etc/dnsmasq.conf

	
salt.modules.dnsmasq.set_config(config_file='/etc/dnsmasq.conf', follow=True, **kwargs)

	Sets a value or a set of values in the specified file. By default, if
conf-dir is configured in this file, salt will attempt to set the option
in any file inside the conf-dir where it has already been enabled. If it
does not find it inside any files, it will append it to the main config
file. Setting follow to False will turn off this behavior.

If a config option currently appears multiple times (such as dhcp-host,
which is specified at least once per host), the new option will be added
to the end of the main config file (and not to any includes). If you need
an option added to a specific include file, specify it as the config_file.

	Parameters:

	
	config_file (string) -- config file where settings should be updated / added.

	follow (bool [https://docs.python.org/3/library/functions.html#bool]) -- attempt to set the config option inside any file within
the conf-dir where it has already been enabled.

	kwargs -- key value pairs that contain the configuration settings that you
want set.

CLI Examples:

salt '*' dnsmasq.set_config domain=mydomain.com
salt '*' dnsmasq.set_config follow=False domain=mydomain.com
salt '*' dnsmasq.set_config config_file=/etc/dnsmasq.conf domain=mydomain.com

	
salt.modules.dnsmasq.version()

	Shows installed version of dnsmasq.

CLI Example:

salt '*' dnsmasq.version

salt.modules.dnsutil

Compendium of generic DNS utilities.

Note

Some functions in the dnsutil execution module depend on dig.

	
salt.modules.dnsutil.A(host, nameserver=None)

	Return the A record(s) for host.

Always returns a list.

CLI Example:

salt ns1 dnsutil.A www.google.com

	
salt.modules.dnsutil.AAAA(host, nameserver=None)

	Return the AAAA record(s) for host.

Always returns a list.

New in version 2014.7.5.

CLI Example:

salt ns1 dnsutil.AAAA www.google.com

	
salt.modules.dnsutil.MX(domain, resolve=False, nameserver=None)

	Return a list of lists for the MX of domain.

If the 'resolve' argument is True, resolve IPs for the servers.

It's limited to one IP, because although in practice it's very rarely a
round robin, it is an acceptable configuration and pulling just one IP lets
the data be similar to the non-resolved version. If you think an MX has
multiple IPs, don't use the resolver here, resolve them in a separate step.

CLI Example:

salt ns1 dnsutil.MX google.com

	
salt.modules.dnsutil.NS(domain, resolve=True, nameserver=None)

	Return a list of IPs of the nameservers for domain

If 'resolve' is False, don't resolve names.

CLI Example:

salt ns1 dnsutil.NS google.com

	
salt.modules.dnsutil.SPF(domain, record='SPF', nameserver=None)

	Return the allowed IPv4 ranges in the SPF record for domain.

If record is SPF and the SPF record is empty, the TXT record will be
searched automatically. If you know the domain uses TXT and not SPF,
specifying that will save a lookup.

CLI Example:

salt ns1 dnsutil.SPF google.com

	
salt.modules.dnsutil.check_ip(ip_addr)

	Check that string ip_addr is a valid IP

CLI Example:

salt ns1 dnsutil.check_ip 127.0.0.1

	
salt.modules.dnsutil.hosts_append(hostsfile='/etc/hosts', ip_addr=None, entries=None)

	Append a single line to the /etc/hosts file.

CLI Example:

salt '*' dnsutil.hosts_append /etc/hosts 127.0.0.1 ad1.yuk.co,ad2.yuk.co

	
salt.modules.dnsutil.hosts_remove(hostsfile='/etc/hosts', entries=None)

	Remove a host from the /etc/hosts file. If doing so will leave a line
containing only an IP address, then the line will be deleted. This function
will leave comments and blank lines intact.

CLI Examples:

salt '*' dnsutil.hosts_remove /etc/hosts ad1.yuk.co
salt '*' dnsutil.hosts_remove /etc/hosts ad2.yuk.co,ad1.yuk.co

	
salt.modules.dnsutil.parse_hosts(hostsfile='/etc/hosts', hosts=None)

	Parse /etc/hosts file.

CLI Example:

salt '*' dnsutil.parse_hosts

	
salt.modules.dnsutil.parse_zone(zonefile=None, zone=None)

	Parses a zone file. Can be passed raw zone data on the API level.

CLI Example:

salt ns1 dnsutil.parse_zone /var/lib/named/example.com.zone

	
salt.modules.dnsutil.serial(zone='', update=False)

	Return, store and update a dns serial for your zone files.

zone: a keyword for a specific zone

update: store an updated version of the serial in a grain

If update is False, the function will retrieve an existing serial or
return the current date if no serial is stored. Nothing will be stored

If update is True, the function will set the serial to the current date
if none exist or if the existing serial is for a previous date. If a serial
for greater than the current date is already stored, the function will
increment it.

This module stores the serial in a grain, you can explicitly set the
stored value as a grain named dnsserial_<zone_name>.

CLI Example:

salt ns1 dnsutil.serial example.com

salt.modules.dockercompose

Warning

This module will be removed from Salt in version 3009 in favor of
the docker Salt Extension [https://github.com/saltstack/saltext-docker].

Module to import docker-compose via saltstack

New in version 2016.3.0.

	maintainer:

	Jean Praloran <jeanpralo@gmail.com>

	maturity:

	new

	depends:

	docker-compose>=1.5

	platform:

	all

Introduction

This module allows one to deal with docker-compose file in a directory.

This is a first version only, the following commands are missing at the moment
but will be built later on if the community is interested in this module:

	run

	logs

	port

	scale

Installation Prerequisites

This execution module requires at least version 1.4.0 of both docker-compose [https://pypi.python.org/pypi/docker-compose] and
Docker [https://www.docker.com/]. docker-compose can easily be installed using pip.install:

salt myminion pip.install docker-compose>=1.5.0

How to use this module?

In order to use the module if you have no docker-compose file on the server you
can issue the command create, it takes two arguments the path where the
docker-compose.yml will be stored and the content of this latter:

salt-call -l debug dockercompose.create /tmp/toto '
database:
image: mongo:3.0
command: mongod --smallfiles --quiet --logpath=/dev/null
'

Then you can execute a list of method defined at the bottom with at least one
argument (the path where the docker-compose.yml will be read) and an optional
python list which corresponds to the services names:

salt-call -l debug dockercompose.up /tmp/toto
salt-call -l debug dockercompose.restart /tmp/toto '[database]'
salt-call -l debug dockercompose.stop /tmp/toto
salt-call -l debug dockercompose.rm /tmp/toto

Docker-compose method supported

	up

	restart

	stop

	start

	pause

	unpause

	kill

	rm

	ps

	pull

	build

Functions

	
	docker-compose.yml management
	
	dockercompose.create

	dockercompose.get

	
	Manage containers
	
	dockercompose.restart

	dockercompose.stop

	dockercompose.pause

	dockercompose.unpause

	dockercompose.start

	dockercompose.kill

	dockercompose.rm

	dockercompose.up

	
	Manage containers image:
	
	dockercompose.pull

	dockercompose.build

	
	Gather information about containers:
	
	dockercompose.ps

	
	Manage service definitions:
	
	dockercompose.service_create

	dockercompose.service_upsert

	dockercompose.service_remove

	dockercompose.service_set_tag

Detailed Function Documentation

	
salt.modules.dockercompose.build(path, service_names=None)

	Build image for containers in the docker-compose file, service_names is a
python list, if omitted build images for all containers. Please note
that at the moment the module does not allow you to upload your Dockerfile,
nor any other file you could need with your docker-compose.yml, you will
have to make sure the files you need are actually in the directory specified
in the build keyword

	path
	Path where the docker-compose file is stored on the server

	service_names
	If specified will pull only the image for the specified services

CLI Example:

salt myminion dockercompose.build /path/where/docker-compose/stored
salt myminion dockercompose.build /path/where/docker-compose/stored '[janus]'

	
salt.modules.dockercompose.create(path, docker_compose)

	Create and validate a docker-compose file into a directory

	path
	Path where the docker-compose file will be stored on the server

	docker_compose
	docker_compose file

CLI Example:

salt myminion dockercompose.create /path/where/docker-compose/stored content

	
salt.modules.dockercompose.get(path)

	Get the content of the docker-compose file into a directory

	path
	Path where the docker-compose file is stored on the server

CLI Example:

salt myminion dockercompose.get /path/where/docker-compose/stored

	
salt.modules.dockercompose.kill(path, service_names=None)

	Kill containers in the docker-compose file, service_names is a python
list, if omitted kill all containers

	path
	Path where the docker-compose file is stored on the server

	service_names
	If specified will kill only the specified services

CLI Example:

salt myminion dockercompose.kill /path/where/docker-compose/stored
salt myminion dockercompose.kill /path/where/docker-compose/stored '[janus]'

	
salt.modules.dockercompose.pause(path, service_names=None)

	Pause running containers in the docker-compose file, service_names is a python
list, if omitted pause all containers

	path
	Path where the docker-compose file is stored on the server

	service_names
	If specified will pause only the specified services

CLI Example:

salt myminion dockercompose.pause /path/where/docker-compose/stored
salt myminion dockercompose.pause /path/where/docker-compose/stored '[janus]'

	
salt.modules.dockercompose.ps(path)

	List all running containers and report some information about them

	path
	Path where the docker-compose file is stored on the server

CLI Example:

salt myminion dockercompose.ps /path/where/docker-compose/stored

	
salt.modules.dockercompose.pull(path, service_names=None)

	Pull image for containers in the docker-compose file, service_names is a
python list, if omitted pull all images

	path
	Path where the docker-compose file is stored on the server

	service_names
	If specified will pull only the image for the specified services

CLI Example:

salt myminion dockercompose.pull /path/where/docker-compose/stored
salt myminion dockercompose.pull /path/where/docker-compose/stored '[janus]'

	
salt.modules.dockercompose.restart(path, service_names=None)

	Restart container(s) in the docker-compose file, service_names is a python
list, if omitted restart all containers

	path
	Path where the docker-compose file is stored on the server

	service_names
	If specified will restart only the specified services

CLI Example:

salt myminion dockercompose.restart /path/where/docker-compose/stored
salt myminion dockercompose.restart /path/where/docker-compose/stored '[janus]'

	
salt.modules.dockercompose.rm(path, service_names=None)

	Remove stopped containers in the docker-compose file, service_names is a python
list, if omitted remove all stopped containers

	path
	Path where the docker-compose file is stored on the server

	service_names
	If specified will remove only the specified stopped services

CLI Example:

salt myminion dockercompose.rm /path/where/docker-compose/stored
salt myminion dockercompose.rm /path/where/docker-compose/stored '[janus]'

	
salt.modules.dockercompose.service_create(path, service_name, definition)

	Create the definition of a docker-compose service
This fails when the service already exists
This does not pull or up the service
This wil re-write your yaml file. Comments will be lost. Indentation is set to 2 spaces

	path
	Path where the docker-compose file is stored on the server

	service_name
	Name of the service to create

	definition
	Service definition as yaml or json string

CLI Example:

salt myminion dockercompose.service_create /path/where/docker-compose/stored service_name definition

	
salt.modules.dockercompose.service_remove(path, service_name)

	Remove the definition of a docker-compose service
This does not rm the container
This wil re-write your yaml file. Comments will be lost. Indentation is set to 2 spaces

	path
	Path where the docker-compose file is stored on the server

	service_name
	Name of the service to remove

CLI Example:

salt myminion dockercompose.service_remove /path/where/docker-compose/stored service_name

	
salt.modules.dockercompose.service_set_tag(path, service_name, tag)

	Change the tag of a docker-compose service
This does not pull or up the service
This wil re-write your yaml file. Comments will be lost. Indentation is set to 2 spaces

	path
	Path where the docker-compose file is stored on the server

	service_name
	Name of the service to remove

	tag
	Name of the tag (often used as version) that the service image should have

CLI Example:

salt myminion dockercompose.service_create /path/where/docker-compose/stored service_name tag

	
salt.modules.dockercompose.service_upsert(path, service_name, definition)

	Create or update the definition of a docker-compose service
This does not pull or up the service
This wil re-write your yaml file. Comments will be lost. Indentation is set to 2 spaces

	path
	Path where the docker-compose file is stored on the server

	service_name
	Name of the service to create

	definition
	Service definition as yaml or json string

CLI Example:

salt myminion dockercompose.service_upsert /path/where/docker-compose/stored service_name definition

	
salt.modules.dockercompose.start(path, service_names=None)

	Start containers in the docker-compose file, service_names is a python
list, if omitted start all containers

	path
	Path where the docker-compose file is stored on the server

	service_names
	If specified will start only the specified services

CLI Example:

salt myminion dockercompose.start /path/where/docker-compose/stored
salt myminion dockercompose.start /path/where/docker-compose/stored '[janus]'

	
salt.modules.dockercompose.stop(path, service_names=None)

	Stop running containers in the docker-compose file, service_names is a python
list, if omitted stop all containers

	path
	Path where the docker-compose file is stored on the server

	service_names
	If specified will stop only the specified services

CLI Example:

salt myminion dockercompose.stop /path/where/docker-compose/stored
salt myminion dockercompose.stop /path/where/docker-compose/stored '[janus]'

	
salt.modules.dockercompose.unpause(path, service_names=None)

	Un-Pause containers in the docker-compose file, service_names is a python
list, if omitted unpause all containers

	path
	Path where the docker-compose file is stored on the server

	service_names
	If specified will un-pause only the specified services

CLI Example:

salt myminion dockercompose.pause /path/where/docker-compose/stored
salt myminion dockercompose.pause /path/where/docker-compose/stored '[janus]'

	
salt.modules.dockercompose.up(path, service_names=None)

	Create and start containers defined in the docker-compose.yml file
located in path, service_names is a python list, if omitted create and
start all containers

	path
	Path where the docker-compose file is stored on the server

	service_names
	If specified will create and start only the specified services

CLI Example:

salt myminion dockercompose.up /path/where/docker-compose/stored
salt myminion dockercompose.up /path/where/docker-compose/stored '[janus]'

salt.modules.dockermod

Warning

This module will be removed from Salt in version 3009 in favor of
the docker Salt Extension [https://github.com/saltstack/saltext-docker].

Management of Docker Containers

New in version 2015.8.0.

Changed in version 2017.7.0: This module has replaced the legacy docker execution module.

	depends:

	docker [https://pypi.python.org/pypi/docker] Python module

Note

Older releases of the Python bindings for Docker were called docker-py [https://pypi.python.org/pypi/docker-py] in
PyPI. All releases of docker [https://pypi.python.org/pypi/docker], and releases of docker-py [https://pypi.python.org/pypi/docker-py] >= 1.6.0 are
supported. These python bindings can easily be installed using
pip.install:

salt myminion pip.install docker

To upgrade from docker-py [https://pypi.python.org/pypi/docker-py] to docker [https://pypi.python.org/pypi/docker], you must first uninstall docker-py [https://pypi.python.org/pypi/docker-py],
and then install docker [https://pypi.python.org/pypi/docker]:

salt myminion pip.uninstall docker-py
salt myminion pip.install docker

Authentication

If you have previously performed a docker login from the minion, then the
credentials saved in ~/.docker/config.json will be used for any actions
which require authentication. If not, then credentials can be configured in
any of the following locations:

	Minion config file

	Grains

	Pillar data

	Master config file (requires pillar_opts to be set to True
in Minion config file in order to work)

Important

Versions prior to 3000 require that Docker credentials are configured in
Pillar data. Be advised that Pillar data is still recommended though,
because this keeps the configuration from being stored on the Minion.

Also, keep in mind that if one gets your ~/.docker/config.json, the
password can be decoded from its contents.

The configuration schema is as follows:

docker-registries:
 <registry_url>:
 username: <username>
 password: <password>

For example:

docker-registries:
 hub:
 username: foo
 password: s3cr3t

Note

As of the 2016.3.7, 2016.11.4, and 2017.7.0 releases of Salt, credentials
for the Docker Hub can be configured simply by specifying hub in place
of the registry URL. In earlier releases, it is necessary to specify the
actual registry URL for the Docker Hub (i.e.
https://index.docker.io/v1/).

More than one registry can be configured. Salt will look for Docker credentials
in the docker-registries Pillar key, as well as any key ending in
-docker-registries. For example:

docker-registries:
 'https://mydomain.tld/registry:5000':
 username: foo
 password: s3cr3t

foo-docker-registries:
 https://index.foo.io/v1/:
 username: foo
 password: s3cr3t

bar-docker-registries:
 https://index.bar.io/v1/:
 username: foo
 password: s3cr3t

To login to the configured registries, use the docker.login function. This only needs to be done once for a
given registry, and it will store/update the credentials in
~/.docker/config.json.

Note

For Salt releases before 2016.3.7 and 2016.11.4, docker.login is not available. Instead, Salt will try to
authenticate using each of your configured registries for each push/pull,
behavior which is not correct and has been resolved in newer releases.

Configuration Options

The following configuration options can be set to fine-tune how Salt uses
Docker:

	docker.url: URL to the docker service (default: local socket).

	docker.version: API version to use (should not need to be set manually in
the vast majority of cases)

	docker.exec_driver: Execution driver to use, one of nsenter,
lxc-attach, or docker-exec. See the Executing Commands Within a
Running Container section for more details on how
this config parameter is used.

These configuration options are retrieved using config.get (click the link for further information).

Executing Commands Within a Running Container

Note

With the release of Docker 1.13.1, the Execution Driver has been removed.
Starting in versions 2016.3.6, 2016.11.4, and 2017.7.0, Salt defaults to
using docker exec to run commands in containers, however for older Salt
releases it will be necessary to set the docker.exec_driver config
option to either docker-exec or nsenter for Docker versions 1.13.1
and newer.

Multiple methods exist for executing commands within Docker containers:

	lxc-attach [https://linuxcontainers.org/lxc/manpages/man1/lxc-attach.1.html]: Default for older versions of docker

	nsenter [http://man7.org/linux/man-pages/man1/nsenter.1.html]: Enters container namespace to run command

	docker-exec [http://docs.docker.com/reference/commandline/cli/#exec]: Native support for executing commands in Docker containers
(added in Docker 1.3)

Adding a configuration option (see config.get) called docker.exec_driver will tell Salt which
execution driver to use:

docker.exec_driver: docker-exec

If this configuration option is not found, Salt will use the appropriate
interface (either nsenter [http://man7.org/linux/man-pages/man1/nsenter.1.html] or lxc-attach [https://linuxcontainers.org/lxc/manpages/man1/lxc-attach.1.html]) based on the Execution Driver
value returned from docker info. docker-exec [http://docs.docker.com/reference/commandline/cli/#exec] will not be used by default,
as it is presently (as of version 1.6.2) only able to execute commands as the
effective user of the container. Thus, if a USER directive was used to run
as a non-privileged user, docker-exec [http://docs.docker.com/reference/commandline/cli/#exec] would be unable to perform the action as
root. Salt can still use docker-exec [http://docs.docker.com/reference/commandline/cli/#exec] as an execution driver, but must be
explicitly configured (as in the example above) to do so at this time.

If possible, try to manually specify the execution driver, as it will save Salt
a little work.

This execution module provides functions that shadow those from the cmd module. They are as follows:

	docker.retcode

	docker.run

	docker.run_all

	docker.run_stderr

	docker.run_stdout

	docker.script

	docker.script_retcode

Detailed Function Documentation

	
class salt.modules.dockermod.DockerJSONDecoder(*, object_hook=None, parse_float=None, parse_int=None, parse_constant=None, strict=True, object_pairs_hook=None)

	
	
decode(s, _w=None)

	Return the Python representation of s (a str instance
containing a JSON document).

	
salt.modules.dockermod.apply_(name, mods=None, **kwargs)

	
New in version 2019.2.0.

Apply states! This function will call highstate or state.sls based on the
arguments passed in, apply is intended to be the main gateway for
all state executions.

CLI Example:

salt 'docker' docker.apply web01
salt 'docker' docker.apply web01 test
salt 'docker' docker.apply web01 test,pkgs

	
salt.modules.dockermod.build(path=None, repository=None, tag=None, cache=True, rm=True, api_response=False, fileobj=None, dockerfile=None, buildargs=None)

	
Changed in version 2018.3.0: If the built image should be tagged, then the repository and tag must
now be passed separately using the repository and tag
arguments, rather than together in the (now deprecated) image
argument.

Builds a docker image from a Dockerfile or a URL

	path
	Path to directory on the Minion containing a Dockerfile

	repository
	Optional repository name for the image being built

New in version 2018.3.0.

	taglatest
	Tag name for the image (required if repository is passed)

New in version 2018.3.0.

	image
	
Deprecated since version 2018.3.0: Use both repository and tag instead

	cacheTrue
	Set to False to force the build process not to use the Docker image
cache, and pull all required intermediate image layers

	rmTrue
	Remove intermediate containers created during build

	api_responseFalse
	If True: an API_Response key will be present in the return
data, containing the raw output from the Docker API.

	fileobj
	Allows for a file-like object containing the contents of the Dockerfile
to be passed in place of a file path argument. This argument should
not be used from the CLI, only from other Salt code.

	dockerfile
	Allows for an alternative Dockerfile to be specified. Path to
alternative Dockefile is relative to the build path for the Docker
container.

New in version 2016.11.0.

	buildargs
	A dictionary of build arguments provided to the docker build process.

RETURN DATA

A dictionary containing one or more of the following keys:

	Id - ID of the newly-built image

	Time_Elapsed - Time in seconds taken to perform the build

	Intermediate_Containers - IDs of containers created during the course
of the build process

(Only present if rm=False)

	
	Images - A dictionary containing one or more of the following keys:
	
	Already_Pulled - Layers that that were already present on the
Minion

	Pulled - Layers that that were pulled

(Only present if the image specified by the "repository" and "tag"
arguments was not present on the Minion, or if cache=False)

	Status - A string containing a summary of the pull action (usually a
message saying that an image was downloaded, or that it was up to date).

(Only present if the image specified by the "repository" and "tag"
arguments was not present on the Minion, or if cache=False)

CLI Example:

salt myminion docker.build /path/to/docker/build/dir
salt myminion docker.build https://github.com/myuser/myrepo.git repository=myimage tag=latest
salt myminion docker.build /path/to/docker/build/dir dockerfile=Dockefile.different repository=myimage tag=dev

	
salt.modules.dockermod.call(name, function, *args, **kwargs)

	Executes a Salt function inside a running container

New in version 2016.11.0.

The container does not need to have Salt installed, but Python is required.

	name
	Container name or ID

	function
	Salt execution module function

CLI Example:

salt myminion docker.call test.ping
salt myminion test.arg arg1 arg2 key1=val1
salt myminion dockerng.call compassionate_mirzakhani test.arg arg1 arg2 key1=val1

	
salt.modules.dockermod.commit(name, repository, tag='latest', message=None, author=None)

	
Changed in version 2018.3.0: The repository and tag must now be passed separately using the
repository and tag arguments, rather than together in the (now
deprecated) image argument.

Commits a container, thereby promoting it to an image. Equivalent to
running the docker commit Docker CLI command.

	name
	Container name or ID to commit

	repository
	Repository name for the image being committed

New in version 2018.3.0.

	taglatest
	Tag name for the image

New in version 2018.3.0.

	image
	
Deprecated since version 2018.3.0: Use both repository and tag instead

	message
	Commit message (Optional)

	author
	Author name (Optional)

RETURN DATA

A dictionary containing the following keys:

	Id - ID of the newly-created image

	Image - Name of the newly-created image

	Time_Elapsed - Time in seconds taken to perform the commit

CLI Example:

salt myminion docker.commit mycontainer myuser/myimage mytag

	
salt.modules.dockermod.compare_container(first, second, ignore=None)

	This function is an alias of compare_containers.

New in version 2017.7.0.

Changed in version 2018.3.0: Renamed from docker.compare_container to
docker.compare_containers (old function name remains as an alias)

Compare two containers' Config and and HostConfig and return any
differences between the two.

	first
	Name or ID of first container

	second
	Name or ID of second container

	ignore
	A comma-separated list (or Python list) of keys to ignore when
comparing. This is useful when comparing two otherwise identical
containers which have different hostnames.

CLI Examples:

salt myminion docker.compare_containers foo bar
salt myminion docker.compare_containers foo bar ignore=Hostname

	
salt.modules.dockermod.compare_container_networks(first, second)

	
New in version 2018.3.0.

Returns the differences between two containers' networks. When a network is
only present one of the two containers, that network's diff will simply be
represented with True for the side of the diff in which the network is
present) and False for the side of the diff in which the network is
absent.

This function works by comparing the contents of both containers'
Networks keys (under NetworkSettings) in the return data from
docker.inspect_container. Because each network contains
some items that either A) only set at runtime, B) naturally varying from
container to container, or both, by default the following keys in each
network are examined:

	Aliases

	Links

	IPAMConfig

The exception to this is if IPAMConfig is unset (i.e. null) in one
container but not the other. This happens when no static IP configuration
is set, and automatic IP configuration is in effect. So, in order to report
on changes between automatic IP configuration in one container and static
IP configuration in another container (as we need to do for the
docker_container.running
state), automatic IP configuration will also be checked in these cases.

This function uses the docker.compare_container_networks
minion config option to determine which keys to examine. This provides
flexibility in the event that features added in a future Docker release
necessitate changes to how Salt compares networks. In these cases, rather
than waiting for a new Salt release one can just set
docker.compare_container_networks.

Changed in version 3000: This config option can now also be set in pillar data and grains.
Additionally, it can be set in the master config file, provided that
pillar_opts is enabled on the minion.

Note

The checks for automatic IP configuration described above only apply if
IPAMConfig is among the keys set for static IP checks in
docker.compare_container_networks.

	first
	Name or ID of first container (old)

	second
	Name or ID of second container (new)

CLI Example:

salt myminion docker.compare_container_networks foo bar

	
salt.modules.dockermod.compare_containers(first, second, ignore=None)

	
New in version 2017.7.0.

Changed in version 2018.3.0: Renamed from docker.compare_container to
docker.compare_containers (old function name remains as an alias)

Compare two containers' Config and and HostConfig and return any
differences between the two.

	first
	Name or ID of first container

	second
	Name or ID of second container

	ignore
	A comma-separated list (or Python list) of keys to ignore when
comparing. This is useful when comparing two otherwise identical
containers which have different hostnames.

CLI Examples:

salt myminion docker.compare_containers foo bar
salt myminion docker.compare_containers foo bar ignore=Hostname

	
salt.modules.dockermod.compare_networks(first, second, ignore='Name,Id,Created,Containers')

	
New in version 2018.3.0.

Compare two networks and return any differences between the two

	first
	Name or ID of first container

	second
	Name or ID of second container

	ignoreName,Id,Created,Containers
	A comma-separated list (or Python list) of keys to ignore when
comparing.

CLI Example:

salt myminion docker.compare_network foo bar

	
salt.modules.dockermod.connect_container_to_network(container, net_id, **kwargs)

	
New in version 2015.8.3.

Changed in version 2017.7.0: Support for ipv4_address argument added

Changed in version 2018.3.0: All arguments are now passed through to
connect_container_to_network() [http://docker-py.readthedocs.io/en/stable/api.html#docker.api.network.NetworkApiMixin.connect_container_to_network], allowing for any new arguments added
to this function to be supported automagically.

Connect container to network. See the connect_container_to_network() [http://docker-py.readthedocs.io/en/stable/api.html#docker.api.network.NetworkApiMixin.connect_container_to_network]
docs for information on supported arguments.

	container
	Container name or ID

	net_id
	Network name or ID

CLI Examples:

salt myminion docker.connect_container_to_network web-1 mynet
salt myminion docker.connect_container_to_network web-1 mynet ipv4_address=10.20.0.10
salt myminion docker.connect_container_to_network web-1 1f9d2454d0872b68dd9e8744c6e7a4c66b86f10abaccc21e14f7f014f729b2bc

	
salt.modules.dockermod.connected(name, verbose=False)

	
New in version 2018.3.0.

Return a list of running containers attached to the specified network

	name
	Network name

	verboseFalse
	If True, return extended info about each container (IP
configuration, etc.)

CLI Example:

salt myminion docker.connected net_name

	
salt.modules.dockermod.copy_from(name, source, dest, overwrite=False, makedirs=False)

	Copy a file from inside a container to the Minion

	name
	Container name

	source
	Path of the file on the container's filesystem

	dest
	Destination on the Minion. Must be an absolute path. If the destination
is a directory, the file will be copied into that directory.

	overwriteFalse
	Unless this option is set to True, then if a file exists at the
location specified by the dest argument, an error will be raised.

	makedirsFalse
	Create the parent directory on the container if it does not already
exist.

RETURN DATA

A boolean (True if successful, otherwise False)

CLI Example:

salt myminion docker.copy_from mycontainer /var/log/nginx/access.log /home/myuser

	
salt.modules.dockermod.copy_to(name, source, dest, exec_driver=None, overwrite=False, makedirs=False)

	Copy a file from the host into a container

	name
	Container name

	source
	File to be copied to the container. Can be a local path on the Minion
or a remote file from the Salt fileserver.

	dest
	Destination on the container. Must be an absolute path. If the
destination is a directory, the file will be copied into that
directory.

	exec_driverNone
	If not passed, the execution driver will be detected as described
above.

	overwriteFalse
	Unless this option is set to True, then if a file exists at the
location specified by the dest argument, an error will be raised.

	makedirsFalse
	Create the parent directory on the container if it does not already
exist.

RETURN DATA

A boolean (True if successful, otherwise False)

CLI Example:

salt myminion docker.copy_to mycontainer /tmp/foo /root/foo

	
salt.modules.dockermod.cp(name, source, dest, overwrite=False, makedirs=False)

	This function is an alias of copy_from.

Copy a file from inside a container to the Minion

	name
	Container name

	source
	Path of the file on the container's filesystem

	dest
	Destination on the Minion. Must be an absolute path. If the destination
is a directory, the file will be copied into that directory.

	overwriteFalse
	Unless this option is set to True, then if a file exists at the
location specified by the dest argument, an error will be raised.

	makedirsFalse
	Create the parent directory on the container if it does not already
exist.

RETURN DATA

A boolean (True if successful, otherwise False)

CLI Example:

salt myminion docker.copy_from mycontainer /var/log/nginx/access.log /home/myuser

	
salt.modules.dockermod.create(image, name=None, start=False, skip_translate=None, ignore_collisions=False, validate_ip_addrs=True, client_timeout=60, **kwargs)

	Create a new container

	image
	Image from which to create the container

	name
	Name for the new container. If not provided, Docker will randomly
generate one for you (it will be included in the return data).

	startFalse
	If True, start container after creating it

New in version 2018.3.0.

	skip_translate
	This function translates Salt CLI or SLS input into the format which
docker-py expects. However, in the event that Salt's translation logic
fails (due to potential changes in the Docker Remote API, or to bugs in
the translation code), this argument can be used to exert granular
control over which arguments are translated and which are not.

Pass this argument as a comma-separated list (or Python list) of
arguments, and translation for each passed argument name will be
skipped. Alternatively, pass True and all translation will be
skipped.

Skipping tranlsation allows for arguments to be formatted directly in
the format which docker-py expects. This allows for API changes and
other issues to be more easily worked around. An example of using this
option to skip translation would be:

salt myminion docker.create image=centos:7.3.1611 skip_translate=environment environment="{'FOO': 'bar'}"

See the following links for more information:

	docker-py Low-level API [http://docker-py.readthedocs.io/en/stable/api.html]

	Docker Engine API [https://docs.docker.com/engine/api/v1.33/#operation/ContainerCreate]

	ignore_collisionsFalse
	Since many of docker-py's arguments differ in name from their CLI
counterparts (with which most Docker users are more familiar), Salt
detects usage of these and aliases them to the docker-py version of
that argument. However, if both the alias and the docker-py version of
the same argument (e.g. env and environment) are used, an error
will be raised. Set this argument to True to suppress these errors
and keep the docker-py version of the argument.

	validate_ip_addrsTrue
	For parameters which accept IP addresses as input, IP address
validation will be performed. To disable, set this to False

	client_timeout60
	Timeout in seconds for the Docker client. This is not a timeout for
this function, but for receiving a response from the API.

Note

This is only used if Salt needs to pull the requested image.

CONTAINER CONFIGURATION ARGUMENTS

	auto_remove (or rm)False
	Enable auto-removal of the container on daemon side when the
container’s process exits (analogous to running a docker container with
--rm on the CLI).

Examples:

	auto_remove=True

	rm=True

	binds
	Files/directories to bind mount. Each bind mount should be passed in
one of the following formats:

	<host_path>:<container_path> - host_path is mounted within
the container as container_path with read-write access.

	<host_path>:<container_path>:<selinux_context> - host_path is
mounted within the container as container_path with read-write
access. Additionally, the specified selinux context will be set
within the container.

	<host_path>:<container_path>:<read_only> - host_path is
mounted within the container as container_path, with the
read-only or read-write setting explicitly defined.

	<host_path>:<container_path>:<read_only>,<selinux_context> -
host_path is mounted within the container as container_path,
with the read-only or read-write setting explicitly defined.
Additionally, the specified selinux context will be set within the
container.

<read_only> can be either ro for read-write access, or ro
for read-only access. When omitted, it is assumed to be read-write.

<selinux_context> can be z if the volume is shared between
multiple containers, or Z if the volume should be private.

Note

When both <read_only> and <selinux_context> are specified,
there must be a comma before <selinux_context>.

Binds can be expressed as a comma-separated list or a Python list,
however in cases where both ro/rw and an selinux context are specified,
the binds must be specified as a Python list.

Examples:

	binds=/srv/www:/var/www:ro

	binds=/srv/www:/var/www:rw

	binds=/srv/www:/var/www

	binds="['/srv/www:/var/www:ro,Z']"

	binds="['/srv/www:/var/www:rw,Z']"

	binds=/srv/www:/var/www:Z

Note

The second and third examples above are equivalent to each other,
as are the last two examples.

	blkio_weight
	Block IO weight (relative weight), accepts a weight value between 10
and 1000.

Example: blkio_weight=100

	blkio_weight_device
	Block IO weight (relative device weight), specified as a list of
expressions in the format PATH:WEIGHT

Example: blkio_weight_device=/dev/sda:100

	cap_add
	List of capabilities to add within the container. Can be passed as a
comma-separated list or a Python list. Requires Docker 1.2.0 or
newer.

Examples:

	cap_add=SYS_ADMIN,MKNOD

	cap_add="[SYS_ADMIN, MKNOD]"

	cap_drop
	List of capabilities to drop within the container. Can be passed as a
comma-separated string or a Python list. Requires Docker 1.2.0 or
newer.

Examples:

	cap_drop=SYS_ADMIN,MKNOD,

	cap_drop="[SYS_ADMIN, MKNOD]"

	command (or cmd)
	Command to run in the container

Example: command=bash or cmd=bash

Changed in version 2015.8.1: cmd is now also accepted

	cpuset_cpus (or cpuset)
	CPUs on which which to allow execution, specified as a string
containing a range (e.g. 0-3) or a comma-separated list of CPUs
(e.g. 0,1).

Examples:

	cpuset_cpus="0-3"

	cpuset="0,1"

	cpuset_mems
	Memory nodes on which which to allow execution, specified as a string
containing a range (e.g. 0-3) or a comma-separated list of MEMs
(e.g. 0,1). Only effective on NUMA systems.

Examples:

	cpuset_mems="0-3"

	cpuset_mems="0,1"

	cpu_group
	The length of a CPU period in microseconds

Example: cpu_group=100000

	cpu_period
	Microseconds of CPU time that the container can get in a CPU period

Example: cpu_period=50000

	cpu_shares
	CPU shares (relative weight), specified as an integer between 2 and 1024.

Example: cpu_shares=512

	detachFalse
	If True, run the container's command in the background (daemon
mode)

Example: detach=True

	devices
	List of host devices to expose within the container

Examples:

	devices="/dev/net/tun,/dev/xvda1:/dev/xvda1,/dev/xvdb1:/dev/xvdb1:r"

	devices="['/dev/net/tun', '/dev/xvda1:/dev/xvda1', '/dev/xvdb1:/dev/xvdb1:r']"

	device_read_bps
	Limit read rate (bytes per second) from a device, specified as a list
of expressions in the format PATH:RATE, where RATE is either an
integer number of bytes, or a string ending in kb, mb, or
gb.

Examples:

	device_read_bps="/dev/sda:1mb,/dev/sdb:5mb"

	device_read_bps="['/dev/sda:100mb', '/dev/sdb:5mb']"

	device_read_iops
	Limit read rate (I/O per second) from a device, specified as a list
of expressions in the format PATH:RATE, where RATE is a number
of I/O operations.

Examples:

	device_read_iops="/dev/sda:1000,/dev/sdb:500"

	device_read_iops="['/dev/sda:1000', '/dev/sdb:500']"

	device_write_bps
	Limit write rate (bytes per second) from a device, specified as a list
of expressions in the format PATH:RATE, where RATE is either an
integer number of bytes, or a string ending in kb, mb or
gb.

Examples:

	device_write_bps="/dev/sda:100mb,/dev/sdb:50mb"

	device_write_bps="['/dev/sda:100mb', '/dev/sdb:50mb']"

	device_write_iops
	Limit write rate (I/O per second) from a device, specified as a list
of expressions in the format PATH:RATE, where RATE is a number
of I/O operations.

Examples:

	device_write_iops="/dev/sda:1000,/dev/sdb:500"

	device_write_iops="['/dev/sda:1000', '/dev/sdb:500']"

	dns
	List of DNS nameservers. Can be passed as a comma-separated list or a
Python list.

Examples:

	dns=8.8.8.8,8.8.4.4

	dns="['8.8.8.8', '8.8.4.4']"

Note

To skip IP address validation, use validate_ip_addrs=False

	dns_opt
	Additional options to be added to the container’s resolv.conf file

Example: dns_opt=ndots:9

	dns_search
	List of DNS search domains. Can be passed as a comma-separated list
or a Python list.

Examples:

	dns_search=foo1.domain.tld,foo2.domain.tld

	dns_search="[foo1.domain.tld, foo2.domain.tld]"

	domainname
	The domain name to use for the container

Example: domainname=domain.tld

	entrypoint
	Entrypoint for the container. Either a string (e.g. "mycmd --arg1
--arg2") or a Python list (e.g. "['mycmd', '--arg1', '--arg2']")

Examples:

	entrypoint="cat access.log"

	entrypoint="['cat', 'access.log']"

	environment (or env)
	Either a dictionary of environment variable names and their values, or
a Python list of strings in the format VARNAME=value.

Examples:

	environment='VAR1=value,VAR2=value'

	environment="['VAR1=value', 'VAR2=value']"

	environment="{'VAR1': 'value', 'VAR2': 'value'}"

	extra_hosts
	Additional hosts to add to the container's /etc/hosts file. Can be
passed as a comma-separated list or a Python list. Requires Docker
1.3.0 or newer.

Examples:

	extra_hosts=web1:10.9.8.7,web2:10.9.8.8

	extra_hosts="['web1:10.9.8.7', 'web2:10.9.8.8']"

	extra_hosts="{'web1': '10.9.8.7', 'web2': '10.9.8.8'}"

Note

To skip IP address validation, use validate_ip_addrs=False

	group_add
	List of additional group names and/or IDs that the container process
will run as

Examples:

	group_add=web,network

	group_add="['web', 'network']"

	hostname
	Hostname of the container. If not provided, and if a name has been
provided, the hostname will default to the name that was
passed.

Example: hostname=web1

Warning

If the container is started with network_mode=host, the
hostname will be overridden by the hostname of the Minion.

	interactive (or stdin_open): False
	Leave stdin open, even if not attached

Examples:

	interactive=True

	stdin_open=True

	ipc_mode (or ipc)
	Set the IPC mode for the container. The default behavior is to create a
private IPC namespace for the container, but this option can be
used to change that behavior:

	container:<container_name_or_id> reuses another container shared
memory, semaphores and message queues

	host: use the host's shared memory, semaphores and message queues

Examples:

	ipc_mode=container:foo

	ipc=host

Warning

Using host gives the container full access to local shared
memory and is therefore considered insecure.

	isolation
	Specifies the type of isolation technology used by containers

Example: isolation=hyperv

Note

The default value on Windows server is process, while the
default value on Windows client is hyperv. On Linux, only
default is supported.

	labels (or label)
	Add metadata to the container. Labels can be set both with and without
values:

Examples:

	labels=foo,bar=baz

	labels="['foo', 'bar=baz']"

Changed in version 2018.3.0: Labels both with and without values can now be mixed. Earlier
releases only permitted one method or the other.

	links
	Link this container to another. Links should be specified in the format
<container_name_or_id>:<link_alias>. Multiple links can be passed,
ether as a comma separated list or a Python list.

Examples:

	links=web1:link1,web2:link2,

	links="['web1:link1', 'web2:link2']"

	links="{'web1': 'link1', 'web2': 'link2'}"

	log_driver
	Set container's logging driver. Requires Docker 1.6 or newer.

Example:

	log_driver=syslog

Note

The logging driver feature was improved in Docker 1.13 introducing
option name changes. Please see Docker's Configure logging
drivers [https://docs.docker.com/engine/admin/logging/overview/] documentation for more information.

	log_opt
	Config options for the log_driver config option. Requires Docker
1.6 or newer.

Example:

	log_opt="syslog-address=tcp://192.168.0.42,syslog-facility=daemon"

	log_opt="['syslog-address=tcp://192.168.0.42', 'syslog-facility=daemon']"

	log_opt="{'syslog-address': 'tcp://192.168.0.42', 'syslog-facility': 'daemon'}"

	lxc_conf
	Additional LXC configuration parameters to set before starting the
container.

Examples:

	lxc_conf="lxc.utsname=docker,lxc.arch=x86_64"

	lxc_conf="['lxc.utsname=docker', 'lxc.arch=x86_64']"

	lxc_conf="{'lxc.utsname': 'docker', 'lxc.arch': 'x86_64'}"

Note

These LXC configuration parameters will only have the desired
effect if the container is using the LXC execution driver, which
has been deprecated for some time.

	mac_address
	MAC address to use for the container. If not specified, a random MAC
address will be used.

Example: mac_address=01:23:45:67:89:0a

	mem_limit (or memory)0
	Memory limit. Can be specified in bytes or using single-letter units
(i.e. 512M, 2G, etc.). A value of 0 (the default) means no
memory limit.

Examples:

	mem_limit=512M

	memory=1073741824

	mem_swappiness
	Tune a container's memory swappiness behavior. Accepts an integer
between 0 and 100.

Example: mem_swappiness=60

	memswap_limit (or memory_swap)-1
	Total memory limit (memory plus swap). Set to -1 to disable swap. A
value of 0 means no swap limit.

Examples:

	memswap_limit=1G

	memory_swap=2147483648

	network_disabledFalse
	If True, networking will be disabled within the container

Example: network_disabled=True

	network_modebridge
	One of the following:

	bridge - Creates a new network stack for the container on the
docker bridge

	none - No networking (equivalent of the Docker CLI argument
--net=none). Not to be confused with Python's None.

	container:<name_or_id> - Reuses another container's network stack

	host - Use the host's network stack inside the container

Warning

Using host mode gives the container full access to the hosts
system's services (such as D-Bus), and is therefore considered
insecure.

Examples:

	network_mode=null

	network_mode=container:web1

	oom_kill_disable
	Whether to disable OOM killer

Example: oom_kill_disable=False

	oom_score_adj
	An integer value containing the score given to the container in order
to tune OOM killer preferences

Example: oom_score_adj=500

	pid_mode
	Set to host to use the host container's PID namespace within the
container. Requires Docker 1.5.0 or newer.

Example: pid_mode=host

	pids_limit
	Set the container's PID limit. Set to -1 for unlimited.

Example: pids_limit=2000

	port_bindings (or publish)
	Bind exposed ports which were exposed using the ports argument to
docker.create. These
should be passed in the same way as the --publish argument to the
docker run CLI command:

	ip:hostPort:containerPort - Bind a specific IP and port on the
host to a specific port within the container.

	ip::containerPort - Bind a specific IP and an ephemeral port to a
specific port within the container.

	hostPort:containerPort - Bind a specific port on all of the
host's interfaces to a specific port within the container.

	containerPort - Bind an ephemeral port on all of the host's
interfaces to a specific port within the container.

Multiple bindings can be separated by commas, or passed as a Python
list. The below two examples are equivalent:

	port_bindings="5000:5000,2123:2123/udp,8080"

	port_bindings="['5000:5000', '2123:2123/udp', 8080]"

Port bindings can also include ranges:

	port_bindings="14505-14506:4505-4506"

Note

When specifying a protocol, it must be passed in the
containerPort value, as seen in the examples above.

	ports
	A list of ports to expose on the container. Can be passed as
comma-separated list or a Python list. If the protocol is omitted, the
port will be assumed to be a TCP port.

Examples:

	ports=1111,2222/udp

	ports="[1111, '2222/udp']"

	privilegedFalse
	If True, runs the exec process with extended privileges

Example: privileged=True

	publish_all_ports (or publish_all): False
	Publish all ports to the host

Example: publish_all_ports=True

	read_onlyFalse
	If True, mount the container’s root filesystem as read only

Example: read_only=True

	restart_policy (or restart)
	Set a restart policy for the container. Must be passed as a string in
the format policy[:retry_count] where policy is one of
always, unless-stopped, or on-failure, and retry_count
is an optional limit to the number of retries. The retry count is ignored
when using the always or unless-stopped restart policy.

Examples:

	restart_policy=on-failure:5

	restart_policy=always

	security_opt
	Security configuration for MLS systems such as SELinux and AppArmor.
Can be passed as a comma-separated list or a Python list.

Examples:

	security_opt=apparmor:unconfined,param2:value2

	security_opt='["apparmor:unconfined", "param2:value2"]'

Important

Some security options can contain commas. In these cases, this
argument must be passed as a Python list, as splitting by comma
will result in an invalid configuration.

Note

See the documentation for security_opt at
https://docs.docker.com/engine/reference/run/#security-configuration

	shm_size
	Size of /dev/shm

Example: shm_size=128M

	stop_signal
	The signal used to stop the container. The default is SIGTERM.

Example: stop_signal=SIGRTMIN+3

	stop_timeout
	Timeout to stop the container, in seconds

Example: stop_timeout=5

	storage_opt
	Storage driver options for the container

Examples:

	storage_opt='dm.basesize=40G'

	storage_opt="['dm.basesize=40G']"

	storage_opt="{'dm.basesize': '40G'}"

	sysctls (or sysctl)
	Set sysctl options for the container

Examples:

	sysctl='fs.nr_open=1048576,kernel.pid_max=32768'

	sysctls="['fs.nr_open=1048576', 'kernel.pid_max=32768']"

	sysctls="{'fs.nr_open': '1048576', 'kernel.pid_max': '32768'}"

	tmpfs
	A map of container directories which should be replaced by tmpfs
mounts, and their corresponding mount options. Can be passed as Python
list of PATH:VALUE mappings, or a Python dictionary. However, since
commas usually appear in the values, this option cannot be passed as
a comma-separated list.

Examples:

	tmpfs="['/run:rw,noexec,nosuid,size=65536k', '/var/lib/mysql:rw,noexec,nosuid,size=600m']"

	tmpfs="{'/run': 'rw,noexec,nosuid,size=65536k', '/var/lib/mysql': 'rw,noexec,nosuid,size=600m'}"

	ttyFalse
	Attach TTYs

Example: tty=True

	ulimits (or ulimit)
	List of ulimits. These limits should be passed in the format
<ulimit_name>:<soft_limit>:<hard_limit>, with the hard limit being
optional. Can be passed as a comma-separated list or a Python list.

Examples:

	ulimits="nofile=1024:1024,nproc=60"

	ulimits="['nofile=1024:1024', 'nproc=60']"

	user
	User under which to run exec process

Example: user=foo

	userns_mode (or user_ns_mode)
	Sets the user namsepace mode, when the user namespace remapping option
is enabled.

Example: userns_mode=host

	volumes (or volume)
	List of directories to expose as volumes. Can be passed as a
comma-separated list or a Python list.

Examples:

	volumes=/mnt/vol1,/mnt/vol2

	volume="['/mnt/vol1', '/mnt/vol2']"

	volumes_from
	Container names or IDs from which the container will get volumes. Can
be passed as a comma-separated list or a Python list.

Example: volumes_from=foo, volumes_from=foo,bar,
volumes_from="[foo, bar]"

	volume_driver
	Sets the container's volume driver

Example: volume_driver=foobar

	working_dir (or workdir)
	Working directory inside the container

Examples:

	working_dir=/var/log/nginx

	workdir=/var/www/myapp

RETURN DATA

A dictionary containing the following keys:

	Id - ID of the newly-created container

	Name - Name of the newly-created container

CLI Example:

Create a data-only container
salt myminion docker.create myuser/mycontainer volumes="/mnt/vol1,/mnt/vol2"
Create a CentOS 7 container that will stay running once started
salt myminion docker.create centos:7 name=mycent7 interactive=True tty=True command=bash

	
salt.modules.dockermod.create_network(name, skip_translate=None, ignore_collisions=False, validate_ip_addrs=True, client_timeout=60, **kwargs)

	
Changed in version 2018.3.0: Support added for network configuration options other than driver
and driver_opts, as well as IPAM configuration.

Create a new network

Note

This function supports all arguments for network and IPAM pool
configuration which are available for the release of docker-py
installed on the minion. For that reason, the arguments described below
in the NETWORK CONFIGURATION ARGUMENTS and IP ADDRESS
MANAGEMENT (IPAM)
sections may not accurately reflect what is available on the minion.
The docker.get_client_args function can be used to check
the available arguments for the installed version of docker-py (they
are found in the network_config and ipam_config sections of the
return data), but Salt will not prevent a user from attempting to use
an argument which is unsupported in the release of Docker which is
installed. In those cases, network creation be attempted but will fail.

	name
	Network name

	skip_translate
	This function translates Salt CLI or SLS input into the format which
docker-py expects. However, in the event that Salt's translation logic
fails (due to potential changes in the Docker Remote API, or to bugs in
the translation code), this argument can be used to exert granular
control over which arguments are translated and which are not.

Pass this argument as a comma-separated list (or Python list) of
arguments, and translation for each passed argument name will be
skipped. Alternatively, pass True and all translation will be
skipped.

Skipping tranlsation allows for arguments to be formatted directly in
the format which docker-py expects. This allows for API changes and
other issues to be more easily worked around. See the following links
for more information:

	docker-py Low-level API [http://docker-py.readthedocs.io/en/stable/api.html]

	Docker Engine API [https://docs.docker.com/engine/api/v1.33/#operation/ContainerCreate]

New in version 2018.3.0.

	ignore_collisionsFalse
	Since many of docker-py's arguments differ in name from their CLI
counterparts (with which most Docker users are more familiar), Salt
detects usage of these and aliases them to the docker-py version of
that argument. However, if both the alias and the docker-py version of
the same argument (e.g. options and driver_opts) are used, an error
will be raised. Set this argument to True to suppress these errors
and keep the docker-py version of the argument.

New in version 2018.3.0.

	validate_ip_addrsTrue
	For parameters which accept IP addresses as input, IP address
validation will be performed. To disable, set this to False

Note

When validating subnets, whether or not the IP portion of the
subnet is a valid subnet boundary will not be checked. The IP will
portion will be validated, and the subnet size will be checked to
confirm it is a valid number (1-32 for IPv4, 1-128 for IPv6).

New in version 2018.3.0.

NETWORK CONFIGURATION ARGUMENTS

	driver
	Network driver

Example: driver=macvlan

	driver_opts (or driver_opt, or options)
	Options for the network driver. Either a dictionary of option names and
values or a Python list of strings in the format varname=value.

Examples:

	driver_opts='macvlan_mode=bridge,parent=eth0'

	driver_opts="['macvlan_mode=bridge', 'parent=eth0']"

	driver_opts="{'macvlan_mode': 'bridge', 'parent': 'eth0'}"

	check_duplicateTrue
	If True, checks for networks with duplicate names. Since networks
are primarily keyed based on a random ID and not on the name, and
network name is strictly a user-friendly alias to the network which is
uniquely identified using ID, there is no guaranteed way to check for
duplicates. This option providess a best effort, checking for any
networks which have the same name, but it is not guaranteed to catch
all name collisions.

Example: check_duplicate=False

	internalFalse
	If True, restricts external access to the network

Example: internal=True

	labels
	Add metadata to the network. Labels can be set both with and without
values:

Examples (with values):

	labels="label1=value1,label2=value2"

	labels="['label1=value1', 'label2=value2']"

	labels="{'label1': 'value1', 'label2': 'value2'}"

Examples (without values):

	labels=label1,label2

	labels="['label1', 'label2']"

	enable_ipv6 (or ipv6)False
	Enable IPv6 on the network

Example: enable_ipv6=True

Note

While it should go without saying, this argument must be set to
True to configure an IPv6 subnet. Also, if this option is
turned on without an IPv6 subnet explicitly configured, you will
get an error unless you have set up a fixed IPv6 subnet. Consult
the Docker IPv6 docs [https://docs.docker.com/v17.09/engine/userguide/networking/default_network/ipv6/] for information on how to do this.

	attachableFalse
	If True, and the network is in the global scope, non-service
containers on worker nodes will be able to connect to the network.

Example: attachable=True

Note

While support for this option was added in API version 1.24, its
value was not added to the inpsect results until API version 1.26.
The version of Docker which is available for CentOS 7 runs API
version 1.24, meaning that while Salt can pass this argument to the
API, it has no way of knowing the value of this config option in an
existing Docker network.

	scope
	Specify the network's scope (local, global or swarm)

Example: scope=local

	ingressFalse
	If True, create an ingress network which provides the routing-mesh in
swarm mode

Example: ingress=True

IP ADDRESS MANAGEMENT (IPAM)

This function supports networks with either IPv4, or both IPv4 and IPv6. If
configuring IPv4, then you can pass the IPAM arguments as shown below, as
individual arguments on the Salt CLI. However, if configuring IPv4 and
IPv6, the arguments must be passed as a list of dictionaries, in the
ipam_pools argument. See the CLI Examples below. These docs [http://docker-py.readthedocs.io/en/stable/api.html#docker.types.IPAMPool] also
have more information on these arguments.

IPAM ARGUMENTS

	ipam_driver
	IPAM driver to use, if different from the default one

Example: ipam_driver=foo

	ipam_opts
	Options for the IPAM driver. Either a dictionary of option names
and values or a Python list of strings in the format
varname=value.

Examples:

	ipam_opts='foo=bar,baz=qux'

	ipam_opts="['foo=bar', 'baz=quz']"

	ipam_opts="{'foo': 'bar', 'baz': 'qux'}"

IPAM POOL ARGUMENTS

	subnet
	Subnet in CIDR format that represents a network segment

Example: subnet=192.168.50.0/25

	iprange (or ip_range)
	Allocate container IP from a sub-range within the subnet

Subnet in CIDR format that represents a network segment

Example: iprange=192.168.50.64/26

	gateway
	IPv4 gateway for the master subnet

Example: gateway=192.168.50.1

	aux_addresses (or aux_address)
	A dictionary of mapping container names to IP addresses which should be
allocated for them should they connect to the network. Either a
dictionary of option names and values or a Python list of strings in
the format host=ipaddr.

Examples:

	aux_addresses='foo.bar.tld=192.168.50.10,hello.world.tld=192.168.50.11'

	aux_addresses="['foo.bar.tld=192.168.50.10', 'hello.world.tld=192.168.50.11']"

	aux_addresses="{'foo.bar.tld': '192.168.50.10', 'hello.world.tld': '192.168.50.11'}"

CLI Examples:

salt myminion docker.create_network web_network driver=bridge
IPv4
salt myminion docker.create_network macvlan_network driver=macvlan driver_opts="{'parent':'eth0'}" gateway=172.20.0.1 subnet=172.20.0.0/24
IPv4 and IPv6
salt myminion docker.create_network mynet ipam_pools='[{"subnet": "10.0.0.0/24", "gateway": "10.0.0.1"}, {"subnet": "fe3f:2180:26:1::60/123", "gateway": "fe3f:2180:26:1::61"}]'

	
salt.modules.dockermod.create_volume(name, driver=None, driver_opts=None)

	Create a new volume

New in version 2015.8.4.

	name
	name of volume

	driver
	Driver of the volume

	driver_opts
	Options for the driver volume

CLI Example:

salt myminion docker.create_volume my_volume driver=local

	
salt.modules.dockermod.dangling(prune=False, force=False)

	Return top-level images (those on which no other images depend) which do
not have a tag assigned to them. These include:

	Images which were once tagged but were later untagged, such as those
which were superseded by committing a new copy of an existing tagged
image.

	Images which were loaded using docker.load (or the docker load Docker CLI
command), but not tagged.

	pruneFalse
	Remove these images

	forceFalse
	If True, and if prune=True, then forcibly remove these images.

RETURN DATA

If prune=False, the return data will be a list of dangling image IDs.

If prune=True, the return data will be a dictionary with each key being
the ID of the dangling image, and the following information for each image:

	Comment - Any error encountered when trying to prune a dangling image

(Only present if prune failed)

	Removed - A boolean (True if prune was successful, False if
not)

CLI Example:

salt myminion docker.dangling
salt myminion docker.dangling prune=True

	
salt.modules.dockermod.depends(name)

	Returns the containers and images, if any, which depend on the given image

	name
	Name or ID of image

RETURN DATA

A dictionary containing the following keys:

	Containers - A list of containers which depend on the specified image

	Images - A list of IDs of images which depend on the specified image

CLI Example:

salt myminion docker.depends myimage
salt myminion docker.depends 0123456789ab

	
salt.modules.dockermod.diff(name)

	Get information on changes made to container's filesystem since it was
created. Equivalent to running the docker diff Docker CLI command.

	name
	Container name or ID

RETURN DATA

A dictionary containing any of the following keys:

	Added - A list of paths that were added.

	Changed - A list of paths that were changed.

	Deleted - A list of paths that were deleted.

These keys will only be present if there were changes, so if the container
has no differences the return dict will be empty.

CLI Example:

salt myminion docker.diff mycontainer

	
salt.modules.dockermod.disconnect_all_containers_from_network(network_id)

	
New in version 2018.3.0.

Runs docker.disconnect_container_from_network on all
containers connected to the specified network, and returns the names of all
containers that were disconnected.

	network_id
	Network name or ID

CLI Examples:

salt myminion docker.disconnect_all_containers_from_network mynet
salt myminion docker.disconnect_all_containers_from_network 1f9d2454d0872b68dd9e8744c6e7a4c66b86f10abaccc21e14f7f014f729b2bc

	
salt.modules.dockermod.disconnect_container_from_network(container, network_id)

	
New in version 2015.8.3.

Disconnect container from network

	container
	Container name or ID

	network_id
	Network name or ID

CLI Examples:

salt myminion docker.disconnect_container_from_network web-1 mynet
salt myminion docker.disconnect_container_from_network web-1 1f9d2454d0872b68dd9e8744c6e7a4c66b86f10abaccc21e14f7f014f729b2bc

	
salt.modules.dockermod.exists(name)

	Check if a given container exists

	name
	Container name or ID

RETURN DATA

A boolean (True if the container exists, otherwise False)

CLI Example:

salt myminion docker.exists mycontainer

	
salt.modules.dockermod.export(name, path, overwrite=False, makedirs=False, compression=None, **kwargs)

	Exports a container to a tar archive. It can also optionally compress that
tar archive, and push it up to the Master.

	name
	Container name or ID

	path
	Absolute path on the Minion where the container will be exported

	overwriteFalse
	Unless this option is set to True, then if a file exists at the
location specified by the path argument, an error will be raised.

	makedirsFalse
	If True, then if the parent directory of the file specified by the
path argument does not exist, Salt will attempt to create it.

	compressionNone
	Can be set to any of the following:

	gzip or gz for gzip compression

	bzip2 or bz2 for bzip2 compression

	xz or lzma for XZ compression (requires xz-utils [http://tukaani.org/xz/], as well
as the lzma module from Python 3.3, available in Python 2 and
Python 3.0-3.2 as backports.lzma [https://pypi.python.org/pypi/backports.lzma])

This parameter can be omitted and Salt will attempt to determine the
compression type by examining the filename passed in the path
parameter.

	pushFalse
	If True, the container will be pushed to the master using
cp.push.

Note

This requires file_recv to be set to True on the
Master.

RETURN DATA

A dictionary will containing the following keys:

	Path - Path of the file that was exported

	Push - Reports whether or not the file was successfully pushed to the
Master

(Only present if push=True)

	Size - Size of the file, in bytes

	Size_Human - Size of the file, in human-readable units

	Time_Elapsed - Time in seconds taken to perform the export

CLI Examples:

salt myminion docker.export mycontainer /tmp/mycontainer.tar
salt myminion docker.export mycontainer /tmp/mycontainer.tar.xz push=True

	
salt.modules.dockermod.freeze(name)

	This function is an alias of pause.

Pauses a container

	name
	Container name or ID

RETURN DATA

A dictionary will be returned, containing the following keys:

	status - A dictionary showing the prior state of the container as
well as the new state

	result - A boolean noting whether or not the action was successful

	comment - Only present if the container cannot be paused

CLI Example:

salt myminion docker.pause mycontainer

	
salt.modules.dockermod.get_client_args(limit=None)

	
New in version 2016.3.6,2016.11.4,2017.7.0.

Changed in version 2017.7.0: Replaced the container config args with the ones from the API's
create_container function.

Changed in version 2018.3.0: Added ability to limit the input to specific client functions

Many functions in Salt have been written to support the full list of
arguments for a given function in the docker-py Low-level API [http://docker-py.readthedocs.io/en/stable/api.html]. However,
depending on the version of docker-py installed on the minion, the
available arguments may differ. This function will get the arguments for
various functions in the installed version of docker-py, to be used as a
reference.

	limit
	An optional list of categories for which to limit the return. This is
useful if only a specific set of arguments is desired, and also keeps
other function's argspecs from needlessly being examined.

AVAILABLE LIMITS

	create_container - arguments accepted by create_container() [http://docker-py.readthedocs.io/en/stable/api.html#docker.api.container.ContainerApiMixin.create_container] (used
by docker.create)

	host_config - arguments accepted by create_host_config() [http://docker-py.readthedocs.io/en/stable/api.html#docker.api.container.ContainerApiMixin.create_host_config] (used to
build the host config for docker.create)

	connect_container_to_network - arguments used by
connect_container_to_network() [http://docker-py.readthedocs.io/en/stable/api.html#docker.api.network.NetworkApiMixin.connect_container_to_network] to construct an endpoint config when
connecting to a network (used by
docker.connect_container_to_network)

	create_network - arguments accepted by create_network() [http://docker-py.readthedocs.io/en/stable/api.html#docker.api.network.NetworkApiMixin.create_network] (used by
docker.create_network)

	ipam_config - arguments used to create an IPAM pool [http://docker-py.readthedocs.io/en/stable/api.html#docker.types.IPAMPool] (used by
docker.create_network
in the process of constructing an IPAM config dictionary)

CLI Example:

salt myminion docker.get_client_args
salt myminion docker.get_client_args logs
salt myminion docker.get_client_args create_container,connect_container_to_network

	
salt.modules.dockermod.highstate(name, saltenv='base', **kwargs)

	Apply a highstate to the running container

New in version 2019.2.0.

The container does not need to have Salt installed, but Python is required.

	name
	Container name or ID

	saltenvbase
	Specify the environment from which to retrieve the SLS indicated by the
mods parameter.

CLI Example:

salt myminion docker.highstate compassionate_mirzakhani

	
salt.modules.dockermod.history(name, quiet=False)

	Return the history for an image. Equivalent to running the docker
history Docker CLI command.

	name
	Container name or ID

	quietFalse
	If True, the return data will simply be a list of the commands run
to build the container.

$ salt myminion docker.history nginx:latest quiet=True
myminion:
 - FROM scratch
 - ADD file:ef063ed0ae9579362871b9f23d2bc0781ef7cd4de6ac822052cf6c9c5a12b1e2 in /
 - CMD [/bin/bash]
 - MAINTAINER NGINX Docker Maintainers "docker-maint@nginx.com"
 - apt-key adv --keyserver pgp.mit.edu --recv-keys 573BFD6B3D8FBC641079A6ABABF5BD827BD9BF62
 - echo "deb http://nginx.org/packages/mainline/debian/ wheezy nginx" >> /etc/apt/sources.list
 - ENV NGINX_VERSION=1.7.10-1~wheezy
 - apt-get update && apt-get install -y ca-certificates nginx=${NGINX_VERSION} && rm -rf /var/lib/apt/lists/*
 - ln -sf /dev/stdout /var/log/nginx/access.log
 - ln -sf /dev/stderr /var/log/nginx/error.log
 - VOLUME [/var/cache/nginx]
 - EXPOSE map[80/tcp:{} 443/tcp:{}]
 - CMD [nginx -g daemon off;]
 https://github.com/saltstack/salt/pull/22421

RETURN DATA

If quiet=False, the return value will be a list of dictionaries
containing information about each step taken to build the image. The keys
in each step include the following:

	Command - The command executed in this build step

	Id - Layer ID

	Size - Cumulative image size, in bytes

	Size_Human - Cumulative image size, in human-readable units

	Tags - Tag(s) assigned to this layer

	Time_Created_Epoch - Time this build step was completed (Epoch
time)

	Time_Created_Local - Time this build step was completed (Minion's
local timezone)

CLI Example:

salt myminion docker.exists mycontainer

	
salt.modules.dockermod.images(verbose=False, **kwargs)

	Returns information about the Docker images on the Minion. Equivalent to
running the docker images Docker CLI command.

	allFalse
	If True, untagged images will also be returned

	verboseFalse
	If True, a docker inspect will be run on each image returned.

RETURN DATA

A dictionary with each key being an image ID, and each value some general
info about that image (time created, size, tags associated with the image,
etc.)

CLI Example:

salt myminion docker.images
salt myminion docker.images all=True

	
salt.modules.dockermod.import_(source, repository, tag='latest', api_response=False)

	
Changed in version 2018.3.0: The repository and tag must now be passed separately using the
repository and tag arguments, rather than together in the (now
deprecated) image argument.

Imports content from a local tarball or a URL as a new docker image

	source
	Content to import (URL or absolute path to a tarball). URL can be a
file on the Salt fileserver (i.e.
salt://path/to/rootfs/tarball.tar.xz. To import a file from a
saltenv other than base (e.g. dev), pass it at the end of the
URL (ex. salt://path/to/rootfs/tarball.tar.xz?saltenv=dev).

	repository
	Repository name for the image being imported

New in version 2018.3.0.

	taglatest
	Tag name for the image

New in version 2018.3.0.

	image
	
Deprecated since version 2018.3.0: Use both repository and tag instead

	api_responseFalse
	If True an api_response key will be present in the return data,
containing the raw output from the Docker API.

RETURN DATA

A dictionary containing the following keys:

	Id - ID of the newly-created image

	Image - Name of the newly-created image

	Time_Elapsed - Time in seconds taken to perform the commit

CLI Example:

salt myminion docker.import /tmp/cent7-minimal.tar.xz myuser/centos
salt myminion docker.import /tmp/cent7-minimal.tar.xz myuser/centos:7
salt myminion docker.import salt://dockerimages/cent7-minimal.tar.xz myuser/centos:7

	
salt.modules.dockermod.info()

	Returns a dictionary of system-wide information. Equivalent to running
the docker info Docker CLI command.

CLI Example:

salt myminion docker.info

	
salt.modules.dockermod.inspect(name)

	
Changed in version 2017.7.0: Volumes and networks are now checked, in addition to containers and
images.

This is a generic container/image/volume/network inspecton function. It
will run the following functions in order:

	docker.inspect_container

	docker.inspect_image

	docker.inspect_volume

	docker.inspect_network

The first of these to find a match will be returned.

	name
	Container/image/volume/network name or ID

RETURN DATA

A dictionary of container/image/volume/network information

CLI Example:

salt myminion docker.inspect mycontainer
salt myminion docker.inspect busybox

	
salt.modules.dockermod.inspect_container(name)

	Retrieves container information. Equivalent to running the docker
inspect Docker CLI command, but will only look for container information.

	name
	Container name or ID

RETURN DATA

A dictionary of container information

CLI Example:

salt myminion docker.inspect_container mycontainer
salt myminion docker.inspect_container 0123456789ab

	
salt.modules.dockermod.inspect_image(name)

	Retrieves image information. Equivalent to running the docker inspect
Docker CLI command, but will only look for image information.

Note

To inspect an image, it must have been pulled from a registry or built
locally. Images on a Docker registry which have not been pulled cannot
be inspected.

	name
	Image name or ID

RETURN DATA

A dictionary of image information

CLI Examples:

salt myminion docker.inspect_image busybox
salt myminion docker.inspect_image centos:6
salt myminion docker.inspect_image 0123456789ab

	
salt.modules.dockermod.inspect_network(network_id)

	Inspect Network

	network_id
	ID of network

CLI Example:

salt myminion docker.inspect_network 1f9d2454d0872b68dd9e8744c6e7a4c66b86f10abaccc21e14f7f014f729b2bc

	
salt.modules.dockermod.inspect_volume(name)

	Inspect Volume

New in version 2015.8.4.

	name
	Name of volume

CLI Example:

salt myminion docker.inspect_volume my_volume

	
salt.modules.dockermod.kill(name)

	Kill all processes in a running container instead of performing a graceful
shutdown

	name
	Container name or ID

RETURN DATA

A dictionary will be returned, containing the following keys:

	status - A dictionary showing the prior state of the container as
well as the new state

	result - A boolean noting whether or not the action was successful

	comment - Only present if the container cannot be killed

CLI Example:

salt myminion docker.kill mycontainer

	
salt.modules.dockermod.layers(name)

	Returns a list of the IDs of layers belonging to the specified image, with
the top-most layer (the one correspnding to the passed name) appearing
last.

	name
	Image name or ID

CLI Example:

salt myminion docker.layers centos:7

	
salt.modules.dockermod.list_containers(**kwargs)

	Returns a list of containers by name. This is different from
docker.ps in that
docker.ps returns its results
organized by container ID.

	allFalse
	If True, stopped containers will be included in return data

CLI Example:

salt myminion docker.list_containers

	
salt.modules.dockermod.list_tags()

	Returns a list of tagged images

CLI Example:

salt myminion docker.list_tags

	
salt.modules.dockermod.load(path, repository=None, tag=None)

	
Changed in version 2018.3.0: If the loaded image should be tagged, then the repository and tag must
now be passed separately using the repository and tag
arguments, rather than together in the (now deprecated) image
argument.

Load a tar archive that was created using docker.save (or via the Docker CLI using docker save).

	path
	Path to docker tar archive. Path can be a file on the Minion, or the
URL of a file on the Salt fileserver (i.e.
salt://path/to/docker/saved/image.tar). To load a file from a
saltenv other than base (e.g. dev), pass it at the end of the
URL (ex. salt://path/to/rootfs/tarball.tar.xz?saltenv=dev).

	repository
	If specified, the topmost layer of the newly-loaded image will be
tagged with the specified repo using docker.tag. If a repository name is provided, then
the tag argument is also required.

New in version 2018.3.0.

	tag
	Tag name to go along with the repository name, if the loaded image is
to be tagged.

New in version 2018.3.0.

	image
	
Deprecated since version 2018.3.0: Use both repository and tag instead

RETURN DATA

A dictionary will be returned, containing the following keys:

	Path - Path of the file that was saved

	Layers - A list containing the IDs of the layers which were loaded.
Any layers in the file that was loaded, which were already present on the
Minion, will not be included.

	Image - Name of tag applied to topmost layer

(Only present if tag was specified and tagging was successful)

	Time_Elapsed - Time in seconds taken to load the file

	Warning - Message describing any problems encountered in attempt to
tag the topmost layer

(Only present if tag was specified and tagging failed)

CLI Example:

salt myminion docker.load /path/to/image.tar
salt myminion docker.load salt://path/to/docker/saved/image.tar repository=myuser/myimage tag=mytag

	
salt.modules.dockermod.login(*registries)

	
New in version 2016.3.7,2016.11.4,2017.7.0.

Performs a docker login to authenticate to one or more configured
repositories. See the documentation at the top of this page to configure
authentication credentials.

Multiple registry URLs (matching those configured in Pillar) can be passed,
and Salt will attempt to login to just those registries. If no registry
URLs are provided, Salt will attempt to login to all configured
registries.

RETURN DATA

A dictionary containing the following keys:

	Results - A dictionary mapping registry URLs to the authentication
result. True means a successful login, False means a failed
login.

	Errors - A list of errors encountered during the course of this
function.

CLI Example:

salt myminion docker.login
salt myminion docker.login hub
salt myminion docker.login hub https://mydomain.tld/registry/

	
salt.modules.dockermod.logout(*registries)

	
New in version 3001.

Performs a docker logout to remove the saved authentication details for
one or more configured repositories.

Multiple registry URLs (matching those configured in Pillar) can be passed,
and Salt will attempt to logout of just those registries. If no registry
URLs are provided, Salt will attempt to logout of all configured
registries.

RETURN DATA

A dictionary containing the following keys:

	Results - A dictionary mapping registry URLs to the authentication
result. True means a successful logout, False means a failed
logout.

	Errors - A list of errors encountered during the course of this
function.

CLI Example:

salt myminion docker.logout
salt myminion docker.logout hub
salt myminion docker.logout hub https://mydomain.tld/registry/

	
salt.modules.dockermod.logs(name, **kwargs)

	
Changed in version 2018.3.0: Support for all of docker-py's logs() [http://docker-py.readthedocs.io/en/stable/api.html#docker.api.container.ContainerApiMixin.logs] function's arguments, with the
exception of stream.

Returns the logs for the container. An interface to docker-py's logs() [http://docker-py.readthedocs.io/en/stable/api.html#docker.api.container.ContainerApiMixin.logs]
function.

	name
	Container name or ID

	stdoutTrue
	Return stdout lines

	stderrTrue
	Return stdout lines

	timestampsFalse
	Show timestamps

	tailall
	Output specified number of lines at the end of logs. Either an integer
number of lines or the string all.

	since
	Show logs since the specified time, passed as a UNIX epoch timestamp.
Optionally, if timelib [https://pypi.python.org/pypi/timelib] is installed on the minion the timestamp can be
passed as a string which will be resolved to a date using
timelib.strtodatetime().

	followFalse
	If True, this function will block until the container exits and
return the logs when it does. The default behavior is to return what is
in the log at the time this function is executed.

CLI Examples:

All logs
salt myminion docker.logs mycontainer
Last 100 lines of log
salt myminion docker.logs mycontainer tail=100
Just stderr
salt myminion docker.logs mycontainer stdout=False
Logs since a specific UNIX timestamp
salt myminion docker.logs mycontainer since=1511688459
Flexible format for "since" argument (requires timelib)
salt myminion docker.logs mycontainer since='1 hour ago'
salt myminion docker.logs mycontainer since='1 week ago'
salt myminion docker.logs mycontainer since='1 fortnight ago'

	
salt.modules.dockermod.networks(names=None, ids=None)

	
Changed in version 2017.7.0: The names and ids can be passed as a comma-separated list now,
as well as a Python list.

Changed in version 2018.3.0: The Containers key for each network is no longer always empty.

List existing networks

	names
	Filter by name

	ids
	Filter by id

CLI Example:

salt myminion docker.networks names=network-web
salt myminion docker.networks ids=1f9d2454d0872b68dd9e8744c6e7a4c66b86f10abaccc21e14f7f014f729b2bc

	
salt.modules.dockermod.pause(name)

	Pauses a container

	name
	Container name or ID

RETURN DATA

A dictionary will be returned, containing the following keys:

	status - A dictionary showing the prior state of the container as
well as the new state

	result - A boolean noting whether or not the action was successful

	comment - Only present if the container cannot be paused

CLI Example:

salt myminion docker.pause mycontainer

	
salt.modules.dockermod.pid(name)

	Returns the PID of a container

	name
	Container name or ID

CLI Example:

salt myminion docker.pid mycontainer
salt myminion docker.pid 0123456789ab

	
salt.modules.dockermod.port(name, private_port=None)

	Returns port mapping information for a given container. Equivalent to
running the docker port Docker CLI command.

	name
	Container name or ID

Changed in version 2019.2.0: This value can now be a pattern expression (using the
pattern-matching characters defined in fnmatch [https://docs.python.org/2/library/fnmatch.html]). If a pattern
expression is used, this function will return a dictionary mapping
container names which match the pattern to the mappings for those
containers. When no pattern expression is used, a dictionary of the
mappings for the specified container name will be returned.

	private_portNone
	If specified, get information for that specific port. Can be specified
either as a port number (i.e. 5000), or as a port number plus the
protocol (i.e. 5000/udp).

If this argument is omitted, all port mappings will be returned.

RETURN DATA

A dictionary of port mappings, with the keys being the port and the values
being the mapping(s) for that port.

CLI Examples:

salt myminion docker.port mycontainer
salt myminion docker.port mycontainer 5000
salt myminion docker.port mycontainer 5000/udp

	
salt.modules.dockermod.prune(containers=False, networks=False, images=False, build=False, volumes=False, system=None, **filters)

	
New in version 2019.2.0.

Prune Docker's various subsystems

Note

This requires docker-py version 2.1.0 or later.

	containersFalse
	If True, prunes stopped containers (documentation [https://docs.docker.com/engine/reference/commandline/container_prune/#filtering])

	imagesFalse
	If True, prunes unused images (documentation [https://docs.docker.com/engine/reference/commandline/image_prune/#filtering])

	networksFalse
	If False, prunes unreferenced networks (documentation [https://docs.docker.com/engine/reference/commandline/network_prune/#filtering)])

	buildFalse
	If True, clears the builder cache

Note

Only supported in Docker 17.07.x and newer. Additionally, filters
do not apply to this argument.

	volumesFalse
	If True, prunes unreferenced volumes (documentation [https://docs.docker.com/engine/reference/commandline/volume_prune/])

	system
	If True, prunes containers, images, networks, and builder cache.
Assumed to be True if none of containers, images,
networks, or build are set to True.

Note

volumes=True must still be used to prune volumes

	filters
	
	dangling=True (images only) - remove only dangling images

	until=<timestamp> - only remove objects created before given
timestamp. Not applicable to volumes. See the documentation links
above for examples of valid time expressions.

	label - only remove objects matching the label expression. Valid
expressions include labelname or labelname=value.

CLI Examples:

salt myminion docker.prune system=True
salt myminion docker.prune system=True until=12h
salt myminion docker.prune images=True dangling=True
salt myminion docker.prune images=True label=foo,bar=baz

	
salt.modules.dockermod.ps_(filters=None, **kwargs)

	Returns information about the Docker containers on the Minion. Equivalent
to running the docker ps Docker CLI command.

	allFalse
	If True, stopped containers will also be returned

	host: False
	If True, local host's network topology will be included

	verboseFalse
	If True, a docker inspect will be run on each container
returned.

	filters: None
	A dictionary of filters to be processed on the container list.
Available filters:

	exited (int): Only containers with specified exit code

	status (str): One of restarting, running, paused, exited

	label (str): format either "key" or "key=value"

RETURN DATA

A dictionary with each key being an container ID, and each value some
general info about that container (time created, name, command, etc.)

CLI Example:

salt myminion docker.ps
salt myminion docker.ps all=True
salt myminion docker.ps filters="{'label': 'role=web'}"

	
salt.modules.dockermod.pull(image, insecure_registry=False, api_response=False, client_timeout=60)

	
Changed in version 2018.3.0: If no tag is specified in the image argument, all tags for the
image will be pulled. For this reason is it recommended to pass
image using the repo:tag notation.

Pulls an image from a Docker registry

	image
	Image to be pulled

	insecure_registryFalse
	If True, the Docker client will permit the use of insecure
(non-HTTPS) registries.

	api_responseFalse
	If True, an API_Response key will be present in the return
data, containing the raw output from the Docker API.

Note

This may result in a lot of additional return data, especially
for larger images.

	client_timeout
	Timeout in seconds for the Docker client. This is not a timeout for
this function, but for receiving a response from the API.

RETURN DATA

A dictionary will be returned, containing the following keys:

	
	Layers - A dictionary containing one or more of the following keys:
	
	Already_Pulled - Layers that that were already present on the
Minion

	Pulled - Layers that that were pulled

	Status - A string containing a summary of the pull action (usually a
message saying that an image was downloaded, or that it was up to date).

	Time_Elapsed - Time in seconds taken to perform the pull

CLI Example:

salt myminion docker.pull centos
salt myminion docker.pull centos:6

	
salt.modules.dockermod.push(image, insecure_registry=False, api_response=False, client_timeout=60)

	
Changed in version 2015.8.4: The Id and Image keys are no longer present in the return data.
This is due to changes in the Docker Remote API.

Pushes an image to a Docker registry. See the documentation at top of this
page to configure authentication credentials.

	image
	Image to be pushed. If just the repository name is passed, then all
tagged images for the specified repo will be pushed. If the image name
is passed in repo:tag notation, only the specified image will be
pushed.

	insecure_registryFalse
	If True, the Docker client will permit the use of insecure
(non-HTTPS) registries.

	api_responseFalse
	If True, an API_Response key will be present in the return
data, containing the raw output from the Docker API.

	client_timeout
	Timeout in seconds for the Docker client. This is not a timeout for
this function, but for receiving a response from the API.

RETURN DATA

A dictionary will be returned, containing the following keys:

	
	Layers - A dictionary containing one or more of the following keys:
	
	Already_Pushed - Layers that that were already present on the
Minion

	Pushed - Layers that that were pushed

	Time_Elapsed - Time in seconds taken to perform the push

CLI Example:

salt myminion docker.push myuser/mycontainer
salt myminion docker.push myuser/mycontainer:mytag

	
salt.modules.dockermod.remove_network(network_id)

	Remove a network

	network_id
	Network name or ID

CLI Examples:

salt myminion docker.remove_network mynet
salt myminion docker.remove_network 1f9d2454d0872b68dd9e8744c6e7a4c66b86f10abaccc21e14f7f014f729b2bc

	
salt.modules.dockermod.remove_volume(name)

	Remove a volume

New in version 2015.8.4.

	name
	Name of volume

CLI Example:

salt myminion docker.remove_volume my_volume

	
salt.modules.dockermod.rename(name, new_name)

	
New in version 2017.7.0.

Renames a container. Returns True if successful, and raises an error if
the API returns one. If unsuccessful and the API returns no error (should
not happen), then False will be returned.

	name
	Name or ID of existing container

	new_name
	New name to assign to container

CLI Example:

salt myminion docker.rename foo bar

	
salt.modules.dockermod.resolve_image_id(name)

	
New in version 2018.3.0.

Given an image name (or partial image ID), return the full image ID. If no
match is found among the locally-pulled images, then False will be
returned.

CLI Examples:

salt myminion docker.resolve_image_id foo
salt myminion docker.resolve_image_id foo:bar
salt myminion docker.resolve_image_id 36540f359ca3

	
salt.modules.dockermod.resolve_tag(name, **kwargs)

	
New in version 2017.7.2.

Changed in version 2018.3.0: Instead of matching against pulled tags using
docker.list_tags, this
function now simply inspects the passed image name using
docker.inspect_image
and returns the first matching tag. If no matching tags are found, it
is assumed that the passed image is an untagged image ID, and the full
ID is returned.

Inspects the specified image name and returns the first matching tag in the
inspect results. If the specified image is not pulled locally, this
function will return False.

	name
	Image name to resolve. If the image is found but there are no tags,
this means that the image name passed was an untagged image. In this
case the image ID will be returned.

	allFalse
	If True, a list of all matching tags will be returned. If the image
is found but there are no tags, then a list will still be returned, but
it will simply contain the image ID.

New in version 2018.3.0.

	tags
	
Deprecated since version 2018.3.0.

CLI Examples:

salt myminion docker.resolve_tag busybox
salt myminion docker.resolve_tag centos:7 all=True
salt myminion docker.resolve_tag c9f378ac27d9

	
salt.modules.dockermod.restart(name, timeout=10)

	Restarts a container

	name
	Container name or ID

	timeout10
	Timeout in seconds after which the container will be killed (if it has
not yet gracefully shut down)

RETURN DATA

A dictionary will be returned, containing the following keys:

	status - A dictionary showing the prior state of the container as
well as the new state

	result - A boolean noting whether or not the action was successful

	restarted - If restart was successful, this key will be present and
will be set to True.

CLI Examples:

salt myminion docker.restart mycontainer
salt myminion docker.restart mycontainer timeout=20

	
salt.modules.dockermod.retcode(name, cmd, exec_driver=None, stdin=None, python_shell=True, output_loglevel='debug', use_vt=False, ignore_retcode=False, keep_env=None)

	Run cmd.retcode within a container

	name
	Container name or ID in which to run the command

	cmd
	Command to run

	exec_driverNone
	If not passed, the execution driver will be detected as described
above.

	stdinNone
	Standard input to be used for the command

	output_logleveldebug
	Level at which to log the output from the command. Set to quiet to
suppress logging.

	use_vtFalse
	Use SaltStack's utils.vt to stream output to console.

	keep_envNone
	If not passed, only a sane default PATH environment variable will be
set. If True, all environment variables from the container's host
will be kept. Otherwise, a comma-separated list (or Python list) of
environment variable names can be passed, and those environment
variables will be kept.

CLI Example:

salt myminion docker.retcode mycontainer 'ls -l /etc'

	
salt.modules.dockermod.rm_(name, force=False, volumes=False, **kwargs)

	Removes a container

	name
	Container name or ID

	forceFalse
	If True, the container will be killed first before removal, as the
Docker API will not permit a running container to be removed. This
option is set to False by default to prevent accidental removal of
a running container.

	stopFalse
	If True, the container will be stopped first before removal, as the
Docker API will not permit a running container to be removed. This
option is set to False by default to prevent accidental removal of
a running container.

New in version 2017.7.0.

	timeout
	Optional timeout to be passed to docker.stop if stopping the container.

New in version 2018.3.0.

	volumesFalse
	Also remove volumes associated with container

RETURN DATA

A list of the IDs of containers which were removed

CLI Example:

salt myminion docker.rm mycontainer
salt myminion docker.rm mycontainer force=True

	
salt.modules.dockermod.rmi(*names, **kwargs)

	Removes an image

	name
	Name (in repo:tag notation) or ID of image.

	forceFalse
	If True, the image will be removed even if the Minion has
containers created from that image

	pruneTrue
	If True, untagged parent image layers will be removed as well, set
this to False to keep them.

RETURN DATA

A dictionary will be returned, containing the following two keys:

	Layers - A list of the IDs of image layers that were removed

	Tags - A list of the tags that were removed

	Errors - A list of any errors that were encountered

CLI Examples:

salt myminion docker.rmi busybox
salt myminion docker.rmi busybox force=True
salt myminion docker.rmi foo bar baz

	
salt.modules.dockermod.run(name, cmd, exec_driver=None, stdin=None, python_shell=True, output_loglevel='debug', use_vt=False, ignore_retcode=False, keep_env=None)

	Run cmd.run within a container

	name
	Container name or ID in which to run the command

	cmd
	Command to run

	exec_driverNone
	If not passed, the execution driver will be detected as described
above.

	stdinNone
	Standard input to be used for the command

	output_logleveldebug
	Level at which to log the output from the command. Set to quiet to
suppress logging.

	use_vtFalse
	Use SaltStack's utils.vt to stream output to console.

	keep_envNone
	If not passed, only a sane default PATH environment variable will be
set. If True, all environment variables from the container's host
will be kept. Otherwise, a comma-separated list (or Python list) of
environment variable names can be passed, and those environment
variables will be kept.

CLI Example:

salt myminion docker.run mycontainer 'ls -l /etc'

	
salt.modules.dockermod.run_all(name, cmd, exec_driver=None, stdin=None, python_shell=True, output_loglevel='debug', use_vt=False, ignore_retcode=False, keep_env=None)

	Run cmd.run_all within a container

Note

While the command is run within the container, it is initiated from the
host. Therefore, the PID in the return dict is from the host, not from
the container.

	name
	Container name or ID in which to run the command

	cmd
	Command to run

	exec_driverNone
	If not passed, the execution driver will be detected as described
above.

	stdinNone
	Standard input to be used for the command

	output_logleveldebug
	Level at which to log the output from the command. Set to quiet to
suppress logging.

	use_vtFalse
	Use SaltStack's utils.vt to stream output to console.

	keep_envNone
	If not passed, only a sane default PATH environment variable will be
set. If True, all environment variables from the container's host
will be kept. Otherwise, a comma-separated list (or Python list) of
environment variable names can be passed, and those environment
variables will be kept.

CLI Example:

salt myminion docker.run_all mycontainer 'ls -l /etc'

	
salt.modules.dockermod.run_container(image, name=None, skip_translate=None, ignore_collisions=False, validate_ip_addrs=True, client_timeout=60, bg=False, replace=False, force=False, networks=None, **kwargs)

	
New in version 2018.3.0.

Equivalent to docker run on the Docker CLI. Runs the container, waits
for it to exit, and returns the container's logs when complete.

Note

Not to be confused with docker.run, which provides a cmd.run-like interface for executing commands in a
running container.

This function accepts the same arguments as docker.create, with the exception of start. In
addition, it accepts the arguments from docker.logs, with the exception of follow, to
control how logs are returned. Finally, the bg argument described below
can be used to optionally run the container in the background (the default
behavior is to block until the container exits).

	bgFalse
	If True, this function will not wait for the container to exit and
will not return its logs. It will however return the container's name
and ID, allowing for docker.logs to be used to view the logs.

Note

The logs will be inaccessible once the container exits if
auto_remove is set to True, so keep this in mind.

	replaceFalse
	If True, and if the named container already exists, this will
remove the existing container. The default behavior is to return a
False result when the container already exists.

	forceFalse
	If True, and the named container already exists, and replace
is also set to True, then the container will be forcibly removed.
Otherwise, the state will not proceed and will return a False
result.

	networks
	Networks to which the container should be connected. If automatic IP
configuration is being used, the networks can be a simple list of
network names. If custom IP configuration is being used, then this
argument must be passed as a dictionary.

CLI Examples:

salt myminion docker.run_container myuser/myimage command=/usr/local/bin/myscript.sh
Run container in the background
salt myminion docker.run_container myuser/myimage command=/usr/local/bin/myscript.sh bg=True
Connecting to two networks using automatic IP configuration
salt myminion docker.run_container myuser/myimage command='perl /scripts/sync.py' networks=net1,net2
net1 using automatic IP, net2 using static IPv4 address
salt myminion docker.run_container myuser/myimage command='perl /scripts/sync.py' networks='{"net1": {}, "net2": {"ipv4_address": "192.168.27.12"}}'

	
salt.modules.dockermod.run_stderr(name, cmd, exec_driver=None, stdin=None, python_shell=True, output_loglevel='debug', use_vt=False, ignore_retcode=False, keep_env=None)

	Run cmd.run_stderr within a
container

	name
	Container name or ID in which to run the command

	cmd
	Command to run

	exec_driverNone
	If not passed, the execution driver will be detected as described
above.

	stdinNone
	Standard input to be used for the command

	output_logleveldebug
	Level at which to log the output from the command. Set to quiet to
suppress logging.

	use_vtFalse
	Use SaltStack's utils.vt to stream output to console.

	keep_envNone
	If not passed, only a sane default PATH environment variable will be
set. If True, all environment variables from the container's host
will be kept. Otherwise, a comma-separated list (or Python list) of
environment variable names can be passed, and those environment
variables will be kept.

CLI Example:

salt myminion docker.run_stderr mycontainer 'ls -l /etc'

	
salt.modules.dockermod.run_stdout(name, cmd, exec_driver=None, stdin=None, python_shell=True, output_loglevel='debug', use_vt=False, ignore_retcode=False, keep_env=None)

	Run cmd.run_stdout within a
container

	name
	Container name or ID in which to run the command

	cmd
	Command to run

	exec_driverNone
	If not passed, the execution driver will be detected as described
above.

	stdinNone
	Standard input to be used for the command

	output_logleveldebug
	Level at which to log the output from the command. Set to quiet to
suppress logging.

	use_vtFalse
	Use SaltStack's utils.vt to stream output to console.

	keep_envNone
	If not passed, only a sane default PATH environment variable will be
set. If True, all environment variables from the container's host
will be kept. Otherwise, a comma-separated list (or Python list) of
environment variable names can be passed, and those environment
variables will be kept.

CLI Example:

salt myminion docker.run_stdout mycontainer 'ls -l /etc'

	
salt.modules.dockermod.save(name, path, overwrite=False, makedirs=False, compression=None, **kwargs)

	Saves an image and to a file on the minion. Equivalent to running the
docker save Docker CLI command, but unlike docker save this will
also work on named images instead of just images IDs.

	name
	Name or ID of image. Specify a specific tag by using the repo:tag
notation.

	path
	Absolute path on the Minion where the image will be exported

	overwriteFalse
	Unless this option is set to True, then if the destination file
exists an error will be raised.

	makedirsFalse
	If True, then if the parent directory of the file specified by the
path argument does not exist, Salt will attempt to create it.

	compressionNone
	Can be set to any of the following:

	gzip or gz for gzip compression

	bzip2 or bz2 for bzip2 compression

	xz or lzma for XZ compression (requires xz-utils [http://tukaani.org/xz/], as well
as the lzma module from Python 3.3, available in Python 2 and
Python 3.0-3.2 as backports.lzma [https://pypi.python.org/pypi/backports.lzma])

This parameter can be omitted and Salt will attempt to determine the
compression type by examining the filename passed in the path
parameter.

Note

Since the Docker API does not support docker save, compression
will be a bit slower with this function than with
docker.export since the
image(s) will first be saved and then the compression done
afterwards.

	pushFalse
	If True, the container will be pushed to the master using
cp.push.

Note

This requires file_recv to be set to True on the
Master.

RETURN DATA

A dictionary will be returned, containing the following keys:

	Path - Path of the file that was saved

	Push - Reports whether or not the file was successfully pushed to the
Master

(Only present if push=True)

	Size - Size of the file, in bytes

	Size_Human - Size of the file, in human-readable units

	Time_Elapsed - Time in seconds taken to perform the save

CLI Examples:

salt myminion docker.save centos:7 /tmp/cent7.tar
salt myminion docker.save 0123456789ab cdef01234567 /tmp/saved.tar

	
salt.modules.dockermod.script(name, source, saltenv='base', args=None, template=None, exec_driver=None, stdin=None, python_shell=True, output_loglevel='debug', ignore_retcode=False, use_vt=False, keep_env=None)

	Run cmd.script within a container

Note

While the command is run within the container, it is initiated from the
host. Therefore, the PID in the return dict is from the host, not from
the container.

	name
	Container name or ID

	source
	Path to the script. Can be a local path on the Minion or a remote file
from the Salt fileserver.

	args
	A string containing additional command-line options to pass to the
script.

	templateNone
	Templating engine to use on the script before running.

	exec_driverNone
	If not passed, the execution driver will be detected as described
above.

	stdinNone
	Standard input to be used for the script

	output_logleveldebug
	Level at which to log the output from the script. Set to quiet to
suppress logging.

	use_vtFalse
	Use SaltStack's utils.vt to stream output to console.

	keep_envNone
	If not passed, only a sane default PATH environment variable will be
set. If True, all environment variables from the container's host
will be kept. Otherwise, a comma-separated list (or Python list) of
environment variable names can be passed, and those environment
variables will be kept.

CLI Example:

salt myminion docker.script mycontainer salt://docker_script.py
salt myminion docker.script mycontainer salt://scripts/runme.sh 'arg1 arg2 "arg 3"'
salt myminion docker.script mycontainer salt://scripts/runme.sh stdin='one\ntwo\nthree\nfour\nfive\n' output_loglevel=quiet

	
salt.modules.dockermod.script_retcode(name, source, saltenv='base', args=None, template=None, exec_driver=None, stdin=None, python_shell=True, output_loglevel='debug', ignore_retcode=False, use_vt=False, keep_env=None)

	Run cmd.script_retcode
within a container

	name
	Container name or ID

	source
	Path to the script. Can be a local path on the Minion or a remote file
from the Salt fileserver.

	args
	A string containing additional command-line options to pass to the
script.

	templateNone
	Templating engine to use on the script before running.

	exec_driverNone
	If not passed, the execution driver will be detected as described
above.

	stdinNone
	Standard input to be used for the script

	output_logleveldebug
	Level at which to log the output from the script. Set to quiet to
suppress logging.

	use_vtFalse
	Use SaltStack's utils.vt to stream output to console.

	keep_envNone
	If not passed, only a sane default PATH environment variable will be
set. If True, all environment variables from the container's host
will be kept. Otherwise, a comma-separated list (or Python list) of
environment variable names can be passed, and those environment
variables will be kept.

CLI Example:

salt myminion docker.script_retcode mycontainer salt://docker_script.py
salt myminion docker.script_retcode mycontainer salt://scripts/runme.sh 'arg1 arg2 "arg 3"'
salt myminion docker.script_retcode mycontainer salt://scripts/runme.sh stdin='one\ntwo\nthree\nfour\nfive\n' output_loglevel=quiet

	
salt.modules.dockermod.search(name, official=False, trusted=False)

	Searches the registry for an image

	name
	Search keyword

	officialFalse
	Limit results to official builds

	trustedFalse
	Limit results to trusted builds [https://blog.docker.com/2013/11/introducing-trusted-builds/]

RETURN DATA

A dictionary with each key being the name of an image, and the following
information for each image:

	Description - Image description

	Official - A boolean (True if an official build, False if
not)

	Stars - Number of stars the image has on the registry

	Trusted - A boolean (True if a trusted build, False if not)

CLI Example:

salt myminion docker.search centos
salt myminion docker.search centos official=True

	
salt.modules.dockermod.signal_(name, signal)

	Send a signal to a container. Signals can be either strings or numbers, and
are defined in the Standard Signals section of the signal(7)
manpage. Run man 7 signal on a Linux host to browse this manpage.

	name
	Container name or ID

	signal
	Signal to send to container

RETURN DATA

If the signal was successfully sent, True will be returned. Otherwise,
an error will be raised.

CLI Example:

salt myminion docker.signal mycontainer SIGHUP

	
salt.modules.dockermod.sls(name, mods=None, **kwargs)

	Apply the states defined by the specified SLS modules to the running
container

New in version 2016.11.0.

The container does not need to have Salt installed, but Python is required.

	name
	Container name or ID

	modsNone
	A string containing comma-separated list of SLS with defined states to
apply to the container.

	saltenvbase
	Specify the environment from which to retrieve the SLS indicated by the
mods parameter.

	pillarenv
	Specify a Pillar environment to be used when applying states. This
can also be set in the minion config file using the
pillarenv option. When neither the
pillarenv minion config option nor this CLI argument is
used, all Pillar environments will be merged together.

New in version 2018.3.0.

	pillar
	Custom Pillar values, passed as a dictionary of key-value pairs

Note

Values passed this way will override Pillar values set via
pillar_roots or an external Pillar source.

New in version 2018.3.0.

CLI Example:

salt myminion docker.sls compassionate_mirzakhani mods=rails,web

	
salt.modules.dockermod.sls_build(repository, tag='latest', base='opensuse/python', mods=None, dryrun=False, **kwargs)

	
Changed in version 2018.3.0: The repository and tag must now be passed separately using the
repository and tag arguments, rather than together in the (now
deprecated) image argument.

Build a Docker image using the specified SLS modules on top of base image

New in version 2016.11.0.

The base image does not need to have Salt installed, but Python is required.

	repository
	Repository name for the image to be built

New in version 2018.3.0.

	taglatest
	Tag name for the image to be built

New in version 2018.3.0.

	name
	
Deprecated since version 2018.3.0: Use both repository and tag instead

	baseopensuse/python
	Name or ID of the base image

	mods
	A string containing comma-separated list of SLS with defined states to
apply to the base image.

	saltenvbase
	Specify the environment from which to retrieve the SLS indicated by the
mods parameter.

	pillarenv
	Specify a Pillar environment to be used when applying states. This
can also be set in the minion config file using the
pillarenv option. When neither the
pillarenv minion config option nor this CLI argument is
used, all Pillar environments will be merged together.

New in version 2018.3.0.

	pillar
	Custom Pillar values, passed as a dictionary of key-value pairs

Note

Values passed this way will override Pillar values set via
pillar_roots or an external Pillar source.

New in version 2018.3.0.

	dryrun: False
	when set to True the container will not be committed at the end of
the build. The dryrun succeed also when the state contains errors.

RETURN DATA

A dictionary with the ID of the new container. In case of a dryrun,
the state result is returned and the container gets removed.

CLI Example:

salt myminion docker.sls_build imgname base=mybase mods=rails,web

	
salt.modules.dockermod.start_(name)

	Start a container

	name
	Container name or ID

RETURN DATA

A dictionary will be returned, containing the following keys:

	status - A dictionary showing the prior state of the container as
well as the new state

	result - A boolean noting whether or not the action was successful

	comment - Only present if the container cannot be started

CLI Example:

salt myminion docker.start mycontainer

	
salt.modules.dockermod.state(name)

	Returns the state of the container

	name
	Container name or ID

RETURN DATA

A string representing the current state of the container (either
running, paused, or stopped)

CLI Example:

salt myminion docker.state mycontainer

	
salt.modules.dockermod.stop(name, timeout=None, **kwargs)

	Stops a running container

	name
	Container name or ID

	unpauseFalse
	If True and the container is paused, it will be unpaused before
attempting to stop the container.

	timeout
	Timeout in seconds after which the container will be killed (if it has
not yet gracefully shut down)

Changed in version 2017.7.0: If this argument is not passed, then the container's configuration
will be checked. If the container was created using the
stop_timeout argument, then the configured timeout will be
used, otherwise the timeout will be 10 seconds.

RETURN DATA

A dictionary will be returned, containing the following keys:

	status - A dictionary showing the prior state of the container as
well as the new state

	result - A boolean noting whether or not the action was successful

	comment - Only present if the container can not be stopped

CLI Examples:

salt myminion docker.stop mycontainer
salt myminion docker.stop mycontainer unpause=True
salt myminion docker.stop mycontainer timeout=20

	
salt.modules.dockermod.tag_(name, repository, tag='latest', force=False)

	
Changed in version 2018.3.0: The repository and tag must now be passed separately using the
repository and tag arguments, rather than together in the (now
deprecated) image argument.

Tag an image into a repository and return True. If the tag was
unsuccessful, an error will be raised.

	name
	ID of image

	repository
	Repository name for the image to be built

New in version 2018.3.0.

	taglatest
	Tag name for the image to be built

New in version 2018.3.0.

	image
	
Deprecated since version 2018.3.0: Use both repository and tag instead

	forceFalse
	Force apply tag

CLI Example:

salt myminion docker.tag 0123456789ab myrepo/mycontainer mytag

	
salt.modules.dockermod.top(name)

	Runs the docker top command on a specific container

	name
	Container name or ID

CLI Example:

RETURN DATA

A list of dictionaries containing information about each process

salt myminion docker.top mycontainer
salt myminion docker.top 0123456789ab

	
salt.modules.dockermod.unfreeze(name)

	This function is an alias of unpause.

Unpauses a container

	name
	Container name or ID

RETURN DATA

A dictionary will be returned, containing the following keys:

	status - A dictionary showing the prior state of the container as
well as the new state

	result - A boolean noting whether or not the action was successful

	comment - Only present if the container can not be unpaused

CLI Example:

salt myminion docker.pause mycontainer

	
salt.modules.dockermod.unpause(name)

	Unpauses a container

	name
	Container name or ID

RETURN DATA

A dictionary will be returned, containing the following keys:

	status - A dictionary showing the prior state of the container as
well as the new state

	result - A boolean noting whether or not the action was successful

	comment - Only present if the container can not be unpaused

CLI Example:

salt myminion docker.pause mycontainer

	
salt.modules.dockermod.version()

	Returns a dictionary of Docker version information. Equivalent to running
the docker version Docker CLI command.

CLI Example:

salt myminion docker.version

	
salt.modules.dockermod.volumes(filters=None)

	List existing volumes

New in version 2015.8.4.

	filters
	There is one available filter: dangling=true

CLI Example:

salt myminion docker.volumes filters="{'dangling': True}"

	
salt.modules.dockermod.wait(name, ignore_already_stopped=False, fail_on_exit_status=False)

	Wait for the container to exit gracefully, and return its exit code

Note

This function will block until the container is stopped.

	name
	Container name or ID

	ignore_already_stopped
	Boolean flag that prevents execution to fail, if a container
is already stopped.

	fail_on_exit_status
	Boolean flag to report execution as failure if exit_status
is different than 0.

RETURN DATA

A dictionary will be returned, containing the following keys:

	status - A dictionary showing the prior state of the container as
well as the new state

	result - A boolean noting whether or not the action was successful

	exit_status - Exit status for the container

	comment - Only present if the container is already stopped

CLI Example:

salt myminion docker.wait mycontainer

salt.modules.dpkg_lowpkg

Support for DEB packages

	
salt.modules.dpkg_lowpkg.bin_pkg_info(path, saltenv='base')

	
New in version 2015.8.0.

Parses DEB metadata and returns a dictionary of information about the
package (name, version, etc.).

	path
	Path to the file. Can either be an absolute path to a file on the
minion, or a salt fileserver URL (e.g. salt://path/to/file.deb).
If a salt fileserver URL is passed, the file will be cached to the
minion so that it can be examined.

	saltenvbase
	Salt fileserver environment from which to retrieve the package. Ignored
if path is a local file path on the minion.

CLI Example:

salt '*' lowpkg.bin_pkg_info /root/foo-1.2.3-1ubuntu1_all.deb
salt '*' lowpkg.bin_pkg_info salt://foo-1.2.3-1ubuntu1_all.deb

	
salt.modules.dpkg_lowpkg.file_dict(*packages, **kwargs)

	List the files that belong to a package, grouped by package. Not
specifying any packages will return a list of _every_ file on the system's
package database (not generally recommended).

CLI Examples:

salt '*' lowpkg.file_dict hostname
salt '*' lowpkg.file_dict hostname mount
salt '*' lowpkg.file_dict

	
salt.modules.dpkg_lowpkg.file_list(*packages, **kwargs)

	List the files that belong to a package. Not specifying any packages will
return a list of _every_ file on the system's package database (not
generally recommended).

CLI Examples:

salt '*' lowpkg.file_list hostname
salt '*' lowpkg.file_list hostname mount
salt '*' lowpkg.file_list

	
salt.modules.dpkg_lowpkg.info(*packages, **kwargs)

	Returns a detailed summary of package information for provided package names.
If no packages are specified, all packages will be returned.

New in version 2015.8.1.

	packages
	The names of the packages for which to return information.

	failhard
	Whether to throw an exception if none of the packages are installed.
Defaults to True.

New in version 2016.11.3.

CLI Example:

salt '*' lowpkg.info
salt '*' lowpkg.info apache2 bash
salt '*' lowpkg.info 'php5*' failhard=false

	
salt.modules.dpkg_lowpkg.list_pkgs(*packages, **kwargs)

	List the packages currently installed in a dict:

{'<package_name>': '<version>'}

External dependencies:

Virtual package resolution requires aptitude. Because this function
uses dpkg, virtual packages will be reported as not installed.

CLI Example:

salt '*' lowpkg.list_pkgs
salt '*' lowpkg.list_pkgs hostname
salt '*' lowpkg.list_pkgs hostname mount

	
salt.modules.dpkg_lowpkg.unpurge(*packages)

	Change package selection for each package specified to 'install'

CLI Example:

salt '*' lowpkg.unpurge curl

salt.modules.drac

Manage Dell DRAC

	
salt.modules.drac.change_password(username, password, uid=None)

	Change users password

CLI Example:

salt dell drac.change_password [USERNAME] [PASSWORD] [UID - optional]
salt dell drac.change_password diana secret

	
salt.modules.drac.create_user(username, password, permissions, users=None)

	Create user accounts

CLI Example:

salt dell drac.create_user [USERNAME] [PASSWORD] [PRIVILEGES]
salt dell drac.create_user diana secret login,test_alerts,clear_logs

	DRAC Privileges
	
	login : Login to iDRAC

	drac : Configure iDRAC

	user_management : Configure Users

	clear_logs : Clear Logs

	server_control_commands : Execute Server Control Commands

	console_redirection : Access Console Redirection

	virtual_media : Access Virtual Media

	test_alerts : Test Alerts

	debug_commands : Execute Debug Commands

	
salt.modules.drac.delete_user(username, uid=None)

	Delete a user

CLI Example:

salt dell drac.delete_user [USERNAME] [UID - optional]
salt dell drac.delete_user diana 4

	
salt.modules.drac.email_alerts(action)

	Enable/Disable email alerts

CLI Example:

salt dell drac.email_alerts True
salt dell drac.email_alerts False

	
salt.modules.drac.list_users()

	List all DRAC users

CLI Example:

salt dell drac.list_users

	
salt.modules.drac.nameservers(*ns)

	Configure the nameservers on the DRAC

CLI Example:

salt dell drac.nameservers [NAMESERVERS]
salt dell drac.nameservers ns1.example.com ns2.example.com

	
salt.modules.drac.network_info()

	Return Network Configuration

CLI Example:

salt dell drac.network_info

	
salt.modules.drac.server_hardreset()

	Performs a reset (reboot) operation on the managed server.

CLI Example:

salt dell drac.server_hardreset

	
salt.modules.drac.server_poweroff()

	Powers down the managed server.

CLI Example:

salt dell drac.server_poweroff

	
salt.modules.drac.server_poweron()

	Powers up the managed server.

CLI Example:

salt dell drac.server_poweron

	
salt.modules.drac.server_pxe()

	Configure server to PXE perform a one off PXE boot

CLI Example:

salt dell drac.server_pxe

	
salt.modules.drac.server_reboot()

	Issues a power-cycle operation on the managed server. This action is
similar to pressing the power button on the system's front panel to
power down and then power up the system.

CLI Example:

salt dell drac.server_reboot

	
salt.modules.drac.set_network(ip, netmask, gateway)

	Configure Network

CLI Example:

salt dell drac.set_network [DRAC IP] [NETMASK] [GATEWAY]
salt dell drac.set_network 192.168.0.2 255.255.255.0 192.168.0.1

	
salt.modules.drac.set_permissions(username, permissions, uid=None)

	Configure users permissions

CLI Example:

salt dell drac.set_permissions [USERNAME] [PRIVILEGES] [USER INDEX - optional]
salt dell drac.set_permissions diana login,test_alerts,clear_logs 4

	DRAC Privileges
	
	login : Login to iDRAC

	drac : Configure iDRAC

	user_management : Configure Users

	clear_logs : Clear Logs

	server_control_commands : Execute Server Control Commands

	console_redirection : Access Console Redirection

	virtual_media : Access Virtual Media

	test_alerts : Test Alerts

	debug_commands : Execute Debug Commands

	
salt.modules.drac.set_snmp(community)

	Configure SNMP community string

CLI Example:

salt dell drac.set_snmp [COMMUNITY]
salt dell drac.set_snmp public

	
salt.modules.drac.syslog(server, enable=True)

	Configure syslog remote logging, by default syslog will automatically be
enabled if a server is specified. However, if you want to disable syslog
you will need to specify a server followed by False

CLI Example:

salt dell drac.syslog [SYSLOG IP] [ENABLE/DISABLE]
salt dell drac.syslog 0.0.0.0 False

	
salt.modules.drac.system_info()

	Return System information

CLI Example:

salt dell drac.system_info

salt.modules.dracr

Manage Dell DRAC.

New in version 2015.8.2.

	
salt.modules.dracr.bare_rac_cmd(cmd, host=None, admin_username=None, admin_password=None)

	

	
salt.modules.dracr.change_password(username, password, uid=None, host=None, admin_username=None, admin_password=None, module=None)

	Change user's password

CLI Example:

salt dell dracr.change_password [USERNAME] [PASSWORD] uid=[OPTIONAL]
 host=<remote DRAC> admin_username=<DRAC user>
 admin_password=<DRAC PW>
salt dell dracr.change_password diana secret

Note that if only a username is specified then this module will look up
details for all 16 possible DRAC users. This is time consuming, but might
be necessary if one is not sure which user slot contains the one you want.
Many late-model Dell chassis have 'root' as UID 1, so if you can depend
on that then setting the password is much quicker.
Raises an error if the supplied password is greater than 20 chars.

	
salt.modules.dracr.create_user(username, password, permissions, users=None, host=None, admin_username=None, admin_password=None)

	Create user accounts

CLI Example:

salt dell dracr.create_user [USERNAME] [PASSWORD] [PRIVILEGES]
salt dell dracr.create_user diana secret login,test_alerts,clear_logs

	DRAC Privileges
	
	login : Login to iDRAC

	drac : Configure iDRAC

	user_management : Configure Users

	clear_logs : Clear Logs

	server_control_commands : Execute Server Control Commands

	console_redirection : Access Console Redirection

	virtual_media : Access Virtual Media

	test_alerts : Test Alerts

	debug_commands : Execute Debug Commands

	
salt.modules.dracr.delete_user(username, uid=None, host=None, admin_username=None, admin_password=None)

	Delete a user

CLI Example:

salt dell dracr.delete_user [USERNAME] [UID - optional]
salt dell dracr.delete_user diana 4

	
salt.modules.dracr.deploy_password(username, password, host=None, admin_username=None, admin_password=None, module=None)

	Change the QuickDeploy password, used for switches as well

CLI Example:

salt dell dracr.deploy_password [USERNAME] [PASSWORD]
 host=<remote DRAC> admin_username=<DRAC user>
 admin_password=<DRAC PW>
salt dell dracr.change_password diana secret

Note that if only a username is specified then this module will look up
details for all 16 possible DRAC users. This is time consuming, but might
be necessary if one is not sure which user slot contains the one you want.
Many late-model Dell chassis have 'root' as UID 1, so if you can depend
on that then setting the password is much quicker.

	
salt.modules.dracr.deploy_snmp(snmp, host=None, admin_username=None, admin_password=None, module=None)

	Change the QuickDeploy SNMP community string, used for switches as well

CLI Example:

salt dell dracr.deploy_snmp SNMP_STRING
 host=<remote DRAC or CMC> admin_username=<DRAC user>
 admin_password=<DRAC PW>
salt dell dracr.deploy_password diana secret

	
salt.modules.dracr.email_alerts(action, host=None, admin_username=None, admin_password=None)

	Enable/Disable email alerts

CLI Example:

salt dell dracr.email_alerts True
salt dell dracr.email_alerts False

	
salt.modules.dracr.get_chassis_datacenter(host=None, admin_username=None, admin_password=None)

	Get the datacenter of the chassis.

	host
	The chassis host.

	admin_username
	The username used to access the chassis.

	admin_password
	The password used to access the chassis.

CLI Example:

salt '*' dracr.set_chassis_location host=111.222.333.444
 admin_username=root admin_password=secret

	
salt.modules.dracr.get_chassis_location(host=None, admin_username=None, admin_password=None)

	Get the location of the chassis.

	host
	The chassis host.

	admin_username
	The username used to access the chassis.

	admin_password
	The password used to access the chassis.

CLI Example:

salt '*' dracr.set_chassis_location host=111.222.333.444
 admin_username=root admin_password=secret

	
salt.modules.dracr.get_chassis_name(host=None, admin_username=None, admin_password=None)

	Get the name of a chassis.

	host
	The chassis host.

	admin_username
	The username used to access the chassis.

	admin_password
	The password used to access the chassis.

CLI Example:

salt '*' dracr.get_chassis_name host=111.222.333.444
 admin_username=root admin_password=secret

	
salt.modules.dracr.get_dns_dracname(host=None, admin_username=None, admin_password=None)

	

	
salt.modules.dracr.get_general(cfg_sec, cfg_var, host=None, admin_username=None, admin_password=None)

	

	
salt.modules.dracr.get_slotname(slot, host=None, admin_username=None, admin_password=None)

	Get the name of a slot number in the chassis.

	slot
	The number of the slot for which to obtain the name.

	host
	The chassis host.

	admin_username
	The username used to access the chassis.

	admin_password
	The password used to access the chassis.

CLI Example:

salt-call --local dracr.get_slotname 0 host=111.222.333.444
 admin_username=root admin_password=secret

	
salt.modules.dracr.idrac_general(blade_name, command, idrac_password=None, host=None, admin_username=None, admin_password=None)

	Run a generic racadm command against a particular
blade in a chassis. Blades are usually named things like
'server-1', 'server-2', etc. If the iDRAC has a different
password than the CMC, then you can pass it with the
idrac_password kwarg.

	Parameters:

	
	blade_name -- Name of the blade to run the command on

	command -- Command like to pass to racadm

	idrac_password -- Password for the iDRAC if different from the CMC

	host -- Chassis hostname

	admin_username -- CMC username

	admin_password -- CMC password

	Returns:

	stdout if the retcode is 0, otherwise a standard cmd.run_all dictionary

CLI Example:

salt fx2 chassis.cmd idrac_general server-1 'get BIOS.SysProfileSettings'

	
salt.modules.dracr.inventory(host=None, admin_username=None, admin_password=None)

	

	
salt.modules.dracr.list_slotnames(host=None, admin_username=None, admin_password=None)

	List the names of all slots in the chassis.

	host
	The chassis host.

	admin_username
	The username used to access the chassis.

	admin_password
	The password used to access the chassis.

CLI Example:

salt-call --local dracr.list_slotnames host=111.222.333.444
 admin_username=root admin_password=secret

	
salt.modules.dracr.list_users(host=None, admin_username=None, admin_password=None, module=None)

	List all DRAC users

CLI Example:

salt dell dracr.list_users

	
salt.modules.dracr.nameservers(ns, host=None, admin_username=None, admin_password=None, module=None)

	Configure the nameservers on the DRAC

CLI Example:

salt dell dracr.nameservers [NAMESERVERS]
salt dell dracr.nameservers ns1.example.com ns2.example.com
 admin_username=root admin_password=calvin module=server-1
 host=192.168.1.1

	
salt.modules.dracr.network_info(host=None, admin_username=None, admin_password=None, module=None)

	Return Network Configuration

CLI Example:

salt dell dracr.network_info

	
salt.modules.dracr.server_hardreset(host=None, admin_username=None, admin_password=None, module=None)

	Performs a reset (reboot) operation on the managed server.

	host
	The chassis host.

	admin_username
	The username used to access the chassis.

	admin_password
	The password used to access the chassis.

	module
	The element to hard reset on the chassis such as a blade. If
not provided, the chassis will be reset.

CLI Example:

salt dell dracr.server_hardreset
salt dell dracr.server_hardreset module=server-1

	
salt.modules.dracr.server_power(status, host=None, admin_username=None, admin_password=None, module=None)

	
	status
	One of 'powerup', 'powerdown', 'powercycle', 'hardreset',
'graceshutdown'

	host
	The chassis host.

	admin_username
	The username used to access the chassis.

	admin_password
	The password used to access the chassis.

	module
	The element to reboot on the chassis such as a blade. If not provided,
the chassis will be rebooted.

CLI Example:

salt dell dracr.server_reboot
salt dell dracr.server_reboot module=server-1

	
salt.modules.dracr.server_poweroff(host=None, admin_username=None, admin_password=None, module=None)

	Powers down the managed server.

	host
	The chassis host.

	admin_username
	The username used to access the chassis.

	admin_password
	The password used to access the chassis.

	module
	The element to power off on the chassis such as a blade.
If not provided, the chassis will be powered off.

CLI Example:

salt dell dracr.server_poweroff
salt dell dracr.server_poweroff module=server-1

	
salt.modules.dracr.server_poweron(host=None, admin_username=None, admin_password=None, module=None)

	Powers up the managed server.

	host
	The chassis host.

	admin_username
	The username used to access the chassis.

	admin_password
	The password used to access the chassis.

	module
	The element to power on located on the chassis such as a blade. If
not provided, the chassis will be powered on.

CLI Example:

salt dell dracr.server_poweron
salt dell dracr.server_poweron module=server-1

	
salt.modules.dracr.server_powerstatus(host=None, admin_username=None, admin_password=None, module=None)

	return the power status for the passed module

CLI Example:

salt dell drac.server_powerstatus

	
salt.modules.dracr.server_pxe(host=None, admin_username=None, admin_password=None)

	Configure server to PXE perform a one off PXE boot

CLI Example:

salt dell dracr.server_pxe

	
salt.modules.dracr.server_reboot(host=None, admin_username=None, admin_password=None, module=None)

	Issues a power-cycle operation on the managed server. This action is
similar to pressing the power button on the system's front panel to
power down and then power up the system.

	host
	The chassis host.

	admin_username
	The username used to access the chassis.

	admin_password
	The password used to access the chassis.

	module
	The element to reboot on the chassis such as a blade. If not provided,
the chassis will be rebooted.

CLI Example:

salt dell dracr.server_reboot
salt dell dracr.server_reboot module=server-1

	
salt.modules.dracr.set_chassis_datacenter(location, host=None, admin_username=None, admin_password=None)

	Set the location of the chassis.

	location
	The name of the datacenter to be set on the chassis.

	host
	The chassis host.

	admin_username
	The username used to access the chassis.

	admin_password
	The password used to access the chassis.

CLI Example:

salt '*' dracr.set_chassis_datacenter datacenter-name host=111.222.333.444
 admin_username=root admin_password=secret

	
salt.modules.dracr.set_chassis_location(location, host=None, admin_username=None, admin_password=None)

	Set the location of the chassis.

	location
	The name of the location to be set on the chassis.

	host
	The chassis host.

	admin_username
	The username used to access the chassis.

	admin_password
	The password used to access the chassis.

CLI Example:

salt '*' dracr.set_chassis_location location-name host=111.222.333.444
 admin_username=root admin_password=secret

	
salt.modules.dracr.set_chassis_name(name, host=None, admin_username=None, admin_password=None)

	Set the name of the chassis.

	name
	The name to be set on the chassis.

	host
	The chassis host.

	admin_username
	The username used to access the chassis.

	admin_password
	The password used to access the chassis.

CLI Example:

salt '*' dracr.set_chassis_name my-chassis host=111.222.333.444
 admin_username=root admin_password=secret

	
salt.modules.dracr.set_dns_dracname(name, host=None, admin_username=None, admin_password=None)

	

	
salt.modules.dracr.set_general(cfg_sec, cfg_var, val, host=None, admin_username=None, admin_password=None)

	

	
salt.modules.dracr.set_network(ip, netmask, gateway, host=None, admin_username=None, admin_password=None)

	Configure Network on the CMC or individual iDRAC.
Use set_niccfg for blade and switch addresses.

CLI Example:

salt dell dracr.set_network [DRAC IP] [NETMASK] [GATEWAY]
salt dell dracr.set_network 192.168.0.2 255.255.255.0 192.168.0.1
 admin_username=root admin_password=calvin host=192.168.1.1

	
salt.modules.dracr.set_niccfg(ip=None, netmask=None, gateway=None, dhcp=False, host=None, admin_username=None, admin_password=None, module=None)

	

	
salt.modules.dracr.set_nicvlan(vlan=None, host=None, admin_username=None, admin_password=None, module=None)

	

	
salt.modules.dracr.set_permissions(username, permissions, uid=None, host=None, admin_username=None, admin_password=None)

	Configure users permissions

CLI Example:

salt dell dracr.set_permissions [USERNAME] [PRIVILEGES]
 [USER INDEX - optional]
salt dell dracr.set_permissions diana login,test_alerts,clear_logs 4

	DRAC Privileges
	
	login : Login to iDRAC

	drac : Configure iDRAC

	user_management : Configure Users

	clear_logs : Clear Logs

	server_control_commands : Execute Server Control Commands

	console_redirection : Access Console Redirection

	virtual_media : Access Virtual Media

	test_alerts : Test Alerts

	debug_commands : Execute Debug Commands

	
salt.modules.dracr.set_slotname(slot, name, host=None, admin_username=None, admin_password=None)

	Set the name of a slot in a chassis.

	slot
	The slot number to change.

	name
	The name to set. Can only be 15 characters long.

	host
	The chassis host.

	admin_username
	The username used to access the chassis.

	admin_password
	The password used to access the chassis.

CLI Example:

salt '*' dracr.set_slotname 2 my-slotname host=111.222.333.444
 admin_username=root admin_password=secret

	
salt.modules.dracr.set_snmp(community, host=None, admin_username=None, admin_password=None)

	Configure CMC or individual iDRAC SNMP community string.
Use deploy_snmp for configuring chassis switch SNMP.

CLI Example:

salt dell dracr.set_snmp [COMMUNITY]
salt dell dracr.set_snmp public

	
salt.modules.dracr.syslog(server, enable=True, host=None, admin_username=None, admin_password=None, module=None)

	Configure syslog remote logging, by default syslog will automatically be
enabled if a server is specified. However, if you want to disable syslog
you will need to specify a server followed by False

CLI Example:

salt dell dracr.syslog [SYSLOG IP] [ENABLE/DISABLE]
salt dell dracr.syslog 0.0.0.0 False

	
salt.modules.dracr.system_info(host=None, admin_username=None, admin_password=None, module=None)

	Return System information

CLI Example:

salt dell dracr.system_info

	
salt.modules.dracr.update_firmware(filename, host=None, admin_username=None, admin_password=None)

	Updates firmware using local firmware file

salt dell dracr.update_firmware firmware.exe

This executes the following command on your FX2
(using username and password stored in the pillar data)

racadm update –f firmware.exe -u user –p pass

	
salt.modules.dracr.update_firmware_nfs_or_cifs(filename, share, host=None, admin_username=None, admin_password=None)

	Executes the following for CIFS
(using username and password stored in the pillar data)

racadm update -f <updatefile> -u user –p pass -l //IP-Address/share

Or for NFS
(using username and password stored in the pillar data)

racadm update -f <updatefile> -u user –p pass -l IP-address:/share

Salt command for CIFS:

salt dell dracr.update_firmware_nfs_or_cifs firmware.exe //IP-Address/share

Salt command for NFS:

salt dell dracr.update_firmware_nfs_or_cifs firmware.exe IP-address:/share

salt.modules.drbd

DRBD administration module

	
salt.modules.drbd.overview()

	Show status of the DRBD devices, support two nodes only.
drbd-overview is removed since drbd-utils-9.6.0,
use status instead.

CLI Example:

salt '*' drbd.overview

	
salt.modules.drbd.status(name='all')

	Using drbdadm to show status of the DRBD devices,
available in the latest drbd9.
Support multiple nodes, multiple volumes.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Resource name.

	Returns:

	drbd status of resource.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list](dict [https://docs.python.org/3/library/stdtypes.html#dict](res))

CLI Example:

salt '*' drbd.status
salt '*' drbd.status name=<resource name>

salt.modules.dummyproxy_pkg

Package support for the dummy proxy used by the test suite

	
salt.modules.dummyproxy_pkg.install(name=None, refresh=False, fromrepo=None, pkgs=None, sources=None, **kwargs)

	

	
salt.modules.dummyproxy_pkg.installed(name, version=None, refresh=False, fromrepo=None, skip_verify=False, pkgs=None, sources=None, **kwargs)

	

	
salt.modules.dummyproxy_pkg.list_pkgs(versions_as_list=False, **kwargs)

	

	
salt.modules.dummyproxy_pkg.remove(name=None, pkgs=None, **kwargs)

	

	
salt.modules.dummyproxy_pkg.upgrade(name=None, pkgs=None, refresh=True, skip_verify=True, normalize=True, **kwargs)

	

	
salt.modules.dummyproxy_pkg.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

salt.modules.dummyproxy_service

Provide the service module for the dummy proxy used in integration tests

	
salt.modules.dummyproxy_service.enabled(name, sig=None)

	Only the 'redbull' service is 'enabled' in the test

New in version 2016.11.3.

	
salt.modules.dummyproxy_service.get_all()

	Return a list of all available services

New in version 2016.11.3.

CLI Example:

salt '*' service.get_all

	
salt.modules.dummyproxy_service.list_()

	Return a list of all available services.

New in version 2016.11.3.

CLI Example:

salt '*' service.list

	
salt.modules.dummyproxy_service.restart(name, sig=None)

	Restart the specified service with dummy.

New in version 2016.11.3.

CLI Example:

salt '*' service.restart <service name>

	
salt.modules.dummyproxy_service.running(name, sig=None)

	Return whether this service is running.

New in version 2016.11.3.

	
salt.modules.dummyproxy_service.start(name, sig=None)

	Start the specified service on the dummy

New in version 2016.11.3.

CLI Example:

salt '*' service.start <service name>

	
salt.modules.dummyproxy_service.status(name, sig=None)

	Return the status for a service via dummy, returns a bool
whether the service is running.

New in version 2016.11.3.

CLI Example:

salt '*' service.status <service name>

	
salt.modules.dummyproxy_service.stop(name, sig=None)

	Stop the specified service on the dummy

New in version 2016.11.3.

CLI Example:

salt '*' service.stop <service name>

salt.modules.ebuildpkg

Support for Portage

Important

If you feel that Salt should be using this module to manage packages on a
minion, and it is using a different module (or gives an error similar to
'pkg.install' is not available), see here.

	optdepends:

	
	portage Python adapter

For now all package names MUST include the package category,
i.e. 'vim' will not work, 'app-editors/vim' will.

	
salt.modules.ebuildpkg.available_version(*names, **kwargs)

	This function is an alias of latest_version.

Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	
salt.modules.ebuildpkg.check_db(*names, **kwargs)

	
New in version 0.17.0.

Returns a dict containing the following information for each specified
package:

	A key found, which will be a boolean value denoting if a match was
found in the package database.

	If found is False, then a second key called suggestions will
be present, which will contain a list of possible matches. This list
will be empty if the package name was specified in category/pkgname
format, since the suggestions are only intended to disambiguate
ambiguous package names (ones submitted without a category).

CLI Examples:

salt '*' pkg.check_db <package1> <package2> <package3>

	
salt.modules.ebuildpkg.check_extra_requirements(pkgname, pkgver)

	Check if the installed package already has the given requirements.

CLI Example:

salt '*' pkg.check_extra_requirements 'sys-devel/gcc' '~>4.1.2:4.1::gentoo[nls,fortran]'

	
salt.modules.ebuildpkg.depclean(name=None, slot=None, fromrepo=None, pkgs=None)

	Portage has a function to remove unused dependencies. If a package
is provided, it will only removed the package if no other package
depends on it.

	name
	The name of the package to be cleaned.

	slot
	Restrict the remove to a specific slot. Ignored if name is None.

	fromrepo
	Restrict the remove to a specific slot. Ignored if name is None.

	pkgs
	Clean multiple packages. slot and fromrepo arguments are
ignored if this argument is present. Must be passed as a python list.

Return a list containing the removed packages:

CLI Example:

salt '*' pkg.depclean <package name>

	
salt.modules.ebuildpkg.ex_mod_init(low)

	If the config option ebuild.enforce_nice_config is set to True, this
module will enforce a nice tree structure for /etc/portage/package.*
configuration files.

New in version 0.17.0: Initial automatic enforcement added when pkg is used on a Gentoo system.

Changed in version 2014.7.0: Configure option added to make this behaviour optional, defaulting to
off.

See also

ebuild.ex_mod_init is called automatically when a state invokes a
pkg state on a Gentoo system.
salt.states.pkg.mod_init()

ebuild.ex_mod_init uses portage_config.enforce_nice_config to do
the lifting.
salt.modules.portage_config.enforce_nice_config()

CLI Example:

salt '*' pkg.ex_mod_init

	
salt.modules.ebuildpkg.install(name=None, refresh=False, pkgs=None, sources=None, slot=None, fromrepo=None, uses=None, binhost=None, **kwargs)

	
Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands which modify installed packages from the
salt-minion daemon's control group. This is done to keep systemd
from killing any emerge commands spawned by Salt when the
salt-minion service is restarted. (see KillMode in the
systemd.kill(5) [https://www.freedesktop.org/software/systemd/man/systemd.kill.html] manpage for more information). If desired, usage of
systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by setting a config option called systemd.scope, with a value of
False (no quotes).

Install the passed package(s), add refresh=True to sync the portage tree
before package is installed.

	name
	The name of the package to be installed. Note that this parameter is
ignored if either "pkgs" or "sources" is passed. Additionally, please
note that this option can only be used to emerge a package from the
portage tree. To install a tbz2 package manually, use the "sources"
option described below.

CLI Example:

salt '*' pkg.install <package name>

	refresh
	Whether or not to sync the portage tree before installing.

	version
	Install a specific version of the package, e.g. 1.0.9-r1. Ignored
if "pkgs" or "sources" is passed.

	slot
	Similar to version, but specifies a valid slot to be installed. It
will install the latest available version in the specified slot.
Ignored if "pkgs" or "sources" or "version" is passed.

CLI Example:

salt '*' pkg.install sys-devel/gcc slot='4.4'

	fromrepo
	Similar to slot, but specifies the repository from the package will be
installed. It will install the latest available version in the
specified repository.
Ignored if "pkgs" or "sources" or "version" is passed.

CLI Example:

salt '*' pkg.install salt fromrepo='gentoo'

	uses
	Similar to slot, but specifies a list of use flag.
Ignored if "pkgs" or "sources" or "version" is passed.

CLI Example:

salt '*' pkg.install sys-devel/gcc uses='["nptl","-nossp"]'

Multiple Package Installation Options:

	pkgs
	A list of packages to install from the portage tree. Must be passed as
a python list.

CLI Example:

salt '*' pkg.install pkgs='["foo","bar","~category/package:slot::repository[use]"]'

	sources
	A list of tbz2 packages to install. Must be passed as a list of dicts,
with the keys being package names, and the values being the source URI
or local path to the package.

CLI Example:

salt '*' pkg.install sources='[{"foo": "salt://foo.tbz2"},{"bar": "salt://bar.tbz2"}]'

	binhost
	has two options try and force.
try - tells emerge to try and install the package from a configured binhost.
force - forces emerge to install the package from a binhost otherwise it fails out.

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

	
salt.modules.ebuildpkg.latest_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	
salt.modules.ebuildpkg.list_pkgs(versions_as_list=False, **kwargs)

	List the packages currently installed in a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

	
salt.modules.ebuildpkg.list_upgrades(refresh=True, backtrack=3, **kwargs)

	List all available package upgrades.

	refresh
	Whether or not to sync the portage tree before checking for upgrades.

	backtrack
	Specifies an integer number of times to backtrack if dependency
calculation fails due to a conflict or an unsatisfied dependency
(default: ´3´).

New in version 2015.8.0.

CLI Example:

salt '*' pkg.list_upgrades

	
salt.modules.ebuildpkg.porttree_matches(name)

	Returns a list containing the matches for a given package name from the
portage tree. Note that the specific version of the package will not be
provided for packages that have several versions in the portage tree, but
rather the name of the package (i.e. "dev-python/paramiko").

	
salt.modules.ebuildpkg.purge(name=None, slot=None, fromrepo=None, pkgs=None, **kwargs)

	
Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands which modify installed packages from the
salt-minion daemon's control group. This is done to keep systemd
from killing any emerge commands spawned by Salt when the
salt-minion service is restarted. (see KillMode in the
systemd.kill(5) [https://www.freedesktop.org/software/systemd/man/systemd.kill.html] manpage for more information). If desired, usage of
systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by setting a config option called systemd.scope, with a value of
False (no quotes).

Portage does not have a purge, this function calls remove followed
by depclean to emulate a purge process

	name
	The name of the package to be deleted.

	slot
	Restrict the remove to a specific slot. Ignored if name is None.

	fromrepo
	Restrict the remove to a specific slot. Ignored if name is None.

Multiple Package Options:

	pkgs
	Uninstall multiple packages. slot and fromrepo arguments are
ignored if this argument is present. Must be passed as a python list.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package name> slot=4.4
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

	
salt.modules.ebuildpkg.refresh_db(**kwargs)

	Update the portage tree using the first available method from the following
list:

	emaint sync

	eix-sync

	emerge-webrsync

	emerge --sync

To prevent the portage tree from being synced within one day of the
previous sync, add the following pillar data for this minion:

portage:
 sync_wait_one_day: True

CLI Example:

salt '*' pkg.refresh_db

	
salt.modules.ebuildpkg.remove(name=None, slot=None, fromrepo=None, pkgs=None, **kwargs)

	
Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands which modify installed packages from the
salt-minion daemon's control group. This is done to keep systemd
from killing any emerge commands spawned by Salt when the
salt-minion service is restarted. (see KillMode in the
systemd.kill(5) [https://www.freedesktop.org/software/systemd/man/systemd.kill.html] manpage for more information). If desired, usage of
systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by setting a config option called systemd.scope, with a value of
False (no quotes).

Remove packages via emerge --unmerge.

	name
	The name of the package to be deleted.

	slot
	Restrict the remove to a specific slot. Ignored if name is None.

	fromrepo
	Restrict the remove to a specific slot. Ignored if name is None.

Multiple Package Options:

	pkgs
	Uninstall multiple packages. slot and fromrepo arguments are
ignored if this argument is present. Must be passed as a python list.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package name> slot=4.4 fromrepo=gentoo
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.ebuildpkg.update(pkg, slot=None, fromrepo=None, refresh=False, binhost=None, **kwargs)

	
Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands which modify installed packages from the
salt-minion daemon's control group. This is done to keep systemd
from killing any emerge commands spawned by Salt when the
salt-minion service is restarted. (see KillMode in the
systemd.kill(5) [https://www.freedesktop.org/software/systemd/man/systemd.kill.html] manpage for more information). If desired, usage of
systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by setting a config option called systemd.scope, with a value of
False (no quotes).

Updates the passed package (emerge --update package)

	slot
	Restrict the update to a particular slot. It will update to the
latest version within the slot.

	fromrepo
	Restrict the update to a particular repository. It will update to the
latest version within the repository.

	binhost
	has two options try and force.
try - tells emerge to try and install the package from a configured binhost.
force - forces emerge to install the package from a binhost otherwise it fails out.

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.update <package name>

	
salt.modules.ebuildpkg.upgrade(refresh=True, binhost=None, backtrack=3, **kwargs)

	
Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands which modify installed packages from the
salt-minion daemon's control group. This is done to keep systemd
from killing any emerge commands spawned by Salt when the
salt-minion service is restarted. (see KillMode in the
systemd.kill(5) [https://www.freedesktop.org/software/systemd/man/systemd.kill.html] manpage for more information). If desired, usage of
systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by setting a config option called systemd.scope, with a value of
False (no quotes).

Run a full system upgrade (emerge -uDN @world)

	binhost
	has two options try and force.
try - tells emerge to try and install the package from a configured binhost.
force - forces emerge to install the package from a binhost otherwise it fails out.

	backtrack
	Specifies an integer number of times to backtrack if dependency
calculation fails due to a conflict or an unsatisfied dependency
(default: ´3´).

New in version 2015.8.0.

Returns a dictionary containing the changes:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade

	
salt.modules.ebuildpkg.upgrade_available(name, **kwargs)

	Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pkg.upgrade_available <package name>

	
salt.modules.ebuildpkg.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

	
salt.modules.ebuildpkg.version_clean(version)

	Clean the version string removing extra data.

CLI Example:

salt '*' pkg.version_clean <version_string>

	
salt.modules.ebuildpkg.version_cmp(pkg1, pkg2, **kwargs)

	Do a cmp-style comparison on two packages. Return -1 if pkg1 < pkg2, 0 if
pkg1 == pkg2, and 1 if pkg1 > pkg2. Return None if there was a problem
making the comparison.

CLI Example:

salt '*' pkg.version_cmp '0.2.4-0' '0.2.4.1-0'

salt.modules.eix

Support for Eix

	
salt.modules.eix.sync()

	Sync portage/overlay trees and update the eix database

CLI Example:

salt '*' eix.sync

	
salt.modules.eix.update()

	Update the eix database

CLI Example:

salt '*' eix.update

salt.modules.elasticsearch

Elasticsearch - A distributed RESTful search and analytics server

Module to provide Elasticsearch compatibility to Salt
(compatible with Elasticsearch version 1.5.2+)

New in version 2015.8.0.

	depends:

	elasticsearch-py [http://elasticsearch-py.readthedocs.org/en/latest/]

	configuration:

	This module accepts connection configuration details either as
parameters or as configuration settings in /etc/salt/minion on the relevant
minions:

elasticsearch:
 host: '10.10.10.100:9200'

elasticsearch-cluster:
 hosts:
 - '10.10.10.100:9200'
 - '10.10.10.101:9200'
 - '10.10.10.102:9200'

elasticsearch-extra:
 hosts:
 - '10.10.10.100:9200'
 use_ssl: True
 verify_certs: True
 ca_certs: /path/to/custom_ca_bundle.pem
 number_of_shards: 1
 number_of_replicas: 0
 functions_blacklist:
 - 'saltutil.find_job'
 - 'pillar.items'
 - 'grains.items'
 proxies:
 - http: http://proxy:3128
 - https: http://proxy:1080

When specifying proxies the requests backend will be used and the 'proxies'
data structure is passed as-is to that module.

This data can also be passed into pillar. Options passed into opts will
overwrite options passed into pillar.

Some functionality might be limited by elasticsearch-py and Elasticsearch server versions.

	
salt.modules.elasticsearch.alias_create(indices, alias, hosts=None, body=None, profile=None, source=None)

	Create an alias for a specific index/indices

	indices
	Single or multiple indices separated by comma, use _all to perform the operation on all indices.

	alias
	Alias name

	body
	Optional definition such as routing or filter as defined in https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-aliases.html

	source
	URL of file specifying optional definition such as routing or filter. Cannot be used in combination with body.

CLI Example:

salt myminion elasticsearch.alias_create testindex_v1 testindex

	
salt.modules.elasticsearch.alias_delete(indices, aliases, hosts=None, body=None, profile=None, source=None)

	Delete an alias of an index

	indices
	Single or multiple indices separated by comma, use _all to perform the operation on all indices.

	aliases
	Alias names separated by comma

CLI Example:

salt myminion elasticsearch.alias_delete testindex_v1 testindex

	
salt.modules.elasticsearch.alias_exists(aliases, indices=None, hosts=None, profile=None)

	Return a boolean indicating whether given alias exists

	indices
	Single or multiple indices separated by comma, use _all to perform the operation on all indices.

	aliases
	Alias names separated by comma

CLI Example:

salt myminion elasticsearch.alias_exists None testindex

	
salt.modules.elasticsearch.alias_get(indices=None, aliases=None, hosts=None, profile=None)

	Check for the existence of an alias and if it exists, return it

	indices
	Single or multiple indices separated by comma, use _all to perform the operation on all indices.

	aliases
	Alias names separated by comma

CLI Example:

salt myminion elasticsearch.alias_get testindex

	
salt.modules.elasticsearch.cluster_get_settings(flat_settings=False, include_defaults=False, hosts=None, profile=None)

	
New in version 3000.

Return Elasticsearch cluster settings.

	flat_settings
	Return settings in flat format.

	include_defaults
	Whether to return all default clusters setting.

CLI Example:

salt myminion elasticsearch.cluster_get_settings

	
salt.modules.elasticsearch.cluster_health(index=None, level='cluster', local=False, hosts=None, profile=None)

	
New in version 2017.7.0.

Return Elasticsearch cluster health.

	index
	Limit the information returned to a specific index

	level
	Specify the level of detail for returned information, default 'cluster', valid choices are: 'cluster', 'indices', 'shards'

	local
	Return local information, do not retrieve the state from master node

CLI Example:

salt myminion elasticsearch.cluster_health

	
salt.modules.elasticsearch.cluster_put_settings(body=None, flat_settings=False, hosts=None, profile=None)

	
New in version 3000.

Set Elasticsearch cluster settings.

	body
	The settings to be updated. Can be either 'transient' or 'persistent' (survives cluster restart)
http://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-update-settings.html

	flat_settings
	Return settings in flat format.

CLI Example:

salt myminion elasticsearch.cluster_put_settings '{"persistent": {"indices.recovery.max_bytes_per_sec": "50mb"}}'
salt myminion elasticsearch.cluster_put_settings '{"transient": {"indices.recovery.max_bytes_per_sec": "50mb"}}'

	
salt.modules.elasticsearch.cluster_stats(nodes=None, hosts=None, profile=None)

	
New in version 2017.7.0.

Return Elasticsearch cluster stats.

	nodes
	List of cluster nodes (id or name) to display stats for. Use _local for connected node, empty for all

CLI Example:

salt myminion elasticsearch.cluster_stats

	
salt.modules.elasticsearch.document_create(index, doc_type, body=None, id=None, hosts=None, profile=None, source=None)

	Create a document in a specified index

	index
	Index name where the document should reside

	doc_type
	Type of the document

	body
	Document to store

	source
	URL of file specifying document to store. Cannot be used in combination with body.

	id
	Optional unique document identifier for specified doc_type (empty for random)

CLI Example:

salt myminion elasticsearch.document_create testindex doctype1 '{}'

	
salt.modules.elasticsearch.document_delete(index, doc_type, id, hosts=None, profile=None)

	Delete a document from an index

	index
	Index name where the document resides

	doc_type
	Type of the document

	id
	Document identifier

CLI Example:

salt myminion elasticsearch.document_delete testindex doctype1 AUx-384m0Bug_8U80wQZ

	
salt.modules.elasticsearch.document_exists(index, id, doc_type='_all', hosts=None, profile=None)

	Return a boolean indicating whether given document exists

	index
	Index name where the document resides

	id
	Document identifier

	doc_type
	Type of the document, use _all to fetch the first document matching the ID across all types

CLI Example:

salt myminion elasticsearch.document_exists testindex AUx-384m0Bug_8U80wQZ

	
salt.modules.elasticsearch.document_get(index, id, doc_type='_all', hosts=None, profile=None)

	Check for the existence of a document and if it exists, return it

	index
	Index name where the document resides

	id
	Document identifier

	doc_type
	Type of the document, use _all to fetch the first document matching the ID across all types

CLI Example:

salt myminion elasticsearch.document_get testindex AUx-384m0Bug_8U80wQZ

	
salt.modules.elasticsearch.flush_synced(hosts=None, profile=None, **kwargs)

	
New in version 3000.

Perform a normal flush, then add a generated unique marker (sync_id) to all shards.
http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-synced-flush.html

	index
	(Optional, string) A comma-separated list of index names; use _all or empty string for all indices. Defaults to '_all'.

	ignore_unavailable
	(Optional, boolean) If true, missing or closed indices are not included in the response. Defaults to false.

	allow_no_indices
	(Optional, boolean) If true, the request does not return an error if a wildcard expression or _all value retrieves only missing or closed indices.
This parameter also applies to index aliases that point to a missing or closed index.

	expand_wildcards
	(Optional, string) Controls what kind of indices that wildcard expressions can expand to.

Valid values are:

all - Expand to open and closed indices.
open - Expand only to open indices.
closed - Expand only to closed indices.
none - Wildcard expressions are not accepted.

The defaults settings for the above parameters depend on the API being used.

CLI Example:

salt myminion elasticsearch.flush_synced index='index1,index2' ignore_unavailable=True allow_no_indices=True expand_wildcards='all'

	
salt.modules.elasticsearch.index_close(index, allow_no_indices=True, expand_wildcards='open', ignore_unavailable=True, hosts=None, profile=None)

	
New in version 2017.7.0.

Close specified index.

	index
	Index to be closed

	allow_no_indices
	Whether to ignore if a wildcard indices expression resolves into no concrete indices. (This includes _all string or when no indices have been specified)

	expand_wildcards
	Whether to expand wildcard expression to concrete indices that are open, closed or both., default ‘open’, valid choices are: ‘open’, ‘closed’, ‘none’, ‘all’

	ignore_unavailable
	Whether specified concrete indices should be ignored when unavailable (missing or closed)

CLI Example:

salt myminion elasticsearch.index_close testindex

	
salt.modules.elasticsearch.index_create(index, body=None, hosts=None, profile=None, source=None)

	Create an index

	index
	Index name

	body
	Index definition, such as settings and mappings as defined in https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-create-index.html

	source
	URL to file specifying index definition. Cannot be used in combination with body.

CLI Example:

salt myminion elasticsearch.index_create testindex
salt myminion elasticsearch.index_create testindex2 '{"settings" : {"index" : {"number_of_shards" : 3, "number_of_replicas" : 2}}}'

	
salt.modules.elasticsearch.index_delete(index, hosts=None, profile=None)

	Delete an index

	index
	Index name

CLI Example:

salt myminion elasticsearch.index_delete testindex

	
salt.modules.elasticsearch.index_exists(index, hosts=None, profile=None)

	Return a boolean indicating whether given index exists

	index
	Index name

CLI Example:

salt myminion elasticsearch.index_exists testindex

	
salt.modules.elasticsearch.index_get(index, hosts=None, profile=None)

	Check for the existence of an index and if it exists, return it

	index
	Index name

CLI Example:

salt myminion elasticsearch.index_get testindex

	
salt.modules.elasticsearch.index_get_settings(hosts=None, profile=None, **kwargs)

	
New in version 3000.

Check for the existence of an index and if it exists, return its settings
http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-get-settings.html

	index
	(Optional, string) A comma-separated list of index names; use _all or empty string for all indices. Defaults to '_all'.

	name
	(Optional, string) The name of the settings that should be included

	allow_no_indices
	(Optional, boolean) Whether to ignore if a wildcard indices expression resolves into no concrete indices.
(This includes _all string or when no indices have been specified)

	expand_wildcards
	(Optional, string) Whether to expand wildcard expression to concrete indices that are open, closed or both.
Valid choices are: ‘open’, ‘closed’, ‘none’, ‘all’

	flat_settings
	(Optional, boolean) Return settings in flat format

	ignore_unavailable
	(Optional, boolean) Whether specified concrete indices should be ignored when unavailable (missing or closed)

	include_defaults
	(Optional, boolean) Whether to return all default setting for each of the indices.

	local
	(Optional, boolean) Return local information, do not retrieve the state from master node

The defaults settings for the above parameters depend on the API version being used.

CLI Example:

salt myminion elasticsearch.index_get_settings index=testindex

	
salt.modules.elasticsearch.index_open(index, allow_no_indices=True, expand_wildcards='closed', ignore_unavailable=True, hosts=None, profile=None)

	
New in version 2017.7.0.

Open specified index.

	index
	Index to be opened

	allow_no_indices
	Whether to ignore if a wildcard indices expression resolves into no concrete indices. (This includes _all string or when no indices have been specified)

	expand_wildcards
	Whether to expand wildcard expression to concrete indices that are open, closed or both., default ‘closed’, valid choices are: ‘open’, ‘closed’, ‘none’, ‘all’

	ignore_unavailable
	Whether specified concrete indices should be ignored when unavailable (missing or closed)

CLI Example:

salt myminion elasticsearch.index_open testindex

	
salt.modules.elasticsearch.index_put_settings(body=None, hosts=None, profile=None, source=None, **kwargs)

	
New in version 3000.

Update existing index settings
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-update-settings.html

	body
	The index settings to be updated.

	source
	URL to file specifying index definition. Cannot be used in combination with body.

	index
	(Optional, string) A comma-separated list of index names; use _all or empty string to perform the operation on all indices

	allow_no_indices
	(Optional, boolean) Whether to ignore if a wildcard indices expression resolves into no concrete indices.
(This includes _all string or when no indices have been specified)

	expand_wildcards
	(Optional, string) Whether to expand wildcard expression to concrete indices that are open, closed or both.
Valid choices are: ‘open’, ‘closed’, ‘none’, ‘all’

	flat_settings
	(Optional, boolean) Return settings in flat format (default: false)

	ignore_unavailable
	(Optional, boolean) Whether specified concrete indices should be ignored when unavailable (missing or closed)

	master_timeout
	(Optional, time units) Explicit operation timeout for connection to master node

	preserve_existing
	(Optional, boolean) Whether to update existing settings. If set to true existing settings on an index remain unchanged, the default is false

The defaults settings for the above parameters depend on the API version being used.

Note

Elasticsearch time units can be found here:
https://www.elastic.co/guide/en/elasticsearch/reference/current/common-options.html#time-units

CLI Example:

salt myminion elasticsearch.index_put_settings index=testindex body='{"settings" : {"index" : {"number_of_replicas" : 2}}}'

	
salt.modules.elasticsearch.index_template_create(name, body=None, hosts=None, profile=None, source=None)

	Create an index template

	name
	Index template name

	body
	Template definition as specified in http://www.elastic.co/guide/en/elasticsearch/reference/current/indices-templates.html

	source
	URL to file specifying template definition. Cannot be used in combination with body.

CLI Example:

salt myminion elasticsearch.index_template_create testindex_templ '{ "template": "logstash-*", "order": 1, "settings": { "number_of_shards": 1 } }'

	
salt.modules.elasticsearch.index_template_delete(name, hosts=None, profile=None)

	Delete an index template (type) along with its data

	name
	Index template name

CLI Example:

salt myminion elasticsearch.index_template_delete testindex_templ user

	
salt.modules.elasticsearch.index_template_exists(name, hosts=None, profile=None)

	Return a boolean indicating whether given index template exists

	name
	Index template name

CLI Example:

salt myminion elasticsearch.index_template_exists testindex_templ

	
salt.modules.elasticsearch.index_template_get(name, hosts=None, profile=None)

	Retrieve template definition of index or index/type

	name
	Index template name

CLI Example:

salt myminion elasticsearch.index_template_get testindex_templ

	
salt.modules.elasticsearch.info(hosts=None, profile=None)

	
New in version 2017.7.0.

Return Elasticsearch information.

CLI Example:

salt myminion elasticsearch.info
salt myminion elasticsearch.info profile=elasticsearch-extra

	
salt.modules.elasticsearch.mapping_create(index, doc_type, body=None, hosts=None, profile=None, source=None)

	Create a mapping in a given index

	index
	Index for the mapping

	doc_type
	Name of the document type

	body
	Mapping definition as specified in https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-put-mapping.html

	source
	URL to file specifying mapping definition. Cannot be used in combination with body.

CLI Example:

salt myminion elasticsearch.mapping_create testindex user '{ "user" : { "properties" : { "message" : {"type" : "string", "store" : true } } } }'

	
salt.modules.elasticsearch.mapping_delete(index, doc_type, hosts=None, profile=None)

	Delete a mapping (type) along with its data. As of Elasticsearch 5.0 this is no longer available.

	index
	Index for the mapping

	doc_type
	Name of the document type

CLI Example:

salt myminion elasticsearch.mapping_delete testindex user

	
salt.modules.elasticsearch.mapping_get(index, doc_type, hosts=None, profile=None)

	Retrieve mapping definition of index or index/type

	index
	Index for the mapping

	doc_type
	Name of the document type

CLI Example:

salt myminion elasticsearch.mapping_get testindex user

	
salt.modules.elasticsearch.node_info(nodes=None, flat_settings=False, hosts=None, profile=None)

	
New in version 2017.7.0.

Return Elasticsearch node information.

	nodes
	List of cluster nodes (id or name) to display stats for. Use _local for connected node, empty for all

	flat_settings
	Flatten settings keys

CLI Example:

salt myminion elasticsearch.node_info flat_settings=True

	
salt.modules.elasticsearch.ping(allow_failure=False, hosts=None, profile=None)

	
New in version 2017.7.0.

Test connection to Elasticsearch instance. This method does not fail if not explicitly specified.

	allow_failure
	Throw exception if ping fails

CLI Example:

salt myminion elasticsearch.ping allow_failure=True
salt myminion elasticsearch.ping profile=elasticsearch-extra

	
salt.modules.elasticsearch.pipeline_create(id, body, hosts=None, profile=None)

	
New in version 2017.7.0.

Create Ingest pipeline by supplied definition. Available since Elasticsearch 5.0.

	id
	Pipeline id

	body
	Pipeline definition as specified in https://www.elastic.co/guide/en/elasticsearch/reference/master/pipeline.html

CLI Example:

salt myminion elasticsearch.pipeline_create mypipeline '{"description": "my custom pipeline", "processors": [{"set" : {"field": "collector_timestamp_millis", "value": "{{_ingest.timestamp}}"}}]}'

	
salt.modules.elasticsearch.pipeline_delete(id, hosts=None, profile=None)

	
New in version 2017.7.0.

Delete Ingest pipeline. Available since Elasticsearch 5.0.

	id
	Pipeline id

CLI Example:

salt myminion elasticsearch.pipeline_delete mypipeline

	
salt.modules.elasticsearch.pipeline_get(id, hosts=None, profile=None)

	
New in version 2017.7.0.

Retrieve Ingest pipeline definition. Available since Elasticsearch 5.0.

	id
	Pipeline id

CLI Example:

salt myminion elasticsearch.pipeline_get mypipeline

	
salt.modules.elasticsearch.pipeline_simulate(id, body, verbose=False, hosts=None, profile=None)

	
New in version 2017.7.0.

Simulate existing Ingest pipeline on provided data. Available since Elasticsearch 5.0.

	id
	Pipeline id

	body
	Pipeline definition as specified in https://www.elastic.co/guide/en/elasticsearch/reference/master/pipeline.html

	verbose
	Specify if the output should be more verbose

CLI Example:

salt myminion elasticsearch.pipeline_simulate mypipeline '{"docs":[{"_index":"index","_type":"type","_id":"id","_source":{"foo":"bar"}},{"_index":"index","_type":"type","_id":"id","_source":{"foo":"rab"}}]}' verbose=True

	
salt.modules.elasticsearch.repository_create(name, body, hosts=None, profile=None)

	
New in version 2017.7.0.

Create repository for storing snapshots. Note that shared repository paths have to be specified in path.repo Elasticsearch configuration option.

	name
	Repository name

	body
	Repository definition as in https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-snapshots.html

CLI Example:

salt myminion elasticsearch.repository_create testrepo '{"type":"fs","settings":{"location":"/tmp/test","compress":true}}'

	
salt.modules.elasticsearch.repository_delete(name, hosts=None, profile=None)

	
New in version 2017.7.0.

Delete existing repository.

	name
	Repository name

CLI Example:

salt myminion elasticsearch.repository_delete testrepo

	
salt.modules.elasticsearch.repository_get(name, local=False, hosts=None, profile=None)

	
New in version 2017.7.0.

Get existing repository details.

	name
	Repository name

	local
	Retrieve only local information, default is false

CLI Example:

salt myminion elasticsearch.repository_get testrepo

	
salt.modules.elasticsearch.repository_verify(name, hosts=None, profile=None)

	
New in version 2017.7.0.

Obtain list of cluster nodes which successfully verified this repository.

	name
	Repository name

CLI Example:

salt myminion elasticsearch.repository_verify testrepo

	
salt.modules.elasticsearch.search_template_create(id, body, hosts=None, profile=None)

	
New in version 2017.7.0.

Create search template by supplied definition

	id
	Template ID

	body
	Search template definition

CLI Example:

salt myminion elasticsearch.search_template_create mytemplate '{"template":{"query":{"match":{"title":"{{query_string}}"}}}}'

	
salt.modules.elasticsearch.search_template_delete(id, hosts=None, profile=None)

	
New in version 2017.7.0.

Delete existing search template definition.

	id
	Template ID

CLI Example:

salt myminion elasticsearch.search_template_delete mytemplate

	
salt.modules.elasticsearch.search_template_get(id, hosts=None, profile=None)

	
New in version 2017.7.0.

Obtain existing search template definition.

	id
	Template ID

CLI Example:

salt myminion elasticsearch.search_template_get mytemplate

	
salt.modules.elasticsearch.snapshot_create(repository, snapshot, body=None, hosts=None, profile=None)

	
New in version 2017.7.0.

Create snapshot in specified repository by supplied definition.

	repository
	Repository name

	snapshot
	Snapshot name

	body
	Snapshot definition as in https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-snapshots.html

CLI Example:

salt myminion elasticsearch.snapshot_create testrepo testsnapshot '{"indices":"index_1,index_2","ignore_unavailable":true,"include_global_state":false}'

	
salt.modules.elasticsearch.snapshot_delete(repository, snapshot, hosts=None, profile=None)

	
New in version 2017.7.0.

Delete snapshot from specified repository.

	repository
	Repository name

	snapshot
	Snapshot name

CLI Example:

salt myminion elasticsearch.snapshot_delete testrepo testsnapshot

	
salt.modules.elasticsearch.snapshot_get(repository, snapshot, ignore_unavailable=False, hosts=None, profile=None)

	
New in version 2017.7.0.

Obtain snapshot residing in specified repository.

	repository
	Repository name

	snapshot
	Snapshot name, use _all to obtain all snapshots in specified repository

	ignore_unavailable
	Ignore unavailable snapshots

CLI Example:

salt myminion elasticsearch.snapshot_get testrepo testsnapshot

	
salt.modules.elasticsearch.snapshot_restore(repository, snapshot, body=None, hosts=None, profile=None)

	
New in version 2017.7.0.

Restore existing snapshot in specified repository by supplied definition.

	repository
	Repository name

	snapshot
	Snapshot name

	body
	Restore definition as in https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-snapshots.html

CLI Example:

salt myminion elasticsearch.snapshot_restore testrepo testsnapshot '{"indices":"index_1,index_2","ignore_unavailable":true,"include_global_state":true}'

	
salt.modules.elasticsearch.snapshot_status(repository=None, snapshot=None, ignore_unavailable=False, hosts=None, profile=None)

	
New in version 2017.7.0.

Obtain status of all currently running snapshots.

	repository
	Particular repository to look for snapshots

	snapshot
	Snapshot name

	ignore_unavailable
	Ignore unavailable snapshots

CLI Example:

salt myminion elasticsearch.snapshot_status ignore_unavailable=True

salt.modules.environ

Support for getting and setting the environment variables
of the current salt process.

	
salt.modules.environ.get(key, default='')

	Get a single salt process environment variable.

	key
	String used as the key for environment lookup.

	default
	If the key is not found in the environment, return this value.
Default: ''

CLI Example:

salt '*' environ.get foo
salt '*' environ.get baz default=False

	
salt.modules.environ.has_value(key, value=None)

	Determine whether the key exists in the current salt process
environment dictionary. Optionally compare the current value
of the environment against the supplied value string.

	key
	Must be a string. Used as key for environment lookup.

	value:
	Optional. If key exists in the environment, compare the
current value with this value. Return True if they are equal.

CLI Example:

salt '*' environ.has_value foo

	
salt.modules.environ.item(keys, default='')

	Get one or more salt process environment variables.
Returns a dict.

	keys
	Either a string or a list of strings that will be used as the
keys for environment lookup.

	default
	If the key is not found in the environment, return this value.
Default: ''

CLI Example:

salt '*' environ.item foo
salt '*' environ.item '[foo, baz]' default=None

	
salt.modules.environ.items()

	Return a dict of the entire environment set for the salt process

CLI Example:

salt '*' environ.items

	
salt.modules.environ.setenv(environ, false_unsets=False, clear_all=False, update_minion=False, permanent=False)

	Set multiple salt process environment variables from a dict.
Returns a dict.

	environ
	Must be a dict. The top-level keys of the dict are the names
of the environment variables to set. Each key's value must be
a string or False. Refer to the 'false_unsets' parameter for
behavior when a value set to False.

	false_unsets
	If a key's value is False and false_unsets is True, then the
key will be removed from the salt processes environment dict
entirely. If a key's value is False and false_unsets is not
True, then the key's value will be set to an empty string.
Default: False

	clear_all
	USE WITH CAUTION! This option can unset environment variables
needed for salt to function properly.
If clear_all is True, then any environment variables not
defined in the environ dict will be deleted.
Default: False

	update_minion
	If True, apply these environ changes to the main salt-minion
process. If False, the environ changes will only affect the
current salt subprocess.
Default: False

	permanent
	On Windows minions this will set the environment variable in the
registry so that it is always added as an environment variable when
applications open. If you want to set the variable to HKLM instead of
HKCU just pass in "HKLM" for this parameter. On all other minion types
this will be ignored. Note: This will only take affect on applications
opened after this has been set.

CLI Example:

salt '*' environ.setenv '{"foo": "bar", "baz": "quux"}'
salt '*' environ.setenv '{"a": "b", "c": False}' false_unsets=True

	
salt.modules.environ.setval(key, val, false_unsets=False, permanent=False)

	Set a single salt process environment variable. Returns True
on success.

	key
	The environment key to set. Must be a string.

	val
	The value to set. Must be a string or False. Refer to the
'false_unsets' parameter for behavior when set to False.

	false_unsets
	If val is False and false_unsets is True, then the key will be
removed from the salt processes environment dict entirely.
If val is False and false_unsets is not True, then the key's
value will be set to an empty string.
Default: False.

	permanent
	On Windows minions this will set the environment variable in the
registry so that it is always added as an environment variable when
applications open. If you want to set the variable to HKLM instead of
HKCU just pass in "HKLM" for this parameter. On all other minion types
this will be ignored. Note: This will only take affect on applications
opened after this has been set.

CLI Example:

salt '*' environ.setval foo bar
salt '*' environ.setval baz val=False false_unsets=True
salt '*' environ.setval baz bar permanent=True
salt '*' environ.setval baz bar permanent=HKLM

salt.modules.eselect

Support for eselect, Gentoo's configuration and management tool.

	
salt.modules.eselect.exec_action(module, action, module_parameter=None, action_parameter=None, state_only=False)

	Execute an arbitrary action on a module.

	module
	name of the module to be executed

	action
	name of the module's action to be run

	module_parameter
	additional params passed to the defined module

	action_parameter
	additional params passed to the defined action

	state_only
	don't return any output but only the success/failure of the operation

CLI Example (updating the php implementation used for apache2):

salt '*' eselect.exec_action php update action_parameter='apache2'

	
salt.modules.eselect.get_current_target(module, module_parameter=None, action_parameter=None)

	Get the currently selected target for the given module.

	module
	name of the module to be queried for its current target

	module_parameter
	additional params passed to the defined module

	action_parameter
	additional params passed to the 'show' action

CLI Example (current target of system-wide java-vm):

salt '*' eselect.get_current_target java-vm action_parameter='system'

CLI Example (current target of kernel symlink):

salt '*' eselect.get_current_target kernel

	
salt.modules.eselect.get_modules()

	List available eselect modules.

CLI Example:

salt '*' eselect.get_modules

	
salt.modules.eselect.get_target_list(module, action_parameter=None)

	List available targets for the given module.

	module
	name of the module to be queried for its targets

	action_parameter
	additional params passed to the defined action

New in version 2016.11.0.

CLI Example:

salt '*' eselect.get_target_list kernel

	
salt.modules.eselect.set_target(module, target, module_parameter=None, action_parameter=None)

	Set the target for the given module.
Target can be specified by index or name.

	module
	name of the module for which a target should be set

	target
	name of the target to be set for this module

	module_parameter
	additional params passed to the defined module

	action_parameter
	additional params passed to the defined action

CLI Example (setting target of system-wide java-vm):

salt '*' eselect.set_target java-vm icedtea-bin-7 action_parameter='system'

CLI Example (setting target of kernel symlink):

salt '*' eselect.set_target kernel linux-3.17.5-gentoo

salt.modules.esxcluster

Module used to access the esxcluster proxy connection methods

Warning

This module will be deprecated in a future release of Salt. VMware strongly
recommends using the
VMware Salt extensions [https://docs.saltproject.io/salt/extensions/salt-ext-modules-vmware/en/latest/all.html]
instead of the ESX cluster module. Because the Salt extensions are newer and
actively supported by VMware, they are more compatible with current versions
of ESXi and they work well with the latest features in the VMware product
line.

	
salt.modules.esxcluster.get_details()

	

salt.modules.esxdatacenter

Module used to access the esxdatacenter proxy connection methods

Warning

This module will be deprecated in a future release of Salt. VMware strongly
recommends using the
VMware Salt extensions [https://docs.saltproject.io/salt/extensions/salt-ext-modules-vmware/en/latest/all.html]
instead of the ESX data center module. Because the Salt extensions are newer
and actively supported by VMware, they are more compatible with current
versions of ESXi and they work well with the latest features in the VMware
product line.

	
salt.modules.esxdatacenter.get_details()

	

salt.modules.esxi

Glues the VMware vSphere Execution Module to the VMware ESXi Proxy Minions to the
esxi proxymodule.

Warning

This module will be deprecated in a future release of Salt. VMware strongly
recommends using the
VMware Salt extensions [https://docs.saltproject.io/salt/extensions/salt-ext-modules-vmware/en/latest/all.html]
instead of the ESXi module. Because the Salt extensions are newer and
actively supported by VMware, they are more compatible with current versions
of ESXi and they work well with the latest features in the VMware product
line.

Depends: vSphere Remote Execution Module (salt.modules.vsphere)

For documentation on commands that you can direct to an ESXi host via proxy,
look in the documentation for salt.modules.vsphere.

This execution module calls through to a function in the ESXi proxy module
called ch_config, which looks up the function passed in the command
parameter in salt.modules.vsphere and calls it.

To execute commands with an ESXi Proxy Minion using the vSphere Execution Module,
use the esxi.cmd <vsphere-function-name> syntax. Both args and kwargs needed
for various vsphere execution module functions must be passed through in a kwarg-
type manor.

salt 'esxi-proxy' esxi.cmd system_info
salt 'exsi-proxy' esxi.cmd get_service_policy service_name='ssh'

	
salt.modules.esxi.cmd(command, *args, **kwargs)

	

	
salt.modules.esxi.get_details()

	

salt.modules.esxvm

Module used to access the esx proxy connection methods

Warning

This module will be deprecated in a future release of Salt. VMware strongly
recommends using the
VMware Salt extensions [https://docs.saltproject.io/salt/extensions/salt-ext-modules-vmware/en/latest/all.html]
instead of the ESX VSM module. Because the Salt extensions are newer and
actively supported by VMware, they are more compatible with current versions
of ESXi and they work well with the latest features in the VMware product
line.

	
salt.modules.esxvm.get_details()

	

salt.modules.etcd_mod

Execution module to work with etcd

	depends:

	
	python-etcd or etcd3-py

Configuration

To work with an etcd server you must configure an etcd profile. The etcd config
can be set in either the Salt Minion configuration file or in pillar:

my_etd_config:
 etcd.host: 127.0.0.1
 etcd.port: 4001

It is technically possible to configure etcd without using a profile, but this
is not considered to be a best practice, especially when multiple etcd servers
or clusters are available.

etcd.host: 127.0.0.1
etcd.port: 4001

In order to choose whether to use etcd API v2 or v3, you can put the following
configuration option in the same place as your etcd configuration. This option
defaults to true, meaning you will use v2 unless you specify otherwise.

etcd.require_v2: True

When using API v3, there are some specific options available to be configured
within your etcd profile. They are defaulted to the following...

etcd.encode_keys: False
etcd.encode_values: True
etcd.raw_keys: False
etcd.raw_values: False
etcd.unicode_errors: "surrogateescape"

etcd.encode_keys indicates whether you want to pre-encode keys using msgpack before
adding them to etcd.

Note

If you set etcd.encode_keys to True, all recursive functionality will no longer work.
This includes tree and ls and all other methods if you set recurse/recursive to True.
This is due to the fact that when encoding with msgpack, keys like /salt and /salt/stack will have
differing byte prefixes, and etcd v3 searches recursively using prefixes.

etcd.encode_values indicates whether you want to pre-encode values using msgpack before
adding them to etcd. This defaults to True to avoid data loss on non-string values wherever possible.

etcd.raw_keys determines whether you want the raw key or a string returned.

etcd.raw_values determines whether you want the raw value or a string returned.

etcd.unicode_errors determines what you policy to follow when there are encoding/decoding errors.

Note

The etcd configuration can also be set in the Salt Master config file,
but in order to use any etcd configurations defined in the Salt Master
config, the pillar_opts must be set to True.

Be aware that setting pillar_opts to True has security implications
as this makes all master configuration settings available in all minion's
pillars.

	
salt.modules.etcd_mod.get_(key, recurse=False, profile=None, **kwargs)

	
New in version 2014.7.0.

Get a value from etcd, by direct path. Returns None on failure.

CLI Examples:

salt myminion etcd.get /path/to/key
salt myminion etcd.get /path/to/key profile=my_etcd_config
salt myminion etcd.get /path/to/key recurse=True profile=my_etcd_config
salt myminion etcd.get /path/to/key host=127.0.0.1 port=2379

	
salt.modules.etcd_mod.ls_(path='/', profile=None, **kwargs)

	
New in version 2014.7.0.

Return all keys and dirs inside a specific path. Returns an empty dict on
failure.

CLI Example:

salt myminion etcd.ls /path/to/dir/
salt myminion etcd.ls /path/to/dir/ profile=my_etcd_config
salt myminion etcd.ls /path/to/dir/ host=127.0.0.1 port=2379

	
salt.modules.etcd_mod.rm_(key, recurse=False, profile=None, **kwargs)

	
New in version 2014.7.0.

Delete a key from etcd. Returns True if the key was deleted, False if it was
not and None if there was a failure.

CLI Example:

salt myminion etcd.rm /path/to/key
salt myminion etcd.rm /path/to/key profile=my_etcd_config
salt myminion etcd.rm /path/to/key host=127.0.0.1 port=2379
salt myminion etcd.rm /path/to/dir recurse=True profile=my_etcd_config

	
salt.modules.etcd_mod.set_(key, value, profile=None, ttl=None, directory=False, **kwargs)

	
New in version 2014.7.0.

Set a key in etcd by direct path. Optionally, create a directory
or set a TTL on the key. Returns None on failure.

CLI Example:

salt myminion etcd.set /path/to/key value
salt myminion etcd.set /path/to/key value profile=my_etcd_config
salt myminion etcd.set /path/to/key value host=127.0.0.1 port=2379
salt myminion etcd.set /path/to/dir '' directory=True
salt myminion etcd.set /path/to/key value ttl=5

	
salt.modules.etcd_mod.tree(path='/', profile=None, **kwargs)

	
New in version 2014.7.0.

Recurse through etcd and return all values. Returns None on failure.

CLI Example:

salt myminion etcd.tree
salt myminion etcd.tree profile=my_etcd_config
salt myminion etcd.tree host=127.0.0.1 port=2379
salt myminion etcd.tree /path/to/keys profile=my_etcd_config

	
salt.modules.etcd_mod.update(fields, path='', profile=None, **kwargs)

	
New in version 2016.3.0.

Sets a dictionary of values in one call. Useful for large updates
in syndic environments. The dictionary can contain a mix of formats
such as:

{
 '/some/example/key': 'bar',
 '/another/example/key': 'baz'
}

Or it may be a straight dictionary, which will be flattened to look
like the above format:

{
 'some': {
 'example': {
 'key': 'bar'
 }
 },
 'another': {
 'example': {
 'key': 'baz'
 }
 }
}

You can even mix the two formats and it will be flattened to the first
format. Leading and trailing '/' will be removed.

Empty directories can be created by setting the value of the key to an
empty dictionary.

The 'path' parameter will optionally set the root of the path to use.

CLI Example:

salt myminion etcd.update "{'/path/to/key': 'baz', '/another/key': 'bar'}"
salt myminion etcd.update "{'/path/to/key': 'baz', '/another/key': 'bar'}" profile=my_etcd_config
salt myminion etcd.update "{'/path/to/key': 'baz', '/another/key': 'bar'}" host=127.0.0.1 port=2379
salt myminion etcd.update "{'/path/to/key': 'baz', '/another/key': 'bar'}" path='/some/root'

	
salt.modules.etcd_mod.watch(key, recurse=False, profile=None, timeout=0, index=None, **kwargs)

	
New in version 2016.3.0.

Makes a best effort to watch for a key or tree change in etcd.
Returns a dict containing the new key value (or None if the key was
deleted), the modifiedIndex of the key, whether the key changed or
not, the path to the key that changed and whether it is a directory or not.

If something catastrophic happens, returns {}

CLI Example:

salt myminion etcd.watch /path/to/key
salt myminion etcd.watch /path/to/key timeout=10
salt myminion etcd.watch /patch/to/key profile=my_etcd_config index=10
salt myminion etcd.watch /patch/to/key host=127.0.0.1 port=2379

salt.modules.ethtool

Module for running ethtool command

New in version 2016.3.0.

	codeauthor:

	Krzysztof Pawlowski <msciciel@msciciel.eu>

	maturity:

	new

	depends:

	python-ethtool

	platform:

	linux

	
salt.modules.ethtool.set_coalesce(devname, **kwargs)

	Changes the coalescing settings of the specified network device

CLI Example:

salt '*' ethtool.set_coalesce <devname> [adaptive_rx=on|off] [adaptive_tx=on|off] [rx_usecs=N] [rx_frames=N]
 [rx_usecs_irq=N] [rx_frames_irq=N] [tx_usecs=N] [tx_frames=N] [tx_usecs_irq=N] [tx_frames_irq=N]
 [stats_block_usecs=N] [pkt_rate_low=N] [rx_usecs_low=N] [rx_frames_low=N] [tx_usecs_low=N] [tx_frames_low=N]
 [pkt_rate_high=N] [rx_usecs_high=N] [rx_frames_high=N] [tx_usecs_high=N] [tx_frames_high=N]
 [sample_interval=N]

	
salt.modules.ethtool.set_feature(devname, **kwargs)

	
New in version 3006.0.

Changes the feature parameters of the specified network device

CLI Example:

salt '*' ethtool.set_feature <devname> sg=off

	
salt.modules.ethtool.set_offload(devname, **kwargs)

	Changes the offload parameters and other features of the specified network device

CLI Example:

salt '*' ethtool.set_offload <devname> tcp_segmentation_offload=on

	
salt.modules.ethtool.set_pause(devname, **kwargs)

	
New in version 3006.0.

Changes the pause parameters of the specified network device

CLI Example:

salt '*' ethtool.set_pause <devname> autoneg=off rx=off tx=off

	
salt.modules.ethtool.set_ring(devname, **kwargs)

	Changes the rx/tx ring parameters of the specified network device

CLI Example:

salt '*' ethtool.set_ring <devname> [rx=N] [rx_mini=N] [rx_jumbo=N] [tx=N]

	
salt.modules.ethtool.show_coalesce(devname)

	Queries the specified network device for coalescing information

CLI Example:

salt '*' ethtool.show_coalesce <devname>

	
salt.modules.ethtool.show_driver(devname)

	Queries the specified network device for associated driver information

CLI Example:

salt '*' ethtool.show_driver <devname>

	
salt.modules.ethtool.show_features(devname)

	
New in version 3006.0.

Queries the specified network device for associated feature information

CLI Example:

salt '*' ethtool.show_features <devname>

	
salt.modules.ethtool.show_offload(devname)

	Queries the specified network device for the state of protocol offload and other features

CLI Example:

salt '*' ethtool.show_offload <devname>

	
salt.modules.ethtool.show_pause(devname)

	
New in version 3006.0.

Queries the specified network device for associated pause information

CLI Example:

salt '*' ethtool.show_pause <devname>

	
salt.modules.ethtool.show_ring(devname)

	Queries the specified network device for rx/tx ring parameter information

CLI Example:

salt '*' ethtool.show_ring <devname>

salt.modules.event

Use the Salt Event System to fire events from the
master to the minion and vice-versa.

	
salt.modules.event.fire(data, tag)

	Fire an event on the local minion event bus. Data must be formed as a dict.

CLI Example:

salt '*' event.fire '{"data":"my event data"}' 'tag'

	
salt.modules.event.fire_master(data, tag, preload=None)

	Fire an event off up to the master server

CLI Example:

salt '*' event.fire_master '{"data":"my event data"}' 'tag'

	
salt.modules.event.send(tag, data=None, preload=None, with_env=False, with_grains=False, with_pillar=False, with_env_opts=False, **kwargs)

	Send an event to the Salt Master

New in version 2014.7.0.

	Parameters:

	
	tag -- A tag to give the event.
Use slashes to create a namespace for related events. E.g.,
myco/build/buildserver1/start, myco/build/buildserver1/success,
myco/build/buildserver1/failure.

	data -- A dictionary of data to send in the event.
This is free-form. Send any data points that are needed for whoever is
consuming the event. Arguments on the CLI are interpreted as YAML so
complex data structures are possible.

	with_env (Specify True to include all environment variables, or
specify a list of strings of variable names to include.) -- Include environment variables from the current shell
environment in the event data as environ.. This is a short-hand for
working with systems that seed the environment with relevant data such
as Jenkins.

	with_grains (Specify True to include all grains, or specify a
list of strings of grain names to include.) -- Include grains from the current minion in the event
data as grains.

	with_pillar (Specify True to include all Pillar values, or
specify a list of strings of Pillar keys to include. It is a
best-practice to only specify a relevant subset of Pillar data.) -- Include Pillar values from the current minion in the
event data as pillar. Remember Pillar data is often sensitive data
so be careful. This is useful for passing ephemeral Pillar values
through an event. Such as passing the pillar={} kwarg in
state.sls from the Master, through
an event on the Minion, then back to the Master.

	with_env_opts (Specify True to include saltenv and
pillarenv values or False to omit them.) -- Include saltenv and pillarenv set on minion
at the moment when event is send into event data.

	kwargs -- Any additional keyword arguments passed to this function
will be interpreted as key-value pairs and included in the event data.
This provides a convenient alternative to YAML for simple values.

CLI Example:

salt-call event.send myco/mytag foo=Foo bar=Bar
salt-call event.send 'myco/mytag' '{foo: Foo, bar: Bar}'

salt.modules.extfs

Module for managing ext2/3/4 file systems

	
salt.modules.extfs.attributes(device, args=None)

	Return attributes from dumpe2fs for a specified device

CLI Example:

salt '*' extfs.attributes /dev/sda1

	
salt.modules.extfs.blocks(device, args=None)

	Return block and inode info from dumpe2fs for a specified device

CLI Example:

salt '*' extfs.blocks /dev/sda1

	
salt.modules.extfs.dump(device, args=None)

	Return all contents of dumpe2fs for a specified device

CLI Example:

salt '*' extfs.dump /dev/sda1

	
salt.modules.extfs.mkfs(device, fs_type, full_return=False, **kwargs)

	Create a file system on the specified device

	full_returnFalse
	If True, the full cmd.run_all dictionary will be returned
instead of just stdout/stderr text. Useful for setting the result of
the module.run state.

CLI Example:

salt '*' extfs.mkfs /dev/sda1 fs_type=ext4 opts='acl,noexec'

Valid options are:

	block_size: 1024, 2048 or 4096

	check: check for bad blocks

	direct: use direct IO

	ext_opts: extended file system options (comma-separated)

	fragment_size: size of fragments

	force: setting force to True will cause mke2fs to specify the -F
option twice (it is already set once); this is truly dangerous

	blocks_per_group: number of blocks in a block group

	number_of_groups: ext4 option for a virtual block group

	bytes_per_inode: set the bytes/inode ratio

	inode_size: size of the inode

	journal: set to True to create a journal (default on ext3/4)

	journal_opts: options for the fs journal (comma separated)

	blocks_file: read bad blocks from file

	label: label to apply to the file system

	reserved: percentage of blocks reserved for super-user

	last_dir: last mounted directory

	test: set to True to not actually create the file system (mke2fs -n)

	number_of_inodes: override default number of inodes

	creator_os: override "creator operating system" field

	opts: mount options (comma separated)

	revision: set the filesystem revision (default 1)

	super: write superblock and group descriptors only

	fs_type: set the filesystem type (REQUIRED)

	usage_type: how the filesystem is going to be used

	uuid: set the UUID for the file system

	cluster_size: specify the size of cluster in bytes for file systems using the bigalloc feature

	root_directory: copy the contents of the given directory into the root directory of the file system

	errors_behavior: change the behavior of the kernel code when errors are detected

See the mke2fs(8) manpage for a more complete description of these
options.

	
salt.modules.extfs.tune(device, full_return=False, **kwargs)

	Set attributes for the specified device (using tune2fs)

	full_returnFalse
	If True, the full cmd.run_all dictionary will be returned
instead of just stdout/stderr text. Useful for setting the result of
the module.run state.

CLI Example:

salt '*' extfs.tune /dev/sda1 force=True label=wildstallyns opts='acl,noexec'

Valid options are:

	max: max mount count

	count: mount count

	error: error behavior

	extended_opts: extended options (comma separated)

	force: force, even if there are errors (set to True)

	group: group name or gid that can use the reserved blocks

	interval: interval between checks

	journal: set to True to create a journal (default on ext3/4)

	journal_opts: options for the fs journal (comma separated)

	label: label to apply to the file system

	reserved_percentage: percentage of blocks reserved for super-user

	last_dir: last mounted directory

	opts: mount options (comma separated)

	feature: set or clear a feature (comma separated)

	mmp_check: mmp check interval

	reserved: reserved blocks count

	quota_opts: quota options (comma separated)

	time: time last checked

	user: user or uid who can use the reserved blocks

	uuid: set the UUID for the file system

See the mke2fs(8) manpage for a more complete description of these
options.

salt.modules.file

Manage information about regular files, directories,
and special files on the minion, set/read user,
group, mode, and data

	
class salt.modules.file.AttrChanges(added, removed)

	
	
added

	Alias for field number 0

	
removed

	Alias for field number 1

	
salt.modules.file.access(path, mode)

	
New in version 2014.1.0.

Test whether the Salt process has the specified access to the file. One of
the following modes must be specified:

f: Test the existence of the path
r: Test the readability of the path
w: Test the writability of the path
x: Test whether the path can be executed

CLI Example:

salt '*' file.access /path/to/file f
salt '*' file.access /path/to/file x

	
salt.modules.file.append(path, *args, **kwargs)

	
New in version 0.9.5.

Append text to the end of a file

	path
	path to file

	*args
	strings to append to file

CLI Example:

salt '*' file.append /etc/motd \
 "With all thine offerings thou shalt offer salt." \
 "Salt is what makes things taste bad when it isn't in them."

Attention

If you need to pass a string to append and that string contains
an equal sign, you must include the argument name, args.
For example:

salt '*' file.append /etc/motd args='cheese=spam'

salt '*' file.append /etc/motd args="['cheese=spam','spam=cheese']"

	
salt.modules.file.apply_template_on_contents(contents, template, context, defaults, saltenv)

	Return the contents after applying the templating engine

	contents
	template string

	template
	template format

	context
	Overrides default context variables passed to the template.

	defaults
	Default context passed to the template.

CLI Example:

salt '*' file.apply_template_on_contents \
 contents='This is a {{ template }} string.' \
 template=jinja \
 "context={}" "defaults={'template': 'cool'}" \
 saltenv=base

	
salt.modules.file.basename(path)

	Returns the final component of a pathname

New in version 2015.5.0.

This can be useful at the CLI but is frequently useful when scripting.

{%- set filename = salt['file.basename'](source_file) %}

CLI Example:

salt '*' file.basename 'test/test.config'

	
salt.modules.file.blockreplace(path, marker_start='#-- start managed zone --', marker_end='#-- end managed zone --', content='', append_if_not_found=False, prepend_if_not_found=False, backup='.bak', dry_run=False, show_changes=True, append_newline=False, insert_before_match=None, insert_after_match=None)

	
New in version 2014.1.0.

Replace content of a text block in a file, delimited by line markers

A block of content delimited by comments can help you manage several lines
entries without worrying about old entries removal.

Note

This function will store two copies of the file in-memory (the original
version and the edited version) in order to detect changes and only
edit the targeted file if necessary.

	path
	Filesystem path to the file to be edited

	marker_start
	The line content identifying a line as the start of the content block.
Note that the whole line containing this marker will be considered, so
whitespace or extra content before or after the marker is included in
final output

	marker_end
	The line content identifying the end of the content block. As of
versions 2017.7.5 and 2018.3.1, everything up to the text matching the
marker will be replaced, so it's important to ensure that your marker
includes the beginning of the text you wish to replace.

	content
	The content to be used between the two lines identified by marker_start
and marker_stop.

	append_if_not_found: False
	If markers are not found and set to True then, the markers and
content will be appended to the file.

	prepend_if_not_found: False
	If markers are not found and set to True then, the markers and
content will be prepended to the file.

	insert_before_match
	If markers are not found, this parameter can be set to a regex which will
insert the block before the first found occurrence in the file.

New in version 3001.

	insert_after_match
	If markers are not found, this parameter can be set to a regex which will
insert the block after the first found occurrence in the file.

New in version 3001.

	backup
	The file extension to use for a backup of the file if any edit is made.
Set to False to skip making a backup.

	dry_run: False
	If True, do not make any edits to the file and simply return the
changes that would be made.

	show_changes: True
	Controls how changes are presented. If True, this function will
return a unified diff of the changes made. If False, then it will
return a boolean (True if any changes were made, otherwise
False).

	append_newline: False
	Controls whether or not a newline is appended to the content block. If
the value of this argument is True then a newline will be added to
the content block. If it is False, then a newline will not be
added to the content block. If it is None then a newline will only
be added to the content block if it does not already end in a newline.

New in version 2016.3.4.

Changed in version 2017.7.5,2018.3.1: New behavior added when value is None.

Changed in version 2019.2.0: The default value of this argument will change to None to match
the behavior of the file.blockreplace state

CLI Example:

salt '*' file.blockreplace /etc/hosts '#-- start managed zone foobar : DO NOT EDIT --' \
'#-- end managed zone foobar --' $'10.0.1.1 foo.foobar\n10.0.1.2 bar.foobar' True

	
salt.modules.file.chattr(*files, **kwargs)

	
New in version 2018.3.0.

Change the attributes of files. This function accepts one or more files and
the following options:

	operator
	Can be wither add or remove. Determines whether attributes
should be added or removed from files

	attributes
	One or more of the following characters: aAcCdDeijPsStTu,
representing attributes to add to/remove from files

	version
	a version number to assign to the file(s)

	flags
	One or more of the following characters: RVf, representing
flags to assign to chattr (recurse, verbose, suppress most errors)

CLI Example:

salt '*' file.chattr foo1.txt foo2.txt operator=add attributes=ai
salt '*' file.chattr foo3.txt operator=remove attributes=i version=2

	
salt.modules.file.check_file_meta(name, sfn, source, source_sum, user, group, mode, attrs, saltenv, contents=None, seuser=None, serole=None, setype=None, serange=None, verify_ssl=True, follow_symlinks=False)

	Check for the changes in the file metadata.

CLI Example:

salt '*' file.check_file_meta /etc/httpd/conf.d/httpd.conf None salt://http/httpd.conf '{hash_type: 'md5', 'hsum': <md5sum>}' root root '755' None base

Note

Supported hash types include sha512, sha384, sha256, sha224, sha1, and
md5.

	name
	Path to file destination

	sfn
	Template-processed source file contents

	source
	URL to file source

	source_sum
	File checksum information as a dictionary

{hash_type: md5, hsum: <md5sum>}

	user
	Destination file user owner

	group
	Destination file group owner

	mode
	Destination file permissions mode

	attrs
	Destination file attributes

New in version 2018.3.0.

	saltenv
	Salt environment used to resolve source files

	contents
	File contents

	seuser
	selinux user attribute

New in version 3001.

	serole
	selinux role attribute

New in version 3001.

	setype
	selinux type attribute

New in version 3001.

	serange
	selinux range attribute

New in version 3001.

	verify_ssl
	If False, remote https file sources (https://)
will not attempt to validate the servers certificate. Default is True.

New in version 3002.

	follow_symlinks
	If the desired path is a symlink, follow it and check the permissions
of the file to which the symlink points.

New in version 3005.

	
salt.modules.file.check_hash(path, file_hash)

	Check if a file matches the given hash string

Returns True if the hash matches, otherwise False.

	path
	Path to a file local to the minion.

	hash
	The hash to check against the file specified in the path argument.

Changed in version 2016.11.4.

For this and newer versions the hash can be specified without an
accompanying hash type (e.g. e138491e9d5b97023cea823fe17bac22),
but for earlier releases it is necessary to also specify the hash type
in the format <hash_type>=<hash_value> (e.g.
md5=e138491e9d5b97023cea823fe17bac22).

CLI Example:

salt '*' file.check_hash /etc/fstab e138491e9d5b97023cea823fe17bac22
salt '*' file.check_hash /etc/fstab md5=e138491e9d5b97023cea823fe17bac22

	
salt.modules.file.check_managed(name, source, source_hash, source_hash_name, user, group, mode, attrs, template, context, defaults, saltenv, contents=None, skip_verify=False, seuser=None, serole=None, setype=None, serange=None, follow_symlinks=False, **kwargs)

	Check to see what changes need to be made for a file

	follow_symlinks
	If the desired path is a symlink, follow it and check the permissions
of the file to which the symlink points.

New in version 3005.

CLI Example:

salt '*' file.check_managed /etc/httpd/conf.d/httpd.conf salt://http/httpd.conf '{hash_type: 'md5', 'hsum': <md5sum>}' root, root, '755' jinja True None None base

	
salt.modules.file.check_managed_changes(name, source, source_hash, source_hash_name, user, group, mode, attrs, template, context, defaults, saltenv, contents=None, skip_verify=False, keep_mode=False, seuser=None, serole=None, setype=None, serange=None, verify_ssl=True, follow_symlinks=False, **kwargs)

	Return a dictionary of what changes need to be made for a file

Changed in version 3001: selinux attributes added

	verify_ssl
	If False, remote https file sources (https://) and source_hash
will not attempt to validate the servers certificate. Default is True.

New in version 3002.

	follow_symlinks
	If the desired path is a symlink, follow it and check the permissions
of the file to which the symlink points.

New in version 3005.

CLI Example:

salt '*' file.check_managed_changes /etc/httpd/conf.d/httpd.conf salt://http/httpd.conf '{hash_type: 'md5', 'hsum': <md5sum>}' root, root, '755' jinja True None None base

	
salt.modules.file.check_perms(name, ret, user, group, mode, attrs=None, follow_symlinks=False, seuser=None, serole=None, setype=None, serange=None)

	
Changed in version 3001: Added selinux options

Check the permissions on files, modify attributes and chown if needed. File
attributes are only verified if lsattr(1) is installed.

CLI Example:

salt '*' file.check_perms /etc/sudoers '{}' root root 400 ai

Changed in version 2014.1.3: follow_symlinks option added

	
salt.modules.file.chgrp(path, group)

	Change the group of a file

	path
	path to the file or directory

	group
	group owner

CLI Example:

salt '*' file.chgrp /etc/passwd root

	
salt.modules.file.chown(path, user, group)

	Chown a file, pass the file the desired user and group

	path
	path to the file or directory

	user
	user owner

	group
	group owner

CLI Example:

salt '*' file.chown /etc/passwd root root

	
salt.modules.file.comment(path, regex, char='#', backup='.bak')

	
Deprecated since version 0.17.0: Use replace() instead.

Comment out specified lines in a file

	path
	The full path to the file to be edited

	regex
	A regular expression used to find the lines that are to be commented;
this pattern will be wrapped in parenthesis and will move any
preceding/trailing ^ or $ characters outside the parenthesis
(e.g., the pattern ^foo$ will be rewritten as ^(foo)$)

	char: #
	The character to be inserted at the beginning of a line in order to
comment it out

	backup: .bak
	The file will be backed up before edit with this file extension

Warning

This backup will be overwritten each time sed / comment /
uncomment is called. Meaning the backup will only be useful
after the first invocation.

CLI Example:

salt '*' file.comment /etc/modules pcspkr

	
salt.modules.file.comment_line(path, regex, char='#', cmnt=True, backup='.bak')

	Comment or Uncomment a line in a text file.

	Parameters:

	
	path -- string
The full path to the text file.

	regex -- string
A regex expression that begins with ^ that will find the line you wish
to comment. Can be as simple as ^color =

	char -- string
The character used to comment a line in the type of file you're referencing.
Default is #

	cmnt -- boolean
True to comment the line. False to uncomment the line. Default is True.

	backup -- string
The file extension to give the backup file. Default is .bak
Set to False/None to not keep a backup.

	Returns:

	boolean
Returns True if successful, False if not

CLI Example:

The following example will comment out the pcspkr line in the
/etc/modules file using the default # character and create a backup
file named modules.bak

salt '*' file.comment_line '/etc/modules' '^pcspkr'

CLI Example:

The following example will uncomment the log_level setting in minion
config file if it is set to either warning, info, or debug using
the # character and create a backup file named minion.bk

salt '*' file.comment_line 'C:\salt\conf\minion' '^log_level: (warning|info|debug)' '#' False '.bk'

	
salt.modules.file.contains(path, text)

	
Deprecated since version 0.17.0: Use search() instead.

Return True if the file at path contains text

CLI Example:

salt '*' file.contains /etc/crontab 'mymaintenance.sh'

	
salt.modules.file.contains_glob(path, glob_expr)

	
Deprecated since version 0.17.0: Use search() instead.

Return True if the given glob matches a string in the named file

CLI Example:

salt '*' file.contains_glob /etc/foobar '*cheese*'

	
salt.modules.file.contains_regex(path, regex, lchar='')

	
Deprecated since version 0.17.0: Use search() instead.

Return True if the given regular expression matches on any line in the text
of a given file.

If the lchar argument (leading char) is specified, it
will strip lchar from the left side of each line before trying to match

CLI Example:

salt '*' file.contains_regex /etc/crontab

	
salt.modules.file.copy(src, dst, recurse=False, remove_existing=False)

	Copy a file or directory from source to dst

In order to copy a directory, the recurse flag is required, and
will by default overwrite files in the destination with the same path,
and retain all other existing files. (similar to cp -r on unix)

remove_existing will remove all files in the target directory,
and then copy files from the source.

Note

The copy function accepts paths that are local to the Salt minion.
This function does not support salt://, http://, or the other
additional file paths that are supported by states.file.managed and states.file.recurse.

CLI Example:

salt '*' file.copy /path/to/src /path/to/dst
salt '*' file.copy /path/to/src_dir /path/to/dst_dir recurse=True
salt '*' file.copy /path/to/src_dir /path/to/dst_dir recurse=True remove_existing=True

	
salt.modules.file.delete_backup(path, backup_id)

	
New in version 0.17.0.

Delete a previous version of a file that was backed up using Salt's
file state backup system.

	path
	The path on the minion to check for backups

	backup_id
	The numeric id for the backup you wish to delete, as found using
file.list_backups

CLI Example:

salt '*' file.delete_backup /var/cache/salt/minion/file_backup/home/foo/bar/baz.txt 0

	
salt.modules.file.directory_exists(path)

	Tests to see if path is a valid directory. Returns True/False.

CLI Example:

salt '*' file.directory_exists /etc

	
salt.modules.file.dirname(path)

	Returns the directory component of a pathname

New in version 2015.5.0.

This can be useful at the CLI but is frequently useful when scripting.

{%- from salt['file.dirname'](tpldir) + '/vars.jinja' import parent_vars %}

CLI Example:

salt '*' file.dirname 'test/path/filename.config'

	
salt.modules.file.diskusage(path)

	Recursively calculate disk usage of path and return it
in bytes

CLI Example:

salt '*' file.diskusage /path/to/check

	
salt.modules.file.extract_hash(hash_fn, hash_type='sha256', file_name='', source='', source_hash_name=None)

	
Changed in version 2016.3.5: Prior to this version, only the file_name argument was considered
for filename matches in the hash file. This would be problematic for
cases in which the user was relying on a remote checksum file that they
do not control, and they wished to use a different name for that file
on the minion from the filename on the remote server (and in the
checksum file). For example, managing /tmp/myfile.tar.gz when the
remote file was at https://mydomain.tld/different_name.tar.gz. The
file.managed state now also
passes this function the source URI as well as the source_hash_name
(if specified). In cases where source_hash_name is specified, it
takes precedence over both the file_name and source. When it is
not specified, file_name takes precedence over source. This
allows for better capability for matching hashes.

Changed in version 2016.11.0: File name and source URI matches are no longer disregarded when
source_hash_name is specified. They will be used as fallback
matches if there is no match to the source_hash_name value.

This routine is called from the file.managed state to pull a hash from a remote file.
Regular expressions are used line by line on the source_hash file, to
find a potential candidate of the indicated hash type. This avoids many
problems of arbitrary file layout rules. It specifically permits pulling
hash codes from debian *.dsc files.

If no exact match of a hash and filename are found, then the first hash
found (if any) will be returned. If no hashes at all are found, then
None will be returned.

For example:

openerp_7.0-latest-1.tar.gz:
 file.managed:
 - name: /tmp/openerp_7.0-20121227-075624-1_all.deb
 - source: http://nightly.openerp.com/7.0/nightly/deb/openerp_7.0-20121227-075624-1.tar.gz
 - source_hash: http://nightly.openerp.com/7.0/nightly/deb/openerp_7.0-20121227-075624-1.dsc

CLI Example:

salt '*' file.extract_hash /path/to/hash/file sha512 /etc/foo

	
salt.modules.file.file_exists(path)

	Tests to see if path is a valid file. Returns True/False.

CLI Example:

salt '*' file.file_exists /etc/passwd

	
salt.modules.file.find(path, *args, **kwargs)

	Approximate the Unix find(1) command and return a list of paths that
meet the specified criteria.

The options include match criteria:

name = path-glob # case sensitive
iname = path-glob # case insensitive
regex = path-regex # case sensitive
iregex = path-regex # case insensitive
type = file-types # match any listed type
user = users # match any listed user
group = groups # match any listed group
size = [+-]number[size-unit] # default unit = byte
mtime = interval # modified since date
grep = regex # search file contents

and/or actions:

delete [= file-types] # default type = 'f'
exec = command [arg ...] # where {} is replaced by pathname
print [= print-opts]

and/or depth criteria:

maxdepth = maximum depth to transverse in path
mindepth = minimum depth to transverse before checking files or directories

The default action is print=path

path-glob:

* = match zero or more chars
? = match any char
[abc] = match a, b, or c
[!abc] or [^abc] = match anything except a, b, and c
[x-y] = match chars x through y
[!x-y] or [^x-y] = match anything except chars x through y
{a,b,c} = match a or b or c

path-regex: a Python Regex (regular expression) pattern to match pathnames

file-types: a string of one or more of the following:

a: all file types
b: block device
c: character device
d: directory
p: FIFO (named pipe)
f: plain file
l: symlink
s: socket

users: a space and/or comma separated list of user names and/or uids

groups: a space and/or comma separated list of group names and/or gids

size-unit:

b: bytes
k: kilobytes
m: megabytes
g: gigabytes
t: terabytes

interval:

[<num>w] [<num>d] [<num>h] [<num>m] [<num>s]

where:
 w: week
 d: day
 h: hour
 m: minute
 s: second

print-opts: a comma and/or space separated list of one or more of the
following:

group: group name
md5: MD5 digest of file contents
mode: file permissions (as integer)
mtime: last modification time (as time_t)
name: file basename
path: file absolute path
size: file size in bytes
type: file type
user: user name

CLI Examples:

salt '*' file.find / type=f name=*.bak size=+10m
salt '*' file.find /var mtime=+30d size=+10m print=path,size,mtime
salt '*' file.find /var/log name=*.[0-9] mtime=+30d size=+10m delete

	
salt.modules.file.get_devmm(name)

	Get major/minor info from a device

CLI Example:

salt '*' file.get_devmm /dev/chr

	
salt.modules.file.get_diff(file1, file2, saltenv='base', show_filenames=True, show_changes=True, template=False, source_hash_file1=None, source_hash_file2=None)

	Return unified diff of two files

	file1
	The first file to feed into the diff utility

Changed in version 2018.3.0: Can now be either a local or remote file. In earlier releases,
thuis had to be a file local to the minion.

	file2
	The second file to feed into the diff utility

Changed in version 2018.3.0: Can now be either a local or remote file. In earlier releases, this
had to be a file on the salt fileserver (i.e.
salt://somefile.txt)

	show_filenames: True
	Set to False to hide the filenames in the top two lines of the
diff.

	show_changes: True
	If set to False, and there are differences, then instead of a diff
a simple message stating that show_changes is set to False will be
returned.

	template: False
	Set to True if two templates are being compared. This is not useful
except for within states, with the obfuscate_templates option set
to True.

New in version 2018.3.0.

	source_hash_file1
	If file1 is an http(s)/ftp URL and the file exists in the minion's
file cache, this option can be passed to keep the minion from
re-downloading the archive if the cached copy matches the specified
hash.

New in version 2018.3.0.

	source_hash_file2
	If file2 is an http(s)/ftp URL and the file exists in the minion's
file cache, this option can be passed to keep the minion from
re-downloading the archive if the cached copy matches the specified
hash.

New in version 2018.3.0.

CLI Examples:

salt '*' file.get_diff /home/fred/.vimrc salt://users/fred/.vimrc
salt '*' file.get_diff /tmp/foo.txt /tmp/bar.txt

	
salt.modules.file.get_gid(path, follow_symlinks=True)

	Return the id of the group that owns a given file

	path
	file or directory of which to get the gid

	follow_symlinks
	indicated if symlinks should be followed

CLI Example:

salt '*' file.get_gid /etc/passwd

Changed in version 0.16.4: follow_symlinks option added

	
salt.modules.file.get_group(path, follow_symlinks=True)

	Return the group that owns a given file

	path
	file or directory of which to get the group

	follow_symlinks
	indicated if symlinks should be followed

CLI Example:

salt '*' file.get_group /etc/passwd

Changed in version 0.16.4: follow_symlinks option added

	
salt.modules.file.get_hash(path, form='sha256', chunk_size=65536)

	Get the hash sum of a file

	This is better than get_sum for the following reasons:
	
	It does not read the entire file into memory.

	
	It does not return a string on error. The returned value of
	get_sum cannot really be trusted since it is vulnerable to
collisions: get_sum(..., 'xyz') == 'Hash xyz not supported'

	path
	path to the file or directory

	form
	desired sum format

	chunk_size
	amount to sum at once

CLI Example:

salt '*' file.get_hash /etc/shadow

	
salt.modules.file.get_managed(name, template, source, source_hash, source_hash_name, user, group, mode, attrs, saltenv, context, defaults, skip_verify=False, verify_ssl=True, use_etag=False, source_hash_sig=None, signed_by_any=None, signed_by_all=None, keyring=None, gnupghome=None, **kwargs)

	Return the managed file data for file.managed

	name
	location where the file lives on the server

	template
	template format

	source
	managed source file

	source_hash
	hash of the source file

	source_hash_name
	When source_hash refers to a remote file, this specifies the
filename to look for in that file.

New in version 2016.3.5.

	user
	Owner of file

	group
	Group owner of file

	mode
	Permissions of file

	attrs
	Attributes of file

New in version 2018.3.0.

	context
	Variables to add to the template context

	defaults
	Default values of for context_dict

	skip_verify
	If True, hash verification of remote file sources (http://,
https://, ftp://) will be skipped, and the source_hash
argument will be ignored.

New in version 2016.3.0.

	verify_ssl
	If False, remote https file sources (https://) and source_hash
will not attempt to validate the servers certificate. Default is True.

New in version 3002.

	use_etag
	If True, remote http/https file sources will attempt to use the
ETag header to determine if the remote file needs to be downloaded.
This provides a lightweight mechanism for promptly refreshing files
changed on a web server without requiring a full hash comparison via
the source_hash parameter.

New in version 3005.

	source_hash_sig
	When source is a remote file source, source_hash is a file,
skip_verify is not true and use_etag is not true, ensure a
valid GPG signature exists on the source hash file.
Set this to true for an inline (clearsigned) signature, or to a
file URI retrievable by :py:func:`cp.cache_file <salt.modules.cp.cache_file>
for a detached one.

New in version 3007.0.

	signed_by_any
	When verifying source_hash_sig, require at least one valid signature
from one of a list of key fingerprints. This is passed to gpg.verify.

New in version 3007.0.

	signed_by_all
	When verifying source_hash_sig, require a valid signature from each
of the key fingerprints in this list. This is passed to gpg.verify.

New in version 3007.0.

	keyring
	When verifying source_hash_sig, use this keyring.

New in version 3007.0.

	gnupghome
	When verifying source_hash_sig, use this GnuPG home.

New in version 3007.0.

CLI Example:

salt '*' file.get_managed /etc/httpd/conf.d/httpd.conf jinja salt://http/httpd.conf '{hash_type: 'md5', 'hsum': <md5sum>}' None root root '755' base None None

	
salt.modules.file.get_mode(path, follow_symlinks=True)

	Return the mode of a file

	path
	file or directory of which to get the mode

	follow_symlinks
	indicated if symlinks should be followed

CLI Example:

salt '*' file.get_mode /etc/passwd

Changed in version 2014.1.0: follow_symlinks option added

	
salt.modules.file.get_selinux_context(path)

	Get an SELinux context from a given path

CLI Example:

salt '*' file.get_selinux_context /etc/hosts

	
salt.modules.file.get_source_sum(file_name='', source='', source_hash=None, source_hash_name=None, saltenv='base', verify_ssl=True, source_hash_sig=None, signed_by_any=None, signed_by_all=None, keyring=None, gnupghome=None)

	
New in version 2016.11.0.

Used by file.get_managed to
obtain the hash and hash type from the parameters specified below.

	file_name
	Optional file name being managed, for matching with
file.extract_hash.

	source
	Source file, as used in file and other
states. If source_hash refers to a file containing hashes, then
this filename will be used to match a filename in that file. If the
source_hash is a hash expression, then this argument will be
ignored.

	source_hash
	Hash file/expression, as used in file and
other states. If this value refers to a remote URL or absolute path to
a local file, it will be cached and file.extract_hash will be used to obtain a hash from
it.

	source_hash_name
	Specific file name to look for when source_hash refers to a remote
file, used to disambiguate ambiguous matches.

	saltenv: base
	Salt fileserver environment from which to retrieve the source_hash. This
value will only be used when source_hash refers to a file on the
Salt fileserver (i.e. one beginning with salt://).

	verify_ssl
	If False, remote https file sources (https://) and source_hash
will not attempt to validate the servers certificate. Default is True.

New in version 3002.

	source_hash_sig
	When source is a remote file source and source_hash is a file,
ensure a valid GPG signature exists on the source hash file.
Set this to true for an inline (clearsigned) signature, or to a
file URI retrievable by :py:func:`cp.cache_file <salt.modules.cp.cache_file>
for a detached one.

New in version 3007.0.

	signed_by_any
	When verifying source_hash_sig, require at least one valid signature
from one of a list of key fingerprints. This is passed to gpg.verify.

New in version 3007.0.

	signed_by_all
	When verifying source_hash_sig, require a valid signature from each
of the key fingerprints in this list. This is passed to gpg.verify.

New in version 3007.0.

	keyring
	When verifying source_hash_sig, use this keyring.

New in version 3007.0.

	gnupghome
	When verifying source_hash_sig, use this GnuPG home.

New in version 3007.0.

CLI Example:

salt '*' file.get_source_sum /tmp/foo.tar.gz source=http://mydomain.tld/foo.tar.gz source_hash=499ae16dcae71eeb7c3a30c75ea7a1a6
salt '*' file.get_source_sum /tmp/foo.tar.gz source=http://mydomain.tld/foo.tar.gz source_hash=https://mydomain.tld/hashes.md5
salt '*' file.get_source_sum /tmp/foo.tar.gz source=http://mydomain.tld/foo.tar.gz source_hash=https://mydomain.tld/hashes.md5 source_hash_name=./dir2/foo.tar.gz

	
salt.modules.file.get_sum(path, form='sha256')

	Return the checksum for the given file. The following checksum algorithms
are supported:

	md5

	sha1

	sha224

	sha256 (default)

	sha384

	sha512

	path
	path to the file or directory

	form
	desired sum format

CLI Example:

salt '*' file.get_sum /etc/passwd sha512

	
salt.modules.file.get_uid(path, follow_symlinks=True)

	Return the id of the user that owns a given file

	path
	file or directory of which to get the uid

	follow_symlinks
	indicated if symlinks should be followed

CLI Example:

salt '*' file.get_uid /etc/passwd

Changed in version 0.16.4: follow_symlinks option added

	
salt.modules.file.get_user(path, follow_symlinks=True)

	Return the user that owns a given file

	path
	file or directory of which to get the user

	follow_symlinks
	indicated if symlinks should be followed

CLI Example:

salt '*' file.get_user /etc/passwd

Changed in version 0.16.4: follow_symlinks option added

	
salt.modules.file.gid_to_group(gid)

	Convert the group id to the group name on this system

	gid
	gid to convert to a group name

CLI Example:

salt '*' file.gid_to_group 0

	
salt.modules.file.grep(path, pattern, *opts)

	Grep for a string in the specified file

Note

This function's return value is slated for refinement in future
versions of Salt

Windows does not support the grep functionality.

	path
	Path to the file to be searched

Note

Globbing is supported (i.e. /var/log/foo/*.log, but if globbing
is being used then the path should be quoted to keep the shell from
attempting to expand the glob expression.

	pattern
	Pattern to match. For example: test, or a[0-5]

	opts
	Additional command-line flags to pass to the grep command. For example:
-v, or -i -B2

Note

The options should come after a double-dash (as shown in the
examples below) to keep Salt's own argument parser from
interpreting them.

CLI Example:

salt '*' file.grep /etc/passwd nobody
salt '*' file.grep /etc/sysconfig/network-scripts/ifcfg-eth0 ipaddr -- -i
salt '*' file.grep /etc/sysconfig/network-scripts/ifcfg-eth0 ipaddr -- -i -B2
salt '*' file.grep "/etc/sysconfig/network-scripts/*" ipaddr -- -i -l

	
salt.modules.file.group_to_gid(group)

	Convert the group to the gid on this system

	group
	group to convert to its gid

CLI Example:

salt '*' file.group_to_gid root

	
salt.modules.file.is_blkdev(name)

	Check if a file exists and is a block device.

CLI Example:

salt '*' file.is_blkdev /dev/blk

	
salt.modules.file.is_chrdev(name)

	Check if a file exists and is a character device.

CLI Example:

salt '*' file.is_chrdev /dev/chr

	
salt.modules.file.is_fifo(name)

	Check if a file exists and is a FIFO.

CLI Example:

salt '*' file.is_fifo /dev/fifo

	
salt.modules.file.is_hardlink(path)

	Check if the path is a hard link by verifying that the number of links
is larger than 1

CLI Example:

salt '*' file.is_hardlink /path/to/link

	
salt.modules.file.is_link(path)

	Check if the path is a symbolic link

CLI Example:

salt '*' file.is_link /path/to/link

	
salt.modules.file.join(*args)

	Return a normalized file system path for the underlying OS

New in version 2014.7.0.

This can be useful at the CLI but is frequently useful when scripting
combining path variables:

{% set www_root = '/var' %}
{% set app_dir = 'myapp' %}

myapp_config:
 file:
 - managed
 - name: {{ salt['file.join'](www_root, app_dir, 'config.yaml') }}

CLI Example:

salt '*' file.join '/' 'usr' 'local' 'bin'

	
salt.modules.file.lchown(path, user, group)

	Chown a file, pass the file the desired user and group without following
symlinks.

	path
	path to the file or directory

	user
	user owner

	group
	group owner

CLI Example:

salt '*' file.chown /etc/passwd root root

	
salt.modules.file.line(path, content=None, match=None, mode=None, location=None, before=None, after=None, show_changes=True, backup=False, quiet=False, indent=True)

	
New in version 2015.8.0.

Line-focused editing of a file.

Note

file.line exists for historic reasons, and is not
generally recommended. It has a lot of quirks. You may find
file.replace to be more suitable.

file.line is most useful if you have single lines in a file
(potentially a config file) that you would like to manage. It can
remove, add, and replace a single line at a time.

	path
	Filesystem path to the file to be edited.

	content
	Content of the line. Allowed to be empty if mode='delete'.

	match
	Match the target line for an action by
a fragment of a string or regular expression.

If neither before nor after are provided, and match
is also None, match falls back to the content value.

	mode
	Defines how to edit a line. One of the following options is
required:

	
	ensure
	If line does not exist, it will be added. If before
and after are specified either zero lines, or lines
that contain the content line are allowed to be in between
before and after. If there are lines, and none of
them match then it will produce an error.

	
	replace
	If line already exists, the entire line will be replaced.

	
	delete
	Delete the line, if found.

	
	insert
	Nearly identical to ensure. If a line does not exist,
it will be added.

The differences are that multiple (and non-matching) lines are
alloweed between before and after, if they are
specified. The line will always be inserted right before
before. insert also allows the use of location to
specify that the line should be added at the beginning or end of
the file.

Note

If mode='insert' is used, at least one of location,
before, or after is required. If location is used,
before and after are ignored.

	location
	In mode='insert' only, whether to place the content at the
beginning or end of a the file. If location is provided,
before and after are ignored. Valid locations:

	
	start
	Place the content at the beginning of the file.

	
	end
	Place the content at the end of the file.

	before
	Regular expression or an exact case-sensitive fragment of the string.
Will be tried as both a regex and a part of the line. Must
match exactly one line in the file. This value is only used in
ensure and insert modes. The content will be inserted just
before this line, with matching indentation unless indent=False.

	after
	Regular expression or an exact case-sensitive fragment of the string.
Will be tried as both a regex and a part of the line. Must
match exactly one line in the file. This value is only used in
ensure and insert modes. The content will be inserted
directly after this line, unless before is also provided. If
before is not provided, indentation will match this line, unless
indent=False.

	show_changes
	Output a unified diff of the old file and the new file.
If False return a boolean if any changes were made.
Default is True

Note

Using this option will store two copies of the file in-memory
(the original version and the edited version) in order to generate the diff.

	backup
	Create a backup of the original file with the extension:
"Year-Month-Day-Hour-Minutes-Seconds".

	quiet
	Do not raise any exceptions. E.g. ignore the fact that the file that is
tried to be edited does not exist and nothing really happened.

	indent
	Keep indentation with the previous line. This option is not considered when
the delete mode is specified. Default is True

CLI Example:

salt '*' file.line /etc/nsswitch.conf "networks: files dns" after="hosts:.*?" mode='ensure'

Note

If an equal sign (=) appears in an argument to a Salt command, it is
interpreted as a keyword argument in the format of key=val. That
processing can be bypassed in order to pass an equal sign through to the
remote shell command by manually specifying the kwarg:

salt '*' file.line /path/to/file content="CREATEMAIL_SPOOL=no" match="CREATE_MAIL_SPOOL=yes" mode="replace"

Examples:

Here's a simple config file.

[some_config]
Some config file
this line will go away

here=False
away=True
goodybe=away

salt * file.line /some/file.conf mode=delete match=away

This will produce:

[some_config]
Some config file

here=False
away=True
goodbye=away

If that command is executed 2 more times, this will be the result:

[some_config]
Some config file

here=False

If we reset the file to its original state and run

salt * file.line /some/file.conf mode=replace match=away content=here

Three passes will this state will result in this file:

[some_config]
Some config file
here

here=False
here
here

Each pass replacing the first line found.

Given this file:

insert after me
something
insert before me

The following command

salt * file.line /some/file.txt mode=insert after="insert after me" before="insert before me" content=thrice

If that command is executed 3 times, the result will be:

insert after me
something
thrice
thrice
thrice
insert before me

If the mode is ensure instead, it will fail each time. To succeed, we
need to remove the incorrect line between before and after:

insert after me
insert before me

With an ensure mode, this will insert thrice the first time and
make no changes for subsequent calls. For something simple this is
fine, but if you have instead blocks like this:

Begin SomeBlock
 foo = bar
End

Begin AnotherBlock
 another = value
End

And you try to use ensure this way:

salt * file.line /tmp/fun.txt mode="ensure" content="this = should be my content" after="Begin SomeBlock" before="End"

This will fail because there are multiple End lines. Without that
problem, it still would fail because there is a non-matching line,
foo = bar. Ensure only allows either zero, or the matching
line present to be present in between before and after.

	
salt.modules.file.link(src, path)

	
New in version 2014.1.0.

Create a hard link to a file

CLI Example:

salt '*' file.link /path/to/file /path/to/link

	
salt.modules.file.list_backup(path, limit=None)

	This function is an alias of list_backups.

New in version 0.17.0.

Lists the previous versions of a file backed up using Salt's file
state backup system.

	path
	The path on the minion to check for backups

	limit
	Limit the number of results to the most recent N backups

CLI Example:

salt '*' file.list_backups /foo/bar/baz.txt

	
salt.modules.file.list_backups(path, limit=None)

	
New in version 0.17.0.

Lists the previous versions of a file backed up using Salt's file
state backup system.

	path
	The path on the minion to check for backups

	limit
	Limit the number of results to the most recent N backups

CLI Example:

salt '*' file.list_backups /foo/bar/baz.txt

	
salt.modules.file.list_backups_dir(path, limit=None)

	Lists the previous versions of a directory backed up using Salt's file
state backup system.

	path
	The directory on the minion to check for backups

	limit
	Limit the number of results to the most recent N backups

CLI Example:

salt '*' file.list_backups_dir /foo/bar/baz/

	
salt.modules.file.lsattr(path)

	
New in version 2018.3.0.

Changed in version 2018.3.1: If lsattr is not installed on the system, None is returned.

Changed in version 2018.3.4: If on AIX, None is returned even if in filesystem as lsattr on AIX
is not the same thing as the linux version.

Obtain the modifiable attributes of the given file. If path
is to a directory, an empty list is returned.

	path
	path to file to obtain attributes of. File/directory must exist.

CLI Example:

salt '*' file.lsattr foo1.txt

	
salt.modules.file.lstat(path)

	
New in version 2014.1.0.

Returns the lstat attributes for the given file or dir. Does not support
symbolic links.

CLI Example:

salt '*' file.lstat /path/to/file

	
salt.modules.file.makedirs_(path, user=None, group=None, mode=None)

	Ensure that the directory containing this path is available.

Note

The path must end with a trailing slash otherwise the directory/directories
will be created up to the parent directory. For example if path is
/opt/code, then it would be treated as /opt/ but if the path
ends with a trailing slash like /opt/code/, then it would be
treated as /opt/code/.

CLI Example:

salt '*' file.makedirs /opt/code/

	
salt.modules.file.makedirs_perms(name, user=None, group=None, mode='0755')

	Taken and modified from os.makedirs to set user, group and mode for each
directory created.

CLI Example:

salt '*' file.makedirs_perms /opt/code

	
salt.modules.file.manage_file(name, sfn, ret, source, source_sum, user, group, mode, attrs, saltenv, backup, makedirs=False, template=None, show_changes=True, contents=None, dir_mode=None, follow_symlinks=True, skip_verify=False, keep_mode=False, encoding=None, encoding_errors='strict', seuser=None, serole=None, setype=None, serange=None, verify_ssl=True, use_etag=False, signature=None, source_hash_sig=None, signed_by_any=None, signed_by_all=None, keyring=None, gnupghome=None, **kwargs)

	Checks the destination against what was retrieved with get_managed and
makes the appropriate modifications (if necessary).

	name
	location to place the file

	sfn
	location of cached file on the minion

This is the path to the file stored on the minion. This file is placed
on the minion using cp.cache_file. If the hash sum of that file
matches the source_sum, we do not transfer the file to the minion
again.

This file is then grabbed and if it has template set, it renders the
file to be placed into the correct place on the system using
salt.files.utils.copyfile()

	ret
	The initial state return data structure. Pass in None to use the
default structure.

	source
	file reference on the master

	source_sum
	sum hash for source

	user
	user owner

	group
	group owner

	backup
	backup_mode

	attrs
	attributes to be set on file: '' means remove all of them

New in version 2018.3.0.

	makedirs
	make directories if they do not exist

	template
	format of templating

	show_changes
	Include diff in state return

	contents:
	contents to be placed in the file

	dir_mode
	mode for directories created with makedirs

	skip_verify: False
	If True, hash verification of remote file sources (http://,
https://, ftp://) will be skipped, and the source_hash
argument will be ignored.

New in version 2016.3.0.

	keep_mode: False
	If True, and the source is a file from the Salt fileserver (or
a local file on the minion), the mode of the destination file will be
set to the mode of the source file.

Note

keep_mode does not work with salt-ssh.

As a consequence of how the files are transferred to the minion, and
the inability to connect back to the master with salt-ssh, salt is
unable to stat the file as it exists on the fileserver and thus
cannot mirror the mode on the salt-ssh minion

	encoding
	If specified, then the specified encoding will be used. Otherwise, the
file will be encoded using the system locale (usually UTF-8). See
https://docs.python.org/3/library/codecs.html#standard-encodings for
the list of available encodings.

New in version 2017.7.0.

	encoding_errors: 'strict'
	Default is `'strict'`.
See https://docs.python.org/2/library/codecs.html#codec-base-classes
for the error handling schemes.

New in version 2017.7.0.

	seuser
	selinux user attribute

New in version 3001.

	serange
	selinux range attribute

New in version 3001.

	setype
	selinux type attribute

New in version 3001.

	serange
	selinux range attribute

New in version 3001.

	verify_ssl
	If False, remote https file sources (https://)
will not attempt to validate the servers certificate. Default is True.

New in version 3002.

	use_etag
	If True, remote http/https file sources will attempt to use the
ETag header to determine if the remote file needs to be downloaded.
This provides a lightweight mechanism for promptly refreshing files
changed on a web server without requiring a full hash comparison via
the source_hash parameter.

New in version 3005.

	signature
	Ensure a valid GPG signature exists on the selected source file.
Set this to true for inline signatures, or to a file URI retrievable
by :py:func:`cp.cache_file <salt.modules.cp.cache_file>
for a detached one.

Note

A signature is only enforced directly after caching the file,
before it is moved to its final destination. Existing target files
(with the correct checksum) will neither be checked nor deleted.

It will be enforced regardless of source type and will be
required on the final output, therefore this does not lend itself
well when templates are rendered.
The file will not be modified, meaning inline signatures are not
removed.

New in version 3007.0.

	source_hash_sig
	When source is a remote file source, source_hash is a file,
skip_verify is not true and use_etag is not true, ensure a
valid GPG signature exists on the source hash file.
Set this to true for an inline (clearsigned) signature, or to a
file URI retrievable by :py:func:`cp.cache_file <salt.modules.cp.cache_file>
for a detached one.

Note

A signature on the source_hash file is enforced regardless of
changes since its contents are used to check if an existing file
is in the correct state - but only for remote sources!
As for signature, existing target files will not be modified,
only the cached source_hash and source_hash_sig files will be removed.

New in version 3007.0.

	signed_by_any
	When verifying signatures either on the managed file or its source hash file,
require at least one valid signature from one of a list of key fingerprints.
This is passed to gpg.verify.

New in version 3007.0.

	signed_by_all
	When verifying signatures either on the managed file or its source hash file,
require a valid signature from each of the key fingerprints in this list.
This is passed to gpg.verify.

New in version 3007.0.

	keyring
	When verifying signatures, use this keyring.

New in version 3007.0.

	gnupghome
	When verifying signatures, use this GnuPG home.

New in version 3007.0.

CLI Example:

salt '*' file.manage_file /etc/httpd/conf.d/httpd.conf '' '{}' salt://http/httpd.conf '{hash_type: 'md5', 'hsum': <md5sum>}' root root '755' '' base ''

Changed in version 2014.7.0: follow_symlinks option added

	
salt.modules.file.mkdir(dir_path, user=None, group=None, mode=None)

	Ensure that a directory is available.

CLI Example:

salt '*' file.mkdir /opt/jetty/context

	
salt.modules.file.mknod(name, ntype, major=0, minor=0, user=None, group=None, mode='0600')

	
New in version 0.17.0.

Create a block device, character device, or fifo pipe.
Identical to the gnu mknod.

CLI Examples:

salt '*' file.mknod /dev/chr c 180 31
salt '*' file.mknod /dev/blk b 8 999
salt '*' file.nknod /dev/fifo p

	
salt.modules.file.mknod_blkdev(name, major, minor, user=None, group=None, mode='0660')

	
New in version 0.17.0.

Create a block device.

CLI Example:

salt '*' file.mknod_blkdev /dev/blk 8 999

	
salt.modules.file.mknod_chrdev(name, major, minor, user=None, group=None, mode='0660')

	
New in version 0.17.0.

Create a character device.

CLI Example:

salt '*' file.mknod_chrdev /dev/chr 180 31

	
salt.modules.file.mknod_fifo(name, user=None, group=None, mode='0660')

	
New in version 0.17.0.

Create a FIFO pipe.

CLI Example:

salt '*' file.mknod_fifo /dev/fifo

	
salt.modules.file.move(src, dst, disallow_copy_and_unlink=False)

	Move a file or directory

	disallow_copy_and_unlink
	If True, the operation is offloaded to the file.rename execution
module function. This will use os.rename underneath, which will fail
in the event that src and dst are on different filesystems. If
False (the default), shutil.move will be used in order to fall
back on a "copy then unlink" approach, which is required for moving
across filesystems.

New in version 3006.0.

CLI Example:

salt '*' file.move /path/to/src /path/to/dst

	
salt.modules.file.normpath(path)

	Returns Normalize path, eliminating double slashes, etc.

New in version 2015.5.0.

This can be useful at the CLI but is frequently useful when scripting.

{%- from salt['file.normpath'](tpldir + '/../vars.jinja') import parent_vars %}

CLI Example:

salt '*' file.normpath 'a/b/c/..'

	
salt.modules.file.open_files(by_pid=False)

	Return a list of all physical open files on the system.

CLI Examples:

salt '*' file.open_files
salt '*' file.open_files by_pid=True

	
salt.modules.file.pardir()

	Return the relative parent directory path symbol for underlying OS

New in version 2014.7.0.

This can be useful when constructing Salt Formulas.

{% set pardir = salt['file.pardir']() %}
{% set final_path = salt['file.join']('subdir', pardir, 'confdir') %}

CLI Example:

salt '*' file.pardir

	
salt.modules.file.patch(originalfile, patchfile, options='', dry_run=False)

	
New in version 0.10.4.

Apply a patch to a file or directory.

Equivalent to:

patch <options> -i <patchfile> <originalfile>

Or, when a directory is patched:

patch <options> -i <patchfile> -d <originalfile> -p0

	originalfile
	The full path to the file or directory to be patched

	patchfile
	A patch file to apply to originalfile

	options
	Options to pass to patch.

Note

Windows now supports using patch as of 3004.

In order to use this function in Windows, please install the
patch binary through your own means and ensure it's found
in the system Path. If installing through git-for-windows,
please select the optional "Use Git and optional Unix tools
from the Command Prompt" option when installing Git.

CLI Example:

salt '*' file.patch /opt/file.txt /tmp/file.txt.patch

salt '*' file.patch C:\file1.txt C:\file3.patch

	
salt.modules.file.path_exists_glob(path)

	Tests to see if path after expansion is a valid path (file or directory).
Expansion allows usage of ? * and character ranges []. Tilde expansion
is not supported. Returns True/False.

New in version 2014.7.0.

CLI Example:

salt '*' file.path_exists_glob /etc/pam*/pass*

	
salt.modules.file.prepend(path, *args, **kwargs)

	
New in version 2014.7.0.

Prepend text to the beginning of a file

	path
	path to file

	*args
	strings to prepend to the file

CLI Example:

salt '*' file.prepend /etc/motd \
 "With all thine offerings thou shalt offer salt." \
 "Salt is what makes things taste bad when it isn't in them."

Attention

If you need to pass a string to append and that string contains
an equal sign, you must include the argument name, args.
For example:

salt '*' file.prepend /etc/motd args='cheese=spam'

salt '*' file.prepend /etc/motd args="['cheese=spam','spam=cheese']"

	
salt.modules.file.psed(path, before, after, limit='', backup='.bak', flags='gMS', escape_all=False, multi=False)

	
Deprecated since version 0.17.0: Use replace() instead.

Make a simple edit to a file (pure Python version)

Equivalent to:

sed <backup> <options> "/<limit>/ s/<before>/<after>/<flags> <file>"

	path
	The full path to the file to be edited

	before
	A pattern to find in order to replace with after

	after
	Text that will replace before

	limit: ''
	An initial pattern to search for before searching for before

	backup: .bak
	The file will be backed up before edit with this file extension;
WARNING: each time sed/comment/uncomment is called will
overwrite this backup

	flags: gMS
	
	Flags to modify the search. Valid values are:
	
	g: Replace all occurrences of the pattern, not just the first.

	I: Ignore case.

	L: Make \w, \W, \b, \B, \s and \S
dependent on the locale.

	M: Treat multiple lines as a single line.

	S: Make . match all characters, including newlines.

	U: Make \w, \W, \b, \B, \d, \D,
\s and \S dependent on Unicode.

	X: Verbose (whitespace is ignored).

	multi: False
	If True, treat the entire file as a single line

Forward slashes and single quotes will be escaped automatically in the
before and after patterns.

CLI Example:

salt '*' file.sed /etc/httpd/httpd.conf 'LogLevel warn' 'LogLevel info'

	
salt.modules.file.read(path, binary=False)

	
New in version 2017.7.0.

Return the content of the file.

	Parameters:

	binary (bool [https://docs.python.org/3/library/functions.html#bool]) -- Whether to read and return binary data

CLI Example:

salt '*' file.read /path/to/file

	
salt.modules.file.readdir(path)

	
New in version 2014.1.0.

Return a list containing the contents of a directory

CLI Example:

salt '*' file.readdir /path/to/dir/

	
salt.modules.file.readlink(path, canonicalize=False)

	
New in version 2014.1.0.

Return the path that a symlink points to

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the symlink

	canonicalize (bool [https://docs.python.org/3/library/functions.html#bool]) -- Get the canonical path eliminating any symbolic links encountered in
the path

	Returns:

	The path that the symlink points to

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises:

	
	SaltInvocationError -- path is not absolute

	SaltInvocationError -- path is not a link

	CommandExecutionError -- error reading the symbolic link

CLI Example:

salt '*' file.readlink /path/to/link

	
salt.modules.file.remove(path, **kwargs)

	Remove the named file. If a directory is supplied, it will be recursively
deleted.

CLI Example:

salt '*' file.remove /tmp/foo

Changed in version 3000: The method now works on all types of file system entries, not just
files, directories and symlinks.

	
salt.modules.file.remove_backup(path, backup_id)

	This function is an alias of delete_backup.

New in version 0.17.0.

Delete a previous version of a file that was backed up using Salt's
file state backup system.

	path
	The path on the minion to check for backups

	backup_id
	The numeric id for the backup you wish to delete, as found using
file.list_backups

CLI Example:

salt '*' file.delete_backup /var/cache/salt/minion/file_backup/home/foo/bar/baz.txt 0

	
salt.modules.file.rename(src, dst)

	Rename a file or directory

CLI Example:

salt '*' file.rename /path/to/src /path/to/dst

	
salt.modules.file.replace(path, pattern, repl, count=0, flags=8, bufsize=1, append_if_not_found=False, prepend_if_not_found=False, not_found_content=None, backup='.bak', dry_run=False, search_only=False, show_changes=True, ignore_if_missing=False, preserve_inode=True, backslash_literal=False)

	
New in version 0.17.0.

Replace occurrences of a pattern in a file. If show_changes is
True, then a diff of what changed will be returned, otherwise a
True will be returned when changes are made, and False when
no changes are made.

This is a pure Python implementation that wraps Python's sub() [https://docs.python.org/3/library/re.html#re.sub].

	path
	Filesystem path to the file to be edited. If a symlink is specified, it
will be resolved to its target.

	pattern
	A regular expression, to be matched using Python's
search() [https://docs.python.org/3/library/re.html#re.search].

	repl
	The replacement text

	count: 0
	Maximum number of pattern occurrences to be replaced. If count is a
positive integer n, only n occurrences will be replaced,
otherwise all occurrences will be replaced.

	flags (list or int)
	A list of flags defined in the re module documentation from the
Python standard library. Each list item should be a string that will
correlate to the human-friendly flag name. E.g., ['IGNORECASE',
'MULTILINE']. Optionally, flags may be an int, with a value
corresponding to the XOR (|) of all the desired flags. Defaults to
8 (which supports 'MULTILINE').

	bufsize (int or str)
	How much of the file to buffer into memory at once. The
default value 1 processes one line at a time. The special value
file may be specified which will read the entire file into memory
before processing.

	append_if_not_found: False
	
New in version 2014.7.0.

If set to True, and pattern is not found, then the content will be
appended to the file.

	prepend_if_not_found: False
	
New in version 2014.7.0.

If set to True and pattern is not found, then the content will be
prepended to the file.

	not_found_content
	
New in version 2014.7.0.

Content to use for append/prepend if not found. If None (default), uses
repl. Useful when repl uses references to group in pattern.

	backup: .bak
	The file extension to use for a backup of the file before editing. Set
to False to skip making a backup.

	dry_run: False
	If set to True, no changes will be made to the file, the function
will just return the changes that would have been made (or a
True/False value if show_changes is set to False).

	search_only: False
	If set to true, this no changes will be performed on the file, and this
function will simply return True if the pattern was matched, and
False if not.

	show_changes: True
	If True, return a diff of changes made. Otherwise, return True
if changes were made, and False if not.

Note

Using this option will store two copies of the file in memory (the
original version and the edited version) in order to generate the
diff. This may not normally be a concern, but could impact
performance if used with large files.

	ignore_if_missing: False
	
New in version 2015.8.0.

If set to True, this function will simply return False
if the file doesn't exist. Otherwise, an error will be thrown.

	preserve_inode: True
	
New in version 2015.8.0.

Preserve the inode of the file, so that any hard links continue to
share the inode with the original filename. This works by copying the
file, reading from the copy, and writing to the file at the original
inode. If False, the file will be moved rather than copied, and a
new file will be written to a new inode, but using the original
filename. Hard links will then share an inode with the backup, instead
(if using backup to create a backup copy).

	backslash_literal: False
	
New in version 2016.11.7.

Interpret backslashes as literal backslashes for the repl and not
escape characters. This will help when using append/prepend so that
the backslashes are not interpreted for the repl on the second run of
the state.

If an equal sign (=) appears in an argument to a Salt command it is
interpreted as a keyword argument in the format key=val. That
processing can be bypassed in order to pass an equal sign through to the
remote shell command by manually specifying the kwarg:

salt '*' file.replace /path/to/file pattern='=' repl=':'
salt '*' file.replace /path/to/file pattern="bind-address\s*=" repl='bind-address:'

CLI Examples:

salt '*' file.replace /etc/httpd/httpd.conf pattern='LogLevel warn' repl='LogLevel info'
salt '*' file.replace /some/file pattern='before' repl='after' flags='[MULTILINE, IGNORECASE]'

	
salt.modules.file.restore_backup(path, backup_id)

	
New in version 0.17.0.

Restore a previous version of a file that was backed up using Salt's
file state backup system.

	path
	The path on the minion to check for backups

	backup_id
	The numeric id for the backup you wish to restore, as found using
file.list_backups

CLI Example:

salt '*' file.restore_backup /foo/bar/baz.txt 0

	
salt.modules.file.restorecon(path, recursive=False)

	Reset the SELinux context on a given path

CLI Example:

salt '*' file.restorecon /home/user/.ssh/authorized_keys

	
salt.modules.file.rmdir(path, recurse=False, verbose=False, older_than=None)

	
New in version 2014.1.0.

Changed in version 3006.0: Changed return value for failure to a boolean.

Remove the specified directory. Fails if a directory is not empty.

	recurse
	When recurse is set to True, all empty directories
within the path are pruned.

New in version 3006.0.

	verbose
	When verbose is set to True, a dictionary is returned
which contains more information about the removal process.

New in version 3006.0.

	older_than
	When older_than is set to a number, it is used to determine the
number of days which must have passed since the last modification
timestamp before a directory will be allowed to be removed. Setting
the value to 0 is equivalent to leaving it at the default of None.

New in version 3006.0.

CLI Example:

salt '*' file.rmdir /tmp/foo/

	
salt.modules.file.search(path, pattern, flags=8, bufsize=1, ignore_if_missing=False, multiline=False)

	
New in version 0.17.0.

Search for occurrences of a pattern in a file

Except for multiline, params are identical to
replace().

	multiline
	If true, inserts 'MULTILINE' into flags and sets bufsize to
'file'.

New in version 2015.8.0.

CLI Example:

salt '*' file.search /etc/crontab 'mymaintenance.sh'

	
salt.modules.file.sed(path, before, after, limit='', backup='.bak', options='-r -e', flags='g', escape_all=False, negate_match=False)

	
Deprecated since version 0.17.0: Use replace() instead.

Make a simple edit to a file

Equivalent to:

sed <backup> <options> "/<limit>/ s/<before>/<after>/<flags> <file>"

	path
	The full path to the file to be edited

	before
	A pattern to find in order to replace with after

	after
	Text that will replace before

	limit: ''
	An initial pattern to search for before searching for before

	backup: .bak
	The file will be backed up before edit with this file extension;
WARNING: each time sed/comment/uncomment is called will
overwrite this backup

	options: -r -e
	Options to pass to sed

	flags: g
	Flags to modify the sed search; e.g., i for case-insensitive pattern
matching

	negate_match: False
	Negate the search command (!)

New in version 0.17.0.

Forward slashes and single quotes will be escaped automatically in the
before and after patterns.

CLI Example:

salt '*' file.sed /etc/httpd/httpd.conf 'LogLevel warn' 'LogLevel info'

	
salt.modules.file.sed_contains(path, text, limit='', flags='g')

	
Deprecated since version 0.17.0: Use search() instead.

Return True if the file at path contains text. Utilizes sed to
perform the search (line-wise search).

Note: the p flag will be added to any flags you pass in.

CLI Example:

salt '*' file.contains /etc/crontab 'mymaintenance.sh'

	
salt.modules.file.seek_read(path, size, offset)

	
New in version 2014.1.0.

Seek to a position on a file and read it

	path
	path to file

	seek
	amount to read at once

	offset
	offset to start into the file

CLI Example:

salt '*' file.seek_read /path/to/file 4096 0

	
salt.modules.file.seek_write(path, data, offset)

	
New in version 2014.1.0.

Seek to a position on a file and write to it

	path
	path to file

	data
	data to write to file

	offset
	position in file to start writing

CLI Example:

salt '*' file.seek_write /path/to/file 'some data' 4096

	
salt.modules.file.set_mode(path, mode)

	Set the mode of a file

	path
	file or directory of which to set the mode

	mode
	mode to set the path to

CLI Example:

salt '*' file.set_mode /etc/passwd 0644

	
salt.modules.file.set_selinux_context(path, user=None, role=None, type=None, range=None, persist=False)

	
Changed in version 3001: Added persist option

Set a specific SELinux label on a given path

CLI Example:

salt '*' file.set_selinux_context path <user> <role> <type> <range>
salt '*' file.set_selinux_context /etc/yum.repos.d/epel.repo system_u object_r system_conf_t s0

	
salt.modules.file.source_list(source, source_hash, saltenv)

	Check the source list and return the source to use

CLI Example:

salt '*' file.source_list salt://http/httpd.conf '{hash_type: 'md5', 'hsum': <md5sum>}' base

	
salt.modules.file.stats(path, hash_type=None, follow_symlinks=True)

	Return a dict containing the stats for a given file

CLI Example:

salt '*' file.stats /etc/passwd

	
salt.modules.file.statvfs(path)

	
New in version 2014.1.0.

Perform a statvfs call against the filesystem that the file resides on

CLI Example:

salt '*' file.statvfs /path/to/file

	
salt.modules.file.symlink(src, path, force=False, atomic=False, follow_symlinks=True)

	Create a symbolic link (symlink, soft link) to a file

	Parameters:

	
	src (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to a file or directory

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the link. Must be an absolute path

	force (bool [https://docs.python.org/3/library/functions.html#bool]) -- Overwrite an existing symlink with the same name
.. versionadded:: 3005

	atomic (bool [https://docs.python.org/3/library/functions.html#bool]) -- Use atomic file operations to create the symlink
.. versionadded:: 3006.0

	follow_symlinks (bool [https://docs.python.org/3/library/functions.html#bool]) -- If set to False, use os.path.lexists() for existence checks
instead of os.path.exists().
.. versionadded:: 3007.0

	Returns:

	True if successful, otherwise raises CommandExecutionError

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' file.symlink /path/to/file /path/to/link

	
salt.modules.file.touch(name, atime=None, mtime=None)

	
New in version 0.9.5.

Just like the touch command, create a file if it doesn't exist or
simply update the atime and mtime if it already does.

	atime:
	Access time in Unix epoch time. Set it to 0 to set atime of the
file with Unix date of birth. If this parameter isn't set, atime
will be set with current time.

	mtime:
	Last modification in Unix epoch time. Set it to 0 to set mtime of
the file with Unix date of birth. If this parameter isn't set,
mtime will be set with current time.

CLI Example:

salt '*' file.touch /var/log/emptyfile

	
salt.modules.file.truncate(path, length)

	
New in version 2014.1.0.

Seek to a position on a file and delete everything after that point

	path
	path to file

	length
	offset into file to truncate

CLI Example:

salt '*' file.truncate /path/to/file 512

	
salt.modules.file.uid_to_user(uid)

	Convert a uid to a user name

	uid
	uid to convert to a username

CLI Example:

salt '*' file.uid_to_user 0

	
salt.modules.file.uncomment(path, regex, char='#', backup='.bak')

	
Deprecated since version 0.17.0: Use replace() instead.

Uncomment specified commented lines in a file

	path
	The full path to the file to be edited

	regex
	A regular expression used to find the lines that are to be uncommented.
This regex should not include the comment character. A leading ^
character will be stripped for convenience (for easily switching
between comment() and uncomment()).

	char: #
	The character to remove in order to uncomment a line

	backup: .bak
	The file will be backed up before edit with this file extension;
WARNING: each time sed/comment/uncomment is called will
overwrite this backup

CLI Example:

salt '*' file.uncomment /etc/hosts.deny 'ALL: PARANOID'

	
salt.modules.file.user_to_uid(user)

	Convert user name to a uid

	user
	user name to convert to its uid

CLI Example:

salt '*' file.user_to_uid root

	
salt.modules.file.write(path, *args, **kwargs)

	
New in version 2014.7.0.

Write text to a file, overwriting any existing contents.

	path
	path to file

	*args
	strings to write to the file

CLI Example:

salt '*' file.write /etc/motd \
 "With all thine offerings thou shalt offer salt."

Attention

If you need to pass a string to append and that string contains
an equal sign, you must include the argument name, args.
For example:

salt '*' file.write /etc/motd args='cheese=spam'

salt '*' file.write /etc/motd args="['cheese=spam','spam=cheese']"

salt.modules.firewalld

Support for firewalld.

New in version 2015.2.0.

	
salt.modules.firewalld.add_interface(zone, interface, permanent=True)

	Bind an interface to a zone

New in version 2016.3.0.

CLI Example:

salt '*' firewalld.add_interface zone eth0

	
salt.modules.firewalld.add_masquerade(zone=None, permanent=True)

	Enable masquerade on a zone.
If zone is omitted, default zone will be used.

New in version 2015.8.0.

CLI Example:

salt '*' firewalld.add_masquerade

To enable masquerade on a specific zone

salt '*' firewalld.add_masquerade dmz

	
salt.modules.firewalld.add_port(zone, port, permanent=True, force_masquerade=False)

	Allow specific ports in a zone.

New in version 2015.8.0.

CLI Example:

salt '*' firewalld.add_port internal 443/tcp

	force_masquerade
	when a zone is created ensure masquerade is also enabled
on that zone.

	
salt.modules.firewalld.add_port_fwd(zone, src, dest, proto='tcp', dstaddr='', permanent=True, force_masquerade=False)

	Add port forwarding.

New in version 2015.8.0.

CLI Example:

salt '*' firewalld.add_port_fwd public 80 443 tcp

	force_masquerade
	when a zone is created ensure masquerade is also enabled
on that zone.

	
salt.modules.firewalld.add_rich_rule(zone, rule, permanent=True)

	Add a rich rule to a zone

New in version 2016.11.0.

CLI Example:

salt '*' firewalld.add_rich_rule zone 'rule'

	
salt.modules.firewalld.add_service(service, zone=None, permanent=True)

	Add a service for zone. If zone is omitted, default zone will be used.

CLI Example:

salt '*' firewalld.add_service ssh

To assign a service to a specific zone:

salt '*' firewalld.add_service ssh my_zone

	
salt.modules.firewalld.add_service_port(service, port)

	Add a new port to the specified service.

New in version 2016.11.0.

CLI Example:

salt '*' firewalld.add_service_port zone 80

	
salt.modules.firewalld.add_service_protocol(service, protocol)

	Add a new protocol to the specified service.

New in version 2016.11.0.

CLI Example:

salt '*' firewalld.add_service_protocol zone ssh

	
salt.modules.firewalld.add_source(zone, source, permanent=True)

	Bind a source to a zone

New in version 2016.3.0.

CLI Example:

salt '*' firewalld.add_source zone 192.168.1.0/24

	
salt.modules.firewalld.allow_icmp(zone, icmp, permanent=True)

	Allow a specific ICMP type on a zone

New in version 2015.8.0.

CLI Example:

salt '*' firewalld.allow_icmp zone echo-reply

	
salt.modules.firewalld.block_icmp(zone, icmp, permanent=True)

	Block a specific ICMP type on a zone

New in version 2015.8.0.

CLI Example:

salt '*' firewalld.block_icmp zone echo-reply

	
salt.modules.firewalld.default_zone()

	Print default zone for connections and interfaces

CLI Example:

salt '*' firewalld.default_zone

	
salt.modules.firewalld.delete_service(name, restart=True)

	Delete an existing service

CLI Example:

salt '*' firewalld.delete_service my_service

By default firewalld will be reloaded. However, to avoid reloading
you need to specify the restart as False

salt '*' firewalld.delete_service my_service False

	
salt.modules.firewalld.delete_zone(zone, restart=True)

	Delete an existing zone

CLI Example:

salt '*' firewalld.delete_zone my_zone

By default firewalld will be reloaded. However, to avoid reloading
you need to specify the restart as False

salt '*' firewalld.delete_zone my_zone False

	
salt.modules.firewalld.get_icmp_types(permanent=True)

	Print predefined icmptypes

CLI Example:

salt '*' firewalld.get_icmp_types

	
salt.modules.firewalld.get_interfaces(zone, permanent=True)

	List interfaces bound to a zone

New in version 2016.3.0.

CLI Example:

salt '*' firewalld.get_interfaces zone

	
salt.modules.firewalld.get_masquerade(zone=None, permanent=True)

	Show if masquerading is enabled on a zone.
If zone is omitted, default zone will be used.

CLI Example:

salt '*' firewalld.get_masquerade zone

	
salt.modules.firewalld.get_rich_rules(zone, permanent=True)

	List rich rules bound to a zone

New in version 2016.11.0.

CLI Example:

salt '*' firewalld.get_rich_rules zone

	
salt.modules.firewalld.get_service_ports(service)

	List ports of a service.

New in version 2016.11.0.

CLI Example:

salt '*' firewalld.get_service_ports zone

	
salt.modules.firewalld.get_service_protocols(service)

	List protocols of a service.

New in version 2016.11.0.

CLI Example:

salt '*' firewalld.get_service_protocols zone

	
salt.modules.firewalld.get_services(permanent=True)

	Print predefined services

CLI Example:

salt '*' firewalld.get_services

	
salt.modules.firewalld.get_sources(zone, permanent=True)

	List sources bound to a zone

New in version 2016.3.0.

CLI Example:

salt '*' firewalld.get_sources zone

	
salt.modules.firewalld.get_zones(permanent=True)

	Print predefined zones

CLI Example:

salt '*' firewalld.get_zones

	
salt.modules.firewalld.list_all(zone=None, permanent=True)

	List everything added for or enabled in a zone

CLI Example:

salt '*' firewalld.list_all

List a specific zone

salt '*' firewalld.list_all my_zone

	
salt.modules.firewalld.list_icmp_block(zone, permanent=True)

	List ICMP blocks on a zone

New in version 2015.8.0.

CLI Example:

salt '*' firewlld.list_icmp_block zone

	
salt.modules.firewalld.list_port_fwd(zone, permanent=True)

	List port forwarding

New in version 2015.8.0.

CLI Example:

salt '*' firewalld.list_port_fwd public

	
salt.modules.firewalld.list_ports(zone, permanent=True)

	List all ports in a zone.

New in version 2015.8.0.

CLI Example:

salt '*' firewalld.list_ports

	
salt.modules.firewalld.list_services(zone=None, permanent=True)

	List services added for zone as a space separated list.
If zone is omitted, default zone will be used.

CLI Example:

salt '*' firewalld.list_services

List a specific zone

salt '*' firewalld.list_services my_zone

	
salt.modules.firewalld.list_zones(permanent=True)

	List everything added for or enabled in all zones

CLI Example:

salt '*' firewalld.list_zones

	
salt.modules.firewalld.make_permanent()

	Make current runtime configuration permanent.

New in version 2016.3.0.

CLI Example:

salt '*' firewalld.make_permanent

	
salt.modules.firewalld.new_service(name, restart=True)

	Add a new service

CLI Example:

salt '*' firewalld.new_service my_service

By default firewalld will be reloaded. However, to avoid reloading
you need to specify the restart as False

salt '*' firewalld.new_service my_service False

	
salt.modules.firewalld.new_zone(zone, restart=True)

	Add a new zone

CLI Example:

salt '*' firewalld.new_zone my_zone

By default firewalld will be reloaded. However, to avoid reloading
you need to specify the restart as False

salt '*' firewalld.new_zone my_zone False

	
salt.modules.firewalld.reload_rules()

	Reload the firewall rules, which makes the permanent configuration the new
runtime configuration without losing state information.

New in version 2016.11.0.

CLI Example:

salt '*' firewalld.reload_rules

	
salt.modules.firewalld.remove_interface(zone, interface, permanent=True)

	Remove an interface bound to a zone

New in version 2016.3.0.

CLI Example:

salt '*' firewalld.remove_interface zone eth0

	
salt.modules.firewalld.remove_masquerade(zone=None, permanent=True)

	Remove masquerade on a zone.
If zone is omitted, default zone will be used.

New in version 2015.8.0.

CLI Example:

salt '*' firewalld.remove_masquerade

To remove masquerade on a specific zone

salt '*' firewalld.remove_masquerade dmz

	
salt.modules.firewalld.remove_port(zone, port, permanent=True)

	Remove a specific port from a zone.

New in version 2015.8.0.

CLI Example:

salt '*' firewalld.remove_port internal 443/tcp

	
salt.modules.firewalld.remove_port_fwd(zone, src, dest, proto='tcp', dstaddr='', permanent=True)

	Remove Port Forwarding.

New in version 2015.8.0.

CLI Example:

salt '*' firewalld.remove_port_fwd public 80 443 tcp

	
salt.modules.firewalld.remove_rich_rule(zone, rule, permanent=True)

	Add a rich rule to a zone

New in version 2016.11.0.

CLI Example:

salt '*' firewalld.remove_rich_rule zone 'rule'

	
salt.modules.firewalld.remove_service(service, zone=None, permanent=True)

	Remove a service from zone. This option can be specified multiple times.
If zone is omitted, default zone will be used.

CLI Example:

salt '*' firewalld.remove_service ssh

To remove a service from a specific zone

salt '*' firewalld.remove_service ssh dmz

	
salt.modules.firewalld.remove_service_port(service, port)

	Remove a port from the specified service.

New in version 2016.11.0.

CLI Example:

salt '*' firewalld.remove_service_port zone 80

	
salt.modules.firewalld.remove_service_protocol(service, protocol)

	Remove a protocol from the specified service.

New in version 2016.11.0.

CLI Example:

salt '*' firewalld.remove_service_protocol zone ssh

	
salt.modules.firewalld.remove_source(zone, source, permanent=True)

	Remove a source bound to a zone

New in version 2016.3.0.

CLI Example:

salt '*' firewalld.remove_source zone 192.168.1.0/24

	
salt.modules.firewalld.set_default_zone(zone)

	Set default zone

CLI Example:

salt '*' firewalld.set_default_zone damian

	
salt.modules.firewalld.version()

	Return version from firewall-cmd

CLI Example:

salt '*' firewalld.version

salt.modules.freebsd_sysctl

Module for viewing and modifying sysctl parameters

	
salt.modules.freebsd_sysctl.assign(name, value)

	Assign a single sysctl parameter for this minion

CLI Example:

salt '*' sysctl.assign net.inet.icmp.icmplim 50

	
salt.modules.freebsd_sysctl.get(name)

	Return a single sysctl parameter for this minion

CLI Example:

salt '*' sysctl.get hw.physmem

	
salt.modules.freebsd_sysctl.persist(name, value, config='/etc/sysctl.conf')

	Assign and persist a simple sysctl parameter for this minion

CLI Example:

salt '*' sysctl.persist net.inet.icmp.icmplim 50
salt '*' sysctl.persist coretemp_load NO config=/boot/loader.conf

	
salt.modules.freebsd_sysctl.show(config_file=False)

	Return a list of sysctl parameters for this minion

	config: Pull the data from the system configuration file
	instead of the live data.

CLI Example:

salt '*' sysctl.show

salt.modules.freebsd_update

Support for freebsd-update utility on FreeBSD.

New in version 2017.7.0.

	maintainer:

	George Mamalakis <mamalos@gmail.com>

	maturity:

	new

	platform:

	FreeBSD

	
salt.modules.freebsd_update.fetch(**kwargs)

	
New in version 2016.3.4.

freebsd-update fetch wrapper. Based on the currently installed world and the
configuration options set, fetch all available binary updates.

	kwargs:
	Parameters of freebsd-update command.

	
salt.modules.freebsd_update.ids(**kwargs)

	
New in version 2016.3.4.

freebsd-update IDS wrapper function. Compares the system against a "known
good" index of the installed release.

	kwargs:
	Parameters of freebsd-update command.

	
salt.modules.freebsd_update.install(**kwargs)

	
New in version 2016.3.4.

freebsd-update install wrapper. Install the most recently fetched updates or
upgrade.

	kwargs:
	Parameters of freebsd-update command.

	
salt.modules.freebsd_update.rollback(**kwargs)

	
New in version 2016.3.4.

freebsd-update rollback wrapper. Uninstalls the most recently installed
updates.

	kwargs:
	Parameters of freebsd-update command.

	
salt.modules.freebsd_update.update(**kwargs)

	
New in version 2016.3.4.

Command that simplifies freebsd-update by running freebsd-update fetch first
and then freebsd-update install.

	kwargs:
	Parameters of freebsd-update command.

	
salt.modules.freebsd_update.upgrade(**kwargs)

	
New in version 2016.3.4.

Dummy function used only to print a message that upgrade is not available.
The reason is that upgrade needs manual intervention and reboot, so even if
used with:

yes | freebsd-upgrade -r VERSION

the additional freebsd-update install that needs to run after the reboot
cannot be implemented easily.

	kwargs:
	Parameters of freebsd-update command.

salt.modules.freebsdjail

The jail module for FreeBSD

	
salt.modules.freebsdjail.fstab(jail)

	Display contents of a fstab(5) file defined in specified
jail's configuration. If no file is defined, return False.

CLI Example:

salt '*' jail.fstab <jail name>

	
salt.modules.freebsdjail.get_enabled()

	Return which jails are set to be run

CLI Example:

salt '*' jail.get_enabled

	
salt.modules.freebsdjail.is_enabled()

	See if jail service is actually enabled on boot

CLI Example:

salt '*' jail.is_enabled <jail name>

	
salt.modules.freebsdjail.restart(jail='')

	Restart the specified jail or all, if none specified

CLI Example:

salt '*' jail.restart [<jail name>]

	
salt.modules.freebsdjail.show_config(jail)

	Display specified jail's configuration

CLI Example:

salt '*' jail.show_config <jail name>

	
salt.modules.freebsdjail.start(jail='')

	Start the specified jail or all, if none specified

CLI Example:

salt '*' jail.start [<jail name>]

	
salt.modules.freebsdjail.status(jail)

	See if specified jail is currently running

CLI Example:

salt '*' jail.status <jail name>

	
salt.modules.freebsdjail.stop(jail='')

	Stop the specified jail or all, if none specified

CLI Example:

salt '*' jail.stop [<jail name>]

	
salt.modules.freebsdjail.sysctl()

	Dump all jail related kernel states (sysctl)

CLI Example:

salt '*' jail.sysctl

salt.modules.freebsdkmod

Module to manage FreeBSD kernel modules

	
salt.modules.freebsdkmod.available()

	Return a list of all available kernel modules

CLI Example:

salt '*' kmod.available

	
salt.modules.freebsdkmod.check_available(mod)

	Check to see if the specified kernel module is available

CLI Example:

salt '*' kmod.check_available vmm

	
salt.modules.freebsdkmod.is_loaded(mod)

	Check to see if the specified kernel module is loaded

CLI Example:

salt '*' kmod.is_loaded vmm

	
salt.modules.freebsdkmod.load(mod, persist=False)

	Load the specified kernel module

	mod
	Name of the module to add

	persist
	Write the module to sysrc kld_modules to make it load on system reboot

CLI Example:

salt '*' kmod.load bhyve

	
salt.modules.freebsdkmod.lsmod()

	Return a dict containing information about currently loaded modules

CLI Example:

salt '*' kmod.lsmod

	
salt.modules.freebsdkmod.mod_list(only_persist=False)

	Return a list of the loaded module names

CLI Example:

salt '*' kmod.mod_list

	
salt.modules.freebsdkmod.remove(mod, persist=False, comment=True)

	Remove the specified kernel module

	mod
	Name of module to remove

	persist
	Also remove module from /boot/loader.conf

	comment
	If persist is set don't remove line from /boot/loader.conf but only
comment it

CLI Example:

salt '*' kmod.remove vmm

salt.modules.freebsdpkg

Remote package support using pkg_add(1)

Important

If you feel that Salt should be using this module to manage packages on a
minion, and it is using a different module (or gives an error similar to
'pkg.install' is not available), see here.

Warning

This module has been completely rewritten. Up to and including version
0.17.0, it supported pkg_add(1), but checked for the existence of a
pkgng local database and, if found, would provide some of pkgng's
functionality. The rewrite of this module has removed all pkgng support,
and moved it to the pkgng execution module. For
versions <= 0.17.0, the documentation here should not be considered
accurate. If your Minion is running one of these versions, then the
documentation for this module can be viewed using the sys.doc function:

salt bsdminion sys.doc pkg

This module acts as the default package provider for FreeBSD 9 and older. If
you need to use pkgng on a FreeBSD 9 system, you will need to override the
pkg provider by setting the providers parameter in your
Minion config file, in order to use pkgng.

providers:
 pkg: pkgng

More information on pkgng support can be found in the documentation for the
pkgng module.

This module will respect the PACKAGEROOT and PACKAGESITE environment
variables, if set, but these values can also be overridden in several ways:

	Salt configuration parameters. The configuration parameters
freebsdpkg.PACKAGEROOT and freebsdpkg.PACKAGESITE are recognized.
These config parameters are looked up using config.get and can thus be specified in the Master config
file, Grains, Pillar, or in the Minion config file. Example:

freebsdpkg.PACKAGEROOT: ftp://ftp.freebsd.org/
freebsdpkg.PACKAGESITE: ftp://ftp.freebsd.org/pub/FreeBSD/ports/ia64/packages-9-stable/Latest/

	CLI arguments. Both the packageroot (used interchangeably with
fromrepo for API compatibility) and packagesite CLI arguments are
recognized, and override their config counterparts from section 1 above.

 salt -G 'os:FreeBSD' pkg.install zsh fromrepo=ftp://ftp2.freebsd.org/
 salt -G 'os:FreeBSD' pkg.install zsh packageroot=ftp://ftp2.freebsd.org/
 salt -G 'os:FreeBSD' pkg.install zsh packagesite=ftp://ftp2.freebsd.org/pub/FreeBSD/ports/ia64/packages-9-stable/Latest/

.. note::

 These arguments can also be passed through in states:

 .. code-block:: yaml

 zsh:
 pkg.installed:
 - fromrepo: ftp://ftp2.freebsd.org/

	
salt.modules.freebsdpkg.available_version(*names, **kwargs)

	This function is an alias of latest_version.

pkg_add(1) is not capable of querying for remote packages, so this
function will always return results as if there is no package available for
install or upgrade.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	
salt.modules.freebsdpkg.delete(name=None, pkgs=None, **kwargs)

	This function is an alias of remove.

Remove packages using pkg_delete(1)

	name
	The name of the package to be deleted.

Multiple Package Options:

	pkgs
	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.freebsdpkg.file_dict(*packages, **kwargs)

	List the files that belong to a package, grouped by package. Not
specifying any packages will return a list of _every_ file on the
system's package database (not generally recommended).

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

	
salt.modules.freebsdpkg.file_list(*packages, **kwargs)

	List the files that belong to a package. Not specifying any packages will
return a list of _every_ file on the system's package database (not
generally recommended).

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

	
salt.modules.freebsdpkg.install(name=None, refresh=False, fromrepo=None, pkgs=None, sources=None, **kwargs)

	Install package(s) using pkg_add(1)

	name
	The name of the package to be installed.

	refresh
	Whether or not to refresh the package database before installing.

	fromrepo or packageroot
	Specify a package repository from which to install. Overrides the
system default, as well as the PACKAGEROOT environment variable.

	packagesite
	Specify the exact directory from which to install the remote package.
Overrides the PACKAGESITE environment variable, if present.

Multiple Package Installation Options:

	pkgs
	A list of packages to install from a software repository. Must be
passed as a python list.

CLI Example:

salt '*' pkg.install pkgs='["foo", "bar"]'

	sources
	A list of packages to install. Must be passed as a list of dicts,
with the keys being package names, and the values being the source URI
or local path to the package.

CLI Example:

salt '*' pkg.install sources='[{"foo": "salt://foo.deb"}, {"bar": "salt://bar.deb"}]'

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.install <package name>

	
salt.modules.freebsdpkg.latest_version(*names, **kwargs)

	pkg_add(1) is not capable of querying for remote packages, so this
function will always return results as if there is no package available for
install or upgrade.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	
salt.modules.freebsdpkg.list_pkgs(versions_as_list=False, with_origin=False, **kwargs)

	List the packages currently installed as a dict:

{'<package_name>': '<version>'}

	with_originFalse
	Return a nested dictionary containing both the origin name and version
for each installed package.

New in version 2014.1.0.

CLI Example:

salt '*' pkg.list_pkgs

	
salt.modules.freebsdpkg.purge(name=None, pkgs=None, **kwargs)

	This function is an alias of remove.

Remove packages using pkg_delete(1)

	name
	The name of the package to be deleted.

Multiple Package Options:

	pkgs
	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.freebsdpkg.refresh_db(**kwargs)

	pkg_add(1) does not use a local database of available packages, so this
function simply returns True. it exists merely for API compatibility.

CLI Example:

salt '*' pkg.refresh_db

	
salt.modules.freebsdpkg.remove(name=None, pkgs=None, **kwargs)

	Remove packages using pkg_delete(1)

	name
	The name of the package to be deleted.

Multiple Package Options:

	pkgs
	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.freebsdpkg.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

	with_originFalse
	Return a nested dictionary containing both the origin name and version
for each specified package.

New in version 2014.1.0.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

salt.modules.freebsdports

Install software from the FreeBSD ports(7) system

New in version 2014.1.0.

This module allows you to install ports using BATCH=yes to bypass
configuration prompts. It is recommended to use the ports state to install ports, but it is also possible to use
this module exclusively from the command line.

salt minion-id ports.config security/nmap IPV6=off
salt minion-id ports.install security/nmap

	
salt.modules.freebsdports.config(name, reset=False, **kwargs)

	Modify configuration options for a given port. Multiple options can be
specified. To see the available options for a port, use
ports.showconfig.

	name
	The port name, in category/name format

	resetFalse
	If True, runs a make rmconfig for the port, clearing its
configuration before setting the desired options

CLI Examples:

salt '*' ports.config security/nmap IPV6=off

	
salt.modules.freebsdports.deinstall(name)

	De-install a port.

CLI Example:

salt '*' ports.deinstall security/nmap

	
salt.modules.freebsdports.install(name, clean=True)

	Install a port from the ports tree. Installs using BATCH=yes for
non-interactive building. To set config options for a given port, use
ports.config.

	cleanTrue
	If True, cleans after installation. Equivalent to running make
install clean BATCH=yes.

Note

It may be helpful to run this function using the -t option to set a
higher timeout, since compiling a port may cause the Salt command to
exceed the default timeout.

CLI Example:

salt -t 1200 '*' ports.install security/nmap

	
salt.modules.freebsdports.list_all()

	Lists all ports available.

CLI Example:

salt '*' ports.list_all

Warning

Takes a while to run, and returns a LOT of output

	
salt.modules.freebsdports.rmconfig(name)

	Clear the cached options for the specified port; run a make rmconfig

	name
	The name of the port to clear

CLI Example:

salt '*' ports.rmconfig security/nmap

	
salt.modules.freebsdports.search(name)

	Search for matches in the ports tree. Globs are supported, and the category
is optional

CLI Examples:

salt '*' ports.search 'security/*'
salt '*' ports.search 'security/n*'
salt '*' ports.search nmap

Warning

Takes a while to run

	
salt.modules.freebsdports.showconfig(name, default=False, dict_return=False)

	Show the configuration options for a given port.

	defaultFalse
	Show the default options for a port (not necessarily the same as the
current configuration)

	dict_returnFalse
	Instead of returning the output of make showconfig, return the data
in an dictionary

CLI Example:

salt '*' ports.showconfig security/nmap
salt '*' ports.showconfig security/nmap default=True

	
salt.modules.freebsdports.update(extract=False)

	Update the ports tree

	extractFalse
	If True, runs a portsnap extract after fetching, should be used
for first-time installation of the ports tree.

CLI Example:

salt '*' ports.update

salt.modules.freebsdservice

The service module for FreeBSD

Important

If you feel that Salt should be using this module to manage services on a
minion, and it is using a different module (or gives an error similar to
'service.start' is not available), see here.

	
salt.modules.freebsdservice.available(name, jail=None)

	Check that the given service is available.

Changed in version 2016.3.4.

jail: optional jid or jail name

CLI Example:

salt '*' service.available sshd

	
salt.modules.freebsdservice.disable(name, **kwargs)

	Disable the named service to start at boot

Arguments the same as for enable()

Changed in version 2016.3.4.

	jail (optional keyword argument)
	the jail's id or name

	chroot (optional keyword argument)
	the jail's chroot, if the jail's /etc is not mounted read-write

CLI Example:

salt '*' service.disable <service name>

	
salt.modules.freebsdservice.disabled(name, **kwargs)

	Return True if the named service is enabled, false otherwise

CLI Example:

salt '*' service.disabled <service name>

	
salt.modules.freebsdservice.enable(name, **kwargs)

	Enable the named service to start at boot

	name
	service name

	config/etc/rc.conf
	Config file for managing service. If config value is
empty string, then /etc/rc.conf.d/<service> used.
See man rc.conf(5) for details.

Also service.config variable can be used to change default.

Changed in version 2016.3.4.

	jail (optional keyword argument)
	the jail's id or name

	chroot (optional keyword argument)
	the jail's chroot, if the jail's /etc is not mounted read-write

CLI Example:

salt '*' service.enable <service name>

	
salt.modules.freebsdservice.enabled(name, **kwargs)

	Return True if the named service is enabled, false otherwise

	name
	Service name

Changed in version 2016.3.4.

Support for jail (representing jid or jail name) keyword argument in kwargs

CLI Example:

salt '*' service.enabled <service name>

	
salt.modules.freebsdservice.get_all(jail=None)

	Return a list of all available services

Changed in version 2016.3.4.

jail: optional jid or jail name

CLI Example:

salt '*' service.get_all

	
salt.modules.freebsdservice.get_disabled(jail=None)

	Return what services are available but not enabled to start at boot

Changed in version 2016.3.4.

Support for jail (representing jid or jail name) keyword argument in kwargs

CLI Example:

salt '*' service.get_disabled

	
salt.modules.freebsdservice.get_enabled(jail=None)

	Return what services are set to run on boot

Changed in version 2016.3.4.

Support for jail (representing jid or jail name) keyword argument in kwargs

CLI Example:

salt '*' service.get_enabled

	
salt.modules.freebsdservice.missing(name, jail=None)

	The inverse of service.available.
Returns True if the specified service is not available, otherwise returns
False.

Changed in version 2016.3.4.

jail: optional jid or jail name

CLI Example:

salt '*' service.missing sshd

	
salt.modules.freebsdservice.reload_(name, jail=None)

	Restart the named service

Changed in version 2016.3.4.

jail: optional jid or jail name

CLI Example:

salt '*' service.reload <service name>

	
salt.modules.freebsdservice.restart(name, jail=None)

	Restart the named service

Changed in version 2016.3.4.

jail: optional jid or jail name

CLI Example:

salt '*' service.restart <service name>

	
salt.modules.freebsdservice.start(name, jail=None)

	Start the specified service

Changed in version 2016.3.4.

jail: optional jid or jail name

CLI Example:

salt '*' service.start <service name>

	
salt.modules.freebsdservice.status(name, sig=None, jail=None)

	Return the status for a service.
If the name contains globbing, a dict mapping service name to True/False
values is returned.

Changed in version 2016.3.4.

Changed in version 2018.3.0: The service name can now be a glob (e.g. salt*)

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service to check

	sig (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Signature to use to find the service via ps

	Returns:

	True if running, False otherwise
dict: Maps service name to True if running, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.status <service name> [service signature]

	
salt.modules.freebsdservice.stop(name, jail=None)

	Stop the specified service

Changed in version 2016.3.4.

jail: optional jid or jail name

CLI Example:

salt '*' service.stop <service name>

salt.modules.freezer

Module for freezer
:maintainer: Alberto Planas <aplanas@suse.com>
:maturity: new
:depends: None
:platform: Linux

	
salt.modules.freezer.compare(old, new)

	Display the difference between two frozen states. The results are shown as
as a dictionary with keys for packages and repositories. Each key may
contain a changes dictionary showing items that differ between the two
frozen states. Items shown in the "old" changes but not the "new" were
removed. Items in "new" but not "old" were added. Items shown in both
probably updated/changed versions between freezes.

	old
	Name of the "old" frozen state. Required.

	new
	Name of the "new" frozen state. Required.

CLI Example:

salt '*' freezer.freeze pre_install post_install

	
salt.modules.freezer.freeze(name=None, force=False, **kwargs)

	Save the list of package and repos in a freeze file.

As this module is build on top of the pkg module, the user can
send extra attributes to the underlying pkg module via kwargs.
This function will call pkg.list_pkgs and pkg.list_repos,
and any additional arguments will be passed through to those
functions.

	name
	Name of the frozen state. Optional.

	force
	If true, overwrite the state. Optional.

CLI Example:

salt '*' freezer.freeze
salt '*' freezer.freeze pre_install
salt '*' freezer.freeze force=True root=/chroot

	
salt.modules.freezer.list_()

	Return the list of frozen states.

CLI Example:

salt '*' freezer.list

	
salt.modules.freezer.restore(name=None, clean=False, **kwargs)

	Make sure that the system contains the packages and repos from a
frozen state.

Read the list of packages and repositories from the freeze file,
and compare it with the current list of packages and repos. If
there is any difference, all the missing packages are repos will
be installed, and all the extra packages and repos will be
removed.

As this module is build on top of the pkg module, the user can
send extra attributes to the underlying pkg module via kwargs.
This function will call pkg.list_repos, pkg.mod_repo,
pkg.list_pkgs, pkg.install, pkg.remove and
pkg.del_repo, and any additional arguments will be passed
through to those functions.

	name
	Name of the frozen state. Optional.

	clean
	If True remove the frozen information YAML from the cache

New in version 3000.

CLI Example:

salt '*' freezer.restore
salt '*' freezer.restore root=/chroot

	
salt.modules.freezer.status(name=None)

	Return True if there is already a frozen state.

A frozen state is merely a list of packages (including the
version) in a specific time. This information can be used to
compare with the current list of packages, and revert the
installation of some extra packages that are in the system.

	name
	Name of the frozen state. Optional.

CLI Example:

salt '*' freezer.status
salt '*' freezer.status pre_install

salt.modules.gcp_addon

A route is a rule that specifies how certain packets should be handled by the
virtual network. Routes are associated with virtual machine instances by tag,
and the set of routes for a particular VM is called its routing table.
For each packet leaving a virtual machine, the system searches that machine's
routing table for a single best matching route.

New in version 2018.3.0.

This module will create a route to send traffic destined to the Internet
through your gateway instance.

	codeauthor:

	Pratik Bandarkar <pratik.bandarkar@gmail.com>

	maturity:

	new

	depends:

	google-api-python-client

	platform:

	Linux

	
salt.modules.gcp_addon.route_create(credential_file=None, project_id=None, name=None, dest_range=None, next_hop_instance=None, instance_zone=None, tags=None, network=None, priority=None)

	Create a route to send traffic destined to the Internet through your
gateway instance

	credential_filestring
	File location of application default credential. For more information,
refer: https://developers.google.com/identity/protocols/application-default-credentials

	project_idstring
	Project ID where instance and network resides.

	namestring
	name of the route to create

	next_hop_instancestring
	the name of an instance that should handle traffic matching this route.

	instance_zonestring
	zone where instance("next_hop_instance") resides

	networkstring
	Specifies the network to which the route will be applied.

	dest_rangestring
	The destination range of outgoing packets that the route will apply to.

	tagslist
	(optional) Identifies the set of instances that this route will apply to.

	priorityint
	(optional) Specifies the priority of this route relative to other routes.
default=1000

CLI Example:

salt 'salt-master.novalocal' gcp.route_create
 credential_file=/root/secret_key.json
 project_id=cp100-170315
 name=derby-db-route1
 next_hop_instance=instance-1
 instance_zone=us-central1-a
 network=default
 dest_range=0.0.0.0/0
 tags=['no-ip']
 priority=700

In above example, the instances which are having tag "no-ip" will route the
packet to instance "instance-1"(if packet is intended to other network)

salt.modules.gem

Manage ruby gems.

	
salt.modules.gem.install(gems, ruby=None, gem_bin=None, runas=None, version=None, rdoc=False, ri=False, pre_releases=False, proxy=None, source=None)

	Installs one or several gems.

	Parameters:

	
	gems -- string
The gems to install

	gem_bin -- string : None
Full path to gem binary to use.

	ruby -- string : None
If RVM or rbenv are installed, the ruby version and gemset to use.
Ignored if gem_bin is specified.

	runas -- string : None
The user to run gem as.

	version -- string : None
Specify the version to install for the gem.
Doesn't play nice with multiple gems at once

	rdoc -- boolean : False
Generate RDoc documentation for the gem(s).
For rubygems > 3 this is interpreted as the --no-document arg and the
ri option will then be ignored

	ri -- boolean : False
Generate RI documentation for the gem(s).
For rubygems > 3 this is interpreted as the --no-document arg and the
rdoc option will then be ignored

	pre_releases -- boolean : False
Include pre-releases in the available versions

	proxy -- string : None
Use the specified HTTP proxy server for all outgoing traffic.
Format: http://hostname[:port]

	sourceNone
	Use the specified HTTP gem source server to download gem.
Format: http://hostname[:port]

CLI Example:

salt '*' gem.install vagrant

salt '*' gem.install redphone gem_bin=/opt/sensu/embedded/bin/gem

	
salt.modules.gem.list_(prefix='', ruby=None, runas=None, gem_bin=None)

	List locally installed gems.

	Parameters:

	
	prefix -- string :
Only list gems when the name matches this prefix.

	gem_bin -- string : None
Full path to gem binary to use.

	ruby -- string : None
If RVM or rbenv are installed, the ruby version and gemset to use.
Ignored if gem_bin is specified.

	runas -- string : None
The user to run gem as.

CLI Example:

salt '*' gem.list

	
salt.modules.gem.list_upgrades(ruby=None, runas=None, gem_bin=None)

	
New in version 2015.8.0.

Check if an upgrade is available for installed gems

	gem_binNone
	Full path to gem binary to use.

	rubyNone
	If RVM or rbenv are installed, the ruby version and gemset to use.
Ignored if gem_bin is specified.

	runasNone
	The user to run gem as.

CLI Example:

salt '*' gem.list_upgrades

	
salt.modules.gem.sources_add(source_uri, ruby=None, runas=None, gem_bin=None)

	Add a gem source.

	Parameters:

	
	source_uri -- string
The source URI to add.

	gem_bin -- string : None
Full path to gem binary to use.

	ruby -- string : None
If RVM or rbenv are installed, the ruby version and gemset to use.
Ignored if gem_bin is specified.

	runas -- string : None
The user to run gem as.

CLI Example:

salt '*' gem.sources_add http://rubygems.org/

	
salt.modules.gem.sources_list(ruby=None, runas=None, gem_bin=None)

	List the configured gem sources.

	Parameters:

	
	gem_bin -- string : None
Full path to gem binary to use.

	ruby -- string : None
If RVM or rbenv are installed, the ruby version and gemset to use.
Ignored if gem_bin is specified.

	runas -- string : None
The user to run gem as.

CLI Example:

salt '*' gem.sources_list

	
salt.modules.gem.sources_remove(source_uri, ruby=None, runas=None, gem_bin=None)

	Remove a gem source.

	Parameters:

	
	source_uri -- string
The source URI to remove.

	gem_bin -- string : None
Full path to gem binary to use.

	ruby -- string : None
If RVM or rbenv are installed, the ruby version and gemset to use.
Ignored if gem_bin is specified.

	runas -- string : None
The user to run gem as.

CLI Example:

salt '*' gem.sources_remove http://rubygems.org/

	
salt.modules.gem.uninstall(gems, ruby=None, runas=None, gem_bin=None)

	Uninstall one or several gems.

	Parameters:

	
	gems -- string
The gems to uninstall.

	gem_bin -- string : None
Full path to gem binary to use.

	ruby -- string : None
If RVM or rbenv are installed, the ruby version and gemset to use.
Ignored if gem_bin is specified.

	runas -- string : None
The user to run gem as.

CLI Example:

salt '*' gem.uninstall vagrant

	
salt.modules.gem.update(gems, ruby=None, runas=None, gem_bin=None)

	Update one or several gems.

	Parameters:

	
	gems -- string
The gems to update.

	gem_bin -- string : None
Full path to gem binary to use.

	ruby -- string : None
If RVM or rbenv are installed, the ruby version and gemset to use.
Ignored if gem_bin is specified.

	runas -- string : None
The user to run gem as.

CLI Example:

salt '*' gem.update vagrant

	
salt.modules.gem.update_system(version='', ruby=None, runas=None, gem_bin=None)

	Update rubygems.

	Parameters:

	
	version -- string : (newest)
The version of rubygems to install.

	gem_bin -- string : None
Full path to gem binary to use.

	ruby -- string : None
If RVM or rbenv are installed, the ruby version and gemset to use.
Ignored if gem_bin is specified.

	runas -- string : None
The user to run gem as.

CLI Example:

salt '*' gem.update_system

	
salt.modules.gem.version(ruby=None, runas=None, gem_bin=None)

	Print out the version of gem

	Parameters:

	
	gem_bin -- string : None
Full path to gem binary to use.

	ruby -- string : None
If RVM or rbenv are installed, the ruby version and gemset to use.
Ignored if gem_bin is specified.

	runas -- string : None
The user to run gem as.

CLI Example:

salt '*' gem.version

salt.modules.genesis

Module for managing container and VM images

New in version 2014.7.0.

	
salt.modules.genesis.avail_platforms()

	Return which platforms are available

CLI Example:

salt myminion genesis.avail_platforms

	
salt.modules.genesis.bootstrap(platform, root, img_format='dir', fs_format='ext2', fs_opts=None, arch=None, flavor=None, repo_url=None, static_qemu=None, img_size=None, mount_dir=None, pkg_cache=None, pkgs=None, exclude_pkgs=None, epel_url='http://download.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm')

	Create an image for a specific platform.

Please note that this function MUST be run as root, as images that are
created make files belonging to root.

	platform
	Which platform to use to create the image. Currently supported platforms
are rpm, deb and pacman.

	root
	Local path to create the root of the image filesystem.

	img_format
	Which format to create the image in. By default, just copies files into
a directory on the local filesystem (dir). Future support will exist
for sparse.

	fs_format
	When using a non-dir img_format, which filesystem to format the
image to. By default, ext2.

	fs_opts
	When using a non-dir img_format, a dict of opts may be
specified.

	arch
	Architecture to install packages for, if supported by the underlying
bootstrap tool. Currently only used for deb.

	flavor
	Which flavor of operating system to install. This correlates to a
specific directory on the distribution repositories. For instance,
wheezy on Debian.

	repo_url
	Mainly important for Debian-based repos. Base URL for the mirror to
install from. (e.x.: http://ftp.debian.org/debian/)

	static_qemu
	Local path to the static qemu binary required for this arch.
(e.x.: /usr/bin/qemu-amd64-static)

	pkg_confs
	The location of the conf files to copy into the image, to point the
installer to the right repos and configuration.

	img_size
	If img_format is not dir, then the size of the image must be
specified.

	mount_dir
	If img_format is not dir, then the image must be mounted somewhere.
If the mount_dir is not specified, then it will be created at
/opt/salt-genesis.<random_uuid>. This directory will be unmounted
and removed when the process is finished.

	pkg_cache
	This points to a directory containing a cache of package files to be
copied to the image. It does not need to be specified.

	pkgs
	A list of packages to be installed on this image. For RedHat, this
will include yum, centos-release and iputils by default.

	exclude_pkgs
	A list of packages to be excluded. If you do not want to install the
defaults, you need to include them in this list.

	epel_url
	The URL to download the EPEL release package from.

CLI Examples:

salt myminion genesis.bootstrap pacman /root/arch
salt myminion genesis.bootstrap rpm /root/redhat
salt myminion genesis.bootstrap deb /root/wheezy arch=amd64 flavor=wheezy static_qemu=/usr/bin/qemu-x86_64-static

	
salt.modules.genesis.ldd_deps(filename, ret=None)

	Recurse through a set of dependencies reported by ldd, to find
associated dependencies.

Please note that this does not necessarily resolve all (non-package)
dependencies for a file; but it does help.

CLI Example:

salt myminion genesis.ldd_deps bash
salt myminion genesis.ldd_deps /bin/bash

	
salt.modules.genesis.mksls(fmt, src, dst=None)

	Convert an installation file/script to an SLS file. Currently supports
kickstart, preseed, and autoyast.

CLI Examples:

salt <minion> genesis.mksls kickstart /path/to/kickstart.cfg
salt <minion> genesis.mksls kickstart /path/to/kickstart.cfg /path/to/dest.sls

New in version 2015.8.0.

	
salt.modules.genesis.pack(name, root, path=None, pack_format='tar', compress='bzip2')

	Pack up a directory structure, into a specific format

CLI Examples:

salt myminion genesis.pack centos /root/centos
salt myminion genesis.pack centos /root/centos pack_format='tar'

	
salt.modules.genesis.unpack(name, dest=None, path=None, pack_format='tar', compress='bz2')

	Unpack an image into a directory structure

CLI Example:

salt myminion genesis.unpack centos /root/centos

salt.modules.gentoo_service

Top level package command wrapper, used to translate the os detected by grains
to the correct service manager

Important

If you feel that Salt should be using this module to manage services on a
minion, and it is using a different module (or gives an error similar to
'service.start' is not available), see here.

	
salt.modules.gentoo_service.available(name)

	Returns True if the specified service is available, otherwise returns
False.

CLI Example:

salt '*' service.available sshd

	
salt.modules.gentoo_service.disable(name, **kwargs)

	Disable the named service to start at boot

CLI Example:

salt '*' service.disable <service name> <runlevels=single-runlevel>
salt '*' service.disable <service name> <runlevels=[runlevel1,runlevel2]>

	
salt.modules.gentoo_service.disabled(name)

	Return True if the named service is enabled, false otherwise

CLI Example:

salt '*' service.disabled <service name> <runlevels=[runlevel]>

	
salt.modules.gentoo_service.enable(name, **kwargs)

	Enable the named service to start at boot

CLI Example:

salt '*' service.enable <service name> <runlevels=single-runlevel>
salt '*' service.enable <service name> <runlevels=[runlevel1,runlevel2]>

	
salt.modules.gentoo_service.enabled(name, **kwargs)

	Return True if the named service is enabled, false otherwise

CLI Example:

salt '*' service.enabled <service name> <runlevels=single-runlevel>
salt '*' service.enabled <service name> <runlevels=[runlevel1,runlevel2]>

	
salt.modules.gentoo_service.get_all()

	Return all available boot services

CLI Example:

salt '*' service.get_all

	
salt.modules.gentoo_service.get_disabled()

	Return a set of services that are installed but disabled

CLI Example:

salt '*' service.get_disabled

	
salt.modules.gentoo_service.get_enabled()

	Return a list of service that are enabled on boot

CLI Example:

salt '*' service.get_enabled

	
salt.modules.gentoo_service.missing(name)

	The inverse of service.available.
Returns True if the specified service is not available, otherwise returns
False.

CLI Example:

salt '*' service.missing sshd

	
salt.modules.gentoo_service.reload_(name)

	Reload the named service

CLI Example:

salt '*' service.reload <service name>

	
salt.modules.gentoo_service.restart(name)

	Restart the named service

CLI Example:

salt '*' service.restart <service name>

	
salt.modules.gentoo_service.start(name)

	Start the specified service

CLI Example:

salt '*' service.start <service name>

	
salt.modules.gentoo_service.status(name, sig=None)

	Return the status for a service.
If the name contains globbing, a dict mapping service name to True/False
values is returned.

Changed in version 2018.3.0: The service name can now be a glob (e.g. salt*)

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service to check

	sig (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Signature to use to find the service via ps

	Returns:

	True if running, False otherwise
dict: Maps service name to True if running, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.status <service name> [service signature]

	
salt.modules.gentoo_service.stop(name)

	Stop the specified service

CLI Example:

salt '*' service.stop <service name>

	
salt.modules.gentoo_service.zap(name)

	Resets service state

CLI Example:

salt '*' service.zap <service name>

salt.modules.gentoolkitmod

Support for Gentoolkit

	
salt.modules.gentoolkitmod.eclean_dist(destructive=False, package_names=False, size_limit=0, time_limit=0, fetch_restricted=False, exclude_file='/etc/eclean/distfiles.exclude')

	Clean obsolete portage sources

	destructive
	Only keep minimum for reinstallation

	package_names
	Protect all versions of installed packages. Only meaningful if used
with destructive=True

	size_limit <size>
	Don't delete distfiles bigger than <size>.
<size> is a size specification: "10M" is "ten megabytes",
"200K" is "two hundreds kilobytes", etc. Units are: G, M, K and B.

	time_limit <time>
	Don't delete distfiles files modified since <time>
<time> is an amount of time: "1y" is "one year", "2w" is
"two weeks", etc. Units are: y (years), m (months), w (weeks),
d (days) and h (hours).

	fetch_restricted
	Protect fetch-restricted files. Only meaningful if used with
destructive=True

	exclude_file
	Path to exclusion file. Default is /etc/eclean/distfiles.exclude
This is the same default eclean-dist uses. Use None if this file
exists and you want to ignore.

Returns a dict containing the cleaned, saved, and deprecated dists:

{'cleaned': {<dist file>: <size>},
 'deprecated': {<package>: <dist file>},
 'saved': {<package>: <dist file>},
 'total_cleaned': <size>}

CLI Example:

salt '*' gentoolkit.eclean_dist destructive=True

	
salt.modules.gentoolkitmod.eclean_pkg(destructive=False, package_names=False, time_limit=0, exclude_file='/etc/eclean/packages.exclude')

	Clean obsolete binary packages

	destructive
	Only keep minimum for reinstallation

	package_names
	Protect all versions of installed packages. Only meaningful if used
with destructive=True

	time_limit <time>
	Don't delete distfiles files modified since <time>
<time> is an amount of time: "1y" is "one year", "2w" is
"two weeks", etc. Units are: y (years), m (months), w (weeks),
d (days) and h (hours).

	exclude_file
	Path to exclusion file. Default is /etc/eclean/packages.exclude
This is the same default eclean-pkg uses. Use None if this file
exists and you want to ignore.

Returns a dict containing the cleaned binary packages:

{'cleaned': {<dist file>: <size>},
 'total_cleaned': <size>}

CLI Example:

salt '*' gentoolkit.eclean_pkg destructive=True

	
salt.modules.gentoolkitmod.glsa_check_list(glsa_list)

	List the status of Gentoo Linux Security Advisories

	glsa_list
	can contain an arbitrary number of GLSA ids, filenames
containing GLSAs or the special identifiers 'all' and 'affected'

Returns a dict containing glsa ids with a description, status, and CVEs:

{<glsa_id>: {'description': <glsa_description>,
 'status': <glsa status>,
 'CVEs': [<list of CVEs>]}}

CLI Example:

salt '*' gentoolkit.glsa_check_list 'affected'

	
salt.modules.gentoolkitmod.revdep_rebuild(lib=None)

	Fix up broken reverse dependencies

	lib
	Search for reverse dependencies for a particular library rather
than every library on the system. It can be a full path to a
library or basic regular expression.

CLI Example:

salt '*' gentoolkit.revdep_rebuild

salt.modules.git

Support for the Git SCM

	
salt.modules.git.add(cwd, filename, opts='', git_opts='', user=None, password=None, ignore_retcode=False, output_encoding=None)

	
Changed in version 2015.8.0: The --verbose command line argument is now implied

Interface to git-add(1) [http://git-scm.com/docs/git-add]

	cwd
	The path to the git checkout

	filename
	The location of the file/directory to add, relative to cwd

	opts
	Any additional options to add to the command line, in a single string

Note

On the Salt CLI, if the opts are preceded with a dash, it is
necessary to precede them with opts= (as in the CLI examples
below) to avoid causing errors with Salt's own argument parsing.

	git_opts
	Any additional options to add to git command itself (not the add
subcommand), in a single string. This is useful for passing -c to
run git with temporary changes to the git configuration.

New in version 2017.7.0.

Note

This is only supported in git 1.7.2 and newer.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Examples:

salt myminion git.add /path/to/repo foo/bar.py
salt myminion git.add /path/to/repo foo/bar.py opts='--dry-run'

	
salt.modules.git.archive(cwd, output, rev='HEAD', prefix=None, git_opts='', user=None, password=None, ignore_retcode=False, output_encoding=None, **kwargs)

	
Changed in version 2015.8.0: Returns True if successful, raises an error if not.

Interface to git-archive(1) [http://git-scm.com/docs/git-archive], exports a tarball/zip file of the
repository

	cwd
	The path to be archived

Note

git archive permits a partial archive to be created. Thus, this
path does not need to be the root of the git repository. Only the
files within the directory specified by cwd (and its
subdirectories) will be in the resulting archive. For example, if
there is a git checkout at /tmp/foo, then passing
/tmp/foo/bar as the cwd will result in just the files
underneath /tmp/foo/bar to be exported as an archive.

	output
	The path of the archive to be created

	overwriteFalse
	Unless set to True, Salt will over overwrite an existing archive at
the path specified by the output argument.

New in version 2015.8.0.

	revHEAD
	The revision from which to create the archive

	format
	Manually specify the file format of the resulting archive. This
argument can be omitted, and git archive will attempt to guess the
archive type (and compression) from the filename. zip, tar,
tar.gz, and tgz are extensions that are recognized
automatically, and git can be configured to support other archive types
with the addition of git configuration keys.

See the git-archive(1) [http://git-scm.com/docs/git-archive] manpage explanation of the
--format argument (as well as the CONFIGURATION section of the
manpage) for further information.

New in version 2015.8.0.

	prefix
	Prepend <prefix> to every filename in the archive. If unspecified,
the name of the directory at the top level of the repository will be
used as the prefix (e.g. if cwd is set to /foo/bar/baz, the
prefix will be baz, and the resulting archive will contain a
top-level directory by that name).

Note

The default behavior if the --prefix option for git archive
is not specified is to not prepend a prefix, so Salt's behavior
differs slightly from git archive in this respect. Use
prefix='' to create an archive with no prefix.

Changed in version 2015.8.0: The behavior of this argument has been changed slightly. As of
this version, it is necessary to include the trailing slash when
specifying a prefix, if the prefix is intended to create a
top-level directory.

	git_opts
	Any additional options to add to git command itself (not the
archive subcommand), in a single string. This is useful for passing
-c to run git with temporary changes to the git configuration.

New in version 2017.7.0.

Note

This is only supported in git 1.7.2 and newer.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Example:

salt myminion git.archive /path/to/repo /path/to/archive.tar

	
salt.modules.git.branch(cwd, name=None, opts='', git_opts='', user=None, password=None, ignore_retcode=False, output_encoding=None)

	Interface to git-branch(1) [http://git-scm.com/docs/git-branch]

	cwd
	The path to the git checkout

	name
	Name of the branch on which to operate. If not specified, the current
branch will be assumed.

	opts
	Any additional options to add to the command line, in a single string

Note

To create a branch based on something other than HEAD, pass the
name of the revision as opts. If the revision is in the format
remotename/branch, then this will also set the remote tracking
branch.

Additionally, on the Salt CLI, if the opts are preceded with a
dash, it is necessary to precede them with opts= (as in the CLI
examples below) to avoid causing errors with Salt's own argument
parsing.

	git_opts
	Any additional options to add to git command itself (not the branch
subcommand), in a single string. This is useful for passing -c to
run git with temporary changes to the git configuration.

New in version 2017.7.0.

Note

This is only supported in git 1.7.2 and newer.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Examples:

Set remote tracking branch
salt myminion git.branch /path/to/repo mybranch opts='--set-upstream-to origin/mybranch'
Create new branch
salt myminion git.branch /path/to/repo mybranch upstream/somebranch
Delete branch
salt myminion git.branch /path/to/repo mybranch opts='-d'
Rename branch (2015.8.0 and later)
salt myminion git.branch /path/to/repo newbranch opts='-m oldbranch'

	
salt.modules.git.checkout(cwd, rev=None, force=False, opts='', git_opts='', user=None, password=None, ignore_retcode=False, output_encoding=None)

	Interface to git-checkout(1) [http://git-scm.com/docs/git-checkout]

	cwd
	The path to the git checkout

	opts
	Any additional options to add to the command line, in a single string

Note

On the Salt CLI, if the opts are preceded with a dash, it is
necessary to precede them with opts= (as in the CLI examples
below) to avoid causing errors with Salt's own argument parsing.

	git_opts
	Any additional options to add to git command itself (not the
checkout subcommand), in a single string. This is useful for
passing -c to run git with temporary changes to the git
configuration.

New in version 2017.7.0.

Note

This is only supported in git 1.7.2 and newer.

	rev
	The remote branch or revision to checkout.

Changed in version 2015.8.0: Optional when using -b or -B in opts.

	forceFalse
	Force a checkout even if there might be overwritten changes

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Examples:

Checking out local local revisions
salt myminion git.checkout /path/to/repo somebranch user=jeff
salt myminion git.checkout /path/to/repo opts='testbranch -- conf/file1 file2'
salt myminion git.checkout /path/to/repo rev=origin/mybranch opts='--track'
Checking out remote revision into new branch
salt myminion git.checkout /path/to/repo upstream/master opts='-b newbranch'
Checking out current revision into new branch (2015.8.0 and later)
salt myminion git.checkout /path/to/repo opts='-b newbranch'

	
salt.modules.git.clone(cwd, url=None, name=None, opts='', git_opts='', user=None, password=None, identity=None, https_user=None, https_pass=None, ignore_retcode=False, saltenv='base', output_encoding=None)

	Interface to git-clone(1) [http://git-scm.com/docs/git-clone]

	cwd
	Location of git clone

Changed in version 2015.8.0: If name is passed, then the clone will be made within this
directory.

	url
	The URL of the repository to be cloned

Changed in version 2015.8.0: Argument renamed from repository to url

	name
	Optional alternate name for the top-level directory to be created by
the clone

New in version 2015.8.0.

	opts
	Any additional options to add to the command line, in a single string

	git_opts
	Any additional options to add to git command itself (not the clone
subcommand), in a single string. This is useful for passing -c to
run git with temporary changes to the git configuration.

New in version 2017.7.0.

Note

This is only supported in git 1.7.2 and newer.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	identity
	Path to a private key to use for ssh URLs

Warning

Unless Salt is invoked from the minion using salt-call, the
key(s) must be passphraseless. For greater security with
passphraseless private keys, see the sshd(8) [http://www.man7.org/linux/man-pages/man8/sshd.8.html#AUTHORIZED_KEYS_FILE_FORMAT] manpage for
information on securing the keypair from the remote side in the
authorized_keys file.

Changed in version 2015.8.7: Salt will no longer attempt to use passphrase-protected keys unless
invoked from the minion using salt-call, to prevent blocking
waiting for user input.

Key can also be specified as a SaltStack file server URL, eg. salt://location/identity_file

Changed in version 2016.3.0.

	https_user
	Set HTTP Basic Auth username. Only accepted for HTTPS URLs.

New in version 2015.5.0.

	https_pass
	Set HTTP Basic Auth password. Only accepted for HTTPS URLs.

New in version 2015.5.0.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	saltenv
	The default salt environment to pull sls files from

New in version 2016.3.1.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Example:

salt myminion git.clone /path/to/repo_parent_dir git://github.com/saltstack/salt.git

	
salt.modules.git.commit(cwd, message, opts='', git_opts='', user=None, password=None, filename=None, ignore_retcode=False, output_encoding=None)

	Interface to git-commit(1) [http://git-scm.com/docs/git-commit]

	cwd
	The path to the git checkout

	message
	Commit message

	opts
	Any additional options to add to the command line, in a single string.
These opts will be added to the end of the git command being run.

Note

On the Salt CLI, if the opts are preceded with a dash, it is
necessary to precede them with opts= (as in the CLI examples
below) to avoid causing errors with Salt's own argument parsing.

The -m option should not be passed here, as the commit message
will be defined by the message argument.

	git_opts
	Any additional options to add to git command itself (not the commit
subcommand), in a single string. This is useful for passing -c to
run git with temporary changes to the git configuration.

New in version 2017.7.0.

Note

This is only supported in git 1.7.2 and newer.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	filename
	The location of the file/directory to commit, relative to cwd.
This argument is optional, and can be used to commit a file without
first staging it.

Note

This argument only works on files which are already tracked by the
git repository.

New in version 2015.8.0.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Examples:

salt myminion git.commit /path/to/repo 'The commit message'
salt myminion git.commit /path/to/repo 'The commit message' filename=foo/bar.py

	
salt.modules.git.config_get(key, cwd=None, user=None, password=None, ignore_retcode=False, output_encoding=None, **kwargs)

	Get the value of a key in the git configuration file

	key
	The name of the configuration key to get

Changed in version 2015.8.0: Argument renamed from setting_name to key

	cwd
	The path to the git checkout

Changed in version 2015.8.0: Now optional if global is set to True

	globalFalse
	If True, query the global git configuration. Otherwise, only the
local git configuration will be queried.

New in version 2015.8.0.

	allFalse
	If True, return a list of all values set for key. If the key
does not exist, None will be returned.

New in version 2015.8.0.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Examples:

salt myminion git.config_get user.name cwd=/path/to/repo
salt myminion git.config_get user.email global=True
salt myminion git.config_get core.gitproxy cwd=/path/to/repo all=True

	
salt.modules.git.config_get_regex(key, value_regex=None, cwd=None, user=None, password=None, ignore_retcode=False, output_encoding=None, **kwargs)

	This function is an alias of config_get_regexp.

New in version 2015.8.0.

Get the value of a key or keys in the git configuration file using regexes
for more flexible matching. The return data is a dictionary mapping keys to
lists of values matching the value_regex. If no values match, an empty
dictionary will be returned.

	key
	Regex on which key names will be matched

	value_regex
	If specified, return all values matching this regex. The return data
will be a dictionary mapping keys to lists of values matching the
regex.

Important

Only values matching the value_regex will be part of the return
data. So, if key matches a multivar, then it is possible that
not all of the values will be returned. To get all values set for a
multivar, simply omit the value_regex argument.

	cwd
	The path to the git checkout

	globalFalse
	If True, query the global git configuration. Otherwise, only the
local git configuration will be queried.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Examples:

Matches any values for key 'foo.bar'
salt myminion git.config_get_regexp /path/to/repo foo.bar
Matches any value starting with 'baz' set for key 'foo.bar'
salt myminion git.config_get_regexp /path/to/repo foo.bar 'baz.*'
Matches any key starting with 'user.'
salt myminion git.config_get_regexp '^user\.' global=True

	
salt.modules.git.config_get_regexp(key, value_regex=None, cwd=None, user=None, password=None, ignore_retcode=False, output_encoding=None, **kwargs)

	
New in version 2015.8.0.

Get the value of a key or keys in the git configuration file using regexes
for more flexible matching. The return data is a dictionary mapping keys to
lists of values matching the value_regex. If no values match, an empty
dictionary will be returned.

	key
	Regex on which key names will be matched

	value_regex
	If specified, return all values matching this regex. The return data
will be a dictionary mapping keys to lists of values matching the
regex.

Important

Only values matching the value_regex will be part of the return
data. So, if key matches a multivar, then it is possible that
not all of the values will be returned. To get all values set for a
multivar, simply omit the value_regex argument.

	cwd
	The path to the git checkout

	globalFalse
	If True, query the global git configuration. Otherwise, only the
local git configuration will be queried.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Examples:

Matches any values for key 'foo.bar'
salt myminion git.config_get_regexp /path/to/repo foo.bar
Matches any value starting with 'baz' set for key 'foo.bar'
salt myminion git.config_get_regexp /path/to/repo foo.bar 'baz.*'
Matches any key starting with 'user.'
salt myminion git.config_get_regexp '^user\.' global=True

	
salt.modules.git.config_set(key, value=None, multivar=None, cwd=None, user=None, password=None, ignore_retcode=False, output_encoding=None, **kwargs)

	
Changed in version 2015.8.0: Return the value(s) of the key being set

Set a key in the git configuration file

	cwd
	The path to the git checkout. Must be an absolute path, or the word
global to indicate that a global key should be set.

Changed in version 2014.7.0: Made cwd argument optional if is_global=True

	key
	The name of the configuration key to set

Changed in version 2015.8.0: Argument renamed from setting_name to key

	value
	The value to set for the specified key. Incompatible with the
multivar argument.

Changed in version 2015.8.0: Argument renamed from setting_value to value

	addFalse
	Add a value to a key, creating/updating a multivar

New in version 2015.8.0.

	multivar
	Set a multivar all at once. Values can be comma-separated or passed as
a Python list. Incompatible with the value argument.

New in version 2015.8.0.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	globalFalse
	If True, set a global variable

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Examples:

salt myminion git.config_set user.email me@example.com cwd=/path/to/repo
salt myminion git.config_set user.email foo@bar.com global=True

	
salt.modules.git.config_unset(key, value_regex=None, cwd=None, user=None, password=None, ignore_retcode=False, output_encoding=None, **kwargs)

	
New in version 2015.8.0.

Unset a key in the git configuration file

	cwd
	The path to the git checkout. Must be an absolute path, or the word
global to indicate that a global key should be unset.

	key
	The name of the configuration key to unset

	value_regex
	Regular expression that matches exactly one key, used to delete a
single value from a multivar. Ignored if all is set to True.

	allFalse
	If True unset all values for a multivar. If False, and key
is a multivar, an error will be raised.

	globalFalse
	If True, unset set a global variable. Otherwise, a local variable
will be unset.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Example:

salt myminion git.config_unset /path/to/repo foo.bar
salt myminion git.config_unset /path/to/repo foo.bar all=True

	
salt.modules.git.current_branch(cwd, user=None, password=None, ignore_retcode=False, output_encoding=None)

	Returns the current branch name of a local checkout. If HEAD is detached,
return the SHA1 of the revision which is currently checked out.

	cwd
	The path to the git checkout

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Example:

salt myminion git.current_branch /path/to/repo

	
salt.modules.git.describe(cwd, rev='HEAD', user=None, password=None, ignore_retcode=False, output_encoding=None)

	Returns the git-describe(1) [http://git-scm.com/docs/git-describe] string (or the SHA1 hash if there are no
tags) for the given revision.

	cwd
	The path to the git checkout

	revHEAD
	The revision to describe

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Examples:

salt myminion git.describe /path/to/repo
salt myminion git.describe /path/to/repo develop

	
salt.modules.git.diff(cwd, item1=None, item2=None, opts='', git_opts='', user=None, password=None, no_index=False, cached=False, paths=None, output_encoding=None)

	
New in version 2015.8.12,2016.3.3,2016.11.0.

Interface to git-diff(1) [http://git-scm.com/docs/git-diff]

	cwd
	The path to the git checkout

	item1 and item2
	Revision(s) to pass to the git diff command. One or both of these
arguments may be ignored if some of the options below are set to
True. When cached is False, and no revisions are passed
to this function, then the current working tree will be compared
against the index (i.e. unstaged changes). When two revisions are
passed, they will be compared to each other.

	opts
	Any additional options to add to the command line, in a single string

Note

On the Salt CLI, if the opts are preceded with a dash, it is
necessary to precede them with opts= (as in the CLI examples
below) to avoid causing errors with Salt's own argument parsing.

	git_opts
	Any additional options to add to git command itself (not the diff
subcommand), in a single string. This is useful for passing -c to
run git with temporary changes to the git configuration.

New in version 2017.7.0.

Note

This is only supported in git 1.7.2 and newer.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	no_indexFalse
	When it is necessary to diff two files in the same repo against each
other, and not diff two different revisions, set this option to
True. If this is left False in these instances, then a normal
git diff will be performed against the index (i.e. unstaged
changes), and files in the paths option will be used to narrow down
the diff output.

Note

Requires Git 1.5.1 or newer. Additionally, when set to True,
item1 and item2 will be ignored.

	cachedFalse
	If True, compare staged changes to item1 (if specified),
otherwise compare them to the most recent commit.

Note

item2 is ignored if this option is is set to True.

	paths
	File paths to pass to the git diff command. Can be passed as a
comma-separated list or a Python list.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Example:

Perform diff against the index (staging area for next commit)
salt myminion git.diff /path/to/repo
Compare staged changes to the most recent commit
salt myminion git.diff /path/to/repo cached=True
Compare staged changes to a specific revision
salt myminion git.diff /path/to/repo mybranch cached=True
Perform diff against the most recent commit (includes staged changes)
salt myminion git.diff /path/to/repo HEAD
Diff two commits
salt myminion git.diff /path/to/repo abcdef1 aabbccd
Diff two commits, only showing differences in the specified paths
salt myminion git.diff /path/to/repo abcdef1 aabbccd paths=path/to/file1,path/to/file2
Diff two files with one being outside the working tree
salt myminion git.diff /path/to/repo no_index=True paths=path/to/file1,/absolute/path/to/file2

	
salt.modules.git.discard_local_changes(cwd, path='.', user=None, password=None, ignore_retcode=False, output_encoding=None)

	
New in version 2019.2.0.

Runs a git checkout -- <path> from the directory specified by cwd.

	cwd
	The path to the git checkout

	path
	path relative to cwd (defaults to .)

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

CLI Example:

salt myminion git.discard_local_changes /path/to/repo
salt myminion git.discard_local_changes /path/to/repo path=foo

	
salt.modules.git.fetch(cwd, remote=None, force=False, refspecs=None, opts='', git_opts='', user=None, password=None, identity=None, ignore_retcode=False, saltenv='base', output_encoding=None)

	
Changed in version 2015.8.2: Return data is now a dictionary containing information on branches and
tags that were added/updated

Interface to git-fetch(1) [http://git-scm.com/docs/git-fetch]

	cwd
	The path to the git checkout

	remote
	Optional remote name to fetch. If not passed, then git will use its
default behavior (as detailed in git-fetch(1) [http://git-scm.com/docs/git-fetch]).

New in version 2015.8.0.

	force
	Force the fetch even when it is not a fast-forward.

New in version 2015.8.0.

	refspecs
	Override the refspec(s) configured for the remote with this argument.
Multiple refspecs can be passed, comma-separated.

New in version 2015.8.0.

	opts
	Any additional options to add to the command line, in a single string

Note

On the Salt CLI, if the opts are preceded with a dash, it is
necessary to precede them with opts= (as in the CLI examples
below) to avoid causing errors with Salt's own argument parsing.

	git_opts
	Any additional options to add to git command itself (not the fetch
subcommand), in a single string. This is useful for passing -c to
run git with temporary changes to the git configuration.

New in version 2017.7.0.

Note

This is only supported in git 1.7.2 and newer.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	identity
	Path to a private key to use for ssh URLs

Warning

Unless Salt is invoked from the minion using salt-call, the
key(s) must be passphraseless. For greater security with
passphraseless private keys, see the sshd(8) [http://www.man7.org/linux/man-pages/man8/sshd.8.html#AUTHORIZED_KEYS_FILE_FORMAT] manpage for
information on securing the keypair from the remote side in the
authorized_keys file.

Changed in version 2015.8.7: Salt will no longer attempt to use passphrase-protected keys unless
invoked from the minion using salt-call, to prevent blocking
waiting for user input.

Key can also be specified as a SaltStack file server URL, eg. salt://location/identity_file

Changed in version 2016.3.0.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	saltenv
	The default salt environment to pull sls files from

New in version 2016.3.1.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Example:

salt myminion git.fetch /path/to/repo upstream
salt myminion git.fetch /path/to/repo identity=/root/.ssh/id_rsa

	
salt.modules.git.init(cwd, bare=False, template=None, separate_git_dir=None, shared=None, opts='', git_opts='', user=None, password=None, ignore_retcode=False, output_encoding=None)

	Interface to git-init(1) [http://git-scm.com/docs/git-init]

	cwd
	The path to the directory to be initialized

	bareFalse
	If True, init a bare repository

New in version 2015.8.0.

	template
	Set this argument to specify an alternate template directory [http://git-scm.com/docs/git-init#_template_directory]

New in version 2015.8.0.

	separate_git_dir
	Set this argument to specify an alternate $GIT_DIR

New in version 2015.8.0.

	shared
	Set sharing permissions on git repo. See git-init(1) [http://git-scm.com/docs/git-init] for more
details.

New in version 2015.8.0.

	opts
	Any additional options to add to the command line, in a single string

Note

On the Salt CLI, if the opts are preceded with a dash, it is
necessary to precede them with opts= (as in the CLI examples
below) to avoid causing errors with Salt's own argument parsing.

	git_opts
	Any additional options to add to git command itself (not the init
subcommand), in a single string. This is useful for passing -c to
run git with temporary changes to the git configuration.

New in version 2017.7.0.

Note

This is only supported in git 1.7.2 and newer.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Examples:

salt myminion git.init /path/to/repo
Init a bare repo (before 2015.8.0)
salt myminion git.init /path/to/bare/repo.git opts='--bare'
Init a bare repo (2015.8.0 and later)
salt myminion git.init /path/to/bare/repo.git bare=True

	
salt.modules.git.is_worktree(cwd, user=None, password=None, output_encoding=None)

	
New in version 2015.8.0.

This function will attempt to determine if cwd is part of a
worktree by checking its .git to see if it is a file containing a
reference to another gitdir.

	cwd
	path to the worktree to be removed

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Example:

salt myminion git.is_worktree /path/to/repo

	
salt.modules.git.list_branches(cwd, remote=False, user=None, password=None, ignore_retcode=False, output_encoding=None)

	
New in version 2015.8.0.

Return a list of branches

	cwd
	The path to the git checkout

	remoteFalse
	If True, list remote branches. Otherwise, local branches will be
listed.

Warning

This option will only return remote branches of which the local
checkout is aware, use git.fetch to update remotes.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Examples:

salt myminion git.list_branches /path/to/repo
salt myminion git.list_branches /path/to/repo remote=True

	
salt.modules.git.list_tags(cwd, user=None, password=None, ignore_retcode=False, output_encoding=None)

	
New in version 2015.8.0.

Return a list of tags

	cwd
	The path to the git checkout

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Examples:

salt myminion git.list_tags /path/to/repo

	
salt.modules.git.list_worktrees(cwd, stale=False, user=None, password=None, output_encoding=None, **kwargs)

	
New in version 2015.8.0.

Returns information on worktrees

Changed in version 2015.8.4: Version 2.7.0 added the list subcommand to git-worktree(1) [http://git-scm.com/docs/git-worktree] which
provides a lot of additional information. The return data has been
changed to include this information, even for pre-2.7.0 versions of
git. In addition, if a worktree has a detached head, then any tags
which point to the worktree's HEAD will be included in the return data.

Note

By default, only worktrees for which the worktree directory is still
present are returned, but this can be changed using the all and
stale arguments (described below).

	cwd
	The path to the git checkout

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	allFalse
	If True, then return all worktrees tracked under
$GIT_DIR/worktrees, including ones for which the gitdir is no longer
present.

	staleFalse
	If True, return only worktrees whose gitdir is no longer present.

Note

Only one of all and stale can be set to True.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Examples:

salt myminion git.list_worktrees /path/to/repo
salt myminion git.list_worktrees /path/to/repo all=True
salt myminion git.list_worktrees /path/to/repo stale=True

	
salt.modules.git.ls_remote(cwd=None, remote='origin', ref=None, opts='', git_opts='', user=None, password=None, identity=None, https_user=None, https_pass=None, ignore_retcode=False, output_encoding=None, saltenv='base')

	Interface to git-ls-remote(1) [http://git-scm.com/docs/git-ls-remote]. Returns the upstream hash for a remote
reference.

	cwd
	The path to the git checkout. Optional (and ignored if present) when
remote is set to a URL instead of a remote name.

	remoteorigin
	The name of the remote to query. Can be the name of a git remote
(which exists in the git checkout defined by the cwd parameter),
or the URL of a remote repository.

Changed in version 2015.8.0: Argument renamed from repository to remote

	ref
	The name of the ref to query. Optional, if not specified, all refs are
returned. Can be a branch or tag name, or the full name of the
reference (for example, to get the hash for a Github pull request number
1234, ref can be set to refs/pull/1234/head

Changed in version 2015.8.0: Argument renamed from branch to ref

Changed in version 2015.8.4: Defaults to returning all refs instead of master.

	opts
	Any additional options to add to the command line, in a single string

New in version 2015.8.0.

	git_opts
	Any additional options to add to git command itself (not the
ls-remote subcommand), in a single string. This is useful for
passing -c to run git with temporary changes to the git
configuration.

New in version 2017.7.0.

Note

This is only supported in git 1.7.2 and newer.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	identity
	Path to a private key to use for ssh URLs

Warning

Unless Salt is invoked from the minion using salt-call, the
key(s) must be passphraseless. For greater security with
passphraseless private keys, see the sshd(8) [http://www.man7.org/linux/man-pages/man8/sshd.8.html#AUTHORIZED_KEYS_FILE_FORMAT] manpage for
information on securing the keypair from the remote side in the
authorized_keys file.

Changed in version 2015.8.7: Salt will no longer attempt to use passphrase-protected keys unless
invoked from the minion using salt-call, to prevent blocking
waiting for user input.

Key can also be specified as a SaltStack file server URL, eg. salt://location/identity_file

Changed in version 2016.3.0.

	https_user
	Set HTTP Basic Auth username. Only accepted for HTTPS URLs.

New in version 2015.5.0.

	https_pass
	Set HTTP Basic Auth password. Only accepted for HTTPS URLs.

New in version 2015.5.0.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	saltenv
	The default salt environment to pull sls files from

New in version 2016.3.1.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Example:

salt myminion git.ls_remote /path/to/repo origin master
salt myminion git.ls_remote remote=https://mydomain.tld/repo.git ref=mytag opts='--tags'

	
salt.modules.git.merge(cwd, rev=None, opts='', git_opts='', user=None, password=None, identity=None, ignore_retcode=False, output_encoding=None, **kwargs)

	Interface to git-merge(1) [http://git-scm.com/docs/git-merge]

	cwd
	The path to the git checkout

	rev
	Revision to merge into the current branch. If not specified, the remote
tracking branch will be merged.

New in version 2015.8.0.

	opts
	Any additional options to add to the command line, in a single string

Note

On the Salt CLI, if the opts are preceded with a dash, it is
necessary to precede them with opts= (as in the CLI examples
below) to avoid causing errors with Salt's own argument parsing.

	git_opts
	Any additional options to add to git command itself (not the merge
subcommand), in a single string. This is useful for passing -c to
run git with temporary changes to the git configuration.

New in version 2017.7.0.

Note

This is only supported in git 1.7.2 and newer.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	identity
	Path to a private key to use for ssh URLs. Salt will not attempt to use
passphrase-protected keys unless invoked from the minion using
salt-call, to prevent blocking waiting for user input. Key can also
be specified as a SaltStack file server URL, eg.
salt://location/identity_file.

Note

For greater security with passphraseless private keys, see the
sshd(8) [http://www.man7.org/linux/man-pages/man8/sshd.8.html#AUTHORIZED_KEYS_FILE_FORMAT] manpage for information on securing the keypair from the
remote side in the authorized_keys file.

New in version 2018.3.5,2019.2.1,3000.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Example:

Fetch first...
salt myminion git.fetch /path/to/repo
... then merge the remote tracking branch
salt myminion git.merge /path/to/repo
.. or merge another rev
salt myminion git.merge /path/to/repo rev=upstream/foo

	
salt.modules.git.merge_base(cwd, refs=None, octopus=False, is_ancestor=False, independent=False, fork_point=None, opts='', git_opts='', user=None, password=None, ignore_retcode=False, output_encoding=None, **kwargs)

	
New in version 2015.8.0.

Interface to git-merge-base(1) [http://git-scm.com/docs/git-merge-base].

	cwd
	The path to the git checkout

	refs
	Any refs/commits to check for a merge base. Can be passed as a
comma-separated list or a Python list.

	allFalse
	Return a list of all matching merge bases. Not compatible with any of
the below options except for octopus.

	octopusFalse
	If True, then this function will determine the best common
ancestors of all specified commits, in preparation for an n-way merge.
See here [http://git-scm.com/docs/git-merge-base#_discussion] for a description of how these bases are determined.

Set all to True with this option to return all computed merge
bases, otherwise only the "best" will be returned.

	is_ancestorFalse
	If True, then instead of returning the merge base, return a
boolean telling whether or not the first commit is an ancestor of the
second commit.

Note

This option requires two commits to be passed.

Changed in version 2015.8.2: Works properly in git versions older than 1.8.0, where the
--is-ancestor CLI option is not present.

	independentFalse
	If True, this function will return the IDs of the refs/commits
passed which cannot be reached by another commit.

	fork_point
	If passed, then this function will return the commit where the
commit diverged from the ref specified by fork_point. If no fork
point is found, None is returned.

Note

At most one commit is permitted to be passed if a fork_point is
specified. If no commits are passed, then HEAD is assumed.

	opts
	Any additional options to add to the command line, in a single string

Note

On the Salt CLI, if the opts are preceded with a dash, it is
necessary to precede them with opts= (as in the CLI examples
below) to avoid causing errors with Salt's own argument parsing.

This option should not be necessary unless new CLI arguments are
added to git-merge-base(1) [http://git-scm.com/docs/git-merge-base] and are not yet supported in Salt.

	git_opts
	Any additional options to add to git command itself (not the
merge-base subcommand), in a single string. This is useful for
passing -c to run git with temporary changes to the git
configuration.

New in version 2017.7.0.

Note

This is only supported in git 1.7.2 and newer.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	ignore_retcodeFalse
	if True, do not log an error to the minion log if the git command
returns a nonzero exit status.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Examples:

salt myminion git.merge_base /path/to/repo HEAD upstream/mybranch
salt myminion git.merge_base /path/to/repo 8f2e542,4ad8cab,cdc9886 octopus=True
salt myminion git.merge_base /path/to/repo refs=8f2e542,4ad8cab,cdc9886 independent=True
salt myminion git.merge_base /path/to/repo refs=8f2e542,4ad8cab is_ancestor=True
salt myminion git.merge_base /path/to/repo fork_point=upstream/master
salt myminion git.merge_base /path/to/repo refs=mybranch fork_point=upstream/master

	
salt.modules.git.merge_tree(cwd, ref1, ref2, base=None, user=None, password=None, ignore_retcode=False, output_encoding=None)

	
New in version 2015.8.0.

Interface to git-merge-tree(1) [http://git-scm.com/docs/git-merge-tree], shows the merge results and conflicts
from a 3-way merge without touching the index.

	cwd
	The path to the git checkout

	ref1
	First ref/commit to compare

	ref2
	Second ref/commit to compare

	base
	The base tree to use for the 3-way-merge. If not provided, then
git.merge_base will be invoked
on ref1 and ref2 to determine the merge base to use.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	ignore_retcodeFalse
	if True, do not log an error to the minion log if the git command
returns a nonzero exit status.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Examples:

salt myminion git.merge_tree /path/to/repo HEAD upstream/dev
salt myminion git.merge_tree /path/to/repo HEAD upstream/dev base=aaf3c3d

	
salt.modules.git.pull(cwd, opts='', git_opts='', user=None, password=None, identity=None, ignore_retcode=False, saltenv='base', output_encoding=None)

	Interface to git-pull(1) [http://git-scm.com/docs/git-pull]

	cwd
	The path to the git checkout

	opts
	Any additional options to add to the command line, in a single string

Note

On the Salt CLI, if the opts are preceded with a dash, it is
necessary to precede them with opts= (as in the CLI examples
below) to avoid causing errors with Salt's own argument parsing.

	git_opts
	Any additional options to add to git command itself (not the pull
subcommand), in a single string. This is useful for passing -c to
run git with temporary changes to the git configuration.

New in version 2017.7.0.

Note

This is only supported in git 1.7.2 and newer.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	identity
	Path to a private key to use for ssh URLs

Warning

Unless Salt is invoked from the minion using salt-call, the
key(s) must be passphraseless. For greater security with
passphraseless private keys, see the sshd(8) [http://www.man7.org/linux/man-pages/man8/sshd.8.html#AUTHORIZED_KEYS_FILE_FORMAT] manpage for
information on securing the keypair from the remote side in the
authorized_keys file.

Changed in version 2015.8.7: Salt will no longer attempt to use passphrase-protected keys unless
invoked from the minion using salt-call, to prevent blocking
waiting for user input.

Key can also be specified as a SaltStack file server URL, eg. salt://location/identity_file

Changed in version 2016.3.0.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	saltenv
	The default salt environment to pull sls files from

New in version 2016.3.1.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Example:

salt myminion git.pull /path/to/repo opts='--rebase origin master'

	
salt.modules.git.push(cwd, remote=None, ref=None, opts='', git_opts='', user=None, password=None, identity=None, ignore_retcode=False, saltenv='base', output_encoding=None, **kwargs)

	Interface to git-push(1) [http://git-scm.com/docs/git-push]

	cwd
	The path to the git checkout

	remote
	Name of the remote to which the ref should being pushed

New in version 2015.8.0.

	refmaster
	Name of the ref to push

Note

Being a refspec [http://git-scm.com/book/en/v2/Git-Internals-The-Refspec], this argument can include a colon to define local
and remote ref names.

	opts
	Any additional options to add to the command line, in a single string

Note

On the Salt CLI, if the opts are preceded with a dash, it is
necessary to precede them with opts= (as in the CLI examples
below) to avoid causing errors with Salt's own argument parsing.

	git_opts
	Any additional options to add to git command itself (not the push
subcommand), in a single string. This is useful for passing -c to
run git with temporary changes to the git configuration.

New in version 2017.7.0.

Note

This is only supported in git 1.7.2 and newer.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	identity
	Path to a private key to use for ssh URLs

Warning

Unless Salt is invoked from the minion using salt-call, the
key(s) must be passphraseless. For greater security with
passphraseless private keys, see the sshd(8) [http://www.man7.org/linux/man-pages/man8/sshd.8.html#AUTHORIZED_KEYS_FILE_FORMAT] manpage for
information on securing the keypair from the remote side in the
authorized_keys file.

Changed in version 2015.8.7: Salt will no longer attempt to use passphrase-protected keys unless
invoked from the minion using salt-call, to prevent blocking
waiting for user input.

Key can also be specified as a SaltStack file server URL, eg. salt://location/identity_file

Changed in version 2016.3.0.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	saltenv
	The default salt environment to pull sls files from

New in version 2016.3.1.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Example:

Push master as origin/master
salt myminion git.push /path/to/repo origin master
Push issue21 as upstream/develop
salt myminion git.push /path/to/repo upstream issue21:develop
Delete remote branch 'upstream/temp'
salt myminion git.push /path/to/repo upstream :temp

	
salt.modules.git.rebase(cwd, rev='master', opts='', git_opts='', user=None, password=None, ignore_retcode=False, output_encoding=None)

	Interface to git-rebase(1) [http://git-scm.com/docs/git-rebase]

	cwd
	The path to the git checkout

	revmaster
	The revision to rebase onto the current branch

	opts
	Any additional options to add to the command line, in a single string

Note

On the Salt CLI, if the opts are preceded with a dash, it is
necessary to precede them with opts= (as in the CLI examples
below) to avoid causing errors with Salt's own argument parsing.

	git_opts
	Any additional options to add to git command itself (not the rebase
subcommand), in a single string. This is useful for passing -c to
run git with temporary changes to the git configuration.

New in version 2017.7.0.

Note

This is only supported in git 1.7.2 and newer.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Example:

salt myminion git.rebase /path/to/repo master
salt myminion git.rebase /path/to/repo 'origin master'
salt myminion git.rebase /path/to/repo origin/master opts='--onto newbranch'

	
salt.modules.git.remote_get(cwd, remote='origin', user=None, password=None, redact_auth=True, ignore_retcode=False, output_encoding=None)

	Get the fetch and push URL for a specific remote

	cwd
	The path to the git checkout

	remoteorigin
	Name of the remote to query

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	redact_authTrue
	Set to False to include the username/password if the remote uses
HTTPS Basic Auth. Otherwise, this information will be redacted.

Warning

Setting this to False will not only reveal any HTTPS Basic Auth
that is configured, but the return data will also be written to the
job cache. When possible, it is recommended to use SSH for
authentication.

New in version 2015.5.6.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Examples:

salt myminion git.remote_get /path/to/repo
salt myminion git.remote_get /path/to/repo upstream

	
salt.modules.git.remote_refs(url, heads=False, tags=False, user=None, password=None, identity=None, https_user=None, https_pass=None, ignore_retcode=False, output_encoding=None, saltenv='base', **kwargs)

	
New in version 2015.8.0.

Return the remote refs for the specified URL by running git ls-remote.

	url
	URL of the remote repository

	filter
	Optionally provide a ref name to git ls-remote. This can be useful
to make this function run faster on repositories with many
branches/tags.

New in version 2019.2.0.

	headsFalse
	Restrict output to heads. Can be combined with tags.

	tagsFalse
	Restrict output to tags. Can be combined with heads.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	identity
	Path to a private key to use for ssh URLs

Warning

Unless Salt is invoked from the minion using salt-call, the
key(s) must be passphraseless. For greater security with
passphraseless private keys, see the sshd(8) [http://www.man7.org/linux/man-pages/man8/sshd.8.html#AUTHORIZED_KEYS_FILE_FORMAT] manpage for
information on securing the keypair from the remote side in the
authorized_keys file.

Changed in version 2015.8.7: Salt will no longer attempt to use passphrase-protected keys unless
invoked from the minion using salt-call, to prevent blocking
waiting for user input.

Key can also be specified as a SaltStack file server URL, eg. salt://location/identity_file

Changed in version 2016.3.0.

	https_user
	Set HTTP Basic Auth username. Only accepted for HTTPS URLs.

	https_pass
	Set HTTP Basic Auth password. Only accepted for HTTPS URLs.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

	saltenv
	The default salt environment to pull sls files from

New in version 2016.3.1.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Example:

salt myminion git.remote_refs https://github.com/saltstack/salt.git
salt myminion git.remote_refs https://github.com/saltstack/salt.git filter=develop

	
salt.modules.git.remote_set(cwd, url, remote='origin', user=None, password=None, https_user=None, https_pass=None, push_url=None, push_https_user=None, push_https_pass=None, ignore_retcode=False, output_encoding=None)

	
	cwd
	The path to the git checkout

	url
	Remote URL to set

	remoteorigin
	Name of the remote to set

	push_url
	If unset, the push URL will be identical to the fetch URL.

New in version 2015.8.0.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	https_user
	Set HTTP Basic Auth username. Only accepted for HTTPS URLs.

New in version 2015.5.0.

	https_pass
	Set HTTP Basic Auth password. Only accepted for HTTPS URLs.

New in version 2015.5.0.

	push_https_user
	Set HTTP Basic Auth user for push_url. Ignored if push_url is
unset. Only accepted for HTTPS URLs.

New in version 2015.8.0.

	push_https_pass
	Set HTTP Basic Auth password for push_url. Ignored if push_url
is unset. Only accepted for HTTPS URLs.

New in version 2015.8.0.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Examples:

salt myminion git.remote_set /path/to/repo git@github.com:user/repo.git
salt myminion git.remote_set /path/to/repo git@github.com:user/repo.git remote=upstream
salt myminion git.remote_set /path/to/repo https://github.com/user/repo.git remote=upstream push_url=git@github.com:user/repo.git

	
salt.modules.git.remotes(cwd, user=None, password=None, redact_auth=True, ignore_retcode=False, output_encoding=None)

	Get fetch and push URLs for each remote in a git checkout

	cwd
	The path to the git checkout

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	redact_authTrue
	Set to False to include the username/password for authenticated
remotes in the return data. Otherwise, this information will be
redacted.

Warning

Setting this to False will not only reveal any HTTPS Basic Auth
that is configured, but the return data will also be written to the
job cache. When possible, it is recommended to use SSH for
authentication.

New in version 2015.5.6.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Example:

salt myminion git.remotes /path/to/repo

	
salt.modules.git.reset(cwd, opts='', git_opts='', user=None, password=None, identity=None, ignore_retcode=False, output_encoding=None)

	Interface to git-reset(1) [http://git-scm.com/docs/git-reset], returns the stdout from the git command

	cwd
	The path to the git checkout

	opts
	Any additional options to add to the command line, in a single string

Note

On the Salt CLI, if the opts are preceded with a dash, it is
necessary to precede them with opts= (as in the CLI examples
below) to avoid causing errors with Salt's own argument parsing.

	git_opts
	Any additional options to add to git command itself (not the reset
subcommand), in a single string. This is useful for passing -c to
run git with temporary changes to the git configuration.

New in version 2017.7.0.

Note

This is only supported in git 1.7.2 and newer.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	identity
	Path to a private key to use for ssh URLs. Salt will not attempt to use
passphrase-protected keys unless invoked from the minion using
salt-call, to prevent blocking waiting for user input. Key can also
be specified as a SaltStack file server URL, eg.
salt://location/identity_file.

Note

For greater security with passphraseless private keys, see the
sshd(8) [http://www.man7.org/linux/man-pages/man8/sshd.8.html#AUTHORIZED_KEYS_FILE_FORMAT] manpage for information on securing the keypair from the
remote side in the authorized_keys file.

New in version 2018.3.5,2019.2.1,3000.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Examples:

Soft reset to a specific commit ID
salt myminion git.reset /path/to/repo ac3ee5c
Hard reset
salt myminion git.reset /path/to/repo opts='--hard origin/master'

	
salt.modules.git.rev_parse(cwd, rev=None, opts='', git_opts='', user=None, password=None, ignore_retcode=False, output_encoding=None)

	
New in version 2015.8.0.

Interface to git-rev-parse(1) [http://git-scm.com/docs/git-rev-parse]

	cwd
	The path to the git checkout

	rev
	Revision to parse. See the SPECIFYING REVISIONS [http://git-scm.com/docs/git-rev-parse#_specifying_revisions] section of the
git-rev-parse(1) [http://git-scm.com/docs/git-rev-parse] manpage for details on how to format this argument.

This argument is optional when using the options in the Options for
Files section of the git-rev-parse(1) [http://git-scm.com/docs/git-rev-parse] manpage.

	opts
	Any additional options to add to the command line, in a single string

	git_opts
	Any additional options to add to git command itself (not the
rev-parse subcommand), in a single string. This is useful for
passing -c to run git with temporary changes to the git
configuration.

New in version 2017.7.0.

Note

This is only supported in git 1.7.2 and newer.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Examples:

Get the full SHA1 for HEAD
salt myminion git.rev_parse /path/to/repo HEAD
Get the short SHA1 for HEAD
salt myminion git.rev_parse /path/to/repo HEAD opts='--short'
Get the develop branch's upstream tracking branch
salt myminion git.rev_parse /path/to/repo 'develop@{upstream}' opts='--abbrev-ref'
Get the SHA1 for the commit corresponding to tag v1.2.3
salt myminion git.rev_parse /path/to/repo 'v1.2.3^{commit}'
Find out whether or not the repo at /path/to/repo is a bare repository
salt myminion git.rev_parse /path/to/repo opts='--is-bare-repository'

	
salt.modules.git.revision(cwd, rev='HEAD', short=False, user=None, password=None, ignore_retcode=False, output_encoding=None)

	Returns the SHA1 hash of a given identifier (hash, branch, tag, HEAD, etc.)

	cwd
	The path to the git checkout

	revHEAD
	The revision

	shortFalse
	If True, return an abbreviated SHA1 git hash

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Example:

salt myminion git.revision /path/to/repo mybranch

	
salt.modules.git.rm_(cwd, filename, opts='', git_opts='', user=None, password=None, ignore_retcode=False, output_encoding=None)

	Interface to git-rm(1) [http://git-scm.com/docs/git-rm]

	cwd
	The path to the git checkout

	filename
	The location of the file/directory to remove, relative to cwd

Note

To remove a directory, -r must be part of the opts
parameter.

	opts
	Any additional options to add to the command line, in a single string

Note

On the Salt CLI, if the opts are preceded with a dash, it is
necessary to precede them with opts= (as in the CLI examples
below) to avoid causing errors with Salt's own argument parsing.

	git_opts
	Any additional options to add to git command itself (not the rm
subcommand), in a single string. This is useful for passing -c to
run git with temporary changes to the git configuration.

New in version 2017.7.0.

Note

This is only supported in git 1.7.2 and newer.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Examples:

salt myminion git.rm /path/to/repo foo/bar.py
salt myminion git.rm /path/to/repo foo/bar.py opts='--dry-run'
salt myminion git.rm /path/to/repo foo/baz opts='-r'

	
salt.modules.git.stash(cwd, action='save', opts='', git_opts='', user=None, password=None, ignore_retcode=False, output_encoding=None)

	Interface to git-stash(1) [http://git-scm.com/docs/git-stash], returns the stdout from the git command

	cwd
	The path to the git checkout

	opts
	Any additional options to add to the command line, in a single string.
Use this to complete the git stash command by adding the remaining
arguments (i.e. 'save <stash comment>', 'apply stash@{2}',
'show', etc.). Omitting this argument will simply run git
stash.

	git_opts
	Any additional options to add to git command itself (not the stash
subcommand), in a single string. This is useful for passing -c to
run git with temporary changes to the git configuration.

New in version 2017.7.0.

Note

This is only supported in git 1.7.2 and newer.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Examples:

salt myminion git.stash /path/to/repo save opts='work in progress'
salt myminion git.stash /path/to/repo apply opts='stash@{1}'
salt myminion git.stash /path/to/repo drop opts='stash@{1}'
salt myminion git.stash /path/to/repo list

	
salt.modules.git.status(cwd, user=None, password=None, ignore_retcode=False, output_encoding=None)

	
Changed in version 2015.8.0: Return data has changed from a list of lists to a dictionary

Returns the changes to the repository

	cwd
	The path to the git checkout

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Example:

salt myminion git.status /path/to/repo

	
salt.modules.git.submodule(cwd, command, opts='', git_opts='', user=None, password=None, identity=None, ignore_retcode=False, saltenv='base', output_encoding=None, **kwargs)

	
Changed in version 2015.8.0: Added the command argument to allow for operations other than
update to be run on submodules, and deprecated the init
argument. To do a submodule update with init=True moving forward,
use command=update opts='--init'

Interface to git-submodule(1) [http://git-scm.com/docs/git-submodule]

	cwd
	The path to the submodule

	command
	Submodule command to run, see git-submodule(1) <git submodule> for
more information. Any additional arguments after the command (such as
the URL when adding a submodule) must be passed in the opts
parameter.

New in version 2015.8.0.

	opts
	Any additional options to add to the command line, in a single string

Note

On the Salt CLI, if the opts are preceded with a dash, it is
necessary to precede them with opts= (as in the CLI examples
below) to avoid causing errors with Salt's own argument parsing.

	git_opts
	Any additional options to add to git command itself (not the
submodule subcommand), in a single string. This is useful for
passing -c to run git with temporary changes to the git
configuration.

New in version 2017.7.0.

Note

This is only supported in git 1.7.2 and newer.

	initFalse
	If True, ensures that new submodules are initialized

Deprecated since version 2015.8.0: Pass init as the command parameter, or include --init
in the opts param with command set to update.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	identity
	Path to a private key to use for ssh URLs

Warning

Unless Salt is invoked from the minion using salt-call, the
key(s) must be passphraseless. For greater security with
passphraseless private keys, see the sshd(8) [http://www.man7.org/linux/man-pages/man8/sshd.8.html#AUTHORIZED_KEYS_FILE_FORMAT] manpage for
information on securing the keypair from the remote side in the
authorized_keys file.

Changed in version 2015.8.7: Salt will no longer attempt to use passphrase-protected keys unless
invoked from the minion using salt-call, to prevent blocking
waiting for user input.

Key can also be specified as a SaltStack file server URL, eg. salt://location/identity_file

Changed in version 2016.3.0.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	saltenv
	The default salt environment to pull sls files from

New in version 2016.3.1.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Example:

Update submodule and ensure it is initialized (before 2015.8.0)
salt myminion git.submodule /path/to/repo/sub/repo init=True
Update submodule and ensure it is initialized (2015.8.0 and later)
salt myminion git.submodule /path/to/repo/sub/repo update opts='--init'

Rebase submodule (2015.8.0 and later)
salt myminion git.submodule /path/to/repo/sub/repo update opts='--rebase'

Add submodule (2015.8.0 and later)
salt myminion git.submodule /path/to/repo/sub/repo add opts='https://mydomain.tld/repo.git'

Unregister submodule (2015.8.0 and later)
salt myminion git.submodule /path/to/repo/sub/repo deinit

	
salt.modules.git.symbolic_ref(cwd, ref, value=None, opts='', git_opts='', user=None, password=None, ignore_retcode=False, output_encoding=None)

	
New in version 2015.8.0.

Interface to git-symbolic-ref(1) [http://git-scm.com/docs/git-symbolic-ref]

	cwd
	The path to the git checkout

	ref
	Symbolic ref to read/modify

	value
	If passed, then the symbolic ref will be set to this value and an empty
string will be returned.

If not passed, then the ref to which ref points will be returned,
unless --delete is included in opts (in which case the symbolic
ref will be deleted).

	opts
	Any additional options to add to the command line, in a single string

	git_opts
	Any additional options to add to git command itself (not the
symbolic-refs subcommand), in a single string. This is useful for
passing -c to run git with temporary changes to the git
configuration.

New in version 2017.7.0.

Note

This is only supported in git 1.7.2 and newer.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Examples:

Get ref to which HEAD is pointing
salt myminion git.symbolic_ref /path/to/repo HEAD
Set/overwrite symbolic ref 'FOO' to local branch 'foo'
salt myminion git.symbolic_ref /path/to/repo FOO refs/heads/foo
Delete symbolic ref 'FOO'
salt myminion git.symbolic_ref /path/to/repo FOO opts='--delete'

	
salt.modules.git.tag(cwd, name, ref='HEAD', message=None, opts='', git_opts='', user=None, password=None, ignore_retcode=False, output_encoding=None)

	
New in version 2018.3.4.

Interface to git-tag(1) [http://git-scm.com/docs/git-tag], adds and removes tags.

	cwd
	The path to the main git checkout or a linked worktree

	name
	Name of the tag

	refHEAD
	Which ref to tag (defaults to local clone's HEAD)

Note

This argument is ignored when either -d or --delete is
present in the opts passed to this function.

	message
	Optional message to include with the tag. If provided, an annotated tag
will be created.

	opts
	Any additional options to add to the command line, in a single string

Note

Additionally, on the Salt CLI, if the opts are preceded with a
dash, it is necessary to precede them with opts= (as in the CLI
examples below) to avoid causing errors with Salt's own argument
parsing.

	git_opts
	Any additional options to add to git command itself (not the
worktree subcommand), in a single string. This is useful for
passing -c to run git with temporary changes to the git
configuration.

Note

This is only supported in git 1.7.2 and newer.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

CLI Example:

Create an non-annotated tag
salt myminion git.tag /path/to/repo v1.2
Create an annotated tag
salt myminion git.tag /path/to/repo v1.2 message='Version 1.2'
Delete the tag
salt myminion git.tag /path/to/repo v1.2 opts='-d'

	
salt.modules.git.version(versioninfo=False)

	
New in version 2015.8.0.

Returns the version of Git installed on the minion

	versioninfoFalse
	If True, return the version in a versioninfo list (e.g. [2, 5, 0])

CLI Example:

salt myminion git.version

	
salt.modules.git.worktree_add(cwd, worktree_path, ref=None, reset_branch=None, force=None, detach=False, opts='', git_opts='', user=None, password=None, ignore_retcode=False, output_encoding=None, **kwargs)

	
New in version 2015.8.0.

Interface to git-worktree(1) [http://git-scm.com/docs/git-worktree], adds a worktree

	cwd
	The path to the git checkout

	worktree_path
	Path to the new worktree. Can be either absolute, or relative to
cwd.

	branch
	Name of new branch to create. If omitted, will be set to the basename
of the worktree_path. For example, if the worktree_path is
/foo/bar/baz, then branch will be baz.

	ref
	Name of the ref on which to base the new worktree. If omitted, then
HEAD is use, and a new branch will be created, named for the
basename of the worktree_path. For example, if the
worktree_path is /foo/bar/baz then a new branch baz will be
created, and pointed at HEAD.

	reset_branchFalse
	If False, then git-worktree(1) [http://git-scm.com/docs/git-worktree] will fail to create the worktree
if the targeted branch already exists. Set this argument to True to
reset the targeted branch to point at ref, and checkout the
newly-reset branch into the new worktree.

	forceFalse
	By default, git-worktree(1) [http://git-scm.com/docs/git-worktree] will not permit the same branch to be
checked out in more than one worktree. Set this argument to True to
override this.

	opts
	Any additional options to add to the command line, in a single string

Note

On the Salt CLI, if the opts are preceded with a dash, it is
necessary to precede them with opts= to avoid causing errors
with Salt's own argument parsing.

All CLI options for adding worktrees as of Git 2.5.0 are already
supported by this function as of Salt 2015.8.0, so using this
argument is unnecessary unless new CLI arguments are added to
git-worktree(1) [http://git-scm.com/docs/git-worktree] and are not yet supported in Salt.

	git_opts
	Any additional options to add to git command itself (not the
worktree subcommand), in a single string. This is useful for
passing -c to run git with temporary changes to the git
configuration.

New in version 2017.7.0.

Note

This is only supported in git 1.7.2 and newer.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Examples:

salt myminion git.worktree_add /path/to/repo/main ../hotfix ref=origin/master
salt myminion git.worktree_add /path/to/repo/main ../hotfix branch=hotfix21 ref=v2.1.9.3

	
salt.modules.git.worktree_prune(cwd, dry_run=False, verbose=True, expire=None, opts='', git_opts='', user=None, password=None, ignore_retcode=False, output_encoding=None)

	
New in version 2015.8.0.

Interface to git-worktree(1) [http://git-scm.com/docs/git-worktree], prunes stale worktree administrative data
from the gitdir

	cwd
	The path to the main git checkout or a linked worktree

	dry_runFalse
	If True, then this function will report what would have been
pruned, but no changes will be made.

	verboseTrue
	Report all changes made. Set to False to suppress this output.

	expire
	Only prune unused worktree data older than a specific period of time.
The date format for this parameter is described in the documentation
for the gc.pruneWorktreesExpire config param in the
git-config(1) [http://git-scm.com/docs/git-config/2.5.1] manpage.

	opts
	Any additional options to add to the command line, in a single string

Note

On the Salt CLI, if the opts are preceded with a dash, it is
necessary to precede them with opts= to avoid causing errors
with Salt's own argument parsing.

All CLI options for pruning worktrees as of Git 2.5.0 are already
supported by this function as of Salt 2015.8.0, so using this
argument is unnecessary unless new CLI arguments are added to
git-worktree(1) [http://git-scm.com/docs/git-worktree] and are not yet supported in Salt.

	git_opts
	Any additional options to add to git command itself (not the
worktree subcommand), in a single string. This is useful for
passing -c to run git with temporary changes to the git
configuration.

New in version 2017.7.0.

Note

This is only supported in git 1.7.2 and newer.

	user
	User under which to run the git command. By default, the command is run
by the user under which the minion is running.

	password
	
Windows only. Required when specifying user. This parameter will be
ignored on non-Windows platforms.

New in version 2016.3.4.

	ignore_retcodeFalse
	If True, do not log an error to the minion log if the git command
returns a nonzero exit status.

New in version 2015.8.0.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Examples:

salt myminion git.worktree_prune /path/to/repo
salt myminion git.worktree_prune /path/to/repo dry_run=True
salt myminion git.worktree_prune /path/to/repo expire=1.day.ago

	
salt.modules.git.worktree_rm(cwd, user=None, output_encoding=None)

	
New in version 2015.8.0.

Recursively removes the worktree located at cwd, returning True if
successful. This function will attempt to determine if cwd is actually
a worktree by invoking git.is_worktree. If the path does not correspond to a
worktree, then an error will be raised and no action will be taken.

Warning

There is no undoing this action. Be VERY careful before running
this function.

	cwd
	Path to the worktree to be removed

	user
	Used for path expansion when cwd is not an absolute path. By
default, when cwd is not absolute, the path will be assumed to be
relative to the home directory of the user under which the minion is
running. Setting this option will change the home directory from which
path expansion is performed.

	output_encoding
	Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.

Note

This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.

New in version 2018.3.1.

CLI Examples:

salt myminion git.worktree_rm /path/to/worktree

salt.modules.github

Module for interacting with the GitHub v3 API.

New in version 2016.3.0.

	depends:

	PyGithub python module

Configuration

Configure this module by specifying the name of a configuration
profile in the minion config, minion pillar, or master config. The module
will use the 'github' key by default, if defined.

For example:

github:
 token: abc1234
 org_name: my_organization

 # optional: some functions require a repo_name, which
 # can be set in the config file, or passed in at the CLI.
 repo_name: my_repo

 # optional: it can be dangerous to change the privacy of a repository
 # in an automated way. set this to True to allow privacy modifications
 allow_repo_privacy_changes: False

	
salt.modules.github.add_repo(name, description=None, homepage=None, private=None, has_issues=None, has_wiki=None, has_downloads=None, auto_init=None, gitignore_template=None, license_template=None, profile='github')

	Create a new github repository.

	name
	The name of the team to be created.

	description
	The description of the repository.

	homepage
	The URL with more information about the repository.

	private
	The visiblity of the repository. Note that private repositories require
a paid GitHub account.

	has_issues
	Whether to enable issues for this repository.

	has_wiki
	Whether to enable the wiki for this repository.

	has_downloads
	Whether to enable downloads for this repository.

	auto_init
	Whether to create an initial commit with an empty README.

	gitignore_template
	The desired language or platform for a .gitignore, e.g "Haskell".

	license_template
	The desired LICENSE template to apply, e.g "mit" or "mozilla".

	profile
	The name of the profile configuration to use. Defaults to github.

CLI Example:

salt myminion github.add_repo 'repo_name'

New in version 2016.11.0.

	
salt.modules.github.add_team(name, description=None, repo_names=None, privacy=None, permission=None, profile='github')

	Create a new Github team within an organization.

	name
	The name of the team to be created.

	description
	The description of the team.

	repo_names
	The names of repositories to add the team to.

	privacy
	The level of privacy for the team, can be 'secret' or 'closed'.

	permission
	The default permission for new repositories added to the team, can be
'pull', 'push' or 'admin'.

	profile
	The name of the profile configuration to use. Defaults to github.

CLI Example:

salt myminion github.add_team 'team_name'

New in version 2016.11.0.

	
salt.modules.github.add_team_member(name, team_name, profile='github')

	Adds a team member to a team with team_name.

	name
	The name of the team member to add.

	team_name
	The name of the team of which to add the user.

	profile
	The name of the profile configuration to use. Defaults to github.

CLI Example:

salt myminion github.add_team_member 'user_name' 'team_name'

New in version 2016.11.0.

	
salt.modules.github.add_team_repo(repo_name, team_name, profile='github', permission=None)

	Adds a repository to a team with team_name.

	repo_name
	The name of the repository to add.

	team_name
	The name of the team of which to add the repository.

	profile
	The name of the profile configuration to use. Defaults to github.

	permission
	The permission for team members within the repository, can be 'pull',
'push' or 'admin'. If not specified, the default permission specified on
the team will be used.

New in version 2017.7.0.

CLI Example:

salt myminion github.add_team_repo 'my_repo' 'team_name'

New in version 2016.11.0.

	
salt.modules.github.add_user(name, profile='github')

	Add a GitHub user.

	name
	The user for which to obtain information.

	profile
	The name of the profile configuration to use. Defaults to github.

CLI Example:

salt myminion github.add_user github-handle

	
salt.modules.github.edit_repo(name, description=None, homepage=None, private=None, has_issues=None, has_wiki=None, has_downloads=None, profile='github')

	Updates an existing Github repository.

	name
	The name of the team to be created.

	description
	The description of the repository.

	homepage
	The URL with more information about the repository.

	private
	The visiblity of the repository. Note that private repositories require
a paid GitHub account.

	has_issues
	Whether to enable issues for this repository.

	has_wiki
	Whether to enable the wiki for this repository.

	has_downloads
	Whether to enable downloads for this repository.

	profile
	The name of the profile configuration to use. Defaults to github.

CLI Example:

salt myminion github.add_repo 'repo_name'

New in version 2016.11.0.

	
salt.modules.github.edit_team(name, description=None, privacy=None, permission=None, profile='github')

	Updates an existing Github team.

	name
	The name of the team to be edited.

	description
	The description of the team.

	privacy
	The level of privacy for the team, can be 'secret' or 'closed'.

	permission
	The default permission for new repositories added to the team, can be
'pull', 'push' or 'admin'.

	profile
	The name of the profile configuration to use. Defaults to github.

CLI Example:

salt myminion github.edit_team 'team_name' description='Team description'

New in version 2016.11.0.

	
salt.modules.github.get_issue(issue_number, repo_name=None, profile='github', output='min')

	Return information about a single issue in a named repository.

New in version 2016.11.0.

	issue_number
	The number of the issue to retrieve.

	repo_name
	The name of the repository from which to get the issue. This argument is
required, either passed via the CLI, or defined in the configured
profile. A repo_name passed as a CLI argument will override the
repo_name defined in the configured profile, if provided.

	profile
	The name of the profile configuration to use. Defaults to github.

	output
	The amount of data returned by each issue. Defaults to min. Change
to full to see all issue output.

CLI Example:

salt myminion github.get_issue 514
salt myminion github.get_issue 514 repo_name=salt

	
salt.modules.github.get_issue_comments(issue_number, repo_name=None, profile='github', since=None, output='min')

	Return information about the comments for a given issue in a named repository.

New in version 2016.11.0.

	issue_number
	The number of the issue for which to retrieve comments.

	repo_name
	The name of the repository to which the issue belongs. This argument is
required, either passed via the CLI, or defined in the configured
profile. A repo_name passed as a CLI argument will override the
repo_name defined in the configured profile, if provided.

	profile
	The name of the profile configuration to use. Defaults to github.

	since
	Only comments updated at or after this time are returned. This is a
timestamp in ISO 8601 format: YYYY-MM-DDTHH:MM:SSZ.

	output
	The amount of data returned by each issue. Defaults to min. Change
to full to see all issue output.

CLI Example:

salt myminion github.get_issue_comments 514
salt myminion github.get_issue 514 repo_name=salt

	
salt.modules.github.get_issues(repo_name=None, profile='github', milestone=None, state='open', assignee=None, creator=None, mentioned=None, labels=None, sort='created', direction='desc', since=None, output='min', per_page=None)

	Returns information for all issues in a given repository, based on the search options.

New in version 2016.11.0.

	repo_name
	The name of the repository for which to list issues. This argument is
required, either passed via the CLI, or defined in the configured
profile. A repo_name passed as a CLI argument will override the
repo_name defined in the configured profile, if provided.

	profile
	The name of the profile configuration to use. Defaults to github.

	milestone
	The number of a GitHub milestone, or a string of either * or
none.

If a number is passed, it should refer to a milestone by its number
field. Use the github.get_milestone function to obtain a milestone's
number.

If the string * is passed, issues with any milestone are
accepted. If the string none is passed, issues without milestones
are returned.

	state
	Indicates the state of the issues to return. Can be either open,
closed, or all. Default is open.

	assignee
	Can be the name of a user. Pass in none (as a string) for issues
with no assigned user or * for issues assigned to any user.

	creator
	The user that created the issue.

	mentioned
	A user that's mentioned in the issue.

	labels
	A string of comma separated label names. For example, bug,ui,@high.

	sort
	What to sort results by. Can be either created, updated, or
comments. Default is created.

	direction
	The direction of the sort. Can be either asc or desc. Default
is desc.

	since
	Only issues updated at or after this time are returned. This is a
timestamp in ISO 8601 format: YYYY-MM-DDTHH:MM:SSZ.

	output
	The amount of data returned by each issue. Defaults to min. Change
to full to see all issue output.

	per_page
	GitHub paginates data in their API calls. Use this value to increase or
decrease the number of issues gathered from GitHub, per page. If not set,
GitHub defaults are used. Maximum is 100.

CLI Example:

salt myminion github.get_issues my-github-repo

	
salt.modules.github.get_milestone(number=None, name=None, repo_name=None, profile='github', output='min')

	Return information about a single milestone in a named repository.

New in version 2016.11.0.

	number
	The number of the milestone to retrieve. If provided, this option
will be favored over name.

	name
	The name of the milestone to retrieve.

	repo_name
	The name of the repository for which to list issues. This argument is
required, either passed via the CLI, or defined in the configured
profile. A repo_name passed as a CLI argument will override the
repo_name defined in the configured profile, if provided.

	profile
	The name of the profile configuration to use. Defaults to github.

	output
	The amount of data returned by each issue. Defaults to min. Change
to full to see all issue output.

CLI Example:

salt myminion github.get_milestone 72
salt myminion github.get_milestone name=my_milestone

	
salt.modules.github.get_milestones(repo_name=None, profile='github', state='open', sort='due_on', direction='asc', output='min', per_page=None)

	Return information about milestones for a given repository.

New in version 2016.11.0.

	repo_name
	The name of the repository for which to list issues. This argument is
required, either passed via the CLI, or defined in the configured
profile. A repo_name passed as a CLI argument will override the
repo_name defined in the configured profile, if provided.

	profile
	The name of the profile configuration to use. Defaults to github.

	state
	The state of the milestone. Either open, closed, or all.
Default is open.

	sort
	What to sort results by. Either due_on or completeness. Default
is due_on.

	direction
	The direction of the sort. Either asc or desc. Default is asc.

	output
	The amount of data returned by each issue. Defaults to min. Change
to full to see all issue output.

	per_page
	GitHub paginates data in their API calls. Use this value to increase or
decrease the number of issues gathered from GitHub, per page. If not set,
GitHub defaults are used.

CLI Example:

salt myminion github.get_milestones

	
salt.modules.github.get_prs(repo_name=None, profile='github', state='open', head=None, base=None, sort='created', direction='desc', output='min', per_page=None)

	Returns information for all pull requests in a given repository, based on
the search options provided.

New in version 2017.7.0.

	repo_name
	The name of the repository for which to list pull requests. This
argument is required, either passed via the CLI, or defined in the
configured profile. A repo_name passed as a CLI argument will
override the repo_name defined in the configured profile, if
provided.

	profile
	The name of the profile configuration to use. Defaults to github.

	state
	Indicates the state of the pull requests to return. Can be either
open, closed, or all. Default is open.

	head
	Filter pull requests by head user and branch name in the format of
user:ref-name. Example: 'github:new-script-format'. Default
is None.

	base
	Filter pulls by base branch name. Example: gh-pages. Default is
None.

	sort
	What to sort results by. Can be either created, updated,
popularity (comment count), or long-running (age, filtering
by pull requests updated within the last month). Default is created.

	direction
	The direction of the sort. Can be either asc or desc. Default
is desc.

	output
	The amount of data returned by each pull request. Defaults to min.
Change to full to see all pull request output.

	per_page
	GitHub paginates data in their API calls. Use this value to increase or
decrease the number of pull requests gathered from GitHub, per page. If
not set, GitHub defaults are used. Maximum is 100.

CLI Example:

salt myminion github.get_prs
salt myminion github.get_prs base=2016.11

	
salt.modules.github.get_repo_info(repo_name, profile='github', ignore_cache=False)

	Return information for a given repo.

New in version 2016.11.0.

	repo_name
	The name of the repository.

	profile
	The name of the profile configuration to use. Defaults to github.

CLI Example:

salt myminion github.get_repo_info salt
salt myminion github.get_repo_info salt profile='my-github-profile'

	
salt.modules.github.get_repo_teams(repo_name, profile='github')

	Return teams belonging to a repository.

New in version 2017.7.0.

	repo_name
	The name of the repository from which to retrieve teams.

	profile
	The name of the profile configuration to use. Defaults to github.

CLI Example:

salt myminion github.get_repo_teams salt
salt myminion github.get_repo_teams salt profile='my-github-profile'

	
salt.modules.github.get_team(name, profile='github')

	Returns the team details if a team with the given name exists, or None
otherwise.

	name
	The team name for which to obtain information.

	profile
	The name of the profile configuration to use. Defaults to github.

CLI Example:

salt myminion github.get_team 'team_name'

	
salt.modules.github.get_user(name, profile='github', user_details=False)

	Get a GitHub user by name.

	name
	The user for which to obtain information.

	profile
	The name of the profile configuration to use. Defaults to github.

	user_details
	Prints user information details. Defaults to False. If the user is
already in the organization and user_details is set to False, the
get_user function returns True. If the user is not already present
in the organization, user details will be printed by default.

CLI Example:

salt myminion github.get_user github-handle
salt myminion github.get_user github-handle user_details=true

	
salt.modules.github.is_team_member(name, team_name, profile='github')

	Returns True if the github user is in the team with team_name, or False
otherwise.

	name
	The name of the user whose membership to check.

	team_name
	The name of the team to check membership in.

	profile
	The name of the profile configuration to use. Defaults to github.

CLI Example:

salt myminion github.is_team_member 'user_name' 'team_name'

New in version 2016.11.0.

	
salt.modules.github.list_members_without_mfa(profile='github', ignore_cache=False)

	List all members (in lower case) without MFA turned on.

	profile
	The name of the profile configuration to use. Defaults to github.

	ignore_cache
	Bypasses the use of cached team repos.

CLI Example:

salt myminion github.list_members_without_mfa

New in version 2016.11.0.

	
salt.modules.github.list_private_repos(profile='github')

	List private repositories within the organization. Dependent upon the access
rights of the profile token.

New in version 2016.11.0.

	profile
	The name of the profile configuration to use. Defaults to github.

CLI Example:

salt myminion github.list_private_repos
salt myminion github.list_private_repos profile='my-github-profile'

	
salt.modules.github.list_public_repos(profile='github')

	List public repositories within the organization.

New in version 2016.11.0.

	profile
	The name of the profile configuration to use. Defaults to github.

CLI Example:

salt myminion github.list_public_repos
salt myminion github.list_public_repos profile='my-github-profile'

	
salt.modules.github.list_repos(profile='github')

	List all repositories within the organization. Includes public and private
repositories within the organization Dependent upon the access rights of
the profile token.

New in version 2016.11.0.

	profile
	The name of the profile configuration to use. Defaults to github.

CLI Example:

salt myminion github.list_repos
salt myminion github.list_repos profile='my-github-profile'

	
salt.modules.github.list_team_members(team_name, profile='github', ignore_cache=False)

	Gets the names of team members in lower case.

	team_name
	The name of the team from which to list members.

	profile
	The name of the profile configuration to use. Defaults to github.

	ignore_cache
	Bypasses the use of cached team members.

CLI Example:

salt myminion github.list_team_members 'team_name'

New in version 2016.11.0.

	
salt.modules.github.list_team_repos(team_name, profile='github', ignore_cache=False)

	Gets the repo details for a given team as a dict from repo_name to repo details.
Note that repo names are always in lower case.

	team_name
	The name of the team from which to list repos.

	profile
	The name of the profile configuration to use. Defaults to github.

	ignore_cache
	Bypasses the use of cached team repos.

CLI Example:

salt myminion github.list_team_repos 'team_name'

New in version 2016.11.0.

	
salt.modules.github.list_teams(profile='github', ignore_cache=False)

	Lists all teams with the organization.

	profile
	The name of the profile configuration to use. Defaults to github.

	ignore_cache
	Bypasses the use of cached teams.

CLI Example:

salt myminion github.list_teams

New in version 2016.11.0.

	
salt.modules.github.list_users(profile='github', ignore_cache=False)

	List all users within the organization.

	profile
	The name of the profile configuration to use. Defaults to github.

	ignore_cache
	Bypasses the use of cached users.

New in version 2016.11.0.

CLI Example:

salt myminion github.list_users
salt myminion github.list_users profile='my-github-profile'

	
salt.modules.github.remove_repo(name, profile='github')

	Remove a Github repository.

	name
	The name of the repository to be removed.

	profile
	The name of the profile configuration to use. Defaults to github.

CLI Example:

salt myminion github.remove_repo 'my-repo'

New in version 2016.11.0.

	
salt.modules.github.remove_team(name, profile='github')

	Remove a github team.

	name
	The name of the team to be removed.

	profile
	The name of the profile configuration to use. Defaults to github.

CLI Example:

salt myminion github.remove_team 'team_name'

New in version 2016.11.0.

	
salt.modules.github.remove_team_member(name, team_name, profile='github')

	Removes a team member from a team with team_name.

	name
	The name of the team member to remove.

	team_name
	The name of the team from which to remove the user.

	profile
	The name of the profile configuration to use. Defaults to github.

CLI Example:

salt myminion github.remove_team_member 'user_name' 'team_name'

New in version 2016.11.0.

	
salt.modules.github.remove_team_repo(repo_name, team_name, profile='github')

	Removes a repository from a team with team_name.

	repo_name
	The name of the repository to remove.

	team_name
	The name of the team of which to remove the repository.

	profile
	The name of the profile configuration to use. Defaults to github.

CLI Example:

salt myminion github.remove_team_repo 'my_repo' 'team_name'

New in version 2016.11.0.

	
salt.modules.github.remove_user(name, profile='github')

	Remove a Github user by name.

	name
	The user for which to obtain information.

	profile
	The name of the profile configuration to use. Defaults to github.

CLI Example:

salt myminion github.remove_user github-handle

salt.modules.glanceng

Glance module for interacting with OpenStack Glance

New in version 2018.3.0.

:depends:shade

Example configuration

glance:
 cloud: default

glance:
 auth:
 username: admin
 password: password123
 user_domain_name: mydomain
 project_name: myproject
 project_domain_name: myproject
 auth_url: https://example.org:5000/v3
 identity_api_version: 3

	
salt.modules.glanceng.compare_changes(obj, **kwargs)

	Compare two dicts returning only keys that exist in the first dict and are
different in the second one

	
salt.modules.glanceng.get_openstack_cloud(auth=None)

	Return an openstack_cloud

	
salt.modules.glanceng.get_operator_cloud(auth=None)

	Return an operator_cloud

	
salt.modules.glanceng.image_create(auth=None, **kwargs)

	Create an image

CLI Example:

salt '*' glanceng.image_create name=cirros file=cirros.raw disk_format=raw
salt '*' glanceng.image_create name=cirros file=cirros.raw disk_format=raw hw_scsi_model=virtio-scsi hw_disk_bus=scsi

	
salt.modules.glanceng.image_delete(auth=None, **kwargs)

	Delete an image

CLI Example:

salt '*' glanceng.image_delete name=image1
salt '*' glanceng.image_delete name=0e4febc2a5ab4f2c8f374b054162506d

	
salt.modules.glanceng.image_get(auth=None, **kwargs)

	Get a single image

CLI Example:

salt '*' glanceng.image_get name=image1
salt '*' glanceng.image_get name=0e4febc2a5ab4f2c8f374b054162506d

	
salt.modules.glanceng.image_list(auth=None, **kwargs)

	List images

CLI Example:

salt '*' glanceng.image_list
salt '*' glanceng.image_list

	
salt.modules.glanceng.image_search(auth=None, **kwargs)

	Search for images

CLI Example:

salt '*' glanceng.image_search name=image1
salt '*' glanceng.image_search

	
salt.modules.glanceng.setup_clouds(auth=None)

	Call functions to create Shade cloud objects in __context__ to take
advantage of Shade's in-memory caching across several states

	
salt.modules.glanceng.update_image_properties(auth=None, **kwargs)

	Update properties for an image

CLI Example:

salt '*' glanceng.update_image_properties name=image1 hw_scsi_model=virtio-scsi hw_disk_bus=scsi
salt '*' glanceng.update_image_properties name=0e4febc2a5ab4f2c8f374b054162506d min_ram=1024

salt.modules.glassfish

Module for working with the Glassfish/Payara 4.x management API
.. versionadded:: 2016.11.0
:depends: requests

	
salt.modules.glassfish.create_admin_object_resource(name, server=None, **kwargs)

	Create a JMS destination

	
salt.modules.glassfish.create_connector_c_pool(name, server=None, **kwargs)

	Create a connection pool

	
salt.modules.glassfish.create_connector_resource(name, server=None, **kwargs)

	Create a connection resource

	
salt.modules.glassfish.create_jdbc_connection_pool(name, server=None, **kwargs)

	Create a connection resource

	
salt.modules.glassfish.create_jdbc_resource(name, server=None, **kwargs)

	Create a JDBC resource

	
salt.modules.glassfish.delete_admin_object_resource(name, target='server', server=None)

	Delete a JMS destination

	
salt.modules.glassfish.delete_connector_c_pool(name, target='server', cascade=True, server=None)

	Delete a connection pool

	
salt.modules.glassfish.delete_connector_resource(name, target='server', server=None)

	Delete a connection resource

	
salt.modules.glassfish.delete_jdbc_connection_pool(name, target='server', cascade=False, server=None)

	Delete a JDBC pool

	
salt.modules.glassfish.delete_jdbc_resource(name, target='server', server=None)

	Delete a JDBC resource

	
salt.modules.glassfish.delete_system_properties(name, server=None)

	Delete a system property

	
salt.modules.glassfish.enum_admin_object_resource(server=None)

	Enum JMS destinations

	
salt.modules.glassfish.enum_connector_c_pool(server=None)

	Enum connection pools

	
salt.modules.glassfish.enum_connector_resource(server=None)

	Enum connection resources

	
salt.modules.glassfish.enum_jdbc_connection_pool(server=None)

	Enum JDBC pools

	
salt.modules.glassfish.enum_jdbc_resource(server=None)

	Enum JDBC resources

	
salt.modules.glassfish.get_admin_object_resource(name, server=None)

	Get a specific JMS destination

	
salt.modules.glassfish.get_connector_c_pool(name, server=None)

	Get a specific connection pool

	
salt.modules.glassfish.get_connector_resource(name, server=None)

	Get a specific connection resource

	
salt.modules.glassfish.get_jdbc_connection_pool(name, server=None)

	Get a specific JDBC pool

	
salt.modules.glassfish.get_jdbc_resource(name, server=None)

	Get a specific JDBC resource

	
salt.modules.glassfish.get_system_properties(server=None)

	Get system properties

	
salt.modules.glassfish.update_admin_object_resource(name, server=None, **kwargs)

	Update a JMS destination

	
salt.modules.glassfish.update_connector_c_pool(name, server=None, **kwargs)

	Update a connection pool

	
salt.modules.glassfish.update_connector_resource(name, server=None, **kwargs)

	Update a connection resource

	
salt.modules.glassfish.update_jdbc_connection_pool(name, server=None, **kwargs)

	Update a JDBC pool

	
salt.modules.glassfish.update_jdbc_resource(name, server=None, **kwargs)

	Update a JDBC resource

	
salt.modules.glassfish.update_system_properties(data, server=None)

	Update system properties

salt.modules.glusterfs

Manage a glusterfs pool

	
salt.modules.glusterfs.add_volume_bricks(name, bricks)

	Add brick(s) to an existing volume

	name
	Volume name

	bricks
	List of bricks to add to the volume

CLI Example:

salt '*' glusterfs.add_volume_bricks <volume> <bricks>

	
salt.modules.glusterfs.create_volume(name, bricks, stripe=False, replica=False, device_vg=False, transport='tcp', start=False, force=False, arbiter=False)

	Create a glusterfs volume

	name
	Name of the gluster volume

	bricks
	Bricks to create volume from, in <peer>:<brick path> format. For multiple bricks use list format: '["<peer1>:<brick1>", "<peer2>:<brick2>"]'

	stripe
	Stripe count, the number of bricks should be a multiple of the stripe count for a distributed striped volume

	replica
	Replica count, the number of bricks should be a multiple of the replica count for a distributed replicated volume

	arbiter
	If true, specifies volume should use arbiter brick(s). Valid configuration limited to "replica 3 arbiter 1" per Gluster documentation. Every third brick in the brick list is used as an arbiter brick.

New in version 2019.2.0.

	device_vg
	If true, specifies volume should use block backend instead of regular posix backend. Block device backend volume does not support multiple bricks

	transport
	Transport protocol to use, can be 'tcp', 'rdma' or 'tcp,rdma'

	start
	Start the volume after creation

	force
	Force volume creation, this works even if creating in root FS

CLI Examples:

salt host1 glusterfs.create newvolume host1:/brick

salt gluster1 glusterfs.create vol2 '["gluster1:/export/vol2/brick", "gluster2:/export/vol2/brick"]' replica=2 start=True

	
salt.modules.glusterfs.delete_volume(target, stop=True)

	Deletes a gluster volume

	target
	Volume to delete

	stopTrue
	If True, stop volume before delete

CLI Example:

salt '*' glusterfs.delete_volume <volume>

	
salt.modules.glusterfs.disable_quota_volume(name)

	Disable quota on a glusterfs volume.

	name
	Name of the gluster volume

CLI Example:

salt '*' glusterfs.disable_quota_volume <volume>

	
salt.modules.glusterfs.enable_quota_volume(name)

	Enable quota on a glusterfs volume.

	name
	Name of the gluster volume

CLI Example:

salt '*' glusterfs.enable_quota_volume <volume>

	
salt.modules.glusterfs.get_max_op_version()

	
New in version 2019.2.0.

Returns the glusterfs volume's max op-version value
Requires Glusterfs version > 3.9

CLI Example:

salt '*' glusterfs.get_max_op_version

	
salt.modules.glusterfs.get_op_version(name)

	
New in version 2019.2.0.

Returns the glusterfs volume op-version

	name
	Name of the glusterfs volume

CLI Example:

salt '*' glusterfs.get_op_version <volume>

	
salt.modules.glusterfs.get_version()

	
New in version 2019.2.0.

Returns the version of glusterfs.

CLI Example:

salt '*' glusterfs.get_version

	
salt.modules.glusterfs.info(name=None)

	
New in version 2015.8.4.

Return gluster volume info.

	name
	Optional name to retrieve only information of one volume

CLI Example:

salt '*' glusterfs.info

	
salt.modules.glusterfs.list_quota_volume(name)

	List quotas of glusterfs volume

	name
	Name of the gluster volume

CLI Example:

salt '*' glusterfs.list_quota_volume <volume>

	
salt.modules.glusterfs.list_volumes()

	List configured volumes

CLI Example:

salt '*' glusterfs.list_volumes

	
salt.modules.glusterfs.peer(name)

	Add another node into the peer list.

	name
	The remote host to probe.

CLI Example:

salt 'one.gluster.*' glusterfs.peer two

GLUSTER direct CLI example (to show what salt is sending to gluster):

$ gluster peer probe ftp2

	GLUSTER CLI 3.4.4 return example (so we know what we are parsing):
	#if the "peer" is the local host:
peer probe: success: on localhost not needed

#if the peer was just added:
peer probe: success

#if the peer was already part of the cluster:
peer probe: success: host ftp2 port 24007 already in peer list

	
salt.modules.glusterfs.peer_status()

	Return peer status information

The return value is a dictionary with peer UUIDs as keys and dicts of peer
information as values. Hostnames are listed in one list. GlusterFS separates
one of the hostnames but the only reason for this seems to be which hostname
happens to be used first in peering.

CLI Example:

salt '*' glusterfs.peer_status

GLUSTER direct CLI example (to show what salt is sending to gluster):

$ gluster peer status

GLUSTER CLI 3.4.4 return example (so we know what we are parsing):

Number of Peers: 2

Hostname: ftp2
Port: 24007
Uuid: cbcb256b-e66e-4ec7-a718-21082d396c24
State: Peer in Cluster (Connected)

Hostname: ftp3
Uuid: 5ea10457-6cb2-427b-a770-7897509625e9
State: Peer in Cluster (Connected)

	
salt.modules.glusterfs.set_op_version(version)

	
New in version 2019.2.0.

Set the glusterfs volume op-version

	version
	Version to set the glusterfs volume op-version

CLI Example:

salt '*' glusterfs.set_op_version <volume>

	
salt.modules.glusterfs.set_quota_volume(name, path, size, enable_quota=False)

	Set quota to glusterfs volume.

	name
	Name of the gluster volume

	path
	Folder path for restriction in volume ("/")

	size
	Hard-limit size of the volume (MB/GB)

	enable_quota
	Enable quota before set up restriction

CLI Example:

salt '*' glusterfs.set_quota_volume <volume> <path> <size> enable_quota=True

	
salt.modules.glusterfs.start_volume(name, force=False)

	Start a gluster volume

	name
	Volume name

	force
	Force the volume start even if the volume is started
.. versionadded:: 2015.8.4

CLI Example:

salt '*' glusterfs.start mycluster

	
salt.modules.glusterfs.status(name)

	Check the status of a gluster volume.

	name
	Volume name

CLI Example:

salt '*' glusterfs.status myvolume

	
salt.modules.glusterfs.stop_volume(name, force=False)

	Stop a gluster volume

	name
	Volume name

	force
	Force stop the volume

New in version 2015.8.4.

CLI Example:

salt '*' glusterfs.stop_volume mycluster

	
salt.modules.glusterfs.unset_quota_volume(name, path)

	Unset quota on glusterfs volume

	name
	Name of the gluster volume

	path
	Folder path for restriction in volume

CLI Example:

salt '*' glusterfs.unset_quota_volume <volume> <path>

salt.modules.gnomedesktop

GNOME implementations

	
salt.modules.gnomedesktop.get(schema=None, key=None, user=None, **kwargs)

	Get key in a particular GNOME schema

CLI Example:

salt '*' gnome.get user=<username> schema=org.gnome.desktop.screensaver key=idle-activation-enabled

	
salt.modules.gnomedesktop.getClockFormat(**kwargs)

	Return the current clock format, either 12h or 24h format.

CLI Example:

salt '*' gnome.getClockFormat user=<username>

	
salt.modules.gnomedesktop.getClockShowDate(**kwargs)

	Return the current setting, if the date is shown in the clock

CLI Example:

salt '*' gnome.getClockShowDate user=<username>

	
salt.modules.gnomedesktop.getIdleActivation(**kwargs)

	Get whether the idle activation is enabled

CLI Example:

salt '*' gnome.getIdleActivation user=<username>

	
salt.modules.gnomedesktop.getIdleDelay(**kwargs)

	Return the current idle delay setting in seconds

CLI Example:

salt '*' gnome.getIdleDelay user=<username>

	
salt.modules.gnomedesktop.ping(**kwargs)

	A test to ensure the GNOME module is loaded

CLI Example:

salt '*' gnome.ping user=<username>

	
salt.modules.gnomedesktop.setClockFormat(clockFormat, **kwargs)

	Set the clock format, either 12h or 24h format.

CLI Example:

salt '*' gnome.setClockFormat <12h|24h> user=<username>

	
salt.modules.gnomedesktop.setClockShowDate(kvalue, **kwargs)

	Set whether the date is visible in the clock

CLI Example:

salt '*' gnome.setClockShowDate <True|False> user=<username>

	
salt.modules.gnomedesktop.setIdleActivation(kvalue, **kwargs)

	Set whether the idle activation is enabled

CLI Example:

salt '*' gnome.setIdleActivation <True|False> user=<username>

	
salt.modules.gnomedesktop.setIdleDelay(delaySeconds, **kwargs)

	Set the current idle delay setting in seconds

CLI Example:

salt '*' gnome.setIdleDelay <seconds> user=<username>

	
salt.modules.gnomedesktop.set_(schema=None, key=None, user=None, value=None, **kwargs)

	Set key in a particular GNOME schema

CLI Example:

salt '*' gnome.set user=<username> schema=org.gnome.desktop.screensaver key=idle-activation-enabled value=False

salt.modules.google_chat

Module for sending messages to google chat.

New in version 2019.2.0.

To use this module you need to configure a webhook in the google chat room
where you would like the message to be sent, see:

https://developers.google.com/hangouts/chat/how-tos/webhooks

	
salt.modules.google_chat.send_message(url, message)

	Send a message to the google chat room specified in the webhook url.

salt '*' google_chat.send_message "https://chat.googleapis.com/v1/spaces/example_space/messages?key=example_key" "This is a test message"

salt.modules.gpg

Manage GPG keychains, add keys, create keys, retrieve keys from keyservers.
Sign, encrypt, sign plus encrypt and verify text and files.

New in version 2015.5.0.

Note

The python-gnupg library and gpg binary are required to be
installed.
Be aware that the alternate gnupg and pretty-bad-protocol
libraries are not supported.

	
class salt.modules.gpg.FixedVerify(gpg)

	This is a workaround for https://github.com/vsajip/python-gnupg/issues/214.
It ensures invalid or otherwise unverified signatures are not
merged into sig_info in any way.

https://github.com/vsajip/python-gnupg/commit/ee94a7ecc1a86484c9f02337e2bbdd05fd32b383

	
handle_status(key, value)

	Handle status messages from the gpg child process. These are lines of the format

[GNUPG:] <key> <value>

	Parameters:

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Identifies what the status message is.

	value (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Identifies additional data, which differs depending on the key.

	
salt.modules.gpg.create_key(key_type='RSA', key_length=1024, name_real='Autogenerated Key', name_comment='Generated by SaltStack', name_email=None, subkey_type=None, subkey_length=None, expire_date=None, use_passphrase=False, user=None, gnupghome=None, keyring=None)

	Create a key in the GPG keychain

Note

GPG key generation requires a lot of entropy and randomness.
Difficult to do over a remote connection, consider having
another process available which is generating randomness for
the machine. Also especially difficult on virtual machines,
consider the rng-tools [http://www.gnu.org/software/hurd/user/tlecarrour/rng-tools.html]
package.

The create_key process takes awhile so increasing the timeout
may be necessary, e.g. -t 15.

	key_type
	The type of the primary key to generate. It must be capable of signing.
'RSA' or 'DSA'.

	key_length
	The length of the primary key in bits.

	name_real
	The real name of the user identity which is represented by the key.

	name_comment
	A comment to attach to the user id.

	name_email
	An email address for the user.

	subkey_type
	The type of the secondary key to generate.

	subkey_length
	The length of the secondary key in bits.

	expire_date
	The expiration date for the primary and any secondary key.
You can specify an ISO date, A number of days/weeks/months/years,
an epoch value, or 0 for a non-expiring key.

	use_passphrase
	Whether to use a passphrase with the signing key. The passphrase is
retrieved from the Pillar key gpg_passphrase.

	user
	Which user's keychain to access, defaults to user Salt is running as.
Passing the user as salt will set the GnuPG home directory to
/etc/salt/gpgkeys.

	gnupghome
	Specify the location where the GPG keyring and related files are stored.

	keyring
	Limit the operation to this specific keyring, specified as
a local filesystem path.

New in version 3007.0.

CLI Example:

salt -t 15 '*' gpg.create_key

	
salt.modules.gpg.decrypt(user=None, text=None, filename=None, output=None, use_passphrase=False, gnupghome=None, bare=False, keyring=None)

	Decrypt a message or a file

	user
	Which user's keychain to access, defaults to user Salt is running as.
Passing the user as salt will set the GnuPG home directory to
/etc/salt/gpgkeys.

	text
	The encrypted text to decrypt.

	filename
	The path of the encrypted file to decrypt.

	output
	Instead of printing to standard out, write the output to this path.

	use_passphrase
	Whether to use a passphrase with the signing key. The passphrase is retrieved
from Pillar value gpg_passphrase.

	gnupghome
	Specify the location where the GPG keyring and related files are stored.

	bare
	If True, return the (armored) decrypted block as a string without the
standard comment/res dict.

	keyring
	Limit the operation to this specific keyring, specified as
a local filesystem path.

New in version 3007.0.

CLI Example:

salt '*' gpg.decrypt filename='/path/to/important.file.gpg'

salt '*' gpg.decrypt filename='/path/to/important.file.gpg' use_passphrase=True

	
salt.modules.gpg.delete_key(keyid=None, fingerprint=None, delete_secret=False, user=None, gnupghome=None, use_passphrase=True, keyring=None)

	Delete a key from the GPG keychain.

	keyid
	The keyid of the key to be deleted.

	fingerprint
	The fingerprint of the key to be deleted.

	delete_secret
	Whether to delete a corresponding secret key prior to deleting the public key.
Secret keys must be deleted before deleting any corresponding public keys.

	user
	Which user's keychain to access, defaults to user Salt is running as.
Passing the user as salt will set the GnuPG home directory to
/etc/salt/gpgkeys.

	gnupghome
	Specify the location where the GPG keyring and related files are stored.

	use_passphrase
	Whether to use a passphrase with the signing key. The passphrase is retrieved
from the Pillar key gpg_passphrase. Note that this defaults to True here,
contrary to the rest of the module functions that provide this parameter.

New in version 3003.

	keyring
	Limit the operation to this specific keyring, specified as
a local filesystem path.

New in version 3007.0.

CLI Example:

salt '*' gpg.delete_key keyid=3FAD9F1E

salt '*' gpg.delete_key fingerprint=53C96788253E58416D20BCD352952C84C3252192

salt '*' gpg.delete_key keyid=3FAD9F1E user=username

salt '*' gpg.delete_key keyid=3FAD9F1E user=username delete_secret=True

	
salt.modules.gpg.encrypt(user=None, recipients=None, text=None, filename=None, output=None, sign=None, use_passphrase=False, always_trust=False, gnupghome=None, bare=False, keyring=None)

	Encrypt a message or a file

	user
	Which user's keychain to access, defaults to user Salt is running as.
Passing the user as salt will set the GnuPG home directory to
/etc/salt/gpgkeys.

	recipients
	The key ID, fingerprint, user ID or email address associated with the recipients
key can be used.

	text
	The text to encrypt.

	filename
	The path of the file to encrypt.

	output
	Instead of printing to standard out, write the output to this path.

	sign
	Whether to sign, in addition to encrypt, the data. True to use
default key or fingerprint to specify a different key to sign with.

	use_passphrase
	Whether to use a passphrase with the signing key.
The passphrase is retrieved from the Pillar key gpg_passphrase.

	always_trust
	Skip key validation and assume that used keys are fully trusted.

New in version 3006.0.

	gnupghome
	Specify the location where the GPG keyring and related files are stored.

	bare
	If True, return the (armored) encrypted block as a string without
the standard comment/res dict.

	keyring
	Limit the operation to this specific keyring, specified as
a local filesystem path.

New in version 3007.0.

CLI Example:

salt '*' gpg.encrypt text='Hello there. How are you?' recipients=recipient@example.com

salt '*' gpg.encrypt filename='/path/to/important.file' recipients=recipient@example.com

salt '*' gpg.encrypt filename='/path/to/important.file' sign=True use_passphrase=True \
 recipients=recipient@example.com

	
salt.modules.gpg.export_key(keyids=None, secret=False, user=None, gnupghome=None, use_passphrase=False, output=None, bare=False, keyring=None)

	Export a key from the GPG keychain

	keyids
	The key ID(s) of the key(s) to be exported. Can be specified as a comma
separated string or a list. Anything which GnuPG itself accepts to identify a key
for example, the key ID, fingerprint, user ID or email address could be used.

	secret
	Export the secret key identified by the keyids information passed.

	user
	Which user's keychain to access, defaults to user Salt is running as.
Passing the user as salt will set the GnuPG home directory to
/etc/salt/gpgkeys.

	gnupghome
	Specify the location where the GPG keyring and related files are stored.

	use_passphrase
	Whether to use a passphrase to export the secret key.
The passphrase is retrieved from the Pillar key gpg_passphrase.

New in version 3003.

	output
	Instead of printing to standard out, write the output to this path.

New in version 3006.0.

	bare
	If True, return the (armored) exported key block as a string without the
standard comment/res dict.

New in version 3006.0.

	keyring
	Limit the operation to this specific keyring, specified as
a local filesystem path.

New in version 3007.0.

CLI Example:

salt '*' gpg.export_key keyids=3FAD9F1E

salt '*' gpg.export_key keyids=3FAD9F1E secret=True

salt '*' gpg.export_key keyids="['3FAD9F1E','3FBD8F1E']" user=username

	
salt.modules.gpg.get_key(keyid=None, fingerprint=None, user=None, gnupghome=None, keyring=None)

	Get a key from the GPG keychain

	keyid
	The key ID (short or long) of the key to be retrieved.

	fingerprint
	The fingerprint of the key to be retrieved.

	user
	Which user's keychain to access, defaults to user Salt is running as.
Passing the user as salt will set the GnuPG home directory to
/etc/salt/gpgkeys.

	gnupghome
	Specify the location where the GPG keyring and related files are stored.

	keyring
	Limit the operation to this specific keyring, specified as
a local filesystem path.

New in version 3007.0.

CLI Example:

salt '*' gpg.get_key keyid=3FAD9F1E

salt '*' gpg.get_key fingerprint=53C96788253E58416D20BCD352952C84C3252192

salt '*' gpg.get_key keyid=3FAD9F1E user=username

	
salt.modules.gpg.get_secret_key(keyid=None, fingerprint=None, user=None, gnupghome=None, keyring=None)

	Get a secret key from the GPG keychain

	keyid
	The key ID (short or long) of the key to be retrieved.

	fingerprint
	The fingerprint of the key to be retrieved.

	user
	Which user's keychain to access, defaults to user Salt is running as.
Passing the user as salt will set the GnuPG home directory to
/etc/salt/gpgkeys.

	gnupghome
	Specify the location where the GPG keyring and related files are stored.

	keyring
	Limit the operation to this specific keyring, specified as
a local filesystem path.

New in version 3007.0.

CLI Example:

salt '*' gpg.get_secret_key keyid=3FAD9F1E

salt '*' gpg.get_secret_key fingerprint=53C96788253E58416D20BCD352952C84C3252192

salt '*' gpg.get_secret_key keyid=3FAD9F1E user=username

	
salt.modules.gpg.import_key(text=None, filename=None, user=None, gnupghome=None, keyring=None)

	Import a key from text or a file

	text
	The text containing the key to import.

	filename
	The path of the file containing the key to import.

	user
	Which user's keychain to access, defaults to user Salt is running as.
Passing the user as salt will set the GnuPG home directory to
/etc/salt/gpgkeys.

	gnupghome
	Specify the location where the GPG keyring and related files are stored.

	keyring
	Limit the operation to this specific keyring, specified as
a local filesystem path.

New in version 3007.0.

CLI Example:

salt '*' gpg.import_key text='-----BEGIN PGP PUBLIC KEY BLOCK-----\n ... -----END PGP PUBLIC KEY BLOCK-----'
salt '*' gpg.import_key filename='/path/to/public-key-file'

	
salt.modules.gpg.list_keys(user=None, gnupghome=None, keyring=None)

	List keys in GPG keychain

	user
	Which user's keychain to access, defaults to user Salt is running as.
Passing the user as salt will set the GnuPG home directory to
/etc/salt/gpgkeys.

	gnupghome
	Specify the location where the GPG keyring and related files are stored.

	keyring
	Limit the operation to this specific keyring, specified as
a local filesystem path.

New in version 3007.0.

CLI Example:

salt '*' gpg.list_keys

	
salt.modules.gpg.list_secret_keys(user=None, gnupghome=None, keyring=None)

	List secret keys in GPG keychain

	user
	Which user's keychain to access, defaults to user Salt is running as.
Passing the user as salt will set the GnuPG home directory to
/etc/salt/gpgkeys.

	gnupghome
	Specify the location where the GPG keyring and related files are stored.

	keyring
	Limit the operation to this specific keyring, specified as
a local filesystem path.

New in version 3007.0.

CLI Example:

salt '*' gpg.list_secret_keys

	
salt.modules.gpg.receive_keys(keyserver=None, keys=None, user=None, gnupghome=None, keyring=None)

	Receive key(s) from keyserver and add them to the keychain

	keyserver
	Keyserver to use for searching for GPG keys, defaults to keys.openpgp.org

	keys
	The keyID(s) to retrieve from the keyserver. Can be specified as a comma
separated string or a list.

	user
	Which user's keychain to access, defaults to user Salt is running as.
Passing the user as salt will set the GnuPG home directory to
/etc/salt/gpgkeys.

	gnupghome
	Specify the location where the GPG keyring and related files are stored.

	keyring
	Limit the operation to this specific keyring, specified as
a local filesystem path.

New in version 3007.0.

CLI Example:

salt '*' gpg.receive_keys keys='3FAD9F1E'

salt '*' gpg.receive_keys keys="['3FAD9F1E','3FBD9F2E']"

salt '*' gpg.receive_keys keys=3FAD9F1E user=username

	
salt.modules.gpg.search_keys(text, keyserver=None, user=None, gnupghome=None)

	Search for keys on a keyserver

	text
	Text to search the keyserver for, e.g. email address, keyID or fingerprint.

	keyserver
	Keyserver to use for searching for GPG keys, defaults to keys.openpgp.org.

	user
	Which user's keychain to access, defaults to user Salt is running as.
Passing the user as salt will set the GnuPG home directory to
/etc/salt/gpgkeys.

	gnupghome
	Specify the location where the GPG keyring and related files are stored.

New in version 3007.0.

CLI Example:

salt '*' gpg.search_keys user@example.com

salt '*' gpg.search_keys user@example.com keyserver=keyserver.ubuntu.com

salt '*' gpg.search_keys user@example.com keyserver=keyserver.ubuntu.com user=username

	
salt.modules.gpg.sign(user=None, keyid=None, text=None, filename=None, output=None, use_passphrase=False, gnupghome=None, keyring=None)

	Sign a message or a file

	user
	Which user's keychain to access, defaults to user Salt is running as.
Passing the user as salt will set the GnuPG home directory to
/etc/salt/gpgkeys.

	keyid
	The keyid of the key to use for signing, defaults to the
first key in the secret keyring.

	text
	The text to sign.

	filename
	The path of the file to sign.

	output
	Instead of printing to standard out, write the output to this path.

	use_passphrase
	Whether to use a passphrase with the signing key. The passphrase is
retrieved from the Pillar key gpg_passphrase.

	gnupghome
	Specify the location where the GPG keyring and related files are stored.

	keyring
	Limit the operation to this specific keyring, specified as
a local filesystem path.

New in version 3007.0.

CLI Example:

salt '*' gpg.sign text='Hello there. How are you?'

salt '*' gpg.sign filename='/path/to/important.file'

salt '*' gpg.sign filename='/path/to/important.file' use_passphrase=True

	
salt.modules.gpg.trust_key(keyid=None, fingerprint=None, trust_level=None, user=None, gnupghome=None, keyring=None)

	Set the trust level for a key in the GPG keychain

	keyid
	The keyid of the key to set the trust level for.

	fingerprint
	The fingerprint of the key to set the trust level for.

	trust_level
	The trust level to set for the specified key, must be one
of the following:
expired, unknown, not_trusted, marginally, fully, ultimately

	user
	Which user's keychain to access, defaults to user Salt is running as.
Passing the user as salt will set the GnuPG home directory to
/etc/salt/gpgkeys.

	gnupghome
	Specify the location where the GPG keyring and related files are stored.

New in version 3007.0.

	keyring
	Limit the operation to this specific keyring, specified as
a local filesystem path.

New in version 3007.0.

CLI Example:

salt '*' gpg.trust_key keyid='3FAD9F1E' trust_level='marginally'
salt '*' gpg.trust_key fingerprint='53C96788253E58416D20BCD352952C84C3252192' trust_level='not_trusted'
salt '*' gpg.trust_key keys=3FAD9F1E trust_level='ultimately' user='username'

	
salt.modules.gpg.verify(text=None, user=None, filename=None, gnupghome=None, signature=None, trustmodel=None, signed_by_any=None, signed_by_all=None, keyring=None)

	Verify a message or a file

	text
	The text to verify.

	filename
	The path of the file to verify.

	user
	Which user's keychain to access, defaults to user Salt is running as.
Passing the user as salt will set the GnuPG home directory to
/etc/salt/gpgkeys.

	gnupghome
	Specify the location where the GPG keyring and related files are stored.

	signature
	Specify the path of a detached signature.

New in version 2018.3.0.

	trustmodel
	
	Explicitly define the used trust model. One of:
	
	pgp

	classic

	tofu

	tofu+pgp

	direct

	always

	auto

New in version 2019.2.0.

	signed_by_any
	A list of key fingerprints from which any valid signature
will mark verification as passed. If none of the provided
keys signed the data, verification will fail. Optional.
Note that this does not take into account trust.

New in version 3007.0.

	signed_by_all
	A list of key fingerprints whose signatures are required
for verification to pass. If a single provided key did
not sign the data, verification will fail. Optional.
Note that this does not take into account trust.

New in version 3007.0.

	keyring
	Limit the operation to this specific keyring, specified as
a local filesystem path.

New in version 3007.0.

CLI Example:

salt '*' gpg.verify text='Hello there. How are you?'
salt '*' gpg.verify filename='/path/to/important.file'
salt '*' gpg.verify filename='/path/to/important.file' trustmodel=direct

salt.modules.grafana4

Module for working with the Grafana v4 API

New in version 2017.7.0.

	depends:

	requests

	configuration:

	This module requires a configuration profile to be configured
in the minion config, minion pillar, or master config.
The module will use the 'grafana' key by default, if defined.

For example:

grafana:
 grafana_url: http://grafana.localhost
 grafana_user: admin
 grafana_password: admin
 grafana_timeout: 3

	
salt.modules.grafana4.create_datasource(orgname=None, profile='grafana', **kwargs)

	Create a new datasource in an organisation.

	name
	Name of the data source.

	type
	Type of the datasource ('graphite', 'influxdb' etc.).

	access
	Use proxy or direct.

	url
	The URL to the data source API.

	user
	Optional - user to authenticate with the data source.

	password
	Optional - password to authenticate with the data source.

	database
	Optional - database to use with the data source.

	basicAuth
	Optional - set to True to use HTTP basic auth to authenticate with the
data source.

	basicAuthUser
	Optional - HTTP basic auth username.

	basicAuthPassword
	Optional - HTTP basic auth password.

	jsonData
	Optional - additional json data to post (eg. "timeInterval").

	isDefault
	Optional - set data source as default.

	withCredentials
	Optional - Whether credentials such as cookies or auth headers should
be sent with cross-site requests.

	typeLogoUrl
	Optional - Logo to use for this datasource.

	orgname
	Name of the organization in which the data source should be created.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.create_datasource

	
salt.modules.grafana4.create_org(profile='grafana', **kwargs)

	Create a new organization.

	name
	Name of the organization.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.create_org <name>

	
salt.modules.grafana4.create_org_user(orgname=None, profile='grafana', **kwargs)

	Add user to the organization.

	loginOrEmail
	Login or email of the user.

	role
	
	Role of the user for this organization. Should be one of:
	
	Admin

	Editor

	Read Only Editor

	Viewer

	orgname
	Name of the organization in which users are added.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.create_org_user <orgname> loginOrEmail=<loginOrEmail> role=<role>

	
salt.modules.grafana4.create_update_dashboard(orgname=None, profile='grafana', **kwargs)

	Create or update a dashboard.

	dashboard
	A dict that defines the dashboard to create/update.

	overwrite
	Whether the dashboard should be overwritten if already existing.

	orgname
	Name of the organization.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.create_update_dashboard dashboard=<dashboard> overwrite=True orgname=<orgname>

	
salt.modules.grafana4.create_user(profile='grafana', **kwargs)

	Create a new user.

	login
	Login of the new user.

	password
	Password of the new user.

	email
	Email of the new user.

	name
	Optional - Full name of the new user.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.create_user login=<login> password=<password> email=<email>

	
salt.modules.grafana4.delete_dashboard(slug, orgname=None, profile='grafana')

	Delete a dashboard.

	slug
	Slug (name) of the dashboard.

	orgname
	Name of the organization.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.delete_dashboard <slug>

	
salt.modules.grafana4.delete_datasource(datasourceid, orgname=None, profile='grafana')

	Delete a datasource.

	datasourceid
	Id of the datasource.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.delete_datasource <datasource_id>

	
salt.modules.grafana4.delete_org(orgid, profile='grafana')

	Delete an organization.

	orgid
	Id of the organization.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.delete_org <org_id>

	
salt.modules.grafana4.delete_org_user(userid, orgname=None, profile='grafana')

	Remove user from the organization.

	userid
	Id of the user.

	orgname
	Name of the organization in which users are updated.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.delete_org_user <user_id> <orgname>

	
salt.modules.grafana4.delete_user(userid, profile='grafana')

	Delete a user.

	userid
	Id of the user.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.delete_user <user_id>

	
salt.modules.grafana4.delete_user_org(userid, orgid, profile='grafana')

	Remove a user from an organization.

	userid
	Id of the user.

	orgid
	Id of the organization.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.delete_user_org <user_id> <org_id>

	
salt.modules.grafana4.get_dashboard(slug, orgname=None, profile='grafana')

	Get a dashboard.

	slug
	Slug (name) of the dashboard.

	orgname
	Name of the organization.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.get_dashboard <slug>

	
salt.modules.grafana4.get_datasource(name, orgname=None, profile='grafana')

	Show a single datasource in an organisation.

	name
	Name of the datasource.

	orgname
	Name of the organization.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.get_datasource <name> <orgname>

	
salt.modules.grafana4.get_datasources(orgname=None, profile='grafana')

	List all datasources in an organisation.

	orgname
	Name of the organization.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.get_datasources <orgname>

	
salt.modules.grafana4.get_org(name, profile='grafana')

	Show a single organization.

	name
	Name of the organization.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.get_org <name>

	
salt.modules.grafana4.get_org_address(orgname=None, profile='grafana')

	Get the organization address.

	orgname
	Name of the organization in which users are updated.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.get_org_address <orgname>

	
salt.modules.grafana4.get_org_prefs(orgname=None, profile='grafana')

	Get the organization preferences.

	orgname
	Name of the organization in which users are updated.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.get_org_prefs <orgname>

	
salt.modules.grafana4.get_org_users(orgname=None, profile='grafana')

	Get the list of users that belong to the organization.

	orgname
	Name of the organization.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.get_org_users <orgname>

	
salt.modules.grafana4.get_orgs(profile='grafana')

	List all organizations.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.get_orgs

	
salt.modules.grafana4.get_user(login, profile='grafana')

	Show a single user.

	login
	Login of the user.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.get_user <login>

	
salt.modules.grafana4.get_user_data(userid, profile='grafana')

	Get user data.

	userid
	Id of the user.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.get_user_data <user_id>

	
salt.modules.grafana4.get_user_orgs(userid, profile='grafana')

	Get the list of organisations a user belong to.

	userid
	Id of the user.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.get_user_orgs <user_id>

	
salt.modules.grafana4.get_users(profile='grafana')

	List all users.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.get_users

	
salt.modules.grafana4.switch_org(orgname, profile='grafana')

	Switch the current organization.

	name
	Name of the organization to switch to.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.switch_org <name>

	
salt.modules.grafana4.update_datasource(datasourceid, orgname=None, profile='grafana', **kwargs)

	Update a datasource.

	datasourceid
	Id of the datasource.

	name
	Name of the data source.

	type
	Type of the datasource ('graphite', 'influxdb' etc.).

	access
	Use proxy or direct.

	url
	The URL to the data source API.

	user
	Optional - user to authenticate with the data source.

	password
	Optional - password to authenticate with the data source.

	database
	Optional - database to use with the data source.

	basicAuth
	Optional - set to True to use HTTP basic auth to authenticate with the
data source.

	basicAuthUser
	Optional - HTTP basic auth username.

	basicAuthPassword
	Optional - HTTP basic auth password.

	jsonData
	Optional - additional json data to post (eg. "timeInterval").

	isDefault
	Optional - set data source as default.

	withCredentials
	Optional - Whether credentials such as cookies or auth headers should
be sent with cross-site requests.

	typeLogoUrl
	Optional - Logo to use for this datasource.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.update_datasource <datasourceid>

	
salt.modules.grafana4.update_org(orgid, profile='grafana', **kwargs)

	Update an existing organization.

	orgid
	Id of the organization.

	name
	New name of the organization.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.update_org <org_id> name=<name>

	
salt.modules.grafana4.update_org_address(orgname=None, profile='grafana', **kwargs)

	Update the organization address.

	orgname
	Name of the organization in which users are updated.

	address1
	Optional - address1 of the org.

	address2
	Optional - address2 of the org.

	city
	Optional - city of the org.

	zip_code
	Optional - zip_code of the org.

	state
	Optional - state of the org.

	country
	Optional - country of the org.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.update_org_address <orgname> country=<country>

	
salt.modules.grafana4.update_org_prefs(orgname=None, profile='grafana', **kwargs)

	Update the organization preferences.

	orgname
	Name of the organization in which users are updated.

	theme
	Selected theme for the org.

	homeDashboardId
	Home dashboard for the org.

	timezone
	Timezone for the org (one of: "browser", "utc", or "").

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.update_org_prefs <orgname> theme=<theme> timezone=<timezone>

	
salt.modules.grafana4.update_org_user(userid, orgname=None, profile='grafana', **kwargs)

	Update user role in the organization.

	userid
	Id of the user.

	loginOrEmail
	Login or email of the user.

	role
	
	Role of the user for this organization. Should be one of:
	
	Admin

	Editor

	Read Only Editor

	Viewer

	orgname
	Name of the organization in which users are updated.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.update_org_user <user_id> <orgname> loginOrEmail=<loginOrEmail> role=<role>

	
salt.modules.grafana4.update_user(userid, profile='grafana', **kwargs)

	Update an existing user.

	userid
	Id of the user.

	login
	Optional - Login of the user.

	email
	Optional - Email of the user.

	name
	Optional - Full name of the user.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.update_user <user_id> login=<login> email=<email>

	
salt.modules.grafana4.update_user_password(userid, profile='grafana', **kwargs)

	Update a user password.

	userid
	Id of the user.

	password
	New password of the user.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.update_user_password <user_id> password=<password>

	
salt.modules.grafana4.update_user_permissions(userid, profile='grafana', **kwargs)

	Update a user password.

	userid
	Id of the user.

	isGrafanaAdmin
	Whether user is a Grafana admin.

	profile
	Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.

CLI Example:

salt '*' grafana4.update_user_permissions <user_id> isGrafanaAdmin=<true|false>

salt.modules.grains

Return/control aspects of the grains data

Grains set or altered with this module are stored in the 'grains'
file on the minions. By default, this file is located at: /etc/salt/grains

Note

This does NOT override any grains set in the minion config file.

	
salt.modules.grains.append(key, val, convert=False, delimiter=':')

	
New in version 0.17.0.

Append a value to a list in the grains config file. If the grain doesn't
exist, the grain key is added and the value is appended to the new grain
as a list item.

	key
	The grain key to be appended to

	val
	The value to append to the grain key

	convert
	If convert is True, convert non-list contents into a list.
If convert is False and the grain contains non-list contents, an error
is given. Defaults to False.

	delimiter
	The key can be a nested dict key. Use this parameter to
specify the delimiter you use, instead of the default :.
You can now append values to a list in nested dictionary grains. If the
list doesn't exist at this level, it will be created.

New in version 2014.7.6.

CLI Example:

salt '*' grains.append key val

	
salt.modules.grains.delkey(key, force=False)

	
New in version 2017.7.0.

Remove a grain completely from the grain system, this will remove the
grain key and value

	key
	The grain key from which to delete the value.

	force
	Force remove the grain even when it is a mapped value.
Defaults to False

CLI Example:

salt '*' grains.delkey key

	
salt.modules.grains.delval(key, destructive=False, force=False)

	
New in version 0.17.0.

Delete a grain value from the grains config file. This will just set the
grain value to None. To completely remove the grain, run grains.delkey
or pass destructive=True to grains.delval.

	key
	The grain key from which to delete the value.

	destructive
	Delete the key, too. Defaults to False.

	force
	Force remove the grain even when it is a mapped value.
Defaults to False

CLI Example:

salt '*' grains.delval key

	
salt.modules.grains.equals(key, value)

	Used to make sure the minion's grain key/value matches.

Returns True if matches otherwise False.

New in version 2017.7.0.

CLI Example:

salt '*' grains.equals fqdn <expected_fqdn>
salt '*' grains.equals systemd:version 219

	
salt.modules.grains.fetch(key, default='', delimiter=':', ordered=True)

	Attempt to retrieve the named value from grains, if the named value is not
available return the passed default. The default return is an empty string.

The value can also represent a value in a nested dict using a ":" delimiter
for the dict. This means that if a dict in grains looks like this:

{'pkg': {'apache': 'httpd'}}

To retrieve the value associated with the apache key in the pkg dict this
key can be passed:

pkg:apache

	Parameters:

	
	delimiter -- Specify an alternate delimiter to use when traversing a nested dict.
This is useful for when the desired key contains a colon. See CLI
example below for usage.

New in version 2014.7.0.

	ordered -- Outputs an ordered dict if applicable (default: True)

New in version 2016.11.0.

CLI Example:

salt '*' grains.get pkg:apache
salt '*' grains.get abc::def|ghi delimiter='|'

	
salt.modules.grains.filter_by(lookup_dict, grain='os_family', merge=None, default='default', base=None)

	
New in version 0.17.0.

Look up the given grain in a given dictionary for the current OS and return
the result

Although this may occasionally be useful at the CLI, the primary intent of
this function is for use in Jinja to make short work of creating lookup
tables for OS-specific data. For example:

{% set apache = salt['grains.filter_by']({
 'Debian': {'pkg': 'apache2', 'srv': 'apache2'},
 'RedHat': {'pkg': 'httpd', 'srv': 'httpd'},
}, default='Debian') %}

myapache:
 pkg.installed:
 - name: {{ apache.pkg }}
 service.running:
 - name: {{ apache.srv }}

Values in the lookup table may be overridden by values in Pillar. An
example Pillar to override values in the example above could be as follows:

apache:
 lookup:
 pkg: apache_13
 srv: apache

The call to filter_by() would be modified as follows to reference those
Pillar values:

{% set apache = salt['grains.filter_by']({
 ...
}, merge=salt['pillar.get']('apache:lookup')) %}

	Parameters:

	
	lookup_dict -- A dictionary, keyed by a grain, containing a value or
values relevant to systems matching that grain. For example, a key
could be the grain for an OS and the value could the name of a package
on that particular OS.

Changed in version 2016.11.0: The dictionary key could be a globbing pattern. The function will
return the corresponding lookup_dict value where grain value
matches the pattern. For example:

this will render 'got some salt' if Minion ID begins from 'salt'
salt '*' grains.filter_by '{salt*: got some salt, default: salt is not here}' id

	grain -- The name of a grain to match with the current system's
grains. For example, the value of the "os_family" grain for the current
system could be used to pull values from the lookup_dict
dictionary.

Changed in version 2016.11.0: The grain value could be a list. The function will return the
lookup_dict value for a first found item in the list matching
one of the lookup_dict keys.

	merge -- A dictionary to merge with the results of the grain selection
from lookup_dict. This allows Pillar to override the values in the
lookup_dict. This could be useful, for example, to override the
values for non-standard package names such as when using a different
Python version from the default Python version provided by the OS
(e.g., python26-mysql instead of python-mysql).

	default -- default lookup_dict's key used if the grain does not exists
or if the grain value has no match on lookup_dict. If unspecified
the value is "default".

New in version 2014.1.0.

	base -- A lookup_dict key to use for a base dictionary. The
grain-selected lookup_dict is merged over this and then finally
the merge dictionary is merged. This allows common values for
each case to be collected in the base and overridden by the grain
selection dictionary and the merge dictionary. Default is unset.

New in version 2015.5.0.

CLI Example:

salt '*' grains.filter_by '{Debian: Debheads rule, RedHat: I love my hat}'
this one will render {D: {E: I, G: H}, J: K}
salt '*' grains.filter_by '{A: B, C: {D: {E: F, G: H}}}' 'xxx' '{D: {E: I}, J: K}' 'C'
next one renders {A: {B: G}, D: J}
salt '*' grains.filter_by '{default: {A: {B: C}, D: E}, F: {A: {B: G}}, H: {D: I}}' 'xxx' '{D: J}' 'F' 'default'
next same as above when default='H' instead of 'F' renders {A: {B: C}, D: J}

	
salt.modules.grains.get(key, default='', delimiter=':', ordered=True)

	Attempt to retrieve the named value from grains, if the named value is not
available return the passed default. The default return is an empty string.

The value can also represent a value in a nested dict using a ":" delimiter
for the dict. This means that if a dict in grains looks like this:

{'pkg': {'apache': 'httpd'}}

To retrieve the value associated with the apache key in the pkg dict this
key can be passed:

pkg:apache

	Parameters:

	
	delimiter -- Specify an alternate delimiter to use when traversing a nested dict.
This is useful for when the desired key contains a colon. See CLI
example below for usage.

New in version 2014.7.0.

	ordered -- Outputs an ordered dict if applicable (default: True)

New in version 2016.11.0.

CLI Example:

salt '*' grains.get pkg:apache
salt '*' grains.get abc::def|ghi delimiter='|'

	
salt.modules.grains.has_value(key)

	Determine whether a key exists in the grains dictionary.

Given a grains dictionary that contains the following structure:

{'pkg': {'apache': 'httpd'}}

One would determine if the apache key in the pkg dict exists by:

pkg:apache

CLI Example:

salt '*' grains.has_value pkg:apache

	
salt.modules.grains.item(*args, **kwargs)

	Return one or more grains

CLI Example:

salt '*' grains.item os
salt '*' grains.item os osrelease oscodename

Sanitized CLI Example:

salt '*' grains.item host sanitize=True

	
salt.modules.grains.items(sanitize=False)

	Return all of the minion's grains

CLI Example:

salt '*' grains.items

Sanitized CLI Example:

salt '*' grains.items sanitize=True

	
salt.modules.grains.ls()

	Return a list of all available grains

CLI Example:

salt '*' grains.ls

	
salt.modules.grains.remove(key, val, delimiter=':')

	
New in version 0.17.0.

Remove a value from a list in the grains config file

	key
	The grain key to remove.

	val
	The value to remove.

	delimiter
	The key can be a nested dict key. Use this parameter to
specify the delimiter you use, instead of the default :.
You can now append values to a list in nested dictionary grains. If the
list doesn't exist at this level, it will be created.

New in version 2015.8.2.

CLI Example:

salt '*' grains.remove key val

	
salt.modules.grains.set(key, val='', force=False, destructive=False, delimiter=':')

	Set a key to an arbitrary value. It is used like setval but works
with nested keys.

This function is conservative. It will only overwrite an entry if
its value and the given one are not a list or a dict. The force
parameter is used to allow overwriting in all cases.

New in version 2015.8.0.

	Parameters:

	
	force -- Force writing over existing entry if given or existing
values are list or dict. Defaults to False.

	destructive -- If an operation results in a key being removed,
delete the key, too. Defaults to False.

	delimiter -- Specify an alternate delimiter to use when traversing a nested dict,
the default being :

CLI Example:

salt '*' grains.set 'apps:myApp:port' 2209
salt '*' grains.set 'apps:myApp' '{port: 2209}'

	
salt.modules.grains.setval(key, val, destructive=False, refresh_pillar=True)

	Set a grains value in the grains config file

	key
	The grain key to be set.

	val
	The value to set the grain key to.

	destructive
	If an operation results in a key being removed, delete the key, too.
Defaults to False.

	refresh_pillar
	Whether pillar will be refreshed.
Defaults to True.

CLI Example:

salt '*' grains.setval key val
salt '*' grains.setval key "{'sub-key': 'val', 'sub-key2': 'val2'}"

	
salt.modules.grains.setvals(grains, destructive=False, refresh_pillar=True)

	Set new grains values in the grains config file

	destructive
	If an operation results in a key being removed, delete the key, too.
Defaults to False.

	refresh_pillar
	Whether pillar will be refreshed.
Defaults to True.

CLI Example:

salt '*' grains.setvals "{'key1': 'val1', 'key2': 'val2'}"

salt.modules.groupadd

Manage groups on Linux, OpenBSD and NetBSD

Important

If you feel that Salt should be using this module to manage groups on a
minion, and it is using a different module (or gives an error similar to
'group.info' is not available), see here.

	
salt.modules.groupadd.add(name, gid=None, system=False, root=None, non_unique=False, local=False)

	
Changed in version 3006.0.

Add the specified group

	name
	Name of the new group

	gid
	Use GID for the new group

	system
	Create a system account

	root
	Directory to chroot into

	non_unique
	Allow creating groups with duplicate (non-unique) GIDs

New in version 3006.0.

	local
	Specifically add the group locally rather than through remote providers (e.g. LDAP)

New in version 3007.0.

CLI Example:

salt '*' group.add foo 3456

	
salt.modules.groupadd.adduser(name, username, root=None)

	Add a user in the group.

	name
	Name of the group to modify

	username
	Username to add to the group

	root
	Directory to chroot into

CLI Example:

salt '*' group.adduser foo bar

Verifies if a valid username 'bar' as a member of an existing group 'foo',
if not then adds it.

	
salt.modules.groupadd.chgid(name, gid, root=None, non_unique=False)

	
Changed in version 3006.0.

Change the gid for a named group

	name
	Name of the group to modify

	gid
	Change the group ID to GID

	root
	Directory to chroot into

	non_unique
	Allow modifying groups with duplicate (non-unique) GIDs

New in version 3006.0.

CLI Example:

salt '*' group.chgid foo 4376

	
salt.modules.groupadd.delete(name, root=None, local=False)

	Remove the named group

	name
	Name group to delete

	root
	Directory to chroot into

	local (Only on systems with lgroupdel available):
	Ensure the group account is removed locally ignoring global
account management (default is False).

New in version 3007.0.

CLI Example:

salt '*' group.delete foo

	
salt.modules.groupadd.deluser(name, username, root=None)

	Remove a user from the group.

	name
	Name of the group to modify

	username
	Username to delete from the group

	root
	Directory to chroot into

CLI Example:

salt '*' group.deluser foo bar

Removes a member user 'bar' from a group 'foo'. If group is not present
then returns True.

	
salt.modules.groupadd.getent(refresh=False, root=None)

	Return info on all groups

	refresh
	Force a refresh of group information

	root
	Directory to chroot into

CLI Example:

salt '*' group.getent

	
salt.modules.groupadd.info(name, root=None)

	Return information about a group

	name
	Name of the group

	root
	Directory to chroot into

CLI Example:

salt '*' group.info foo

	
salt.modules.groupadd.members(name, members_list, root=None)

	Replaces members of the group with a provided list.

	name
	Name of the group to modify

	members_list
	Username list to set into the group

	root
	Directory to chroot into

CLI Example:

salt '*' group.members foo 'user1,user2,user3,...'

	Replaces a membership list for a local group 'foo'.
	foo:x:1234:user1,user2,user3,...

salt.modules.grub_legacy

Support for GRUB Legacy

	
salt.modules.grub_legacy.conf()

	Parse GRUB conf file

CLI Example:

salt '*' grub.conf

	
salt.modules.grub_legacy.version()

	Return server version from grub --version

CLI Example:

salt '*' grub.version

salt.modules.guestfs

Interact with virtual machine images via libguestfs

	depends:

	
	libguestfs

	
salt.modules.guestfs.mount(location, access='rw', root=None)

	Mount an image

CLI Example:

salt '*' guest.mount /srv/images/fedora.qcow

	
salt.modules.guestfs.umount(name, disk=None)

	Unmount an image

CLI Example:

salt '*' guestfs.umount /mountpoint disk=/srv/images/fedora.qcow

salt.modules.hadoop

Support for hadoop

	maintainer:

	Yann Jouanin <yann.jouanin@intelunix.fr>

	maturity:

	new

	depends:

	

	platform:

	linux

	
salt.modules.hadoop.dfs(command=None, *args)

	Execute a command on DFS

CLI Example:

salt '*' hadoop.dfs ls /

	
salt.modules.hadoop.dfs_absent(path)

	Check if a file or directory is absent on the distributed FS.

CLI Example:

salt '*' hadoop.dfs_absent /some_random_file

Returns True if the file is absent

	
salt.modules.hadoop.dfs_present(path)

	Check if a file or directory is present on the distributed FS.

CLI Example:

salt '*' hadoop.dfs_present /some_random_file

Returns True if the file is present

	
salt.modules.hadoop.dfsadmin_report(arg=None)

	
New in version 2019.2.0.

Reports basic filesystem information and statistics. Optional flags may be used to filter the list of displayed DataNodes.

	arg
	[live] [dead] [decommissioning]

CLI Example:

salt '*' hadoop.dfsadmin -report

	
salt.modules.hadoop.namenode_format(force=None)

	Format a name node

salt '*' hadoop.namenode_format force=True

	
salt.modules.hadoop.version()

	Return version from hadoop version

CLI Example:

salt '*' hadoop.version

salt.modules.haproxyconn

Support for haproxy

New in version 2014.7.0.

	
salt.modules.haproxyconn.disable_server(name, backend, socket='/var/run/haproxy.sock')

	Disable server in haproxy.

	name
	Server to disable

	backend
	haproxy backend, or all backends if "*" is supplied

	socket
	haproxy stats socket, default /var/run/haproxy.sock

CLI Example:

salt '*' haproxy.disable_server db1.example.com mysql

	
salt.modules.haproxyconn.enable_server(name, backend, socket='/var/run/haproxy.sock')

	Enable Server in haproxy

	name
	Server to enable

	backend
	haproxy backend, or all backends if "*" is supplied

	socket
	haproxy stats socket, default /var/run/haproxy.sock

CLI Example:

salt '*' haproxy.enable_server web1.example.com www

	
salt.modules.haproxyconn.get_backend(backend, socket='/var/run/haproxy.sock')

	Receive information about a specific backend.

	backend
	haproxy backend

	socket
	haproxy stats socket, default /var/run/haproxy.sock

CLI Example:

salt '*' haproxy.get_backend mysql

	
salt.modules.haproxyconn.get_sessions(name, backend, socket='/var/run/haproxy.sock')

	
New in version 2016.11.0.

Get number of current sessions on server in backend (scur)

	name
	Server name

	backend
	haproxy backend

	socket
	haproxy stats socket, default /var/run/haproxy.sock

CLI Example:

salt '*' haproxy.get_sessions web1.example.com www

	
salt.modules.haproxyconn.get_weight(name, backend, socket='/var/run/haproxy.sock')

	Get server weight

	name
	Server name

	backend
	haproxy backend

	socket
	haproxy stats socket, default /var/run/haproxy.sock

CLI Example:

salt '*' haproxy.get_weight web1.example.com www

	
salt.modules.haproxyconn.list_backends(servers=True, socket='/var/run/haproxy.sock')

	List HaProxy Backends

	socket
	haproxy stats socket, default /var/run/haproxy.sock

	servers
	list backends with servers

CLI Example:

salt '*' haproxy.list_backends

	
salt.modules.haproxyconn.list_frontends(socket='/var/run/haproxy.sock')

	List HaProxy frontends

	socket
	haproxy stats socket, default /var/run/haproxy.sock

CLI Example:

salt '*' haproxy.list_frontends

	
salt.modules.haproxyconn.list_servers(backend, socket='/var/run/haproxy.sock', objectify=False)

	List servers in haproxy backend.

	backend
	haproxy backend

	socket
	haproxy stats socket, default /var/run/haproxy.sock

CLI Example:

salt '*' haproxy.list_servers mysql

	
salt.modules.haproxyconn.set_state(name, backend, state, socket='/var/run/haproxy.sock')

	Force a server's administrative state to a new state. This can be useful to
disable load balancing and/or any traffic to a server. Setting the state to
"ready" puts the server in normal mode, and the command is the equivalent of
the "enable server" command. Setting the state to "maint" disables any traffic
to the server as well as any health checks. This is the equivalent of the
"disable server" command. Setting the mode to "drain" only removes the server
from load balancing but still allows it to be checked and to accept new
persistent connections. Changes are propagated to tracking servers if any.

	name
	Server name

	backend
	haproxy backend

	state
	A string of the state to set. Must be 'ready', 'drain', or 'maint'

	socket
	haproxy stats socket, default /var/run/haproxy.sock

CLI Example:

salt '*' haproxy.set_state my_proxy_server my_backend ready

	
salt.modules.haproxyconn.set_weight(name, backend, weight=0, socket='/var/run/haproxy.sock')

	Set server weight

	name
	Server name

	backend
	haproxy backend

	weight
	Server Weight

	socket
	haproxy stats socket, default /var/run/haproxy.sock

CLI Example:

salt '*' haproxy.set_weight web1.example.com www 13

	
salt.modules.haproxyconn.show_backends(socket='/var/run/haproxy.sock')

	Show HaProxy Backends

	socket
	haproxy stats socket, default /var/run/haproxy.sock

CLI Example:

salt '*' haproxy.show_backends

	
salt.modules.haproxyconn.show_frontends(socket='/var/run/haproxy.sock')

	Show HaProxy frontends

	socket
	haproxy stats socket, default /var/run/haproxy.sock

CLI Example:

salt '*' haproxy.show_frontends

	
salt.modules.haproxyconn.wait_state(backend, server, value='up', timeout=300, socket='/var/run/haproxy.sock')

	Wait for a specific server state

	backend
	haproxy backend

	server
	targeted server

	value
	state value

	timeout
	timeout before giving up state value, default 5 min

	socket
	haproxy stats socket, default /var/run/haproxy.sock

CLI Example:

salt '*' haproxy.wait_state mysql server01 up 60

salt.modules.hashutil

A collection of hashing and encoding functions

	
salt.modules.hashutil.base64_b64decode(instr)

	Decode a base64-encoded string using the "modern" Python interface

New in version 2016.3.0.

CLI Example:

salt '*' hashutil.base64_b64decode 'Z2V0IHNhbHRlZA=='

	
salt.modules.hashutil.base64_b64encode(instr)

	Encode a string as base64 using the "modern" Python interface.

Among other possible differences, the "modern" encoder does not include
newline ('n') characters in the encoded output.

New in version 2016.3.0.

CLI Example:

salt '*' hashutil.base64_b64encode 'get salted'

	
salt.modules.hashutil.base64_decodefile(instr, outfile)

	Decode a base64-encoded string and write the result to a file

New in version 2016.3.0.

CLI Example:

salt '*' hashutil.base64_decodefile instr='Z2V0IHNhbHRlZAo=' outfile='/path/to/binary_file'

	
salt.modules.hashutil.base64_decodestring(instr)

	Decode a base64-encoded byte-like object using the "modern" Python interface

New in version 3000.

CLI Example:

salt '*' hashutil.base64_decodestring instr='Z2V0IHNhbHRlZAo='

	
salt.modules.hashutil.base64_encodefile(fname)

	Read a file from the file system and return as a base64 encoded string

New in version 2016.3.0.

Pillar example:

path:
 to:
 data: |
 {{ salt.hashutil.base64_encodefile('/path/to/binary_file') | indent(6) }}

The file.decode state function can be
used to decode this data and write it to disk.

CLI Example:

salt '*' hashutil.base64_encodefile /path/to/binary_file

	
salt.modules.hashutil.base64_encodestring(instr)

	Encode a byte-like object as base64 using the "modern" Python interface.

Among other possible differences, the "modern" encoder includes
a newline ('n') character after every 76 characters and always
at the end of the encoded byte-like object.

New in version 3000.

CLI Example:

salt '*' hashutil.base64_encodestring 'get salted'

	
salt.modules.hashutil.digest(instr, checksum='md5')

	Return a checksum digest for a string

	instr
	A string

	checksummd5
	The hashing algorithm to use to generate checksums. Valid options: md5,
sha256, sha512.

CLI Example:

salt '*' hashutil.digest 'get salted'

	
salt.modules.hashutil.digest_file(infile, checksum='md5')

	Return a checksum digest for a file

	infile
	A file path

	checksummd5
	The hashing algorithm to use to generate checksums. Wraps the
hashutil.digest execution
function.

CLI Example:

salt '*' hashutil.digest_file /path/to/file

	
salt.modules.hashutil.github_signature(string, shared_secret, challenge_hmac)

	Verify a challenging hmac signature against a string / shared-secret for
github webhooks.

New in version 2017.7.0.

Returns a boolean if the verification succeeded or failed.

CLI Example:

salt '*' hashutil.github_signature '{"ref":....} ' 'shared secret' 'sha1=bc6550fc290acf5b42283fa8deaf55cea0f8c206'

	
salt.modules.hashutil.hmac_compute(string, shared_secret)

	
New in version 3000.

Compute a HMAC SHA256 digest using a string and secret.

CLI Example:

salt '*' hashutil.hmac_compute 'get salted' 'shared secret'

	
salt.modules.hashutil.hmac_signature(string, shared_secret, challenge_hmac)

	Verify a challenging hmac signature against a string / shared-secret

New in version 2014.7.0.

Returns a boolean if the verification succeeded or failed.

CLI Example:

salt '*' hashutil.hmac_signature 'get salted' 'shared secret' 'eBWf9bstXg+NiP5AOwppB5HMvZiYMPzEM9W5YMm/AmQ='

	
salt.modules.hashutil.md5_digest(instr)

	Generate an md5 hash of a given string

New in version 2014.7.0.

CLI Example:

salt '*' hashutil.md5_digest 'get salted'

	
salt.modules.hashutil.sha256_digest(instr)

	Generate an sha256 hash of a given string

New in version 2014.7.0.

CLI Example:

salt '*' hashutil.sha256_digest 'get salted'

	
salt.modules.hashutil.sha512_digest(instr)

	Generate an sha512 hash of a given string

New in version 2014.7.0.

CLI Example:

salt '*' hashutil.sha512_digest 'get salted'

salt.modules.heat

Module for handling OpenStack Heat calls

New in version 2017.7.0.

	depends:

	
	heatclient Python module

	configuration:

	This module is not usable until the user, password, tenant, and
auth URL are specified either in a pillar or in the minion's config file.
For example:

keystone.user: admin
keystone.password: verybadpass
keystone.tenant: admin
keystone.insecure: False #(optional)
keystone.auth_url: 'http://127.0.0.1:5000/v2.0/'
Optional
keystone.region_name: 'RegionOne'

If configuration for multiple OpenStack accounts is required, they can be
set up as different configuration profiles:
For example:

openstack1:
 keystone.user: admin
 keystone.password: verybadpass
 keystone.tenant: admin
 keystone.auth_url: 'http://127.0.0.1:5000/v2.0/'

openstack2:
 keystone.user: admin
 keystone.password: verybadpass
 keystone.tenant: admin
 keystone.auth_url: 'http://127.0.0.2:5000/v2.0/'

With this configuration in place, any of the heat functions can make use of
a configuration profile by declaring it explicitly.
For example:

salt '*' heat.flavor_list profile=openstack1

	
salt.modules.heat.create_stack(name=None, template_file=None, environment=None, parameters=None, poll=0, rollback=False, timeout=60, profile=None)

	Create a stack (heat stack-create)

	name
	Name of the new stack

	template_file
	File of template

	environment
	File of environment

	parameters
	Parameter dict used to create the stack

	poll
	Poll and report events until stack complete

	rollback
	Enable rollback on create failure

	timeout
	Stack creation timeout in minutes

	profile
	Profile to build on

CLI Example:

salt '*' heat.create_stack name=mystack \
 template_file=salt://template.yaml \
 environment=salt://environment.yaml \
 parameters="{"image": "Debian 8", "flavor": "m1.small"}" \
 poll=5 rollback=False timeout=60 profile=openstack1

New in version 2017.7.5,2018.3.1: The spelling mistake in parameter enviroment was corrected to environment.
The enviroment spelling mistake has been removed in Salt 3000.

	
salt.modules.heat.delete_stack(name=None, poll=0, timeout=60, profile=None)

	Delete a stack (heat stack-delete)

	name
	Name of the stack

	poll
	Poll and report events until stack complete

	timeout
	Stack creation timeout in minute

	profile
	Profile to use

CLI Examples:

salt '*' heat.delete_stack name=mystack poll=5 \
 profile=openstack1

	
salt.modules.heat.list_stack(profile=None)

	Return a list of available stack (heat stack-list)

	profile
	Profile to use

CLI Example:

salt '*' heat.list_stack profile=openstack1

	
salt.modules.heat.show_stack(name=None, profile=None)

	Return details about a specific stack (heat stack-show)

	name
	Name of the stack

	profile
	Profile to use

CLI Example:

salt '*' heat.show_stack name=mystack profile=openstack1

	
salt.modules.heat.template_stack(name=None, profile=None)

	Return template a specific stack (heat stack-template)

	name
	Name of the stack

	profile
	Profile to use

CLI Example:

salt '*' heat.template_stack name=mystack profile=openstack1

	
salt.modules.heat.update_stack(name=None, template_file=None, environment=None, parameters=None, poll=0, rollback=False, timeout=60, profile=None)

	Update a stack (heat stack-template)

	name
	Name of the stack

	template_file
	File of template

	environment
	File of environment

	parameters
	Parameter dict used to update the stack

	poll
	Poll and report events until stack complete

	rollback
	Enable rollback on update failure

	timeout
	Stack creation timeout in minutes

	profile
	Profile to build on

CLI Example:

salt '*' heat.update_stack name=mystack \
 template_file=salt://template.yaml \
 environment=salt://environment.yaml \
 parameters="{"image": "Debian 8", "flavor": "m1.small"}" \
 poll=5 rollback=False timeout=60 profile=openstack1

New in version 2017.7.5,2018.3.1: The spelling mistake in parameter enviroment was corrected to environment.
The enviroment spelling mistake has been removed in Salt 3000.

salt.modules.helm

Interface with Helm

	depends:

	pyhelm [https://pypi.org/project/pyhelm/] Python package

Note

This module use the helm-cli. The helm-cli binary have to be present in your Salt-Minion path.

Helm-CLI vs Salt-Modules

This module is a wrapper of the helm binary.
All helm v3.0 command are implemented.

To install a chart with the helm-cli:

helm install grafana stable/grafana --wait --values /path/to/values.yaml

To install a chart with the Salt-Module:

salt '*' helm.install grafana stable/grafana values='/path/to/values.yaml' flags="['wait']"

Detailed Function Documentation

	
salt.modules.helm.completion(shell, flags=None, kvflags=None)

	Generate auto-completions script for Helm for the specified shell (bash or zsh).
Return the shell auto-completion content.

	shell
	(string) One of ['bash', 'zsh'].

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.completion bash

	
salt.modules.helm.create(name, flags=None, kvflags=None)

	Creates a chart directory along with the common files and directories used in a chart.
Return True if succeed, else the error message.

	name
	(string) The chart name to create.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.create NAME

	
salt.modules.helm.dependency_build(chart, flags=None, kvflags=None)

	Build out the charts/ directory from the Chart.lock file.
Return True if succeed, else the error message.

	chart
	(string) The chart name to build dependency.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.dependency_build CHART

	
salt.modules.helm.dependency_list(chart, flags=None, kvflags=None)

	List all of the dependencies declared in a chart.
Return chart dependencies if succeed, else the error message.

	chart
	(string) The chart name to list dependency.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.dependency_list CHART

	
salt.modules.helm.dependency_update(chart, flags=None, kvflags=None)

	Update the on-disk dependencies to mirror Chart.yaml.
Return True if succeed, else the error message.

	chart
	(string) The chart name to update dependency.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.dependency_update CHART

	
salt.modules.helm.env(flags=None, kvflags=None)

	Prints out all the environment information in use by Helm.
Return Helm environments variables if succeed, else the error message.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.env

	
salt.modules.helm.get_all(release, flags=None, kvflags=None)

	Prints a human readable collection of information about the notes, hooks, supplied values, and generated manifest file of the given release.
Return release information if succeed, else the error message.

	release
	(string) Release name to get information from.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.get_all RELEASE

	
salt.modules.helm.get_hooks(release, flags=None, kvflags=None)

	Prints a human readable collection of information about the hooks of the given release.
Return release hooks information if succeed, else the error message.

	release
	(string) Release name to get hooks information from.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.get_hooks RELEASE

	
salt.modules.helm.get_manifest(release, flags=None, kvflags=None)

	Prints a human readable collection of information about the manifest of the given release.
Return release manifest information if succeed, else the error message.

	release
	(string) Release name to get manifest information from.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.get_manifest RELEASE

	
salt.modules.helm.get_notes(release, flags=None, kvflags=None)

	Prints a human readable collection of information about the notes of the given release.
Return release notes information if succeed, else the error message.

	release
	(string) Release name to get notes information from.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.get_notes RELEASE

	
salt.modules.helm.get_values(release, flags=None, kvflags=None)

	Prints a human readable collection of information about the values of the given release.
Return release values information if succeed, else the error message.

	release
	(string) Release name to get values information from.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.get_values RELEASE

In YAML format
salt '*' helm.get_values RELEASE kvflags="{'output': 'yaml'}"

	
salt.modules.helm.help_(command, flags=None, kvflags=None)

	Provides help for any command in the application.
Return the full help if succeed, else the error message.

	command
	(string) Command to get help. ex: 'get'

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.help COMMAND

	
salt.modules.helm.history(release, flags=None, kvflags=None)

	Prints historical revisions for a given release.
Return release historic if succeed, else the error message.

	release
	(string) Release name to get history from.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.history RELEASE

In YAML format
salt '*' helm.history RELEASE kvflags="{'output': 'yaml'}"

	
salt.modules.helm.install(release, chart, values=None, version=None, namespace=None, set=None, flags=None, kvflags=None)

	Installs a chart archive.
Return True if succeed, else the error message.

	release
	(string) Release name to get values information from.

	chart
	(string) Chart name to install.

	values
	(string) Absolute path to the values.yaml file.

	version
	(string) The exact chart version to install. If this is not specified, the latest version is installed.

	namespace
	(string) The namespace scope for this request.

	set
	(string or list) Set a values on the command line.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.install RELEASE CHART

With values file.
salt '*' helm.install RELEASE CHART values='/path/to/values.yaml'

	
salt.modules.helm.lint(path, values=None, namespace=None, set=None, flags=None, kvflags=None)

	Takes a path to a chart and runs a series of tests to verify that the chart is well-formed.
Return True if succeed, else the error message.

	path
	(string) The path to the chart to lint.

	values
	(string) Absolute path to the values.yaml file.

	namespace
	(string) The namespace scope for this request.

	set
	(string or list) Set a values on the command line.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.lint PATH

	
salt.modules.helm.list_(namespace=None, flags=None, kvflags=None)

	Lists all of the releases. By default, it lists only releases that are deployed or failed.
Return the list of release if succeed, else the error message.

	namespace
	(string) The namespace scope for this request.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.list

In YAML format
salt '*' helm.list kvflags="{'output': 'yaml'}"

	
salt.modules.helm.package(chart, flags=None, kvflags=None)

	Packages a chart into a versioned chart archive file. If a path is given, this will look at that path for a chart
(which must contain a Chart.yaml file) and then package that directory.
Return True if succeed, else the error message.

	chart
	(string) Chart name to package. Can be an absolute path.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.package CHART

With destination path.
salt '*' helm.package CHART kvflags="{'destination': '/path/to/the/package'}"

	
salt.modules.helm.plugin_install(path, flags=None, kvflags=None)

	Install a Helm plugin from a url to a VCS repo or a local path.
Return True if succeed, else the error message.

	path
	(string) Path to the local plugin. Can be an url.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.plugin_install PATH

	
salt.modules.helm.plugin_list(flags=None, kvflags=None)

	List installed Helm plugins.
Return the plugin list if succeed, else the error message.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.plugin_list

	
salt.modules.helm.plugin_uninstall(plugin, flags=None, kvflags=None)

	Uninstall a Helm plugin.
Return True if succeed, else the error message.

	plugin
	(string) The plugin to uninstall.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.plugin_uninstall PLUGIN

	
salt.modules.helm.plugin_update(plugin, flags=None, kvflags=None)

	Update a Helm plugin.
Return True if succeed, else the error message.

	plugin
	(string) The plugin to update.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.plugin_update PLUGIN

	
salt.modules.helm.pull(pkg, flags=None, kvflags=None)

	Retrieve a package from a package repository, and download it locally.
Return True if succeed, else the error message.

	pkg
	(string) The package to pull. Can be url or repo/chartname.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.pull PKG

With destination path to write the chart.
salt '*' helm.pull PKG kvflags="{'destination': '/path/to/the/chart'}"

	
salt.modules.helm.repo_add(name, url, namespace=None, flags=None, kvflags=None)

	Add a chart repository.
Return True if succeed, else the error message.

	name
	(string) The local name of the repository to install. Have to be unique.

	url
	(string) The url to the repository.

	namespace
	(string) The namespace scope for this request.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.repo_add NAME URL

	
salt.modules.helm.repo_index(directory, namespace=None, flags=None, kvflags=None)

	Read the current directory and generate an index file based on the charts found.
Return True if succeed, else the error message.

	directory
	(string) The path to the index.

	namespace
	(string) The namespace scope for this request.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.index DIRECTORY

	
salt.modules.helm.repo_list(namespace=None, flags=None, kvflags=None)

	List a chart repository.
Return the repository list if succeed, else the error message.

	namespace
	(string) The namespace scope for this request.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.repo_list

In YAML format
salt '*' helm.repo_list kvflags="{'output': 'yaml'}"

	
salt.modules.helm.repo_manage(present=None, absent=None, prune=False, namespace=None, flags=None, kvflags=None)

	Manage charts repository.
Return the summery of all actions.

	present
	(list) List of repository to be present. It's a list of dict: [{'name': 'local_name', 'url': 'repository_url'}]

	absent
	(list) List of local name repository to be absent.

	prune
	(boolean - default: False) If True, all repository already present but not in the present list would be removed.

	namespace
	(string) The namespace scope for this request.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.repo_manage present="[{'name': 'LOCAL_NAME', 'url': 'REPO_URL'}]" absent="['LOCAL_NAME']"

	
salt.modules.helm.repo_remove(name, namespace=None, flags=None, kvflags=None)

	Remove a chart repository.
Return True if succeed, else the error message.

	name
	(string) The local name of the repository to remove.

	namespace
	(string) The namespace scope for this request.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.repo_remove NAME

	
salt.modules.helm.repo_update(namespace=None, flags=None, kvflags=None)

	Update all charts repository.
Return True if succeed, else the error message.

	namespace
	(string) The namespace scope for this request.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.repo_update

	
salt.modules.helm.rollback(release, revision, namespace=None, flags=None, kvflags=None)

	Rolls back a release to a previous revision.
To see release revision number, execute the history module.
Return True if succeed, else the error message.

	release
	(string) The name of the release to managed.

	revision
	(string) The revision number to roll back to.

	namespace
	(string) The namespace scope for this request.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.rollback RELEASE REVISION

In dry-run mode.
salt '*' helm.rollback RELEASE REVISION flags=['dry-run']

	
salt.modules.helm.search_hub(keyword, flags=None, kvflags=None)

	Search the Helm Hub or an instance of Monocular for Helm charts.
Return the research result if succeed, else the error message.

	keyword
	(string) The keyword to search in the hub.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.search_hub KEYWORD

In YAML format
salt '*' helm.search_hub KEYWORD kvflags="{'output': 'yaml'}"

	
salt.modules.helm.search_repo(keyword, flags=None, kvflags=None)

	Search reads through all of the repositories configured on the system, and looks for matches. Search of these
repositories uses the metadata stored on the system.
Return the research result if succeed, else the error message.

	keyword
	(string) The keyword to search in the repo.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.search_hub KEYWORD

In YAML format
salt '*' helm.search_hub KEYWORD kvflags="{'output': 'yaml'}"

	
salt.modules.helm.show_all(chart, flags=None, kvflags=None)

	Inspects a chart (directory, file, or URL) and displays all its content (values.yaml, Charts.yaml, README).
Return chart information if succeed, else the error message.

	chart
	(string) The chart to inspect.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.show_all CHART

	
salt.modules.helm.show_chart(chart, flags=None, kvflags=None)

	Inspects a chart (directory, file, or URL) and displays the contents of the Charts.yaml file.
Return chart information if succeed, else the error message.

	chart
	(string) The chart to inspect.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.show_chart CHART

	
salt.modules.helm.show_readme(chart, flags=None, kvflags=None)

	Inspects a chart (directory, file, or URL) and displays the contents of the README file.
Return chart information if succeed, else the error message.

	chart
	(string) The chart to inspect.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.show_readme CHART

	
salt.modules.helm.show_values(chart, flags=None, kvflags=None)

	Inspects a chart (directory, file, or URL) and displays the contents of the values.yaml file.
Return chart information if succeed, else the error message.

	chart
	(string) The chart to inspect.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.show_values CHART

	
salt.modules.helm.status(release, namespace=None, flags=None, kvflags=None)

	Show the status of the release.
Return the release status if succeed, else the error message.

	release
	(string) The release to status.

	namespace
	(string) The namespace scope for this request.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.status RELEASE

In YAML format
salt '*' helm.status RELEASE kvflags="{'output': 'yaml'}"

	
salt.modules.helm.template(name, chart, values=None, output_dir=None, set=None, flags=None, kvflags=None)

	Render chart templates locally and display the output.
Return the chart renderer if succeed, else the error message.

	name
	(string) The template name.

	chart
	(string) The chart to template.

	values
	(string) Absolute path to the values.yaml file.

	output_dir
	(string) Absolute path to the output directory.

	set
	(string or list) Set a values on the command line.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.template NAME CHART

With values file.
salt '*' helm.template NAME CHART values='/path/to/values.yaml' output_dir='path/to/output/dir'

	
salt.modules.helm.test(release, flags=None, kvflags=None)

	Runs the tests for a release.
Return the test result if succeed, else the error message.

	release
	(string) The release name to test.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.test RELEASE

	
salt.modules.helm.uninstall(release, namespace=None, flags=None, kvflags=None)

	Uninstall the release name.
Return True if succeed, else the error message.

	release
	(string) The name of the release to managed.

	namespace
	(string) The namespace scope for this request.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.uninstall RELEASE

In dry-run mode.
salt '*' helm.uninstall RELEASE flags=['dry-run']

	
salt.modules.helm.upgrade(release, chart, values=None, version=None, namespace=None, set=None, flags=None, kvflags=None)

	Upgrades a release to a new version of a chart.
Return True if succeed, else the error message.

	release
	(string) The name of the release to managed.

	chart
	(string) The chart to managed.

	values
	(string) Absolute path to the values.yaml file.

	version
	(string) The exact chart version to install. If this is not specified, the latest version is installed.

	namespace
	(string) The namespace scope for this request.

	set
	(string or list) Set a values on the command line.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.upgrade RELEASE CHART

In dry-run mode.
salt '*' helm.upgrade RELEASE CHART flags=['dry-run']

With values file.
salt '*' helm.upgrade RELEASE CHART values='/path/to/values.yaml'

	
salt.modules.helm.verify(path, flags=None, kvflags=None)

	Verify that the given chart has a valid provenance file.
Return True if succeed, else the error message.

	path
	(string) The path to the chart file.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.verify PATH

	
salt.modules.helm.version(flags=None, kvflags=None)

	Show the version for Helm.
Return version information if succeed, else the error message.

	flags
	(list) Flags in argument of the command without values. ex: ['help', '--help']

	kvflags
	(dict) Flags in argument of the command with values. ex: {'v': 2, '--v': 4}

CLI Example:

salt '*' helm.version

salt.modules.hg

Support for the Mercurial SCM

	
salt.modules.hg.archive(cwd, output, rev='tip', fmt=None, prefix=None, user=None)

	Export a tarball from the repository

	cwd
	The path to the Mercurial repository

	output
	The path to the archive tarball

	rev: tip
	The revision to create an archive from

	fmt: None
	Format of the resulting archive. Mercurial supports: tar,
tbz2, tgz, zip, uzip, and files formats.

	prefixNone
	Prepend <prefix>/ to every filename in the archive

	userNone
	Run hg as a user other than what the minion runs as

If prefix is not specified it defaults to the basename of the repo
directory.

CLI Example:

salt '*' hg.archive /path/to/repo output=/tmp/archive.tgz fmt=tgz

	
salt.modules.hg.clone(cwd, repository, opts=None, user=None, identity=None)

	Clone a new repository

	cwd
	The path to the Mercurial repository

	repository
	The hg URI of the repository

	optsNone
	Any additional options to add to the command line

	userNone
	Run hg as a user other than what the minion runs as

	identityNone
	Private SSH key on the minion server for authentication (ssh://)

New in version 2015.5.0.

CLI Example:

salt '*' hg.clone /path/to/repo https://bitbucket.org/birkenfeld/sphinx

	
salt.modules.hg.describe(cwd, rev='tip', user=None)

	Mimic git describe and return an identifier for the given revision

	cwd
	The path to the Mercurial repository

	rev: tip
	The path to the archive tarball

	userNone
	Run hg as a user other than what the minion runs as

CLI Example:

salt '*' hg.describe /path/to/repo

	
salt.modules.hg.pull(cwd, opts=None, user=None, identity=None, repository=None)

	Perform a pull on the given repository

	cwd
	The path to the Mercurial repository

	repositoryNone
	Perform pull from the repository different from .hg/hgrc:[paths]:default

	optsNone
	Any additional options to add to the command line

	userNone
	Run hg as a user other than what the minion runs as

	identityNone
	Private SSH key on the minion server for authentication (ssh://)

New in version 2015.5.0.

CLI Example:

salt '*' hg.pull /path/to/repo opts=-u

	
salt.modules.hg.revision(cwd, rev='tip', short=False, user=None)

	Returns the long hash of a given identifier (hash, branch, tag, HEAD, etc)

	cwd
	The path to the Mercurial repository

	rev: tip
	The revision

	short: False
	Return an abbreviated commit hash

	userNone
	Run hg as a user other than what the minion runs as

CLI Example:

salt '*' hg.revision /path/to/repo mybranch

	
salt.modules.hg.status(cwd, opts=None, user=None)

	Show changed files of the given repository

	cwd
	The path to the Mercurial repository

	optsNone
	Any additional options to add to the command line

	userNone
	Run hg as a user other than what the minion runs as

CLI Example:

salt '*' hg.status /path/to/repo

	
salt.modules.hg.update(cwd, rev, force=False, user=None)

	Update to a given revision

	cwd
	The path to the Mercurial repository

	rev
	The revision to update to

	forceFalse
	Force an update

	userNone
	Run hg as a user other than what the minion runs as

CLI Example:

salt devserver1 hg.update /path/to/repo somebranch

salt.modules.highstate_doc

This module renders highstate configuration into a more human readable format.

How it works:

highstate or lowstate data is parsed with a processor this defaults to highstate_doc.processor_markdown.
The processed data is passed to a jinja template that builds up the document content.

configuration: Pillar

the following defaults can be overridden
highstate_doc.config:

 # list of regex of state names to ignore in `highstate_doc.process_lowstates`
 filter_id_regex:
 - '.*!doc_skip$'

 # list of regex of state functions to ignore in `highstate_doc.process_lowstates`
 filter_state_function_regex:
 - 'file.accumulated'

 # dict of regex to replace text after `highstate_doc.render`. (remove passwords)
 text_replace_regex:
 'password:.*^': '[PASSWORD]'

 # limit size of files that can be included in doc (10000 bytes)
 max_render_file_size: 10000

 # advanced option to set a custom lowstate processor
 processor: highstate_doc.processor_markdown

State example

{{sls}} note:
 highstate_doc.note:
 - name: example
 - order: 0
 - contents: |
 example `highstate_doc.note`

 This state does not do anything to the system! It is only used by a `processor`
 you can use `requisites` and `order` to move your docs around the rendered file.

{{sls}} a file we don't want in the doc !doc_skip:
 file.managed:
 - name: /root/passwords
 - contents: 'password: sadefgq34y45h56q'
 # also could use `highstate_doc.config: text_replace_regex` to replace
 # password string. `password:.*^': '[PASSWORD]`

To create the help document build a State that uses highstate_doc.render.
For performance it's advised to not included this state in your top.sls file.

example `salt://makereadme.sls`
make helpfile:
 file.managed:
 - name: /root/README.md
 - contents: {{salt.highstate_doc.render()|json}}
 - show_diff: {{opts['test']}}
 - mode: '0640'
 - order: last

Run our makereadme.sls state to create /root/README.md.

first ensure `highstate` return without errors or changes
salt-call state.highstate
salt-call state.apply makereadme
or if you don't want the extra `make helpfile` state
salt-call --out=newline_values_only salt.highstate_doc.render > /root/README.md ; chmod 0600 /root/README.md

Creating a document collection

From the master we can run the following script to
creates a collection of all your minion documents.

salt '*' state.apply makereadme

#!/bin/python
import os
import salt.client
s = salt.client.LocalClient()
NOTE: because of issues with `cp.push` use `highstate_doc.read_file`
o = s.cmd('*', 'highstate_doc.read_file', ['/root/README.md'])
for m in o:
 d = o.get(m)
 if d and not d.endswith('is not available.'):
 # mkdir m
 #directory = os.path.dirname(file_path)
 if not os.path.exists(m):
 os.makedirs(m)
 with open(m + '/README.md','wb') as f:
 f.write(d)
 print('ADDED: ' + m + '/README.md')

Once the master has a collection of all the README files.
You can use pandoc to create HTML versions of the markdown.

process all the readme.md files to readme.html
if which pandoc; then echo "Found pandoc"; else echo "** Missing pandoc"; exit 1; fi
if which gs; then echo "Found gs"; else echo "** Missing gs(ghostscript)"; exit 1; fi
readme_files=$(find $dest -type f -path "*/README.md" -print)
for f in $readme_files ; do
 ff=${f#$dest/}
 minion=${ff%%/*}
 echo "process: $dest/${minion}/$(basename $f)"
 cat $dest/${minion}/$(basename $f) | pandoc --standalone --from markdown_github --to html --include-in-header $dest/style.html > $dest/${minion}/$(basename $f).html
done

It is also nice to put the help files in source control.

git init
git add -A
git commit -am 'updated docs'
git push -f

Other hints

If you wish to customize the document format:

you could also create a new `processor` for perhaps reStructuredText
highstate_doc.config:
processor: doc_custom.processor_rst

example `salt://makereadme.jinja`
"""
{{opts['id']}}
==

{# lowstates is set from highstate_doc.render() #}
{# if lowstates is missing use salt.highstate_doc.process_lowstates() #}
{% for s in lowstates %}
{{s.id}}

{{s.function}}

{{s.markdown.requisite}}
{{s.markdown.details}}

{%- endfor %}
"""

example `salt://makereadme.sls`
{% import_text "makereadme.jinja" as makereadme %}
{{sls}} or:
 file.managed:
 - name: /root/README_other.md
 - contents: {{salt.highstate_doc.render(jinja_template_text=makereadme)|json}}
 - mode: '0640'

Some replace_text_regex values that might be helpful:

CERTS

``'-----BEGIN RSA PRIVATE KEY-----[\r\n\t\f\S]{0,2200}': 'XXXXXXX'``
``'-----BEGIN CERTIFICATE-----[\r\n\t\f\S]{0,2200}': 'XXXXXXX'``
``'-----BEGIN DH PARAMETERS-----[\r\n\t\f\S]{0,2200}': 'XXXXXXX'``
``'-----BEGIN PRIVATE KEY-----[\r\n\t\f\S]{0,2200}': 'XXXXXXX'``
``'-----BEGIN OPENSSH PRIVATE KEY-----[\r\n\t\f\S]{0,2200}': 'XXXXXXX'``
``'ssh-rsa .* ': 'ssh-rsa XXXXXXX '``
``'ssh-dss .* ': 'ssh-dss XXXXXXX '``

DB
--

``'DB_PASS.*': 'DB_PASS = XXXXXXX'``
``'5432:*:*:.*': '5432:*:XXXXXXX'``
``"'PASSWORD': .*": "'PASSWORD': 'XXXXXXX',"``
``" PASSWORD '.*'": " PASSWORD 'XXXXXXX'"``
``'PGPASSWORD=.* ': 'PGPASSWORD=XXXXXXX'``
``"_replication password '.*'": "_replication password 'XXXXXXX'"``

OTHER

``'EMAIL_HOST_PASSWORD =.*': 'EMAIL_HOST_PASSWORD =XXXXXXX'``
``"net ads join -U '.*@MFCFADS.MATH.EXAMPLE.CA.* ": "net ads join -U '.*@MFCFADS.MATH.EXAMPLE.CA%XXXXXXX "``
``"net ads join -U '.*@NEXUS.EXAMPLE.CA.* ": "net ads join -U '.*@NEXUS.EXAMPLE.CA%XXXXXXX "``
``'install-uptrack .* --autoinstall': 'install-uptrack XXXXXXX --autoinstall'``
``'accesskey = .*': 'accesskey = XXXXXXX'``
``'auth_pass .*': 'auth_pass XXXXXXX'``
``'PSK "0x.*': 'PSK "0xXX'``
``'SECRET_KEY.*': 'SECRET_KEY = XXXXXXX'``
``"password=.*": "password=XXXXXXX"``
``'<password>.*</password>': '<password>XXXXXXX</password>'``
``'<salt>.*</salt>': '<salt>XXXXXXX</salt>'``
``'application.secret = ".*"': 'application.secret = "XXXXXXX"'``
``'url = "postgres://.*"': 'url = "postgres://XXXXXXX"'``
``'PASS_.*_PASS': 'PASS_XXXXXXX_PASS'``

HTACCESS

``':{PLAIN}.*': ':{PLAIN}XXXXXXX'``

	
salt.modules.highstate_doc.markdown_basic_jinja_template(**kwargs)

	Return text for a simple markdown jinja template

This function can be used from the highstate_doc.render modules jinja_template_function option.

	
salt.modules.highstate_doc.markdown_default_jinja_template(**kwargs)

	Return text for a markdown jinja template that included a header

This function can be used from the highstate_doc.render modules jinja_template_function option.

	
salt.modules.highstate_doc.markdown_full_jinja_template(**kwargs)

	Return text for an advanced markdown jinja template

This function can be used from the highstate_doc.render modules jinja_template_function option.

	
salt.modules.highstate_doc.process_lowstates(**kwargs)

	return processed lowstate data that was not blacklisted

render_module_function is used to provide your own.
defaults to from_lowstate

	
salt.modules.highstate_doc.processor_markdown(lowstate_item, config, **kwargs)

	Takes low state data and returns a dict of processed data
that is by default used in a jinja template when rendering a markdown highstate_doc.

This lowstate_item_markdown given a lowstate item, returns a dict like:

vars: # the raw lowstate_item that was processed
id: # the 'id' of the state.
id_full: # combo of the state type and id "state: id"
state: # name of the salt state module
function: # name of the state function
name: # value of 'name:' passed to the salt state module
state_function: # the state name and function name
markdown: # text data to describe a state
 requisites: # requisite like [watch_in, require_in]
 details: # state name, parameters and other details like file contents

	
salt.modules.highstate_doc.read_file(name)

	output the contents of a file:

this is a workaround if the cp.push module does not work.
https://github.com/saltstack/salt/issues/37133

help the master output the contents of a document
that might be saved on the minions filesystem.

#!/bin/python
import os
import salt.client
s = salt.client.LocalClient()
o = s.cmd('*', 'highstate_doc.read_file', ['/root/README.md'])
for m in o:
 d = o.get(m)
 if d and not d.endswith('is not available.'):
 # mkdir m
 #directory = os.path.dirname(file_path)
 if not os.path.exists(m):
 os.makedirs(m)
 with open(m + '/README.md','wb') as fin:
 fin.write(d)
 print('ADDED: ' + m + '/README.md')

	
salt.modules.highstate_doc.render(jinja_template_text=None, jinja_template_function='highstate_doc.markdown_default_jinja_template', **kwargs)

	Render highstate to a text format (default Markdown)

if jinja_template_text is not set, jinja_template_function is used.

jinja_template_text: jinja text that the render uses to create the document.
jinja_template_function: a salt module call that returns template text.

	Options:

	highstate_doc.markdown_basic_jinja_template
highstate_doc.markdown_default_jinja_template
highstate_doc.markdown_full_jinja_template

salt.modules.hosts

Manage the information in the hosts file

	
salt.modules.hosts.add_host(ip, alias)

	Add a host to an existing entry, if the entry is not in place then create
it with the given host

CLI Example:

salt '*' hosts.add_host <ip> <alias>

	
salt.modules.hosts.get_alias(ip)

	Return the list of aliases associated with an ip

Aliases (host names) are returned in the order in which they
appear in the hosts file. If there are no aliases associated with
the IP, an empty list is returned.

CLI Example:

salt '*' hosts.get_alias <ip addr>

	
salt.modules.hosts.get_ip(host)

	Return the ip associated with the named host

CLI Example:

salt '*' hosts.get_ip <hostname>

	
salt.modules.hosts.has_pair(ip, alias)

	Return true if the alias is set

CLI Example:

salt '*' hosts.has_pair <ip> <alias>

	
salt.modules.hosts.list_hosts()

	Return the hosts found in the hosts file in this format:

{'<ip addr>': ['alias1', 'alias2', ...]}

CLI Example:

salt '*' hosts.list_hosts

	
salt.modules.hosts.rm_host(ip, alias)

	Remove a host entry from the hosts file

CLI Example:

salt '*' hosts.rm_host <ip> <alias>

	
salt.modules.hosts.set_comment(ip, comment)

	Set the comment for a host to an existing entry,
if the entry is not in place then return False

CLI Example:

salt '*' hosts.set_comment <ip> <comment>

	
salt.modules.hosts.set_host(ip, alias, comment=None)

	Set the host entry in the hosts file for the given ip, this will overwrite
any previous entry for the given ip

Changed in version 2016.3.0: If alias does not include any host names (it is the empty
string or contains only whitespace), all entries for the given
IP address are removed.

CLI Example:

salt '*' hosts.set_host <ip> <alias>

salt.modules.http

Module for making various web calls. Primarily designed for webhooks and the
like, but also useful for basic http testing.

New in version 2015.5.0.

	
salt.modules.http.query(url, **kwargs)

	
New in version 2015.5.0.

Query a resource, and decode the return data

Passes through all the parameters described in the
utils.http.query function:

	
salt.utils.http.query(url, method='GET', params=None, data=None, data_file=None, header_dict=None, header_list=None, header_file=None, username=None, password=None, auth=None, decode=False, decode_type='auto', status=False, headers=False, text=False, cookies=None, cookie_jar=None, cookie_format='lwp', persist_session=False, session_cookie_jar=None, data_render=False, data_renderer=None, header_render=False, header_renderer=None, template_dict=None, test=False, test_url=None, node='minion', port=80, opts=None, backend=None, ca_bundle=None, verify_ssl=None, cert=None, text_out=None, headers_out=None, decode_out=None, stream=False, streaming_callback=None, header_callback=None, handle=False, agent='Salt/3007.0+0na.bd89384', hide_fields=None, raise_error=True, formdata=False, formdata_fieldname=None, formdata_filename=None, decode_body=True, **kwargs)

	Query a resource, and decode the return data

	raise_errorTrue
	If False, and if a connection cannot be made, the error will be
suppressed and the body of the return will simply be None.

CLI Example:

salt '*' http.query http://somelink.com/
salt '*' http.query http://somelink.com/ method=POST params='{"key1": "val1", "key2": "val2"}'
salt '*' http.query http://somelink.com/ method=POST data='<xml>somecontent</xml>'

	
salt.modules.http.update_ca_bundle(target=None, source=None, merge_files=None)

	Update the local CA bundle file from a URL

New in version 2015.5.0.

CLI Example:

salt '*' http.update_ca_bundle
salt '*' http.update_ca_bundle target=/path/to/cacerts.pem
salt '*' http.update_ca_bundle source=https://example.com/cacerts.pem

If the target is not specified, it will be pulled from the ca_cert
configuration variable available to the minion. If it cannot be found there,
it will be placed at <<FILE_ROOTS>>/cacerts.pem.

If the source is not specified, it will be pulled from the
ca_cert_url configuration variable available to the minion. If it cannot
be found, it will be downloaded from the cURL website, using an http (not
https) URL. USING THE DEFAULT URL SHOULD BE AVOIDED!

merge_files may also be specified, which includes a string or list of
strings representing a file or files to be appended to the end of the CA
bundle, once it is downloaded.

CLI Example:

salt '*' http.update_ca_bundle merge_files=/path/to/mycert.pem

	
salt.modules.http.wait_for_successful_query(url, wait_for=300, **kwargs)

	Query a resource until a successful response, and decode the return data

CLI Example:

salt '*' http.wait_for_successful_query http://somelink.com/ wait_for=160 request_interval=1

salt.modules.icinga2

Module to provide icinga2 compatibility to salt.

New in version 2017.7.0.

	depends:

	
	icinga2 server

	
salt.modules.icinga2.generate_cert(domain)

	Generate an icinga2 client certificate and key.

	Returns::
	icinga2 pki new-cert --cn domain.tld --key /etc/icinga2/pki/domain.tld.key --cert /etc/icinga2/pki/domain.tld.crt

CLI Example:

salt '*' icinga2.generate_cert domain.tld

	
salt.modules.icinga2.generate_ticket(domain)

	Generate and save an icinga2 ticket.

	Returns::
	icinga2 pki ticket --cn domain.tld

CLI Example:

salt '*' icinga2.generate_ticket domain.tld

	
salt.modules.icinga2.node_setup(domain, master, ticket)

	Setup the icinga2 node.

	Returns::
	icinga2 node setup --ticket TICKET_ID --endpoint master.domain.tld --zone domain.tld --master_host master.domain.tld --trustedcert /etc/icinga2/pki/trusted-master.crt

CLI Example:

salt '*' icinga2.node_setup domain.tld master.domain.tld TICKET_ID

	
salt.modules.icinga2.request_cert(domain, master, ticket, port)

	Request CA cert from master icinga2 node.

	Returns::
	icinga2 pki request --host master.domain.tld --port 5665 --ticket TICKET_ID --key /etc/icinga2/pki/domain.tld.key --cert /etc/icinga2/pki/domain.tld.crt --trustedcert /etc/icinga2/pki/trusted-master.crt --ca /etc/icinga2/pki/ca.crt

CLI Example:

salt '*' icinga2.request_cert domain.tld master.domain.tld TICKET_ID

	
salt.modules.icinga2.save_cert(domain, master)

	Save the certificate for master icinga2 node.

	Returns::
	icinga2 pki save-cert --key /etc/icinga2/pki/domain.tld.key --cert /etc/icinga2/pki/domain.tld.crt --trustedcert /etc/icinga2/pki/trusted-master.crt --host master.domain.tld

CLI Example:

salt '*' icinga2.save_cert domain.tld master.domain.tld

salt.modules.idem

Idem Support

This module provides access to idem execution modules

New in version 3002.

	
salt.modules.idem.exec_(path, acct_file=None, acct_key=None, acct_profile=None, *args, **kwargs)

	Call an idem execution module

	path
	The idem path of the idem execution module to run

	acct_file
	Path to the acct file used in generating idem ctx parameters.
Defaults to the value in the ACCT_FILE environment variable.

	acct_key
	Key used to decrypt the acct file.
Defaults to the value in the ACCT_KEY environment variable.

	acct_profile
	Name of the profile to add to idem's ctx.acct parameter.
Defaults to the value in the ACCT_PROFILE environment variable.

	args
	Any positional arguments to pass to the idem exec function

	kwargs
	Any keyword arguments to pass to the idem exec function

CLI Example:

salt '*' idem.exec test.ping

	Maturity:

	new

	Depends:

	acct, pop, pop-config, idem

	Platform:

	all

salt.modules.ifttt

Support for IFTTT

New in version 2015.8.0.

Requires an api_key in /etc/salt/minion:

ifttt:
 secret_key: '280d4699-a817-4719-ba6f-ca56e573e44f'

	
salt.modules.ifttt.trigger_event(event=None, **kwargs)

	Trigger a configured event in IFTTT.

	Parameters:

	event -- The name of the event to trigger.

	Returns:

	A dictionary with status, text, and error if result was failure.

salt.modules.ilo

Manage HP ILO

	depends:

	hponcfg (SmartStart Scripting Toolkit Linux Edition)

	
salt.modules.ilo.change_password(username, password)

	Reset a users password

CLI Example:

salt '*' ilo.change_password damianMyerscough

	
salt.modules.ilo.change_username(old_username, new_username)

	Change a username

CLI Example:

salt '*' ilo.change_username damian diana

	
salt.modules.ilo.configure_network(ip, netmask, gateway)

	Configure Network Interface

CLI Example:

salt '*' ilo.configure_network [IP ADDRESS] [NETMASK] [GATEWAY]

	
salt.modules.ilo.configure_snmp(community, snmp_port=161, snmp_trapport=161)

	Configure SNMP

CLI Example:

salt '*' ilo.configure_snmp [COMMUNITY STRING] [SNMP PORT] [SNMP TRAP PORT]

	
salt.modules.ilo.create_user(name, password, *privileges)

	Create user

CLI Example:

salt '*' ilo.create_user damian secretagent VIRTUAL_MEDIA_PRIV

If no permissions are specify the user will only have a read-only account.

Supported privelges:

	ADMIN_PRIV
Enables the user to administer user accounts.

	REMOTE_CONS_PRIV
Enables the user to access the Remote Console functionality.

	RESET_SERVER_PRIV
Enables the user to remotely manipulate the server power setting.

	VIRTUAL_MEDIA_PRIV
Enables the user permission to access the virtual media functionality.

	CONFIG_ILO_PRIV
Enables the user to configure iLO settings.

	
salt.modules.ilo.delete_ssh_key(username)

	Delete a users SSH key from the ILO

CLI Example:

salt '*' ilo.delete_user_sshkey damian

	
salt.modules.ilo.delete_user(username)

	Delete a user

CLI Example:

salt '*' ilo.delete_user damian

	
salt.modules.ilo.disable_dhcp()

	Disable DHCP

CLI Example:

salt '*' ilo.disable_dhcp

	
salt.modules.ilo.disable_ssh()

	Disable the SSH daemon

CLI Example:

salt '*' ilo.disable_ssh

	
salt.modules.ilo.enable_dhcp()

	Enable DHCP

CLI Example:

salt '*' ilo.enable_dhcp

	
salt.modules.ilo.enable_ssh()

	Enable the SSH daemon

CLI Example:

salt '*' ilo.enable_ssh

	
salt.modules.ilo.get_user(username)

	Returns local user information, excluding the password

CLI Example:

salt '*' ilo.get_user damian

	
salt.modules.ilo.global_settings()

	Show global settings

CLI Example:

salt '*' ilo.global_settings

	
salt.modules.ilo.list_users()

	List all users

CLI Example:

salt '*' ilo.list_users

	
salt.modules.ilo.list_users_info()

	List all users in detail

CLI Example:

salt '*' ilo.list_users_info

	
salt.modules.ilo.network()

	Grab the current network settings

CLI Example:

salt '*' ilo.network

	
salt.modules.ilo.set_http_port(port=80)

	Configure the port HTTP should listen on

CLI Example:

salt '*' ilo.set_http_port 8080

	
salt.modules.ilo.set_https_port(port=443)

	Configure the port HTTPS should listen on

CLI Example:

salt '*' ilo.set_https_port 4334

	
salt.modules.ilo.set_ssh_key(public_key)

	Configure SSH public keys for specific users

CLI Example:

salt '*' ilo.set_ssh_key "ssh-dss AAAAB3NzaC1kc3MAAACBA... damian"

The SSH public key needs to be DSA and the last argument in the key needs
to be the username (case-senstive) of the ILO username.

	
salt.modules.ilo.set_ssh_port(port=22)

	Enable SSH on a user defined port

CLI Example:

salt '*' ilo.set_ssh_port 2222

salt.modules.incron

Work with incron

	
salt.modules.incron.list_tab(user)

	Return the contents of the specified user's incrontab

CLI Example:

salt '*' incron.list_tab root

	
salt.modules.incron.ls(user)

	This function is an alias of list_tab.

Return the contents of the specified user's incrontab

CLI Example:

salt '*' incron.list_tab root

	
salt.modules.incron.raw_incron(user)

	Return the contents of the user's incrontab

CLI Example:

salt '*' incron.raw_incron root

	
salt.modules.incron.raw_system_incron()

	Return the contents of the system wide incrontab

CLI Example:

salt '*' incron.raw_system_incron

	
salt.modules.incron.rm(user, path, mask, cmd)

	This function is an alias of rm_job.

Remove a incron job for a specified user. If any of the day/time params are
specified, the job will only be removed if the specified params match.

CLI Example:

salt '*' incron.rm_job root /path

	
salt.modules.incron.rm_job(user, path, mask, cmd)

	Remove a incron job for a specified user. If any of the day/time params are
specified, the job will only be removed if the specified params match.

CLI Example:

salt '*' incron.rm_job root /path

	
salt.modules.incron.set_job(user, path, mask, cmd)

	Sets an incron job up for a specified user.

CLI Example:

salt '*' incron.set_job root '/root' 'IN_MODIFY' 'echo "$$ $@ $# $% $&"'

	
salt.modules.incron.write_incron_file(user, path)

	Writes the contents of a file to a user's incrontab

CLI Example:

salt '*' incron.write_incron_file root /tmp/new_incron

	
salt.modules.incron.write_incron_file_verbose(user, path)

	Writes the contents of a file to a user's incrontab and return error message on error

CLI Example:

salt '*' incron.write_incron_file_verbose root /tmp/new_incron

salt.modules.influxdb08mod

InfluxDB - A distributed time series database

Module to provide InfluxDB compatibility to Salt (compatible with InfluxDB
version 0.5-0.8)

New in version 2014.7.0.

	depends:

	
	influxdb Python module (>= 1.0.0)

	configuration:

	This module accepts connection configuration details either as
parameters or as configuration settings in /etc/salt/minion on the relevant
minions:

influxdb08.host: 'localhost'
influxdb08.port: 8086
influxdb08.user: 'root'
influxdb08.password: 'root'

This data can also be passed into pillar. Options passed into opts will
overwrite options passed into pillar.

	
salt.modules.influxdb08mod.db_create(name, user=None, password=None, host=None, port=None)

	Create a database

	name
	Database name to create

	user
	The user to connect as

	password
	The password of the user

	host
	The host to connect to

	port
	The port to connect to

CLI Example:

salt '*' influxdb08.db_create <name>
salt '*' influxdb08.db_create <name> <user> <password> <host> <port>

	
salt.modules.influxdb08mod.db_exists(name, user=None, password=None, host=None, port=None)

	Checks if a database exists in Influxdb

	name
	Database name to create

	user
	The user to connect as

	password
	The password of the user

	host
	The host to connect to

	port
	The port to connect to

CLI Example:

salt '*' influxdb08.db_exists <name>
salt '*' influxdb08.db_exists <name> <user> <password> <host> <port>

	
salt.modules.influxdb08mod.db_list(user=None, password=None, host=None, port=None)

	List all InfluxDB databases

	user
	The user to connect as

	password
	The password of the user

	host
	The host to connect to

	port
	The port to connect to

CLI Example:

salt '*' influxdb08.db_list
salt '*' influxdb08.db_list <user> <password> <host> <port>

	
salt.modules.influxdb08mod.db_remove(name, user=None, password=None, host=None, port=None)

	Remove a database

	name
	Database name to remove

	user
	The user to connect as

	password
	The password of the user

	host
	The host to connect to

	port
	The port to connect to

CLI Example:

salt '*' influxdb08.db_remove <name>
salt '*' influxdb08.db_remove <name> <user> <password> <host> <port>

	
salt.modules.influxdb08mod.login_test(name, password, database=None, host=None, port=None)

	Checks if a credential pair can log in at all.

If a database is specified: it will check for database user existence.
If a database is not specified: it will check for cluster admin existence.

	name
	The user to connect as

	password
	The password of the user

	database
	The database to try to log in to

	host
	The host to connect to

	port
	The port to connect to

CLI Example:

salt '*' influxdb08.login_test <name>
salt '*' influxdb08.login_test <name> <database>
salt '*' influxdb08.login_test <name> <database> <user> <password> <host> <port>

	
salt.modules.influxdb08mod.query(database, query, time_precision='s', chunked=False, user=None, password=None, host=None, port=None)

	Querying data

	database
	The database to query

	query
	Query to be executed

	time_precision
	Time precision to use ('s', 'm', or 'u')

	chunked
	Whether is chunked or not

	user
	The user to connect as

	password
	The password of the user

	host
	The host to connect to

	port
	The port to connect to

CLI Example:

salt '*' influxdb08.query <database> <query>
salt '*' influxdb08.query <database> <query> <time_precision> <chunked> <user> <password> <host> <port>

	
salt.modules.influxdb08mod.retention_policy_add(database, name, duration, replication, default=False, user=None, password=None, host=None, port=None)

	Add a retention policy.

	database
	The database to operate on.

	name
	Name of the policy to modify.

	duration
	How long InfluxDB keeps the data.

	replication
	How many copies of the data are stored in the cluster.

	default
	Whether this policy should be the default or not. Default is False.

CLI Example:

salt '*' influxdb.retention_policy_add metrics default 1d 1

	
salt.modules.influxdb08mod.retention_policy_alter(database, name, duration, replication, default=False, user=None, password=None, host=None, port=None)

	Modify an existing retention policy.

	database
	The database to operate on.

	name
	Name of the policy to modify.

	duration
	How long InfluxDB keeps the data.

	replication
	How many copies of the data are stored in the cluster.

	default
	Whether this policy should be the default or not. Default is False.

CLI Example:

salt '*' influxdb08.retention_policy_modify metrics default 1d 1

	
salt.modules.influxdb08mod.retention_policy_exists(database, name, user=None, password=None, host=None, port=None)

	Check if a retention policy exists.

	database
	The database to operate on.

	name
	Name of the policy to modify.

CLI Example:

salt '*' influxdb08.retention_policy_exists metrics default

	
salt.modules.influxdb08mod.retention_policy_get(database, name, user=None, password=None, host=None, port=None)

	Get an existing retention policy.

	database
	The database to operate on.

	name
	Name of the policy to modify.

CLI Example:

salt '*' influxdb08.retention_policy_get metrics default

	
salt.modules.influxdb08mod.user_chpass(name, passwd, database=None, user=None, password=None, host=None, port=None)

	Change password for a cluster admin or a database user.

If a database is specified: it will update database user password.
If a database is not specified: it will update cluster admin password.

	name
	User name for whom to change the password

	passwd
	New password

	database
	The database on which to operate

	user
	The user to connect as

	password
	The password of the user

	host
	The host to connect to

	port
	The port to connect to

CLI Example:

salt '*' influxdb08.user_chpass <name> <passwd>
salt '*' influxdb08.user_chpass <name> <passwd> <database>
salt '*' influxdb08.user_chpass <name> <passwd> <database> <user> <password> <host> <port>

	
salt.modules.influxdb08mod.user_create(name, passwd, database=None, user=None, password=None, host=None, port=None)

	Create a cluster admin or a database user.

If a database is specified: it will create database user.
If a database is not specified: it will create a cluster admin.

	name
	User name for the new user to create

	passwd
	Password for the new user to create

	database
	The database to create the user in

	user
	The user to connect as

	password
	The password of the user

	host
	The host to connect to

	port
	The port to connect to

CLI Example:

salt '*' influxdb08.user_create <name> <passwd>
salt '*' influxdb08.user_create <name> <passwd> <database>
salt '*' influxdb08.user_create <name> <passwd> <database> <user> <password> <host> <port>

	
salt.modules.influxdb08mod.user_exists(name, database=None, user=None, password=None, host=None, port=None)

	Checks if a cluster admin or database user exists.

If a database is specified: it will check for database user existence.
If a database is not specified: it will check for cluster admin existence.

	name
	User name

	database
	The database to check for the user to exist

	user
	The user to connect as

	password
	The password of the user

	host
	The host to connect to

	port
	The port to connect to

CLI Example:

salt '*' influxdb08.user_exists <name>
salt '*' influxdb08.user_exists <name> <database>
salt '*' influxdb08.user_exists <name> <database> <user> <password> <host> <port>

	
salt.modules.influxdb08mod.user_list(database=None, user=None, password=None, host=None, port=None)

	List cluster admins or database users.

If a database is specified: it will return database users list.
If a database is not specified: it will return cluster admins list.

	database
	The database to list the users from

	user
	The user to connect as

	password
	The password of the user

	host
	The host to connect to

	port
	The port to connect to

CLI Example:

salt '*' influxdb08.user_list
salt '*' influxdb08.user_list <database>
salt '*' influxdb08.user_list <database> <user> <password> <host> <port>

	
salt.modules.influxdb08mod.user_remove(name, database=None, user=None, password=None, host=None, port=None)

	Remove a cluster admin or a database user.

If a database is specified: it will remove the database user.
If a database is not specified: it will remove the cluster admin.

	name
	User name to remove

	database
	The database to remove the user from

	user
	User name for the new user to delete

	user
	The user to connect as

	password
	The password of the user

	host
	The host to connect to

	port
	The port to connect to

CLI Example:

salt '*' influxdb08.user_remove <name>
salt '*' influxdb08.user_remove <name> <database>
salt '*' influxdb08.user_remove <name> <database> <user> <password> <host> <port>

salt.modules.influxdbmod

InfluxDB - A distributed time series database

Module to provide InfluxDB compatibility to Salt (compatible with InfluxDB
version 0.9+)

	depends:

	
	influxdb Python module (>= 3.0.0)

	configuration:

	This module accepts connection configuration details either as
parameters or as configuration settings in /etc/salt/minion on the relevant
minions:

influxdb.host: 'localhost'
influxdb.port: 8086
influxdb.user: 'root'
influxdb.password: 'root'

This data can also be passed into pillar. Options passed into opts will
overwrite options passed into pillar.

Most functions in this module allow you to override or provide some or all
of these settings via keyword arguments:

salt '*' influxdb.foo_function influxdb_user='influxadmin' influxdb_password='s3cr1t'

would override user and password while still using the defaults for
host and port.

	
salt.modules.influxdbmod.alter_retention_policy(database, name, duration, replication, default=False, **client_args)

	Modify an existing retention policy.

	name
	Name of the retention policy to modify.

	database
	Name of the database for which the retention policy was defined.

	duration
	New duration of given retention policy.

Durations such as 1h, 90m, 12h, 7d, and 4w, are all supported
and mean 1 hour, 90 minutes, 12 hours, 7 day, and 4 weeks,
respectively. For infinite retention – meaning the data will
never be deleted – use 'INF' for duration.
The minimum retention period is 1 hour.

	replication
	New replication of given retention policy.

This determines how many independent copies of each data point are
stored in a cluster.

	defaultFalse
	Whether or not to set the modified policy as default.

CLI Example:

salt '*' influxdb.alter_retention_policy metrics default 1d 1

	
salt.modules.influxdbmod.continuous_query_exists(database, name, **client_args)

	Check if continuous query with given name exists on the database.

	database
	Name of the database for which the continuous query was
defined.

	name
	Name of the continuous query to check.

CLI Example:

salt '*' influxdb.continuous_query_exists metrics default

	
salt.modules.influxdbmod.create_continuous_query(database, name, query, resample_time=None, coverage_period=None, **client_args)

	Create a continuous query.

	database
	Name of the database for which the continuous query will be
created on.

	name
	Name of the continuous query to create.

	query
	The continuous query string.

	resample_timeNone
	Duration between continuous query resampling.

	coverage_periodNone
	Duration specifying time period per sample.

CLI Example:

salt '*' influxdb.create_continuous_query mydb cq_month 'SELECT mean(*) INTO mydb.a_month.:MEASUREMENT FROM mydb.a_week./.*/ GROUP BY time(5m), *'

	
salt.modules.influxdbmod.create_db(name, **client_args)

	Create a database.

	name
	Name of the database to create.

CLI Example:

salt '*' influxdb.create_db <name>

	
salt.modules.influxdbmod.create_retention_policy(database, name, duration, replication, default=False, **client_args)

	Create a retention policy.

	database
	Name of the database for which the retention policy will be created.

	name
	Name of the new retention policy.

	duration
	Duration of the new retention policy.

Durations such as 1h, 90m, 12h, 7d, and 4w, are all supported and mean
1 hour, 90 minutes, 12 hours, 7 day, and 4 weeks, respectively. For
infinite retention – meaning the data will never be deleted – use 'INF'
for duration. The minimum retention period is 1 hour.

	replication
	Replication factor of the retention policy.

This determines how many independent copies of each data point are
stored in a cluster.

	defaultFalse
	Whether or not the policy as default will be set as default.

CLI Example:

salt '*' influxdb.create_retention_policy metrics default 1d 1

	
salt.modules.influxdbmod.create_user(name, passwd, admin=False, **client_args)

	Create a user.

	name
	Name of the user to create.

	passwd
	Password of the new user.

	adminFalse
	Whether the user should have cluster administration
privileges or not.

CLI Example:

salt '*' influxdb.create_user <name> <password>
salt '*' influxdb.create_user <name> <password> admin=True

	
salt.modules.influxdbmod.db_exists(name, **client_args)

	Checks if a database exists in InfluxDB.

	name
	Name of the database to check.

CLI Example:

salt '*' influxdb.db_exists <name>

	
salt.modules.influxdbmod.drop_continuous_query(database, name, **client_args)

	Drop a continuous query.

	database
	Name of the database for which the continuous query will
be drop from.

	name
	Name of the continuous query to drop.

CLI Example:

salt '*' influxdb.drop_continuous_query mydb my_cq

	
salt.modules.influxdbmod.drop_db(name, **client_args)

	Drop a database.

	name
	Name of the database to drop.

CLI Example:

salt '*' influxdb.drop_db <name>

	
salt.modules.influxdbmod.drop_retention_policy(database, name, **client_args)

	Drop a retention policy.

	database
	Name of the database for which the retention policy will be dropped.

	name
	Name of the retention policy to drop.

CLI Example:

salt '*' influxdb.drop_retention_policy mydb mypr

	
salt.modules.influxdbmod.get_continuous_query(database, name, **client_args)

	Get an existing continuous query.

	database
	Name of the database for which the continuous query was
defined.

	name
	Name of the continuous query to get.

CLI Example:

salt '*' influxdb.get_continuous_query mydb cq_month

	
salt.modules.influxdbmod.get_retention_policy(database, name, **client_args)

	Get an existing retention policy.

	database
	Name of the database for which the retention policy was
defined.

	name
	Name of the retention policy.

CLI Example:

salt '*' influxdb.get_retention_policy metrics default

	
salt.modules.influxdbmod.grant_admin_privileges(name, **client_args)

	Grant cluster administration privileges to a user.

	name
	Name of the user to whom admin privileges will be granted.

CLI Example:

salt '*' influxdb.grant_admin_privileges <name>

	
salt.modules.influxdbmod.grant_privilege(database, privilege, username, **client_args)

	Grant a privilege on a database to a user.

	database
	Name of the database to grant the privilege on.

	privilege
	Privilege to grant. Can be one of 'read', 'write' or 'all'.

	username
	Name of the user to grant the privilege to.

	
salt.modules.influxdbmod.list_dbs(**client_args)

	List all InfluxDB databases.

CLI Example:

salt '*' influxdb.list_dbs

	
salt.modules.influxdbmod.list_privileges(name, **client_args)

	List privileges from a user.

	name
	Name of the user from whom privileges will be listed.

CLI Example:

salt '*' influxdb.list_privileges <name>

	
salt.modules.influxdbmod.list_users(**client_args)

	List all users.

CLI Example:

salt '*' influxdb.list_users

	
salt.modules.influxdbmod.query(database, query, **client_args)

	Execute a query.

	database
	Name of the database to query on.

	query
	InfluxQL query string.

	
salt.modules.influxdbmod.remove_user(name, **client_args)

	Remove a user.

	name
	Name of the user to remove

CLI Example:

salt '*' influxdb.remove_user <name>

	
salt.modules.influxdbmod.retention_policy_exists(database, name, **client_args)

	Check if retention policy with given name exists.

	database
	Name of the database for which the retention policy was
defined.

	name
	Name of the retention policy to check.

CLI Example:

salt '*' influxdb.retention_policy_exists metrics default

	
salt.modules.influxdbmod.revoke_admin_privileges(name, **client_args)

	Revoke cluster administration privileges from a user.

	name
	Name of the user from whom admin privileges will be revoked.

CLI Example:

salt '*' influxdb.revoke_admin_privileges <name>

	
salt.modules.influxdbmod.revoke_privilege(database, privilege, username, **client_args)

	Revoke a privilege on a database from a user.

	database
	Name of the database to grant the privilege on.

	privilege
	Privilege to grant. Can be one of 'read', 'write' or 'all'.

	username
	Name of the user to grant the privilege to.

	
salt.modules.influxdbmod.set_user_password(name, passwd, **client_args)

	Change password of a user.

	name
	Name of the user for whom to set the password.

	passwd
	New password of the user.

CLI Example:

salt '*' influxdb.set_user_password <name> <password>

	
salt.modules.influxdbmod.user_exists(name, **client_args)

	Check if a user exists.

	name
	Name of the user to check.

CLI Example:

salt '*' influxdb.user_exists <name>

	
salt.modules.influxdbmod.user_info(name, **client_args)

	Get information about given user.

	name
	Name of the user for which to get information.

CLI Example:

salt '*' influxdb.user_info <name>

salt.modules.infoblox

This module have been tested on infoblox API v1.2.1,
other versions of the API are likly workable.

	depends:

	libinfoblox, https://github.com/steverweber/libinfoblox

libinfoblox can be installed using pip install libinfoblox

API documents can be found on your infoblox server at:

https://INFOBLOX/wapidoc

	configuration:

	The following configuration defaults can be
defined (pillar or config files '/etc/salt/master.d/infoblox.conf'):

infoblox.config:
 api_sslverify: True
 api_url: 'https://INFOBLOX/wapi/v1.2.1'
 api_user: 'username'
 api_key: 'password'

Many of the functions accept api_opts to override the API config.

salt-call infoblox.get_host name=my.host.com api_url: 'https://INFOBLOX/wapi/v1.2.1' api_user=admin api_key=passs

	
salt.modules.infoblox.create_a(data, **api_opts)

	Create A record.

This is a helper function to create_object.
See your infoblox API for full data format.

CLI Example:

salt-call infoblox.create_a data =
 name: 'fastlinux.math.example.ca'
 ipv4addr: '127.0.0.1'
 view: External

	
salt.modules.infoblox.create_cname(data, **api_opts)

	Create a cname record.

CLI Example:

salt-call infoblox.create_cname data={ "comment": "cname to example server", "name": "example.example.com", "zone": "example.com", "view": "Internal", "canonical": "example-ha-0.example.com" }

	
salt.modules.infoblox.create_host(data, **api_opts)

	Add host record

Avoid race conditions, use func:nextavailableip for ipv[4,6]addrs:

	func:nextavailableip:network/ZG54dfgsrDFEFfsfsLzA:10.0.0.0/8/default

	func:nextavailableip:10.0.0.0/8

	func:nextavailableip:10.0.0.0/8,external

	func:nextavailableip:10.0.0.3-10.0.0.10

See your infoblox API for full data format.

CLI Example:

salt-call infoblox.create_host data =
 {'name': 'hostname.example.ca',
 'aliases': ['hostname.math.example.ca'],
 'extattrs': [{'Business Contact': {'value': 'example@example.ca'}},
 {'Pol8 Classification': {'value': 'Restricted'}},
 {'Primary OU': {'value': 'CS'}},
 {'Technical Contact': {'value': 'example@example.ca'}}],
 'ipv4addrs': [{'configure_for_dhcp': True,
 'ipv4addr': 'func:nextavailableip:129.97.139.0/24',
 'mac': '00:50:56:84:6e:ae'}],
 'ipv6addrs': [], }

	
salt.modules.infoblox.create_ipv4_range(data, **api_opts)

	Create a ipv4 range

This is a helper function to create_object
See your infoblox API for full data format.

CLI Example:

salt-call infoblox.create_ipv4_range data={
 start_addr: '129.97.150.160',
 end_addr: '129.97.150.170'}

	
salt.modules.infoblox.create_object(object_type, data, **api_opts)

	Create raw infoblox object. This is a low level api call.

CLI Example:

salt-call infoblox.update_object object_type=record:host data={}

	
salt.modules.infoblox.delete_a(name=None, ipv4addr=None, allow_array=False, **api_opts)

	Delete A record

If the A record is used as a round robin you can set allow_array=True to
delete all records for the hostname.

CLI Examples:

salt-call infoblox.delete_a name=abc.example.com
salt-call infoblox.delete_a ipv4addr=192.168.3.5
salt-call infoblox.delete_a name=acname.example.com allow_array=True

	
salt.modules.infoblox.delete_cname(name=None, canonical=None, **api_opts)

	Delete CNAME. This is a helper call to delete_object.

If record is not found, return True

CLI Examples:

salt-call infoblox.delete_cname name=example.example.com
salt-call infoblox.delete_cname canonical=example-ha-0.example.com

	
salt.modules.infoblox.delete_host(name=None, mac=None, ipv4addr=None, **api_opts)

	Delete host

CLI Example:

salt-call infoblox.delete_host name=example.domain.com
salt-call infoblox.delete_host ipv4addr=123.123.122.12
salt-call infoblox.delete_host ipv4addr=123.123.122.12 mac=00:50:56:84:6e:ae

	
salt.modules.infoblox.delete_ipv4_range(start_addr=None, end_addr=None, **api_opts)

	Delete ip range.

CLI Example:

salt-call infoblox.delete_ipv4_range start_addr=123.123.122.12

	
salt.modules.infoblox.delete_object(objref, **api_opts)

	Delete infoblox object. This is a low level api call.

CLI Example:

salt-call infoblox.delete_object objref=[ref_of_object]

	
salt.modules.infoblox.diff_objects(obja, objb)

	Diff two complex infoblox objects.
This is used from salt states to detect changes in objects.

Using func:nextavailableip will not cause a diff if the ipaddress is in
range

	
salt.modules.infoblox.get_a(name=None, ipv4addr=None, allow_array=True, **api_opts)

	Get A record

CLI Examples:

salt-call infoblox.get_a name=abc.example.com
salt-call infoblox.get_a ipv4addr=192.168.3.5

	
salt.modules.infoblox.get_cname(name=None, canonical=None, return_fields=None, **api_opts)

	Get CNAME information.

CLI Examples:

salt-call infoblox.get_cname name=example.example.com
salt-call infoblox.get_cname canonical=example-ha-0.example.com

	
salt.modules.infoblox.get_host(name=None, ipv4addr=None, mac=None, return_fields=None, **api_opts)

	Get host information

CLI Examples:

salt-call infoblox.get_host hostname.domain.ca
salt-call infoblox.get_host ipv4addr=123.123.122.12
salt-call infoblox.get_host mac=00:50:56:84:6e:ae

	
salt.modules.infoblox.get_host_advanced(name=None, ipv4addr=None, mac=None, **api_opts)

	Get all host information

CLI Example:

salt-call infoblox.get_host_advanced hostname.domain.ca

	
salt.modules.infoblox.get_host_domainname(name, domains=None, **api_opts)

	Get host domain name

If no domains are passed, the hostname is checked for a zone in infoblox,
if no zone split on first dot.

If domains are provided, the best match out of the list is returned.

If none are found the return is None

dots at end of names are ignored.

CLI Example:

salt-call uwl.get_host_domainname name=localhost.t.domain.com domains=['domain.com', 't.domain.com.']

returns: t.domain.com

	
salt.modules.infoblox.get_host_hostname(name, domains=None, **api_opts)

	Get hostname

If no domains are passed, the hostname is checked for a zone in infoblox,
if no zone split on first dot.

If domains are provided, the best match out of the list is truncated from
the fqdn leaving the hostname.

If no matching domains are found the fqdn is returned.

dots at end of names are ignored.

CLI Examples:

salt-call infoblox.get_host_hostname fqdn=localhost.xxx.t.domain.com domains="['domain.com', 't.domain.com']"
#returns: localhost.xxx

salt-call infoblox.get_host_hostname fqdn=localhost.xxx.t.domain.com
#returns: localhost

	
salt.modules.infoblox.get_host_ipv4(name=None, mac=None, allow_array=False, **api_opts)

	Get ipv4 address from host record.

Use allow_array to return possible multiple values.

CLI Examples:

salt-call infoblox.get_host_ipv4 host=localhost.domain.com
salt-call infoblox.get_host_ipv4 mac=00:50:56:84:6e:ae

	
salt.modules.infoblox.get_host_ipv4addr_info(ipv4addr=None, mac=None, discovered_data=None, return_fields=None, **api_opts)

	Get host ipv4addr information

CLI Examples:

salt-call infoblox.get_ipv4addr ipv4addr=123.123.122.12
salt-call infoblox.get_ipv4addr mac=00:50:56:84:6e:ae
salt-call infoblox.get_ipv4addr mac=00:50:56:84:6e:ae return_fields=host return_fields='mac,host,configure_for_dhcp,ipv4addr'

	
salt.modules.infoblox.get_host_ipv6addr_info(ipv6addr=None, mac=None, discovered_data=None, return_fields=None, **api_opts)

	Get host ipv6addr information

CLI Example:

salt-call infoblox.get_host_ipv6addr_info ipv6addr=2001:db8:85a3:8d3:1349:8a2e:370:7348

	
salt.modules.infoblox.get_host_mac(name=None, allow_array=False, **api_opts)

	Get mac address from host record.

Use allow_array to return possible multiple values.

CLI Example:

salt-call infoblox.get_host_mac host=localhost.domain.com

	
salt.modules.infoblox.get_ipv4_range(start_addr=None, end_addr=None, return_fields=None, **api_opts)

	Get ip range

CLI Example:

salt-call infoblox.get_ipv4_range start_addr=123.123.122.12

	
salt.modules.infoblox.get_network(ipv4addr=None, network=None, return_fields=None, **api_opts)

	Get list of all networks. This is helpful when looking up subnets to use
with func:nextavailableip

This call is offen slow and not cached!

some return_fields
comment,network,network_view,ddns_domainname,disable,enable_ddns

CLI Example:

salt-call infoblox.get_network

	
salt.modules.infoblox.get_object(objref, data=None, return_fields=None, max_results=None, ensure_none_or_one_result=False, **api_opts)

	Get raw infoblox object. This is a low level api call.

CLI Example:

salt-call infoblox.get_object objref=[_ref of object]

	
salt.modules.infoblox.is_ipaddr_in_ipfunc_range(ipaddr, ipfunc)

	Return true if the ipaddress is in the range of the nextavailableip function

CLI Example:

salt-call infoblox.is_ipaddr_in_ipfunc_range ipaddr="10.0.2.2" ipfunc="func:nextavailableip:10.0.0.0/8"

	
salt.modules.infoblox.update_cname(name, data, **api_opts)

	Update CNAME. This is a helper call to update_object.

Find a CNAME _ref then call update_object with the record data.

CLI Example:

salt-call infoblox.update_cname name=example.example.com data="{
 'canonical':'example-ha-0.example.com',
 'use_ttl':true,
 'ttl':200,
 'comment':'Salt managed CNAME'}"

	
salt.modules.infoblox.update_host(name, data, **api_opts)

	Update host record. This is a helper call to update_object.

Find a hosts _ref then call update_object with the record data.

CLI Example:

salt-call infoblox.update_host name=fqdn data={}

	
salt.modules.infoblox.update_object(objref, data, **api_opts)

	Update raw infoblox object. This is a low level api call.

CLI Example:

salt-call infoblox.update_object objref=[ref_of_object] data={}

salt.modules.ini_manage

Edit ini files

	maintainer:

	<akilesh1597@gmail.com>

	maturity:

	new

	depends:

	re

	platform:

	all

(for example /etc/sysctl.conf)

	
salt.modules.ini_manage.get_ini(file_name, separator='=', encoding=None)

	Retrieve the whole structure from an ini file and return it as a dictionary.

	Parameters:

	
	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The full path to the ini file.

	separator (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The character used to separate keys and values. Standard ini files
use the "=" character. The default is =.

New in version 2016.11.0.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing encoding of the target ini file. If
None is passed, it uses the system default which is likely
utf-8. Default is None

New in version 3006.6.

	Returns:

	
	A dictionary containing the sections along with the values and
	names contained in each section

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

API Example:

import salt.client
with salt.client.get_local_client() as sc:
 sc.cmd('target', 'ini.get_ini', [path_to_ini_file])

CLI Example:

salt '*' ini.get_ini /path/to/ini

	
salt.modules.ini_manage.get_option(file_name, section, option, separator='=', encoding=None)

	Get value of a key from a section in an ini file. Returns None if
no matching key was found.

	Parameters:

	
	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The full path to the ini file.

	section (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing the section of the ini that the option
is in. If the option is not in a section, leave this empty.

	option (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing the option to search for.

	separator (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The character used to separate keys and values. Standard ini files
use the "=" character. The default is =.

New in version 2016.11.0.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing encoding of the target ini file. If
None is passed, it uses the system default which is likely
utf-8. Default is None

New in version 3006.6.

	Returns:

	
	The value as defined in the ini file, or None if empty or not
	found

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

API Example:

import salt.client
with salt.client.get_local_client() as sc:
 sc.cmd('target', 'ini.get_option', [path_to_ini_file, section_name, option])

CLI Example:

salt '*' ini.get_option /path/to/ini section_name option_name

	
salt.modules.ini_manage.get_section(file_name, section, separator='=', encoding=None)

	Retrieve a section from an ini file. Returns the section as a dictionary. If
the section is not found, an empty dictionary is returned.

	Parameters:

	
	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The full path to the ini file.

	section (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing name of the section to search for.

	separator (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The character used to separate keys and values. Standard ini files
use the "=" character. The default is =.

New in version 2016.11.0.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing encoding of the target ini file. If
None is passed, it uses the system default which is likely
utf-8. Default is None

New in version 3006.6.

	Returns:

	
	A dictionary containing the names and values of all items in the
	section of the ini file. If the section is not found, an empty
dictionary is returned

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

API Example:

import salt.client
with salt.client.get_local_client() as sc:
 sc.cmd('target', 'ini.get_section', [path_to_ini_file, section_name])

CLI Example:

salt '*' ini.get_section /path/to/ini section_name

	
salt.modules.ini_manage.remove_option(file_name, section, option, separator='=', encoding=None)

	Remove a key/value pair from a section in an ini file. Returns the value of
the removed key, or None if nothing was removed.

	Parameters:

	
	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The full path to the ini file.

	section (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing the section of the ini that the option
is in. If the option is not in a section, leave this empty.

	option (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing the option to search for.

	separator (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The character used to separate keys and values. Standard ini files
use the "=" character. The default is =.

New in version 2016.11.0.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing encoding of the target ini file. If
None is passed, it uses the system default which is likely
utf-8. Default is None

New in version 3006.6.

	Returns:

	
	A string value representing the option that was removed or None
	if nothing was removed

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

API Example:

import salt
sc = salt.client.get_local_client()
sc.cmd('target', 'ini.remove_option', [path_to_ini_file, section_name, option])

CLI Example:

salt '*' ini.remove_option /path/to/ini section_name option_name

	
salt.modules.ini_manage.remove_section(file_name, section, separator='=', encoding=None)

	Remove a section in an ini file. Returns the removed section as a
dictionary, or None if nothing is removed.

	Parameters:

	
	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The full path to the ini file.

	section (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing the name of the section search for.

	separator (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The character used to separate keys and values. Standard ini files
use the "=" character. The default is =.

New in version 2016.11.0.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing encoding of the target ini file. If
None is passed, it uses the system default which is likely
utf-8. Default is None

New in version 3006.6.

	Returns:

	
	A dictionary containing the names and values of all items in the
	section that was removed or None if nothing was removed

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

API Example:

import salt.client
with salt.client.get_local_client() as sc:
 sc.cmd('target', 'ini.remove_section', [path_to_ini_file, section_name])

CLI Example:

salt '*' ini.remove_section /path/to/ini section_name

	
salt.modules.ini_manage.set_option(file_name, sections=None, separator='=', encoding=None)

	Edit an ini file, replacing one or more sections. Returns a dictionary
containing the changes made.

	Parameters:

	
	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The full path to the ini file.

	sections (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- A dictionary representing the sections to be edited in the ini file.
The keys are the section names and the values are a dictionary
containing the options. If the ini file does not contain sections
the keys and values represent the options. The default is None.

	separator (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The character used to separate keys and values. Standard ini files
use the "=" character. The default is =.

New in version 2016.11.0.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing encoding of the target ini file. If
None is passed, it uses the system default which is likely
utf-8. Default is None

New in version 3006.6.

	Returns:

	A dictionary representing the changes made to the ini file

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

API Example:

import salt.client
with salt.client.get_local_client() as sc:
 sc.cmd(
 'target', 'ini.set_option', ['path_to_ini_file', '{"section_to_change": {"key": "value"}}']
)

CLI Example:

salt '*' ini.set_option /path/to/ini '{section_foo: {key: value}}'

salt.modules.inspectlib package

Submodules

	salt.modules.inspectlib.collector
	Inspector
	Inspector.DEFAULT_MINION_CONFIG_PATH

	Inspector.IGNORE_FS_TYPES

	Inspector.IGNORE_MOUNTS

	Inspector.IGNORE_PATHS

	Inspector.MODE

	Inspector.build()

	Inspector.create_snapshot()

	Inspector.export()

	Inspector.request_snapshot()

	Inspector.reuse_snapshot()

	Inspector.snapshot()

	is_alive()

	main()

	salt.modules.inspectlib.dbhandle
	DBHandle

	DBHandleBase
	DBHandleBase.close()

	DBHandleBase.flush()

	DBHandleBase.open()

	DBHandleBase.purge()

	salt.modules.inspectlib.exceptions
	InspectorKiwiProcessorException

	InspectorQueryException

	InspectorSnapshotException

	SIException

	salt.modules.inspectlib.query
	Query
	Query.SCOPES

	SysInfo

Module contents

	
class salt.modules.inspectlib.EnvLoader(cachedir=None, piddir=None, pidfilename=None)

	Load environment.

	
DB_FILE = '_minion_collector.db'

	

	
DEFAULT_CACHE_PATH = '/var/cache/salt'

	

	
DEFAULT_PID_PATH = '/var/run'

	

	
PID_FILE = '_minion_collector.pid'

	

salt.modules.inspectlib.collector

	
class salt.modules.inspectlib.collector.Inspector(cachedir=None, piddir=None, pidfilename=None)

	
	
DEFAULT_MINION_CONFIG_PATH = '/etc/salt/minion'

	

	
IGNORE_FS_TYPES = ['autofs', 'cifs', 'nfs', 'nfs4']

	

	
IGNORE_MOUNTS = ['proc', 'sysfs', 'devtmpfs', 'tmpfs', 'fuse.gvfs-fuse-daemon']

	

	
IGNORE_PATHS = ['/tmp', '/var/tmp', '/lost+found', '/var/run', '/var/lib/rpm', '/.snapshots', '/.zfs', '/etc/ssh', '/root', '/home']

	

	
MODE = ['configuration', 'payload', 'all']

	

	
build(format='qcow2', path='/tmp')

	Build an image using Kiwi.

	Parameters:

	
	format --

	path --

	Returns:

	

	
create_snapshot()

	Open new snapshot.

	Returns:

	

	
export(description, local=False, path='/tmp', format='qcow2')

	Export description for Kiwi.

	Parameters:

	
	local --

	path --

	Returns:

	

	
request_snapshot(mode, priority=19, **kwargs)

	Take a snapshot of the system.

	
reuse_snapshot()

	Open an existing, latest snapshot.

	Returns:

	

	
snapshot(mode)

	Take a snapshot of the system.

	
salt.modules.inspectlib.collector.is_alive(pidfile)

	Check if PID is still alive.

	
salt.modules.inspectlib.collector.main(dbfile, pidfile, mode)

	Main analyzer routine.

salt.modules.inspectlib.dbhandle

	
class salt.modules.inspectlib.dbhandle.DBHandle(*args, **kwargs)

	

	
class salt.modules.inspectlib.dbhandle.DBHandleBase(path)

	Handle for the volatile database, which serves the purpose of caching
the inspected data. This database can be destroyed or corrupted, so it should
be simply re-created from scratch.

	
close()

	Close the database connection.

	
flush(table)

	Flush the table.

	
open(new=False)

	Init the database, if required.

	
purge()

	Purge whole database.

salt.modules.inspectlib.exceptions

	
exception salt.modules.inspectlib.exceptions.InspectorKiwiProcessorException

	Kiwi builder/exporter exception.

	
exception salt.modules.inspectlib.exceptions.InspectorQueryException

	Exception that is only for the inspector query.

	
exception salt.modules.inspectlib.exceptions.InspectorSnapshotException

	Snapshot exception.

	
exception salt.modules.inspectlib.exceptions.SIException

	System information exception.

salt.modules.inspectlib.query

	
class salt.modules.inspectlib.query.Query(scope, cachedir=None)

	Query the system.
This class is actually puts all Salt features together,
so there would be no need to pick it from various places.

	
SCOPES = ['changes', 'configuration', 'identity', 'system', 'software', 'services', 'payload', 'all']

	

	
class salt.modules.inspectlib.query.SysInfo(systype)

	System information.

salt.modules.inspectlib.collector

	
class salt.modules.inspectlib.collector.Inspector(cachedir=None, piddir=None, pidfilename=None)

	
	
DEFAULT_MINION_CONFIG_PATH = '/etc/salt/minion'

	

	
IGNORE_FS_TYPES = ['autofs', 'cifs', 'nfs', 'nfs4']

	

	
IGNORE_MOUNTS = ['proc', 'sysfs', 'devtmpfs', 'tmpfs', 'fuse.gvfs-fuse-daemon']

	

	
IGNORE_PATHS = ['/tmp', '/var/tmp', '/lost+found', '/var/run', '/var/lib/rpm', '/.snapshots', '/.zfs', '/etc/ssh', '/root', '/home']

	

	
MODE = ['configuration', 'payload', 'all']

	

	
build(format='qcow2', path='/tmp')

	Build an image using Kiwi.

	Parameters:

	
	format --

	path --

	Returns:

	

	
create_snapshot()

	Open new snapshot.

	Returns:

	

	
export(description, local=False, path='/tmp', format='qcow2')

	Export description for Kiwi.

	Parameters:

	
	local --

	path --

	Returns:

	

	
request_snapshot(mode, priority=19, **kwargs)

	Take a snapshot of the system.

	
reuse_snapshot()

	Open an existing, latest snapshot.

	Returns:

	

	
snapshot(mode)

	Take a snapshot of the system.

	
salt.modules.inspectlib.collector.is_alive(pidfile)

	Check if PID is still alive.

	
salt.modules.inspectlib.collector.main(dbfile, pidfile, mode)

	Main analyzer routine.

salt.modules.inspectlib.dbhandle

	
class salt.modules.inspectlib.dbhandle.DBHandle(*args, **kwargs)

	

	
class salt.modules.inspectlib.dbhandle.DBHandleBase(path)

	Handle for the volatile database, which serves the purpose of caching
the inspected data. This database can be destroyed or corrupted, so it should
be simply re-created from scratch.

	
close()

	Close the database connection.

	
flush(table)

	Flush the table.

	
open(new=False)

	Init the database, if required.

	
purge()

	Purge whole database.

salt.modules.inspectlib.entities

	
class salt.modules.inspectlib.entities.AllowedDir

	Allowed directories

	
class salt.modules.inspectlib.entities.IgnoredDir

	Ignored directories

	
class salt.modules.inspectlib.entities.Package

	Package.

	
class salt.modules.inspectlib.entities.PackageCfgFile

	Config file, belongs to the package

	
class salt.modules.inspectlib.entities.PayloadFile

	Payload file.

salt.modules.inspectlib.exceptions

	
exception salt.modules.inspectlib.exceptions.InspectorKiwiProcessorException

	Kiwi builder/exporter exception.

	
exception salt.modules.inspectlib.exceptions.InspectorQueryException

	Exception that is only for the inspector query.

	
exception salt.modules.inspectlib.exceptions.InspectorSnapshotException

	Snapshot exception.

	
exception salt.modules.inspectlib.exceptions.SIException

	System information exception.

salt.modules.inspectlib.fsdb

	codeauthor:

	Bo Maryniuk <bo@suse.de>

	
class salt.modules.inspectlib.fsdb.CsvDB(path)

	File-based CSV database.
This database is in-memory operating relatively small plain text csv files.

	
close()

	Close the database.

	Returns:

	

	
create_table_from_object(obj)

	Create a table from the object.
NOTE: This method doesn't stores anything.

	Parameters:

	obj --

	Returns:

	

	
delete(obj, matches=None, mt=None, lt=None, eq=None)

	Delete object from the database.

	Parameters:

	
	obj --

	matches --

	mt --

	lt --

	eq --

	Returns:

	

	
flush(table)

	Flush table.

	Parameters:

	table --

	Returns:

	

	
get(obj, matches=None, mt=None, lt=None, eq=None)

	Get objects from the table.

	Parameters:

	
	table_name --

	matches -- Regexp.

	mt -- More than.

	lt -- Less than.

	eq -- Equals.

	Returns:

	

	
is_closed()

	Return if the database is closed.

	Returns:

	

	
list()

	List all the databases on the given path.

	Returns:

	

	
list_tables()

	Load existing tables and their descriptions.

	Returns:

	

	
new()

	Create a new database and opens it.

	Returns:

	

	
open(dbname=None)

	Open database from the path with the name or latest.
If there are no yet databases, create a new implicitly.

	Returns:

	

	
purge(dbid)

	Purge the database.

	Parameters:

	dbid --

	Returns:

	

	
store(obj, distinct=False)

	Store an object in the table.

	Parameters:

	
	obj -- An object to store

	distinct -- Store object only if there is none identical of such.
If at least one field is different, store it.

	Returns:

	

	
update(obj, matches=None, mt=None, lt=None, eq=None)

	Update object(s) in the database.

	Parameters:

	
	obj --

	matches --

	mt --

	lt --

	eq --

	Returns:

	

	
class salt.modules.inspectlib.fsdb.CsvDBEntity

	Serializable object for the table.

salt.modules.inspectlib.kiwiproc

	
class salt.modules.inspectlib.kiwiproc.KiwiExporter(grains, format)

	Exports system description as Kiwi configuration.

	
export(name)

	Export to the Kiwi config.xml as text.

	Returns:

	

	
load(**descr)

	Load data by keys.

	Parameters:

	data --

	Returns:

	

salt.modules.inspectlib.query

	
class salt.modules.inspectlib.query.Query(scope, cachedir=None)

	Query the system.
This class is actually puts all Salt features together,
so there would be no need to pick it from various places.

	
SCOPES = ['changes', 'configuration', 'identity', 'system', 'software', 'services', 'payload', 'all']

	

	
class salt.modules.inspectlib.query.SysInfo(systype)

	System information.

salt.modules.inspector

Module for full system inspection.

	
salt.modules.inspector.build(format='qcow2', path='/tmp/')

	Build an image from a current system description.
The image is a system image can be output in bootable ISO or QCOW2 formats.

Node uses the image building library Kiwi to perform the actual build.

Parameters:

	format: Specifies output format: "qcow2" or "iso. Default: qcow2.

	path: Specifies output path where to store built image. Default: /tmp.

CLI Example:

salt myminion inspector.build
salt myminion inspector.build format=iso path=/opt/builds/

	
salt.modules.inspector.delete(all=False, *databases)

	Remove description snapshots from the system.

::parameter: all. Default: False. Remove all snapshots, if set to True.

CLI Example:

salt myminion inspector.delete <ID> <ID1> <ID2>..
salt myminion inspector.delete all=True

	
salt.modules.inspector.export(local=False, path='/tmp', format='qcow2')

	Export an image description for Kiwi.

Parameters:

	local: Specifies True or False if the export has to be in the local file. Default: False.

	
	path: If local=True, then specifies the path where file with the Kiwi description is written.
	Default: /tmp.

CLI Example:

salt myminion inspector.export
salt myminion inspector.export format=iso path=/opt/builds/

	
salt.modules.inspector.inspect(mode='all', priority=19, **kwargs)

	Start node inspection and save the data to the database for further query.

Parameters:

	mode: Clarify inspection mode: configuration, payload, all (default)

	payload
	
	filter: Comma-separated directories to track payload.

	priority: (advanced) Set priority of the inspection. Default is low priority.

CLI Example:

salt '*' inspector.inspect
salt '*' inspector.inspect configuration
salt '*' inspector.inspect payload filter=/opt,/ext/oracle

	
salt.modules.inspector.query(*args, **kwargs)

	Query the node for specific information.

Parameters:

	scope: Specify scope of the query.

	System: Return system data.

	Software: Return software information.

	Services: Return known services.

	
	Identity: Return user accounts information for this system.
	
	accounts
	Can be either 'local', 'remote' or 'all' (equal to "local,remote").
Remote accounts cannot be resolved on all systems, but only
those, which supports 'passwd -S -a'.

	disabled
	True (or False, default) to return only disabled accounts.

	
	payload: Payload scope parameters:
	
	filter
	Include only results which path starts from the filter string.

	time
	Display time in Unix ticks or format according to the configured TZ (default)
Values: ticks, tz (default)

	size
	Format size. Values: B, KB, MB, GB

	type
	Include payload type.
Values (comma-separated): directory (or dir), link, file (default)
Example (returns everything): type=directory,link,file

	owners
	Resolve UID/GID to an actual names or leave them numeric (default).
Values: name (default), id

	brief
	Return just a list of payload elements, if True. Default: False.

	all: Return all information (default).

CLI Example:

salt '*' inspector.query scope=system
salt '*' inspector.query scope=payload type=file,link filter=/etc size=Kb brief=False

	
salt.modules.inspector.snapshots()

	List current description snapshots.

CLI Example:

salt myminion inspector.snapshots

salt.modules.introspect

Functions to perform introspection on a minion, and return data in a format
usable by Salt States

	
salt.modules.introspect.enabled_service_owners()

	Return which packages own each of the services that are currently enabled.

CLI Example:

salt myminion introspect.enabled_service_owners

	
salt.modules.introspect.running_service_owners(exclude=('/dev', '/home', '/media', '/proc', '/run', '/sys/', '/tmp', '/var'))

	Determine which packages own the currently running services. By default,
excludes files whose full path starts with /dev, /home, /media,
/proc, /run, /sys, /tmp and /var. This can be
overridden by passing in a new list to exclude.

CLI Example:

salt myminion introspect.running_service_owners

	
salt.modules.introspect.service_highstate(requires=True)

	Return running and enabled services in a highstate structure. By default
also returns package dependencies for those services, which means that
package definitions must be created outside this function. To drop the
package dependencies, set requires to False.

CLI Example:

salt myminion introspect.service_highstate
salt myminion introspect.service_highstate requires=False

salt.modules.iosconfig

Cisco IOS configuration manipulation helpers

New in version 2019.2.0.

This module provides a collection of helper functions for Cisco IOS style
configuration manipulation. This module does not have external dependencies
and can be used from any Proxy or regular Minion.

	
salt.modules.iosconfig.clean(config=None, path=None, saltenv='base')

	Return a clean version of the config, without any special signs (such as
! as an individual line) or empty lines, but just lines with significant
value in the configuration of the network device.

	config
	The configuration sent as text. This argument is ignored when path
is configured.

	path
	Absolute or remote path from where to load the configuration text. This
argument allows any URI supported by
cp.get_url), e.g., salt://,
https://, s3://, ftp:/, etc.

	saltenv: base
	Salt fileserver environment from which to retrieve the file.
Ignored if path is not a salt:// URL.

CLI Example:

salt '*' iosconfig.clean path=salt://path/to/my/config.txt
salt '*' iosconfig.clean path=https://bit.ly/2mAdq7z

	
salt.modules.iosconfig.diff_text(candidate_config=None, candidate_path=None, running_config=None, running_path=None, saltenv='base')

	Return the diff, as text, between the candidate and the running config.

	candidate_config
	The candidate configuration sent as text. This argument is ignored when
candidate_path is set.

	candidate_path
	Absolute or remote path from where to load the candidate configuration
text. This argument allows any URI supported by
cp.get_url), e.g., salt://,
https://, s3://, ftp:/, etc.

	running_config
	The running configuration sent as text. This argument is ignored when
running_path is set.

	running_path
	Absolute or remote path from where to load the running configuration
text. This argument allows any URI supported by
cp.get_url), e.g., salt://,
https://, s3://, ftp:/, etc.

	saltenv: base
	Salt fileserver environment from which to retrieve the file.
Ignored if candidate_path or running_path is not a
salt:// URL.

CLI Example:

salt '*' iosconfig.diff_text candidate_path=salt://path/to/candidate.cfg running_path=salt://path/to/running.cfg

	
salt.modules.iosconfig.diff_tree(candidate_config=None, candidate_path=None, running_config=None, running_path=None, saltenv='base')

	Return the diff, as Python dictionary, between the candidate and the running
configuration.

	candidate_config
	The candidate configuration sent as text. This argument is ignored when
candidate_path is set.

	candidate_path
	Absolute or remote path from where to load the candidate configuration
text. This argument allows any URI supported by
cp.get_url), e.g., salt://,
https://, s3://, ftp:/, etc.

	running_config
	The running configuration sent as text. This argument is ignored when
running_path is set.

	running_path
	Absolute or remote path from where to load the running configuration
text. This argument allows any URI supported by
cp.get_url), e.g., salt://,
https://, s3://, ftp:/, etc.

	saltenv: base
	Salt fileserver environment from which to retrieve the file.
Ignored if candidate_path or running_path is not a
salt:// URL.

CLI Example:

salt '*' iosconfig.diff_tree candidate_path=salt://path/to/candidate.cfg running_path=salt://path/to/running.cfg

	
salt.modules.iosconfig.merge_diff(initial_config=None, initial_path=None, merge_config=None, merge_path=None, saltenv='base')

	Return the merge diff, as text, after merging the merge config into the
initial config.

	initial_config
	The initial configuration sent as text. This argument is ignored when
initial_path is set.

	initial_path
	Absolute or remote path from where to load the initial configuration
text. This argument allows any URI supported by
cp.get_url), e.g., salt://,
https://, s3://, ftp:/, etc.

	merge_config
	The config to be merged into the initial config, sent as text. This
argument is ignored when merge_path is set.

	merge_path
	Absolute or remote path from where to load the merge configuration
text. This argument allows any URI supported by
cp.get_url), e.g., salt://,
https://, s3://, ftp:/, etc.

	saltenv: base
	Salt fileserver environment from which to retrieve the file.
Ignored if initial_path or merge_path is not a salt:// URL.

CLI Example:

salt '*' iosconfig.merge_diff initial_path=salt://path/to/running.cfg merge_path=salt://path/to/merge.cfg

	
salt.modules.iosconfig.merge_text(initial_config=None, initial_path=None, merge_config=None, merge_path=None, saltenv='base')

	Return the merge result of the initial_config with the merge_config,
as plain text.

	initial_config
	The initial configuration sent as text. This argument is ignored when
initial_path is set.

	initial_path
	Absolute or remote path from where to load the initial configuration
text. This argument allows any URI supported by
cp.get_url), e.g., salt://,
https://, s3://, ftp:/, etc.

	merge_config
	The config to be merged into the initial config, sent as text. This
argument is ignored when merge_path is set.

	merge_path
	Absolute or remote path from where to load the merge configuration
text. This argument allows any URI supported by
cp.get_url), e.g., salt://,
https://, s3://, ftp:/, etc.

	saltenv: base
	Salt fileserver environment from which to retrieve the file.
Ignored if initial_path or merge_path is not a salt:// URL.

CLI Example:

salt '*' iosconfig.merge_text initial_path=salt://path/to/running.cfg merge_path=salt://path/to/merge.cfg

	
salt.modules.iosconfig.merge_tree(initial_config=None, initial_path=None, merge_config=None, merge_path=None, saltenv='base')

	Return the merge tree of the initial_config with the merge_config,
as a Python dictionary.

	initial_config
	The initial configuration sent as text. This argument is ignored when
initial_path is set.

	initial_path
	Absolute or remote path from where to load the initial configuration
text. This argument allows any URI supported by
cp.get_url), e.g., salt://,
https://, s3://, ftp:/, etc.

	merge_config
	The config to be merged into the initial config, sent as text. This
argument is ignored when merge_path is set.

	merge_path
	Absolute or remote path from where to load the merge configuration
text. This argument allows any URI supported by
cp.get_url), e.g., salt://,
https://, s3://, ftp:/, etc.

	saltenv: base
	Salt fileserver environment from which to retrieve the file.
Ignored if initial_path or merge_path is not a salt:// URL.

CLI Example:

salt '*' iosconfig.merge_tree initial_path=salt://path/to/running.cfg merge_path=salt://path/to/merge.cfg

	
salt.modules.iosconfig.tree(config=None, path=None, with_tags=False, saltenv='base')

	Transform Cisco IOS style configuration to structured Python dictionary.
Depending on the value of the with_tags argument, this function may
provide different views, valuable in different situations.

	config
	The configuration sent as text. This argument is ignored when path
is configured.

	path
	Absolute or remote path from where to load the configuration text. This
argument allows any URI supported by
cp.get_url), e.g., salt://,
https://, s3://, ftp:/, etc.

	with_tags: False
	Whether this function should return a detailed view, with tags.

	saltenv: base
	Salt fileserver environment from which to retrieve the file.
Ignored if path is not a salt:// URL.

CLI Example:

salt '*' iosconfig.tree path=salt://path/to/my/config.txt
salt '*' iosconfig.tree path=https://bit.ly/2mAdq7z

salt.modules.ipmi

Support IPMI commands over LAN. This module does not talk to the local
systems hardware through IPMI drivers. It uses a python module pyghmi.

	depends:

	Python module pyghmi.
You can install pyghmi using pip:

pip install pyghmi

	configuration:

	The following configuration defaults can be
define (pillar or config files):

ipmi.config:
 api_host: 127.0.0.1
 api_user: admin
 api_pass: apassword
 api_port: 623
 api_kg: None

Usage can override the config defaults:

salt-call ipmi.get_user api_host=myipmienabled.system
 api_user=admin api_pass=pass
 uid=1

	
salt.modules.ipmi.create_user(uid, name, password, channel=14, callback=False, link_auth=True, ipmi_msg=True, privilege_level='administrator', **kwargs)

	create/ensure a user is created with provided settings.

	Parameters:

	
	privilege_level -- User Privilege Limit. (Determines the maximum privilege level that
the user is allowed to switch to on the specified channel.)
* callback
* user
* operator
* administrator
* proprietary
* no_access

	kwargs --
	api_host=127.0.0.1

	api_user=admin

	api_pass=example

	api_port=623

	api_kg=None

CLI Examples:

salt-call ipmi.create_user uid=2 name=steverweber api_host=172.168.0.7 api_pass=nevertell

	
salt.modules.ipmi.fast_connect_test(**kwargs)

	Returns True if connection success.
This uses an aggressive timeout value!

	Parameters:

	kwargs --
	api_host=127.0.0.1

	api_user=admin

	api_pass=example

	api_port=623

	api_kg=None

CLI Examples:

salt-call ipmi.fast_connect_test api_host=172.168.0.9

	
salt.modules.ipmi.get_bootdev(**kwargs)

	Get current boot device override information.

Provides the current requested boot device. Be aware that not all IPMI
devices support this. Even in BMCs that claim to, occasionally the
BIOS or UEFI fail to honor it. This is usually only applicable to the
next reboot.

	Parameters:

	kwargs --
	api_host=127.0.0.1

	api_user=admin

	api_pass=example

	api_port=623

	api_kg=None

CLI Example:

salt-call ipmi.get_bootdev api_host=127.0.0.1 api_user=admin api_pass=pass

	
salt.modules.ipmi.get_channel_access(channel=14, read_mode='non_volatile', **kwargs)

	:param kwargs:api_host='127.0.0.1' api_user='admin' api_pass='example' api_port=623

	Parameters:

	
	channel -- number [1:7]

	read_mode --
	non_volatile = get non-volatile Channel Access

	volatile = get present volatile (active) setting of Channel Access

	kwargs --
	api_host=127.0.0.1

	api_user=admin

	api_pass=example

	api_port=623

	api_kg=None

Return Data

A Python dict with the following keys/values:

{
 alerting:
 per_msg_auth:
 user_level_auth:
 access_mode:{ (ONE OF)
 0: 'disabled',
 1: 'pre_boot',
 2: 'always',
 3: 'shared'
 }
 privilege_level: { (ONE OF)
 1: 'callback',
 2: 'user',
 3: 'operator',
 4: 'administrator',
 5: 'proprietary',
 }
}

CLI Examples:

salt-call ipmi.get_channel_access channel=1

	
salt.modules.ipmi.get_channel_info(channel=14, **kwargs)

	Get channel info

	Parameters:

	
	channel -- number [1:7]

	kwargs --
	api_host=127.0.0.1

	api_user=admin

	api_pass=example

	api_port=623

	api_kg=None

	Return Data
	channel session supports

- no_session: channel is session-less
- single: channel is single-session
- multi: channel is multi-session
- auto: channel is session-based (channel could alternate between
 single- and multi-session operation, as can occur with a
 serial/modem channel that supports connection mode auto-detect)

CLI Examples:

salt-call ipmi.get_channel_info

	
salt.modules.ipmi.get_channel_max_user_count(channel=14, **kwargs)

	Get max users in channel

	Parameters:

	
	channel -- number [1:7]

	kwargs --
	api_host=127.0.0.1

	api_user=admin

	api_pass=example

	api_port=623

	api_kg=None

	Returns:

	int -- often 16

CLI Examples:

salt-call ipmi.get_channel_max_user_count

	
salt.modules.ipmi.get_health(**kwargs)

	Get Summarize health

This provides a summary of the health of the managed system.
It additionally provides an iterable list of reasons for
warning, critical, or failed assessments.

good health: {'badreadings': [], 'health': 0}

	Parameters:

	kwargs --
	api_host=127.0.0.1

	api_user=admin

	api_pass=example

	api_port=623

	api_kg=None

CLI Example:

salt-call ipmi.get_health api_host=127.0.0.1 api_user=admin api_pass=pass

	
salt.modules.ipmi.get_power(**kwargs)

	Get current power state

The response, if successful, should contain 'powerstate' key and
either 'on' or 'off' to indicate current state.

	Parameters:

	kwargs --
	api_host=127.0.0.1

	api_user=admin

	api_pass=example

	api_port=623

	api_kg=None

CLI Example:

salt-call ipmi.get_power api_host=127.0.0.1 api_user=admin api_pass=pass

	
salt.modules.ipmi.get_sensor_data(**kwargs)

	Get sensor readings

Iterates sensor reading objects

	Parameters:

	kwargs --
	api_host=127.0.0.1

	api_user=admin

	api_pass=example

	api_port=623

	api_kg=None

CLI Example:

salt-call ipmi.get_sensor_data api_host=127.0.0.1 api_user=admin api_pass=pass

	
salt.modules.ipmi.get_user(uid, channel=14, **kwargs)

	Get user from uid and access on channel

	Parameters:

	
	uid -- user number [1:16]

	channel -- number [1:7]

	kwargs --
	api_host=127.0.0.1

	api_user=admin

	api_pass=example

	api_port=623

	api_kg=None

Return Data

name: (str)
uid: (int)
channel: (int)
access:
 - callback (bool)
 - link_auth (bool)
 - ipmi_msg (bool)
 - privilege_level: (str)[callback, user, operatorm administrator,
 proprietary, no_access]

CLI Examples:

salt-call ipmi.get_user uid=2

	
salt.modules.ipmi.get_user_access(uid, channel=14, **kwargs)

	Get user access

	Parameters:

	
	uid -- user number [1:16]

	channel -- number [1:7]

	kwargs --
	api_host=127.0.0.1

	api_user=admin

	api_pass=example

	api_port=623

	api_kg=None

Return Data

channel_info:
 - max_user_count = maximum number of user IDs on this channel
 - enabled_users = count of User ID slots presently in use
 - users_with_fixed_names = count of user IDs with fixed names
access:
 - callback
 - link_auth
 - ipmi_msg
 - privilege_level: [reserved, callback, user, operator
 administrator, proprietary, no_access]

CLI Examples:

salt-call ipmi.get_user_access uid=2

	
salt.modules.ipmi.get_user_name(uid, return_none_on_error=True, **kwargs)

	Get user name

	Parameters:

	
	uid -- user number [1:16]

	return_none_on_error -- return None on error

	kwargs --
	api_host=127.0.0.1

	api_user=admin

	api_pass=example

	api_port=623

	api_kg=None

CLI Examples:

salt-call ipmi.get_user_name uid=2

	
salt.modules.ipmi.get_users(channel=14, **kwargs)

	get list of users and access information

	Parameters:

	
	channel -- number [1:7]

	kwargs --
	api_host=127.0.0.1

	api_user=admin

	api_pass=example

	api_port=623

	api_kg=None

	Returns:

	
	name: (str)

	uid: (int)

	channel: (int)

	
	access:
	
	callback (bool)

	link_auth (bool)

	ipmi_msg (bool)

	privilege_level: (str)[callback, user, operatorm administrator,
proprietary, no_access]

CLI Examples:

salt-call ipmi.get_users api_host=172.168.0.7

	
salt.modules.ipmi.raw_command(netfn, command, bridge_request=None, data=(), retry=True, delay_xmit=None, **kwargs)

	Send raw ipmi command

This allows arbitrary IPMI bytes to be issued. This is commonly used
for certain vendor specific commands.

	Parameters:

	
	netfn -- Net function number

	command -- Command value

	bridge_request -- The target slave address and channel number for
the bridge request.

	data -- Command data as a tuple or list

	kwargs --
	api_host=127.0.0.1

	api_user=admin

	api_pass=example

	api_port=623

	api_kg=None

	Returns:

	dict -- The response from IPMI device

CLI Examples:

salt-call ipmi.raw_command netfn=0x06 command=0x46 data=[0x02]
this will return the name of the user with id 2 in bytes

	
salt.modules.ipmi.set_bootdev(bootdev='default', persist=False, uefiboot=False, **kwargs)

	Set boot device to use on next reboot

	Parameters:

	
	bootdev --
	network: Request network boot

	hd: Boot from hard drive

	safe: Boot from hard drive, requesting 'safe mode'

	optical: boot from CD/DVD/BD drive

	setup: Boot into setup utility

	default: remove any IPMI directed boot device
request

	persist -- If true, ask that system firmware use this device
beyond next boot. Be aware many systems do not honor
this

	uefiboot -- If true, request UEFI boot explicitly. Strictly
speaking, the spec suggests that if not set, the system
should BIOS boot and offers no "don't care" option.
In practice, this flag not being set does not preclude
UEFI boot on any system I've encountered.

	kwargs --
	api_host=127.0.0.1

	api_user=admin

	api_pass=example

	api_port=623

	api_kg=None

	Returns:

	dict or True -- If callback is not provided, the response

CLI Examples:

salt-call ipmi.set_bootdev bootdev=network persist=True

	
salt.modules.ipmi.set_channel_access(channel=14, access_update_mode='non_volatile', alerting=False, per_msg_auth=False, user_level_auth=False, access_mode='always', privilege_update_mode='non_volatile', privilege_level='administrator', **kwargs)

	Set channel access

	Parameters:

	
	channel -- number [1:7]

	access_update_mode --
	'dont_change' = don't set or change Channel Access

	'non_volatile' = set non-volatile Channel Access

	'volatile' = set volatile (active) setting of Channel Access

	alerting -- PEF Alerting Enable/Disable

	True = enable PEF Alerting

	False = disable PEF Alerting on this channel
(Alert Immediate command can still be used to generate alerts)

	per_msg_auth -- Per-message Authentication

	True = enable

	False = disable Per-message Authentication. [Authentication required to
activate any session on this channel, but authentication not
used on subsequent packets for the session.]

	user_level_auth -- User Level Authentication Enable/Disable

	True = enable User Level Authentication. All User Level commands are
to be authenticated per the Authentication Type that was
negotiated when the session was activated.

	False = disable User Level Authentication. Allow User Level commands to
be executed without being authenticated.
If the option to disable User Level Command authentication is
accepted, the BMC will accept packets with Authentication Type
set to None if they contain user level commands.
For outgoing packets, the BMC returns responses with the same
Authentication Type that was used for the request.

	access_mode -- Access Mode for IPMI messaging (PEF Alerting is enabled/disabled
separately from IPMI messaging)

	disabled = disabled for IPMI messaging

	pre_boot = pre-boot only channel only available when system is
in a powered down state or in BIOS prior to start of boot.

	always = channel always available regardless of system mode.
BIOS typically dedicates the serial connection to the BMC.

	shared = same as always available, but BIOS typically leaves the
serial port available for software use.

	privilege_update_mode -- Channel Privilege Level Limit. This value sets the maximum privilege
level that can be accepted on the specified channel.

	dont_change = don't set or change channel Privilege Level Limit

	non_volatile = non-volatile Privilege Level Limit according

	volatile = volatile setting of Privilege Level Limit

	privilege_level -- Channel Privilege Level Limit

	reserved = unused

	callback

	user

	operator

	administrator

	proprietary = used by OEM

	kwargs --
	api_host=127.0.0.1

	api_user=admin

	api_pass=example

	api_port=623

	api_kg=None

CLI Examples:

salt-call ipmi.set_channel_access privilege_level='administrator'

	
salt.modules.ipmi.set_identify(on=True, duration=600, **kwargs)

	Request identify light

Request the identify light to turn off, on for a duration,
or on indefinitely. Other than error exceptions,

	Parameters:

	
	on -- Set to True to force on or False to force off

	duration -- Set if wanting to request turn on for a duration
in seconds, None = indefinitely.

	kwargs --
	api_host=127.0.0.1

	api_user=admin

	api_pass=example

	api_port=623

	api_kg=None

CLI Examples:

salt-call ipmi.set_identify

	
salt.modules.ipmi.set_power(state='power_on', wait=True, **kwargs)

	Request power state change

	Parameters:

	
	name --
	power_on -- system turn on

	power_off -- system turn off (without waiting for OS)

	shutdown -- request OS proper shutdown

	reset -- reset (without waiting for OS)

	boot -- If system is off, then 'on', else 'reset'

	ensure -- If (bool True), do not return until system actually completes
requested state change for 300 seconds.
If a non-zero (int), adjust the wait time to the
requested number of seconds

	kwargs --
	api_host=127.0.0.1

	api_user=admin

	api_pass=example

	api_port=623

	api_kg=None

	Returns:

	dict -- A dict describing the response retrieved

CLI Examples:

salt-call ipmi.set_power state=shutdown wait=True

	
salt.modules.ipmi.set_user_access(uid, channel=14, callback=True, link_auth=True, ipmi_msg=True, privilege_level='administrator', **kwargs)

	Set user access

	Parameters:

	
	uid -- user number [1:16]

	channel -- number [1:7]

	callback -- User Restricted to Callback

	False = User Privilege Limit is determined by the User Privilege Limit
parameter, below, for both callback and non-callback connections.

	True = User Privilege Limit is determined by the User Privilege Limit
parameter for callback connections, but is restricted to Callback
level for non-callback connections. Thus, a user can only initiate
a Callback when they 'call in' to the BMC, but once the callback
connection has been made, the user could potentially establish a
session as an Operator.

	link_auth -- User Link authentication enable/disable (used to enable
whether this user's name and password information will be used for link
authentication, e.g. PPP CHAP) for the given channel. Link
authentication itself is a global setting for the channel and is
enabled/disabled via the serial/modem configuration parameters.

	ipmi_msg -- User IPMI Messaging: (used to enable/disable whether
this user's name and password information will be used for IPMI
Messaging. In this case, 'IPMI Messaging' refers to the ability to
execute generic IPMI commands that are not associated with a
particular payload type. For example, if IPMI Messaging is disabled for
a user, but that user is enabled for activating the SOL
payload type, then IPMI commands associated with SOL and session
management, such as Get SOL Configuration Parameters and Close Session
are available, but generic IPMI commands such as Get SEL Time are
unavailable.)

	privilege_level -- User Privilege Limit. (Determines the maximum privilege level that the
user is allowed to switch to on the specified channel.)

	callback

	user

	operator

	administrator

	proprietary

	no_access

	kwargs --
	api_host=127.0.0.1

	api_user=admin

	api_pass=example

	api_port=623

	api_kg=None

CLI Examples:

salt-call ipmi.set_user_access uid=2 privilege_level='operator'

	
salt.modules.ipmi.set_user_name(uid, name, **kwargs)

	Set user name

	Parameters:

	
	uid -- user number [1:16]

	name -- username (limit of 16bytes)

	kwargs --
	api_host=127.0.0.1

	api_user=admin

	api_pass=example

	api_port=623

	api_kg=None

CLI Examples:

salt-call ipmi.set_user_name uid=2 name='steverweber'

	
salt.modules.ipmi.set_user_password(uid, mode='set_password', password=None, **kwargs)

	Set user password and (modes)

	Parameters:

	
	uid -- id number of user. see: get_names_uid()['name']

	mode --
	disable = disable user connections

	enable = enable user connections

	set_password = set or ensure password

	test_password = test password is correct

	password -- max 16 char string
(optional when mode is [disable or enable])

	kwargs --
	api_host=127.0.0.1

	api_user=admin

	api_pass=example

	api_port=623

	api_kg=None

	Returns:

	True on success
when mode = test_password, return False on bad password

CLI Example:

salt-call ipmi.set_user_password api_host=127.0.0.1 api_user=admin api_pass=pass
 uid=1 password=newPass
salt-call ipmi.set_user_password uid=1 mode=enable

	
salt.modules.ipmi.user_delete(uid, channel=14, **kwargs)

	Delete user (helper)

	Parameters:

	
	uid -- user number [1:16]

	channel -- number [1:7]

	kwargs --
	api_host=127.0.0.1

	api_user=admin

	api_pass=example

	api_port=623

	api_kg=None

CLI Examples:

salt-call ipmi.user_delete uid=2

salt.modules.ipset

Support for ipset

	
salt.modules.ipset.add(name=None, entry=None, family='ipv4', **kwargs)

	Append an entry to the specified set.

CLI Example:

salt '*' ipset.add name 192.168.1.26

salt '*' ipset.add name 192.168.0.3,AA:BB:CC:DD:EE:FF

	
salt.modules.ipset.check(name=None, entry=None, family='ipv4')

	Check that an entry exists in the specified set.

	name
	The ipset name

	entry
	An entry in the ipset. This parameter can be a single IP address, a
range of IP addresses, or a subnet block. Example:

192.168.0.1
192.168.0.2-192.168.0.19
192.168.0.0/25

	family
	IP protocol version: ipv4 or ipv6

CLI Example:

salt '*' ipset.check name '192.168.0.1 comment "Hello"'

	
salt.modules.ipset.check_set(name=None, family='ipv4')

	Check that given ipset set exists.

New in version 2014.7.0.

CLI Example:

salt '*' ipset.check_set name

	
salt.modules.ipset.delete(name=None, entry=None, family='ipv4', **kwargs)

	Delete an entry from the specified set.

CLI Example:

salt '*' ipset.delete name 192.168.0.3,AA:BB:CC:DD:EE:FF

	
salt.modules.ipset.delete_set(name=None, family='ipv4')

	
New in version 2014.7.0.

Delete ipset set.

CLI Example:

salt '*' ipset.delete_set custom_set

IPv6:
salt '*' ipset.delete_set custom_set family=ipv6

	
salt.modules.ipset.flush(name=None, family='ipv4')

	Flush entries in the specified set,
Flush all sets if set is not specified.

CLI Example:

salt '*' ipset.flush

salt '*' ipset.flush set

IPv6:
salt '*' ipset.flush

salt '*' ipset.flush set

	
salt.modules.ipset.list_sets(family='ipv4')

	
New in version 2014.7.0.

List all ipset sets.

CLI Example:

salt '*' ipset.list_sets

	
salt.modules.ipset.new_set(name=None, set_type=None, family='ipv4', comment=False, **kwargs)

	
New in version 2014.7.0.

Create new custom set

CLI Example:

salt '*' ipset.new_set custom_set list:set

salt '*' ipset.new_set custom_set list:set comment=True

IPv6:
salt '*' ipset.new_set custom_set list:set family=ipv6

	
salt.modules.ipset.rename_set(name=None, new_set=None, family='ipv4')

	
New in version 2014.7.0.

Delete ipset set.

CLI Example:

salt '*' ipset.rename_set custom_set new_set=new_set_name

IPv6:
salt '*' ipset.rename_set custom_set new_set=new_set_name family=ipv6

	
salt.modules.ipset.test(name=None, entry=None, family='ipv4', **kwargs)

	Test if an entry is in the specified set.

CLI Example:

salt '*' ipset.test name 192.168.0.2

IPv6:
salt '*' ipset.test name fd81:fc56:9ac7::/48

	
salt.modules.ipset.version()

	Return version from ipset --version

CLI Example:

salt '*' ipset.version

salt.modules.iptables

Support for iptables

Configuration Options

The following options can be set in the minion config, grains, pillar, or
master config. The configuration is read using config.get.

	iptables.save_filters: List of REGEX strings to FILTER OUT matching lines

This is useful for filtering out chains, rules, etc that you do not wish to
persist, such as ephemeral Docker rules.

The default is to not filter out anything.

iptables.save_filters:
 - "-j CATTLE_PREROUTING"
 - "-j DOCKER"
 - "-A POSTROUTING"
 - "-A CATTLE_POSTROUTING"
 - "-A FORWARD"

	
salt.modules.iptables.append(table='filter', chain=None, rule=None, family='ipv4')

	Append a rule to the specified table/chain.

	This function accepts a rule in a standard iptables command format,
	starting with the chain. Trying to force users to adapt to a new
method of creating rules would be irritating at best, and we
already have a parser that can handle it.

CLI Example:

salt '*' iptables.append filter INPUT \
 rule='-m state --state RELATED,ESTABLISHED -j ACCEPT'

IPv6:
salt '*' iptables.append filter INPUT \
 rule='-m state --state RELATED,ESTABLISHED -j ACCEPT' \
 family=ipv6

	
salt.modules.iptables.build_rule(table='filter', chain=None, command=None, position='', full=None, family='ipv4', **kwargs)

	Build a well-formatted iptables rule based on kwargs. A table and chain
are not required, unless full is True.

If full is True, then table, chain and command are required.
command may be specified as either a short option ('I') or a long option
(--insert). This will return the iptables command, exactly as it would
be used from the command line.

If a position is required (as with -I or -D), it may be specified as
position. This will only be useful if full is True.

If state is passed, it will be ignored, use connstate.
If connstate is passed in, it will automatically be changed to state.

To pass in jump options that doesn't take arguments, pass in an empty
string.

Note

Whereas iptables will accept -p, --proto[c[o[l]]] as synonyms
of --protocol, if --proto appears in an iptables command after
the appearance of -m policy, it is interpreted as the --proto
option of the policy extension (see the iptables-extensions(8) man
page).

CLI Examples:

salt '*' iptables.build_rule match=state \
 connstate=RELATED,ESTABLISHED jump=ACCEPT

salt '*' iptables.build_rule filter INPUT command=I position=3 \
 full=True match=state connstate=RELATED,ESTABLISHED jump=ACCEPT

salt '*' iptables.build_rule filter INPUT command=A \
 full=True match=state connstate=RELATED,ESTABLISHED \
 source='127.0.0.1' jump=ACCEPT

.. Invert Rules
salt '*' iptables.build_rule filter INPUT command=A \
 full=True match=state connstate=RELATED,ESTABLISHED \
 source='!127.0.0.1' jump=ACCEPT

salt '*' iptables.build_rule filter INPUT command=A \
 full=True match=state connstate=RELATED,ESTABLISHED \
 destination='not 127.0.0.1' jump=ACCEPT

IPv6:
salt '*' iptables.build_rule match=state \
 connstate=RELATED,ESTABLISHED jump=ACCEPT \
 family=ipv6
salt '*' iptables.build_rule filter INPUT command=I position=3 \
 full=True match=state connstate=RELATED,ESTABLISHED jump=ACCEPT \
 family=ipv6

	
salt.modules.iptables.check(table='filter', chain=None, rule=None, family='ipv4')

	Check for the existence of a rule in the table and chain

	This function accepts a rule in a standard iptables command format,
	starting with the chain. Trying to force users to adapt to a new
method of creating rules would be irritating at best, and we
already have a parser that can handle it.

CLI Example:

salt '*' iptables.check filter INPUT \
 rule='-m state --state RELATED,ESTABLISHED -j ACCEPT'

IPv6:
salt '*' iptables.check filter INPUT \
 rule='-m state --state RELATED,ESTABLISHED -j ACCEPT' \
 family=ipv6

	
salt.modules.iptables.check_chain(table='filter', chain=None, family='ipv4')

	
New in version 2014.1.0.

Check for the existence of a chain in the table

CLI Example:

salt '*' iptables.check_chain filter INPUT

IPv6:
salt '*' iptables.check_chain filter INPUT family=ipv6

	
salt.modules.iptables.delete(table, chain=None, position=None, rule=None, family='ipv4')

	
	Delete a rule from the specified table/chain, specifying either the rule
	in its entirety, or the rule's position in the chain.

	This function accepts a rule in a standard iptables command format,
	starting with the chain. Trying to force users to adapt to a new
method of creating rules would be irritating at best, and we
already have a parser that can handle it.

CLI Examples:

salt '*' iptables.delete filter INPUT position=3
salt '*' iptables.delete filter INPUT \
 rule='-m state --state RELATED,ESTABLISHED -j ACCEPT'

IPv6:
salt '*' iptables.delete filter INPUT position=3 family=ipv6
salt '*' iptables.delete filter INPUT \
 rule='-m state --state RELATED,ESTABLISHED -j ACCEPT' \
 family=ipv6

	
salt.modules.iptables.delete_chain(table='filter', chain=None, family='ipv4')

	
New in version 2014.1.0.

Delete custom chain to the specified table.

CLI Example:

salt '*' iptables.delete_chain filter CUSTOM_CHAIN

IPv6:
salt '*' iptables.delete_chain filter CUSTOM_CHAIN family=ipv6

	
salt.modules.iptables.flush(table='filter', chain='', family='ipv4')

	Flush the chain in the specified table, flush all chains in the specified
table if not specified chain.

CLI Example:

salt '*' iptables.flush filter INPUT

IPv6:
salt '*' iptables.flush filter INPUT family=ipv6

	
salt.modules.iptables.get_policy(table='filter', chain=None, family='ipv4')

	Return the current policy for the specified table/chain

CLI Example:

salt '*' iptables.get_policy filter INPUT

IPv6:
salt '*' iptables.get_policy filter INPUT family=ipv6

	
salt.modules.iptables.get_rules(family='ipv4')

	Return a data structure of the current, in-memory rules

CLI Example:

salt '*' iptables.get_rules

IPv6:
salt '*' iptables.get_rules family=ipv6

	
salt.modules.iptables.get_saved_policy(table='filter', chain=None, conf_file=None, family='ipv4')

	Return the current policy for the specified table/chain

CLI Examples:

salt '*' iptables.get_saved_policy filter INPUT
salt '*' iptables.get_saved_policy filter INPUT \
 conf_file=/etc/iptables.saved

IPv6:
salt '*' iptables.get_saved_policy filter INPUT family=ipv6
salt '*' iptables.get_saved_policy filter INPUT \
 conf_file=/etc/iptables.saved family=ipv6

	
salt.modules.iptables.get_saved_rules(conf_file=None, family='ipv4')

	Return a data structure of the rules in the conf file

CLI Example:

salt '*' iptables.get_saved_rules

IPv6:
salt '*' iptables.get_saved_rules family=ipv6

	
salt.modules.iptables.insert(table='filter', chain=None, position=None, rule=None, family='ipv4')

	Insert a rule into the specified table/chain, at the specified position.

	This function accepts a rule in a standard iptables command format,
	starting with the chain. Trying to force users to adapt to a new
method of creating rules would be irritating at best, and we
already have a parser that can handle it.

	If the position specified is a negative number, then the insert will be
	performed counting from the end of the list. For instance, a position
of -1 will insert the rule as the second to last rule. To insert a rule
in the last position, use the append function instead.

CLI Examples:

salt '*' iptables.insert filter INPUT position=3 \
 rule='-m state --state RELATED,ESTABLISHED -j ACCEPT'

IPv6:
salt '*' iptables.insert filter INPUT position=3 \
 rule='-m state --state RELATED,ESTABLISHED -j ACCEPT' \
 family=ipv6

	
salt.modules.iptables.new_chain(table='filter', chain=None, family='ipv4')

	
New in version 2014.1.0.

Create new custom chain to the specified table.

CLI Example:

salt '*' iptables.new_chain filter CUSTOM_CHAIN

IPv6:
salt '*' iptables.new_chain filter CUSTOM_CHAIN family=ipv6

	
salt.modules.iptables.save(filename=None, family='ipv4')

	Save the current in-memory rules to disk

CLI Example:

salt '*' iptables.save /etc/sysconfig/iptables

IPv6:
salt '*' iptables.save /etc/sysconfig/iptables family=ipv6

	
salt.modules.iptables.set_policy(table='filter', chain=None, policy=None, family='ipv4')

	Set the current policy for the specified table/chain

CLI Example:

salt '*' iptables.set_policy filter INPUT ACCEPT

IPv6:
salt '*' iptables.set_policy filter INPUT ACCEPT family=ipv6

	
salt.modules.iptables.version(family='ipv4')

	Return version from iptables --version

CLI Example:

salt '*' iptables.version

IPv6:
salt '*' iptables.version family=ipv6

salt.modules.iwtools

Support for Wireless Tools for Linux

	
salt.modules.iwtools.list_interfaces(style=None)

	List all of the wireless interfaces

CLI Example:

salt minion iwtools.list_interfaces

	
salt.modules.iwtools.scan(iface, style=None)

	List networks on a wireless interface

CLI Examples:

salt minion iwtools.scan wlp3s0
salt minion iwtools.scan wlp3s0 list

	
salt.modules.iwtools.set_mode(iface, mode)

	List networks on a wireless interface

CLI Example:

salt minion iwtools.set_mode wlp3s0 Managed

salt.modules.jboss7

Module for managing JBoss AS 7 through the CLI interface.

New in version 2015.5.0.

	In order to run each function, jboss_config dictionary with the following properties must be passed:
	
	cli_path: the path to jboss-cli script, for example: '/opt/jboss/jboss-7.0/bin/jboss-cli.sh'

	controller: the IP address and port of controller, for example: 10.11.12.13:9999

	cli_user: username to connect to jboss administration console if necessary

	cli_password: password to connect to jboss administration console if necessary

Example:

jboss_config:
 cli_path: '/opt/jboss/jboss-7.0/bin/jboss-cli.sh'
 controller: 10.11.12.13:9999
 cli_user: 'jbossadm'
 cli_password: 'jbossadm'

	
salt.modules.jboss7.create_datasource(jboss_config, name, datasource_properties, profile=None)

	Create datasource in running jboss instance

	jboss_config
	Configuration dictionary with properties specified above.

	name
	Datasource name

	datasource_properties
	
	A dictionary of datasource properties to be created:
	
	driver-name: mysql

	connection-url: 'jdbc:mysql://localhost:3306/sampleDatabase'

	jndi-name: 'java:jboss/datasources/sampleDS'

	user-name: sampleuser

	password: secret

	min-pool-size: 3

	use-java-context: True

	profile
	The profile name (JBoss domain mode only)

CLI Example:

salt '*' jboss7.create_datasource '{"cli_path": "integration.modules.sysmod.SysModuleTest.test_valid_docs", "controller": "10.11.12.13:9999", "cli_user": "jbossadm", "cli_password": "jbossadm"}' 'my_datasource' '{"driver-name": "mysql", "connection-url": "jdbc:mysql://localhost:3306/sampleDatabase", "jndi-name": "java:jboss/datasources/sampleDS", "user-name": "sampleuser", "password": "secret", "min-pool-size": 3, "use-java-context": True}'

	
salt.modules.jboss7.create_simple_binding(jboss_config, binding_name, value, profile=None)

	Create a simple jndi binding in the running jboss instance

	jboss_config
	Configuration dictionary with properties specified above.

	binding_name
	Binding name to be created

	value
	Binding value

	profile
	The profile name (JBoss domain mode only)

CLI Example:

salt '*' jboss7.create_simple_binding \
 '{"cli_path": "integration.modules.sysmod.SysModuleTest.test_valid_docs", \
 "controller": "10.11.12.13:9999", "cli_user": "jbossadm", "cli_password": "jbossadm"}' \
 my_binding_name my_binding_value

	
salt.modules.jboss7.deploy(jboss_config, source_file)

	Deploy the application on the jboss instance from the local file system where minion is running.

	jboss_config
	Configuration dictionary with properties specified above.

	source_file
	Source file to deploy from

CLI Example:

salt '*' jboss7.deploy '{"cli_path": "integration.modules.sysmod.SysModuleTest.test_valid_docs", "controller": "10.11.12.13:9999", "cli_user": "jbossadm", "cli_password": "jbossadm"}' /opt/deploy_files/my_deploy

	
salt.modules.jboss7.list_deployments(jboss_config)

	List all deployments on the jboss instance

	jboss_config
	
Configuration dictionary with properties specified above.

CLI Example:

salt '*' jboss7.list_deployments '{"cli_path": "integration.modules.sysmod.SysModuleTest.test_valid_docs", "controller": "10.11.12.13:9999", "cli_user": "jbossadm", "cli_password": "jbossadm"}'

	
salt.modules.jboss7.read_datasource(jboss_config, name, profile=None)

	Read datasource properties in the running jboss instance.

	jboss_config
	Configuration dictionary with properties specified above.

	name
	Datasource name

	profile
	Profile name (JBoss domain mode only)

CLI Example:

salt '*' jboss7.read_datasource '{"cli_path": "integration.modules.sysmod.SysModuleTest.test_valid_docs", "controller": "10.11.12.13:9999", "cli_user": "jbossadm", "cli_password": "jbossadm"}'

	
salt.modules.jboss7.read_simple_binding(jboss_config, binding_name, profile=None)

	Read jndi binding in the running jboss instance

	jboss_config
	Configuration dictionary with properties specified above.

	binding_name
	Binding name to be created

	profile
	The profile name (JBoss domain mode only)

CLI Example:

salt '*' jboss7.read_simple_binding '{"cli_path": "integration.modules.sysmod.SysModuleTest.test_valid_docs", "controller": "10.11.12.13:9999", "cli_user": "jbossadm", "cli_password": "jbossadm"}' my_binding_name

	
salt.modules.jboss7.reload_(jboss_config, host=None)

	Reload running jboss instance

	jboss_config
	Configuration dictionary with properties specified above.

	host
	The name of the host. JBoss domain mode only - and required if running in domain mode.
The host name is the "name" attribute of the "host" element in host.xml

CLI Example:

salt '*' jboss7.reload '{"cli_path": "integration.modules.sysmod.SysModuleTest.test_valid_docs", "controller": "10.11.12.13:9999", "cli_user": "jbossadm", "cli_password": "jbossadm"}'

	
salt.modules.jboss7.remove_datasource(jboss_config, name, profile=None)

	Remove an existing datasource from the running jboss instance.

	jboss_config
	Configuration dictionary with properties specified above.

	name
	Datasource name

	profile
	The profile (JBoss domain mode only)

CLI Example:

salt '*' jboss7.remove_datasource '{"cli_path": "integration.modules.sysmod.SysModuleTest.test_valid_docs", "controller": "10.11.12.13:9999", "cli_user": "jbossadm", "cli_password": "jbossadm"}' my_datasource_name

	
salt.modules.jboss7.status(jboss_config, host=None, server_config=None)

	Get status of running jboss instance.

	jboss_config
	Configuration dictionary with properties specified above.

	host
	The name of the host. JBoss domain mode only - and required if running in domain mode.
The host name is the "name" attribute of the "host" element in host.xml

	server_config
	The name of the Server Configuration. JBoss Domain mode only - and required
if running in domain mode.

CLI Example:

salt '*' jboss7.status '{"cli_path": "integration.modules.sysmod.SysModuleTest.test_valid_docs", "controller": "10.11.12.13:9999", "cli_user": "jbossadm", "cli_password": "jbossadm"}'

	
salt.modules.jboss7.stop_server(jboss_config, host=None)

	Stop running jboss instance

	jboss_config
	Configuration dictionary with properties specified above.

	host
	The name of the host. JBoss domain mode only - and required if running in domain mode.
The host name is the "name" attribute of the "host" element in host.xml

CLI Example:

salt '*' jboss7.stop_server '{"cli_path": "integration.modules.sysmod.SysModuleTest.test_valid_docs", "controller": "10.11.12.13:9999", "cli_user": "jbossadm", "cli_password": "jbossadm"}'

	
salt.modules.jboss7.undeploy(jboss_config, deployment)

	Undeploy the application from jboss instance

	jboss_config
	Configuration dictionary with properties specified above.

	deployment
	Deployment name to undeploy

CLI Example:

salt '*' jboss7.undeploy '{"cli_path": "integration.modules.sysmod.SysModuleTest.test_valid_docs", "controller": "10.11.12.13:9999", "cli_user": "jbossadm", "cli_password": "jbossadm"}' my_deployment

	
salt.modules.jboss7.update_datasource(jboss_config, name, new_properties, profile=None)

	Update an existing datasource in running jboss instance.
If the property doesn't exist if will be created, if it does, it will be updated with the new value

	jboss_config
	Configuration dictionary with properties specified above.

	name
	Datasource name

	new_properties
	
	A dictionary of datasource properties to be updated. For example:
	
	driver-name: mysql

	connection-url: 'jdbc:mysql://localhost:3306/sampleDatabase'

	jndi-name: 'java:jboss/datasources/sampleDS'

	user-name: sampleuser

	password: secret

	min-pool-size: 3

	use-java-context: True

	profile
	The profile name (JBoss domain mode only)

CLI Example:

salt '*' jboss7.update_datasource '{"cli_path": "integration.modules.sysmod.SysModuleTest.test_valid_docs", "controller": "10.11.12.13:9999", "cli_user": "jbossadm", "cli_password": "jbossadm"}' 'my_datasource' '{"driver-name": "mysql", "connection-url": "jdbc:mysql://localhost:3306/sampleDatabase", "jndi-name": "java:jboss/datasources/sampleDS", "user-name": "sampleuser", "password": "secret", "min-pool-size": 3, "use-java-context": True}'

	
salt.modules.jboss7.update_simple_binding(jboss_config, binding_name, value, profile=None)

	Update the simple jndi binding in the running jboss instance

	jboss_config
	Configuration dictionary with properties specified above.

	binding_name
	Binding name to be updated

	value
	New binding value

	profile
	The profile name (JBoss domain mode only)

CLI Example:

salt '*' jboss7.update_simple_binding '{"cli_path": "integration.modules.sysmod.SysModuleTest.test_valid_docs", "controller": "10.11.12.13:9999", "cli_user": "jbossadm", "cli_password": "jbossadm"}' my_binding_name my_binding_value

salt.modules.jboss7_cli

Module for low-level interaction with JbossAS7 through CLI.

This module exposes two ways of interaction with the CLI, either through commands or operations.

Note

Following JBoss documentation (https://developer.jboss.org/wiki/CommandLineInterface):
"Operations are considered a low level but comprehensive way to manage the AS controller, i.e. if it can't be done with operations it can't be done in any other way.
Commands, on the other hand, are more user-friendly in syntax,
although most of them still translate into operation requests and some of them even into a few
composite operation requests, i.e. commands also simplify some management operations from the user's point of view."

The difference between calling a command or operation is in handling the result.
Commands return a zero return code if operation is successful or return non-zero return code and
print an error to standard output in plain text, in case of an error.

Operations return a json-like structure, that contain more information about the result.
In case of a failure, they also return a specific return code. This module parses the output from the operations and
returns it as a dictionary so that an execution of an operation can then be verified against specific errors.

	In order to run each function, jboss_config dictionary with the following properties must be passed:
	
	cli_path: the path to jboss-cli script, for example: '/opt/jboss/jboss-7.0/bin/jboss-cli.sh'

	controller: the IP address and port of controller, for example: 10.11.12.13:9999

	cli_user: username to connect to jboss administration console if necessary

	cli_password: password to connect to jboss administration console if necessary

Example:

jboss_config:
 cli_path: '/opt/jboss/jboss-7.0/bin/jboss-cli.sh'
 controller: 10.11.12.13:9999
 cli_user: 'jbossadm'
 cli_password: 'jbossadm'

	
salt.modules.jboss7_cli.run_command(jboss_config, command, fail_on_error=True)

	Execute a command against jboss instance through the CLI interface.

	jboss_config
	Configuration dictionary with properties specified above.

	command
	Command to execute against jboss instance

	fail_on_error (default=True)
	Is true, raise CommandExecutionError exception if execution fails.
If false, 'success' property of the returned dictionary is set to False

CLI Example:

salt '*' jboss7_cli.run_command '{"cli_path": "integration.modules.sysmod.SysModuleTest.test_valid_docs", "controller": "10.11.12.13:9999", "cli_user": "jbossadm", "cli_password": "jbossadm"}' my_command

	
salt.modules.jboss7_cli.run_operation(jboss_config, operation, fail_on_error=True, retries=1)

	Execute an operation against jboss instance through the CLI interface.

	jboss_config
	Configuration dictionary with properties specified above.

	operation
	An operation to execute against jboss instance

	fail_on_error (default=True)
	Is true, raise CommandExecutionError exception if execution fails.
If false, 'success' property of the returned dictionary is set to False

	retries:
	Number of retries in case of "JBAS012144: Could not connect to remote" error.

CLI Example:

salt '*' jboss7_cli.run_operation '{"cli_path": "integration.modules.sysmod.SysModuleTest.test_valid_docs", "controller": "10.11.12.13:9999", "cli_user": "jbossadm", "cli_password": "jbossadm"}' my_operation

salt.modules.jenkinsmod

Module for controlling Jenkins

	depends:

	python-jenkins

New in version 2016.3.0.

	depends:

	python-jenkins [https://pypi.python.org/pypi/python-jenkins] Python module (not to be confused with jenkins [https://pypi.python.org/pypi/jenkins])

	configuration:

	This module can be used by either passing an api key and version
directly or by specifying both in a configuration profile in the salt
master/minion config.

For example:

jenkins:
 api_key: peWcBiMOS9HrZG15peWcBiMOS9HrZG15

	
salt.modules.jenkinsmod.build_job(name=None, parameters=None)

	Initiate a build for the provided job.

	Parameters:

	
	name -- The name of the job is check if it exists.

	parameters -- Parameters to send to the job.

	Returns:

	True is successful, otherwise raise an exception.

CLI Example:

salt '*' jenkins.build_job jobname

	
salt.modules.jenkinsmod.create_job(name=None, config_xml=None, saltenv='base')

	Return the configuration file.

	Parameters:

	
	name -- The name of the job is check if it exists.

	config_xml -- The configuration file to use to create the job.

	saltenv -- The environment to look for the file in.

	Returns:

	The configuration file used for the job.

CLI Example:

salt '*' jenkins.create_job jobname

salt '*' jenkins.create_job jobname config_xml='salt://jenkins/config.xml'

	
salt.modules.jenkinsmod.delete_job(name=None)

	Return true is job is deleted successfully.

	Parameters:

	name -- The name of the job to delete.

	Returns:

	Return true if job is deleted successfully.

CLI Example:

salt '*' jenkins.delete_job jobname

	
salt.modules.jenkinsmod.disable_job(name=None)

	Return true is job is disabled successfully.

	Parameters:

	name -- The name of the job to disable.

	Returns:

	Return true if job is disabled successfully.

CLI Example:

salt '*' jenkins.disable_job jobname

	
salt.modules.jenkinsmod.enable_job(name=None)

	Return true is job is enabled successfully.

	Parameters:

	name -- The name of the job to enable.

	Returns:

	Return true if job is enabled successfully.

CLI Example:

salt '*' jenkins.enable_job jobname

	
salt.modules.jenkinsmod.get_job_config(name=None)

	Return the current job configuration for the provided job.

	Parameters:

	name -- The name of the job to return the configuration for.

	Returns:

	The configuration for the job specified.

CLI Example:

salt '*' jenkins.get_job_config jobname

	
salt.modules.jenkinsmod.get_job_info(name=None)

	Return information about the Jenkins job.

	Parameters:

	name -- The name of the job is check if it exists.

	Returns:

	Information about the Jenkins job.

CLI Example:

salt '*' jenkins.get_job_info jobname

	
salt.modules.jenkinsmod.get_jobs()

	Return the currently configured jobs.

	Returns:

	The currently configured jobs.

CLI Example:

salt '*' jenkins.get_jobs

	
salt.modules.jenkinsmod.get_version()

	Return version of Jenkins

	Returns:

	The version of Jenkins

CLI Example:

salt '*' jenkins.get_version

	
salt.modules.jenkinsmod.job_exists(name=None)

	Check whether the job exists in configured Jenkins jobs.

	Parameters:

	name -- The name of the job is check if it exists.

	Returns:

	True if job exists, False if job does not exist.

CLI Example:

salt '*' jenkins.job_exists jobname

	
salt.modules.jenkinsmod.job_status(name=None)

	Return the current status, enabled or disabled, of the job.

	Parameters:

	name -- The name of the job to return status for

	Returns:

	Return true if enabled or false if disabled.

CLI Example:

salt '*' jenkins.job_status jobname

	
salt.modules.jenkinsmod.plugin_installed(name)

	
New in version 2016.11.0.

Return if the plugin is installed for the provided plugin name.

	Parameters:

	name -- The name of the parameter to confirm installation.

	Returns:

	True if plugin exists, False if plugin does not exist.

CLI Example:

salt '*' jenkins.plugin_installed pluginName

	
salt.modules.jenkinsmod.run(script)

	
New in version 2017.7.0.

Execute a script on the jenkins master

	Parameters:

	script -- The script

CLI Example:

salt '*' jenkins.run 'Jenkins.instance.doSafeRestart()'

	
salt.modules.jenkinsmod.update_job(name=None, config_xml=None, saltenv='base')

	Return the updated configuration file.

	Parameters:

	
	name -- The name of the job is check if it exists.

	config_xml -- The configuration file to use to create the job.

	saltenv -- The environment to look for the file in.

	Returns:

	The configuration file used for the job.

CLI Example:

salt '*' jenkins.update_job jobname

salt '*' jenkins.update_job jobname config_xml='salt://jenkins/config.xml'

salt.modules.jinja

Module for checking jinja maps and verifying the result of loading JSON/YAML
files

New in version 3000.

	
salt.modules.jinja.import_json(path)

	Loads JSON data from the specified path

CLI Example:

salt myminion jinja.import_JSON myformula/foo.json

	
salt.modules.jinja.import_yaml(path)

	Loads YAML data from the specified path

CLI Example:

salt myminion jinja.import_yaml myformula/foo.yaml

	
salt.modules.jinja.load_map(path, value)

	Loads the map at the specified path, and returns the specified value from
that map.

CLI Example:

Assuming the map is loaded in your formula SLS as follows:
#
{% from "myformula/map.jinja" import myformula with context %}
#
the following syntax can be used to load the map and check the
results:
salt myminion jinja.load_map myformula/map.jinja myformula

salt.modules.jira_mod

JIRA Execution module

New in version 2019.2.0.

Execution module to manipulate JIRA tickets via Salt.

This module requires the jira Python library to be installed.

Configuration example:

jira:
 server: https://jira.atlassian.org
 username: salt
 password: pass

	
salt.modules.jira_mod.add_comment(issue_key, comment, visibility=None, is_internal=False, server=None, username=None, password=None)

	Add a comment to an existing ticket. Return True when it successfully
added the comment.

	issue_key
	The issue ID to add the comment to.

	comment
	The body of the comment to be added.

	visibility: None
	A dictionary having two keys:

	type: is role (or group if the JIRA server has configured
comment visibility for groups).

	value: the name of the role (or group) to which viewing of this
comment will be restricted.

	is_internal: False
	Whether a comment has to be marked as Internal in Jira Service Desk.

CLI Example:

salt '*' jira.add_comment NE-123 'This is a comment'

	
salt.modules.jira_mod.assign_issue(issue_key, assignee, server=None, username=None, password=None)

	Assign the issue to an existing user. Return True when the issue has
been properly assigned.

	issue_key
	The JIRA ID of the ticket to manipulate.

	assignee
	The name of the user to assign the ticket to.

CLI Example:

salt '*' jira.assign_issue NET-123 example_user

	
salt.modules.jira_mod.create_issue(project, summary, description, template_engine='jinja', context=None, defaults=None, saltenv='base', issuetype='Bug', priority='Normal', labels=None, assignee=None, server=None, username=None, password=None, **kwargs)

	Create a JIRA issue using the named settings. Return the JIRA ticket ID.

	project
	The name of the project to attach the JIRA ticket to.

	summary
	The summary (title) of the JIRA ticket. When the template_engine
argument is set to a proper value of an existing Salt template engine
(e.g., jinja, mako, etc.) it will render the summary before
creating the ticket.

	description
	The full body description of the JIRA ticket. When the template_engine
argument is set to a proper value of an existing Salt template engine
(e.g., jinja, mako, etc.) it will render the description before
creating the ticket.

	template_engine: jinja
	The name of the template engine to be used to render the values of the
summary and description arguments. Default: jinja.

	context: None
	The context to pass when rendering the summary and description.
This argument is ignored when template_engine is set as None

	defaults: None
	Default values to pass to the Salt rendering pipeline for the
summary and description arguments.
This argument is ignored when template_engine is set as None.

	saltenv: base
	The Salt environment name (for the rendering system).

	issuetype: Bug
	The type of the JIRA ticket. Default: Bug.

	priority: Normal
	The priority of the JIRA ticket. Default: Normal.

	labels: None
	A list of labels to add to the ticket.

	assignee: None
	The name of the person to assign the ticket to.

CLI Examples:

salt '*' jira.create_issue NET 'Ticket title' 'Ticket description'
salt '*' jira.create_issue NET 'Issue on {{ opts.id }}' 'Error detected on {{ opts.id }}' template_engine=jinja

	
salt.modules.jira_mod.issue_closed(issue_key, server=None, username=None, password=None)

	Check if the issue is closed.

	issue_key
	The JIRA iD of the ticket to close.

Returns:

	True: the ticket exists and it is closed.

	False: the ticket exists and it has not been closed.

	None: the ticket does not exist.

CLI Example:

salt '*' jira.issue_closed NE-123

salt.modules.junos

Module to interact with Junos devices.

	maturity:

	new

	dependencies:

	junos-eznc, jxmlease

Note

Those who wish to use junos-eznc (PyEZ) version >= 2.1.0, must
use the latest salt code from github until the next release.

Refer to junos for information on connecting to junos proxy.

	
class salt.modules.junos.HandleFileCopy(path, **kwargs)

	To figure out proper path either from proxy local file system
or proxy cache or on master. If required, then only copy from
master to proxy

	
salt.modules.junos.cli(command=None, **kwargs)

	Executes the CLI commands and returns the output in specified format. (default is text) The output can also be stored in a file.

	command (required)
	The command to execute on the Junos CLI

	formattext
	Format in which to get the CLI output (either text or xml)

	dev_timeout30
	The NETCONF RPC timeout (in seconds)

	dest
	Destination file where the RPC output is stored. Note that the file
will be stored on the proxy minion. To push the files to the master use
cp.push.

CLI Examples:

salt 'device_name' junos.cli 'show system commit'
salt 'device_name' junos.cli 'show system alarms' format=xml dest=/home/user/cli_output.txt

	
salt.modules.junos.commit(**kwargs)

	To commit the changes loaded in the candidate configuration.

	dev_timeout30
	The NETCONF RPC timeout (in seconds)

	comment
	Provide a comment for the commit

	confirm
	Provide time in minutes for commit confirmation. If this option is
specified, the commit will be rolled back in the specified amount of time
unless the commit is confirmed.

	syncFalse
	When True, on dual control plane systems, requests that the candidate
configuration on one control plane be copied to the other control plane,
checked for correct syntax, and committed on both Routing Engines.

	force_syncFalse
	When True, on dual control plane systems, force the candidate
configuration on one control plane to be copied to the other control
plane.

	full
	When True, requires all the daemons to check and evaluate the new
configuration.

	detail
	When True, return commit detail

CLI Examples:

salt 'device_name' junos.commit comment='Commiting via saltstack' detail=True
salt 'device_name' junos.commit dev_timeout=60 confirm=10
salt 'device_name' junos.commit sync=True dev_timeout=90

	
salt.modules.junos.commit_check()

	Perform a commit check on the configuration

CLI Example:

salt 'device_name' junos.commit_check

	
salt.modules.junos.diff(**kwargs)

	Returns the difference between the candidate and the current configuration

	id0
	The rollback ID value (0-49)

	d_id0
	The rollback ID value (0-49)

CLI Example:

salt 'device_name' junos.diff d_id=3

NOTE: Because of historical reasons and the internals of the Salt state
compiler, there are three possible sources of the rollback ID--the
positional argument, and the id and d_id kwargs. The precedence of
the arguments are id (positional), id (kwarg), d_id (kwarg). In
other words, if all three are passed, only the positional argument
will be used. A warning is logged if more than one is passed.

	
salt.modules.junos.dir_copy(source, dest, force=False, **kwargs)

	Copy a directory and recursively its contents from source to dest.

Note

This function only works on the Juniper native minion

Parameters:

source : Directory to use as the source

dest : Directory in which to place the source and its contents.

force : This function will not copy identical files unless force is True

New in version 3003.

CLI Example:

salt 'device_name' junos.dir_copy /etc/salt/pki re1:/

This will take the pki directory, its absolute path and copy it and its
contents to routing engine 1 root directory. The result will be
re1:/etc/salt/pki/<files and dirs in /etc/salt/pki.

	
salt.modules.junos.facts()

	Displays the facts gathered during the connection.
These facts are also stored in Salt grains.

CLI Example:

salt 'device_name' junos.facts

	
salt.modules.junos.facts_refresh()

	Reload the facts dictionary from the device. Usually only needed if,
the device configuration is changed by some other actor.
This function will also refresh the facts stored in the salt grains.

CLI Example:

salt 'device_name' junos.facts_refresh

	
salt.modules.junos.file_compare(file1, file2, **kwargs)

	Compare two files and return a dictionary indicating if they
are different.

Dictionary includes success key. If False, one or more files do not
exist or some other error occurred.

Under the hood, this uses the junos CLI command file compare files ...

Note

This function only works on Juniper native minions

New in version 3003.

CLI Example:

salt junos-router junos.file_compare /var/tmp/backup1/cmt.script /var/tmp/backup2/cmt.script

junos-router:
 identical:
 False
 success:
 True

	
salt.modules.junos.file_copy(src, dest)

	Copies the file from the local device to the junos device

Note

This function does not work on Juniper native minions

	src
	The source path where the file is kept.

	dest
	The destination path on the where the file will be copied

New in version 3001.

CLI Example:

salt 'device_name' junos.file_copy /home/m2/info.txt info_copy.txt

	
salt.modules.junos.fsentry_exists(dir, **kwargs)

	Returns a dictionary indicating if dir refers to a file
or a non-file (generally a directory) in the file system,
or if there is no file by that name.

Note

This function only works on Juniper native minions

New in version 3003.

CLI Example:

salt junos-router junos.fsentry_exists /var/log

junos-router:
 is_dir:
 True
 exists:
 True

	
salt.modules.junos.get_table(table, table_file, path=None, target=None, key=None, key_items=None, filters=None, table_args=None)

	
New in version 3001.

Retrieve data from a Junos device using Tables/Views

	table (required)
	Name of PyEZ Table

	table_file (required)
	YAML file that has the table specified in table parameter

	path:
	Path of location of the YAML file.
defaults to op directory in jnpr.junos.op

	target:
	if command need to run on FPC, can specify fpc target

	key:
	To overwrite key provided in YAML

	key_items:
	To select only given key items

	filters:
	To select only filter for the dictionary from columns

	table_args:
	key/value pair which should render Jinja template command
or are passed as args to rpc call in op table

CLI Example:

salt 'device_name' junos.get_table RouteTable routes.yml
salt 'device_name' junos.get_table EthPortTable ethport.yml table_args='{"interface_name": "ge-3/2/2"}'
salt 'device_name' junos.get_table EthPortTable ethport.yml salt://tables

	
salt.modules.junos.install_config(path=None, **kwargs)

	Installs the given configuration file into the candidate configuration.
Commits the changes if the commit checks or throws an error.

	path (required)
	Path where the configuration/template file is present. If the file has
a .conf extension, the content is treated as text format. If the
file has a .xml extension, the content is treated as XML format. If
the file has a .set extension, the content is treated as Junos OS
set commands.

	modeexclusive
	The mode in which the configuration is locked. Can be one of
private, dynamic, batch, exclusive, ephemeral

	dev_timeout30
	Set NETCONF RPC timeout. Can be used for commands which take a while to
execute.

	overwriteFalse
	Set to True if you want this file is to completely replace the
configuration file. Sets action to override

Note

This option cannot be used if format is "set".

	replaceFalse
	Specify whether the configuration file uses replace: statements. If
True, only those statements under the replace tag will be
changed.

	mergeFalse
	If set to True will set the load-config action to merge.
the default load-config action is 'replace' for xml/json/text config

	format
	Determines the format of the contents

	updateFalse
	Compare a complete loaded configuration against the candidate
configuration. For each hierarchy level or configuration object that is
different in the two configurations, the version in the loaded
configuration replaces the version in the candidate configuration. When
the configuration is later committed, only system processes that are
affected by the changed configuration elements parse the new
configuration. This action is supported from PyEZ 2.1.

	comment
	Provide a comment for the commit

	confirm
	Provide time in minutes for commit confirmation. If this option is
specified, the commit will be rolled back in the specified amount of time
unless the commit is confirmed.

	diffs_file
	Path to the file where the diff (difference in old configuration and the
committed configuration) will be stored. Note that the file will be
stored on the proxy minion. To push the files to the master use:

py:func:cp.push <salt.modules.cp.push>.

	template_vars
	Variables to be passed into the template processing engine in addition to
those present in pillar, the minion configuration, grains, etc. You may
reference these variables in your template like so:

{{ template_vars["var_name"] }}

CLI Examples:

salt 'device_name' junos.install_config 'salt://production/network/routers/config.set'
salt 'device_name' junos.install_config 'salt://templates/replace_config.conf' replace=True comment='Committed via SaltStack'
salt 'device_name' junos.install_config 'salt://my_new_configuration.conf' dev_timeout=300 diffs_file='/salt/confs/old_config.conf' overwrite=True
salt 'device_name' junos.install_config 'salt://syslog_template.conf' template_vars='{"syslog_host": "10.180.222.7"}'

	
salt.modules.junos.install_os(path=None, **kwargs)

	Installs the given image on the device. After the installation is complete
the device is rebooted, if reboot=True is given as a keyworded argument.

	path (required)
	Path where the image file is present on the proxy minion

	remote_path/var/tmp
	If the value of path is a file path on the local
(Salt host's) filesystem, then the image is copied from the local
filesystem to the :remote_path: directory on the target Junos
device. The default is /var/tmp. If the value of :path: or
is a URL, then the value of :remote_path: is unused.

	dev_timeout1800
	The NETCONF RPC timeout (in seconds). This argument was added since most of
the time the "package add" RPC takes a significant amount of time.
So this :timeout: value will be used in the context of the SW installation
process. Defaults to 30 minutes (30*60=1800 seconds)

	timeout1800
	Alias to dev_timeout for backward compatibility

	rebootFalse
	Whether to reboot after installation

	no_copyFalse
	If True the software package will not be SCP’d to the device

	bool validate:
	When True this method will perform a config validation against
the new image

	bool issu: False
	When True allows unified in-service software upgrade
(ISSU) feature enables you to upgrade between two different Junos OS
releases with no disruption on the control plane and with minimal
disruption of traffic.

	bool nssu: False
	When True allows nonstop software upgrade (NSSU)
enables you to upgrade the software running on a Juniper Networks
EX Series Virtual Chassis or a Juniper Networks EX Series Ethernet
Switch with redundant Routing Engines with a single command and
minimal disruption to network traffic.

	bool all_re: True
	When True (default), executes the software install on all Routing Engines of the Junos
device. When False, execute the software install only on the current Routing Engine.

New in version 3001.

Note

Any additional keyword arguments specified are passed down to PyEZ sw.install() as is.
Please refer to below URl for PyEZ sw.install() documentation:
https://pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.sw.SW.install

CLI Examples:

salt 'device_name' junos.install_os 'salt://images/junos_image.tgz' reboot=True
salt 'device_name' junos.install_os 'salt://junos_16_1.tgz' dev_timeout=300

	
salt.modules.junos.load(path=None, **kwargs)

	Loads the configuration from the file provided onto the device.

	path (required)
	Path where the configuration/template file is present. If the file has
a .conf extension, the content is treated as text format. If the
file has a .xml extension, the content is treated as XML format. If
the file has a .set extension, the content is treated as Junos OS
set commands.

	overwriteFalse
	Set to True if you want this file is to completely replace the
configuration file. Sets action to override

Note

This option cannot be used if format is "set".

	replaceFalse
	Specify whether the configuration file uses replace: statements. If
True, only those statements under the replace tag will be
changed.

	mergeFalse
	If set to True will set the load-config action to merge.
the default load-config action is 'replace' for xml/json/text config

	updateFalse
	Compare a complete loaded configuration against the candidate
configuration. For each hierarchy level or configuration object that is
different in the two configurations, the version in the loaded
configuration replaces the version in the candidate configuration. When
the configuration is later committed, only system processes that are
affected by the changed configuration elements parse the new
configuration. This action is supported from PyEZ 2.1.

	format
	Determines the format of the contents

	template_vars
	Variables to be passed into the template processing engine in addition to
those present in pillar, the minion configuration, grains, etc. You may
reference these variables in your template like so:

{{ template_vars["var_name"] }}

CLI Examples:

salt 'device_name' junos.load 'salt://production/network/routers/config.set'

salt 'device_name' junos.load 'salt://templates/replace_config.conf' replace=True

salt 'device_name' junos.load 'salt://my_new_configuration.conf' overwrite=True

salt 'device_name' junos.load 'salt://syslog_template.conf' template_vars='{"syslog_host": "10.180.222.7"}'

	
salt.modules.junos.lock()

	Attempts an exclusive lock on the candidate configuration. This
is a non-blocking call.

Note

When locking, it is important to remember to call
junos.unlock once finished. If
locking during orchestration, remember to include a step in the
orchestration job to unlock.

CLI Example:

salt 'device_name' junos.lock

	
salt.modules.junos.ping(dest_ip=None, **kwargs)

	Send a ping RPC to a device

	dest_ip
	The IP of the device to ping

	dev_timeout30
	The NETCONF RPC timeout (in seconds)

	rapidFalse
	When True, executes ping at 100pps instead of 1pps

	ttl
	Maximum number of IP routers (IP hops) allowed between source and
destination

	routing_instance
	Name of the routing instance to use to send the ping

	interface
	Interface used to send traffic

	count5
	Number of packets to send

CLI Examples:

salt 'device_name' junos.ping '8.8.8.8' count=5
salt 'device_name' junos.ping '8.8.8.8' ttl=1 rapid=True

	
salt.modules.junos.rollback(**kwargs)

	Roll back the last committed configuration changes and commit

	id0
	The rollback ID value (0-49)

	d_id0
	The rollback ID value (0-49)

	dev_timeout30
	The NETCONF RPC timeout (in seconds)

	comment
	Provide a comment for the commit

	confirm
	Provide time in minutes for commit confirmation. If this option is
specified, the commit will be rolled back in the specified amount of time
unless the commit is confirmed.

	diffs_file
	Path to the file where the diff (difference in old configuration and the
committed configuration) will be stored. Note that the file will be
stored on the proxy minion. To push the files to the master use
cp.push.

CLI Example:

salt 'device_name' junos.rollback 10

NOTE: Because of historical reasons and the internals of the Salt state
compiler, there are three possible sources of the rollback ID--the
positional argument, and the id and d_id kwargs. The precedence of
the arguments are id (positional), id (kwarg), d_id (kwarg). In
other words, if all three are passed, only the positional argument
will be used. A warning is logged if more than one is passed.

	
salt.modules.junos.routing_engine(**kwargs)

	Returns a dictionary containing the routing engines on the device and
their status (Master, Disabled, Backup).

Under the hood parses the result of show chassis routing-engine

New in version 3003.

CLI Example:

salt junos-router junos.routing_engine

junos-router:
 backup:
 - re1:
 master:
 re0:
 success:
 True

Returns success: False if the device does not appear to have multiple routing engines.

	
salt.modules.junos.rpc(cmd=None, dest=None, **kwargs)

	This function executes the RPC provided as arguments on the junos device.
The returned data can be stored in a file.

	cmd
	The RPC to be executed

	dest
	Destination file where the RPC output is stored. Note that the file
will be stored on the proxy minion. To push the files to the master use
cp.push.

	formatxml
	The format in which the RPC reply is received from the device

	dev_timeout30
	The NETCONF RPC timeout (in seconds)

	filter
	Used with the get-config RPC to get specific configuration

	terseFalse
	Amount of information you want

	interface_name
	Name of the interface to query

CLI Example:

salt 'device' junos.rpc get_config dest=/var/log/config.txt format=text filter='<configuration><system/></configuration>'
salt 'device' junos.rpc get-interface-information dest=/home/user/interface.xml interface_name='lo0' terse=True
salt 'device' junos.rpc get-chassis-inventory

	
salt.modules.junos.rpc_file_list(path, **kwargs)

	Use the Junos RPC interface to get a list of files and return
them as a structure dictionary.

New in version 3003.

CLI Example:

salt junos-router junos.rpc_file_list /var/local/salt/etc

junos-router:
 files:
 directory:
 directory-name:
 /var/local/salt/etc
 file-information:
 |_
 file-directory:
 file-name:
 pki
 |_
 file-name:
 proxy
 |_
 file-directory:
 file-name:
 proxy.d
 total-file-blocks:
 10
 total-files:
 1
success:
 True

	
salt.modules.junos.set_hostname(hostname=None, **kwargs)

	Set the device's hostname

	hostname
	The name to be set

	comment
	Provide a comment to the commit

	dev_timeout30
	The NETCONF RPC timeout (in seconds)

	confirm
	Provide time in minutes for commit confirmation. If this option is
specified, the commit will be rolled back in the specified amount of time
unless the commit is confirmed.

CLI Example:

salt 'device_name' junos.set_hostname salt-device

	
salt.modules.junos.shutdown(**kwargs)

	Shut down (power off) or reboot a device running Junos OS. This includes
all Routing Engines in a Virtual Chassis or a dual Routing Engine system.

Note

One of shutdown or reboot must be set to True or no
action will be taken.

	shutdownFalse
	Set this to True if you want to shutdown the machine. This is a
safety mechanism so that the user does not accidentally shutdown the
junos device.

	rebootFalse
	If True, reboot instead of shutting down

	at
	Used when rebooting, to specify the date and time the reboot should take
place. The value of this option must match the JunOS CLI reboot syntax.

	in_min
	Used when shutting down. Specify the delay (in minutes) before the
device will be shut down.

CLI Examples:

salt 'device_name' junos.shutdown reboot=True
salt 'device_name' junos.shutdown shutdown=True in_min=10
salt 'device_name' junos.shutdown shutdown=True

	
salt.modules.junos.unlock()

	Unlocks the candidate configuration.

CLI Example:

salt 'device_name' junos.unlock

	
salt.modules.junos.zeroize()

	Resets the device to default factory settings

Note

In case of non-root user, proxy_reconnect will not be able
to re-connect to the device as zeroize will delete the local
user's configuration.
For more details on zeroize functionality, please refer
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/request-system-zeroize.html

CLI Example:

salt 'device_name' junos.zeroize

salt.modules.k8s

Warning

This module will be removed from Salt in version 3009 in favor of
the kubernetes Salt Extension [https://github.com/salt-extensions/saltext-kubernetes].

Salt module to manage Kubernetes cluster

New in version 2016.3.0.

Roadmap:

	Add creation of K8S objects (pod, rc, service, ...)

	Add replace of K8S objects (pod, rc, service, ...)

	Add deletion of K8S objects (pod, rc, service, ...)

	Add rolling update

	Add (auto)scalling

	
salt.modules.k8s.create_namespace(name, apiserver_url=None)

	
New in version 2016.3.0.

Create kubernetes namespace from the name, similar to the functionality added to kubectl since v.1.2.0:
.. code-block:: bash

kubectl create namespaces namespace-name

CLI Example:

salt '*' k8s.create_namespace namespace_name

salt '*' k8s.create_namespace namespace_name http://kube-master.cluster.local

	
salt.modules.k8s.create_secret(namespace, name, sources, apiserver_url=None, force=False, update=False, saltenv='base')

	
New in version 2016.3.0.

Create k8s secrets in the defined namespace from the list of files

CLI Example:

salt '*' k8s.create_secret namespace_name secret_name sources

salt '*' k8s.create_secret namespace_name secret_name sources
http://kube-master.cluster.local

sources are either dictionary of {name: path, name1: path} pairs or array of strings defining paths.

Example of paths array:

['/full/path/filename', "file:///full/path/filename", "salt://secret/storage/file.txt", "http://user:password@securesite.com/secret-file.json"]

Example of dictionaries:

{"nameit": '/full/path/fiename', name2: "salt://secret/storage/file.txt"}

optional parameters accepted:

update=[false] default value is false
if set to false, and secret is already present on the cluster - warning will be returned and no changes to the secret will be done.
In case it is set to "true" and secret is present but data is differ - secret will be updated.

force=[true] default value is true
if the to False, secret will not be created in case one of the files is not
valid kubernetes secret. e.g. capital letters in secret name or _
in case force is set to True, wrong files will be skipped but secret will be created any way.

saltenv=['base'] default value is base
in case 'salt://' path is used, this parameter can change the visibility of files

	
salt.modules.k8s.delete_secret(namespace, name, apiserver_url=None, force=True)

	
New in version 2016.3.0.

Delete kubernetes secret in the defined namespace. Namespace is the mandatory parameter as well as name.

CLI Example:

salt '*' k8s.delete_secret namespace_name secret_name

salt '*' k8s.delete_secret namespace_name secret_name http://kube-master.cluster.local

	
salt.modules.k8s.get_labels(node=None, apiserver_url=None)

	
New in version 2016.3.0.

Get labels from the current node

CLI Example:

salt '*' k8s.get_labels
salt '*' k8s.get_labels kube-node.cluster.local http://kube-master.cluster.local

	
salt.modules.k8s.get_namespaces(namespace='', apiserver_url=None)

	
New in version 2016.3.0.

Get one or all kubernetes namespaces.

If namespace parameter is omitted, all namespaces will be returned back to user, similar to following kubectl example:

kubectl get namespaces -o json

In case namespace is set by user, the output will be similar to the one from kubectl:

kubectl get namespaces namespace_name -o json

CLI Example:

salt '*' k8s.get_namespaces
salt '*' k8s.get_namespaces namespace_name http://kube-master.cluster.local

	
salt.modules.k8s.get_secrets(namespace, name='', apiserver_url=None, decode=False, brief=False)

	Get k8s namespaces

CLI Example:

salt '*' k8s.get_secrets namespace_name
salt '*' k8s.get_secrets namespace_name secret_name http://kube-master.cluster.local

	
salt.modules.k8s.label_absent(name, node=None, apiserver_url=None)

	
New in version 2016.3.0.

Delete label to the current node

CLI Example:

salt '*' k8s.label_absent hw/disktype
salt '*' k8s.label_absent hw/disktype kube-node.cluster.local http://kube-master.cluster.local

	
salt.modules.k8s.label_folder_absent(name, node=None, apiserver_url=None)

	
New in version 2016.3.0.

Delete label folder to the current node

CLI Example:

salt '*' k8s.label_folder_absent hw
salt '*' k8s.label_folder_absent hw/ kube-node.cluster.local http://kube-master.cluster.local

	
salt.modules.k8s.label_present(name, value, node=None, apiserver_url=None)

	
New in version 2016.3.0.

Set label to the current node

CLI Example:

salt '*' k8s.label_present hw/disktype ssd

salt '*' k8s.label_present hw/disktype ssd kube-node.cluster.local http://kube-master.cluster.local

	
salt.modules.k8s.update_secret(namespace, name, sources, apiserver_url=None, force=True, saltenv='base')

	
New in version 2016.3.0.

alias to k8s.create_secret with update=true

CLI Example:

salt '*' k8s.update_secret namespace_name secret_name sources [apiserver_url] [force=true] [update=false] [saltenv='base']

sources are either dictionary of {name: path, name1: path} pairs or array of strings defining paths.

Example of paths array:

['/full/path/filename', "file:///full/path/filename", "salt://secret/storage/file.txt", "http://user:password@securesite.com/secret-file.json"]

Example of dictionaries:

{"nameit": '/full/path/fiename', name2: "salt://secret/storage/file.txt"}

optional parameters accepted:

force=[true] default value is true
if the to False, secret will not be created in case one of the files is not
valid kubernetes secret. e.g. capital letters in secret name or _
in case force is set to True, wrong files will be skipped but secret will be created any way.

saltenv=['base'] default value is base
in case 'salt://' path is used, this parameter can change the visibility of files

salt.modules.kapacitor

Kapacitor execution module.

	configuration:

	This module accepts connection configuration details either as
parameters or as configuration settings in /etc/salt/minion on the relevant
minions:

kapacitor.host: 'localhost'
kapacitor.port: 9092

New in version 2016.11.0.

Also protocol and SSL settings could be configured:

kapacitor.unsafe_ssl: 'false'
kapacitor.protocol: 'http'

New in version 2019.2.0.

This data can also be passed into pillar. Options passed into opts will
overwrite options passed into pillar.

	
salt.modules.kapacitor.define_task(name, tick_script, task_type='stream', database=None, retention_policy='default', dbrps=None)

	Define a task. Serves as both create/update.

	name
	Name of the task.

	tick_script
	Path to the TICK script for the task. Can be a salt:// source.

	task_type
	Task type. Defaults to 'stream'

	dbrps
	A list of databases and retention policies in "dbname"."rpname" format
to fetch data from. For backward compatibility, the value of
'database' and 'retention_policy' will be merged as part of dbrps.

New in version 2019.2.0.

	database
	Which database to fetch data from.

	retention_policy
	Which retention policy to fetch data from. Defaults to 'default'.

CLI Example:

salt '*' kapacitor.define_task cpu salt://kapacitor/cpu.tick database=telegraf

	
salt.modules.kapacitor.delete_task(name)

	Delete a kapacitor task.

	name
	Name of the task to delete.

CLI Example:

salt '*' kapacitor.delete_task cpu

	
salt.modules.kapacitor.disable_task(name)

	Disable a kapacitor task.

	name
	Name of the task to disable.

CLI Example:

salt '*' kapacitor.disable_task cpu

	
salt.modules.kapacitor.enable_task(name)

	Enable a kapacitor task.

	name
	Name of the task to enable.

CLI Example:

salt '*' kapacitor.enable_task cpu

	
salt.modules.kapacitor.get_task(name)

	Get a dict of data on a task.

	name
	Name of the task to get information about.

CLI Example:

salt '*' kapacitor.get_task cpu

	
salt.modules.kapacitor.version()

	Get the kapacitor version.

salt.modules.kerberos

Manage Kerberos KDC

	configuration:

	In order to manage your KDC you will need to generate a keytab
that can authenticate without requiring a password.

ktadd -k /root/secure.keytab kadmin/admin kadmin/changepw

On the KDC minion you will need to add the following to the minion
configuration file so Salt knows what keytab to use and what principal to
authenticate as.

auth_keytab: /root/auth.keytab
auth_principal: kadmin/admin

	
salt.modules.kerberos.create_keytab(name, keytab, enctypes=None)

	Create keytab

CLI Example:

salt 'kdc.example.com' kerberos.create_keytab host/host1.example.com host1.example.com.keytab

	
salt.modules.kerberos.create_principal(name, enctypes=None)

	Create Principal

CLI Example:

salt 'kdc.example.com' kerberos.create_principal host/example.com

	
salt.modules.kerberos.delete_principal(name)

	Delete Principal

CLI Example:

salt 'kdc.example.com' kerberos.delete_principal host/example.com@EXAMPLE.COM

	
salt.modules.kerberos.get_policy(name)

	Get policy details

CLI Example:

salt 'kdc.example.com' kerberos.get_policy my_policy

	
salt.modules.kerberos.get_principal(name)

	Get princial details

CLI Example:

salt 'kdc.example.com' kerberos.get_principal root/admin

	
salt.modules.kerberos.get_privs()

	Current privileges

CLI Example:

salt 'kdc.example.com' kerberos.get_privs

	
salt.modules.kerberos.list_policies()

	List policies

CLI Example:

salt 'kdc.example.com' kerberos.list_policies

	
salt.modules.kerberos.list_principals()

	Get all principals

CLI Example:

salt 'kde.example.com' kerberos.list_principals

salt.modules.kernelpkg_linux_apt

Manage Linux kernel packages on APT-based systems

	
salt.modules.kernelpkg_linux_apt.active()

	Return the version of the running kernel.

CLI Example:

salt '*' kernelpkg.active

	
salt.modules.kernelpkg_linux_apt.cleanup(keep_latest=True)

	Remove all unused kernel packages from the system.

	keep_latestTrue
	In the event that the active kernel is not the latest one installed, setting this to True
will retain the latest kernel package, in addition to the active one. If False, all kernel
packages other than the active one will be removed.

CLI Example:

salt '*' kernelpkg.cleanup

	
salt.modules.kernelpkg_linux_apt.latest_available()

	Return the version of the latest kernel from the package repositories.

CLI Example:

salt '*' kernelpkg.latest_available

	
salt.modules.kernelpkg_linux_apt.latest_installed()

	Return the version of the latest installed kernel.

CLI Example:

salt '*' kernelpkg.latest_installed

Note

This function may not return the same value as
active() if a new kernel
has been installed and the system has not yet been rebooted.
The needs_reboot() function
exists to detect this condition.

	
salt.modules.kernelpkg_linux_apt.list_installed()

	Return a list of all installed kernels.

CLI Example:

salt '*' kernelpkg.list_installed

	
salt.modules.kernelpkg_linux_apt.needs_reboot()

	Detect if a new kernel version has been installed but is not running.
Returns True if a new kernel is installed, False otherwise.

CLI Example:

salt '*' kernelpkg.needs_reboot

	
salt.modules.kernelpkg_linux_apt.remove(release)

	Remove a specific version of the kernel.

	release
	The release number of an installed kernel. This must be the entire release
number as returned by list_installed(),
not the package name.

CLI Example:

salt '*' kernelpkg.remove 4.4.0-70-generic

	
salt.modules.kernelpkg_linux_apt.upgrade(reboot=False, at_time=None)

	Upgrade the kernel and optionally reboot the system.

	rebootFalse
	Request a reboot if a new kernel is available.

	at_timeimmediate
	Schedule the reboot at some point in the future. This argument
is ignored if reboot=False. See
reboot() for more details
on this argument.

CLI Example:

salt '*' kernelpkg.upgrade
salt '*' kernelpkg.upgrade reboot=True at_time=1

Note

An immediate reboot often shuts down the system before the minion has a
chance to return, resulting in errors. A minimal delay (1 minute) is
useful to ensure the result is delivered to the master.

	
salt.modules.kernelpkg_linux_apt.upgrade_available()

	Detect if a new kernel version is available in the repositories.
Returns True if a new kernel is available, False otherwise.

CLI Example:

salt '*' kernelpkg.upgrade_available

salt.modules.kernelpkg_linux_yum

Manage Linux kernel packages on YUM-based systems

	
salt.modules.kernelpkg_linux_yum.active()

	Return the version of the running kernel.

CLI Example:

salt '*' kernelpkg.active

	
salt.modules.kernelpkg_linux_yum.cleanup(keep_latest=True)

	Remove all unused kernel packages from the system.

	keep_latestTrue
	In the event that the active kernel is not the latest one installed, setting this to True
will retain the latest kernel package, in addition to the active one. If False, all kernel
packages other than the active one will be removed.

CLI Example:

salt '*' kernelpkg.cleanup

	
salt.modules.kernelpkg_linux_yum.latest_available()

	Return the version of the latest kernel from the package repositories.

CLI Example:

salt '*' kernelpkg.latest_available

	
salt.modules.kernelpkg_linux_yum.latest_installed()

	Return the version of the latest installed kernel.

CLI Example:

salt '*' kernelpkg.latest_installed

Note

This function may not return the same value as
active() if a new kernel
has been installed and the system has not yet been rebooted.
The needs_reboot() function
exists to detect this condition.

	
salt.modules.kernelpkg_linux_yum.list_installed()

	Return a list of all installed kernels.

CLI Example:

salt '*' kernelpkg.list_installed

	
salt.modules.kernelpkg_linux_yum.needs_reboot()

	Detect if a new kernel version has been installed but is not running.
Returns True if a new kernel is installed, False otherwise.

CLI Example:

salt '*' kernelpkg.needs_reboot

	
salt.modules.kernelpkg_linux_yum.remove(release)

	Remove a specific version of the kernel.

	release
	The release number of an installed kernel. This must be the entire release
number as returned by list_installed(),
not the package name.

CLI Example:

salt '*' kernelpkg.remove 3.10.0-327.el7

	
salt.modules.kernelpkg_linux_yum.upgrade(reboot=False, at_time=None)

	Upgrade the kernel and optionally reboot the system.

	rebootFalse
	Request a reboot if a new kernel is available.

	at_timeimmediate
	Schedule the reboot at some point in the future. This argument
is ignored if reboot=False. See
reboot() for more details
on this argument.

CLI Example:

salt '*' kernelpkg.upgrade
salt '*' kernelpkg.upgrade reboot=True at_time=1

Note

An immediate reboot often shuts down the system before the minion has a
chance to return, resulting in errors. A minimal delay (1 minute) is
useful to ensure the result is delivered to the master.

	
salt.modules.kernelpkg_linux_yum.upgrade_available()

	Detect if a new kernel version is available in the repositories.
Returns True if a new kernel is available, False otherwise.

CLI Example:

salt '*' kernelpkg.upgrade_available

salt.modules.key

Functions to view the minion's public key information

	
salt.modules.key.finger(hash_type=None)

	Return the minion's public key fingerprint

	hash_type
	The hash algorithm used to calculate the fingerprint

CLI Example:

salt '*' key.finger

	
salt.modules.key.finger_master(hash_type=None)

	Return the fingerprint of the master's public key on the minion.

	hash_type
	The hash algorithm used to calculate the fingerprint

CLI Example:

salt '*' key.finger_master

salt.modules.keyboard

Module for managing keyboards on supported POSIX-like systems using
systemd, or such as Redhat, Debian and Gentoo.

	
salt.modules.keyboard.get_sys()

	Get current system keyboard setting

CLI Example:

salt '*' keyboard.get_sys

	
salt.modules.keyboard.get_x()

	Get current X keyboard setting

CLI Example:

salt '*' keyboard.get_x

	
salt.modules.keyboard.set_sys(layout)

	Set current system keyboard setting

CLI Example:

salt '*' keyboard.set_sys dvorak

	
salt.modules.keyboard.set_x(layout)

	Set current X keyboard setting

CLI Example:

salt '*' keyboard.set_x dvorak

salt.modules.keystone

Module for handling openstack keystone calls.

	optdepends:

	
	keystoneclient Python adapter

	configuration:

	This module is not usable until the following are specified
either in a pillar or in the minion's config file:

keystone.user: admin
keystone.password: verybadpass
keystone.tenant: admin
keystone.tenant_id: f80919baedab48ec8931f200c65a50df
keystone.auth_url: 'http://127.0.0.1:5000/v2.0/'
keystone.verify_ssl: True

OR (for token based authentication)

keystone.token: 'ADMIN'
keystone.endpoint: 'http://127.0.0.1:35357/v2.0'

If configuration for multiple openstack accounts is required, they can be
set up as different configuration profiles. For example:

openstack1:
 keystone.user: admin
 keystone.password: verybadpass
 keystone.tenant: admin
 keystone.tenant_id: f80919baedab48ec8931f200c65a50df
 keystone.auth_url: 'http://127.0.0.1:5000/v2.0/'
 keystone.verify_ssl: True

openstack2:
 keystone.user: admin
 keystone.password: verybadpass
 keystone.tenant: admin
 keystone.tenant_id: f80919baedab48ec8931f200c65a50df
 keystone.auth_url: 'http://127.0.0.2:5000/v2.0/'
 keystone.verify_ssl: True

With this configuration in place, any of the keystone functions can make use
of a configuration profile by declaring it explicitly.
For example:

salt '*' keystone.tenant_list profile=openstack1

	
salt.modules.keystone.api_version(profile=None, **connection_args)

	Returns the API version derived from endpoint's response.

CLI Example:

salt '*' keystone.api_version

	
salt.modules.keystone.auth(profile=None, **connection_args)

	Set up keystone credentials. Only intended to be used within Keystone-enabled modules.

CLI Example:

salt '*' keystone.auth

	
salt.modules.keystone.ec2_credentials_create(user_id=None, name=None, tenant_id=None, tenant=None, profile=None, **connection_args)

	Create EC2-compatible credentials for user per tenant

CLI Examples:

salt '*' keystone.ec2_credentials_create name=admin tenant=admin

salt '*' keystone.ec2_credentials_create user_id=c965f79c4f864eaaa9c3b41904e67082 tenant_id=722787eb540849158668370dc627ec5f

	
salt.modules.keystone.ec2_credentials_delete(user_id=None, name=None, access_key=None, profile=None, **connection_args)

	Delete EC2-compatible credentials

CLI Examples:

salt '*' keystone.ec2_credentials_delete 860f8c2c38ca4fab989f9bc56a061a64 access_key=5f66d2f24f604b8bb9cd28886106f442

salt '*' keystone.ec2_credentials_delete name=admin access_key=5f66d2f24f604b8bb9cd28886106f442

	
salt.modules.keystone.ec2_credentials_get(user_id=None, name=None, access=None, profile=None, **connection_args)

	Return ec2_credentials for a user (keystone ec2-credentials-get)

CLI Examples:

salt '*' keystone.ec2_credentials_get c965f79c4f864eaaa9c3b41904e67082 access=722787eb540849158668370
salt '*' keystone.ec2_credentials_get user_id=c965f79c4f864eaaa9c3b41904e67082 access=722787eb540849158668370
salt '*' keystone.ec2_credentials_get name=nova access=722787eb540849158668370dc627ec5f

	
salt.modules.keystone.ec2_credentials_list(user_id=None, name=None, profile=None, **connection_args)

	Return a list of ec2_credentials for a specific user (keystone ec2-credentials-list)

CLI Examples:

salt '*' keystone.ec2_credentials_list 298ce377245c4ec9b70e1c639c89e654
salt '*' keystone.ec2_credentials_list user_id=298ce377245c4ec9b70e1c639c89e654
salt '*' keystone.ec2_credentials_list name=jack

	
salt.modules.keystone.endpoint_create(service, publicurl=None, internalurl=None, adminurl=None, region=None, profile=None, url=None, interface=None, **connection_args)

	Create an endpoint for an Openstack service

CLI Examples:

salt 'v2' keystone.endpoint_create nova 'http://public/url' 'http://internal/url' 'http://adminurl/url' region

salt 'v3' keystone.endpoint_create nova url='http://public/url' interface='public' region='RegionOne'

	
salt.modules.keystone.endpoint_delete(service, region=None, profile=None, interface=None, **connection_args)

	Delete endpoints of an Openstack service

CLI Examples:

salt 'v2' keystone.endpoint_delete nova [region=RegionOne]

salt 'v3' keystone.endpoint_delete nova interface=admin [region=RegionOne]

	
salt.modules.keystone.endpoint_get(service, region=None, profile=None, interface=None, **connection_args)

	Return a specific endpoint (keystone endpoint-get)

CLI Example:

salt 'v2' keystone.endpoint_get nova [region=RegionOne]

salt 'v3' keystone.endpoint_get nova interface=admin [region=RegionOne]

	
salt.modules.keystone.endpoint_list(profile=None, **connection_args)

	Return a list of available endpoints (keystone endpoints-list)

CLI Example:

salt '*' keystone.endpoint_list

	
salt.modules.keystone.project_create(name, domain, description=None, enabled=True, profile=None, **connection_args)

	Create a keystone project.
Overrides keystone tenant_create form api V2. For keystone api V3.

New in version 2016.11.0.

	name
	The project name, which must be unique within the owning domain.

	domain
	The domain name.

	description
	The project description.

	enabled
	Enables or disables the project.

	profile
	Configuration profile - if configuration for multiple openstack accounts required.

CLI Examples:

salt '*' keystone.project_create nova default description='Nova Compute Project'
salt '*' keystone.project_create test default enabled=False

	
salt.modules.keystone.project_delete(project_id=None, name=None, profile=None, **connection_args)

	Delete a project (keystone project-delete).
Overrides keystone tenant-delete form api V2. For keystone api V3 only.

New in version 2016.11.0.

	project_id
	The project id.

	name
	The project name.

	profile
	Configuration profile - if configuration for multiple openstack accounts required.

CLI Examples:

salt '*' keystone.project_delete c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.project_delete project_id=c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.project_delete name=demo

	
salt.modules.keystone.project_get(project_id=None, name=None, profile=None, **connection_args)

	Return a specific projects (keystone project-get)
Overrides keystone tenant-get form api V2.
For keystone api V3 only.

New in version 2016.11.0.

	project_id
	The project id.

	name
	The project name.

	profile
	Configuration profile - if configuration for multiple openstack accounts required.

CLI Examples:

salt '*' keystone.project_get c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.project_get project_id=c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.project_get name=nova

	
salt.modules.keystone.project_list(profile=None, **connection_args)

	Return a list of available projects (keystone projects-list).
Overrides keystone tenants-list form api V2.
For keystone api V3 only.

New in version 2016.11.0.

	profile
	Configuration profile - if configuration for multiple openstack accounts required.

CLI Example:

salt '*' keystone.project_list

	
salt.modules.keystone.project_update(project_id=None, name=None, description=None, enabled=None, profile=None, **connection_args)

	Update a tenant's information (keystone project-update)
The following fields may be updated: name, description, enabled.
Can only update name if targeting by ID

Overrides keystone tenant_update form api V2.
For keystone api V3 only.

New in version 2016.11.0.

	project_id
	The project id.

	name
	The project name, which must be unique within the owning domain.

	description
	The project description.

	enabled
	Enables or disables the project.

	profile
	Configuration profile - if configuration for multiple openstack accounts required.

CLI Examples:

salt '*' keystone.project_update name=admin enabled=True
salt '*' keystone.project_update c965f79c4f864eaaa9c3b41904e67082 name=admin email=admin@domain.com

	
salt.modules.keystone.role_create(name, profile=None, **connection_args)

	Create a named role.

CLI Example:

salt '*' keystone.role_create admin

	
salt.modules.keystone.role_delete(role_id=None, name=None, profile=None, **connection_args)

	Delete a role (keystone role-delete)

CLI Examples:

salt '*' keystone.role_delete c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.role_delete role_id=c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.role_delete name=admin

	
salt.modules.keystone.role_get(role_id=None, name=None, profile=None, **connection_args)

	Return a specific roles (keystone role-get)

CLI Examples:

salt '*' keystone.role_get c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.role_get role_id=c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.role_get name=nova

	
salt.modules.keystone.role_list(profile=None, **connection_args)

	Return a list of available roles (keystone role-list)

CLI Example:

salt '*' keystone.role_list

	
salt.modules.keystone.service_create(name, service_type, description=None, profile=None, **connection_args)

	Add service to Keystone service catalog

CLI Examples:

salt '*' keystone.service_create nova compute 'OpenStack Compute Service'

	
salt.modules.keystone.service_delete(service_id=None, name=None, profile=None, **connection_args)

	Delete a service from Keystone service catalog

CLI Examples:

salt '*' keystone.service_delete c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.service_delete name=nova

	
salt.modules.keystone.service_get(service_id=None, name=None, profile=None, **connection_args)

	Return a specific services (keystone service-get)

CLI Examples:

salt '*' keystone.service_get c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.service_get service_id=c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.service_get name=nova

	
salt.modules.keystone.service_list(profile=None, **connection_args)

	Return a list of available services (keystone services-list)

CLI Example:

salt '*' keystone.service_list

	
salt.modules.keystone.tenant_create(name, description=None, enabled=True, profile=None, **connection_args)

	Create a keystone tenant

CLI Examples:

salt '*' keystone.tenant_create nova description='nova tenant'
salt '*' keystone.tenant_create test enabled=False

	
salt.modules.keystone.tenant_delete(tenant_id=None, name=None, profile=None, **connection_args)

	Delete a tenant (keystone tenant-delete)

CLI Examples:

salt '*' keystone.tenant_delete c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.tenant_delete tenant_id=c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.tenant_delete name=demo

	
salt.modules.keystone.tenant_get(tenant_id=None, name=None, profile=None, **connection_args)

	Return a specific tenants (keystone tenant-get)

CLI Examples:

salt '*' keystone.tenant_get c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.tenant_get tenant_id=c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.tenant_get name=nova

	
salt.modules.keystone.tenant_list(profile=None, **connection_args)

	Return a list of available tenants (keystone tenants-list)

CLI Example:

salt '*' keystone.tenant_list

	
salt.modules.keystone.tenant_update(tenant_id=None, name=None, description=None, enabled=None, profile=None, **connection_args)

	Update a tenant's information (keystone tenant-update)
The following fields may be updated: name, description, enabled.
Can only update name if targeting by ID

CLI Examples:

salt '*' keystone.tenant_update name=admin enabled=True
salt '*' keystone.tenant_update c965f79c4f864eaaa9c3b41904e67082 name=admin email=admin@domain.com

	
salt.modules.keystone.token_get(profile=None, **connection_args)

	Return the configured tokens (keystone token-get)

CLI Example:

salt '*' keystone.token_get c965f79c4f864eaaa9c3b41904e67082

	
salt.modules.keystone.user_create(name, password, email, tenant_id=None, enabled=True, profile=None, project_id=None, description=None, **connection_args)

	Create a user (keystone user-create)

CLI Examples:

salt '*' keystone.user_create name=jack password=zero email=jack@halloweentown.org tenant_id=a28a7b5a999a455f84b1f5210264375e enabled=True

	
salt.modules.keystone.user_delete(user_id=None, name=None, profile=None, **connection_args)

	Delete a user (keystone user-delete)

CLI Examples:

salt '*' keystone.user_delete c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.user_delete user_id=c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.user_delete name=nova

	
salt.modules.keystone.user_get(user_id=None, name=None, profile=None, **connection_args)

	Return a specific users (keystone user-get)

CLI Examples:

salt '*' keystone.user_get c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.user_get user_id=c965f79c4f864eaaa9c3b41904e67082
salt '*' keystone.user_get name=nova

	
salt.modules.keystone.user_list(profile=None, **connection_args)

	Return a list of available users (keystone user-list)

CLI Example:

salt '*' keystone.user_list

	
salt.modules.keystone.user_password_update(user_id=None, name=None, password=None, profile=None, **connection_args)

	Update a user's password (keystone user-password-update)

CLI Examples:

salt '*' keystone.user_password_update c965f79c4f864eaaa9c3b41904e67082 password=12345
salt '*' keystone.user_password_update user_id=c965f79c4f864eaaa9c3b41904e67082 password=12345
salt '*' keystone.user_password_update name=nova password=12345

	
salt.modules.keystone.user_role_add(user_id=None, user=None, tenant_id=None, tenant=None, role_id=None, role=None, profile=None, project_id=None, project_name=None, **connection_args)

	Add role for user in tenant (keystone user-role-add)

CLI Examples:

salt '*' keystone.user_role_add user_id=298ce377245c4ec9b70e1c639c89e654 tenant_id=7167a092ece84bae8cead4bf9d15bb3b role_id=ce377245c4ec9b70e1c639c89e8cead4
salt '*' keystone.user_role_add user=admin tenant=admin role=admin

	
salt.modules.keystone.user_role_list(user_id=None, tenant_id=None, user_name=None, tenant_name=None, profile=None, project_id=None, project_name=None, **connection_args)

	Return a list of available user_roles (keystone user-roles-list)

CLI Examples:

salt '*' keystone.user_role_list user_id=298ce377245c4ec9b70e1c639c89e654 tenant_id=7167a092ece84bae8cead4bf9d15bb3b
salt '*' keystone.user_role_list user_name=admin tenant_name=admin

	
salt.modules.keystone.user_role_remove(user_id=None, user=None, tenant_id=None, tenant=None, role_id=None, role=None, profile=None, project_id=None, project_name=None, **connection_args)

	Remove role for user in tenant (keystone user-role-remove)

CLI Examples:

salt '*' keystone.user_role_remove user_id=298ce377245c4ec9b70e1c639c89e654 tenant_id=7167a092ece84bae8cead4bf9d15bb3b role_id=ce377245c4ec9b70e1c639c89e8cead4
salt '*' keystone.user_role_remove user=admin tenant=admin role=admin

	
salt.modules.keystone.user_update(user_id=None, name=None, email=None, enabled=None, tenant=None, profile=None, project=None, description=None, **connection_args)

	Update a user's information (keystone user-update)
The following fields may be updated: name, email, enabled, tenant.
Because the name is one of the fields, a valid user id is required.

CLI Examples:

salt '*' keystone.user_update user_id=c965f79c4f864eaaa9c3b41904e67082 name=newname
salt '*' keystone.user_update c965f79c4f864eaaa9c3b41904e67082 name=newname email=newemail@domain.com

	
salt.modules.keystone.user_verify_password(user_id=None, name=None, password=None, profile=None, **connection_args)

	Verify a user's password

CLI Examples:

salt '*' keystone.user_verify_password name=test password=foobar
salt '*' keystone.user_verify_password user_id=c965f79c4f864eaaa9c3b41904e67082 password=foobar

salt.modules.keystoneng

Keystone module for interacting with OpenStack Keystone

New in version 2018.3.0.

:depends:shade

Example configuration

keystone:
 cloud: default

keystone:
 auth:
 username: admin
 password: password123
 user_domain_name: mydomain
 project_name: myproject
 project_domain_name: myproject
 auth_url: https://example.org:5000/v3
 identity_api_version: 3

	
salt.modules.keystoneng.compare_changes(obj, **kwargs)

	Compare two dicts returning only keys that exist in the first dict and are
different in the second one

	
salt.modules.keystoneng.domain_create(auth=None, **kwargs)

	Create a domain

CLI Example:

salt '*' keystoneng.domain_create name=domain1

	
salt.modules.keystoneng.domain_delete(auth=None, **kwargs)

	Delete a domain

CLI Example:

salt '*' keystoneng.domain_delete name=domain1
salt '*' keystoneng.domain_delete name=b62e76fbeeff4e8fb77073f591cf211e

	
salt.modules.keystoneng.domain_get(auth=None, **kwargs)

	Get a single domain

CLI Example:

salt '*' keystoneng.domain_get name=domain1
salt '*' keystoneng.domain_get name=b62e76fbeeff4e8fb77073f591cf211e

	
salt.modules.keystoneng.domain_list(auth=None, **kwargs)

	List domains

CLI Example:

salt '*' keystoneng.domain_list

	
salt.modules.keystoneng.domain_search(auth=None, **kwargs)

	Search domains

CLI Example:

salt '*' keystoneng.domain_search
salt '*' keystoneng.domain_search name=domain1

	
salt.modules.keystoneng.domain_update(auth=None, **kwargs)

	Update a domain

CLI Example:

salt '*' keystoneng.domain_update name=domain1 new_name=newdomain
salt '*' keystoneng.domain_update name=domain1 enabled=True description='new description'

	
salt.modules.keystoneng.endpoint_create(auth=None, **kwargs)

	Create an endpoint

CLI Example:

salt '*' keystoneng.endpoint_create interface=admin service=glance url=https://example.org:9292
salt '*' keystoneng.endpoint_create interface=public service=glance region=RegionOne url=https://example.org:9292
salt '*' keystoneng.endpoint_create interface=admin service=glance url=https://example.org:9292 enabled=True

	
salt.modules.keystoneng.endpoint_delete(auth=None, **kwargs)

	Delete an endpoint

CLI Example:

salt '*' keystoneng.endpoint_delete id=3bee4bd8c2b040ee966adfda1f0bfca9

	
salt.modules.keystoneng.endpoint_get(auth=None, **kwargs)

	Get a single endpoint

CLI Example:

salt '*' keystoneng.endpoint_get id=02cffaa173b2460f98e40eda3748dae5

	
salt.modules.keystoneng.endpoint_list(auth=None, **kwargs)

	List endpoints

CLI Example:

salt '*' keystoneng.endpoint_list

	
salt.modules.keystoneng.endpoint_search(auth=None, **kwargs)

	Search endpoints

CLI Example:

salt '*' keystoneng.endpoint_search
salt '*' keystoneng.endpoint_search id=02cffaa173b2460f98e40eda3748dae5

	
salt.modules.keystoneng.endpoint_update(auth=None, **kwargs)

	Update an endpoint

CLI Example:

salt '*' keystoneng.endpoint_update endpoint_id=4f961ad09d2d48948896bbe7c6a79717 interface=public enabled=False
salt '*' keystoneng.endpoint_update endpoint_id=4f961ad09d2d48948896bbe7c6a79717 region=newregion
salt '*' keystoneng.endpoint_update endpoint_id=4f961ad09d2d48948896bbe7c6a79717 service_name_or_id=glance url=https://example.org:9292

	
salt.modules.keystoneng.get_entity(ent_type, **kwargs)

	Attempt to query Keystone for more information about an entity

	
salt.modules.keystoneng.get_openstack_cloud(auth=None)

	Return an openstack_cloud

	
salt.modules.keystoneng.get_operator_cloud(auth=None)

	Return an operator_cloud

	
salt.modules.keystoneng.group_create(auth=None, **kwargs)

	Create a group

CLI Example:

salt '*' keystoneng.group_create name=group1
salt '*' keystoneng.group_create name=group2 domain=domain1 description='my group2'

	
salt.modules.keystoneng.group_delete(auth=None, **kwargs)

	Delete a group

CLI Example:

salt '*' keystoneng.group_delete name=group1
salt '*' keystoneng.group_delete name=group2 domain_id=b62e76fbeeff4e8fb77073f591cf211e
salt '*' keystoneng.group_delete name=0e4febc2a5ab4f2c8f374b054162506d

	
salt.modules.keystoneng.group_get(auth=None, **kwargs)

	Get a single group

CLI Example:

salt '*' keystoneng.group_get name=group1
salt '*' keystoneng.group_get name=group2 domain_id=b62e76fbeeff4e8fb77073f591cf211e
salt '*' keystoneng.group_get name=0e4febc2a5ab4f2c8f374b054162506d

	
salt.modules.keystoneng.group_list(auth=None, **kwargs)

	List groups

CLI Example:

salt '*' keystoneng.group_list
salt '*' keystoneng.group_list domain_id=b62e76fbeeff4e8fb77073f591cf211e

	
salt.modules.keystoneng.group_search(auth=None, **kwargs)

	Search for groups

CLI Example:

salt '*' keystoneng.group_search name=group1
salt '*' keystoneng.group_search domain_id=b62e76fbeeff4e8fb77073f591cf211e

	
salt.modules.keystoneng.group_update(auth=None, **kwargs)

	Update a group

CLI Example:

salt '*' keystoneng.group_update name=group1 description='new description'
salt '*' keystoneng.group_create name=group2 domain_id=b62e76fbeeff4e8fb77073f591cf211e new_name=newgroupname
salt '*' keystoneng.group_create name=0e4febc2a5ab4f2c8f374b054162506d new_name=newgroupname

	
salt.modules.keystoneng.project_create(auth=None, **kwargs)

	Create a project

CLI Example:

salt '*' keystoneng.project_create name=project1
salt '*' keystoneng.project_create name=project2 domain_id=b62e76fbeeff4e8fb77073f591cf211e
salt '*' keystoneng.project_create name=project3 enabled=False description='my project3'

	
salt.modules.keystoneng.project_delete(auth=None, **kwargs)

	Delete a project

CLI Example:

salt '*' keystoneng.project_delete name=project1
salt '*' keystoneng.project_delete name=project2 domain_id=b62e76fbeeff4e8fb77073f591cf211e
salt '*' keystoneng.project_delete name=f315afcf12f24ad88c92b936c38f2d5a

	
salt.modules.keystoneng.project_get(auth=None, **kwargs)

	Get a single project

CLI Example:

salt '*' keystoneng.project_get name=project1
salt '*' keystoneng.project_get name=project2 domain_id=b62e76fbeeff4e8fb77073f591cf211e
salt '*' keystoneng.project_get name=f315afcf12f24ad88c92b936c38f2d5a

	
salt.modules.keystoneng.project_list(auth=None, **kwargs)

	List projects

CLI Example:

salt '*' keystoneng.project_list
salt '*' keystoneng.project_list domain_id=b62e76fbeeff4e8fb77073f591cf211e

	
salt.modules.keystoneng.project_search(auth=None, **kwargs)

	Search projects

CLI Example:

salt '*' keystoneng.project_search
salt '*' keystoneng.project_search name=project1
salt '*' keystoneng.project_search domain_id=b62e76fbeeff4e8fb77073f591cf211e

	
salt.modules.keystoneng.project_update(auth=None, **kwargs)

	Update a project

CLI Example:

salt '*' keystoneng.project_update name=project1 new_name=newproject
salt '*' keystoneng.project_update name=project2 enabled=False description='new description'

	
salt.modules.keystoneng.role_assignment_list(auth=None, **kwargs)

	List role assignments

CLI Example:

salt '*' keystoneng.role_assignment_list

	
salt.modules.keystoneng.role_create(auth=None, **kwargs)

	Create a role

CLI Example:

salt '*' keystoneng.role_create name=role1
salt '*' keystoneng.role_create name=role1 domain_id=b62e76fbeeff4e8fb77073f591cf211e

	
salt.modules.keystoneng.role_delete(auth=None, **kwargs)

	Delete a role

CLI Example:

salt '*' keystoneng.role_delete name=role1 domain_id=b62e76fbeeff4e8fb77073f591cf211e
salt '*' keystoneng.role_delete name=1eb6edd5525e4ac39af571adee673559

	
salt.modules.keystoneng.role_get(auth=None, **kwargs)

	Get a single role

CLI Example:

salt '*' keystoneng.role_get name=role1
salt '*' keystoneng.role_get name=role1 domain_id=b62e76fbeeff4e8fb77073f591cf211e
salt '*' keystoneng.role_get name=1eb6edd5525e4ac39af571adee673559

	
salt.modules.keystoneng.role_grant(auth=None, **kwargs)

	Grant a role in a project/domain to a user/group

CLI Example:

salt '*' keystoneng.role_grant name=role1 user=user1 project=project1
salt '*' keystoneng.role_grant name=ddbe3e0ed74e4c7f8027bad4af03339d group=user1 project=project1 domain=domain1
salt '*' keystoneng.role_grant name=ddbe3e0ed74e4c7f8027bad4af03339d group=19573afd5e4241d8b65c42215bae9704 project=1dcac318a83b4610b7a7f7ba01465548

	
salt.modules.keystoneng.role_list(auth=None, **kwargs)

	List roles

CLI Example:

salt '*' keystoneng.role_list
salt '*' keystoneng.role_list domain_id=b62e76fbeeff4e8fb77073f591cf211e

	
salt.modules.keystoneng.role_revoke(auth=None, **kwargs)

	Grant a role in a project/domain to a user/group

CLI Example:

salt '*' keystoneng.role_revoke name=role1 user=user1 project=project1
salt '*' keystoneng.role_revoke name=ddbe3e0ed74e4c7f8027bad4af03339d group=user1 project=project1 domain=domain1
salt '*' keystoneng.role_revoke name=ddbe3e0ed74e4c7f8027bad4af03339d group=19573afd5e4241d8b65c42215bae9704 project=1dcac318a83b4610b7a7f7ba01465548

	
salt.modules.keystoneng.role_search(auth=None, **kwargs)

	Search roles

CLI Example:

salt '*' keystoneng.role_search
salt '*' keystoneng.role_search name=role1
salt '*' keystoneng.role_search domain_id=b62e76fbeeff4e8fb77073f591cf211e

	
salt.modules.keystoneng.role_update(auth=None, **kwargs)

	Update a role

CLI Example:

salt '*' keystoneng.role_update name=role1 new_name=newrole
salt '*' keystoneng.role_update name=1eb6edd5525e4ac39af571adee673559 new_name=newrole

	
salt.modules.keystoneng.service_create(auth=None, **kwargs)

	Create a service

CLI Example:

salt '*' keystoneng.service_create name=glance type=image
salt '*' keystoneng.service_create name=glance type=image description="Image"

	
salt.modules.keystoneng.service_delete(auth=None, **kwargs)

	Delete a service

CLI Example:

salt '*' keystoneng.service_delete name=glance
salt '*' keystoneng.service_delete name=39cc1327cdf744ab815331554430e8ec

	
salt.modules.keystoneng.service_get(auth=None, **kwargs)

	Get a single service

CLI Example:

salt '*' keystoneng.service_get name=glance
salt '*' keystoneng.service_get name=75a5804638944b3ab54f7fbfcec2305a

	
salt.modules.keystoneng.service_list(auth=None, **kwargs)

	List services

CLI Example:

salt '*' keystoneng.service_list

	
salt.modules.keystoneng.service_search(auth=None, **kwargs)

	Search services

CLI Example:

salt '*' keystoneng.service_search
salt '*' keystoneng.service_search name=glance
salt '*' keystoneng.service_search name=135f0403f8e544dc9008c6739ecda860

	
salt.modules.keystoneng.service_update(auth=None, **kwargs)

	Update a service

CLI Example:

salt '*' keystoneng.service_update name=cinder type=volumev2
salt '*' keystoneng.service_update name=cinder description='new description'
salt '*' keystoneng.service_update name=ab4d35e269f147b3ae2d849f77f5c88f enabled=False

	
salt.modules.keystoneng.setup_clouds(auth=None)

	Call functions to create Shade cloud objects in __context__ to take
advantage of Shade's in-memory caching across several states

	
salt.modules.keystoneng.user_create(auth=None, **kwargs)

	Create a user

CLI Example:

salt '*' keystoneng.user_create name=user1
salt '*' keystoneng.user_create name=user2 password=1234 enabled=False
salt '*' keystoneng.user_create name=user3 domain_id=b62e76fbeeff4e8fb77073f591cf211e

	
salt.modules.keystoneng.user_delete(auth=None, **kwargs)

	Delete a user

CLI Example:

salt '*' keystoneng.user_delete name=user1
salt '*' keystoneng.user_delete name=user2 domain_id=b62e76fbeeff4e8fb77073f591cf211e
salt '*' keystoneng.user_delete name=a42cbbfa1e894e839fd0f584d22e321f

	
salt.modules.keystoneng.user_get(auth=None, **kwargs)

	Get a single user

CLI Example:

salt '*' keystoneng.user_get name=user1
salt '*' keystoneng.user_get name=user1 domain_id=b62e76fbeeff4e8fb77073f591cf211e
salt '*' keystoneng.user_get name=02cffaa173b2460f98e40eda3748dae5

	
salt.modules.keystoneng.user_list(auth=None, **kwargs)

	List users

CLI Example:

salt '*' keystoneng.user_list
salt '*' keystoneng.user_list domain_id=b62e76fbeeff4e8fb77073f591cf211e

	
salt.modules.keystoneng.user_search(auth=None, **kwargs)

	List users

CLI Example:

salt '*' keystoneng.user_list
salt '*' keystoneng.user_list domain_id=b62e76fbeeff4e8fb77073f591cf211e

	
salt.modules.keystoneng.user_update(auth=None, **kwargs)

	Update a user

CLI Example:

salt '*' keystoneng.user_update name=user1 enabled=False description='new description'
salt '*' keystoneng.user_update name=user1 new_name=newuser

salt.modules.keystore

Module to interact with keystores

	
salt.modules.keystore.add(name, keystore, passphrase, certificate, private_key=None)

	Adds certificates to an existing keystore or creates a new one if necesssary.

	Parameters:

	
	name -- alias for the certificate

	keystore -- The path to the keystore file to query

	passphrase -- The passphrase to use to decode the keystore

	certificate -- The PEM public certificate to add to keystore. Can be a string for file.

	private_key -- (Optional for TrustedCert) The PEM private key to add to the keystore

CLI Example:

salt '*' keystore.add aliasname /tmp/test.store changeit /tmp/testcert.crt
salt '*' keystore.add aliasname /tmp/test.store changeit certificate="-----BEGIN CERTIFICATE-----SIb...BM=-----END CERTIFICATE-----"
salt '*' keystore.add keyname /tmp/test.store changeit /tmp/512.cert private_key=/tmp/512.key

	
salt.modules.keystore.get_sha1(certificate)

	Returns the SHA1 sum of a ASN1/PEM certificate

	Parameters:

	name -- ASN1/PEM certificate

CLI Example:

salt '*' keystore.get_sha1 "(certificate_content_string)"

	
salt.modules.keystore.list(keystore, passphrase, alias=None, return_cert=False)

	Lists certificates in a keytool managed keystore.

	Parameters:

	
	keystore -- The path to the keystore file to query

	passphrase -- The passphrase to use to decode the keystore

	alias -- (Optional) If found, displays details on only this key

	return_certs -- (Optional) Also return certificate PEM.

Warning

There are security implications for using return_cert to return decrypted certificates.

CLI Example:

salt '*' keystore.list /usr/lib/jvm/java-8/jre/lib/security/cacerts changeit
salt '*' keystore.list /usr/lib/jvm/java-8/jre/lib/security/cacerts changeit debian:verisign_-_g5.pem

	
salt.modules.keystore.remove(name, keystore, passphrase)

	Removes a certificate from an existing keystore.
Returns True if remove was successful, otherwise False

	Parameters:

	
	name -- alias for the certificate

	keystore -- The path to the keystore file to query

	passphrase -- The passphrase to use to decode the keystore

CLI Example:

salt '*' keystore.remove aliasname /tmp/test.store changeit

salt.modules.kmod

Module to manage Linux kernel modules

	
salt.modules.kmod.available()

	Return a list of all available kernel modules

CLI Example:

salt '*' kmod.available

	
salt.modules.kmod.check_available(mod)

	Check to see if the specified kernel module is available

CLI Example:

salt '*' kmod.check_available kvm

	
salt.modules.kmod.is_loaded(mod)

	Check to see if the specified kernel module is loaded

CLI Example:

salt '*' kmod.is_loaded kvm

	
salt.modules.kmod.load(mod, persist=False)

	Load the specified kernel module

	mod
	Name of module to add

	persist
	Write module to /etc/modules to make it load on system reboot

CLI Example:

salt '*' kmod.load kvm

	
salt.modules.kmod.lsmod()

	Return a dict containing information about currently loaded modules

CLI Example:

salt '*' kmod.lsmod

	
salt.modules.kmod.mod_list(only_persist=False)

	Return a list of the loaded module names

	only_persist
	Only return the list of loaded persistent modules

CLI Example:

salt '*' kmod.mod_list

	
salt.modules.kmod.remove(mod, persist=False, comment=True)

	Remove the specified kernel module

	mod
	Name of module to remove

	persist
	Also remove module from /etc/modules

	comment
	If persist is set don't remove line from /etc/modules but only
comment it

CLI Example:

salt '*' kmod.remove kvm

salt.modules.kubeadm

Warning

This module will be removed from Salt in version 3009 in favor of
the kubernetes Salt Extension [https://github.com/salt-extensions/saltext-kubernetes].

Module for kubeadm
:maintainer: Alberto Planas <aplanas@suse.com>
:maturity: new
:depends: None
:platform: Linux

	
salt.modules.kubeadm.alpha_certs_renew(rootfs=None)

	
New in version 3001.

Renews certificates for a Kubernetes cluster

	rootfs
	The path to the real host root filesystem

CLI Example:

salt '*' kubeadm.alpha_certs_renew

	
salt.modules.kubeadm.alpha_kubeconfig_user(client_name, apiserver_advertise_address=None, apiserver_bind_port=None, cert_dir=None, org=None, token=None, rootfs=None)

	
New in version 3001.

Outputs a kubeconfig file for an additional user

	client_name
	The name of the user. It will be used as the CN if client
certificates are created

	apiserver_advertise_address
	The IP address the API server is accessible on

	apiserver_bind_port
	The port the API server is accessible on (default 6443)

	cert_dir
	The path where certificates are stored (default
"/etc/kubernetes/pki")

	org
	The organization of the client certificate

	token
	The token that show be used as the authentication mechanism for
this kubeconfig, instead of client certificates

	rootfs
	The path to the real host root filesystem

CLI Example:

salt '*' kubeadm.alpha_kubeconfig_user client_name=user

	
salt.modules.kubeadm.alpha_kubelet_config_download(kubeconfig=None, kubelet_version=None, rootfs=None)

	
New in version 3001.

Downloads the kubelet configuration from the cluster ConfigMap
kubelet-config-1.X

	kubeconfig
	The kubeconfig file to use when talking to the cluster. The
default values in /etc/kubernetes/admin.conf

	kubelet_version
	The desired version for the kubelet

	rootfs
	The path to the real host root filesystem

CLI Example:

salt '*' kubeadm.alpha_kubelet_config_download
salt '*' kubeadm.alpha_kubelet_config_download kubelet_version='1.14.0'

	
salt.modules.kubeadm.alpha_kubelet_config_enable_dynamic(node_name, kubeconfig=None, kubelet_version=None, rootfs=None)

	
New in version 3001.

Enables or updates dynamic kubelet configuration for a node

	node_name
	Name of the node that should enable the dynamic kubelet
configuration

	kubeconfig
	The kubeconfig file to use when talking to the cluster. The
default values in /etc/kubernetes/admin.conf

	kubelet_version
	The desired version for the kubelet

	rootfs
	The path to the real host root filesystem

CLI Example:

salt '*' kubeadm.alpha_kubelet_config_enable_dynamic node-1

	
salt.modules.kubeadm.alpha_selfhosting_pivot(cert_dir=None, config=None, kubeconfig=None, store_certs_in_secrets=False, rootfs=None)

	
New in version 3001.

Converts a static Pod-hosted control plane into a selt-hosted one

	cert_dir
	The path where certificates are stored (default
"/etc/kubernetes/pki")

	config
	Path to kubeadm configuration file

	kubeconfig
	The kubeconfig file to use when talking to the cluster. The
default values in /etc/kubernetes/admin.conf

	store_certs_in_secrets
	Enable storing certs in secrets

	rootfs
	The path to the real host root filesystem

CLI Example:

salt '*' kubeadm.alpha_selfhost_pivot

	
salt.modules.kubeadm.config_images_list(config=None, feature_gates=None, kubernetes_version=None, kubeconfig=None, rootfs=None)

	
New in version 3001.

Print a list of images kubeadm will use

	config
	Path to kubeadm configuration file

	feature_gates
	A set of key=value pairs that describe feature gates for
various features

	kubernetes_version
	Choose a specifig Kubernetes version for the control plane
(default "stable-1")

	kubeconfig
	The kubeconfig file to use when talking to the cluster. The
default values in /etc/kubernetes/admin.conf

	rootfs
	The path to the real host root filesystem

CLI Example:

salt '*' kubeadm.config_images_list

	
salt.modules.kubeadm.config_images_pull(config=None, cri_socket=None, feature_gates=None, kubernetes_version=None, kubeconfig=None, rootfs=None)

	
New in version 3001.

Pull images used by kubeadm

	config
	Path to kubeadm configuration file

	cri_socket
	Path to the CRI socket to connect

	feature_gates
	A set of key=value pairs that describe feature gates for
various features

	kubernetes_version
	Choose a specifig Kubernetes version for the control plane
(default "stable-1")

	kubeconfig
	The kubeconfig file to use when talking to the cluster. The
default values in /etc/kubernetes/admin.conf

	rootfs
	The path to the real host root filesystem

CLI Example:

salt '*' kubeadm.config_images_pull

	
salt.modules.kubeadm.config_migrate(old_config, new_config=None, kubeconfig=None, rootfs=None)

	
New in version 3001.

Read an older version of the kubeadm configuration API types from
a file, and output the similar config object for the newer version

	old_config
	Path to the kubeadm config file that is usin the old API
version and should be converted

	new_config
	Path to the resulting equivalent kubeadm config file using the
new API version. If not specified the output will be returned

	kubeconfig
	The kubeconfig file to use when talking to the cluster. The
default values in /etc/kubernetes/admin.conf

	rootfs
	The path to the real host root filesystem

CLI Example:

salt '*' kubeadm.config_migrate /oldconfig.cfg

	
salt.modules.kubeadm.config_print_init_defaults(component_configs=None, kubeconfig=None, rootfs=None)

	
New in version 3001.

Return default init configuration, that can be used for 'kubeadm
init'

	component_config
	A comma-separated list for component config API object to print
the default values for (valid values: KubeProxyConfiguration,
KubeletConfiguration)

	kubeconfig
	The kubeconfig file to use when talking to the cluster. The
default values in /etc/kubernetes/admin.conf

	rootfs
	The path to the real host root filesystem

CLI Example:

salt '*' kubeadm.config_print_init_defaults

	
salt.modules.kubeadm.config_print_join_defaults(component_configs=None, kubeconfig=None, rootfs=None)

	
New in version 3001.

Return default join configuration, that can be used for 'kubeadm
join'

	component_config
	A comma-separated list for component config API object to print
the default values for (valid values: KubeProxyConfiguration,
KubeletConfiguration)

	kubeconfig
	The kubeconfig file to use when talking to the cluster. The
default values in /etc/kubernetes/admin.conf

	rootfs
	The path to the real host root filesystem

CLI Example:

salt '*' kubeadm.config_print_join_defaults

	
salt.modules.kubeadm.config_upload_from_file(config, kubeconfig=None, rootfs=None)

	
New in version 3001.

Upload a configuration file to the in-cluster ConfigMap for
kubeadm configuration

	config
	Path to a kubeadm configuration file

	kubeconfig
	The kubeconfig file to use when talking to the cluster. The
default values in /etc/kubernetes/admin.conf

	rootfs
	The path to the real host root filesystem

CLI Example:

salt '*' kubeadm.config_upload_from_file /config.cfg

	
salt.modules.kubeadm.config_upload_from_flags(apiserver_advertise_address=None, apiserver_bind_port=None, apiserver_cert_extra_sans=None, cert_dir=None, cri_socket=None, feature_gates=None, kubernetes_version=None, node_name=None, pod_network_cidr=None, service_cidr=None, service_dns_domain=None, kubeconfig=None, rootfs=None)

	
New in version 3001.

Create the in-cluster configuration file for the first time using
flags

	apiserver_advertise_address
	The IP address the API server will advertise it's listening on

	apiserver_bind_port
	The port the API server is accessible on (default 6443)

	apiserver_cert_extra_sans
	Optional extra Subject Alternative Names (SANs) to use for the
API Server serving certificate

	cert_dir
	The path where to save and store the certificates (default
"/etc/kubernetes/pki")

	cri_socket
	Path to the CRI socket to connect

	feature_gates
	A set of key=value pairs that describe feature gates for
various features

	kubernetes_version
	Choose a specifig Kubernetes version for the control plane
(default "stable-1")

	node_name
	Specify the node name

	pod_network_cidr
	Specify range of IP addresses for the pod network

	service_cidr
	Use alternative range of IP address for service VIPs (default
"10.96.0.0/12")

	service_dns_domain
	Use alternative domain for services (default "cluster.local")

	kubeconfig
	The kubeconfig file to use when talking to the cluster. The
default values in /etc/kubernetes/admin.conf

	rootfs
	The path to the real host root filesystem

CLI Example:

salt '*' kubeadm.config_upload_from_flags

	
salt.modules.kubeadm.config_view(kubeconfig=None, rootfs=None)

	
New in version 3001.

View the kubeadm configuration stored inside the cluster

	kubeconfig
	The kubeconfig file to use when talking to the cluster. The
default values in /etc/kubernetes/admin.conf

	rootfs
	The path to the real host root filesystem

CLI Example:

salt '*' kubeadm.config_view

	
salt.modules.kubeadm.init(apiserver_advertise_address=None, apiserver_bind_port=None, apiserver_cert_extra_sans=None, cert_dir=None, certificate_key=None, control_plane_endpoint=None, config=None, cri_socket=None, experimental_upload_certs=False, upload_certs=False, feature_gates=None, ignore_preflight_errors=None, image_repository=None, kubernetes_version=None, node_name=None, pod_network_cidr=None, service_cidr=None, service_dns_domain=None, skip_certificate_key_print=False, skip_phases=None, skip_token_print=False, token=None, token_ttl=None, rootfs=None)

	
New in version 3001.

Command to set up the Kubernetes control plane

	apiserver_advertise_address
	The IP address the API server will advertise it's listening on

	apiserver_bind_port
	The port the API server is accessible on (default 6443)

	apiserver_cert_extra_sans
	Optional extra Subject Alternative Names (SANs) to use for the
API Server serving certificate

	cert_dir
	The path where to save and store the certificates (default
"/etc/kubernetes/pki")

	certificate_key
	Key used to encrypt the control-plane certificates in the
kubeadm-certs Secret

	config
	Path to a kubeadm configuration file

	control_plane_endpoint
	Specify a stable IP address or DNS name for the control plane

	cri_socket
	Path to the CRI socket to connect

	experimental_upload_certs
	Upload control-plane certificate to the kubeadm-certs Secret. (kubeadm version =< 1.16)

	upload_certs
	Upload control-plane certificate to the kubeadm-certs Secret. (kubeadm version > 1.16)

	feature_gates
	A set of key=value pairs that describe feature gates for
various features

	ignore_preflight_errors
	A list of checks whose errors will be shown as warnings

	image_repository
	Choose a container registry to pull control plane images from

	kubernetes_version
	Choose a specifig Kubernetes version for the control plane
(default "stable-1")

	node_name
	Specify the node name

	pod_network_cidr
	Specify range of IP addresses for the pod network

	service_cidr
	Use alternative range of IP address for service VIPs (default
"10.96.0.0/12")

	service_dns_domain
	Use alternative domain for services (default "cluster.local")

	skip_certificate_key_print
	Don't print the key used to encrypt the control-plane
certificates

	skip_phases
	List of phases to be skipped

	skip_token_print
	Skip printing of the default bootstrap token generated by
'kubeadm init'

	token
	The token to use for establishing bidirectional trust between
nodes and control-plane nodes. The token must match a regular
expression, that by default is [a-z0-9]{6}.[a-z0-9]{16}

	token_ttl
	The duration defore the token is automatically deleted (1s, 2m,
3h). If set to '0' the token will never expire. Default value
is 24h0m0s

	rootfs
	The path to the real host root filesystem

CLI Example:

salt '*' kubeadm.init pod_network_cidr='10.244.0.0/16'

	
salt.modules.kubeadm.join(api_server_endpoint=None, apiserver_advertise_address=None, apiserver_bind_port=None, certificate_key=None, config=None, cri_socket=None, discovery_file=None, discovery_token=None, discovery_token_ca_cert_hash=None, discovery_token_unsafe_skip_ca_verification=False, experimental_control_plane=False, control_plane=False, ignore_preflight_errors=None, node_name=None, skip_phases=None, tls_bootstrap_token=None, token=None, rootfs=None)

	
New in version 3001.

Command to join to an existing cluster

	api_server_endpoint
	IP address or domain name and port of the API Server

	apiserver_advertise_address
	If the node should host a new control plane instance, the IP
address the API Server will advertise it's listening on

	apiserver_bind_port
	If the node should host a new control plane instance, the port
the API Server to bind to (default 6443)

	certificate_key
	Use this key to decrypt the certificate secrets uploaded by
init

	config
	Path to a kubeadm configuration file

	cri_socket
	Path to the CRI socket to connect

	discovery_file
	For file-based discovery, a file or URL from which to load
cluster information

	discovery_token
	For token-based discovery, the token used to validate cluster
information fetched from the API Server

	discovery_token_ca_cert_hash
	For token-based discovery, validate that the root CA public key
matches this hash (format: "<type>:<value>")

	discovery_token_unsafe_skip_ca_verification
	For token-based discovery, allow joining without
'discovery-token-ca-cert-hash' pinning

	experimental_control_plane
	Create a new control plane instance on this node (kubeadm version =< 1.16)

	control_plane
	Create a new control plane instance on this node (kubeadm version > 1.16)

	ignore_preflight_errors
	A list of checks whose errors will be shown as warnings

	node_name
	Specify the node name

	skip_phases
	List of phases to be skipped

	tls_bootstrap_token
	Specify the token used to temporarily authenticate with the
Kubernetes Control Plane while joining the node

	token
	Use this token for both discovery-token and tls-bootstrap-token
when those values are not provided

	rootfs
	The path to the real host root filesystem

CLI Example:

salt '*' kubeadm.join 10.160.65.165:6443 token='token'

	
salt.modules.kubeadm.join_params(create_if_needed=False)

	
New in version 3001.

Return the parameters required for joining into the cluster

	create_if_needed
	If the token bucket is empty and this parameter is True, a new
token will be created.

CLI Example:

salt '*' kubeadm.join_params
salt '*' kubeadm.join_params create_if_needed=True

	
salt.modules.kubeadm.reset(cert_dir=None, cri_socket=None, ignore_preflight_errors=None, kubeconfig=None, rootfs=None)

	
New in version 3001.

Revert any changes made to this host by 'kubeadm init' or 'kubeadm
join'

	cert_dir
	The path to the directory where the certificates are stored
(default "/etc/kubernetes/pki")

	cri_socket
	Path to the CRI socket to connect

	ignore_preflight_errors
	A list of checks whose errors will be shown as warnings

	kubeconfig
	The kubeconfig file to use when talking to the cluster. The
default values in /etc/kubernetes/admin.conf

	rootfs
	The path to the real host root filesystem

CLI Example:

salt '*' kubeadm.join 10.160.65.165:6443 token='token'

	
salt.modules.kubeadm.token_create(token=None, config=None, description=None, groups=None, ttl=None, usages=None, kubeconfig=None, rootfs=None)

	
New in version 3001.

Create bootstrap tokens on the server

	token
	Token to write, if None one will be generated. The token must
match a regular expression, that by default is
[a-z0-9]{6}.[a-z0-9]{16}

	config
	Path to kubeadm configuration file

	description
	A human friendly description of how this token is used

	groups
	List of extra groups that this token will authenticate, default
to ['system:bootstrappers:kubeadm:default-node-token']

	ttl
	The duration defore the token is automatically deleted (1s, 2m,
3h). If set to '0' the token will never expire. Default value
is 24h0m0s

	usages
	Describes the ways in which this token can be used. The default
value is ['signing', 'authentication']

	kubeconfig
	The kubeconfig file to use when talking to the cluster. The
default values in /etc/kubernetes/admin.conf

	rootfs
	The path to the real host root filesystem

CLI Example:

salt '*' kubeadm.token_create
salt '*' kubeadm.token_create a1b2c.0123456789abcdef
salt '*' kubeadm.token_create ttl='6h'
salt '*' kubeadm.token_create usages="['signing']"

	
salt.modules.kubeadm.token_delete(token, kubeconfig=None, rootfs=None)

	
New in version 3001.

Delete bootstrap tokens on the server

	token
	Token to write, if None one will be generated. The token must
match a regular expression, that by default is
[a-z0-9]{6}.[a-z0-9]{16}

	kubeconfig
	The kubeconfig file to use when talking to the cluster. The
default values in /etc/kubernetes/admin.conf

	rootfs
	The path to the real host root filesystem

CLI Example:

salt '*' kubeadm.token_delete a1b2c
salt '*' kubeadm.token_create a1b2c.0123456789abcdef

	
salt.modules.kubeadm.token_generate(kubeconfig=None, rootfs=None)

	
New in version 3001.

Generate and return a bootstrap token, but do not create it on the
server

	kubeconfig
	The kubeconfig file to use when talking to the cluster. The
default values in /etc/kubernetes/admin.conf

	rootfs
	The path to the real host root filesystem

CLI Example:

salt '*' kubeadm.token_generate

	
salt.modules.kubeadm.token_list(kubeconfig=None, rootfs=None)

	
New in version 3001.

List bootstrap tokens on the server

	kubeconfig
	The kubeconfig file to use when talking to the cluster. The
default values in /etc/kubernetes/admin.conf

	rootfs
	The path to the real host root filesystem

CLI Example:

salt '*' kubeadm.token_list

	
salt.modules.kubeadm.version(kubeconfig=None, rootfs=None)

	
New in version 3001.

Return the version of kubeadm

	kubeconfig
	The kubeconfig file to use when talking to the cluster. The
default values in /etc/kubernetes/admin.conf

	rootfs
	The path to the real host root filesystem

CLI Example:

salt '*' kubeadm.version

salt.modules.kubernetesmod

Warning

This module will be removed from Salt in version 3009 in favor of
the kubernetes Salt Extension [https://github.com/salt-extensions/saltext-kubernetes].

Module for handling kubernetes calls.

	optdepends:

	
	kubernetes Python client < 4.0

	PyYAML < 6.0

	configuration:

	The k8s API settings are provided either in a pillar, in
the minion's config file, or in master's config file:

kubernetes.kubeconfig: '/path/to/kubeconfig'
kubernetes.kubeconfig-data: '<base64 encoded kubeconfig content'
kubernetes.context: 'context'

These settings can be overridden by adding context and `kubeconfig or
kubeconfig_data parameters when calling a function.

The data format for kubernetes.kubeconfig-data value is the content of
kubeconfig base64 encoded in one line.

Only kubeconfig or kubeconfig-data should be provided. In case both are
provided kubeconfig entry is preferred.

CLI Example:

salt '*' kubernetes.nodes kubeconfig=/etc/salt/k8s/kubeconfig context=minikube

New in version 2017.7.0.

Changed in version 2019.2.0.

Warning

Configuration options changed in 2019.2.0. The following configuration options have been removed:

	kubernetes.user

	kubernetes.password

	kubernetes.api_url

	kubernetes.certificate-authority-data/file

	kubernetes.client-certificate-data/file

	kubernetes.client-key-data/file

Please use now:

	kubernetes.kubeconfig or kubernetes.kubeconfig-data

	kubernetes.context

	
salt.modules.kubernetesmod.configmaps(namespace='default', **kwargs)

	Return a list of kubernetes configmaps defined in the namespace

CLI Example:

salt '*' kubernetes.configmaps
salt '*' kubernetes.configmaps namespace=default

	
salt.modules.kubernetesmod.create_configmap(name, namespace, data, source=None, template=None, saltenv='base', **kwargs)

	Creates the kubernetes configmap as defined by the user.

CLI Example:

salt 'minion1' kubernetes.create_configmap settings default '{"example.conf": "# example file"}'

salt 'minion2' kubernetes.create_configmap name=settings namespace=default data='{"example.conf": "# example file"}'

	
salt.modules.kubernetesmod.create_deployment(name, namespace, metadata, spec, source, template, saltenv, **kwargs)

	Creates the kubernetes deployment as defined by the user.

	
salt.modules.kubernetesmod.create_namespace(name, **kwargs)

	Creates a namespace with the specified name.

CLI Example:

salt '*' kubernetes.create_namespace salt
salt '*' kubernetes.create_namespace name=salt

	
salt.modules.kubernetesmod.create_pod(name, namespace, metadata, spec, source, template, saltenv, **kwargs)

	Creates the kubernetes deployment as defined by the user.

	
salt.modules.kubernetesmod.create_secret(name, namespace='default', data=None, source=None, template=None, saltenv='base', **kwargs)

	Creates the kubernetes secret as defined by the user.

CLI Example:

salt 'minion1' kubernetes.create_secret passwords default '{"db": "letmein"}'

salt 'minion2' kubernetes.create_secret name=passwords namespace=default data='{"db": "letmein"}'

	
salt.modules.kubernetesmod.create_service(name, namespace, metadata, spec, source, template, saltenv, **kwargs)

	Creates the kubernetes service as defined by the user.

	
salt.modules.kubernetesmod.delete_configmap(name, namespace='default', **kwargs)

	Deletes the kubernetes configmap defined by name and namespace

CLI Example:

salt '*' kubernetes.delete_configmap settings default
salt '*' kubernetes.delete_configmap name=settings namespace=default

	
salt.modules.kubernetesmod.delete_deployment(name, namespace='default', **kwargs)

	Deletes the kubernetes deployment defined by name and namespace

CLI Example:

salt '*' kubernetes.delete_deployment my-nginx
salt '*' kubernetes.delete_deployment name=my-nginx namespace=default

	
salt.modules.kubernetesmod.delete_namespace(name, **kwargs)

	Deletes the kubernetes namespace defined by name

CLI Example:

salt '*' kubernetes.delete_namespace salt
salt '*' kubernetes.delete_namespace name=salt

	
salt.modules.kubernetesmod.delete_pod(name, namespace='default', **kwargs)

	Deletes the kubernetes pod defined by name and namespace

CLI Example:

salt '*' kubernetes.delete_pod guestbook-708336848-5nl8c default
salt '*' kubernetes.delete_pod name=guestbook-708336848-5nl8c namespace=default

	
salt.modules.kubernetesmod.delete_secret(name, namespace='default', **kwargs)

	Deletes the kubernetes secret defined by name and namespace

CLI Example:

salt '*' kubernetes.delete_secret confidential default
salt '*' kubernetes.delete_secret name=confidential namespace=default

	
salt.modules.kubernetesmod.delete_service(name, namespace='default', **kwargs)

	Deletes the kubernetes service defined by name and namespace

CLI Example:

salt '*' kubernetes.delete_service my-nginx default
salt '*' kubernetes.delete_service name=my-nginx namespace=default

	
salt.modules.kubernetesmod.deployments(namespace='default', **kwargs)

	Return a list of kubernetes deployments defined in the namespace

CLI Example:

salt '*' kubernetes.deployments
salt '*' kubernetes.deployments namespace=default

	
salt.modules.kubernetesmod.namespaces(**kwargs)

	Return the names of the available namespaces

CLI Example:

salt '*' kubernetes.namespaces
salt '*' kubernetes.namespaces kubeconfig=/etc/salt/k8s/kubeconfig context=minikube

	
salt.modules.kubernetesmod.node(name, **kwargs)

	Return the details of the node identified by the specified name

CLI Example:

salt '*' kubernetes.node name='minikube'

	
salt.modules.kubernetesmod.node_add_label(node_name, label_name, label_value, **kwargs)

	Set the value of the label identified by label_name to label_value on
the node identified by the name node_name.
Creates the label if not present.

CLI Example:

salt '*' kubernetes.node_add_label node_name="minikube" label_name="foo" label_value="bar"

	
salt.modules.kubernetesmod.node_labels(name, **kwargs)

	Return the labels of the node identified by the specified name

CLI Example:

salt '*' kubernetes.node_labels name="minikube"

	
salt.modules.kubernetesmod.node_remove_label(node_name, label_name, **kwargs)

	Removes the label identified by label_name from
the node identified by the name node_name.

CLI Example:

salt '*' kubernetes.node_remove_label node_name="minikube" label_name="foo"

	
salt.modules.kubernetesmod.nodes(**kwargs)

	Return the names of the nodes composing the kubernetes cluster

CLI Example:

salt '*' kubernetes.nodes
salt '*' kubernetes.nodes kubeconfig=/etc/salt/k8s/kubeconfig context=minikube

	
salt.modules.kubernetesmod.ping(**kwargs)

	Checks connections with the kubernetes API server.
Returns True if the connection can be established, False otherwise.

CLI Example:

salt '*' kubernetes.ping

	
salt.modules.kubernetesmod.pods(namespace='default', **kwargs)

	Return a list of kubernetes pods defined in the namespace

CLI Example:

salt '*' kubernetes.pods
salt '*' kubernetes.pods namespace=default

	
salt.modules.kubernetesmod.replace_configmap(name, data, source=None, template=None, saltenv='base', namespace='default', **kwargs)

	Replaces an existing configmap with a new one defined by name and
namespace with the specified data.

CLI Example:

salt 'minion1' kubernetes.replace_configmap settings default '{"example.conf": "# example file"}'

salt 'minion2' kubernetes.replace_configmap name=settings namespace=default data='{"example.conf": "# example file"}'

	
salt.modules.kubernetesmod.replace_deployment(name, metadata, spec, source, template, saltenv, namespace='default', **kwargs)

	Replaces an existing deployment with a new one defined by name and
namespace, having the specificed metadata and spec.

	
salt.modules.kubernetesmod.replace_secret(name, data, source=None, template=None, saltenv='base', namespace='default', **kwargs)

	Replaces an existing secret with a new one defined by name and namespace,
having the specificed data.

CLI Example:

salt 'minion1' kubernetes.replace_secret name=passwords data='{"db": "letmein"}'

salt 'minion2' kubernetes.replace_secret name=passwords namespace=saltstack data='{"db": "passw0rd"}'

	
salt.modules.kubernetesmod.replace_service(name, metadata, spec, source, template, old_service, saltenv, namespace='default', **kwargs)

	Replaces an existing service with a new one defined by name and namespace,
having the specificed metadata and spec.

	
salt.modules.kubernetesmod.secrets(namespace='default', **kwargs)

	Return a list of kubernetes secrets defined in the namespace

CLI Example:

salt '*' kubernetes.secrets
salt '*' kubernetes.secrets namespace=default

	
salt.modules.kubernetesmod.services(namespace='default', **kwargs)

	Return a list of kubernetes services defined in the namespace

CLI Example:

salt '*' kubernetes.services
salt '*' kubernetes.services namespace=default

	
salt.modules.kubernetesmod.show_configmap(name, namespace='default', **kwargs)

	Return the kubernetes configmap defined by name and namespace.

CLI Example:

salt '*' kubernetes.show_configmap game-config default
salt '*' kubernetes.show_configmap name=game-config namespace=default

	
salt.modules.kubernetesmod.show_deployment(name, namespace='default', **kwargs)

	Return the kubernetes deployment defined by name and namespace

CLI Example:

salt '*' kubernetes.show_deployment my-nginx default
salt '*' kubernetes.show_deployment name=my-nginx namespace=default

	
salt.modules.kubernetesmod.show_namespace(name, **kwargs)

	Return information for a given namespace defined by the specified name

CLI Example:

salt '*' kubernetes.show_namespace kube-system

	
salt.modules.kubernetesmod.show_pod(name, namespace='default', **kwargs)

	Return POD information for a given pod name defined in the namespace

CLI Example:

salt '*' kubernetes.show_pod guestbook-708336848-fqr2x
salt '*' kubernetes.show_pod guestbook-708336848-fqr2x namespace=default

	
salt.modules.kubernetesmod.show_secret(name, namespace='default', decode=False, **kwargs)

	Return the kubernetes secret defined by name and namespace.
The secrets can be decoded if specified by the user. Warning: this has
security implications.

CLI Example:

salt '*' kubernetes.show_secret confidential default
salt '*' kubernetes.show_secret name=confidential namespace=default
salt '*' kubernetes.show_secret name=confidential decode=True

	
salt.modules.kubernetesmod.show_service(name, namespace='default', **kwargs)

	Return the kubernetes service defined by name and namespace

CLI Example:

salt '*' kubernetes.show_service my-nginx default
salt '*' kubernetes.show_service name=my-nginx namespace=default

salt.modules.launchctl_service

Module for the management of MacOS systems that use launchd/launchctl

Important

If you feel that Salt should be using this module to manage services on a
minion, and it is using a different module (or gives an error similar to
'service.start' is not available), see here.

	depends:

	
	plistlib Python module

	
salt.modules.launchctl_service.available(job_label)

	Check that the given service is available.

CLI Example:

salt '*' service.available com.openssh.sshd

	
salt.modules.launchctl_service.disabled(job_label, runas=None)

	Return True if the named service is disabled, false otherwise

CLI Example:

salt '*' service.disabled <service label>

	
salt.modules.launchctl_service.enabled(job_label, runas=None)

	Return True if the named service is enabled, false otherwise

CLI Example:

salt '*' service.enabled <service label>

	
salt.modules.launchctl_service.get_all()

	Return all installed services

CLI Example:

salt '*' service.get_all

	
salt.modules.launchctl_service.missing(job_label)

	The inverse of service.available
Check that the given service is not available.

CLI Example:

salt '*' service.missing com.openssh.sshd

	
salt.modules.launchctl_service.restart(job_label, runas=None)

	Restart the named service

CLI Example:

salt '*' service.restart <service label>

	
salt.modules.launchctl_service.start(job_label, runas=None)

	Start the specified service

CLI Example:

salt '*' service.start <service label>
salt '*' service.start org.ntp.ntpd
salt '*' service.start /System/Library/LaunchDaemons/org.ntp.ntpd.plist

	
salt.modules.launchctl_service.status(name, runas=None)

	Return the status for a service via systemd.
If the name contains globbing, a dict mapping service name to True/False
values is returned.

Changed in version 2018.3.0: The service name can now be a glob (e.g. salt*)

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service to check

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- User to run launchctl commands

	Returns:

	True if running, False otherwise
dict: Maps service name to True if running, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.status <service name>

	
salt.modules.launchctl_service.stop(job_label, runas=None)

	Stop the specified service

CLI Example:

salt '*' service.stop <service label>
salt '*' service.stop org.ntp.ntpd
salt '*' service.stop /System/Library/LaunchDaemons/org.ntp.ntpd.plist

salt.modules.layman

Support for Layman

	
salt.modules.layman.add(overlay)

	Add the given overlay from the cached remote list to your locally
installed overlays. Specify 'ALL' to add all overlays from the
remote list.

Return a list of the new overlay(s) added:

CLI Example:

salt '*' layman.add <overlay name>

	
salt.modules.layman.delete(overlay)

	Remove the given overlay from the your locally installed overlays.
Specify 'ALL' to remove all overlays.

Return a list of the overlays(s) that were removed:

CLI Example:

salt '*' layman.delete <overlay name>

	
salt.modules.layman.list_all()

	List all overlays, including remote ones.

Return a list of available overlays:

CLI Example:

salt '*' layman.list_all

	
salt.modules.layman.list_local()

	List the locally installed overlays.

Return a list of installed overlays:

CLI Example:

salt '*' layman.list_local

	
salt.modules.layman.sync(overlay='ALL')

	Update the specified overlay. Use 'ALL' to synchronize all overlays.
This is the default if no overlay is specified.

	overlay
	Name of the overlay to sync. (Defaults to 'ALL')

CLI Example:

salt '*' layman.sync

salt.modules.ldap3

Query and modify an LDAP database (alternative interface)

New in version 2016.3.0.

This is an alternative to the ldap interface provided by the
ldapmod execution module.

	depends:

	
	ldap Python module

	
exception salt.modules.ldap3.LDAPError(message, cause=None)

	Base class of all LDAP exceptions raised by backends.

This is only used for errors encountered while interacting with
the LDAP server; usage errors (e.g., invalid backend name) will
have a different type.

	Variables:

	cause -- backend exception object, if applicable

	
salt.modules.ldap3.add(connect_spec, dn, attributes)

	Add an entry to an LDAP database.

	Parameters:

	
	connect_spec -- See the documentation for the connect_spec parameter for
connect().

	dn -- Distinguished name of the entry.

	attributes -- Non-empty dict mapping each of the new entry's attributes to a
non-empty iterable of values.

	Returns:

	True if successful, raises an exception otherwise.

CLI Example:

salt '*' ldap3.add "{
 'url': 'ldaps://ldap.example.com/',
 'bind': {
 'method': 'simple',
 'password': 'secret',
 },
}" "dn='dc=example,dc=com'" "attributes={'example': 'values'}"

	
salt.modules.ldap3.change(connect_spec, dn, before, after)

	Modify an entry in an LDAP database.

This does the same thing as modify(), but with a simpler
interface. Instead of taking a list of directives, it takes a
before and after view of an entry, determines the differences
between the two, computes the directives, and executes them.

Any attribute value present in before but missing in after
is deleted. Any attribute value present in after but missing
in before is added. Any attribute value in the database that
is not mentioned in either before or after is not altered.
Any attribute value that is present in both before and
after is ignored, regardless of whether that attribute value
exists in the database.

	Parameters:

	
	connect_spec -- See the documentation for the connect_spec parameter for
connect().

	dn -- Distinguished name of the entry.

	before -- The expected state of the entry before modification. This is
a dict mapping each attribute name to an iterable of values.

	after -- The desired state of the entry after modification. This is a
dict mapping each attribute name to an iterable of values.

	Returns:

	True if successful, raises an exception otherwise.

CLI Example:

salt '*' ldap3.change "{
 'url': 'ldaps://ldap.example.com/',
 'bind': {
 'method': 'simple',
 'password': 'secret'}
}" dn='cn=admin,dc=example,dc=com'
before="{'example_value': 'before_val'}"
after="{'example_value': 'after_val'}"

	
salt.modules.ldap3.connect(connect_spec=None)

	Connect and optionally bind to an LDAP server.

	Parameters:

	connect_spec -- This can be an LDAP connection object returned by a previous
call to connect() (in which case the argument is
simply returned), None (in which case an empty dict is
used), or a dict with the following keys:

	
	'backend'
	Optional; default depends on which Python LDAP modules are
installed. Name of the Python LDAP module to use. Only
'ldap' is supported at the moment.

	
	'url'
	Optional; defaults to 'ldapi:///'. URL to the LDAP
server.

	
	'bind'
	Optional; defaults to None. Describes how to bind an
identity to the LDAP connection. If None, an
anonymous connection is made. Valid keys:

	
	'method'
	Optional; defaults to None. The authentication
method to use. Valid values include but are not
necessarily limited to 'simple', 'sasl', and
None. If None, an anonymous connection is
made. Available methods depend on the chosen backend.

	
	'mechanism'
	Optional; defaults to 'EXTERNAL'. The SASL
mechanism to use. Ignored unless the method is
'sasl'. Available methods depend on the chosen
backend and the server's capabilities.

	
	'credentials'
	Optional; defaults to None. An object specific to
the chosen SASL mechanism and backend that represents
the authentication credentials. Ignored unless the
method is 'sasl'.

For the 'ldap' backend, this is a dictionary. If
None, an empty dict is used. Keys:

	
	'args'
	Optional; defaults to an empty list. A list of
arguments to pass to the SASL mechanism
constructor. See the SASL mechanism constructor
documentation in the ldap.sasl Python module.

	
	'kwargs'
	Optional; defaults to an empty dict. A dict of
keyword arguments to pass to the SASL mechanism
constructor. See the SASL mechanism constructor
documentation in the ldap.sasl Python module.

	
	'dn'
	Optional; defaults to an empty string. The
distinguished name to bind.

	
	'password'
	Optional; defaults to an empty string. Password for
binding. Ignored if the method is 'sasl'.

	
	'tls'
	Optional; defaults to None. A backend-specific object
containing settings to override default TLS behavior.

For the 'ldap' backend, this is a dictionary. Not all
settings in this dictionary are supported by all versions
of python-ldap or the underlying TLS library. If
None, an empty dict is used. Possible keys:

	
	'starttls'
	If present, initiate a TLS connection using StartTLS.
(The value associated with this key is ignored.)

	
	'cacertdir'
	Set the path of the directory containing CA
certificates.

	
	'cacertfile'
	Set the pathname of the CA certificate file.

	
	'certfile'
	Set the pathname of the certificate file.

	
	'cipher_suite'
	Set the allowed cipher suite.

	
	'crlcheck'
	Set the CRL evaluation strategy. Valid values are
'none', 'peer', and 'all'.

	
	'crlfile'
	Set the pathname of the CRL file.

	
	'dhfile'
	Set the pathname of the file containing the parameters
for Diffie-Hellman ephemeral key exchange.

	
	'keyfile'
	Set the pathname of the certificate key file.

	
	'newctx'
	If present, instruct the underlying TLS library to
create a new TLS context. (The value associated with
this key is ignored.)

	
	'protocol_min'
	Set the minimum protocol version.

	
	'random_file'
	Set the pathname of the random file when
/dev/random and /dev/urandom are not
available.

	
	'require_cert'
	Set the certificate validation policy. Valid values
are 'never', 'hard', 'demand',
'allow', and 'try'.

	
	'opts'
	Optional; defaults to None. A backend-specific object
containing options for the backend.

For the 'ldap' backend, this is a dictionary of
OpenLDAP options to set. If None, an empty dict is
used. Each key is a the name of an OpenLDAP option
constant without the 'LDAP_OPT_' prefix, then
converted to lower case.

	Returns:

	an object representing an LDAP connection that can be used as
the connect_spec argument to any of the functions in this
module (to avoid the overhead of making and terminating
multiple connections).

This object should be used as a context manager. It is safe
to nest with statements.

CLI Example:

salt '*' ldap3.connect "{
 'url': 'ldaps://ldap.example.com/',
 'bind': {
 'method': 'simple',
 'dn': 'cn=admin,dc=example,dc=com',
 'password': 'secret'}
}"

	
salt.modules.ldap3.delete(connect_spec, dn)

	Delete an entry from an LDAP database.

	Parameters:

	
	connect_spec -- See the documentation for the connect_spec parameter for
connect().

	dn -- Distinguished name of the entry.

	Returns:

	True if successful, raises an exception otherwise.

CLI Example:

salt '*' ldap3.delete "{
 'url': 'ldaps://ldap.example.com/',
 'bind': {
 'method': 'simple',
 'password': 'secret'}
}" dn='cn=admin,dc=example,dc=com'

	
salt.modules.ldap3.modify(connect_spec, dn, directives)

	Modify an entry in an LDAP database.

	Parameters:

	
	connect_spec -- See the documentation for the connect_spec parameter for
connect().

	dn -- Distinguished name of the entry.

	directives -- Iterable of directives that indicate how to modify the entry.
Each directive is a tuple of the form (op, attr, vals),
where:

	op identifies the modification operation to perform.
One of:

	'add' to add one or more values to the attribute

	'delete' to delete some or all of the values from the
attribute. If no values are specified with this
operation, all of the attribute's values are deleted.
Otherwise, only the named values are deleted.

	'replace' to replace all of the attribute's values
with zero or more new values

	attr names the attribute to modify

	vals is an iterable of values to add or delete

	Returns:

	True if successful, raises an exception otherwise.

CLI Example:

salt '*' ldap3.modify "{
 'url': 'ldaps://ldap.example.com/',
 'bind': {
 'method': 'simple',
 'password': 'secret'}
}" dn='cn=admin,dc=example,dc=com'
directives="('add', 'example', ['example_val'])"

	
salt.modules.ldap3.search(connect_spec, base, scope='subtree', filterstr='(objectClass=*)', attrlist=None, attrsonly=0)

	Search an LDAP database.

	Parameters:

	
	connect_spec -- See the documentation for the connect_spec parameter for
connect().

	base -- Distinguished name of the entry at which to start the search.

	scope -- One of the following:

	
	'subtree'
	Search the base and all of its descendants.

	
	'base'
	Search only the base itself.

	
	'onelevel'
	Search only the base's immediate children.

	filterstr -- String representation of the filter to apply in the search.

	attrlist -- Limit the returned attributes to those in the specified list.
If None, all attributes of each entry are returned.

	attrsonly -- If non-zero, don't return any attribute values.

	Returns:

	a dict of results. The dict is empty if there are no results.
The dict maps each returned entry's distinguished name to a
dict that maps each of the matching attribute names to a list
of its values.

CLI Example:

salt '*' ldap3.search "{
 'url': 'ldaps://ldap.example.com/',
 'bind': {
 'method': 'simple',
 'dn': 'cn=admin,dc=example,dc=com',
 'password': 'secret',
 },
}" "base='dc=example,dc=com'"

salt.modules.ldapmod

Salt interface to LDAP commands

	depends:

	
	ldap Python module

	configuration:

	In order to connect to LDAP, certain configuration is required
in the minion config on the LDAP server. The minimum configuration items
that must be set are:

ldap.basedn: dc=acme,dc=com (example values, adjust to suit)

If your LDAP server requires authentication then you must also set:

ldap.anonymous: False
ldap.binddn: admin
ldap.bindpw: password

In addition, the following optional values may be set:

ldap.server: localhost (default=localhost, see warning below)
ldap.port: 389 (default=389, standard port)
ldap.tls: False (default=False, no TLS)
ldap.no_verify: False (default=False, verify TLS)
ldap.anonymous: True (default=True, bind anonymous)
ldap.scope: 2 (default=2, ldap.SCOPE_SUBTREE)
ldap.attrs: [saltAttr] (default=None, return all attributes)

Warning

At the moment this module only recommends connection to LDAP services
listening on localhost. This is deliberate to avoid the potentially
dangerous situation of multiple minions sending identical update commands
to the same LDAP server. It's easy enough to override this behavior, but
badness may ensue - you have been warned.

	
salt.modules.ldapmod.search(filter, dn=None, scope=None, attrs=None, **kwargs)

	Run an arbitrary LDAP query and return the results.

CLI Example:

salt 'ldaphost' ldap.search "filter=cn=myhost"

Return data:

{'myhost': {'count': 1,
 'results': [['cn=myhost,ou=hosts,o=acme,c=gb',
 {'saltKeyValue': ['ntpserver=ntp.acme.local',
 'foo=myfoo'],
 'saltState': ['foo', 'bar']}]],
 'time': {'human': '1.2ms', 'raw': '0.00123'}}}

Search and connection options can be overridden by specifying the relevant
option as key=value pairs, for example:

salt 'ldaphost' ldap.search filter=cn=myhost dn=ou=hosts,o=acme,c=gb
scope=1 attrs='' server='localhost' port='7393' tls=True bindpw='ssh'

salt.modules.libcloud_compute

Apache Libcloud Compute Management

Connection module for Apache Libcloud Compute management for a full list
of supported clouds, see http://libcloud.readthedocs.io/en/latest/compute/supported_providers.html

Clouds include Amazon EC2, Azure, Google GCE, VMware, OpenStack Nova

New in version 2018.3.0.

	configuration:

	This module uses a configuration profile for one or multiple cloud providers

libcloud_compute:
 profile_test1:
 driver: google
 key: service-account@googlecloud.net
 secret: /path/to.key.json
 profile_test2:
 driver: arm
 key: 12345
 secret: mysecret

	depends:

	apache-libcloud

	
salt.modules.libcloud_compute.attach_volume(node_id, volume_id, profile, device=None, **libcloud_kwargs)

	Attaches volume to node.

	Parameters:

	
	node_id (str) -- Node ID to target

	volume_id (str) -- Volume ID from which to attach

	profile (str) -- The profile key

	device (str) -- Where the device is exposed, e.g. '/dev/sdb'

	libcloud_kwargs (dict) -- Extra arguments for the driver's attach_volume method

CLI Example:

salt myminion libcloud_compute.detach_volume vol1 profile1

	
salt.modules.libcloud_compute.copy_image(source_region, image_id, name, profile, description=None, **libcloud_kwargs)

	Copies an image from a source region to the current region.

	Parameters:

	
	source_region (str) -- Region to copy the node from.

	image_id (str) -- Image to copy.

	name (str) -- name for new image.

	profile (str) -- The profile key

	description -- description for new image.

	libcloud_kwargs (dict) -- Extra arguments for the driver's copy_image method

CLI Example:

salt myminion libcloud_compute.copy_image us-east1 image1 'new image' profile1

	
salt.modules.libcloud_compute.create_image(node_id, name, profile, description=None, **libcloud_kwargs)

	Create an image from a node

	Parameters:

	
	node_id (str) -- Node to run the task on.

	name (str) -- name for new image.

	profile (str) -- The profile key

	description (description) -- description for new image.

	libcloud_kwargs (dict) -- Extra arguments for the driver's create_image method

CLI Example:

salt myminion libcloud_compute.create_image server1 my_image profile1
salt myminion libcloud_compute.create_image server1 my_image profile1 description='test image'

	
salt.modules.libcloud_compute.create_key_pair(name, profile, **libcloud_kwargs)

	Create a single key pair by name

	Parameters:

	
	name (str) -- Name of the key pair to create.

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's create_key_pair method

CLI Example:

salt myminion libcloud_compute.create_key_pair pair1 profile1

	
salt.modules.libcloud_compute.create_volume(size, name, profile, location_id=None, **libcloud_kwargs)

	Create a storage volume

	Parameters:

	
	size (int) -- Size of volume in gigabytes (required)

	name (str) -- Name of the volume to be created

	location_id (str) -- Which data center to create a volume in. If
empty, undefined behavior will be selected.
(optional)

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's list_volumes method

CLI Example:

salt myminion libcloud_compute.create_volume 1000 vol1 profile1

	
salt.modules.libcloud_compute.create_volume_snapshot(volume_id, profile, name=None, **libcloud_kwargs)

	Create a storage volume snapshot

	Parameters:

	
	volume_id (str) -- Volume ID from which to create the new
snapshot.

	profile (str) -- The profile key

	name (str) -- Name of the snapshot to be created (optional)

	libcloud_kwargs (dict) -- Extra arguments for the driver's create_volume_snapshot method

CLI Example:

salt myminion libcloud_compute.create_volume_snapshot vol1 profile1

	
salt.modules.libcloud_compute.delete_image(image_id, profile, **libcloud_kwargs)

	Delete an image of a node

	Parameters:

	
	image_id (str) -- Image to delete

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's delete_image method

CLI Example:

salt myminion libcloud_compute.delete_image image1 profile1

	
salt.modules.libcloud_compute.delete_key_pair(name, profile, **libcloud_kwargs)

	Delete a key pair

	Parameters:

	
	name (str) -- Key pair name.

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's import_key_pair_from_xxx method

CLI Example:

salt myminion libcloud_compute.delete_key_pair pair1 profile1

	
salt.modules.libcloud_compute.destroy_node(node_id, profile, **libcloud_kwargs)

	Destroy a node in the cloud

	Parameters:

	
	node_id (str) -- Unique ID of the node to destroy

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's destroy_node method

CLI Example:

salt myminion libcloud_compute.destry_node as-2346 profile1

	
salt.modules.libcloud_compute.destroy_volume(volume_id, profile, **libcloud_kwargs)

	Destroy a volume.

	Parameters:

	
	volume_id (str) -- Volume ID from which to destroy

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's destroy_volume method

CLI Example:

salt myminion libcloud_compute.destroy_volume vol1 profile1

	
salt.modules.libcloud_compute.destroy_volume_snapshot(volume_id, snapshot_id, profile, **libcloud_kwargs)

	Destroy a volume snapshot.

	Parameters:

	
	volume_id (str) -- Volume ID from which the snapshot belongs

	snapshot_id (str) -- Volume Snapshot ID from which to destroy

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's destroy_volume_snapshot method

CLI Example:

salt myminion libcloud_compute.destroy_volume_snapshot snap1 profile1

	
salt.modules.libcloud_compute.detach_volume(volume_id, profile, **libcloud_kwargs)

	Detaches a volume from a node.

	Parameters:

	
	volume_id (str) -- Volume ID from which to detach

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's detach_volume method

CLI Example:

salt myminion libcloud_compute.detach_volume vol1 profile1

	
salt.modules.libcloud_compute.extra(method, profile, **libcloud_kwargs)

	Call an extended method on the driver

	Parameters:

	
	method (str) -- Driver's method name

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's method

CLI Example:

salt myminion libcloud_compute.extra ex_get_permissions google container_name=my_container object_name=me.jpg --out=yaml

	
salt.modules.libcloud_compute.get_image(image_id, profile, **libcloud_kwargs)

	Get an image of a node

	Parameters:

	
	image_id (str) -- Image to fetch

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's delete_image method

CLI Example:

salt myminion libcloud_compute.get_image image1 profile1

	
salt.modules.libcloud_compute.get_key_pair(name, profile, **libcloud_kwargs)

	Get a single key pair by name

	Parameters:

	
	name (str) -- Name of the key pair to retrieve.

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's get_key_pair method

CLI Example:

salt myminion libcloud_compute.get_key_pair pair1 profile1

	
salt.modules.libcloud_compute.import_key_pair(name, key, profile, key_type=None, **libcloud_kwargs)

	Import a new public key from string or a file path

	Parameters:

	
	name (str) -- Key pair name.

	key (str or path str) -- Public key material, the string or a path to a file

	profile (str) -- The profile key

	key_type (str) -- The key pair type, either FILE or STRING. Will detect if not provided
and assume that if the string is a path to an existing path it is a FILE, else STRING.

	libcloud_kwargs (dict) -- Extra arguments for the driver's import_key_pair_from_xxx method

CLI Example:

salt myminion libcloud_compute.import_key_pair pair1 key_value_data123 profile1
salt myminion libcloud_compute.import_key_pair pair1 /path/to/key profile1

	
salt.modules.libcloud_compute.list_images(profile, location_id=None, **libcloud_kwargs)

	Return a list of images for this cloud

	Parameters:

	
	profile (str) -- The profile key

	location_id (str) -- The location key, from list_locations

	libcloud_kwargs (dict) -- Extra arguments for the driver's list_images method

CLI Example:

salt myminion libcloud_compute.list_images profile1

	
salt.modules.libcloud_compute.list_key_pairs(profile, **libcloud_kwargs)

	List all the available key pair objects.

	Parameters:

	
	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's list_key_pairs method

CLI Example:

salt myminion libcloud_compute.list_key_pairs profile1

	
salt.modules.libcloud_compute.list_locations(profile, **libcloud_kwargs)

	Return a list of locations for this cloud

	Parameters:

	
	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's list_locations method

CLI Example:

salt myminion libcloud_compute.list_locations profile1

	
salt.modules.libcloud_compute.list_nodes(profile, **libcloud_kwargs)

	Return a list of nodes

	Parameters:

	
	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's list_nodes method

CLI Example:

salt myminion libcloud_compute.list_nodes profile1

	
salt.modules.libcloud_compute.list_sizes(profile, location_id=None, **libcloud_kwargs)

	Return a list of node sizes

	Parameters:

	
	profile (str) -- The profile key

	location_id (str) -- The location key, from list_locations

	libcloud_kwargs (dict) -- Extra arguments for the driver's list_sizes method

CLI Example:

salt myminion libcloud_compute.list_sizes profile1
salt myminion libcloud_compute.list_sizes profile1 us-east1

	
salt.modules.libcloud_compute.list_volume_snapshots(volume_id, profile, **libcloud_kwargs)

	Return a list of storage volumes snapshots for this cloud

	Parameters:

	
	volume_id (str) -- The volume identifier

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's list_volume_snapshots method

CLI Example:

salt myminion libcloud_compute.list_volume_snapshots vol1 profile1

	
salt.modules.libcloud_compute.list_volumes(profile, **libcloud_kwargs)

	Return a list of storage volumes for this cloud

	Parameters:

	
	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's list_volumes method

CLI Example:

salt myminion libcloud_compute.list_volumes profile1

	
salt.modules.libcloud_compute.reboot_node(node_id, profile, **libcloud_kwargs)

	Reboot a node in the cloud

	Parameters:

	
	node_id (str) -- Unique ID of the node to reboot

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's reboot_node method

CLI Example:

salt myminion libcloud_compute.reboot_node as-2346 profile1

salt.modules.libcloud_dns

Apache Libcloud DNS Management

Connection module for Apache Libcloud DNS management

New in version 2016.11.0.

	configuration:

	This module uses a configuration profile for one or multiple DNS providers

libcloud_dns:
 profile_test1:
 driver: cloudflare
 key: 12345
 secret: mysecret
 profile_test2:
 driver: godaddy
 key: 12345
 secret: mysecret
 shopper_id: 12345

	depends:

	apache-libcloud

	
salt.modules.libcloud_dns.create_record(name, zone_id, type, data, profile)

	Create a new record.

	Parameters:

	
	name (str) -- Record name without the domain name (e.g. www).
Note: If you want to create a record for a base domain
name, you should specify empty string ('') for this
argument.

	zone_id (str) -- Zone where the requested record is created.

	type (str) -- DNS record type (A, AAAA, ...).

	data (str) -- Data for the record (depends on the record type).

	profile (str) -- The profile key

CLI Example:

salt myminion libcloud_dns.create_record www google.com A 12.32.12.2 profile1

	
salt.modules.libcloud_dns.create_zone(domain, profile, type='master', ttl=None)

	Create a new zone.

	Parameters:

	
	domain (str) -- Zone domain name (e.g. example.com)

	profile (str) -- The profile key

	type (str) -- Zone type (master / slave).

	ttl (int) -- TTL for new records. (optional)

CLI Example:

salt myminion libcloud_dns.create_zone google.com profile1

	
salt.modules.libcloud_dns.delete_record(zone_id, record_id, profile)

	Delete a record.

	Parameters:

	
	zone_id (str) -- Zone to delete.

	record_id (str) -- Record to delete.

	profile (str) -- The profile key

	Return type:

	bool

CLI Example:

salt myminion libcloud_dns.delete_record google.com www profile1

	
salt.modules.libcloud_dns.delete_zone(zone_id, profile)

	Delete a zone.

	Parameters:

	
	zone_id (str) -- Zone to delete.

	profile (str) -- The profile key

	Return type:

	bool

CLI Example:

salt myminion libcloud_dns.delete_zone google.com profile1

	
salt.modules.libcloud_dns.extra(method, profile, **libcloud_kwargs)

	Call an extended method on the driver

	Parameters:

	
	method (str) -- Driver's method name

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's delete_container method

CLI Example:

salt myminion libcloud_dns.extra ex_get_permissions google container_name=my_container object_name=me.jpg --out=yaml

	
salt.modules.libcloud_dns.get_bind_data(zone_id, profile)

	Export Zone to the BIND compatible format.

	Parameters:

	
	zone_id (str) -- Zone to export.

	profile (str) -- The profile key

	Returns:

	Zone data in BIND compatible format.

	Return type:

	str

CLI Example:

salt myminion libcloud_dns.get_bind_data google.com profile1

	
salt.modules.libcloud_dns.get_record(zone_id, record_id, profile)

	Get record information for the given zone_id on the given profile

	Parameters:

	
	zone_id (str) -- Zone to export.

	record_id (str) -- Record to delete.

	profile (str) -- The profile key

CLI Example:

salt myminion libcloud_dns.get_record google.com www profile1

	
salt.modules.libcloud_dns.get_zone(zone_id, profile)

	Get zone information for the given zone_id on the given profile

	Parameters:

	
	zone_id (str) -- Zone to export.

	profile (str) -- The profile key

CLI Example:

salt myminion libcloud_dns.get_zone google.com profile1

	
salt.modules.libcloud_dns.list_record_types(profile)

	List available record types for the given profile, e.g. A, AAAA

	Parameters:

	profile (str) -- The profile key

CLI Example:

salt myminion libcloud_dns.list_record_types profile1

	
salt.modules.libcloud_dns.list_records(zone_id, profile, type=None)

	List records for the given zone_id on the given profile

	Parameters:

	
	zone_id (str) -- Zone to export.

	profile (str) -- The profile key

	type (str) -- The record type, e.g. A, NS

CLI Example:

salt myminion libcloud_dns.list_records google.com profile1

	
salt.modules.libcloud_dns.list_zones(profile)

	List zones for the given profile

	Parameters:

	profile (str) -- The profile key

CLI Example:

salt myminion libcloud_dns.list_zones profile1

	
salt.modules.libcloud_dns.update_zone(zone_id, domain, profile, type='master', ttl=None)

	Update an existing zone.

	Parameters:

	
	zone_id (str) -- Zone ID to update.

	domain (str) -- Zone domain name (e.g. example.com)

	profile (str) -- The profile key

	type (str) -- Zone type (master / slave).

	ttl (int) -- TTL for new records. (optional)

CLI Example:

salt myminion libcloud_dns.update_zone google.com google.com profile1 type=slave

salt.modules.libcloud_loadbalancer

Apache Libcloud Load Balancer Management

Connection module for Apache Libcloud Storage load balancer management for a full list
of supported clouds, see http://libcloud.readthedocs.io/en/latest/loadbalancer/supported_providers.html

Clouds include Amazon ELB, ALB, Google, Aliyun, CloudStack, Softlayer

New in version 2018.3.0.

	configuration:

	This module uses a configuration profile for one or multiple Storage providers

libcloud_loadbalancer:
 profile_test1:
 driver: gce
 key: GOOG0123456789ABCXYZ
 secret: mysecret
 profile_test2:
 driver: alb
 key: 12345
 secret: mysecret

	depends:

	apache-libcloud

	
salt.modules.libcloud_loadbalancer.balancer_attach_member(balancer_id, ip, port, profile, extra=None, **libcloud_kwargs)

	Add a new member to the load balancer

	Parameters:

	
	balancer_id (str) -- id of a load balancer you want to fetch

	ip (str) -- IP address for the new member

	port (int) -- Port for the new member

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's balancer_attach_member method

CLI Example:

salt myminion libcloud_storage.balancer_attach_member balancer123 1.2.3.4 80 profile1

	
salt.modules.libcloud_loadbalancer.balancer_detach_member(balancer_id, member_id, profile, **libcloud_kwargs)

	Add a new member to the load balancer

	Parameters:

	
	balancer_id (str) -- id of a load balancer you want to fetch

	ip (str) -- IP address for the new member

	port (int) -- Port for the new member

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's balancer_detach_member method

CLI Example:

salt myminion libcloud_storage.balancer_detach_member balancer123 member123 profile1

	
salt.modules.libcloud_loadbalancer.create_balancer(name, port, protocol, profile, algorithm=None, members=None, **libcloud_kwargs)

	Create a new load balancer instance

	Parameters:

	
	name (str) -- Name of the new load balancer (required)

	port (str) -- Port the load balancer should listen on, defaults to 80

	protocol (str) -- Loadbalancer protocol, defaults to http.

	algorithm (str) -- Load balancing algorithm, defaults to ROUND_ROBIN. See Algorithm type
in Libcloud documentation for a full listing.

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's create_balancer method

	Returns:

	The details of the new balancer

CLI Example:

salt myminion libcloud_storage.create_balancer my_balancer 80 http profile1

	
salt.modules.libcloud_loadbalancer.destroy_balancer(balancer_id, profile, **libcloud_kwargs)

	Destroy a load balancer

	Parameters:

	
	balancer_id (str) -- LoadBalancer ID which should be used

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's destroy_balancer method

	Returns:

	True if the destroy was successful, otherwise False.

	Return type:

	bool

CLI Example:

salt myminion libcloud_storage.destroy_balancer balancer_1 profile1

	
salt.modules.libcloud_loadbalancer.extra(method, profile, **libcloud_kwargs)

	Call an extended method on the driver

	Parameters:

	
	method (str) -- Driver's method name

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's method

CLI Example:

salt myminion libcloud_loadbalancer.extra ex_get_permissions google container_name=my_container object_name=me.jpg --out=yaml

	
salt.modules.libcloud_loadbalancer.get_balancer(balancer_id, profile, **libcloud_kwargs)

	Get the details for a load balancer by ID

	Parameters:

	
	balancer_id (str) -- id of a load balancer you want to fetch

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's get_balancer method

	Returns:

	the load balancer details

CLI Example:

salt myminion libcloud_storage.get_balancer balancer123 profile1

	
salt.modules.libcloud_loadbalancer.get_balancer_by_name(name, profile, **libcloud_kwargs)

	Get the details for a load balancer by name

	Parameters:

	
	name (str) -- Name of a load balancer you want to fetch

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's list_balancers method

	Returns:

	the load balancer details

CLI Example:

salt myminion libcloud_storage.get_balancer_by_name my_balancer profile1

	
salt.modules.libcloud_loadbalancer.list_balancer_members(balancer_id, profile, **libcloud_kwargs)

	List the members of a load balancer

	Parameters:

	
	balancer_id (str) -- id of a load balancer you want to fetch

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's list_balancer_members method

CLI Example:

salt myminion libcloud_storage.list_balancer_members balancer123 profile1

	
salt.modules.libcloud_loadbalancer.list_balancers(profile, **libcloud_kwargs)

	Return a list of load balancers.

	Parameters:

	
	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's list_balancers method

CLI Example:

salt myminion libcloud_storage.list_balancers profile1

	
salt.modules.libcloud_loadbalancer.list_protocols(profile, **libcloud_kwargs)

	Return a list of supported protocols.

	Parameters:

	
	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's list_protocols method

	Returns:

	a list of supported protocols

	Return type:

	list of str

CLI Example:

salt myminion libcloud_storage.list_protocols profile1

	
salt.modules.libcloud_loadbalancer.list_supported_algorithms(profile, **libcloud_kwargs)

	Get the supported algorithms for a profile

	Parameters:

	
	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's list_supported_algorithms method

	Returns:

	The supported algorithms

CLI Example:

salt myminion libcloud_storage.list_supported_algorithms profile1

salt.modules.libcloud_storage

Apache Libcloud Storage Management

Connection module for Apache Libcloud Storage (object/blob) management for a full list
of supported clouds, see http://libcloud.readthedocs.io/en/latest/storage/supported_providers.html

Clouds include Amazon S3, Google Storage, Aliyun, Azure Blobs, Ceph, OpenStack swift

New in version 2018.3.0.

	configuration:

	This module uses a configuration profile for one or multiple Storage providers

libcloud_storage:
 profile_test1:
 driver: google_storage
 key: GOOG0123456789ABCXYZ
 secret: mysecret
 profile_test2:
 driver: s3
 key: 12345
 secret: mysecret

	depends:

	apache-libcloud

	
salt.modules.libcloud_storage.create_container(container_name, profile, **libcloud_kwargs)

	Create a container in the cloud

	Parameters:

	
	container_name (str) -- Container name

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's create_container method

CLI Example:

salt myminion libcloud_storage.create_container MyFolder profile1

	
salt.modules.libcloud_storage.delete_container(container_name, profile, **libcloud_kwargs)

	Delete an object container in the cloud

	Parameters:

	
	container_name (str) -- Container name

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's delete_container method

	Returns:

	True if an object container has been successfully deleted, False
otherwise.

	Return type:

	bool

CLI Example:

salt myminion libcloud_storage.delete_container MyFolder profile1

	
salt.modules.libcloud_storage.delete_object(container_name, object_name, profile, **libcloud_kwargs)

	Delete an object in the cloud

	Parameters:

	
	container_name (str) -- Container name

	object_name (str) -- Object name

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's delete_object method

	Returns:

	True if an object has been successfully deleted, False
otherwise.

	Return type:

	bool

CLI Example:

salt myminion libcloud_storage.delete_object MyFolder me.jpg profile1

	
salt.modules.libcloud_storage.download_object(container_name, object_name, destination_path, profile, overwrite_existing=False, delete_on_failure=True, **libcloud_kwargs)

	Download an object to the specified destination path.

	Parameters:

	
	container_name (str) -- Container name

	object_name (str) -- Object name

	destination_path (str) -- Full path to a file or a directory where the
incoming file will be saved.

	profile (str) -- The profile key

	overwrite_existing (bool) -- True to overwrite an existing file,
defaults to False.

	delete_on_failure (bool) -- True to delete a partially downloaded file if
the download was not successful (hash
mismatch / file size).

	libcloud_kwargs (dict) -- Extra arguments for the driver's download_object method

	Returns:

	True if an object has been successfully downloaded, False
otherwise.

	Return type:

	bool

CLI Example:

salt myminion libcloud_storage.download_object MyFolder me.jpg /tmp/me.jpg profile1

	
salt.modules.libcloud_storage.extra(method, profile, **libcloud_kwargs)

	Call an extended method on the driver

	Parameters:

	
	method (str) -- Driver's method name

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's delete_container method

CLI Example:

salt myminion libcloud_storage.extra ex_get_permissions google container_name=my_container object_name=me.jpg --out=yaml

	
salt.modules.libcloud_storage.get_container(container_name, profile, **libcloud_kwargs)

	List container details for the given container_name on the given profile

	Parameters:

	
	container_name (str) -- Container name

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's get_container method

CLI Example:

salt myminion libcloud_storage.get_container MyFolder profile1

	
salt.modules.libcloud_storage.get_container_object(container_name, object_name, profile, **libcloud_kwargs)

	Get the details for a container object (file or object in the cloud)

	Parameters:

	
	container_name (str) -- Container name

	object_name (str) -- Object name

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's get_container_object method

CLI Example:

salt myminion libcloud_storage.get_container_object MyFolder MyFile.xyz profile1

	
salt.modules.libcloud_storage.list_container_objects(container_name, profile, **libcloud_kwargs)

	List container objects (e.g. files) for the given container_id on the given profile

	Parameters:

	
	container_name (str) -- Container name

	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's list_container_objects method

CLI Example:

salt myminion libcloud_storage.list_container_objects MyFolder profile1

	
salt.modules.libcloud_storage.list_containers(profile, **libcloud_kwargs)

	Return a list of containers.

	Parameters:

	
	profile (str) -- The profile key

	libcloud_kwargs (dict) -- Extra arguments for the driver's list_containers method

CLI Example:

salt myminion libcloud_storage.list_containers profile1

	
salt.modules.libcloud_storage.upload_object(file_path, container_name, object_name, profile, extra=None, verify_hash=True, headers=None, **libcloud_kwargs)

	Upload an object currently located on a disk.

	Parameters:

	
	file_path (str) -- Path to the object on disk.

	container_name (str) -- Destination container.

	object_name (str) -- Object name.

	profile (str) -- The profile key

	verify_hash (bool) -- Verify hash

	extra (dict) -- Extra attributes (driver specific). (optional)

	headers (dict) -- (optional) Additional request headers,
such as CORS headers. For example:
headers = {'Access-Control-Allow-Origin': 'http://mozilla.com'}

	libcloud_kwargs (dict) -- Extra arguments for the driver's upload_object method

	Returns:

	The object name in the cloud

	Return type:

	str

CLI Example:

salt myminion libcloud_storage.upload_object /file/to/me.jpg MyFolder me.jpg profile1

salt.modules.linux_acl

Support for Linux File Access Control Lists

The Linux ACL module requires the getfacl and setfacl binaries.

	
salt.modules.linux_acl.delfacl(acl_type, acl_name='', *args, **kwargs)

	Remove specific FACL from the specified file(s)

CLI Examples:

salt '*' acl.delfacl user myuser /tmp/house/kitchen
salt '*' acl.delfacl default:group mygroup /tmp/house/kitchen
salt '*' acl.delfacl d:u myuser /tmp/house/kitchen
salt '*' acl.delfacl g myuser /tmp/house/kitchen /tmp/house/livingroom
salt '*' acl.delfacl user myuser /tmp/house/kitchen recursive=True

	
salt.modules.linux_acl.getfacl(*args, **kwargs)

	Return (extremely verbose) map of FACLs on specified file(s)

CLI Examples:

salt '*' acl.getfacl /tmp/house/kitchen
salt '*' acl.getfacl /tmp/house/kitchen /tmp/house/livingroom
salt '*' acl.getfacl /tmp/house/kitchen /tmp/house/livingroom recursive=True

	
salt.modules.linux_acl.modfacl(acl_type, acl_name='', perms='', *args, **kwargs)

	Add or modify a FACL for the specified file(s)

CLI Examples:

salt '*' acl.modfacl user myuser rwx /tmp/house/kitchen
salt '*' acl.modfacl default:group mygroup rx /tmp/house/kitchen
salt '*' acl.modfacl d:u myuser 7 /tmp/house/kitchen
salt '*' acl.modfacl g mygroup 0 /tmp/house/kitchen /tmp/house/livingroom
salt '*' acl.modfacl user myuser rwx /tmp/house/kitchen recursive=True
salt '*' acl.modfacl user myuser rwx /tmp/house/kitchen raise_err=True

	
salt.modules.linux_acl.version()

	Return facl version from getfacl --version

CLI Example:

salt '*' acl.version

	
salt.modules.linux_acl.wipefacls(*args, **kwargs)

	Remove all FACLs from the specified file(s)

CLI Examples:

salt '*' acl.wipefacls /tmp/house/kitchen
salt '*' acl.wipefacls /tmp/house/kitchen /tmp/house/livingroom
salt '*' acl.wipefacls /tmp/house/kitchen /tmp/house/livingroom recursive=True

salt.modules.linux_ip

The networking module for Non-RH/Deb Linux distros

	
salt.modules.linux_ip.down(iface, iface_type=None)

	Shutdown a network interface

CLI Example:

salt '*' ip.down eth0

	
salt.modules.linux_ip.get_interface(iface)

	Return the contents of an interface script

CLI Example:

salt '*' ip.get_interface eth0

	
salt.modules.linux_ip.get_routes(iface=None)

	Return the current routing table

CLI Examples:

salt '*' ip.get_routes
salt '*' ip.get_routes eth0

	
salt.modules.linux_ip.up(iface, iface_type=None)

	Start up a network interface

CLI Example:

salt '*' ip.up eth0

salt.modules.linux_lvm

Support for Linux LVM2

	
salt.modules.linux_lvm.fullversion()

	Return all version info from lvm version

CLI Example:

salt '*' lvm.fullversion

	
salt.modules.linux_lvm.lvcreate(lvname, vgname, size=None, extents=None, snapshot=None, pv=None, thinvolume=False, thinpool=False, force=False, **kwargs)

	Create a new logical volume, with option for which physical volume to be used

CLI Examples:

salt '*' lvm.lvcreate new_volume_name vg_name size=10G
salt '*' lvm.lvcreate new_volume_name vg_name extents=100 pv=/dev/sdb
salt '*' lvm.lvcreate new_snapshot vg_name snapshot=volume_name size=3G

New in version 0.12.0.

Support for thin pools and thin volumes

CLI Examples:

salt '*' lvm.lvcreate new_thinpool_name vg_name size=20G thinpool=True
salt '*' lvm.lvcreate new_thinvolume_name vg_name/thinpool_name size=10G thinvolume=True

	
salt.modules.linux_lvm.lvdisplay(lvname='', quiet=False)

	Return information about the logical volume(s)

	lvname
	logical device name

	quiet
	if the logical volume is not present, do not show any error

CLI Examples:

salt '*' lvm.lvdisplay
salt '*' lvm.lvdisplay /dev/vg_myserver/root

	
salt.modules.linux_lvm.lvextend(size=None, lvpath=None, extents=None, force=False, resizefs=False)

	Increase a logical volume to specific size.

CLI Examples:

salt '*' lvm.lvextend +12M /dev/mapper/vg1-test
salt '*' lvm.lvextend lvpath=/dev/mapper/vg1-test extents=+100%FREE

	
salt.modules.linux_lvm.lvremove(lvname, vgname, force=True)

	Remove a given existing logical volume from a named existing volume group

CLI Example:

salt '*' lvm.lvremove lvname vgname force=True

	
salt.modules.linux_lvm.lvresize(size=None, lvpath=None, extents=None, force=False, resizefs=False)

	Resize a logical volume to specific size.

CLI Examples:

salt '*' lvm.lvresize +12M /dev/mapper/vg1-test
salt '*' lvm.lvresize lvpath=/dev/mapper/vg1-test extents=+100%FREE

	
salt.modules.linux_lvm.pvcreate(devices, override=True, force=True, **kwargs)

	Set a physical device to be used as an LVM physical volume

	override
	Skip devices, if they are already LVM physical volumes

CLI Examples:

salt mymachine lvm.pvcreate /dev/sdb1,/dev/sdb2
salt mymachine lvm.pvcreate /dev/sdb1 dataalignmentoffset=7s

	
salt.modules.linux_lvm.pvdisplay(pvname='', real=False, quiet=False)

	Return information about the physical volume(s)

	pvname
	physical device name

	real
	dereference any symlinks and report the real device

New in version 2015.8.7.

	quiet
	if the physical volume is not present, do not show any error

CLI Examples:

salt '*' lvm.pvdisplay
salt '*' lvm.pvdisplay /dev/md0

	
salt.modules.linux_lvm.pvremove(devices, override=True, force=True)

	Remove a physical device being used as an LVM physical volume

	override
	Skip devices, if they are already not used as LVM physical volumes

CLI Examples:

salt mymachine lvm.pvremove /dev/sdb1,/dev/sdb2

	
salt.modules.linux_lvm.pvresize(devices, override=True, force=True)

	Resize a LVM physical volume to the physical device size

	override
	Skip devices, if they are already not used as LVM physical volumes

CLI Examples:

salt mymachine lvm.pvresize /dev/sdb1,/dev/sdb2

	
salt.modules.linux_lvm.version()

	Return LVM version from lvm version

CLI Example:

salt '*' lvm.version

	
salt.modules.linux_lvm.vgcreate(vgname, devices, force=False, **kwargs)

	Create an LVM volume group

CLI Examples:

salt mymachine lvm.vgcreate my_vg /dev/sdb1,/dev/sdb2
salt mymachine lvm.vgcreate my_vg /dev/sdb1 clustered=y

	
salt.modules.linux_lvm.vgdisplay(vgname='', quiet=False)

	Return information about the volume group(s)

	vgname
	volume group name

	quiet
	if the volume group is not present, do not show any error

CLI Examples:

salt '*' lvm.vgdisplay
salt '*' lvm.vgdisplay nova-volumes

	
salt.modules.linux_lvm.vgextend(vgname, devices, force=False)

	Add physical volumes to an LVM volume group

CLI Examples:

salt mymachine lvm.vgextend my_vg /dev/sdb1,/dev/sdb2
salt mymachine lvm.vgextend my_vg /dev/sdb1

	
salt.modules.linux_lvm.vgremove(vgname, force=True)

	Remove an LVM volume group

CLI Examples:

salt mymachine lvm.vgremove vgname
salt mymachine lvm.vgremove vgname force=True

salt.modules.linux_service

If Salt's OS detection does not identify a different virtual service module, the minion will fall back to using this basic module, which simply wraps sysvinit scripts.

	
salt.modules.linux_service.available(name)

	Returns True if the specified service is available, otherwise returns
False.

CLI Example:

salt '*' service.available sshd

	
salt.modules.linux_service.get_all()

	Return a list of all available services

CLI Example:

salt '*' service.get_all

	
salt.modules.linux_service.missing(name)

	The inverse of service.available.
Returns True if the specified service is not available, otherwise returns
False.

CLI Example:

salt '*' service.missing sshd

	
salt.modules.linux_service.reload_(name)

	Refreshes config files by calling service reload. Does not perform a full
restart.

CLI Example:

salt '*' service.reload <service name>

	
salt.modules.linux_service.restart(name)

	Restart the specified service

CLI Example:

salt '*' service.restart <service name>

	
salt.modules.linux_service.run(name, action)

	Run the specified service with an action.

New in version 2015.8.1.

	name
	Service name.

	action
	Action name (like start, stop, reload, restart).

CLI Example:

salt '*' service.run apache2 reload
salt '*' service.run postgresql initdb

	
salt.modules.linux_service.start(name)

	Start the specified service

CLI Example:

salt '*' service.start <service name>

	
salt.modules.linux_service.status(name, sig=None)

	Return the status for a service.
If the name contains globbing, a dict mapping service name to PID or empty
string is returned.

Changed in version 2018.3.0: The service name can now be a glob (e.g. salt*)

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service to check

	sig (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Signature to use to find the service via ps

	Returns:

	PID if running, empty otherwise
dict: Maps service name to PID if running, empty string otherwise

	Return type:

	string

CLI Example:

salt '*' service.status <service name> [service signature]

	
salt.modules.linux_service.stop(name)

	Stop the specified service

CLI Example:

salt '*' service.stop <service name>

salt.modules.linux_shadow

Manage the shadow file on Linux systems

Important

If you feel that Salt should be using this module to manage passwords on a
minion, and it is using a different module (or gives an error similar to
'shadow.info' is not available), see here.

	
salt.modules.linux_shadow.default_hash()

	Returns the default hash used for unset passwords

CLI Example:

salt '*' shadow.default_hash

	
salt.modules.linux_shadow.del_password(name, root=None)

	
New in version 2014.7.0.

Delete the password from name user

	name
	User to delete

	root
	Directory to chroot into

CLI Example:

salt '*' shadow.del_password username

	
salt.modules.linux_shadow.gen_password(password, crypt_salt=None, algorithm='sha512')

	
New in version 2014.7.0.

Generate hashed password

Note

When called this function is called directly via remote-execution,
the password argument may be displayed in the system's process list.
This may be a security risk on certain systems.

	password
	Plaintext password to be hashed.

	crypt_salt
	Crpytographic salt. If not given, a random 8-character salt will be
generated.

	algorithm
	The following hash algorithms are supported:

	md5

	blowfish (not in mainline glibc, only available in distros that add it)

	sha256

	sha512 (default)

CLI Example:

salt '*' shadow.gen_password 'I_am_password'
salt '*' shadow.gen_password 'I_am_password' crypt_salt='I_am_salt' algorithm=sha256

	
salt.modules.linux_shadow.info(name, root=None)

	Return information for the specified user

	name
	User to get the information for

	root
	Directory to chroot into

CLI Example:

salt '*' shadow.info root

	
salt.modules.linux_shadow.list_users(root=None)

	
New in version 2018.3.0.

Return a list of all shadow users

	root
	Directory to chroot into

CLI Example:

salt '*' shadow.list_users

	
salt.modules.linux_shadow.lock_password(name, root=None)

	
New in version 2016.11.0.

Lock the password from specified user

	name
	User to lock

	root
	Directory to chroot into

CLI Example:

salt '*' shadow.lock_password username

	
salt.modules.linux_shadow.set_date(name, date, root=None)

	Sets the value for the date the password was last changed to days since the
epoch (January 1, 1970). See man chage.

	name
	User to modify

	date
	Date the password was last changed

	root
	Directory to chroot into

CLI Example:

salt '*' shadow.set_date username 0

	
salt.modules.linux_shadow.set_expire(name, expire, root=None)

	
Changed in version 2014.7.0.

Sets the value for the date the account expires as days since the epoch
(January 1, 1970). Using a value of -1 will clear expiration. See man
chage.

	name
	User to modify

	date
	Date the account expires

	root
	Directory to chroot into

CLI Example:

salt '*' shadow.set_expire username -1

	
salt.modules.linux_shadow.set_inactdays(name, inactdays, root=None)

	Set the number of days of inactivity after a password has expired before
the account is locked. See man chage.

	name
	User to modify

	inactdays
	Set password inactive after this number of days

	root
	Directory to chroot into

CLI Example:

salt '*' shadow.set_inactdays username 7

	
salt.modules.linux_shadow.set_maxdays(name, maxdays, root=None)

	Set the maximum number of days during which a password is valid.
See man chage.

	name
	User to modify

	maxdays
	Maximum number of days during which a password is valid

	root
	Directory to chroot into

CLI Example:

salt '*' shadow.set_maxdays username 90

	
salt.modules.linux_shadow.set_mindays(name, mindays, root=None)

	Set the minimum number of days between password changes. See man chage.

	name
	User to modify

	mindays
	Minimum number of days between password changes

	root
	Directory to chroot into

CLI Example:

salt '*' shadow.set_mindays username 7

	
salt.modules.linux_shadow.set_password(name, password, use_usermod=False, root=None)

	Set the password for a named user. The password must be a properly defined
hash. A password hash can be generated with gen_password().

	name
	User to set the password

	password
	Password already hashed

	use_usermod
	Use usermod command to better compatibility

	root
	Directory to chroot into

CLI Example:

salt '*' shadow.set_password root '1UYCIxa628.9qXjpQCjM4a..'

	
salt.modules.linux_shadow.set_warndays(name, warndays, root=None)

	Set the number of days of warning before a password change is required.
See man chage.

	name
	User to modify

	warndays
	Number of days of warning before a password change is required

	root
	Directory to chroot into

CLI Example:

salt '*' shadow.set_warndays username 7

	
salt.modules.linux_shadow.unlock_password(name, root=None)

	
New in version 2016.11.0.

Unlock the password from name user

	name
	User to unlock

	root
	Directory to chroot into

CLI Example:

salt '*' shadow.unlock_password username

salt.modules.linux_sysctl

Module for viewing and modifying sysctl parameters

	
salt.modules.linux_sysctl.assign(name, value)

	Assign a single sysctl parameter for this minion

CLI Example:

salt '*' sysctl.assign net.ipv4.ip_forward 1

	
salt.modules.linux_sysctl.default_config()

	Linux hosts using systemd 207 or later ignore /etc/sysctl.conf and only
load from /etc/sysctl.d/*.conf. This function will do the proper checks
and return a default config file which will be valid for the Minion. Hosts
running systemd >= 207 will use /etc/sysctl.d/99-salt.conf.

CLI Example:

salt -G 'kernel:Linux' sysctl.default_config

	
salt.modules.linux_sysctl.get(name)

	Return a single sysctl parameter for this minion

CLI Example:

salt '*' sysctl.get net.ipv4.ip_forward

	
salt.modules.linux_sysctl.persist(name, value, config=None)

	Assign and persist a simple sysctl parameter for this minion. If config
is not specified, a sensible default will be chosen using
sysctl.default_config.

CLI Example:

salt '*' sysctl.persist net.ipv4.ip_forward 1

	
salt.modules.linux_sysctl.show(config_file=False)

	Return a list of sysctl parameters for this minion

	config: Pull the data from the system configuration file
	instead of the live data.

CLI Example:

salt '*' sysctl.show

salt.modules.localemod

Module for managing locales on POSIX-like systems.

	
salt.modules.localemod.avail(locale)

	Check if a locale is available.

New in version 2014.7.0.

CLI Example:

salt '*' locale.avail 'en_US.UTF-8'

	
salt.modules.localemod.gen_locale(locale, **kwargs)

	Generate a locale. Options:

New in version 2014.7.0.

	Parameters:

	locale -- Any locale listed in /usr/share/i18n/locales or
/usr/share/i18n/SUPPORTED for Debian and Gentoo based distributions,
which require the charmap to be specified as part of the locale
when generating it.

	verbose
	Show extra warnings about errors that are normally ignored.

CLI Example:

salt '*' locale.gen_locale en_US.UTF-8
salt '*' locale.gen_locale 'en_IE.UTF-8 UTF-8' # Debian/Gentoo only

	
salt.modules.localemod.get_locale()

	Get the current system locale

CLI Example:

salt '*' locale.get_locale

	
salt.modules.localemod.list_avail()

	Lists available (compiled) locales

CLI Example:

salt '*' locale.list_avail

	
salt.modules.localemod.set_locale(locale)

	Sets the current system locale

CLI Example:

salt '*' locale.set_locale 'en_US.UTF-8'

salt.modules.locate

Module for using the locate utilities

	
salt.modules.locate.locate(pattern, database='', limit=0, **kwargs)

	Performs a file lookup. Valid options (and their defaults) are:

basename=False
count=False
existing=False
follow=True
ignore=False
nofollow=False
wholename=True
regex=False
database=<locate's default database>
limit=<integer, not set by default>

See the manpage for locate(1) for further explanation of these options.

CLI Example:

salt '*' locate.locate

	
salt.modules.locate.stats()

	Returns statistics about the locate database

CLI Example:

salt '*' locate.stats

	
salt.modules.locate.updatedb()

	Updates the locate database

CLI Example:

salt '*' locate.updatedb

	
salt.modules.locate.version()

	Returns the version of locate

CLI Example:

salt '*' locate.version

salt.modules.logadm

Module for managing Solaris logadm based log rotations.

	
salt.modules.logadm.list_conf(conf_file='/etc/logadm.conf', log_file=None, include_unset=False)

	Show parsed configuration

New in version 2018.3.0.

	conf_filestring
	path to logadm.conf, defaults to /etc/logadm.conf

	log_filestring
	optional show only one log file

	include_unsetboolean
	include unset flags in output

CLI Example:

salt '*' logadm.list_conf
salt '*' logadm.list_conf log=/var/log/syslog
salt '*' logadm.list_conf include_unset=False

	
salt.modules.logadm.remove(name, conf_file='/etc/logadm.conf')

	Remove log pattern from logadm

CLI Example:

salt '*' logadm.remove myapplog

	
salt.modules.logadm.rotate(name, pattern=None, conf_file='/etc/logadm.conf', **kwargs)

	Set up pattern for logging.

	namestring
	alias for entryname

	patternstring
	alias for log_file

	conf_filestring
	optional path to alternative configuration file

	kwargsboolean|string|int
	optional additional flags and parameters

Note

name and pattern were kept for backwards compatibility reasons.

name is an alias for the entryname argument, pattern is an alias
for log_file. These aliases will only be used if the entryname and
log_file arguments are not passed.

For a full list of arguments see `logadm.show_args`.

CLI Example:

salt '*' logadm.rotate myapplog pattern='/var/log/myapp/*.log' count=7
salt '*' logadm.rotate myapplog log_file='/var/log/myapp/*.log' count=4 owner=myappd mode='0700'

	
salt.modules.logadm.show_args()

	Show which arguments map to which flags and options.

New in version 2018.3.0.

CLI Example:

salt '*' logadm.show_args

	
salt.modules.logadm.show_conf(conf_file='/etc/logadm.conf', name=None)

	Show configuration

	conf_filestring
	path to logadm.conf, defaults to /etc/logadm.conf

	namestring
	optional show only a single entry

CLI Example:

salt '*' logadm.show_conf
salt '*' logadm.show_conf name=/var/log/syslog

salt.modules.logmod

On-demand logging

New in version 2017.7.0.

The sole purpose of this module is logging messages in the (proxy) minion.
It comes very handy when debugging complex Jinja templates, for example:

{%- for var in range(10) %}
 {%- do salt["log.info"](var) -%}
{%- endfor %}

CLI Example:

salt '*' log.error "Please don't do that, this module is not for CLI use!"

	
salt.modules.logmod.critical(message)

	Log message at level CRITICAL.

	
salt.modules.logmod.debug(message)

	Log message at level DEBUG.

	
salt.modules.logmod.error(message)

	Log message at level ERROR.

	
salt.modules.logmod.exception(message)

	Log message at level EXCEPTION.

	
salt.modules.logmod.info(message)

	Log message at level INFO.

	
salt.modules.logmod.warning(message)

	Log message at level WARNING.

salt.modules.logrotate

Module for managing logrotate.

	
salt.modules.logrotate.get(key, value=None, conf_file='/etc/logrotate.conf')

	Get the value for a specific configuration line.

	Parameters:

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The command or stanza block to configure.

	value (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The command value or command of the block specified by the key parameter.

	conf_file (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The logrotate configuration file.

	Returns:

	The value for a specific configuration line.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]|int [https://docs.python.org/3/library/functions.html#int]|str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' logrotate.get rotate

salt '*' logrotate.get /var/log/wtmp rotate /etc/logrotate.conf

	
salt.modules.logrotate.set_(key, value, setting=None, conf_file='/etc/logrotate.conf')

	Set a new value for a specific configuration line.

	Parameters:

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The command or block to configure.

	value (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The command value or command of the block specified by the key parameter.

	setting (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The command value for the command specified by the value parameter.

	conf_file (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The logrotate configuration file.

	Returns:

	A boolean representing whether all changes succeeded.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' logrotate.set rotate 2

Can also be used to set a single value inside a multiline configuration
block. For instance, to change rotate in the following block:

/var/log/wtmp {
 monthly
 create 0664 root root
 rotate 1
}

Use the following command:

salt '*' logrotate.set /var/log/wtmp rotate 2

This module also has the ability to scan files inside an include directory,
and make changes in the appropriate file.

	
salt.modules.logrotate.show_conf(conf_file='/etc/logrotate.conf')

	Show parsed configuration

	Parameters:

	conf_file (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The logrotate configuration file.

	Returns:

	The parsed configuration.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' logrotate.show_conf

salt.modules.lvs

Support for LVS (Linux Virtual Server)

	
salt.modules.lvs.add_server(protocol=None, service_address=None, server_address=None, packet_forward_method='dr', weight=1, **kwargs)

	Add a real server to a virtual service.

	protocol
	The service protocol(only support tcp, udp and fwmark service).

	service_address
	The LVS service address.

	server_address
	The real server address.

	packet_forward_method
	The LVS packet forwarding method(dr for direct routing, tunnel for tunneling, nat for network access translation).

	weight
	The capacity of a server relative to the others in the pool.

CLI Example:

salt '*' lvs.add_server tcp 1.1.1.1:80 192.168.0.11:8080 nat 1

	
salt.modules.lvs.add_service(protocol=None, service_address=None, scheduler='wlc')

	Add a virtual service.

	protocol
	The service protocol(only support tcp, udp and fwmark service).

	service_address
	The LVS service address.

	scheduler
	Algorithm for allocating TCP connections and UDP datagrams to real servers.

CLI Example:

salt '*' lvs.add_service tcp 1.1.1.1:80 rr

	
salt.modules.lvs.check_server(protocol=None, service_address=None, server_address=None, **kwargs)

	Check the real server exists in the specified service.

CLI Example:

salt '*' lvs.check_server tcp 1.1.1.1:80 192.168.0.11:8080

	
salt.modules.lvs.check_service(protocol=None, service_address=None, **kwargs)

	Check the virtual service exists.

CLI Example:

salt '*' lvs.check_service tcp 1.1.1.1:80

	
salt.modules.lvs.clear()

	Clear the virtual server table

CLI Example:

salt '*' lvs.clear

	
salt.modules.lvs.delete_server(protocol=None, service_address=None, server_address=None)

	Delete the realserver from the virtual service.

	protocol
	The service protocol(only support tcp, udp and fwmark service).

	service_address
	The LVS service address.

	server_address
	The real server address.

CLI Example:

salt '*' lvs.delete_server tcp 1.1.1.1:80 192.168.0.11:8080

	
salt.modules.lvs.delete_service(protocol=None, service_address=None)

	Delete the virtual service.

	protocol
	The service protocol(only support tcp, udp and fwmark service).

	service_address
	The LVS service address.

CLI Example:

salt '*' lvs.delete_service tcp 1.1.1.1:80

	
salt.modules.lvs.edit_server(protocol=None, service_address=None, server_address=None, packet_forward_method=None, weight=None, **kwargs)

	Edit a real server to a virtual service.

	protocol
	The service protocol(only support tcp, udp and fwmark service).

	service_address
	The LVS service address.

	server_address
	The real server address.

	packet_forward_method
	The LVS packet forwarding method(dr for direct routing, tunnel for tunneling, nat for network access translation).

	weight
	The capacity of a server relative to the others in the pool.

CLI Example:

salt '*' lvs.edit_server tcp 1.1.1.1:80 192.168.0.11:8080 nat 1

	
salt.modules.lvs.edit_service(protocol=None, service_address=None, scheduler=None)

	Edit the virtual service.

	protocol
	The service protocol(only support tcp, udp and fwmark service).

	service_address
	The LVS service address.

	scheduler
	Algorithm for allocating TCP connections and UDP datagrams to real servers.

CLI Example:

salt '*' lvs.edit_service tcp 1.1.1.1:80 rr

	
salt.modules.lvs.get_rules()

	Get the virtual server rules

CLI Example:

salt '*' lvs.get_rules

	
salt.modules.lvs.list_(protocol=None, service_address=None)

	List the virtual server table if service_address is not specified. If a service_address is selected, list this service only.

CLI Example:

salt '*' lvs.list

	
salt.modules.lvs.zero(protocol=None, service_address=None)

	Zero the packet, byte and rate counters in a service or all services.

CLI Example:

salt '*' lvs.zero

salt.modules.lxc

Control Linux Containers via Salt

	depends:

	lxc package for distribution

lxc >= 1.0 (even beta alpha) is required

	
salt.modules.lxc.add_veth(name, interface_name, bridge=None, path=None)

	Add a veth to a container.
Note : this function doesn't update the container config, just add the interface at runtime

	name
	Name of the container

	interface_name
	Name of the interface in the container

	bridge
	Name of the bridge to attach the interface to (facultative)

CLI Examples:

salt '*' lxc.add_veth container_name eth1 br1
salt '*' lxc.add_veth container_name eth1

	
salt.modules.lxc.apply_network_profile(name, network_profile, nic_opts=None, path=None)

	
New in version 2015.5.0.

Apply a network profile to a container

	network_profile
	profile name or default values (dict)

	nic_opts
	values to override in defaults (dict)
indexed by nic card names

	path
	path to the container parent

New in version 2015.8.0.

CLI Examples:

salt 'minion' lxc.apply_network_profile web1 centos
salt 'minion' lxc.apply_network_profile web1 centos \
 nic_opts="{'eth0': {'mac': 'xx:xx:xx:xx:xx:xx'}}"
salt 'minion' lxc.apply_network_profile web1 \
 "{'eth0': {'mac': 'xx:xx:xx:xx:xx:yy'}}"
 nic_opts="{'eth0': {'mac': 'xx:xx:xx:xx:xx:xx'}}"

The special case to disable use of ethernet nics:

salt 'minion' lxc.apply_network_profile web1 centos \
 "{eth0: {disable: true}}"

	
salt.modules.lxc.attachable(name, path=None)

	Return True if the named container can be attached to via the lxc-attach
command

	path
	path to the container parent
default: /var/lib/lxc (system default)

New in version 2015.8.0.

CLI Example:

salt 'minion' lxc.attachable ubuntu

	
salt.modules.lxc.bootstrap(name, config=None, approve_key=True, install=True, pub_key=None, priv_key=None, bootstrap_url=None, force_install=False, unconditional_install=False, path=None, bootstrap_delay=None, bootstrap_args=None, bootstrap_shell=None)

	Install and configure salt in a container.

	config
	Minion configuration options. By default, the master option is set
to the target host's master.

	approve_key
	Request a pre-approval of the generated minion key. Requires
that the salt-master be configured to either auto-accept all keys or
expect a signing request from the target host. Default: True

	path
	path to the container parent
default: /var/lib/lxc (system default)

New in version 2015.8.0.

	pub_key
	Explicit public key to pressed the minion with (optional).
This can be either a filepath or a string representing the key

	priv_key
	Explicit private key to pressed the minion with (optional).
This can be either a filepath or a string representing the key

	bootstrap_delay
	Delay in seconds between end of container creation and bootstrapping.
Useful when waiting for container to obtain a DHCP lease.

New in version 2015.5.0.

	bootstrap_url
	url, content or filepath to the salt bootstrap script

	bootstrap_args
	salt bootstrap script arguments

	bootstrap_shell
	shell to execute the script into

	install
	Whether to attempt a full installation of salt-minion if needed.

	force_install
	Force installation even if salt-minion is detected,
this is the way to run vendor bootstrap scripts even
if a salt minion is already present in the container

	unconditional_install
	Run the script even if the container seems seeded

CLI Examples:

salt 'minion' lxc.bootstrap container_name [config=config_data] \
 [approve_key=(True|False)] [install=(True|False)]

	
salt.modules.lxc.clone(name, orig, profile=None, network_profile=None, nic_opts=None, **kwargs)

	Create a new container as a clone of another container

	name
	Name of the container

	orig
	Name of the original container to be cloned

	profile
	Profile to use in container cloning (see
lxc.get_container_profile). Values in a profile will be
overridden by the Container Cloning Arguments listed below.

	path
	path to the container parent directory
default: /var/lib/lxc (system)

New in version 2015.8.0.

Container Cloning Arguments

	snapshot
	Use Copy On Write snapshots (LVM)

	size1G
	Size of the volume to create. Only applicable if backing=lvm.

	backing
	The type of storage to use. Set to lvm to use an LVM group.
Defaults to filesystem within /var/lib/lxc.

	network_profile
	Network profile to use for container

New in version 2015.8.0.

	nic_opts
	give extra opts overriding network profile values

New in version 2015.8.0.

CLI Examples:

salt '*' lxc.clone myclone orig=orig_container
salt '*' lxc.clone myclone orig=orig_container snapshot=True

	
salt.modules.lxc.cloud_init(name, vm_=None, **kwargs)

	Thin wrapper to lxc.init to be used from the saltcloud lxc driver

	name
	Name of the container
may be None and then guessed from saltcloud mapping

	vm_
	saltcloud mapping defaults for the vm

CLI Example:

salt '*' lxc.cloud_init foo

	
salt.modules.lxc.cloud_init_interface(name, vm_=None, **kwargs)

	Interface between salt.cloud.lxc driver and lxc.init
vm_ is a mapping of vm opts in the salt.cloud format
as documented for the lxc driver.

This can be used either:

	from the salt cloud driver

	because you find the argument to give easier here
than using directly lxc.init

Warning

BE REALLY CAREFUL CHANGING DEFAULTS !!!
IT'S A RETRO COMPATIBLE INTERFACE WITH
THE SALT CLOUD DRIVER (ask kiorky).

	name
	name of the lxc container to create

	pub_key
	public key to preseed the minion with.
Can be the keycontent or a filepath

	priv_key
	private key to preseed the minion with.
Can be the keycontent or a filepath

	path
	path to the container parent directory (default: /var/lib/lxc)

New in version 2015.8.0.

	profile
	profile selection

	network_profile
	network profile selection

	nic_opts
	per interface settings compatibles with
network profile (ipv4/ipv6/link/gateway/mac/netmask)

eg:

- {'eth0': {'mac': '00:16:3e:01:29:40',
 'gateway': None, (default)
 'link': 'br0', (default)
 'gateway': None, (default)
 'netmask': '', (default)
 'ip': '22.1.4.25'}}

	unconditional_install
	given to lxc.bootstrap (see relative doc)

	force_install
	given to lxc.bootstrap (see relative doc)

	config
	any extra argument for the salt minion config

	dnsservers
	list of DNS servers to set inside the container

	dns_via_dhcp
	do not set the dns servers, let them be set by the dhcp.

	autostart
	autostart the container at boot time

	password
	administrative password for the container

	bootstrap_delay
	delay before launching bootstrap script at Container init

Warning

Legacy but still supported options:

	from_container
	which container we use as a template
when running lxc.clone

	image
	which template do we use when we
are using lxc.create. This is the default
mode unless you specify something in from_container

	backing
	which backing store to use.
Values can be: overlayfs, dir(default), lvm, zfs, brtfs

	fstype
	When using a blockdevice level backing store,
which filesystem to use on

	size
	When using a blockdevice level backing store,
which size for the filesystem to use on

	snapshot
	Use snapshot when cloning the container source

	vgname
	if using LVM: vgname

	lvname
	if using LVM: lvname

	thinpool:
	if using LVM: thinpool

	ip
	ip for the primary nic

	mac
	mac address for the primary nic

	netmask
	netmask for the primary nic (24)
= vm_.get('netmask', '24')

	bridge
	bridge for the primary nic (lxcbr0)

	gateway
	network gateway for the container

	additional_ips
	additional ips which will be wired on the main bridge (br0)
which is connected to internet.
Be aware that you may use manual virtual mac addresses
providen by you provider (online, ovh, etc).
This is a list of mappings {ip: '', mac: '', netmask:''}
Set gateway to None and an interface with a gateway
to escape from another interface that eth0.
eg:

- {'mac': '00:16:3e:01:29:40',
 'gateway': None, (default)
 'link': 'br0', (default)
 'netmask': '', (default)
 'ip': '22.1.4.25'}

	users
	administrative users for the container
default: [root] and [root, ubuntu] on ubuntu

	default_nic
	name of the first interface, you should
really not override this

CLI Example:

salt '*' lxc.cloud_init_interface foo

	
salt.modules.lxc.copy_to(name, source, dest, overwrite=False, makedirs=False, path=None)

	
Changed in version 2015.8.0: Function renamed from lxc.cp to lxc.copy_to for consistency
with other container types. lxc.cp will continue to work, however.
For versions 2015.2.x and earlier, use lxc.cp.

Copy a file or directory from the host into a container

	name
	Container name

	source
	File to be copied to the container

	path
	path to the container parent
default: /var/lib/lxc (system default)

New in version 2015.8.0.

	dest
	Destination on the container. Must be an absolute path.

Changed in version 2015.5.0: If the destination is a directory, the file will be copied into
that directory.

	overwriteFalse
	Unless this option is set to True, then if a file exists at the
location specified by the dest argument, an error will be raised.

New in version 2015.8.0.

makedirs : False

Create the parent directory on the container if it does not already
exist.

New in version 2015.5.0.

CLI Example:

salt 'minion' lxc.copy_to /tmp/foo /root/foo
salt 'minion' lxc.cp /tmp/foo /root/foo

	
salt.modules.lxc.cp(name, source, dest, overwrite=False, makedirs=False, path=None)

	This function is an alias of copy_to.

Changed in version 2015.8.0: Function renamed from lxc.cp to lxc.copy_to for consistency
with other container types. lxc.cp will continue to work, however.
For versions 2015.2.x and earlier, use lxc.cp.

Copy a file or directory from the host into a container

	name
	Container name

	source
	File to be copied to the container

	path
	path to the container parent
default: /var/lib/lxc (system default)

New in version 2015.8.0.

	dest
	Destination on the container. Must be an absolute path.

Changed in version 2015.5.0: If the destination is a directory, the file will be copied into
that directory.

	overwriteFalse
	Unless this option is set to True, then if a file exists at the
location specified by the dest argument, an error will be raised.

New in version 2015.8.0.

makedirs : False

Create the parent directory on the container if it does not already
exist.

New in version 2015.5.0.

CLI Example:

salt 'minion' lxc.copy_to /tmp/foo /root/foo
salt 'minion' lxc.cp /tmp/foo /root/foo

	
salt.modules.lxc.create(name, config=None, profile=None, network_profile=None, nic_opts=None, **kwargs)

	Create a new container.

	name
	Name of the container

	config
	The config file to use for the container. Defaults to system-wide
config (usually in /etc/lxc/lxc.conf).

	profile
	Profile to use in container creation (see
lxc.get_container_profile). Values in a profile will be
overridden by the Container Creation Arguments listed below.

	network_profile
	Network profile to use for container

New in version 2015.5.0.

Container Creation Arguments

	template
	The template to use. For example, ubuntu or fedora.
For a full list of available templates, check out
the lxc.templates function.

Conflicts with the image argument.

Note

The download template requires the following three parameters
to be defined in options:

	dist - The name of the distribution

	release - Release name/version

	arch - Architecture of the container

The available images can be listed using the lxc.images function.

	options
	Template-specific options to pass to the lxc-create command. These
correspond to the long options (ones beginning with two dashes) that
the template script accepts. For example:

options='{"dist": "centos", "release": "6", "arch": "amd64"}'

For available template options, refer to the lxc template scripts
which are usually located under /usr/share/lxc/templates,
or run lxc-create -t <template> -h.

	image
	A tar archive to use as the rootfs for the container. Conflicts with
the template argument.

	backing
	The type of storage to use. Set to lvm to use an LVM group.
Defaults to filesystem within /var/lib/lxc.

	fstype
	Filesystem type to use on LVM logical volume

	size1G
	Size of the volume to create. Only applicable if backing=lvm.

	vgnamelxc
	Name of the LVM volume group in which to create the volume for this
container. Only applicable if backing=lvm.

	lvname
	Name of the LVM logical volume in which to create the volume for this
container. Only applicable if backing=lvm.

	thinpool
	Name of a pool volume that will be used for thin-provisioning this
container. Only applicable if backing=lvm.

	nic_opts
	give extra opts overriding network profile values

	path
	parent path for the container creation (default: /var/lib/lxc)

	zfsroot
	Name of the ZFS root in which to create the volume for this container.
Only applicable if backing=zfs. (default: tank/lxc)

New in version 2015.8.0.

	
salt.modules.lxc.destroy(name, stop=False, path=None)

	Destroy the named container.

Warning

Destroys all data associated with the container.

	path
	path to the container parent directory (default: /var/lib/lxc)

New in version 2015.8.0.

	stopFalse
	If True, the container will be destroyed even if it is
running/frozen.

Changed in version 2015.5.0: Default value changed to False. This more closely matches the
behavior of lxc-destroy(1), and also makes it less likely that
an accidental command will destroy a running container that was
being used for important things.

CLI Examples:

salt '*' lxc.destroy foo
salt '*' lxc.destroy foo stop=True

	
salt.modules.lxc.edit_conf(conf_file, out_format='simple', read_only=False, lxc_config=None, **kwargs)

	Edit an LXC configuration file. If a setting is already present inside the
file, its value will be replaced. If it does not exist, it will be appended
to the end of the file. Comments and blank lines will be kept in-tact if
they already exist in the file.

	out_format:
	Set to simple if you need backward compatibility (multiple items for a
simple key is not supported)

	read_only:
	return only the edited configuration without applying it
to the underlying lxc configuration file

	lxc_config:
	List of dict containning lxc configuration items
For network configuration, you also need to add the device it belongs
to, otherwise it will default to eth0.
Also, any change to a network parameter will result in the whole
network reconfiguration to avoid mismatchs, be aware of that !

After the file is edited, its contents will be returned. By default, it
will be returned in simple format, meaning an unordered dict (which
may not represent the actual file order). Passing in an out_format of
commented will return a data structure which accurately represents the
order and content of the file.

CLI Example:

salt 'minion' lxc.edit_conf /etc/lxc/mycontainer.conf \
 out_format=commented lxc.network.type=veth
salt 'minion' lxc.edit_conf /etc/lxc/mycontainer.conf \
 out_format=commented \
 lxc_config="[{'lxc.network.name': 'eth0', \
 'lxc.network.ipv4': '1.2.3.4'},
 {'lxc.network.name': 'eth2', \
 'lxc.network.ipv4': '1.2.3.5',\
 'lxc.network.gateway': '1.2.3.1'}]"

	
salt.modules.lxc.exists(name, path=None)

	Returns whether the named container exists.

	path
	path to the container parent directory (default: /var/lib/lxc)

New in version 2015.8.0.

CLI Example:

salt '*' lxc.exists name

	
salt.modules.lxc.freeze(name, **kwargs)

	Freeze the named container

	path
	path to the container parent directory
default: /var/lib/lxc (system)

New in version 2015.8.0.

	startFalse
	If True and the container is stopped, the container will be started
before attempting to freeze.

New in version 2015.5.0.

	use_vt
	run the command through VT

New in version 2015.8.0.

CLI Example:

salt '*' lxc.freeze name

	
salt.modules.lxc.get_container_profile(name=None, **kwargs)

	
New in version 2015.5.0.

Gather a pre-configured set of container configuration parameters. If no
arguments are passed, an empty profile is returned.

Profiles can be defined in the minion or master config files, or in pillar
or grains, and are loaded using config.get. The key under which LXC profiles must be
configured is lxc.container_profile.profile_name. An example container
profile would be as follows:

lxc.container_profile:
 ubuntu:
 template: ubuntu
 backing: lvm
 vgname: lxc
 size: 1G

Parameters set in a profile can be overridden by passing additional
container creation arguments (such as the ones passed to lxc.create) to this function.

A profile can be defined either as the name of the profile, or a dictionary
of variable names and values. See the LXC Tutorial for more information on how to use LXC profiles.

CLI Example:

salt-call lxc.get_container_profile centos
salt-call lxc.get_container_profile ubuntu template=ubuntu backing=overlayfs

	
salt.modules.lxc.get_network_profile(name=None, **kwargs)

	
New in version 2015.5.0.

Gather a pre-configured set of network configuration parameters. If no
arguments are passed, the following default profile is returned:

{'eth0': {'link': 'br0', 'type': 'veth', 'flags': 'up'}}

Profiles can be defined in the minion or master config files, or in pillar
or grains, and are loaded using config.get. The key under which LXC profiles must be
configured is lxc.network_profile. An example network profile would be
as follows:

lxc.network_profile.centos:
 eth0:
 link: br0
 type: veth
 flags: up

To disable networking entirely:

lxc.network_profile.centos:
 eth0:
 disable: true

Parameters set in a profile can be overridden by passing additional
arguments to this function.

A profile can be passed either as the name of the profile, or a
dictionary of variable names and values. See the LXC Tutorial for more information on how to use network
profiles.

Warning

The ipv4, ipv6, gateway, and link (bridge) settings in
network profiles will only work if the container doesn't redefine the
network configuration (for example in
/etc/sysconfig/network-scripts/ifcfg-<interface_name> on
RHEL/CentOS, or /etc/network/interfaces on Debian/Ubuntu/etc.)

CLI Example:

salt-call lxc.get_network_profile default

	
salt.modules.lxc.get_parameter(name, parameter, path=None)

	Returns the value of a cgroup parameter for a container

	path
	path to the container parent directory
default: /var/lib/lxc (system)

New in version 2015.8.0.

CLI Example:

salt '*' lxc.get_parameter container_name memory.limit_in_bytes

	
salt.modules.lxc.get_pid(name, path=None)

	Returns a container pid.
Throw an exception if the container isn't running.

CLI Example:

salt '*' lxc.get_pid name

	
salt.modules.lxc.get_root_path(path)

	Get the configured lxc root for containers

New in version 2015.8.0.

CLI Example:

salt '*' lxc.get_root_path

	
salt.modules.lxc.images(dist=None)

	
New in version 2015.5.0.

List the available images for LXC's download template.

	distNone
	Filter results to a single Linux distribution

CLI Examples:

salt myminion lxc.images
salt myminion lxc.images dist=centos

	
salt.modules.lxc.info(name, path=None)

	Returns information about a container

	path
	path to the container parent directory
default: /var/lib/lxc (system)

New in version 2015.8.0.

CLI Example:

salt '*' lxc.info name

	
salt.modules.lxc.init(name, config=None, cpuset=None, cpushare=None, memory=None, profile=None, network_profile=None, nic_opts=None, cpu=None, autostart=True, password=None, password_encrypted=None, users=None, dnsservers=None, searchdomains=None, bridge=None, gateway=None, pub_key=None, priv_key=None, force_install=False, unconditional_install=False, bootstrap_delay=None, bootstrap_args=None, bootstrap_shell=None, bootstrap_url=None, **kwargs)

	Initialize a new container.

This is a partial idempotent function as if it is already provisioned, we
will reset a bit the lxc configuration file but much of the hard work will
be escaped as markers will prevent re-execution of harmful tasks.

	name
	Name of the container

	image
	A tar archive to use as the rootfs for the container. Conflicts with
the template argument.

	cpus
	Select a random number of cpu cores and assign it to the cpuset, if the
cpuset option is set then this option will be ignored

	cpuset
	Explicitly define the cpus this container will be bound to

	cpushare
	cgroups cpu shares

	autostart
	autostart container on reboot

	memory
	cgroups memory limit, in MB

Changed in version 2015.5.0: If no value is passed, no limit is set. In earlier Salt versions,
not passing this value causes a 1024MB memory limit to be set, and
it was necessary to pass memory=0 to set no limit.

	gateway
	the ipv4 gateway to use
the default does nothing more than lxcutils does

	bridge
	the bridge to use
the default does nothing more than lxcutils does

	network_profile
	Network profile to use for the container

New in version 2015.5.0.

	nic_opts
	Extra options for network interfaces, will override

{"eth0": {"hwaddr": "aa:bb:cc:dd:ee:ff", "ipv4": "10.1.1.1", "ipv6": "2001:db8::ff00:42:8329"}}

or

{"eth0": {"hwaddr": "aa:bb:cc:dd:ee:ff", "ipv4": "10.1.1.1/24", "ipv6": "2001:db8::ff00:42:8329"}}

	users
	Users for which the password defined in the password param should
be set. Can be passed as a comma separated list or a python list.
Defaults to just the root user.

	password
	Set the initial password for the users defined in the users
parameter

	password_encryptedFalse
	Set to True to denote a password hash instead of a plaintext
password

New in version 2015.5.0.

	profile
	A LXC profile (defined in config or pillar).
This can be either a real profile mapping or a string
to retrieve it in configuration

	start
	Start the newly-created container

	dnsservers
	list of dns servers to set in the container, default [] (no setting)

	seed
	Seed the container with the minion config. Default: True

	install
	If salt-minion is not already installed, install it. Default: True

	config
	Optional config parameters. By default, the id is set to
the name of the container.

	master
	salt master (default to minion's master)

	master_port
	salt master port (default to minion's master port)

	pub_key
	Explicit public key to preseed the minion with (optional).
This can be either a filepath or a string representing the key

	priv_key
	Explicit private key to preseed the minion with (optional).
This can be either a filepath or a string representing the key

	approve_key
	If explicit preseeding is not used;
Attempt to request key approval from the master. Default: True

	path
	path to the container parent directory
default: /var/lib/lxc (system)

New in version 2015.8.0.

	clone_from
	Original from which to use a clone operation to create the container.
Default: None

	bootstrap_delay
	Delay in seconds between end of container creation and bootstrapping.
Useful when waiting for container to obtain a DHCP lease.

New in version 2015.5.0.

	bootstrap_url
	See lxc.bootstrap

	bootstrap_shell
	See lxc.bootstrap

	bootstrap_args
	See lxc.bootstrap

	force_install
	Force installation even if salt-minion is detected,
this is the way to run vendor bootstrap scripts even
if a salt minion is already present in the container

	unconditional_install
	Run the script even if the container seems seeded

CLI Example:

salt 'minion' lxc.init name [cpuset=cgroups_cpuset] \
 [cpushare=cgroups_cpushare] [memory=cgroups_memory] \
 [nic=nic_profile] [profile=lxc_profile] \
 [nic_opts=nic_opts] [start=(True|False)] \
 [seed=(True|False)] [install=(True|False)] \
 [config=minion_config] [approve_key=(True|False) \
 [clone_from=original] [autostart=True] \
 [priv_key=/path_or_content] [pub_key=/path_or_content] \
 [bridge=lxcbr0] [gateway=10.0.3.1] \
 [dnsservers[dns1,dns2]] \
 [users=[foo]] [password='secret'] \
 [password_encrypted=(True|False)]

	
salt.modules.lxc.list_(extra=False, limit=None, path=None)

	List containers classified by state

	extra
	Also get per-container specific info. This will change the return data.
Instead of returning a list of containers, a dictionary of containers
and each container's output from lxc.info.

	path
	path to the container parent directory
default: /var/lib/lxc (system)

New in version 2015.8.0.

	limit
	Return output matching a specific state (frozen, running, or
stopped).

New in version 2015.5.0.

CLI Examples:

salt '*' lxc.list
salt '*' lxc.list extra=True
salt '*' lxc.list limit=running

	
salt.modules.lxc.ls_(active=None, cache=True, path=None)

	Return a list of the containers available on the minion

	path
	path to the container parent directory
default: /var/lib/lxc (system)

New in version 2015.8.0.

	active
	If True, return only active (i.e. running) containers

New in version 2015.5.0.

CLI Example:

salt '*' lxc.ls
salt '*' lxc.ls active=True

	
salt.modules.lxc.read_conf(conf_file, out_format='simple')

	Read in an LXC configuration file. By default returns a simple, unsorted
dict, but can also return a more detailed structure including blank lines
and comments.

	out_format:
	set to 'simple' if you need the old and unsupported behavior.
This won't support the multiple lxc values (eg: multiple network nics)

CLI Examples:

salt 'minion' lxc.read_conf /etc/lxc/mycontainer.conf
salt 'minion' lxc.read_conf /etc/lxc/mycontainer.conf out_format=commented

	
salt.modules.lxc.reboot(name, path=None)

	Reboot a container.

	path
	path to the container parent
default: /var/lib/lxc (system default)

New in version 2015.8.0.

CLI Examples:

salt 'minion' lxc.reboot myvm

	
salt.modules.lxc.reconfigure(name, cpu=None, cpuset=None, cpushare=None, memory=None, profile=None, network_profile=None, nic_opts=None, bridge=None, gateway=None, autostart=None, utsname=None, rootfs=None, path=None, **kwargs)

	Reconfigure a container.

This only applies to a few property

	name
	Name of the container.

	utsname
	utsname of the container.

New in version 2016.3.0.

	rootfs
	rootfs of the container.

New in version 2016.3.0.

	cpu
	Select a random number of cpu cores and assign it to the cpuset, if the
cpuset option is set then this option will be ignored

	cpuset
	Explicitly define the cpus this container will be bound to

	cpushare
	cgroups cpu shares.

	autostart
	autostart container on reboot

	memory
	cgroups memory limit, in MB.
(0 for nolimit, None for old default 1024MB)

	gateway
	the ipv4 gateway to use
the default does nothing more than lxcutils does

	bridge
	the bridge to use
the default does nothing more than lxcutils does

	nic
	Network interfaces profile (defined in config or pillar).

	nic_opts
	Extra options for network interfaces, will override

{"eth0": {"mac": "aa:bb:cc:dd:ee:ff", "ipv4": "10.1.1.1", "ipv6": "2001:db8::ff00:42:8329"}}

or

{"eth0": {"mac": "aa:bb:cc:dd:ee:ff", "ipv4": "10.1.1.1/24", "ipv6": "2001:db8::ff00:42:8329"}}

	path
	path to the container parent

New in version 2015.8.0.

CLI Example:

salt-call -lall mc_lxc_fork.reconfigure foobar nic_opts="{'eth1': {'mac': '00:16:3e:dd:ee:44'}}" memory=4

	
salt.modules.lxc.remove(name, stop=False, path=None)

	This function is an alias of destroy.

Destroy the named container.

Warning

Destroys all data associated with the container.

	path
	path to the container parent directory (default: /var/lib/lxc)

New in version 2015.8.0.

	stopFalse
	If True, the container will be destroyed even if it is
running/frozen.

Changed in version 2015.5.0: Default value changed to False. This more closely matches the
behavior of lxc-destroy(1), and also makes it less likely that
an accidental command will destroy a running container that was
being used for important things.

CLI Examples:

salt '*' lxc.destroy foo
salt '*' lxc.destroy foo stop=True

	
salt.modules.lxc.restart(name, path=None, lxc_config=None, force=False)

	
New in version 2015.5.0.

Restart the named container. If the container was not running, the
container will merely be started.

	name
	The name of the container

	path
	path to the container parent directory
default: /var/lib/lxc (system)

New in version 2015.8.0.

	lxc_config
	path to a lxc config file
config file will be guessed from container name otherwise

New in version 2015.8.0.

	forceFalse
	If True, the container will be force-stopped instead of gracefully
shut down

CLI Example:

salt myminion lxc.restart name

	
salt.modules.lxc.retcode(name, cmd, no_start=False, preserve_state=True, stdin=None, python_shell=True, output_loglevel='debug', use_vt=False, path=None, ignore_retcode=False, chroot_fallback=False, keep_env='http_proxy,https_proxy,no_proxy')

	
New in version 2015.5.0.

Run cmd.retcode within a container

Warning

Many shell builtins do not work, failing with stderr similar to the
following:

lxc_container: No such file or directory - failed to exec 'command'

The same error will be displayed in stderr if the command being run
does not exist. If the retcode is nonzero and not what was expected,
try using lxc.run_stderr
or lxc.run_all.

	name
	Name of the container in which to run the command

	cmd
	Command to run

	no_startFalse
	If the container is not running, don't start it

	preserve_stateTrue
	After running the command, return the container to its previous state

	path
	path to the container parent
default: /var/lib/lxc (system default)

New in version 2015.8.0.

	stdinNone
	Standard input to be used for the command

	output_logleveldebug
	Level at which to log the output from the command. Set to quiet to
suppress logging.

	use_vtFalse
	Use SaltStack's utils.vt to stream output to console
output=all.

	keep_envhttp_proxy,https_proxy,no_proxy
	A list of env vars to preserve. May be passed as commma-delimited list.

	chroot_fallback
	if the container is not running, try to run the command using chroot
default: false

CLI Example:

salt myminion lxc.retcode mycontainer 'ip addr show'

	
salt.modules.lxc.run(name, cmd, no_start=False, preserve_state=True, stdin=None, python_shell=True, output_loglevel='debug', use_vt=False, path=None, ignore_retcode=False, chroot_fallback=False, keep_env='http_proxy,https_proxy,no_proxy')

	
New in version 2015.8.0.

Run cmd.run within a container

Warning

Many shell builtins do not work, failing with stderr similar to the
following:

lxc_container: No such file or directory - failed to exec 'command'

The same error will be displayed in stderr if the command being run
does not exist. If no output is returned using this function, try using
lxc.run_stderr or
lxc.run_all.

	name
	Name of the container in which to run the command

	cmd
	Command to run

	path
	path to the container parent
default: /var/lib/lxc (system default)

New in version 2015.8.0.

	no_startFalse
	If the container is not running, don't start it

	preserve_stateTrue
	After running the command, return the container to its previous state

	stdinNone
	Standard input to be used for the command

	output_logleveldebug
	Level at which to log the output from the command. Set to quiet to
suppress logging.

	use_vtFalse
	Use SaltStack's utils.vt to stream output to console. Assumes
output=all.

	chroot_fallback
	if the container is not running, try to run the command using chroot
default: false

	keep_envhttp_proxy,https_proxy,no_proxy
	A list of env vars to preserve. May be passed as commma-delimited list.

CLI Example:

salt myminion lxc.run mycontainer 'ip addr show'

	
salt.modules.lxc.run_all(name, cmd, no_start=False, preserve_state=True, stdin=None, python_shell=True, output_loglevel='debug', use_vt=False, path=None, ignore_retcode=False, chroot_fallback=False, keep_env='http_proxy,https_proxy,no_proxy')

	
New in version 2015.5.0.

Run cmd.run_all within a container

Note

While the command is run within the container, it is initiated from the
host. Therefore, the PID in the return dict is from the host, not from
the container.

Warning

Many shell builtins do not work, failing with stderr similar to the
following:

lxc_container: No such file or directory - failed to exec 'command'

The same error will be displayed in stderr if the command being run
does not exist.

	name
	Name of the container in which to run the command

	path
	path to the container parent
default: /var/lib/lxc (system default)

New in version 2015.8.0.

	cmd
	Command to run

	no_startFalse
	If the container is not running, don't start it

	preserve_stateTrue
	After running the command, return the container to its previous state

	stdinNone
	Standard input to be used for the command

	output_logleveldebug
	Level at which to log the output from the command. Set to quiet to
suppress logging.

	use_vtFalse
	Use SaltStack's utils.vt to stream output to console
output=all.

	keep_envhttp_proxy,https_proxy,no_proxy
	A list of env vars to preserve. May be passed as commma-delimited list.

	chroot_fallback
	if the container is not running, try to run the command using chroot
default: false

CLI Example:

salt myminion lxc.run_all mycontainer 'ip addr show'

	
salt.modules.lxc.run_stderr(name, cmd, no_start=False, preserve_state=True, stdin=None, python_shell=True, output_loglevel='debug', use_vt=False, path=None, ignore_retcode=False, chroot_fallback=False, keep_env='http_proxy,https_proxy,no_proxy')

	
New in version 2015.5.0.

Run cmd.run_stderr within a container

Warning

Many shell builtins do not work, failing with stderr similar to the
following:

lxc_container: No such file or directory - failed to exec 'command'

The same error will be displayed if the command being run does not
exist.

	name
	Name of the container in which to run the command

	cmd
	Command to run

	path
	path to the container parent
default: /var/lib/lxc (system default)

New in version 2015.8.0.

	no_startFalse
	If the container is not running, don't start it

	preserve_stateTrue
	After running the command, return the container to its previous state

	stdinNone
	Standard input to be used for the command

	output_logleveldebug
	Level at which to log the output from the command. Set to quiet to
suppress logging.

	use_vtFalse
	Use SaltStack's utils.vt to stream output to console
output=all.

	keep_envhttp_proxy,https_proxy,no_proxy
	A list of env vars to preserve. May be passed as commma-delimited list.

	chroot_fallback
	if the container is not running, try to run the command using chroot
default: false

CLI Example:

salt myminion lxc.run_stderr mycontainer 'ip addr show'

	
salt.modules.lxc.run_stdout(name, cmd, no_start=False, preserve_state=True, stdin=None, python_shell=True, output_loglevel='debug', use_vt=False, path=None, ignore_retcode=False, chroot_fallback=False, keep_env='http_proxy,https_proxy,no_proxy')

	
New in version 2015.5.0.

Run cmd.run_stdout within a container

Warning

Many shell builtins do not work, failing with stderr similar to the
following:

lxc_container: No such file or directory - failed to exec 'command'

The same error will be displayed in stderr if the command being run
does not exist. If no output is returned using this function, try using
lxc.run_stderr or
lxc.run_all.

	name
	Name of the container in which to run the command

	cmd
	Command to run

	path
	path to the container parent
default: /var/lib/lxc (system default)

New in version 2015.8.0.

	no_startFalse
	If the container is not running, don't start it

	preserve_stateTrue
	After running the command, return the container to its previous state

	stdinNone
	Standard input to be used for the command

	output_logleveldebug
	Level at which to log the output from the command. Set to quiet to
suppress logging.

	use_vtFalse
	Use SaltStack's utils.vt to stream output to console
output=all.

	keep_envhttp_proxy,https_proxy,no_proxy
	A list of env vars to preserve. May be passed as commma-delimited list.

	chroot_fallback
	if the container is not running, try to run the command using chroot
default: false

CLI Example:

salt myminion lxc.run_stdout mycontainer 'ip addr show'

	
salt.modules.lxc.running_systemd(name, cache=True, path=None)

	Determine if systemD is running

	path
	path to the container parent

New in version 2015.8.0.

CLI Example:

salt '*' lxc.running_systemd ubuntu

	
salt.modules.lxc.search_lxc_bridge()

	Search the first bridge which is potentially available as LXC bridge

CLI Example:

salt '*' lxc.search_lxc_bridge

	
salt.modules.lxc.search_lxc_bridges()

	Search which bridges are potentially available as LXC bridges

CLI Example:

salt '*' lxc.search_lxc_bridges

	
salt.modules.lxc.set_dns(name, dnsservers=None, searchdomains=None, path=None)

	
Changed in version 2015.5.0: The dnsservers and searchdomains parameters can now be passed
as a comma-separated list.

Update /etc/resolv.confo

path

path to the container parent
default: /var/lib/lxc (system default)

New in version 2015.8.0.

CLI Example:

salt myminion lxc.set_dns ubuntu "['8.8.8.8', '4.4.4.4']"

	
salt.modules.lxc.set_parameter(name, parameter, value, path=None)

	Set the value of a cgroup parameter for a container.

	path
	path to the container parent directory
default: /var/lib/lxc (system)

New in version 2015.8.0.

CLI Example:

salt '*' lxc.set_parameter name parameter value

	
salt.modules.lxc.set_pass(name, users, password, encrypted=True, path=None)

	This function is an alias of set_password.

Changed in version 2015.5.0: Function renamed from set_pass to set_password. Additionally,
this function now supports (and defaults to using) a password hash
instead of a plaintext password.

Set the password of one or more system users inside containers

	users
	Comma-separated list (or python list) of users to change password

	password
	Password to set for the specified user(s)

	encryptedTrue
	If true, password must be a password hash. Set to False to set
a plaintext password (not recommended).

New in version 2015.5.0.

	path
	path to the container parent directory
default: /var/lib/lxc (system)

New in version 2015.8.0.

CLI Example:

salt '*' lxc.set_pass container-name root '6uJ2uAyLU$KoI67t8As/0fXtJOPcHKGXmUpcoYUcVR2K6x93walnShTCQvjRwq25yIkiCBOqgbfdKQSFnAo28/ek6716vEV1'
salt '*' lxc.set_pass container-name root foo encrypted=False

	
salt.modules.lxc.set_password(name, users, password, encrypted=True, path=None)

	
Changed in version 2015.5.0: Function renamed from set_pass to set_password. Additionally,
this function now supports (and defaults to using) a password hash
instead of a plaintext password.

Set the password of one or more system users inside containers

	users
	Comma-separated list (or python list) of users to change password

	password
	Password to set for the specified user(s)

	encryptedTrue
	If true, password must be a password hash. Set to False to set
a plaintext password (not recommended).

New in version 2015.5.0.

	path
	path to the container parent directory
default: /var/lib/lxc (system)

New in version 2015.8.0.

CLI Example:

salt '*' lxc.set_pass container-name root '6uJ2uAyLU$KoI67t8As/0fXtJOPcHKGXmUpcoYUcVR2K6x93walnShTCQvjRwq25yIkiCBOqgbfdKQSFnAo28/ek6716vEV1'
salt '*' lxc.set_pass container-name root foo encrypted=False

	
salt.modules.lxc.start(name, **kwargs)

	Start the named container

	path
	path to the container parent directory
default: /var/lib/lxc (system)

New in version 2015.8.0.

	lxc_config
	path to a lxc config file
config file will be guessed from container name otherwise

New in version 2015.8.0.

	use_vt
	run the command through VT

New in version 2015.8.0.

CLI Example:

salt myminion lxc.start name

	
salt.modules.lxc.state(name, path=None)

	Returns the state of a container.

	path
	path to the container parent directory (default: /var/lib/lxc)

New in version 2015.8.0.

CLI Example:

salt '*' lxc.state name

	
salt.modules.lxc.stop(name, kill=False, path=None, use_vt=None)

	Stop the named container

	path
	path to the container parent directory
default: /var/lib/lxc (system)

New in version 2015.8.0.

	kill: False
	Do not wait for the container to stop, kill all tasks in the container.
Older LXC versions will stop containers like this irrespective of this
argument.

Changed in version 2015.5.0: Default value changed to False

	use_vt
	run the command through VT

New in version 2015.8.0.

CLI Example:

salt myminion lxc.stop name

	
salt.modules.lxc.systemd_running_state(name, path=None)

	Get the operational state of a systemd based container

	path
	path to the container parent
default: /var/lib/lxc (system default)

New in version 2015.8.0.

CLI Example:

salt myminion lxc.systemd_running_state ubuntu

	
salt.modules.lxc.templates()

	
New in version 2015.5.0.

List the available LXC template scripts installed on the minion

CLI Examples:

salt myminion lxc.templates

	
salt.modules.lxc.test_bare_started_state(name, path=None)

	Test if a non systemd container is fully started
For now, it consists only to test if the container is attachable

	path
	path to the container parent
default: /var/lib/lxc (system default)

New in version 2015.8.0.

CLI Example:

salt myminion lxc.test_bare_started_state ubuntu

	
salt.modules.lxc.test_sd_started_state(name, path=None)

	Test if a systemd container is fully started

	path
	path to the container parent
default: /var/lib/lxc (system default)

New in version 2015.8.0.

CLI Example:

salt myminion lxc.test_sd_started_state ubuntu

	
salt.modules.lxc.unfreeze(name, path=None, use_vt=None)

	Unfreeze the named container.

	path
	path to the container parent directory
default: /var/lib/lxc (system)

New in version 2015.8.0.

	use_vt
	run the command through VT

New in version 2015.8.0.

CLI Example:

salt '*' lxc.unfreeze name

	
salt.modules.lxc.update_lxc_conf(name, lxc_conf, lxc_conf_unset, path=None)

	Edit LXC configuration options

	path
	path to the container parent
default: /var/lib/lxc (system default)

New in version 2015.8.0.

CLI Example:

salt myminion lxc.update_lxc_conf ubuntu \
 lxc_conf="[{'network.ipv4.ip':'10.0.3.5'}]" \
 lxc_conf_unset="['lxc.utsname']"

	
salt.modules.lxc.version()

	Return the actual lxc client version

New in version 2015.8.0.

CLI Example:

salt '*' lxc.version

	
salt.modules.lxc.wait_started(name, path=None, timeout=300)

	Check that the system has fully inited

This is actually very important for systemD based containers

see https://github.com/saltstack/salt/issues/23847

	path
	path to the container parent
default: /var/lib/lxc (system default)

New in version 2015.8.0.

CLI Example:

salt myminion lxc.wait_started ubuntu

	
salt.modules.lxc.write_conf(conf_file, conf)

	Write out an LXC configuration file

This is normally only used internally. The format of the data structure
must match that which is returned from lxc.read_conf(), with
out_format set to commented.

An example might look like:

[
 {'lxc.utsname': '$CONTAINER_NAME'},
 '# This is a commented line\n',
 '\n',
 {'lxc.mount': '$CONTAINER_FSTAB'},
 {'lxc.rootfs': {'comment': 'This is another test',
 'value': 'This is another test'}},
 '\n',
 {'lxc.network.type': 'veth'},
 {'lxc.network.flags': 'up'},
 {'lxc.network.link': 'br0'},
 {'lxc.network.mac': '$CONTAINER_MACADDR'},
 {'lxc.network.ipv4': '$CONTAINER_IPADDR'},
 {'lxc.network.name': '$CONTAINER_DEVICENAME'},
]

CLI Example:

salt 'minion' lxc.write_conf /etc/lxc/mycontainer.conf \
 out_format=commented

salt.modules.lxd

Module for managing the LXD daemon and its containers.

New in version 2019.2.0.

LXD(1) [https://linuxcontainers.org/lxd/] is a container "hypervisor". This execution module provides
several functions to help manage it and its containers.

Note

	pylxd(2) [https://github.com/lxc/pylxd/blob/master/doc/source/installation.rst] version >=2.2.5 is required to let this work,
currently only available via pip.

To install on Ubuntu:

$ apt-get install libssl-dev python-pip
$ pip install -U pylxd

	you need lxd installed on the minion
for the init() and version() methods.

	for the config_get() and config_get() methods
you need to have lxd-client installed.

	maintainer:

	René Jochum <rene@jochums.at>

	maturity:

	new

	depends:

	python-pylxd

	platform:

	Linux

	
salt.modules.lxd.authenticate(remote_addr, password, cert, key, verify_cert=True)

	Authenticate with a remote LXDaemon.

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if you
provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443

	password :
	The password of the remote.

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

CLI Example:

salt '*' lxd.authenticate https://srv01:8443 <yourpass> ~/.config/lxc/client.crt ~/.config/lxc/client.key false

See the requests-docs [http://docs.python-requests.org/en/master/user/advanced/#ssl-cert-verification] for the SSL stuff.

	
salt.modules.lxd.config_get(key)

	Get an LXD daemon config option

	key :
	The key of the config value to retrieve

CLI Examples:

salt '*' lxd.config_get core.https_address

	
salt.modules.lxd.config_set(key, value)

	Set an LXD daemon config option

CLI Examples:

To listen on IPv4 and IPv6 port 8443,
you can omit the :8443 its the default:

salt '*' lxd.config_set core.https_address [::]:8443

To set the server trust password:

salt '*' lxd.config_set core.trust_password blah

	
salt.modules.lxd.container_config_delete(name, config_key, remote_addr=None, cert=None, key=None, verify_cert=True)

	Delete a container config value

	name :
	Name of the container

	config_key :
	The config key to delete

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

	
salt.modules.lxd.container_config_get(name, config_key, remote_addr=None, cert=None, key=None, verify_cert=True)

	Get a container config value

	name :
	Name of the container

	config_key :
	The config key to retrieve

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

	
salt.modules.lxd.container_config_set(name, config_key, config_value, remote_addr=None, cert=None, key=None, verify_cert=True)

	Set a container config value

	name :
	Name of the container

	config_key :
	The config key to set

	config_value :
	The config value to set

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

	
salt.modules.lxd.container_create(name, source, profiles=None, config=None, devices=None, architecture='x86_64', ephemeral=False, wait=True, remote_addr=None, cert=None, key=None, verify_cert=True, _raw=False)

	Create a container

	name :
	The name of the container

	source :
	
	Can be either a string containing an image alias:
	"xenial/amd64"

	or an dict with type "image" with alias:
	
	{"type": "image",
	"alias": "xenial/amd64"}

	or image with "fingerprint":
	
	{"type": "image",
	"fingerprint": "SHA-256"}

	or image with "properties":
	
	{"type": "image",
	
	"properties": {
	"os": "ubuntu",
"release": "14.04",
"architecture": "x86_64"}}

	or none:
	{"type": "none"}

	or copy:
	
	{"type": "copy",
	"source": "my-old-container"}

	profiles['default']
	List of profiles to apply on this container

	config :
	A config dict or None (None = unset).

	Can also be a list:
	
	[{'key': 'boot.autostart', 'value': 1},
	{'key': 'security.privileged', 'value': '1'}]

	devices :
	A device dict or None (None = unset).

	architecture'x86_64'
	
	Can be one of the following:
	
	unknown

	i686

	x86_64

	armv7l

	aarch64

	ppc

	ppc64

	ppc64le

	s390x

	ephemeralFalse
	Destroy this container after stop?

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

	_rawFalse
	Return the raw pyxld object or a dict?

CLI Examples:

salt '*' lxd.container_create test xenial/amd64

See also the rest-api-docs [https://github.com/lxc/lxd/blob/master/doc/rest-api.md#post-1].

	
salt.modules.lxd.container_delete(name, remote_addr=None, cert=None, key=None, verify_cert=True)

	Delete a container

	name :
	Name of the container to delete

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

	
salt.modules.lxd.container_device_add(name, device_name, device_type='disk', remote_addr=None, cert=None, key=None, verify_cert=True, **kwargs)

	Add a container device

	name :
	Name of the container

	device_name :
	The device name to add

	device_type :
	Type of the device

	** kwargs :
	Additional device args

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

	
salt.modules.lxd.container_device_delete(name, device_name, remote_addr=None, cert=None, key=None, verify_cert=True)

	Delete a container device

	name :
	Name of the container

	device_name :
	The device name to delete

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

	
salt.modules.lxd.container_device_get(name, device_name, remote_addr=None, cert=None, key=None, verify_cert=True)

	Get a container device

	name :
	Name of the container

	device_name :
	The device name to retrieve

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

	
salt.modules.lxd.container_execute(name, cmd, remote_addr=None, cert=None, key=None, verify_cert=True)

	Execute a command list on a container.

	name :
	Name of the container

	cmd :
	Command to be executed (as a list)

	Example :
	'["ls", "-l"]'

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

CLI Example:

salt '*' lxd.container_execute <container name> '["ls", "-l"]'

	
salt.modules.lxd.container_file_get(name, src, dst, overwrite=False, mode=None, uid=None, gid=None, remote_addr=None, cert=None, key=None, verify_cert=True)

	Get a file from a container

	name :
	Name of the container

	src :
	The source file or directory

	dst :
	The destination file or directory

	mode :
	Set file mode to octal number

	uid :
	Set file uid (owner)

	gid :
	Set file gid (group)

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

	
salt.modules.lxd.container_file_put(name, src, dst, recursive=False, overwrite=False, mode=None, uid=None, gid=None, saltenv='base', remote_addr=None, cert=None, key=None, verify_cert=True)

	Put a file into a container

	name :
	Name of the container

	src :
	The source file or directory

	dst :
	The destination file or directory

	recursive :
	Decent into src directory

	overwrite :
	Replace destination if it exists

	mode :
	Set file mode to octal number

	uid :
	Set file uid (owner)

	gid :
	Set file gid (group)

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

CLI Example:

salt '*' lxd.container_file_put <container name> /var/tmp/foo /var/tmp/

	
salt.modules.lxd.container_freeze(name, remote_addr=None, cert=None, key=None, verify_cert=True)

	Freeze a container

	name :
	Name of the container to freeze

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

	
salt.modules.lxd.container_get(name=None, remote_addr=None, cert=None, key=None, verify_cert=True, _raw=False)

	Gets a container from the LXD

	name :
	The name of the container to get.

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

	_raw :
	Return the pylxd object, this is internal and by states in use.

	
salt.modules.lxd.container_list(list_names=False, remote_addr=None, cert=None, key=None, verify_cert=True)

	Lists containers

	list_namesFalse
	Only return a list of names when True

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

CLI Examples:

Full dict with all available information:

salt '*' lxd.container_list

For a list of names:

salt '*' lxd.container_list true

See also container-attributes [https://github.com/lxc/pylxd/blob/master/doc/source/containers.rst#container-attributes].

	
salt.modules.lxd.container_migrate(name, stop_and_start=False, remote_addr=None, cert=None, key=None, verify_cert=True, src_remote_addr=None, src_cert=None, src_key=None, src_verify_cert=None)

	Migrate a container.

If the container is running, it either must be shut down
first (use stop_and_start=True) or criu must be installed
on the source and destination machines.

For this operation both certs need to be authenticated,
use lxd.authenticate <salt.modules.lxd.authenticate
to authenticate your cert(s).

	name :
	Name of the container to migrate

	stop_and_start :
	Stop the container on the source and start it on dest

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

CLI Example:

Authorize
salt '*' lxd.authenticate https://srv01:8443 <yourpass> ~/.config/lxc/client.crt ~/.config/lxc/client.key false
salt '*' lxd.authenticate https://srv02:8443 <yourpass> ~/.config/lxc/client.crt ~/.config/lxc/client.key false

Migrate phpmyadmin from srv01 to srv02
salt '*' lxd.container_migrate phpmyadmin stop_and_start=true remote_addr=https://srv02:8443 cert=~/.config/lxc/client.crt key=~/.config/lxc/client.key verify_cert=False src_remote_addr=https://srv01:8443

	
salt.modules.lxd.container_rename(name, newname, remote_addr=None, cert=None, key=None, verify_cert=True)

	Rename a container

	name :
	Name of the container to Rename

	newname :
	The new name of the container

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

	
salt.modules.lxd.container_restart(name, remote_addr=None, cert=None, key=None, verify_cert=True)

	Restart a container

	name :
	Name of the container to restart

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

	
salt.modules.lxd.container_start(name, remote_addr=None, cert=None, key=None, verify_cert=True)

	Start a container

	name :
	Name of the container to start

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

	
salt.modules.lxd.container_state(name=None, remote_addr=None, cert=None, key=None, verify_cert=True)

	Get container state

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

	
salt.modules.lxd.container_stop(name, timeout=30, force=True, remote_addr=None, cert=None, key=None, verify_cert=True)

	Stop a container

	name :
	Name of the container to stop

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

	
salt.modules.lxd.container_unfreeze(name, remote_addr=None, cert=None, key=None, verify_cert=True)

	Unfreeze a container

	name :
	Name of the container to unfreeze

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

	
salt.modules.lxd.image_alias_add(image, alias, description='', remote_addr=None, cert=None, key=None, verify_cert=True)

	Create an alias on the given image

	image :
	An image alias, a fingerprint or a image object

	alias :
	The alias to add

	description :
	Description of the alias

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

CLI Examples:

salt '*' lxd.image_alias_add xenial/amd64 x "Short version of xenial/amd64"

	
salt.modules.lxd.image_alias_delete(image, alias, remote_addr=None, cert=None, key=None, verify_cert=True)

	Delete an alias (this is currently not restricted to the image)

	image :
	An image alias, a fingerprint or a image object

	alias :
	The alias to delete

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

CLI Examples:

salt '*' lxd.image_alias_add xenial/amd64 x "Short version of xenial/amd64"

	
salt.modules.lxd.image_copy_lxd(source, src_remote_addr, src_cert, src_key, src_verify_cert, remote_addr, cert, key, verify_cert=True, aliases=None, public=None, auto_update=None, _raw=False)

	Copy an image from another LXD instance

	source :
	An alias or a fingerprint of the source.

	src_remote_addr :
	An URL to the source remote daemon

	Examples:
	https://mysourceserver.lan:8443

	src_cert :
	PEM Formatted SSL Certificate for the source

	Examples:
	~/.config/lxc/client.crt

	src_key :
	PEM Formatted SSL Key for the source

	Examples:
	~/.config/lxc/client.key

	src_verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

	remote_addr :
	Address of the destination daemon

	Examples:
	https://mydestserver.lan:8443

	cert :
	PEM Formatted SSL Certificate for the destination

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key for the destination

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

	aliases[]
	List of aliases to append to the copied image

	publicNone
	Make this image public available, None = copy source

	auto_updateNone
	Wherever to auto-update from the original source, None = copy source

	_rawFalse
	Return the raw pylxd object or a dict of the destination image?

CLI Examples:

salt '*' lxd.image_copy_lxd xenial/amd64 https://srv01:8443 ~/.config/lxc/client.crt ~/.config/lxc/client.key false https://srv02:8443 ~/.config/lxc/client.crt ~/.config/lxc/client.key false aliases="['xenial/amd64']"

	
salt.modules.lxd.image_delete(image, remote_addr=None, cert=None, key=None, verify_cert=True)

	Delete an image by an alias or fingerprint

	name :
	The alias or fingerprint of the image to delete,
can be a obj for the states.

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

CLI Examples:

salt '*' lxd.image_delete xenial/amd64

	
salt.modules.lxd.image_from_file(filename, remote_addr=None, cert=None, key=None, verify_cert=True, aliases=None, public=False, saltenv='base', _raw=False)

	Create an image from a file

	filename :
	The filename of the rootfs

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

	aliases[]
	List of aliases to append to the copied image

	publicFalse
	Make this image public available

	saltenvbase
	The saltenv to use for salt:// copies

	_rawFalse
	Return the raw pylxd object or a dict of the image?

CLI Examples:

salt '*' lxd.image_from_file salt://lxd/files/busybox.tar.xz aliases=["busybox-amd64"]

	
salt.modules.lxd.image_from_simplestreams(server, alias, remote_addr=None, cert=None, key=None, verify_cert=True, aliases=None, public=False, auto_update=False, _raw=False)

	Create an image from simplestreams

	server :
	Simplestreams server URI

	alias :
	The alias of the image to retrieve

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

	aliases[]
	List of aliases to append to the copied image

	publicFalse
	Make this image public available

	auto_updateFalse
	Should LXD auto update that image?

	_rawFalse
	Return the raw pylxd object or a dict of the image?

CLI Examples:

salt '*' lxd.image_from_simplestreams "https://cloud-images.ubuntu.com/releases" "trusty/amd64" aliases='["t", "trusty/amd64"]' auto_update=True

	
salt.modules.lxd.image_from_url(url, remote_addr=None, cert=None, key=None, verify_cert=True, aliases=None, public=False, auto_update=False, _raw=False)

	Create an image from an url

	url :
	The URL from where to download the image

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

	aliases[]
	List of aliases to append to the copied image

	publicFalse
	Make this image public available

	auto_updateFalse
	Should LXD auto update that image?

	_rawFalse
	Return the raw pylxd object or a dict of the image?

CLI Examples:

salt '*' lxd.image_from_url https://dl.stgraber.org/lxd aliases='["busybox-amd64"]'

	
salt.modules.lxd.image_get(fingerprint, remote_addr=None, cert=None, key=None, verify_cert=True, _raw=False)

	Get an image by its fingerprint

	fingerprint :
	The fingerprint of the image to retrieve

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

	_rawFalse
	Return the raw pylxd object or a dict of it?

CLI Examples:

salt '*' lxd.image_get <fingerprint>

	
salt.modules.lxd.image_get_by_alias(alias, remote_addr=None, cert=None, key=None, verify_cert=True, _raw=False)

	Get an image by an alias

	alias :
	The alias of the image to retrieve

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

	_rawFalse
	Return the raw pylxd object or a dict of it?

CLI Examples:

salt '*' lxd.image_get_by_alias xenial/amd64

	
salt.modules.lxd.image_list(list_aliases=False, remote_addr=None, cert=None, key=None, verify_cert=True)

	Lists all images from the LXD.

list_aliases :

Return a dict with the fingerprint as key and
a list of aliases as value instead.

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

CLI Examples:

salt '*' lxd.image_list true --out=json
salt '*' lxd.image_list --out=json

	
salt.modules.lxd.init(storage_backend='dir', trust_password=None, network_address=None, network_port=None, storage_create_device=None, storage_create_loop=None, storage_pool=None)

	Calls lxd init --auto -- opts

	storage_backend :
	Storage backend to use (zfs or dir, default: dir)

	trust_password :
	Password required to add new clients

	network_addressNone
	Address to bind LXD to (default: none)

	network_portNone
	Port to bind LXD to (Default: 8443)

	storage_create_deviceNone
	Setup device based storage using this DEVICE

	storage_create_loopNone
	Setup loop based storage with this SIZE in GB

	storage_poolNone
	Storage pool to use or create

CLI Examples:

To listen on all IPv4/IPv6 Addresses:

salt '*' lxd.init dir PaSsW0rD [::]

To not listen on Network:

salt '*' lxd.init

	
salt.modules.lxd.normalize_input_values(config, devices)

	normalize config input so returns can be put into mongodb, which doesn't like .

This is not meant to be used on the commandline.

CLI Examples:

salt '*' lxd.normalize_input_values config={} devices={}

	
salt.modules.lxd.profile_config_delete(name, config_key, remote_addr=None, cert=None, key=None, verify_cert=True)

	Delete a profile config item.

	name :
	The name of the profile to delete the config item.

	config_key :
	The config key for the value to retrieve.

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

CLI Example:

salt '*' lxd.profile_config_delete autostart boot.autostart.delay

	
salt.modules.lxd.profile_config_get(name, config_key, remote_addr=None, cert=None, key=None, verify_cert=True)

	Get a profile config item.

	name :
	The name of the profile to get the config item from.

	config_key :
	The key for the item to retrieve.

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

CLI Example:

salt '*' lxd.profile_config_get autostart boot.autostart

	
salt.modules.lxd.profile_config_set(name, config_key, config_value, remote_addr=None, cert=None, key=None, verify_cert=True)

	Set a profile config item.

	name :
	The name of the profile to set the config item to.

	config_key :
	The items key.

	config_value :
	Its items value.

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

CLI Example:

salt '*' lxd.profile_config_set autostart boot.autostart 0

	
salt.modules.lxd.profile_create(name, config=None, devices=None, description=None, remote_addr=None, cert=None, key=None, verify_cert=True)

	Creates a profile.

	name :
	The name of the profile to get.

	config :
	A config dict or None (None = unset).

	Can also be a list:
	
	[{'key': 'boot.autostart', 'value': 1},
	{'key': 'security.privileged', 'value': '1'}]

	devices :
	A device dict or None (None = unset).

	description :
	A description string or None (None = unset).

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

CLI Examples:

salt '*' lxd.profile_create autostart config="{boot.autostart: 1, boot.autostart.delay: 2, boot.autostart.priority: 1}"
salt '*' lxd.profile_create shared_mounts devices="{shared_mount: {type: 'disk', source: '/home/shared', path: '/home/shared'}}"

See the lxd-docs [https://github.com/lxc/lxd/blob/master/doc/rest-api.md#post-10] for the details about the config and devices dicts.

	
salt.modules.lxd.profile_delete(name, remote_addr=None, cert=None, key=None, verify_cert=True)

	Deletes a profile.

	name :
	The name of the profile to delete.

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

CLI Example:

salt '*' lxd.profile_delete shared_mounts

	
salt.modules.lxd.profile_device_delete(name, device_name, remote_addr=None, cert=None, key=None, verify_cert=True)

	Delete a profile device.

	name :
	The name of the profile to delete the device.

	device_name :
	The name of the device to delete.

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

CLI Example:

salt '*' lxd.profile_device_delete autostart eth1

	
salt.modules.lxd.profile_device_get(name, device_name, remote_addr=None, cert=None, key=None, verify_cert=True)

	Get a profile device.

	name :
	The name of the profile to get the device from.

	device_name :
	The name of the device to retrieve.

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

CLI Example:

salt '*' lxd.profile_device_get default eth0

	
salt.modules.lxd.profile_device_set(name, device_name, device_type='disk', remote_addr=None, cert=None, key=None, verify_cert=True, **kwargs)

	Set a profile device.

	name :
	The name of the profile to set the device to.

	device_name :
	The name of the device to set.

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

CLI Example:

salt '*' lxd.profile_device_set autostart eth1 nic nictype=bridged parent=lxdbr0

	
salt.modules.lxd.profile_get(name, remote_addr=None, cert=None, key=None, verify_cert=True, _raw=False)

	Gets a profile from the LXD

	name :
	The name of the profile to get.

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

	_raw :
	Return the pylxd object, this is internal and by states in use.

CLI Examples:

salt '*' lxd.profile_get autostart

	
salt.modules.lxd.profile_list(list_names=False, remote_addr=None, cert=None, key=None, verify_cert=True)

	Lists all profiles from the LXD.

list_names :

Return a list of names instead of full blown dicts.

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if
you provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

CLI Examples:

salt '*' lxd.profile_list true --out=json
salt '*' lxd.profile_list --out=json

	
salt.modules.lxd.pylxd_client_get(remote_addr=None, cert=None, key=None, verify_cert=True)

	Get an pyxld client, this is not meant to be run over the CLI.

	remote_addr :
	An URL to a remote Server, you also have to give cert and key if you
provide remote_addr and its a TCP Address!

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Wherever to verify the cert, this is by default True
but in the most cases you want to set it off as LXD
normally uses self-signed certificates.

See the requests-docs [http://docs.python-requests.org/en/master/user/advanced/#ssl-cert-verification] for the SSL stuff.

	
salt.modules.lxd.pylxd_save_object(obj)

	
	Saves an object (profile/image/container) and
	translate its execpetion on failure

	obj :
	The object to save

This is an internal method, no CLI Example.

	
salt.modules.lxd.pylxd_version()

	Returns the actual pylxd version.

CLI Example:

salt '*' lxd.pylxd_version

	
salt.modules.lxd.snapshots_all(container, remote_addr=None, cert=None, key=None, verify_cert=True)

	Get all snapshots for a container

	container :
	The name of the container to get.

	remote_addr :
	An URL to a remote server. The 'cert' and 'key' fields must also be
provided if 'remote_addr' is defined.

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Verify the ssl certificate. Default: True

CLI Examples:

salt '*' lxd.snapshots_all test-container

	
salt.modules.lxd.snapshots_create(container, name=None, remote_addr=None, cert=None, key=None, verify_cert=True)

	Create a snapshot for a container

	container :
	The name of the container to get.

	name :
	The name of the snapshot.

	remote_addr :
	An URL to a remote server. The 'cert' and 'key' fields must also be
provided if 'remote_addr' is defined.

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Verify the ssl certificate. Default: True

CLI Examples:

salt '*' lxd.snapshots_create test-container test-snapshot

	
salt.modules.lxd.snapshots_delete(container, name, remote_addr=None, cert=None, key=None, verify_cert=True)

	Delete a snapshot for a container

	container :
	The name of the container to get.

	name :
	The name of the snapshot.

	remote_addr :
	An URL to a remote server. The 'cert' and 'key' fields must also be
provided if 'remote_addr' is defined.

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Verify the ssl certificate. Default: True

CLI Examples:

salt '*' lxd.snapshots_delete test-container test-snapshot

	
salt.modules.lxd.snapshots_get(container, name, remote_addr=None, cert=None, key=None, verify_cert=True)

	Get information about snapshot for a container

	container :
	The name of the container to get.

	name :
	The name of the snapshot.

	remote_addr :
	An URL to a remote server. The 'cert' and 'key' fields must also be
provided if 'remote_addr' is defined.

	Examples:
	https://myserver.lan:8443
/var/lib/mysocket.sock

	cert :
	PEM Formatted SSL Certificate.

	Examples:
	~/.config/lxc/client.crt

	key :
	PEM Formatted SSL Key.

	Examples:
	~/.config/lxc/client.key

	verify_certTrue
	Verify the ssl certificate. Default: True

CLI Examples:

salt '*' lxd.snapshots_get test-container test-snapshot

	
salt.modules.lxd.sync_config_devices(obj, newconfig, newdevices, test=False)

	Syncs the given config and devices with the object
(a profile or a container)
returns a changes dict with all changes made.

	obj :
	The object to sync with / or just test with.

	newconfig:
	The new config to check with the obj.

	newdevices:
	The new devices to check with the obj.

	test:
	Wherever to not change anything and give "Would change" message.

	
salt.modules.lxd.version()

	Returns the actual lxd version.

CLI Example:

salt '*' lxd.version

salt.modules.mac_assistive

This module allows you to manage assistive access on macOS minions with 10.9+

New in version 2016.3.0.

salt '*' assistive.install /usr/bin/osascript

	
class salt.modules.mac_assistive.TccDB(path=None)

	
	
disable(app_id)

	

	
enable(app_id)

	

	
enabled(app_id)

	

	
install(app_id, enable=True)

	

	
installed(app_id)

	

	
remove(app_id)

	

	
salt.modules.mac_assistive.enable_(app_id, enabled=True)

	Enable or disable an existing assistive access application.

	app_id
	The bundle ID or command to set assistive access status.

	enabled
	Sets enabled or disabled status. Default is True.

CLI Example:

salt '*' assistive.enable /usr/bin/osascript
salt '*' assistive.enable com.smileonmymac.textexpander enabled=False

	
salt.modules.mac_assistive.enabled(app_id)

	Check if a bundle ID or command is listed in assistive access and
enabled.

	app_id
	The bundle ID or command to retrieve assistive access status.

CLI Example:

salt '*' assistive.enabled /usr/bin/osascript
salt '*' assistive.enabled com.smileonmymac.textexpander

	
salt.modules.mac_assistive.install(app_id, enable=True, tries=3, wait=10)

	Install a bundle ID or command as being allowed to use
assistive access.

	app_id
	The bundle ID or command to install for assistive access.

	enabled
	Sets enabled or disabled status. Default is True.

	tries
	How many times to try and write to a read-only tcc. Default is True.

	wait
	Number of seconds to wait between tries. Default is 10.

CLI Example:

salt '*' assistive.install /usr/bin/osascript
salt '*' assistive.install com.smileonmymac.textexpander

	
salt.modules.mac_assistive.installed(app_id)

	Check if a bundle ID or command is listed in assistive access.
This will not check to see if it's enabled.

	app_id
	The bundle ID or command to check installed status.

CLI Example:

salt '*' assistive.installed /usr/bin/osascript
salt '*' assistive.installed com.smileonmymac.textexpander

	
salt.modules.mac_assistive.remove(app_id)

	Remove a bundle ID or command as being allowed to use assistive access.

	app_id
	The bundle ID or command to remove from assistive access list.

CLI Example:

salt '*' assistive.remove /usr/bin/osascript
salt '*' assistive.remove com.smileonmymac.textexpander

salt.modules.mac_brew_pkg

Homebrew for macOS

It is recommended for the salt-minion to have the HOMEBREW_PREFIX
environment variable set.

This will ensure that Salt uses the correct path for the brew binary.

Typically, this is set to /usr/local for Intel Macs and /opt/homebrew
for Apple Silicon Macs.

Important

If you feel that Salt should be using this module to manage packages on a
minion, and it is using a different module (or gives an error similar to
'pkg.install' is not available), see here.

	
salt.modules.mac_brew_pkg.available_version(*names, **kwargs)

	This function is an alias of latest_version.

Return the latest version of the named package available for upgrade or
installation

Currently chooses stable versions, falling back to devel if that does not
exist.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3>

	
salt.modules.mac_brew_pkg.hold(name=None, pkgs=None, sources=None, **kwargs)

	Set package in 'hold' state, meaning it will not be upgraded.

New in version 3001.

	name
	The name of the package, e.g., 'tmux'

CLI Example:

salt '*' pkg.hold <package name>

	pkgs
	A list of packages to hold. Must be passed as a python list.

CLI Example:

salt '*' pkg.hold pkgs='["foo", "bar"]'

	
salt.modules.mac_brew_pkg.homebrew_prefix()

	Returns the full path to the homebrew prefix.

CLI Example:

salt '*' pkg.homebrew_prefix

	
salt.modules.mac_brew_pkg.info_installed(*names, **kwargs)

	Return the information of the named package(s) installed on the system.

New in version 2016.3.1.

	names
	The names of the packages for which to return information.

CLI Example:

salt '*' pkg.info_installed <package1>
salt '*' pkg.info_installed <package1> <package2> <package3> ...

	
salt.modules.mac_brew_pkg.install(name=None, pkgs=None, taps=None, options=None, **kwargs)

	Install the passed package(s) with brew install

	name
	The name of the formula to be installed. Note that this parameter is
ignored if "pkgs" is passed.

CLI Example:

salt '*' pkg.install <package name>

	taps
	Unofficial GitHub repos to use when updating and installing formulas.

CLI Example:

salt '*' pkg.install <package name> tap='<tap>'
salt '*' pkg.install zlib taps='homebrew/dupes'
salt '*' pkg.install php54 taps='["josegonzalez/php", "homebrew/dupes"]'

	options
	Options to pass to brew. Only applies to initial install. Due to how brew
works, modifying chosen options requires a full uninstall followed by a
fresh install. Note that if "pkgs" is used, all options will be passed
to all packages. Unrecognized options for a package will be silently
ignored by brew.

CLI Example:

salt '*' pkg.install <package name> tap='<tap>'
salt '*' pkg.install php54 taps='["josegonzalez/php", "homebrew/dupes"]' options='["--with-fpm"]'

Multiple Package Installation Options:

	pkgs
	A list of formulas to install. Must be passed as a python list.

CLI Example:

salt '*' pkg.install pkgs='["foo","bar"]'

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.install 'package package package'

	
salt.modules.mac_brew_pkg.latest_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation

Currently chooses stable versions, falling back to devel if that does not
exist.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3>

	
salt.modules.mac_brew_pkg.list_pkgs(versions_as_list=False, **kwargs)

	List the packages currently installed in a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

	
salt.modules.mac_brew_pkg.list_upgrades(refresh=True, include_casks=False, **kwargs)

	Check whether or not an upgrade is available for all packages

CLI Example:

salt '*' pkg.list_upgrades

	
salt.modules.mac_brew_pkg.pin(name=None, pkgs=None, sources=None, **kwargs)

	Set package in 'hold' state, meaning it will not be upgraded.

New in version 3001.

	name
	The name of the package, e.g., 'tmux'

CLI Example:

salt '*' pkg.hold <package name>

	pkgs
	A list of packages to hold. Must be passed as a python list.

CLI Example:

salt '*' pkg.hold pkgs='["foo", "bar"]'

	
salt.modules.mac_brew_pkg.refresh_db(**kwargs)

	Update the homebrew package repository.

CLI Example:

salt '*' pkg.refresh_db

	
salt.modules.mac_brew_pkg.remove(name=None, pkgs=None, **kwargs)

	Removes packages with brew uninstall.

	name
	The name of the package to be deleted.

Multiple Package Options:

	pkgs
	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.mac_brew_pkg.unhold(name=None, pkgs=None, sources=None, **kwargs)

	Set package current in 'hold' state to install state,
meaning it will be upgraded.

New in version 3001.

	name
	
The name of the package, e.g., 'tmux'

CLI Example:

salt '*' pkg.unhold <package name>

	pkgs
	A list of packages to unhold. Must be passed as a python list.

CLI Example:

salt '*' pkg.unhold pkgs='["foo", "bar"]'

	
salt.modules.mac_brew_pkg.unpin(name=None, pkgs=None, sources=None, **kwargs)

	Set package current in 'hold' state to install state,
meaning it will be upgraded.

New in version 3001.

	name
	
The name of the package, e.g., 'tmux'

CLI Example:

salt '*' pkg.unhold <package name>

	pkgs
	A list of packages to unhold. Must be passed as a python list.

CLI Example:

salt '*' pkg.unhold pkgs='["foo", "bar"]'

	
salt.modules.mac_brew_pkg.upgrade(refresh=True, **kwargs)

	Upgrade outdated, unpinned brews.

	refresh
	Fetch the newest version of Homebrew and all formulae from GitHub before installing.

Returns a dictionary containing the changes:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade

	
salt.modules.mac_brew_pkg.upgrade_available(pkg, **kwargs)

	Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pkg.upgrade_available <package name>

	
salt.modules.mac_brew_pkg.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3>

salt.modules.mac_desktop

macOS implementations of various commands in the "desktop" interface

	
salt.modules.mac_desktop.get_output_volume()

	Get the output volume (range 0 to 100)

CLI Example:

salt '*' desktop.get_output_volume

	
salt.modules.mac_desktop.lock()

	Lock the desktop session

CLI Example:

salt '*' desktop.lock

	
salt.modules.mac_desktop.say(*words)

	Say some words.

	words
	The words to execute the say command with.

CLI Example:

salt '*' desktop.say <word0> <word1> ... <wordN>

	
salt.modules.mac_desktop.screensaver()

	Launch the screensaver.

CLI Example:

salt '*' desktop.screensaver

	
salt.modules.mac_desktop.set_output_volume(volume)

	Set the volume of sound.

	volume
	The level of volume. Can range from 0 to 100.

CLI Example:

salt '*' desktop.set_output_volume <volume>

salt.modules.mac_group

Manage groups on Mac OS 10.7+

	
salt.modules.mac_group.add(name, gid=None, **kwargs)

	
Changed in version 3006.0.

Add the specified group

	name
	Name of the new group

	gid
	Use GID for the new group

CLI Example:

salt '*' group.add foo 3456

	
salt.modules.mac_group.adduser(group, name)

	Add a user in the group.

CLI Example:

salt '*' group.adduser foo bar

Verifies if a valid username 'bar' as a member of an existing group 'foo',
if not then adds it.

	
salt.modules.mac_group.chgid(name, gid)

	Change the gid for a named group

CLI Example:

salt '*' group.chgid foo 4376

	
salt.modules.mac_group.delete(name)

	Remove the named group

CLI Example:

salt '*' group.delete foo

	
salt.modules.mac_group.deluser(group, name)

	Remove a user from the group

New in version 2016.3.0.

CLI Example:

salt '*' group.deluser foo bar

Removes a member user 'bar' from a group 'foo'. If group is not present
then returns True.

	
salt.modules.mac_group.getent(refresh=False)

	Return info on all groups

CLI Example:

salt '*' group.getent

	
salt.modules.mac_group.info(name)

	Return information about a group

CLI Example:

salt '*' group.info foo

	
salt.modules.mac_group.members(name, members_list)

	Replaces members of the group with a provided list.

New in version 2016.3.0.

CLI Example:

salt '*' group.members foo 'user1,user2,user3,...'

Replaces a membership list for a local group 'foo'.

salt.modules.mac_keychain

Install certificates into the keychain on Mac OS

New in version 2016.3.0.

	
salt.modules.mac_keychain.get_default_keychain(user=None, domain='user')

	Get the default keychain

	user
	The user to check the default keychain of

	domain
	The domain to use valid values are user|system|common|dynamic, the default is user

CLI Example:

salt '*' keychain.get_default_keychain

	
salt.modules.mac_keychain.get_friendly_name(cert, password, legacy=False)

	Get the friendly name of the given certificate

	cert
	The certificate to install

	password
	The password for the certificate being installed formatted in the way
described for openssl command in the PASS PHRASE ARGUMENTS section

Note: The password given here will show up as plaintext in the returned job
info.

	legacy
	Assume legacy format for certificate.

CLI Example:

salt '*' keychain.get_friendly_name /tmp/test.p12 test123

salt '*' keychain.get_friendly_name /tmp/test.p12 test123 legacy=True

	
salt.modules.mac_keychain.get_hash(name, password=None)

	Returns the hash of a certificate in the keychain.

	name
	The name of the certificate (which you can get from keychain.get_friendly_name) or the
location of a p12 file.

	password
	The password that is used in the certificate. Only required if your passing a p12 file.
Note: This will be outputted to logs

CLI Example:

salt '*' keychain.get_hash /tmp/test.p12 test123

	
salt.modules.mac_keychain.install(cert, password, keychain='/Library/Keychains/System.keychain', allow_any=False, keychain_password=None)

	Install a certificate

	cert
	The certificate to install

	password
	The password for the certificate being installed formatted in the way
described for openssl command in the PASS PHRASE ARGUMENTS section.

Note: The password given here will show up as plaintext in the job returned
info.

	keychain
	The keychain to install the certificate to, this defaults to
/Library/Keychains/System.keychain

	allow_any
	Allow any application to access the imported certificate without warning

	keychain_password
	If your keychain is likely to be locked pass the password and it will be unlocked
before running the import

Note: The password given here will show up as plaintext in the returned job
info.

CLI Example:

salt '*' keychain.install test.p12 test123

	
salt.modules.mac_keychain.list_certs(keychain='/Library/Keychains/System.keychain')

	List all of the installed certificates

	keychain
	The keychain to install the certificate to, this defaults to
/Library/Keychains/System.keychain

CLI Example:

salt '*' keychain.list_certs

	
salt.modules.mac_keychain.set_default_keychain(keychain, domain='user', user=None)

	Set the default keychain

	keychain
	The location of the keychain to set as default

	domain
	The domain to use valid values are user|system|common|dynamic, the default is user

	user
	The user to set the default keychain as

CLI Example:

salt '*' keychain.set_keychain /Users/fred/Library/Keychains/login.keychain

	
salt.modules.mac_keychain.uninstall(cert_name, keychain='/Library/Keychains/System.keychain', keychain_password=None)

	Uninstall a certificate from a keychain

	cert_name
	The name of the certificate to remove

	keychain
	The keychain to install the certificate to, this defaults to
/Library/Keychains/System.keychain

	keychain_password
	If your keychain is likely to be locked pass the password and it will be unlocked
before running the import

Note: The password given here will show up as plaintext in the returned job
info.

CLI Example:

salt '*' keychain.install test.p12 test123

	
salt.modules.mac_keychain.unlock_keychain(keychain, password)

	Unlock the given keychain with the password

	keychain
	The keychain to unlock

	password
	The password to use to unlock the keychain.

Note: The password given here will show up as plaintext in the returned job
info.

CLI Example:

salt '*' keychain.unlock_keychain /tmp/test.p12 test123

salt.modules.mac_pkgutil

Installer support for macOS.

Installer is the native .pkg/.mpkg package manager for macOS.

	
salt.modules.mac_pkgutil.forget(package_id)

	
New in version 2016.3.0.

Remove the receipt data about the specified package. Does not remove files.

Warning

DO NOT use this command to fix broken package design

	Parameters:

	package_id (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the package to forget

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' pkgutil.forget com.apple.pkg.gcc4.2Leo

	
salt.modules.mac_pkgutil.install(source, package_id)

	Install a .pkg from an URI or an absolute path.

	Parameters:

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to a package.

	package_id (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The package ID

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' pkgutil.install source=/vagrant/build_essentials.pkg package_id=com.apple.pkg.gcc4.2Leo

	
salt.modules.mac_pkgutil.is_installed(package_id)

	Returns whether a given package id is installed.

	Returns:

	True if installed, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' pkgutil.is_installed com.apple.pkg.gcc4.2Leo

	
salt.modules.mac_pkgutil.list_()

	List the installed packages.

	Returns:

	A list of installed packages

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' pkgutil.list

salt.modules.mac_portspkg

Support for MacPorts under macOS.

This module has some caveats.

1. Updating the database of available ports is quite resource-intensive.
However, refresh=True is the default for all operations that need an
up-to-date copy of available ports. Consider refresh=False when you are
sure no db update is needed.

2. In some cases MacPorts doesn't always realize when another copy of itself
is running and will gleefully tromp all over the available ports database.
This makes MacPorts behave in undefined ways until a fresh complete
copy is retrieved.

Because of 1 and 2 it is possible to get the salt-minion into a state where
salt mac-machine pkg./something/ won't want to return. Use

salt-run jobs.active

on the master to check for potentially long-running calls to port.

Finally, ports database updates are always handled with port selfupdate
as opposed to port sync. This makes sense in the MacPorts user community
but may confuse experienced Linux admins as Linux package managers
don't upgrade the packaging software when doing a package database update.
In other words salt mac-machine pkg.refresh_db is more like
apt-get update; apt-get upgrade dpkg apt-get than simply apt-get update.

	
salt.modules.mac_portspkg.available_version(*names, **kwargs)

	This function is an alias of latest_version.

Return the latest version of the named package available for upgrade or
installation

Options:

	refresh
	Update ports with port selfupdate

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3>

	
salt.modules.mac_portspkg.install(name=None, refresh=False, pkgs=None, **kwargs)

	Install the passed package(s) with port install

	name
	The name of the formula to be installed. Note that this parameter is
ignored if "pkgs" is passed.

CLI Example:

salt '*' pkg.install <package name>

	version
	Specify a version to pkg to install. Ignored if pkgs is specified.

CLI Example:

salt '*' pkg.install <package name>
salt '*' pkg.install git-core version='1.8.5.5'

	variant
	Specify a variant to pkg to install. Ignored if pkgs is specified.

CLI Example:

salt '*' pkg.install <package name>
salt '*' pkg.install git-core version='1.8.5.5' variant='+credential_osxkeychain+doc+pcre'

Multiple Package Installation Options:

	pkgs
	A list of formulas to install. Must be passed as a python list.

CLI Example:

salt '*' pkg.install pkgs='["foo","bar"]'
salt '*' pkg.install pkgs='["foo@1.2","bar"]'
salt '*' pkg.install pkgs='["foo@1.2+ssl","bar@2.3"]'

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.install 'package package package'

	
salt.modules.mac_portspkg.latest_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation

Options:

	refresh
	Update ports with port selfupdate

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3>

	
salt.modules.mac_portspkg.list_pkgs(versions_as_list=False, **kwargs)

	List the packages currently installed in a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

	
salt.modules.mac_portspkg.list_upgrades(refresh=True, **kwargs)

	Check whether or not an upgrade is available for all packages

Options:

	refresh
	Update ports with port selfupdate

CLI Example:

salt '*' pkg.list_upgrades

	
salt.modules.mac_portspkg.refresh_db(**kwargs)

	Update ports with port selfupdate

CLI Example:

salt mac pkg.refresh_db

	
salt.modules.mac_portspkg.remove(name=None, pkgs=None, **kwargs)

	Removes packages with port uninstall.

	name
	The name of the package to be deleted.

Multiple Package Options:

	pkgs
	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.mac_portspkg.upgrade(refresh=True, **kwargs)

	Run a full upgrade using MacPorts 'port upgrade outdated'

Options:

	refresh
	Update ports with port selfupdate

Returns a dictionary containing the changes:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade

	
salt.modules.mac_portspkg.upgrade_available(pkg, refresh=True, **kwargs)

	Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pkg.upgrade_available <package name>

	
salt.modules.mac_portspkg.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3>

salt.modules.mac_power

Module for editing power settings on macOS

New in version 2016.3.0.

	
salt.modules.mac_power.get_computer_sleep()

	Display the amount of idle time until the computer sleeps.

	Returns:

	A string representing the sleep settings for the computer

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' power.get_computer_sleep

	
salt.modules.mac_power.get_display_sleep()

	Display the amount of idle time until the display sleeps.

	Returns:

	A string representing the sleep settings for the displey

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' power.get_display_sleep

	
salt.modules.mac_power.get_harddisk_sleep()

	Display the amount of idle time until the hard disk sleeps.

	Returns:

	A string representing the sleep settings for the hard disk

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' power.get_harddisk_sleep

	
salt.modules.mac_power.get_restart_freeze()

	Displays whether 'restart on freeze' is on or off if supported

	Returns:

	A string value representing the "restart on freeze" settings

	Return type:

	string

CLI Example:

salt '*' power.get_restart_freeze

	
salt.modules.mac_power.get_restart_power_failure()

	Displays whether 'restart on power failure' is on or off if supported

	Returns:

	A string value representing the "restart on power failure" settings

	Return type:

	string

CLI Example:

salt '*' power.get_restart_power_failure

	
salt.modules.mac_power.get_sleep()

	Displays the amount of idle time until the machine sleeps. Settings for
Computer, Display, and Hard Disk are displayed.

	Returns:

	A dictionary containing the sleep status for Computer, Display, and
Hard Disk

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' power.get_sleep

	
salt.modules.mac_power.get_sleep_on_power_button()

	Displays whether 'allow power button to sleep computer' is on or off if
supported

	Returns:

	A string value representing the "allow power button to sleep
computer" settings

	Return type:

	string

CLI Example:

salt '*' power.get_sleep_on_power_button

	
salt.modules.mac_power.get_wake_on_modem()

	Displays whether 'wake on modem' is on or off if supported

	Returns:

	A string value representing the "wake on modem" settings

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' power.get_wake_on_modem

	
salt.modules.mac_power.get_wake_on_network()

	Displays whether 'wake on network' is on or off if supported

	Returns:

	A string value representing the "wake on network" settings

	Return type:

	string

CLI Example:

salt '*' power.get_wake_on_network

	
salt.modules.mac_power.set_computer_sleep(minutes)

	Set the amount of idle time until the computer sleeps. Pass "Never" of "Off"
to never sleep.

	Parameters:

	minutes -- Can be an integer between 1 and 180 or "Never" or "Off"

	Ptype:

	int, str

	Returns:

	True if successful, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' power.set_computer_sleep 120
salt '*' power.set_computer_sleep off

	
salt.modules.mac_power.set_display_sleep(minutes)

	Set the amount of idle time until the display sleeps. Pass "Never" of "Off"
to never sleep.

	Parameters:

	minutes -- Can be an integer between 1 and 180 or "Never" or "Off"

	Ptype:

	int, str

	Returns:

	True if successful, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' power.set_display_sleep 120
salt '*' power.set_display_sleep off

	
salt.modules.mac_power.set_harddisk_sleep(minutes)

	Set the amount of idle time until the harddisk sleeps. Pass "Never" of "Off"
to never sleep.

	Parameters:

	minutes -- Can be an integer between 1 and 180 or "Never" or "Off"

	Ptype:

	int, str

	Returns:

	True if successful, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' power.set_harddisk_sleep 120
salt '*' power.set_harddisk_sleep off

	
salt.modules.mac_power.set_restart_freeze(enabled)

	Specifies whether the server restarts automatically after a system freeze.
This setting doesn't seem to be editable. The command completes successfully
but the setting isn't actually updated. This is probably a macOS. The
functions remains in case they ever fix the bug.

	Parameters:

	enabled (bool [https://docs.python.org/3/library/functions.html#bool]) -- True to enable, False to disable. "On" and "Off" are
also acceptable values. Additionally you can pass 1 and 0 to represent
True and False respectively

	Returns:

	True if successful, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' power.set_restart_freeze True

	
salt.modules.mac_power.set_restart_power_failure(enabled)

	Set whether or not the computer will automatically restart after a power
failure.

	Parameters:

	enabled (bool [https://docs.python.org/3/library/functions.html#bool]) -- True to enable, False to disable. "On" and "Off" are
also acceptable values. Additionally you can pass 1 and 0 to represent
True and False respectively

	Returns:

	True if successful, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' power.set_restart_power_failure True

	
salt.modules.mac_power.set_sleep(minutes)

	Sets the amount of idle time until the machine sleeps. Sets the same value
for Computer, Display, and Hard Disk. Pass "Never" or "Off" for computers
that should never sleep.

	Parameters:

	minutes -- Can be an integer between 1 and 180 or "Never" or "Off"

	Ptype:

	int, str

	Returns:

	True if successful, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' power.set_sleep 120
salt '*' power.set_sleep never

	
salt.modules.mac_power.set_sleep_on_power_button(enabled)

	Set whether or not the power button can sleep the computer.

	Parameters:

	enabled (bool [https://docs.python.org/3/library/functions.html#bool]) -- True to enable, False to disable. "On" and "Off" are
also acceptable values. Additionally you can pass 1 and 0 to represent
True and False respectively

	Returns:

	True if successful, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' power.set_sleep_on_power_button True

	
salt.modules.mac_power.set_wake_on_modem(enabled)

	Set whether or not the computer will wake from sleep when modem activity is
detected.

	Parameters:

	enabled (bool [https://docs.python.org/3/library/functions.html#bool]) -- True to enable, False to disable. "On" and "Off" are
also acceptable values. Additionally you can pass 1 and 0 to represent
True and False respectively

	Returns:

	True if successful, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' power.set_wake_on_modem True

	
salt.modules.mac_power.set_wake_on_network(enabled)

	Set whether or not the computer will wake from sleep when network activity
is detected.

	Parameters:

	enabled (bool [https://docs.python.org/3/library/functions.html#bool]) -- True to enable, False to disable. "On" and "Off" are
also acceptable values. Additionally you can pass 1 and 0 to represent
True and False respectively

	Returns:

	True if successful, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' power.set_wake_on_network True

salt.modules.mac_service

The service module for macOS

New in version 2016.3.0.

This module has support for services in the following locations.

/System/Library/LaunchDaemons/
/System/Library/LaunchAgents/
/Library/LaunchDaemons/
/Library/LaunchAgents/

As of version "2019.2.0" support for user-specific services were added.
/Users/foo/Library/LaunchAgents/

Note

As of the 2019.2.0 release, if a service is located in a LaunchAgent
path and a runas user is NOT specified, the current console user will
be used to properly interact with the service.

Note

As of the 3002 release, if a service name of salt-minion is passed this
module will convert it over to it's macOS equivalent name, in this case
to com.saltstack.salt.minion. This is true for salt-master
salt-api, and salt-syndic as well.

	
salt.modules.mac_service.available(name)

	Check that the given service is available.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service

	Returns:

	True if the service is available, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.available com.openssh.sshd

	
salt.modules.mac_service.disable(name, runas=None)

	Disable a launchd service. Raises an error if the service fails to be
disabled

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Service label, file name, or full path

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- User to run launchctl commands

	Returns:

	True if successful or if the service is already disabled

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.disable org.cups.cupsd

	
salt.modules.mac_service.disabled(name, runas=None, domain='system')

	Check if the specified service is not enabled. This is the opposite of
service.enabled

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name to look up

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- User to run launchctl commands

	domain (str [https://docs.python.org/3/library/stdtypes.html#str]) -- domain to check for disabled services. Default is system.

	Returns:

	True if the specified service is NOT enabled, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.disabled org.cups.cupsd

	
salt.modules.mac_service.enable(name, runas=None)

	Enable a launchd service. Raises an error if the service fails to be enabled

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Service label, file name, or full path

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- User to run launchctl commands

	Returns:

	True if successful or if the service is already enabled

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.enable org.cups.cupsd

	
salt.modules.mac_service.enabled(name, runas=None)

	Check if the specified service is enabled (not disabled, capable of being
loaded/bootstrapped).

Note

Previously this function would see if the service is loaded via
launchctl list to determine if the service is enabled. This was not
an accurate way to do so. The new behavior checks to make sure its not
disabled to determine the status. Please use service.loaded for the
previous behavior.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service to look up.

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- User to run launchctl commands.

	Returns:

	True if the specified service enabled, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.enabled org.cups.cupsd

	
salt.modules.mac_service.get_all(runas=None)

	Return a list of services that are enabled or available. Can be used to
find the name of a service.

	Parameters:

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- User to run launchctl commands

	Returns:

	A list of all the services available or enabled

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' service.get_all

	
salt.modules.mac_service.get_enabled(runas=None)

	Return a list of all services that are enabled. Can be used to find the
name of a service.

	Parameters:

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- User to run launchctl commands

	Returns:

	A list of all the services enabled on the system

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' service.get_enabled

	
salt.modules.mac_service.launchctl(sub_cmd, *args, **kwargs)

	Run a launchctl command and raise an error if it fails

	Parameters:

	
	sub_cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Sub command supplied to launchctl

	args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) -- Tuple containing additional arguments to pass to
launchctl

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Dictionary containing arguments to pass to
cmd.run_all

	return_stdout (bool [https://docs.python.org/3/library/functions.html#bool]) -- A keyword argument. If true return the stdout
of the launchctl command

	Returns:

	True if successful, raise CommandExecutionError if not, or
the stdout of the launchctl command if requested

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' service.launchctl debug org.cups.cupsd

	
salt.modules.mac_service.list_(name=None, runas=None)

	Run launchctl list and return the output

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service to list

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- User to run launchctl commands

	Returns:

	If a name is passed returns information about the named service,
otherwise returns a list of all services and pids

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' service.list
salt '*' service.list org.cups.cupsd

	
salt.modules.mac_service.loaded(name, runas=None)

	Check if the specified service is loaded.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service to look up

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- User to run launchctl commands

	Returns:

	True if the specified service is loaded, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.loaded org.cups.cupsd

	
salt.modules.mac_service.missing(name)

	The inverse of service.available
Check that the given service is not available.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service

	Returns:

	True if the service is not available, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.missing com.openssh.sshd

	
salt.modules.mac_service.restart(name, runas=None)

	Unloads and reloads a launchd service. Raises an error if the service
fails to reload

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Service label, file name, or full path

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- User to run launchctl commands

	Returns:

	True if successful

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.restart org.cups.cupsd

	
salt.modules.mac_service.show(name)

	Show properties of a launchctl service

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Service label, file name, or full path

	Returns:

	The service information if the service is found

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' service.show org.cups.cupsd # service label
salt '*' service.show org.cups.cupsd.plist # file name
salt '*' service.show /System/Library/LaunchDaemons/org.cups.cupsd.plist # full path

	
salt.modules.mac_service.start(name, runas=None)

	Start a launchd service. Raises an error if the service fails to start

Note

To start a service in macOS the service must be enabled first. Use
service.enable to enable the service.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Service label, file name, or full path

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- User to run launchctl commands

	Returns:

	True if successful or if the service is already running

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.start org.cups.cupsd

	
salt.modules.mac_service.status(name, sig=None, runas=None)

	Return the status for a service.

Note

Previously this function would return a PID for a running service with
a PID or 'loaded' for a loaded service without a PID. This was changed
to have better parity with other service modules that return True/False.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Used to find the service from launchctl. Can be the
service Label, file name, or path to the service file. (normally a plist)

	sig (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Find the service with status.pid instead. Note that
name must still be provided.

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- User to run launchctl commands.

	Returns:

	True if running, otherwise False.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' service.status cups

	
salt.modules.mac_service.stop(name, runas=None)

	Stop a launchd service. Raises an error if the service fails to stop

Note

Though service.stop will unload a service in macOS, the service
will start on next boot unless it is disabled. Use service.disable
to disable the service

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Service label, file name, or full path

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- User to run launchctl commands

	Returns:

	True if successful or if the service is already stopped

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.stop org.cups.cupsd

salt.modules.mac_shadow

Manage macOS local directory passwords and policies

New in version 2016.3.0.

Note that it is usually better to apply password policies through the creation
of a configuration profile.

	
salt.modules.mac_shadow.del_password(name)

	Deletes the account password

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user name of the account

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	CommandExecutionError on user not found or any other unknown error

CLI Example:

salt '*' shadow.del_password username

	
salt.modules.mac_shadow.get_account_created(name)

	Get the date/time the account was created

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The username of the account

	Returns:

	The date/time the account was created (yyyy-mm-dd hh:mm:ss) or 0 if
the value is not defined

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises:

	CommandExecutionError on user not found or any other unknown error

CLI Example:

salt '*' shadow.get_account_created admin

	
salt.modules.mac_shadow.get_change(name)

	Gets the date on which the password expires

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the user account

	Returns:

	The date the password will expire

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises:

	CommandExecutionError on user not found or any other unknown error

CLI Example:

salt '*' shadow.get_change username

	
salt.modules.mac_shadow.get_expire(name)

	Gets the date on which the account expires

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the user account

	Returns:

	The date the account expires

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises:

	CommandExecutionError on user not found or any other unknown error

CLI Example:

salt '*' shadow.get_expire username

	
salt.modules.mac_shadow.get_last_change(name)

	Get the date/time the account was changed

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The username of the account

	Returns:

	The date/time the account was modified (yyyy-mm-dd hh:mm:ss) or 0
if the value is not defined

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises:

	CommandExecutionError on user not found or any other unknown error

CLI Example:

salt '*' shadow.get_last_change admin

	
salt.modules.mac_shadow.get_login_failed_count(name)

	Get the number of failed login attempts

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The username of the account

	Returns:

	The number of failed login attempts. 0 may mean there are no failed
login attempts or the value is not defined

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises:

	CommandExecutionError on user not found or any other unknown error

CLI Example:

salt '*' shadow.get_login_failed_count admin

	
salt.modules.mac_shadow.get_login_failed_last(name)

	Get the date/time of the last failed login attempt

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The username of the account

	Returns:

	The date/time of the last failed login attempt on this account
(yyyy-mm-dd hh:mm:ss) or 0 if the value is not defined

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises:

	CommandExecutionError on user not found or any other unknown error

CLI Example:

salt '*' shadow.get_login_failed_last admin

	
salt.modules.mac_shadow.get_maxdays(name)

	Get the maximum age of the password

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The username of the account

	Returns:

	The maximum age of the password in days

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	Raises:

	CommandExecutionError on user not found or any other unknown error

CLI Example:

salt '*' shadow.get_maxdays admin 90

	
salt.modules.mac_shadow.info(name)

	Return information for the specified user

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The username

	Returns:

	A dictionary containing the user's shadow information

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' shadow.info admin

	
salt.modules.mac_shadow.set_change(name, date)

	Sets the date on which the password expires. The user will be required to
change their password. Format is mm/dd/yyyy

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the user account

	date (date) -- The date the password will expire. Must be in mm/dd/yyyy
format.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	CommandExecutionError on user not found or any other unknown error

CLI Example:

salt '*' shadow.set_change username 09/21/2016

	
salt.modules.mac_shadow.set_expire(name, date)

	Sets the date on which the account expires. The user will not be able to
login after this date. Date format is mm/dd/yyyy

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the user account

	date (datetime) -- The date the account will expire. Format must be
mm/dd/yyyy.

	Returns:

	True if successful, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	CommandExecutionError on user not found or any other unknown error

CLI Example:

salt '*' shadow.set_expire username 07/23/2015

	
salt.modules.mac_shadow.set_inactdays(name, days)

	Set the number if inactive days before the account is locked. Not available
in macOS

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user name

	days (int [https://docs.python.org/3/library/functions.html#int]) -- The number of days

	Returns:

	Will always return False until macOS supports this feature.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' shadow.set_inactdays admin 90

	
salt.modules.mac_shadow.set_maxdays(name, days)

	Set the maximum age of the password in days

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The username of the account

	days (int [https://docs.python.org/3/library/functions.html#int]) -- The maximum age of the account in days

	Returns:

	True if successful, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	CommandExecutionError on user not found or any other unknown error

CLI Example:

salt '*' shadow.set_maxdays admin 90

	
salt.modules.mac_shadow.set_mindays(name, days)

	Set the minimum password age in days. Not available in macOS.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user name

	days (int [https://docs.python.org/3/library/functions.html#int]) -- The number of days

	Returns:

	Will always return False until macOS supports this feature.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' shadow.set_mindays admin 90

	
salt.modules.mac_shadow.set_password(name, password)

	Set the password for a named user (insecure, the password will be in the
process list while the command is running)

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the local user, which is assumed to be in the
local directory service

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The plaintext password to set

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	CommandExecutionError on user not found or any other unknown error

CLI Example:

salt '*' mac_shadow.set_password macuser macpassword

	
salt.modules.mac_shadow.set_warndays(name, days)

	Set the number of days before the password expires that the user will start
to see a warning. Not available in macOS

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user name

	days (int [https://docs.python.org/3/library/functions.html#int]) -- The number of days

	Returns:

	Will always return False until macOS supports this feature.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' shadow.set_warndays admin 90

salt.modules.mac_softwareupdate

Support for the softwareupdate command on MacOS.

	
salt.modules.mac_softwareupdate.download(name)

	Download a named update so that it can be installed later with the
update or update_all functions

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The update to download.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' softwareupdate.download <update name>

	
salt.modules.mac_softwareupdate.download_all(recommended=False, restart=True)

	Download all available updates so that they can be installed later with the
update or update_all functions. It returns a list of updates that
are now downloaded.

	Parameters:

	
	recommended (bool [https://docs.python.org/3/library/functions.html#bool]) -- If set to True, only install the recommended
updates. If set to False (default) all updates are installed.

	restart (bool [https://docs.python.org/3/library/functions.html#bool]) -- Set this to False if you do not want to install updates
that require a restart. Default is True

	Returns:

	A list containing all downloaded updates on the system.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' softwareupdate.download_all

	
salt.modules.mac_softwareupdate.get_catalog()

	
New in version 2016.3.0.

Get the current catalog being used for update lookups. Will return a url if
a custom catalog has been specified. Otherwise the word 'Default' will be
returned

	Returns:

	The catalog being used for update lookups

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' softwareupdates.get_catalog

	
salt.modules.mac_softwareupdate.ignore(name)

	Ignore a specific program update. When an update is ignored the '-' and
version number at the end will be omitted, so "SecUpd2014-001-1.0" becomes
"SecUpd2014-001". It will be removed automatically if present. An update
is successfully ignored when it no longer shows up after list_updates.

	Parameters:

	name -- The name of the update to add to the ignore list.

	Ptype:

	str

	Returns:

	True if successful, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' softwareupdate.ignore <update-name>

	
salt.modules.mac_softwareupdate.list_available(recommended=False, restart=False, shut_down=False)

	List all available updates.

	Parameters:

	
	recommended (bool [https://docs.python.org/3/library/functions.html#bool]) -- Show only recommended updates.

	restart (bool [https://docs.python.org/3/library/functions.html#bool]) -- Show only updates that require a restart.

	Returns:

	Returns a dictionary containing the updates

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' softwareupdate.list_available

	
salt.modules.mac_softwareupdate.list_downloads()

	Return a list of all updates that have been downloaded locally.

	Returns:

	A list of updates that have been downloaded

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' softwareupdate.list_downloads

	
salt.modules.mac_softwareupdate.list_ignored()

	List all updates that have been ignored. Ignored updates are shown
without the '-' and version number at the end, this is how the
softwareupdate command works.

	Returns:

	The list of ignored updates

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' softwareupdate.list_ignored

	
salt.modules.mac_softwareupdate.reset_catalog()

	
New in version 2016.3.0.

Reset the Software Update Catalog to the default.

	Returns:

	True if successful, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' softwareupdates.reset_catalog

	
salt.modules.mac_softwareupdate.reset_ignored()

	Make sure the ignored updates are not ignored anymore,
returns a list of the updates that are no longer ignored.

	Returns:

	True if the list was reset, Otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' softwareupdate.reset_ignored

	
salt.modules.mac_softwareupdate.schedule_enable(enable)

	Enable/disable automatic update scheduling.

	Parameters:

	enable -- True/On/Yes/1 to turn on automatic updates. False/No/Off/0
to turn off automatic updates. If this value is empty, the current
status will be returned.

	Type:

	bool str

	Returns:

	True if scheduling is enabled, False if disabled

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' softwareupdate.schedule_enable on|off

	
salt.modules.mac_softwareupdate.schedule_enabled()

	Check the status of automatic update scheduling.

	Returns:

	True if scheduling is enabled, False if disabled

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' softwareupdate.schedule_enabled

	
salt.modules.mac_softwareupdate.set_catalog(url)

	
New in version 2016.3.0.

Set the Software Update Catalog to the URL specified

	Parameters:

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The url to the update catalog

	Returns:

	True if successful, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' softwareupdates.set_catalog http://swupd.local:8888/index.sucatalog

	
salt.modules.mac_softwareupdate.update(name)

	Install a named update.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the of the update to install.

	Returns:

	True if successfully updated, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' softwareupdate.update <update-name>

	
salt.modules.mac_softwareupdate.update_all(recommended=False, restart=True)

	Install all available updates. Returns a dictionary containing the name
of the update and the status of its installation.

	Parameters:

	
	recommended (bool [https://docs.python.org/3/library/functions.html#bool]) -- If set to True, only install the recommended
updates. If set to False (default) all updates are installed.

	restart (bool [https://docs.python.org/3/library/functions.html#bool]) -- Set this to False if you do not want to install updates
that require a restart. Default is True

	Returns:

	A dictionary containing the updates that were installed and the
status of its installation. If no updates were installed an empty
dictionary is returned.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' softwareupdate.update_all

	
salt.modules.mac_softwareupdate.update_available(name)

	Check whether or not an update is available with a given name.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the update to look for

	Returns:

	True if available, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' softwareupdate.update_available <update-name>
salt '*' softwareupdate.update_available "<update with whitespace>"

salt.modules.mac_sysctl

Module for viewing and modifying sysctl parameters

	
salt.modules.mac_sysctl.assign(name, value)

	Assign a single sysctl parameter for this minion

	name
	The name of the sysctl value to edit.

	value
	The sysctl value to apply.

CLI Example:

salt '*' sysctl.assign net.inet.icmp.icmplim 50

	
salt.modules.mac_sysctl.get(name)

	Return a single sysctl parameter for this minion

	name
	The name of the sysctl value to display.

CLI Example:

salt '*' sysctl.get hw.physmem

	
salt.modules.mac_sysctl.persist(name, value, config='/etc/sysctl.conf', apply_change=False)

	Assign and persist a simple sysctl parameter for this minion

	name
	The name of the sysctl value to edit.

	value
	The sysctl value to apply.

	config
	The location of the sysctl configuration file.

	apply_change
	Default is False; Default behavior only creates or edits
the sysctl.conf file. If apply is set to True, the changes are
applied to the system.

CLI Example:

salt '*' sysctl.persist net.inet.icmp.icmplim 50
salt '*' sysctl.persist coretemp_load NO config=/etc/sysctl.conf

	
salt.modules.mac_sysctl.show(config_file=False)

	Return a list of sysctl parameters for this minion

	config: Pull the data from the system configuration file
	instead of the live data.

CLI Example:

salt '*' sysctl.show

salt.modules.mac_system

System module for sleeping, restarting, and shutting down the system on Mac OS X

New in version 2016.3.0.

Warning

Using this module will enable atrun on the system if it is disabled.

	
salt.modules.mac_system.get_boot_arch()

	Get the kernel architecture setting from com.apple.Boot.plist

	Returns:

	A string value representing the boot architecture setting

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' system.get_boot_arch

	
salt.modules.mac_system.get_computer_name()

	Gets the computer name

	Returns:

	The computer name

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' system.get_computer_name

	
salt.modules.mac_system.get_disable_keyboard_on_lock()

	Get whether or not the keyboard should be disabled when the X Serve enclosure
lock is engaged.

	Returns:

	True if disable keyboard on lock is on, False if off

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.get_disable_keyboard_on_lock

	
salt.modules.mac_system.get_remote_events()

	Displays whether remote apple events are on or off.

	Returns:

	True if remote apple events are on, False if off

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.get_remote_events

	
salt.modules.mac_system.get_remote_login()

	Displays whether remote login (SSH) is on or off.

	Returns:

	True if remote login is on, False if off

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.get_remote_login

	
salt.modules.mac_system.get_restart_delay()

	Get the number of seconds after which the computer will start up after a
power failure.

	Returns:

	A string value representing the number of seconds the system will
delay restart after power loss

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' system.get_restart_delay

	
salt.modules.mac_system.get_startup_disk()

	Displays the current startup disk

	Returns:

	The current startup disk

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' system.get_startup_disk

	
salt.modules.mac_system.get_subnet_name()

	Gets the local subnet name

	Returns:

	The local subnet name

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' system.get_subnet_name

	
salt.modules.mac_system.halt(at_time=None)

	Halt a running system

	Parameters:

	at_time (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Any valid at expression. For example, some valid at
expressions could be:

	noon

	midnight

	fri

	9:00 AM

	2:30 PM tomorrow

	now + 10 minutes

Note

If you pass a time only, with no 'AM/PM' designation, you have to
double quote the parameter on the command line. For example: '"14:00"'

CLI Example:

salt '*' system.halt
salt '*' system.halt 'now + 10 minutes'

	
salt.modules.mac_system.list_startup_disks()

	List all valid startup disks on the system.

	Returns:

	A list of valid startup disks

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' system.list_startup_disks

	
salt.modules.mac_system.restart(at_time=None)

	Restart the system

	Parameters:

	at_time (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Any valid at expression. For example, some valid at
expressions could be:

	noon

	midnight

	fri

	9:00 AM

	2:30 PM tomorrow

	now + 10 minutes

Note

If you pass a time only, with no 'AM/PM' designation, you have to
double quote the parameter on the command line. For example: '"14:00"'

CLI Example:

salt '*' system.restart
salt '*' system.restart '12:00 PM fri'

	
salt.modules.mac_system.set_boot_arch(arch='default')

	Set the kernel to boot in 32 or 64 bit mode on next boot.

Note

When this function fails with the error changes to kernel
architecture failed to save!, then the boot arch is not updated.
This is either an Apple bug, not available on the test system, or a
result of system files being locked down in macOS (SIP Protection).

	Parameters:

	arch (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string representing the desired architecture. If no
value is passed, default is assumed. Valid values include:

	i386

	x86_64

	default

	Returns:

	True if successful, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.set_boot_arch i386

	
salt.modules.mac_system.set_computer_name(name)

	Set the computer name

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The new computer name

	Returns:

	True if successful, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.set_computer_name "Mike's Mac"

	
salt.modules.mac_system.set_disable_keyboard_on_lock(enable)

	Get whether or not the keyboard should be disabled when the X Serve
enclosure lock is engaged.

	Parameters:

	enable (bool [https://docs.python.org/3/library/functions.html#bool]) -- True to enable, False to disable. "On" and "Off" are
also acceptable values. Additionally you can pass 1 and 0 to represent
True and False respectively

	Returns:

	True if successful, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.set_disable_keyboard_on_lock False

	
salt.modules.mac_system.set_remote_events(enable)

	Set whether the server responds to events sent by other computers (such as
AppleScripts)

	Parameters:

	enable (bool [https://docs.python.org/3/library/functions.html#bool]) -- True to enable, False to disable. "On" and "Off" are
also acceptable values. Additionally you can pass 1 and 0 to represent
True and False respectively

	Returns:

	True if successful, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.set_remote_events On

	
salt.modules.mac_system.set_remote_login(enable)

	Set the remote login (SSH) to either on or off.

	Parameters:

	enable (bool [https://docs.python.org/3/library/functions.html#bool]) -- True to enable, False to disable. "On" and "Off" are
also acceptable values. Additionally you can pass 1 and 0 to represent
True and False respectively

	Returns:

	True if successful, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.set_remote_login True

	
salt.modules.mac_system.set_restart_delay(seconds)

	Set the number of seconds after which the computer will start up after a
power failure.

Warning

This command fails with the following error:

Error, IOServiceOpen returned 0x10000003

The setting is not updated. This is an apple bug. It seems like it may
only work on certain versions of Mac Server X. This article explains the
issue in more detail, though it is quite old.

http://lists.apple.com/archives/macos-x-server/2006/Jul/msg00967.html

	Parameters:

	seconds (int [https://docs.python.org/3/library/functions.html#int]) -- The number of seconds. Must be a multiple of 30

	Returns:

	True if successful, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.set_restart_delay 180

	
salt.modules.mac_system.set_startup_disk(path)

	Set the current startup disk to the indicated path. Use
system.list_startup_disks to find valid startup disks on the system.

	Parameters:

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The valid startup disk path

	Returns:

	True if successful, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.set_startup_disk /System/Library/CoreServices

	
salt.modules.mac_system.set_subnet_name(name)

	Set the local subnet name

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The new local subnet name

Note

Spaces are changed to dashes. Other special characters are removed.

	Returns:

	True if successful, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

The following will be set as 'Mikes-Mac'
salt '*' system.set_subnet_name "Mike's Mac"

	
salt.modules.mac_system.shutdown(at_time=None)

	Shutdown the system

	Parameters:

	at_time (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Any valid at expression. For example, some valid at
expressions could be:

	noon

	midnight

	fri

	9:00 AM

	2:30 PM tomorrow

	now + 10 minutes

Note

If you pass a time only, with no 'AM/PM' designation, you have to
double quote the parameter on the command line. For example: '"14:00"'

CLI Example:

salt '*' system.shutdown
salt '*' system.shutdown 'now + 1 hour'

	
salt.modules.mac_system.sleep(at_time=None)

	Sleep the system. If a user is active on the system it will likely fail to
sleep.

	Parameters:

	at_time (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Any valid at expression. For example, some valid at
expressions could be:

	noon

	midnight

	fri

	9:00 AM

	2:30 PM tomorrow

	now + 10 minutes

Note

If you pass a time only, with no 'AM/PM' designation, you have to
double quote the parameter on the command line. For example: '"14:00"'

CLI Example:

salt '*' system.sleep
salt '*' system.sleep '10:00 PM'

salt.modules.mac_timezone

Module for editing date/time settings on macOS

New in version 2016.3.0.

	
salt.modules.mac_timezone.get_date()

	Displays the current date

	Returns:

	the system date

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' timezone.get_date

	
salt.modules.mac_timezone.get_hwclock()

	Get current hardware clock setting (UTC or localtime)

CLI Example:

salt '*' timezone.get_hwclock

	
salt.modules.mac_timezone.get_offset()

	Displays the current time zone offset

	Returns:

	The current time zone offset

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' timezone.get_offset

	
salt.modules.mac_timezone.get_time()

	Get the current system time.

	Returns:

	The current time in 24 hour format

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' timezone.get_time

	
salt.modules.mac_timezone.get_time_server()

	Display the currently set network time server.

	Returns:

	the network time server

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' timezone.get_time_server

	
salt.modules.mac_timezone.get_using_network_time()

	Display whether network time is on or off

	Returns:

	True if network time is on, False if off

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' timezone.get_using_network_time

	
salt.modules.mac_timezone.get_zone()

	Displays the current time zone

	Returns:

	The current time zone

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' timezone.get_zone

	
salt.modules.mac_timezone.get_zonecode()

	Displays the current time zone abbreviated code

	Returns:

	The current time zone code

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' timezone.get_zonecode

	
salt.modules.mac_timezone.list_zones()

	Displays a list of available time zones. Use this list when setting a
time zone using timezone.set_zone

	Returns:

	a list of time zones

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' timezone.list_zones

	
salt.modules.mac_timezone.set_date(date)

	Set the current month, day, and year

	Parameters:

	date (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The date to set. Valid date formats are:

	%m:%d:%y

	%m:%d:%Y

	%m/%d/%y

	%m/%d/%Y

	Returns:

	True if successful, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	SaltInvocationError on Invalid Date format

	Raises:

	CommandExecutionError on failure

CLI Example:

salt '*' timezone.set_date 1/13/2016

	
salt.modules.mac_timezone.set_hwclock(clock)

	Sets the hardware clock to be either UTC or localtime

CLI Example:

salt '*' timezone.set_hwclock UTC

	
salt.modules.mac_timezone.set_time(time)

	Sets the current time. Must be in 24 hour format.

	Parameters:

	time (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The time to set in 24 hour format. The value must be
double quoted. ie: '"17:46"'

	Returns:

	True if successful, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	SaltInvocationError on Invalid Time format

	Raises:

	CommandExecutionError on failure

CLI Example:

salt '*' timezone.set_time '"17:34"'

	
salt.modules.mac_timezone.set_time_server(time_server='time.apple.com')

	Designates a network time server. Enter the IP address or DNS name for the
network time server.

	Parameters:

	time_server -- IP or DNS name of the network time server. If nothing
is passed the time server will be set to the macOS default of
'time.apple.com'

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns:

	True if successful, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	CommandExecutionError on failure

CLI Example:

salt '*' timezone.set_time_server time.acme.com

	
salt.modules.mac_timezone.set_using_network_time(enable)

	Set whether network time is on or off.

	Parameters:

	enable -- True to enable, False to disable. Can also use 'on' or 'off'

	Type:

	str bool

	Returns:

	True if successful, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	CommandExecutionError on failure

CLI Example:

salt '*' timezone.set_using_network_time True

	
salt.modules.mac_timezone.set_zone(time_zone)

	Set the local time zone. Use timezone.list_zones to list valid time_zone
arguments

	Parameters:

	time_zone (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The time zone to apply

	Returns:

	True if successful, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	SaltInvocationError on Invalid Timezone

	Raises:

	CommandExecutionError on failure

CLI Example:

salt '*' timezone.set_zone America/Denver

	
salt.modules.mac_timezone.zone_compare(time_zone)

	Compares the given timezone name with the system timezone name.

	Returns:

	True if they are the same, False if not

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' timezone.zone_compare America/Boise

salt.modules.mac_user

Manage users on Mac OS 10.7+

Important

If you feel that Salt should be using this module to manage users on a
minion, and it is using a different module (or gives an error similar to
'user.info' is not available), see here.

	
salt.modules.mac_user.add(name, uid=None, gid=None, groups=None, home=None, shell=None, fullname=None, createhome=True, **kwargs)

	Add a user to the minion

CLI Example:

salt '*' user.add name <uid> <gid> <groups> <home> <shell>

	
salt.modules.mac_user.chfullname(name, fullname)

	Change the user's Full Name

CLI Example:

salt '*' user.chfullname foo 'Foo Bar'

	
salt.modules.mac_user.chgid(name, gid)

	Change the default group of the user

CLI Example:

salt '*' user.chgid foo 4376

	
salt.modules.mac_user.chgroups(name, groups, append=False)

	Change the groups to which the user belongs. Note that the user's primary
group does not have to be one of the groups passed, membership in the
user's primary group is automatically assumed.

	groups
	Groups to which the user should belong, can be passed either as a
python list or a comma-separated string

	append
	Instead of removing user from groups not included in the groups
parameter, just add user to any groups for which they are not members

CLI Example:

salt '*' user.chgroups foo wheel,root

	
salt.modules.mac_user.chhome(name, home, **kwargs)

	Change the home directory of the user

CLI Example:

salt '*' user.chhome foo /Users/foo

	
salt.modules.mac_user.chshell(name, shell)

	Change the default shell of the user

CLI Example:

salt '*' user.chshell foo /bin/zsh

	
salt.modules.mac_user.chuid(name, uid)

	Change the uid for a named user

CLI Example:

salt '*' user.chuid foo 4376

	
salt.modules.mac_user.delete(name, remove=False, force=False)

	Remove a user from the minion

CLI Example:

salt '*' user.delete name remove=True force=True

	
salt.modules.mac_user.disable_auto_login()

	
New in version 2016.3.0.

Disables auto login on the machine

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' user.disable_auto_login

	
salt.modules.mac_user.enable_auto_login(name, password)

	
New in version 2016.3.0.

Configures the machine to auto login with the specified user

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user account use for auto login

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The password to user for auto login

New in version 2017.7.3.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' user.enable_auto_login stevej

	
salt.modules.mac_user.get_auto_login()

	
New in version 2016.3.0.

Gets the current setting for Auto Login

	Returns:

	If enabled, returns the user name, otherwise returns False

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' user.get_auto_login

	
salt.modules.mac_user.getent(refresh=False)

	Return the list of all info for all users

CLI Example:

salt '*' user.getent

	
salt.modules.mac_user.info(name)

	Return user information

CLI Example:

salt '*' user.info root

	
salt.modules.mac_user.list_groups(name)

	Return a list of groups the named user belongs to.

name

The name of the user for which to list groups. Starting in Salt 2016.11.0,
all groups for the user, including groups beginning with an underscore
will be listed.

Changed in version 2016.11.0.

CLI Example:

salt '*' user.list_groups foo

	
salt.modules.mac_user.list_users()

	Return a list of all users

CLI Example:

salt '*' user.list_users

	
salt.modules.mac_user.primary_group(name)

	Return the primary group of the named user

New in version 2016.3.0.

CLI Example:

salt '*' user.primary_group saltadmin

	
salt.modules.mac_user.rename(name, new_name)

	Change the username for a named user

CLI Example:

salt '*' user.rename name new_name

salt.modules.mac_xattr

This module allows you to manage extended attributes on files or directories

salt '*' xattr.list /path/to/file

	
salt.modules.mac_xattr.clear(path)

	Causes the all attributes on the file/directory to be removed

	Parameters:

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The file(s) to get attributes from

	Returns:

	True if successful, otherwise False

	Raises:

	CommandExecutionError on file not found or any other unknown error

CLI Example:

salt '*' xattr.delete /path/to/file "com.test.attr"

	
salt.modules.mac_xattr.delete(path, attribute)

	Removes the given attribute from the file

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The file(s) to get attributes from

	attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The attribute name to be deleted from the
file/directory

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	CommandExecutionError on file not found, attribute not found, and
any other unknown error

CLI Example:

salt '*' xattr.delete /path/to/file "com.test.attr"

	
salt.modules.mac_xattr.list_(path, **kwargs)

	List all of the extended attributes on the given file/directory

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The file(s) to get attributes from

	hex (bool [https://docs.python.org/3/library/functions.html#bool]) -- Return the values with forced hexadecimal values

	Returns:

	A dictionary containing extended attributes and values for the
given file

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises:

	CommandExecutionError on file not found or any other unknown error

CLI Example:

salt '*' xattr.list /path/to/file
salt '*' xattr.list /path/to/file hex=True

	
salt.modules.mac_xattr.read(path, attribute, **kwargs)

	Read the given attributes on the given file/directory

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The file to get attributes from

	attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The attribute to read

	hex (bool [https://docs.python.org/3/library/functions.html#bool]) -- Return the values with forced hexadecimal values

	Returns:

	A string containing the value of the named attribute

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises:

	CommandExecutionError on file not found, attribute not found, and
any other unknown error

CLI Example:

salt '*' xattr.read /path/to/file com.test.attr
salt '*' xattr.read /path/to/file com.test.attr hex=True

	
salt.modules.mac_xattr.write(path, attribute, value, **kwargs)

	Causes the given attribute name to be assigned the given value

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The file(s) to get attributes from

	attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The attribute name to be written to the file/directory

	value (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The value to assign to the given attribute

	hex (bool [https://docs.python.org/3/library/functions.html#bool]) -- Set the values with forced hexadecimal values

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	CommandExecutionError on file not found or any other unknown error

CLI Example:

salt '*' xattr.write /path/to/file "com.test.attr" "value"

salt.modules.macdefaults

Set defaults on Mac OS

	
salt.modules.macdefaults.delete(domain, key, user=None)

	Delete a default from the system

CLI Example:

salt '*' macdefaults.delete com.apple.CrashReporter DialogType

salt '*' macdefaults.delete NSGlobalDomain ApplePersistence

	domain
	The name of the domain to delete from

	key
	The key of the given domain to delete

	user
	The user to delete the defaults with

	
salt.modules.macdefaults.read(domain, key, user=None)

	Read a default from the system

CLI Example:

salt '*' macdefaults.read com.apple.CrashReporter DialogType

salt '*' macdefaults.read NSGlobalDomain ApplePersistence

	domain
	The name of the domain to read from

	key
	The key of the given domain to read from

	user
	The user to read the defaults as

	
salt.modules.macdefaults.write(domain, key, value, type='string', user=None)

	Write a default to the system

CLI Example:

salt '*' macdefaults.write com.apple.CrashReporter DialogType Server

salt '*' macdefaults.write NSGlobalDomain ApplePersistence True type=bool

	domain
	The name of the domain to write to

	key
	The key of the given domain to write to

	value
	The value to write to the given key

	type
	The type of value to be written, valid types are string, data, int[eger],
float, bool[ean], date, array, array-add, dict, dict-add

	user
	The user to write the defaults to

salt.modules.macpackage

Install pkg, dmg and .app applications on macOS minions.

	
salt.modules.macpackage.get_mpkg_ids(mpkg)

	Attempt to get the package IDs from a mounted .mpkg file

	Parameters:

	mpkg (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The location of the mounted mpkg file

	Returns:

	List of package IDs

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' macpackage.get_mpkg_ids /dev/disk2

	
salt.modules.macpackage.get_pkg_id(pkg)

	Attempt to get the package ID from a .pkg file

	Parameters:

	pkg (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The location of the pkg file

	Returns:

	List of all of the package IDs

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' macpackage.get_pkg_id /tmp/test.pkg

	
salt.modules.macpackage.install(pkg, target='LocalSystem', store=False, allow_untrusted=False)

	Install a pkg file

	Parameters:

	
	pkg (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The package to install

	target (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The target in which to install the package to

	store (bool [https://docs.python.org/3/library/functions.html#bool]) -- Should the package be installed as if it was from the
store?

	allow_untrusted (bool [https://docs.python.org/3/library/functions.html#bool]) -- Allow the installation of untrusted packages?

	Returns:

	A dictionary containing the results of the installation

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' macpackage.install test.pkg

	
salt.modules.macpackage.install_app(app, target='/Applications/')

	Install an app file by moving it into the specified Applications directory

	Parameters:

	
	app (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The location of the .app file

	target (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The target in which to install the package to
Default is ''/Applications/''

	Returns:

	The results of the rsync command

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' macpackage.install_app /tmp/tmp.app /Applications/

	
salt.modules.macpackage.installed_pkgs()

	Return the list of installed packages on the machine

	Returns:

	List of installed packages

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' macpackage.installed_pkgs

	
salt.modules.macpackage.mount(dmg)

	Attempt to mount a dmg file to a temporary location and return the
location of the pkg file inside

	Parameters:

	dmg (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The location of the dmg file to mount

	Returns:

	
	Tuple containing the results of the command along with the mount
	point

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

CLI Example:

salt '*' macpackage.mount /tmp/software.dmg

	
salt.modules.macpackage.uninstall_app(app)

	Uninstall an app file by removing it from the Applications directory

	Parameters:

	app (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The location of the .app file

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' macpackage.uninstall_app /Applications/app.app

	
salt.modules.macpackage.unmount(mountpoint)

	Attempt to unmount a dmg file from a temporary location

	Parameters:

	mountpoint (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The location of the mount point

	Returns:

	The results of the hdutil detach command

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' macpackage.unmount /dev/disk2

salt.modules.makeconf

Support for modifying make.conf under Gentoo

	
salt.modules.makeconf.append_cflags(value)

	Add to or create a new CFLAGS in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.append_cflags '-pipe'

	
salt.modules.makeconf.append_cxxflags(value)

	Add to or create a new CXXFLAGS in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.append_cxxflags '-pipe'

	
salt.modules.makeconf.append_emerge_default_opts(value)

	Add to or create a new EMERGE_DEFAULT_OPTS in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.append_emerge_default_opts '--jobs'

	
salt.modules.makeconf.append_features(value)

	Add to or create a new FEATURES in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.append_features 'webrsync-gpg'

	
salt.modules.makeconf.append_gentoo_mirrors(value)

	Add to or create a new GENTOO_MIRRORS in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.append_gentoo_mirrors 'http://distfiles.gentoo.org'

	
salt.modules.makeconf.append_makeopts(value)

	Add to or create a new MAKEOPTS in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.append_makeopts '-j3'

	
salt.modules.makeconf.append_var(var, value)

	Add to or create a new variable in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.append_var 'LINGUAS' 'en'

	
salt.modules.makeconf.cflags_contains(value)

	Verify if CFLAGS variable contains a value in make.conf

Return True if value is set for var

CLI Example:

salt '*' makeconf.cflags_contains '-pipe'

	
salt.modules.makeconf.chost_contains(value)

	Verify if CHOST variable contains a value in make.conf

Return True if value is set for var

CLI Example:

salt '*' makeconf.chost_contains 'x86_64-pc-linux-gnu'

	
salt.modules.makeconf.cxxflags_contains(value)

	Verify if CXXFLAGS variable contains a value in make.conf

Return True if value is set for var

CLI Example:

salt '*' makeconf.cxxflags_contains '-pipe'

	
salt.modules.makeconf.emerge_default_opts_contains(value)

	Verify if EMERGE_DEFAULT_OPTS variable contains a value in make.conf

Return True if value is set for var

CLI Example:

salt '*' makeconf.emerge_default_opts_contains '--jobs'

	
salt.modules.makeconf.features_contains(value)

	Verify if FEATURES variable contains a value in make.conf

Return True if value is set for var

CLI Example:

salt '*' makeconf.features_contains 'webrsync-gpg'

	
salt.modules.makeconf.gentoo_mirrors_contains(value)

	Verify if GENTOO_MIRRORS variable contains a value in make.conf

Return True if value is set for var

CLI Example:

salt '*' makeconf.gentoo_mirrors_contains 'http://distfiles.gentoo.org'

	
salt.modules.makeconf.get_cflags()

	Get the value of CFLAGS variable in the make.conf

Return the value of the variable or None if the variable is
not in the make.conf

CLI Example:

salt '*' makeconf.get_cflags

	
salt.modules.makeconf.get_chost()

	Get the value of CHOST variable in the make.conf

Return the value of the variable or None if the variable is
not in the make.conf

CLI Example:

salt '*' makeconf.get_chost

	
salt.modules.makeconf.get_cxxflags()

	Get the value of CXXFLAGS variable in the make.conf

Return the value of the variable or None if the variable is
not in the make.conf

CLI Example:

salt '*' makeconf.get_cxxflags

	
salt.modules.makeconf.get_emerge_default_opts()

	Get the value of EMERGE_DEFAULT_OPTS variable in the make.conf

Return the value of the variable or None if the variable is
not in the make.conf

CLI Example:

salt '*' makeconf.get_emerge_default_opts

	
salt.modules.makeconf.get_features()

	Get the value of FEATURES variable in the make.conf

Return the value of the variable or None if the variable is
not in the make.conf

CLI Example:

salt '*' makeconf.get_features

	
salt.modules.makeconf.get_gentoo_mirrors()

	Get the value of GENTOO_MIRRORS variable in the make.conf

Return the value of the variable or None if the variable is
not in the make.conf

CLI Example:

salt '*' makeconf.get_gentoo_mirrors

	
salt.modules.makeconf.get_makeopts()

	Get the value of MAKEOPTS variable in the make.conf

Return the value of the variable or None if the variable is
not in the make.conf

CLI Example:

salt '*' makeconf.get_makeopts

	
salt.modules.makeconf.get_sync()

	Get the value of SYNC variable in the make.conf

Return the value of the variable or None if the variable is
not in the make.conf

CLI Example:

salt '*' makeconf.get_sync

	
salt.modules.makeconf.get_var(var)

	Get the value of a variable in make.conf

Return the value of the variable or None if the variable is not in
make.conf

CLI Example:

salt '*' makeconf.get_var 'LINGUAS'

	
salt.modules.makeconf.makeopts_contains(value)

	Verify if MAKEOPTS variable contains a value in make.conf

Return True if value is set for var

CLI Example:

salt '*' makeconf.makeopts_contains '-j3'

	
salt.modules.makeconf.remove_var(var)

	Remove a variable from the make.conf

Return a dict containing the new value for the variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.remove_var 'LINGUAS'

	
salt.modules.makeconf.set_cflags(value)

	Set the CFLAGS variable

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.set_cflags '-march=native -O2 -pipe'

	
salt.modules.makeconf.set_chost(value)

	Set the CHOST variable

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.set_chost 'x86_64-pc-linux-gnu'

	
salt.modules.makeconf.set_cxxflags(value)

	Set the CXXFLAGS variable

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.set_cxxflags '-march=native -O2 -pipe'

	
salt.modules.makeconf.set_emerge_default_opts(value)

	Set the EMERGE_DEFAULT_OPTS variable

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.set_emerge_default_opts '--jobs'

	
salt.modules.makeconf.set_gentoo_mirrors(value)

	Set the GENTOO_MIRRORS variable

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.set_gentoo_mirrors 'http://distfiles.gentoo.org'

	
salt.modules.makeconf.set_makeopts(value)

	Set the MAKEOPTS variable

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.set_makeopts '-j3'

	
salt.modules.makeconf.set_sync(value)

	Set the SYNC variable

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.set_sync 'rsync://rsync.namerica.gentoo.org/gentoo-portage'

	
salt.modules.makeconf.set_var(var, value)

	Set a variable in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.set_var 'LINGUAS' 'en'

	
salt.modules.makeconf.sync_contains(value)

	Verify if SYNC variable contains a value in make.conf

Return True if value is set for var

CLI Example:

salt '*' makeconf.sync_contains 'rsync://rsync.namerica.gentoo.org/gentoo-portage'

	
salt.modules.makeconf.trim_cflags(value)

	Remove a value from CFLAGS variable in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.trim_cflags '-pipe'

	
salt.modules.makeconf.trim_cxxflags(value)

	Remove a value from CXXFLAGS variable in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.trim_cxxflags '-pipe'

	
salt.modules.makeconf.trim_emerge_default_opts(value)

	Remove a value from EMERGE_DEFAULT_OPTS variable in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.trim_emerge_default_opts '--jobs'

	
salt.modules.makeconf.trim_features(value)

	Remove a value from FEATURES variable in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.trim_features 'webrsync-gpg'

	
salt.modules.makeconf.trim_gentoo_mirrors(value)

	Remove a value from GENTOO_MIRRORS variable in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.trim_gentoo_mirrors 'http://distfiles.gentoo.org'

	
salt.modules.makeconf.trim_makeopts(value)

	Remove a value from MAKEOPTS variable in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.trim_makeopts '-j3'

	
salt.modules.makeconf.trim_var(var, value)

	Remove a value from a variable in the make.conf

Return a dict containing the new value for variable:

{'<variable>': {'old': '<old-value>',
 'new': '<new-value>'}}

CLI Example:

salt '*' makeconf.trim_var 'LINGUAS' 'en'

	
salt.modules.makeconf.var_contains(var, value)

	Verify if variable contains a value in make.conf

Return True if value is set for var

CLI Example:

salt '*' makeconf.var_contains 'LINGUAS' 'en'

salt.modules.mandrill

Mandrill

Send out emails using the Mandrill [https://mandrillapp.com] API [https://mandrillapp.com/api/docs/].

In the minion configuration file, the following block is required:

mandrill:
 key: <API_KEY>

New in version 2018.3.0.

	
salt.modules.mandrill.send(message, asynchronous=False, ip_pool=None, send_at=None, api_url=None, api_version=None, api_key=None)

	Send out the email using the details from the message argument.

	message
	The information on the message to send. This argument must be
sent as dictionary with at fields as specified in the Mandrill API
documentation.

	asynchronous: False
	Enable a background sending mode that is optimized for bulk sending.
In asynchronous mode, messages/send will immediately return a status of
"queued" for every recipient. To handle rejections when sending in asynchronous
mode, set up a webhook for the 'reject' event. Defaults to false for
messages with no more than 10 recipients; messages with more than 10
recipients are always sent asynchronously, regardless of the value of
asynchronous.

	ip_pool
	The name of the dedicated ip pool that should be used to send the
message. If you do not have any dedicated IPs, this parameter has no
effect. If you specify a pool that does not exist, your default pool
will be used instead.

	send_at
	When this message should be sent as a UTC timestamp in
YYYY-MM-DD HH:MM:SS format. If you specify a time in the past,
the message will be sent immediately. An additional fee applies for
scheduled email, and this feature is only available to accounts with a
positive balance.

Note

Fur further details please consult the API documentation [https://mandrillapp.com/api/docs/messages.dart.html].

CLI Example:

salt '*' mandrill.send message="{'subject': 'Hi', 'from_email': 'test@example.com', 'to': [{'email': 'recv@example.com', 'type': 'to'}]}"

message structure example (as YAML for readability):

message:
 text: |
 This is the body of the email.
 This is the second line.
 subject: Email subject
 from_name: Test At Example Dot Com
 from_email: test@example.com
 to:
 - email: recv@example.com
 type: to
 name: Recv At Example Dot Com
 - email: cc@example.com
 type: cc
 name: CC At Example Dot Com
 important: true
 track_clicks: true
 track_opens: true
 attachments:
 - type: text/x-yaml
 name: yaml_file.yml
 content: aV9hbV9zdXBlcl9jdXJpb3VzOiB0cnVl

Output example:

minion:

 comment:
 out:
 |_

 _id:
 c4353540a3c123eca112bbdd704ab6
 email:
 recv@example.com
 reject_reason:
 None
 status:
 sent
 result:
 True

salt.modules.marathon

Module providing a simple management interface to a marathon cluster.

Currently this only works when run through a proxy minion.

New in version 2015.8.2.

	
salt.modules.marathon.app(id)

	Return the current server configuration for the specified app.

CLI Example:

salt marathon-minion-id marathon.app my-app

	
salt.modules.marathon.apps()

	Return a list of the currently installed app ids.

CLI Example:

salt marathon-minion-id marathon.apps

	
salt.modules.marathon.has_app(id)

	Return whether the given app id is currently configured.

CLI Example:

salt marathon-minion-id marathon.has_app my-app

	
salt.modules.marathon.info()

	Return configuration and status information about the marathon instance.

CLI Example:

salt marathon-minion-id marathon.info

	
salt.modules.marathon.restart_app(id, restart=False, force=True)

	Restart the current server configuration for the specified app.

	Parameters:

	
	restart -- Restart the app

	force -- Override the current deployment

CLI Example:

salt marathon-minion-id marathon.restart_app my-app

By default, this will only check if the app exists in marathon. It does
not check if there are any tasks associated with it or if the app is suspended.

salt marathon-minion-id marathon.restart_app my-app true true

The restart option needs to be set to True to actually issue a rolling
restart to marathon.

The force option tells marathon to ignore the current app deployment if
there is one.

	
salt.modules.marathon.rm_app(id)

	Remove the specified app from the server.

CLI Example:

salt marathon-minion-id marathon.rm_app my-app

	
salt.modules.marathon.update_app(id, config)

	Update the specified app with the given configuration.

CLI Example:

salt marathon-minion-id marathon.update_app my-app '<config yaml>'

salt.modules.match

The match module allows for match routines to be run and determine target specs

	
salt.modules.match.compound(tgt, minion_id=None)

	Return True if the minion ID matches the given compound target

	minion_id
	Specify the minion ID to match against the target expression

New in version 2014.7.0.

CLI Example:

salt '*' match.compound 'L@cheese,foo and *'

	
salt.modules.match.data(tgt)

	Return True if the minion matches the given data target

CLI Example:

salt '*' match.data 'spam:eggs'

	
salt.modules.match.filter_by(lookup, tgt_type='compound', minion_id=None, merge=None, merge_lists=False, default='default')

	Return the first match in a dictionary of target patterns

New in version 2014.7.0.

CLI Example:

salt '*' match.filter_by '{foo*: Foo!, bar*: Bar!}' minion_id=bar03

Pillar Example:

Filter the data for the current minion into a variable:
{% set roles = salt['match.filter_by']({
 'web*': ['app', 'caching'],
 'db*': ['db'],
}, minion_id=grains['id'], default='web*') %}

Make the filtered data available to Pillar:
roles: {{ roles | yaml() }}

	
salt.modules.match.glob(tgt, minion_id=None)

	Return True if the minion ID matches the given glob target

	minion_id
	Specify the minion ID to match against the target expression

New in version 2014.7.0.

CLI Example:

salt '*' match.glob '*'

	
salt.modules.match.grain(tgt, delimiter=':')

	Return True if the minion matches the given grain target. The delimiter
argument can be used to specify a different delimiter.

CLI Example:

salt '*' match.grain 'os:Ubuntu'
salt '*' match.grain 'ipv6|2001:db8::ff00:42:8329' delimiter='|'

	delimiter
	Specify an alternate delimiter to use when traversing a nested dict

New in version 2014.7.0.

	delim
	Specify an alternate delimiter to use when traversing a nested dict

New in version 0.16.4.

Deprecated since version 2015.8.0.

	
salt.modules.match.grain_pcre(tgt, delimiter=':')

	Return True if the minion matches the given grain_pcre target. The
delimiter argument can be used to specify a different delimiter.

CLI Example:

salt '*' match.grain_pcre 'os:Fedo.*'
salt '*' match.grain_pcre 'ipv6|2001:.*' delimiter='|'

	delimiter
	Specify an alternate delimiter to use when traversing a nested dict

New in version 2014.7.0.

	delim
	Specify an alternate delimiter to use when traversing a nested dict

New in version 0.16.4.

Deprecated since version 2015.8.0.

	
salt.modules.match.ifelse(*args, tgt_type='compound', minion_id=None, merge=None, merge_lists=False)

	
New in version 3006.0.

Evaluate each pair of arguments up to the last one as a (matcher, value)
tuple, returning value if matched. If none match, returns the last
argument.

The ifelse function is like a multi-level if-else statement. It was
inspired by CFEngine's ifelse function which in turn was inspired by
Oracle's DECODE function. It must have an odd number of arguments (from
1 to N). The last argument is the default value, like the else clause in
standard programming languages. Every pair of arguments before the last one
are evaluated as a pair. If the first one evaluates true then the second one
is returned, as if you had used the first one in a compound match
expression. Boolean values can also be used as the first item in a pair,
as it will be translated to a match that will always match ("*") or never
match ("SALT_IFELSE_MATCH_NOTHING") a target system.

This is essentially another way to express the filter_by functionality
in way that's familiar to CFEngine or Oracle users. Consider using
filter_by unless this function fits your workflow.

CLI Example:

salt '*' match.ifelse 'foo*' 'Foo!' 'bar*' 'Bar!' minion_id=bar03

	
salt.modules.match.ipcidr(tgt)

	Return True if the minion matches the given ipcidr target

CLI Example:

salt '*' match.ipcidr '192.168.44.0/24'

delimiter
Pillar Example:

'172.16.0.0/12':
 - match: ipcidr
 - nodeclass: internal

	
salt.modules.match.list_(tgt, minion_id=None)

	Return True if the minion ID matches the given list target

	minion_id
	Specify the minion ID to match against the target expression

New in version 2014.7.0.

CLI Example:

salt '*' match.list 'server1,server2'

	
salt.modules.match.pcre(tgt, minion_id=None)

	Return True if the minion ID matches the given pcre target

	minion_id
	Specify the minion ID to match against the target expression

New in version 2014.7.0.

CLI Example:

salt '*' match.pcre '.*'

	
salt.modules.match.pillar(tgt, delimiter=':')

	Return True if the minion matches the given pillar target. The
delimiter argument can be used to specify a different delimiter.

CLI Example:

salt '*' match.pillar 'cheese:foo'
salt '*' match.pillar 'clone_url|https://github.com/saltstack/salt.git' delimiter='|'

	delimiter
	Specify an alternate delimiter to use when traversing a nested dict

New in version 2014.7.0.

	delim
	Specify an alternate delimiter to use when traversing a nested dict

New in version 0.16.4.

Deprecated since version 2015.8.0.

	
salt.modules.match.pillar_pcre(tgt, delimiter=':')

	Return True if the minion matches the given pillar_pcre target. The
delimiter argument can be used to specify a different delimiter.

CLI Example:

salt '*' match.pillar_pcre 'cheese:(swiss|american)'
salt '*' match.pillar_pcre 'clone_url|https://github\.com/.*\.git' delimiter='|'

	delimiter
	Specify an alternate delimiter to use when traversing a nested dict

New in version 2014.7.0.

	delim
	Specify an alternate delimiter to use when traversing a nested dict

New in version 0.16.4.

Deprecated since version 2015.8.0.

	
salt.modules.match.search_by(lookup, tgt_type='compound', minion_id=None)

	Search a dictionary of target strings for matching targets

This is the inverse of match.filter_by and allows matching values instead of
matching keys. A minion can be matched by multiple entries.

New in version 2017.7.0.

CLI Example:

salt '*' match.search_by '{web: [node1, node2], db: [node2, node]}'

Pillar Example:

{% set roles = salt.match.search_by({
 'web': ['G@os_family:Debian not nodeX'],
 'db': ['L@node2,node3 and G@datacenter:west'],
 'caching': ['node3', 'node4'],
}) %}

Make the filtered data available to Pillar:
roles: {{ roles | yaml() }}

salt.modules.mattermost

Module for sending messages to Mattermost

New in version 2017.7.0.

	configuration:

	This module can be used by either passing an api_url and hook
directly or by specifying both in a configuration profile in the salt
master/minion config. For example:

mattermost:
 hook: peWcBiMOS9HrZG15peWcBiMOS9HrZG15
 api_url: https://example.com

	
salt.modules.mattermost.post_message(message, channel=None, username=None, api_url=None, hook=None)

	Send a message to a Mattermost channel.

	Parameters:

	
	channel -- The channel name, either will work.

	username -- The username of the poster.

	message -- The message to send to the Mattermost channel.

	api_url -- The Mattermost api url, if not specified in the configuration.

	hook -- The Mattermost hook, if not specified in the configuration.

	Returns:

	Boolean if message was sent successfully.

CLI Example:

salt '*' mattermost.post_message message='Build is done'

salt.modules.mdadm_raid

Salt module to manage RAID arrays with mdadm

	
salt.modules.mdadm_raid.add(name, device)

	Add new device to RAID array.

CLI Example:

salt '*' raid.add /dev/md0 /dev/sda1

	
salt.modules.mdadm_raid.assemble(name, devices, test_mode=False, **kwargs)

	Assemble a RAID device.

CLI Examples:

salt '*' raid.assemble /dev/md0 ['/dev/xvdd', '/dev/xvde']

Note

Adding test_mode=True as an argument will print out the mdadm
command that would have been run.

	name
	The name of the array to assemble.

	devices
	The list of devices comprising the array to assemble.

	kwargs
	Optional arguments to be passed to mdadm.

	returns
	
	test_mode=True:
	Prints out the full command.

	test_mode=False (Default):
	Executes command on the host(s) and prints out the mdadm output.

For more info, read the mdadm manpage.

	
salt.modules.mdadm_raid.create(name, level, devices, metadata='default', test_mode=False, **kwargs)

	Create a RAID device.

Changed in version 2014.7.0.

Warning

Use with CAUTION, as this function can be very destructive if not used
properly!

CLI Examples:

salt '*' raid.create /dev/md0 level=1 chunk=256 devices="['/dev/xvdd', '/dev/xvde']" test_mode=True

Note

Adding test_mode=True as an argument will print out the mdadm
command that would have been run.

	name
	The name of the array to create.

	level
	The RAID level to use when creating the raid.

	devices
	A list of devices used to build the array.

	metadata
	Version of metadata to use when creating the array.

	kwargs
	Optional arguments to be passed to mdadm.

	returns
	
	test_mode=True:
	Prints out the full command.

	test_mode=False (Default):
	Executes command on remote the host(s) and
Prints out the mdadm output.

Note

It takes time to create a RAID array. You can check the progress in
"resync_status:" field of the results from the following command:

salt '*' raid.detail /dev/md0

For more info, read the mdadm(8) manpage

	
salt.modules.mdadm_raid.destroy(device)

	Destroy a RAID device.

WARNING This will zero the superblock of all members of the RAID array..

CLI Example:

salt '*' raid.destroy /dev/md0

	
salt.modules.mdadm_raid.detail(device='/dev/md0')

	Show detail for a specified RAID device

CLI Example:

salt '*' raid.detail '/dev/md0'

	
salt.modules.mdadm_raid.examine(device, quiet=False)

	Show detail for a specified RAID component device

	device
	Device to examine, that is part of the RAID

	quiet
	If the device is not part of the RAID, do not show any error

CLI Example:

salt '*' raid.examine '/dev/sda1'

	
salt.modules.mdadm_raid.list_()

	List the RAID devices.

CLI Example:

salt '*' raid.list

	
salt.modules.mdadm_raid.save_config()

	Save RAID configuration to config file.

Same as:
mdadm --detail --scan >> /etc/mdadm/mdadm.conf

Fixes this issue with Ubuntu
REF: http://askubuntu.com/questions/209702/why-is-my-raid-dev-md1-showing-up-as-dev-md126-is-mdadm-conf-being-ignored

CLI Example:

salt '*' raid.save_config

	
salt.modules.mdadm_raid.stop()

	Shut down all arrays that can be shut down (i.e. are not currently in use).

CLI Example:

salt '*' raid.stop

salt.modules.mdata

Module for managaging metadata in SmartOS Zones

New in version 2016.3.0.

	maintainer:

	Jorge Schrauwen <sjorge@blackdot.be>

	maturity:

	new

	platform:

	smartos

	
salt.modules.mdata.delete_(*keyname)

	Delete metadata

	propstring
	name of property

CLI Example:

salt '*' mdata.get salt:role
salt '*' mdata.get user-script salt:role

	
salt.modules.mdata.get_(*keyname)

	Get metadata

	keynamestring
	name of key

Note

If no keynames are specified, we get all (public) properties

CLI Example:

salt '*' mdata.get salt:role
salt '*' mdata.get user-script salt:role

	
salt.modules.mdata.list_()

	List available metadata

CLI Example:

salt '*' mdata.list

	
salt.modules.mdata.put_(keyname, val)

	Put metadata

	propstring
	name of property

	valstring
	value to set

CLI Example:

salt '*' mdata.list

salt.modules.memcached

Module for Management of Memcached Keys

New in version 2014.1.0.

	
salt.modules.memcached.add(key, value, host='127.0.0.1', port=11211, time=0, min_compress_len=0)

	Add a key to the memcached server, but only if it does not exist. Returns
False if the key already exists.

CLI Example:

salt '*' memcached.add <key> <value>

	
salt.modules.memcached.decr(key, delta=1, host='127.0.0.1', port=11211)

	This function is an alias of decrement.

Decrement the value of a key

CLI Example:

salt '*' memcached.decrement <key>
salt '*' memcached.decrement <key> 2

	
salt.modules.memcached.decrement(key, delta=1, host='127.0.0.1', port=11211)

	Decrement the value of a key

CLI Example:

salt '*' memcached.decrement <key>
salt '*' memcached.decrement <key> 2

	
salt.modules.memcached.delete(key, host='127.0.0.1', port=11211, time=0)

	Delete a key from memcache server

CLI Example:

salt '*' memcached.delete <key>

	
salt.modules.memcached.get(key, host='127.0.0.1', port=11211)

	Retrieve value for a key

CLI Example:

salt '*' memcached.get <key>

	
salt.modules.memcached.incr(key, delta=1, host='127.0.0.1', port=11211)

	This function is an alias of increment.

Increment the value of a key

CLI Example:

salt '*' memcached.increment <key>
salt '*' memcached.increment <key> 2

	
salt.modules.memcached.increment(key, delta=1, host='127.0.0.1', port=11211)

	Increment the value of a key

CLI Example:

salt '*' memcached.increment <key>
salt '*' memcached.increment <key> 2

	
salt.modules.memcached.replace(key, value, host='127.0.0.1', port=11211, time=0, min_compress_len=0)

	Replace a key on the memcached server. This only succeeds if the key
already exists. This is the opposite of memcached.add

CLI Example:

salt '*' memcached.replace <key> <value>

	
salt.modules.memcached.set_(key, value, host='127.0.0.1', port=11211, time=0, min_compress_len=0)

	Set a key on the memcached server, overwriting the value if it exists.

CLI Example:

salt '*' memcached.set <key> <value>

	
salt.modules.memcached.status(host='127.0.0.1', port=11211)

	Get memcached status

CLI Example:

salt '*' memcached.status

salt.modules.mine

The function cache system allows for data to be stored on the master so it can be easily read by other minions

	
salt.modules.mine.delete(fun)

	Remove specific function contents of minion.

	Parameters:

	fun (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the function.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns:

	True on success.

CLI Example:

salt '*' mine.delete 'network.interfaces'

	
salt.modules.mine.flush()

	Remove all mine contents of minion.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns:

	True on success

CLI Example:

salt '*' mine.flush

	
salt.modules.mine.get(tgt, fun, tgt_type='glob', exclude_minion=False)

	Get data from the mine.

	Parameters:

	
	tgt (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Target whose mine data to get.

	fun (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list]) -- Function to get the mine data of. You can specify multiple functions
to retrieve using either a list or a comma-separated string of functions.

	tgt_type (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Default glob. Target type to use with tgt.
See Targeting Minions for more information.
Note that all pillar matches, whether using the compound matching system or
the pillar matching system, will be exact matches, with globbing disabled.

	exclude_minion (bool [https://docs.python.org/3/library/functions.html#bool]) -- Excludes the current minion from the result set.

CLI Example:

salt '*' mine.get '*' network.interfaces
salt '*' mine.get 'os:Fedora' network.interfaces grain
salt '*' mine.get 'G@os:Fedora and S@192.168.5.0/24' network.ipaddrs compound

See also

Retrieving Mine data from Pillar and Orchestrate

This execution module is intended to be executed on minions.
Master-side operations such as Pillar or Orchestrate that require Mine
data should use the Mine Runner module
instead; it can be invoked from a Pillar SLS file using the
saltutil.runner module. For
example:

{% set minion_ips = salt.saltutil.runner('mine.get',
 tgt='*',
 fun='network.ip_addrs',
 tgt_type='glob') %}

	
salt.modules.mine.get_docker(interfaces=None, cidrs=None, with_container_id=False)

	
Changed in version 2017.7.8,2018.3.3: When docker.update_mine is set to False for a given
minion, no mine data will be populated for that minion, and thus none
will be returned for it.

Changed in version 2019.2.0: docker.update_mine now defaults to False

Get all mine data for docker.ps and
run an aggregation routine. The interfaces parameter allows for
specifying the network interfaces from which to select IP addresses. The
cidrs parameter allows for specifying a list of subnets which the IP
address must match.

	with_container_id
	Boolean, to expose container_id in the list of results

New in version 2015.8.2.

CLI Example:

salt '*' mine.get_docker
salt '*' mine.get_docker interfaces='eth0'
salt '*' mine.get_docker interfaces='["eth0", "eth1"]'
salt '*' mine.get_docker cidrs='107.170.147.0/24'
salt '*' mine.get_docker cidrs='["107.170.147.0/24", "172.17.42.0/24"]'
salt '*' mine.get_docker interfaces='["eth0", "eth1"]' cidrs='["107.170.147.0/24", "172.17.42.0/24"]'

	
salt.modules.mine.send(name, *args, **kwargs)

	Send a specific function and its result to the salt mine.
This gets stored in either the local cache, or the salt master's cache.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name of the function to add to the mine.

The following pameters are extracted from kwargs if present:

	Parameters:

	
	mine_function (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the execution_module.function to run
and whose value will be stored in the salt mine. Defaults to name.

	allow_tgt (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Targeting specification for ACL. Specifies which minions
are allowed to access this function. Please note both your master and
minion need to be on, at least, version 3000 for this to work properly.

	allow_tgt_type (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Type of the targeting specification. This value will
be ignored if allow_tgt is not specified. Please note both your
master and minion need to be on, at least, version 3000 for this to work
properly.

Remaining args and kwargs will be passed on to the function to run.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns:

	Whether executing the function and storing the information was successful.

Changed in version 3000: Added allow_tgt- and allow_tgt_type-parameters to specify which
minions are allowed to access this function.
See Targeting Minions for more information about targeting.

CLI Example:

salt '*' mine.send network.ip_addrs interface=eth0
salt '*' mine.send eth0_ip_addrs mine_function=network.ip_addrs interface=eth0
salt '*' mine.send eth0_ip_addrs mine_function=network.ip_addrs interface=eth0 allow_tgt='G@grain:value' allow_tgt_type=compound

	
salt.modules.mine.update(clear=False, mine_functions=None)

	Call the configured functions and send the data back up to the master.
The functions to be called are merged from the master config, pillar and
minion config under the option mine_functions:

mine_functions:
 network.ip_addrs:
 - eth0
 disk.usage: []

This function accepts the following arguments:

	Parameters:

	
	clear (bool [https://docs.python.org/3/library/functions.html#bool]) -- Default: False
Specifies whether updating will clear the existing values (True), or
whether it will update them (False).

	mine_functions (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Update (or clear, see clear) the mine data on these functions only.
This will need to have the structure as defined on
https://docs.saltproject.io/en/latest/topics/mine/index.html#mine-functions

This feature can be used when updating the mine for functions
that require a refresh at different intervals than the rest of
the functions specified under mine_functions in the
minion/master config or pillar.
A potential use would be together with the scheduler, for example:

schedule:
 lldp_mine_update:
 function: mine.update
 kwargs:
 mine_functions:
 net.lldp: []
 hours: 12

In the example above, the mine for net.lldp would be refreshed
every 12 hours, while network.ip_addrs would continue to be updated
as specified in mine_interval.

The function cache will be populated with information from executing these
functions

CLI Example:

salt '*' mine.update

	
salt.modules.mine.valid()

	List valid entries in mine configuration.

CLI Example:

salt '*' mine.valid

salt.modules.minion

Module to provide information about minions

	
salt.modules.minion.kill(timeout=15)

	Kill the salt minion.

	timeout
	int seconds to wait for the minion to die.

If you have a monitor that restarts salt-minion when it dies then this is
a great way to restart after a minion upgrade.

CLI Example:

salt minion[12] minion.kill

minion1:

 killed:
 7874
 retcode:
 0
minion2:

 killed:
 29071
 retcode:
 0

The result of the salt command shows the process ID of the minions and the
results of a kill signal to the minion in as the retcode value: 0
is success, anything else is a failure.

	
salt.modules.minion.list_()

	Return a list of accepted, denied, unaccepted and rejected keys.
This is the same output as salt-key -L

CLI Example:

salt 'master' minion.list

	
salt.modules.minion.restart()

	Kill and restart the salt minion.

The configuration key minion_restart_command is an argv list for the
command to restart the minion. If minion_restart_command is not
specified or empty then the argv of the current process will be used.

if the configuration value minion_restart_command is not set and the
-d (daemonize) argument is missing from argv then the minion
will be killed but will not be restarted and will require the parent
process to perform the restart. This behavior is intended for managed
salt minion processes.

CLI Example:

salt minion[12] minion.restart

minion1:

 comment:
 - Restart using process argv:
 - /home/omniture/install/bin/salt-minion
 - -d
 - -c
 - /home/omniture/install/etc/salt
 killed:
 10070
 restart:

 stderr:
 stdout:
 retcode:
 0
minion2:

 comment:
 - Using configuration minion_restart_command:
 - /home/omniture/install/bin/salt-minion
 - --not-an-option
 - -d
 - -c
 - /home/omniture/install/etc/salt
 - Restart failed
 killed:
 10896
 restart:

 stderr:
 Usage: salt-minion

 salt-minion: error: no such option: --not-an-option
 stdout:
 retcode:
 64

The result of the command shows the process ID of minion1 that is
shutdown (killed) and the results of the restart. If there is a failure
in the restart it will be reflected in a non-zero retcode and possibly
output in the stderr and/or stdout values along with addition
information in the comment field as is demonstrated with minion2.

salt.modules.mod_random

Provides access to randomness generators.

New in version 2014.7.0.

	
salt.modules.mod_random.get_str(length=20, chars=None, lowercase=True, uppercase=True, digits=True, punctuation=True, whitespace=False, printable=False)

	
New in version 2014.7.0.

Changed in version 3004: Changed the default character set used to include symbols and implemented arguments to control the used character set.

Returns a random string of the specified length.

	length20
	Any valid number of bytes.

	charsNone
	
New in version 3004.

String with any character that should be used to generate random string.

This argument supersedes all other character controlling arguments.

	lowercaseTrue
	
New in version 3004.

Use lowercase letters in generated random string.
(see string.ascii_lowercase [https://docs.python.org/3/library/string.html#string.ascii_lowercase])

This argument is superseded by chars.

	uppercaseTrue
	
New in version 3004.

Use uppercase letters in generated random string.
(see string.ascii_uppercase [https://docs.python.org/3/library/string.html#string.ascii_uppercase])

This argument is superseded by chars.

	digitsTrue
	
New in version 3004.

Use digits in generated random string.
(see string.digits [https://docs.python.org/3/library/string.html#string.digits])

This argument is superseded by chars.

	printableFalse
	
New in version 3004.

Use printable characters in generated random string and includes lowercase, uppercase,
digits, punctuation and whitespace.
(see string.printable [https://docs.python.org/3/library/string.html#string.printable])

It is disabled by default as includes whitespace characters which some systems do not
handle well in passwords.
This argument also supersedes all other classes because it includes them.

This argument is superseded by chars.

	punctuationTrue
	
New in version 3004.

Use punctuation characters in generated random string.
(see string.punctuation [https://docs.python.org/3/library/string.html#string.punctuation])

This argument is superseded by chars.

	whitespaceFalse
	
New in version 3004.

Use whitespace characters in generated random string.
(see string.whitespace [https://docs.python.org/3/library/string.html#string.whitespace])

It is disabled by default as some systems do not handle whitespace characters in passwords
well.

This argument is superseded by chars.

CLI Example:

salt '*' random.get_str 128
salt '*' random.get_str 128 chars='abc123.!()'
salt '*' random.get_str 128 lowercase=False whitespace=True

	
salt.modules.mod_random.hash(value, algorithm='sha512')

	
New in version 2014.7.0.

Encodes a value with the specified encoder.

	value
	The value to be hashed.

	algorithmsha512
	The algorithm to use. May be any valid algorithm supported by
hashlib.

CLI Example:

salt '*' random.hash 'I am a string' md5

	
salt.modules.mod_random.rand_int(start=1, end=10, seed=None)

	Returns a random integer number between the start and end number.

New in version 2015.5.3.

	start1
	Any valid integer number

	end10
	Any valid integer number

	seed :
	Optional hashable object

Changed in version 2019.2.0: Added seed argument. Will return the same result when run with the same seed.

CLI Example:

salt '*' random.rand_int 1 10

	
salt.modules.mod_random.sample(value, size, seed=None)

	Return a given sample size from a list. By default, the random number
generator uses the current system time unless given a seed value.

New in version 3005.

	value
	A list to e used as input.

	size
	The sample size to return.

	seed
	Any value which will be hashed as a seed for random.

CLI Example:

salt '*' random.sample '["one", "two"]' 1 seed="something"

	
salt.modules.mod_random.seed(range=10, hash=None)

	Returns a random number within a range. Optional hash argument can
be any hashable object. If hash is omitted or None, the id of the minion is used.

New in version 2015.8.0.

	hash: None
	Any hashable object.

	range: 10
	Any valid integer number

CLI Example:

salt '*' random.seed 10 hash=None

	
salt.modules.mod_random.shadow_hash(crypt_salt=None, password=None, algorithm='sha512')

	Generates a salted hash suitable for /etc/shadow.

	crypt_saltNone
	Salt to be used in the generation of the hash. If one is not
provided, a random salt will be generated.

	passwordNone
	Value to be salted and hashed. If one is not provided, a random
password will be generated.

	algorithmsha512
	Hash algorithm to use.

CLI Example:

salt '*' random.shadow_hash 'My5alT' 'MyP@asswd' md5

	
salt.modules.mod_random.shuffle(value, seed=None)

	Return a shuffled copy of an input list. By default, the random number
generator uses the current system time unless given a seed value.

New in version 3005.

	value
	A list to be used as input.

	seed
	Any value which will be hashed as a seed for random.

CLI Example:

salt '*' random.shuffle '["one", "two"]' seed="something"

	
salt.modules.mod_random.str_encode(value, encoder='base64')

	
New in version 2014.7.0.

	value
	The value to be encoded.

	encoderbase64
	The encoder to use on the subsequent string.

CLI Example:

salt '*' random.str_encode 'I am a new string' base64

salt.modules.modjk

Control Modjk via the Apache Tomcat "Status" worker
(http://tomcat.apache.org/connectors-doc/reference/status.html)

Below is an example of the configuration needed for this module. This
configuration data can be placed either in grains or pillar.

If using grains, this can be accomplished statically or via a grain module.

If using pillar, the yaml configuration can be placed directly into a pillar
SLS file, making this both the easier and more dynamic method of configuring
this module.

modjk:
 default:
 url: http://localhost/jkstatus
 user: modjk
 pass: secret
 realm: authentication realm for digest passwords
 timeout: 5
 otherVhost:
 url: http://otherVhost/jkstatus
 user: modjk
 pass: secret2
 realm: authentication realm2 for digest passwords
 timeout: 600

	
salt.modules.modjk.bulk_activate(workers, lbn, profile='default')

	Activate all the given workers in the specific load balancer

CLI Examples:

salt '*' modjk.bulk_activate node1,node2,node3 loadbalancer1
salt '*' modjk.bulk_activate node1,node2,node3 loadbalancer1 other-profile

salt '*' modjk.bulk_activate ["node1","node2","node3"] loadbalancer1
salt '*' modjk.bulk_activate ["node1","node2","node3"] loadbalancer1 other-profile

	
salt.modules.modjk.bulk_disable(workers, lbn, profile='default')

	Disable all the given workers in the specific load balancer

CLI Examples:

salt '*' modjk.bulk_disable node1,node2,node3 loadbalancer1
salt '*' modjk.bulk_disable node1,node2,node3 loadbalancer1 other-profile

salt '*' modjk.bulk_disable ["node1","node2","node3"] loadbalancer1
salt '*' modjk.bulk_disable ["node1","node2","node3"] loadbalancer1 other-profile

	
salt.modules.modjk.bulk_recover(workers, lbn, profile='default')

	Recover all the given workers in the specific load balancer

CLI Examples:

salt '*' modjk.bulk_recover node1,node2,node3 loadbalancer1
salt '*' modjk.bulk_recover node1,node2,node3 loadbalancer1 other-profile

salt '*' modjk.bulk_recover ["node1","node2","node3"] loadbalancer1
salt '*' modjk.bulk_recover ["node1","node2","node3"] loadbalancer1 other-profile

	
salt.modules.modjk.bulk_stop(workers, lbn, profile='default')

	Stop all the given workers in the specific load balancer

CLI Examples:

salt '*' modjk.bulk_stop node1,node2,node3 loadbalancer1
salt '*' modjk.bulk_stop node1,node2,node3 loadbalancer1 other-profile

salt '*' modjk.bulk_stop ["node1","node2","node3"] loadbalancer1
salt '*' modjk.bulk_stop ["node1","node2","node3"] loadbalancer1 other-profile

	
salt.modules.modjk.dump_config(profile='default')

	Dump the original configuration that was loaded from disk

CLI Examples:

salt '*' modjk.dump_config
salt '*' modjk.dump_config other-profile

	
salt.modules.modjk.get_running(profile='default')

	Get the current running config (not from disk)

CLI Examples:

salt '*' modjk.get_running
salt '*' modjk.get_running other-profile

	
salt.modules.modjk.lb_edit(lbn, settings, profile='default')

	Edit the loadbalancer settings

Note: http://tomcat.apache.org/connectors-doc/reference/status.html
Data Parameters for the standard Update Action

CLI Examples:

salt '*' modjk.lb_edit loadbalancer1 "{'vlr': 1, 'vlt': 60}"
salt '*' modjk.lb_edit loadbalancer1 "{'vlr': 1, 'vlt': 60}" other-profile

	
salt.modules.modjk.list_configured_members(lbn, profile='default')

	Return a list of member workers from the configuration files

CLI Examples:

salt '*' modjk.list_configured_members loadbalancer1
salt '*' modjk.list_configured_members loadbalancer1 other-profile

	
salt.modules.modjk.recover_all(lbn, profile='default')

	Set the all the workers in lbn to recover and activate them if they are not

CLI Examples:

salt '*' modjk.recover_all loadbalancer1
salt '*' modjk.recover_all loadbalancer1 other-profile

	
salt.modules.modjk.reset_stats(lbn, profile='default')

	Reset all runtime statistics for the load balancer

CLI Examples:

salt '*' modjk.reset_stats loadbalancer1
salt '*' modjk.reset_stats loadbalancer1 other-profile

	
salt.modules.modjk.version(profile='default')

	Return the modjk version

CLI Examples:

salt '*' modjk.version
salt '*' modjk.version other-profile

	
salt.modules.modjk.worker_activate(worker, lbn, profile='default')

	Set the worker to activate state in the lbn load balancer

CLI Examples:

salt '*' modjk.worker_activate node1 loadbalancer1
salt '*' modjk.worker_activate node1 loadbalancer1 other-profile

	
salt.modules.modjk.worker_disable(worker, lbn, profile='default')

	Set the worker to disable state in the lbn load balancer

CLI Examples:

salt '*' modjk.worker_disable node1 loadbalancer1
salt '*' modjk.worker_disable node1 loadbalancer1 other-profile

	
salt.modules.modjk.worker_edit(worker, lbn, settings, profile='default')

	Edit the worker settings

Note: http://tomcat.apache.org/connectors-doc/reference/status.html
Data Parameters for the standard Update Action

CLI Examples:

salt '*' modjk.worker_edit node1 loadbalancer1 "{'vwf': 500, 'vwd': 60}"
salt '*' modjk.worker_edit node1 loadbalancer1 "{'vwf': 500, 'vwd': 60}" other-profile

	
salt.modules.modjk.worker_recover(worker, lbn, profile='default')

	Set the worker to recover
this module will fail if it is in OK state

CLI Examples:

salt '*' modjk.worker_recover node1 loadbalancer1
salt '*' modjk.worker_recover node1 loadbalancer1 other-profile

	
salt.modules.modjk.worker_status(worker, profile='default')

	Return the state of the worker

CLI Examples:

salt '*' modjk.worker_status node1
salt '*' modjk.worker_status node1 other-profile

	
salt.modules.modjk.worker_stop(worker, lbn, profile='default')

	Set the worker to stopped state in the lbn load balancer

CLI Examples:

salt '*' modjk.worker_activate node1 loadbalancer1
salt '*' modjk.worker_activate node1 loadbalancer1 other-profile

	
salt.modules.modjk.workers(profile='default')

	Return a list of member workers and their status

CLI Examples:

salt '*' modjk.workers
salt '*' modjk.workers other-profile

salt.modules.mongodb

Module to provide MongoDB functionality to Salt

	configuration:

	This module uses PyMongo, and accepts configuration details as
parameters as well as configuration settings:

mongodb.host: 'localhost'
mongodb.port: 27017
mongodb.user: ''
mongodb.password: ''

This data can also be passed into pillar. Options passed into opts will
overwrite options passed into pillar.

	
salt.modules.mongodb.collection_create(collection, user=None, password=None, host=None, port=None, database='admin', authdb=None)

	
New in version 3006.0.

Create a collection in the specified database.

	collection
	The name of the collection to create.

	user
	The user to connect to MongoDB as. Default is None.

	password
	The password to use to connect to MongoDB as. Default is None.

	host
	The host where MongoDB is running. Default is None.

	port
	The host where MongoDB is running. Default is None.

	authdb
	The MongoDB database to use for authentication. Default is None.

CLI Example:

salt '*' mongodb.collection_create mycollection <user> <password> <host> <port> <database>

	
salt.modules.mongodb.collection_drop(collection, user=None, password=None, host=None, port=None, database='admin', authdb=None)

	
New in version 3006.0.

Drop a collection in the specified database.

	collection
	The name of the collection to drop.

	user
	The user to connect to MongoDB as. Default is None.

	password
	The password to use to connect to MongoDB as. Default is None.

	host
	The host where MongoDB is running. Default is None.

	port
	The host where MongoDB is running. Default is None.

	authdb
	The MongoDB database to use for authentication. Default is None.

CLI Example:

salt '*' mongodb.collection_drop mycollection <user> <password> <host> <port> <database>

	
salt.modules.mongodb.collections_list(user=None, password=None, host=None, port=None, database='admin', authdb=None)

	
New in version 3006.0.

List the collections available in the specified database.

	user
	The user to connect to MongoDB as. Default is None.

	password
	The password to use to connect to MongoDB as. Default is None.

	host
	The host where MongoDB is running. Default is None.

	port
	The host where MongoDB is running. Default is None.

	authdb
	The MongoDB database to use for authentication. Default is None.

CLI Example:

salt '*' mongodb.collections_list mycollection <user> <password> <host> <port> <database>

	
salt.modules.mongodb.db_exists(name, user=None, password=None, host=None, port=None, authdb=None)

	Checks if a database exists in MongoDB

	name
	The name of the database to check for.

	user
	The user to connect to MongoDB as. Default is None.

	password
	The password to use to connect to MongoDB as. Default is None.

	host
	The host where MongoDB is running. Default is None.

	port
	The host where MongoDB is running. Default is None.

	authdb
	The MongoDB database to use for authentication. Default is None.

CLI Example:

salt '*' mongodb.db_exists <name> <user> <password> <host> <port>

	
salt.modules.mongodb.db_list(user=None, password=None, host=None, port=None, authdb=None)

	List all MongoDB databases

	user
	The user to connect to MongoDB as. Default is None.

	password
	The password to use to connect to MongoDB as. Default is None.

	host
	The host where MongoDB is running. Default is None.

	port
	The host where MongoDB is running. Default is None.

	authdb
	The MongoDB database to use for authentication. Default is None.

CLI Example:

salt '*' mongodb.db_list <user> <password> <host> <port>

	
salt.modules.mongodb.db_remove(name, user=None, password=None, host=None, port=None, authdb=None)

	Remove a MongoDB database

	name
	The name of the database to remove.

	user
	The user to connect to MongoDB as. Default is None.

	password
	The password to use to connect to MongoDB as. Default is None.

	host
	The host where MongoDB is running. Default is None.

	port
	The host where MongoDB is running. Default is None.

	authdb
	The MongoDB database to use for authentication. Default is None.

CLI Example:

salt '*' mongodb.db_remove <name> <user> <password> <host> <port>

	
salt.modules.mongodb.find(collection, query=None, user=None, password=None, host=None, port=None, database='admin', authdb=None)

	Find an object or list of objects in a collection

	collection
	The collection to find the objects in.

	query
	The query to use when locating objects in the collection.

	user
	The user to connect to MongoDB as. Default is None.

	password
	The password to use to connect to MongoDB as. Default is None.

	host
	The host where MongoDB is running. Default is None.

	port
	The host where MongoDB is running. Default is None.

	authdb
	The MongoDB database to use for authentication. Default is None.

CLI Example:

salt '*' mongodb.find mycollection '[{"foo": "FOO", "bar": "BAR"}]' <user> <password> <host> <port> <database>

	
salt.modules.mongodb.insert(objects, collection, user=None, password=None, host=None, port=None, database='admin', authdb=None)

	Insert an object or list of objects into a collection

	objects
	The objects to insert into the collection, should be provided as a list.

	collection
	The collection to insert the objects into.

	user
	The user to connect to MongoDB as. Default is None.

	password
	The password to use to connect to MongoDB as. Default is None.

	host
	The host where MongoDB is running. Default is None.

	port
	The host where MongoDB is running. Default is None.

	authdb
	The MongoDB database to use for authentication. Default is None.

CLI Example:

salt '*' mongodb.insert '[{"foo": "FOO", "bar": "BAR"}, {"foo": "BAZ", "bar": "BAM"}]' mycollection <user> <password> <host> <port> <database>

	
salt.modules.mongodb.remove(collection, query=None, user=None, password=None, host=None, port=None, database='admin', w=1, authdb=None)

	Remove an object or list of objects from a collection

	collection
	The collection to remove objects from based on the query.

	query
	Query to determine which objects to remove.

	user
	The user to connect to MongoDB as. Default is None.

	password
	The password to use to connect to MongoDB as. Default is None.

	host
	The host where MongoDB is running. Default is None.

	port
	The host where MongoDB is running. Default is None.

	database
	The database where the collection is.

	w
	The number of matches to remove from the collection.

	authdb
	The MongoDB database to use for authentication. Default is None.

CLI Example:

salt '*' mongodb.remove mycollection '[{"foo": "FOO", "bar": "BAR"}, {"foo": "BAZ", "bar": "BAM"}]' <user> <password> <host> <port> <database>

	
salt.modules.mongodb.update_one(objects, collection, user=None, password=None, host=None, port=None, database='admin', authdb=None)

	Update an object into a collection
http://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.update_one

New in version 2016.11.0.

	objects
	The objects to update in the collection, should be provided as a list.

	collection
	The collection to insert the objects into.

	user
	The user to connect to MongoDB as. Default is None.

	password
	The password to use to connect to MongoDB as. Default is None.

	host
	The host where MongoDB is running. Default is None.

	port
	The host where MongoDB is running. Default is None.

	authdb
	The MongoDB database to use for authentication. Default is None.

CLI Example:

salt '*' mongodb.update_one '{"_id": "my_minion"} {"bar": "BAR"}' mycollection <user> <password> <host> <port> <database>

	
salt.modules.mongodb.user_create(name, passwd, user=None, password=None, host=None, port=None, database='admin', authdb=None, roles=None)

	Create a MongoDB user

	name
	The name of the user to create.

	passwd
	The password for the user that is being created.

	user
	The user to connect to MongoDB as. Default is None.

	password
	The password to use to connect to MongoDB as. Default is None.

	host
	The host where MongoDB is running. Default is None.

	port
	The host where MongoDB is running. Default is None.

	database
	The MongoDB database to use when checking if the user exists. Default is admin.

	authdb
	The MongoDB database to use for authentication. Default is None.

	roles
	The roles that should be associated with the user. Default is None.

CLI Example:

salt '*' mongodb.user_create <user_name> <user_password> <roles> <user> <password> <host> <port> <database>

	
salt.modules.mongodb.user_exists(name, user=None, password=None, host=None, port=None, database='admin', authdb=None)

	Checks if a user exists in MongoDB

	user
	The user to connect to MongoDB as. Default is None.

	password
	The password to use to connect to MongoDB as. Default is None.

	host
	The host where MongoDB is running. Default is None.

	port
	The host where MongoDB is running. Default is None.

	database
	The MongoDB database to use when checking if the user exists. Default is admin.

	authdb
	The MongoDB database to use for authentication. Default is None.

CLI Example:

salt '*' mongodb.user_exists <name> <user> <password> <host> <port> <database>

	
salt.modules.mongodb.user_find(name, user=None, password=None, host=None, port=None, database='admin', authdb=None)

	Get single user from MongoDB

	name
	The name of the user to find.

	user
	The user to connect to MongoDB as. Default is None.

	password
	The password to use to connect to MongoDB as. Default is None.

	host
	The host where MongoDB is running. Default is None.

	port
	The host where MongoDB is running. Default is None.

	database
	The MongoDB database to use when looking for the user. Default is admin.

	authdb
	The MongoDB database to use for authentication. Default is None.

CLI Example:

salt '*' mongodb.user_find <name> <user> <password> <host> <port> <database> <authdb>

	
salt.modules.mongodb.user_grant_roles(name, roles, database, user=None, password=None, host=None, port=None, authdb=None)

	Grant one or many roles to a MongoDB user

	name
	The user to grant the specified roles to.

	roles
	The roles to grant to the specified user.

	database
	The database to great the roles against for the specified user.

	user
	The user to connect to MongoDB as. Default is None.

	password
	The password to use to connect to MongoDB as. Default is None.

	host
	The host where MongoDB is running. Default is None.

	port
	The host where MongoDB is running. Default is None.

	authdb
	The MongoDB database to use for authentication. Default is None.

CLI Examples:

salt '*' mongodb.user_grant_roles johndoe '["readWrite"]' dbname admin adminpwd localhost 27017

salt '*' mongodb.user_grant_roles janedoe '[{"role": "readWrite", "db": "dbname" }, {"role": "read", "db": "otherdb"}]' dbname admin adminpwd localhost 27017

	
salt.modules.mongodb.user_list(user=None, password=None, host=None, port=None, database='admin', authdb=None)

	List users of a MongoDB database

	user
	The user to connect to MongoDB as. Default is None.

	password
	The password to use to connect to MongoDB as. Default is None.

	host
	The host where MongoDB is running. Default is None.

	port
	The host where MongoDB is running. Default is None.

	database
	The MongoDB database to use when listing users. Default is admin.

	authdb
	The MongoDB database to use for authentication. Default is None.

CLI Example:

salt '*' mongodb.user_list <user> <password> <host> <port> <database>

	
salt.modules.mongodb.user_remove(name, user=None, password=None, host=None, port=None, database='admin', authdb=None)

	Remove a MongoDB user

	name
	The name of the user that should be removed.

	user
	The user to connect to MongoDB as. Default is None.

	password
	The password to use to connect to MongoDB as. Default is None.

	host
	The host where MongoDB is running. Default is None.

	port
	The host where MongoDB is running. Default is None.

	authdb
	The MongoDB database to use for authentication. Default is None.

CLI Example:

salt '*' mongodb.user_remove <name> <user> <password> <host> <port> <database>

	
salt.modules.mongodb.user_revoke_roles(name, roles, database, user=None, password=None, host=None, port=None, authdb=None)

	Revoke one or many roles to a MongoDB user

	user
	The user to connect to MongoDB as. Default is None.

	roles
	The roles to revoke from the specified user.

	database
	The database to revoke the roles from for the specified user.

	password
	The password to use to connect to MongoDB as. Default is None.

	host
	The host where MongoDB is running. Default is None.

	port
	The host where MongoDB is running. Default is None.

	authdb
	The MongoDB database to use for authentication. Default is None.

CLI Examples:

salt '*' mongodb.user_revoke_roles johndoe '["readWrite"]' dbname admin adminpwd localhost 27017

salt '*' mongodb.user_revoke_roles janedoe '[{"role": "readWrite", "db": "dbname" }, {"role": "read", "db": "otherdb"}]' dbname admin adminpwd localhost 27017

	
salt.modules.mongodb.user_roles_exists(name, roles, database, user=None, password=None, host=None, port=None, authdb=None)

	Checks if a user of a MongoDB database has specified roles

	name
	The name of the user to check for the specified roles.

	roles
	The roles to check are associated with the specified user.

	database
	The database to check has the specified roles for the specified user.

	user
	The user to connect to MongoDB as. Default is None.

	password
	The password to use to connect to MongoDB as. Default is None.

	host
	The host where MongoDB is running. Default is None.

	port
	The host where MongoDB is running. Default is None.

	authdb
	The MongoDB database to use for authentication. Default is None.

CLI Examples:

salt '*' mongodb.user_roles_exists johndoe '["readWrite"]' dbname admin adminpwd localhost 27017

salt '*' mongodb.user_roles_exists johndoe '[{"role": "readWrite", "db": "dbname" }, {"role": "read", "db": "otherdb"}]' dbname admin adminpwd localhost 27017

	
salt.modules.mongodb.version(user=None, password=None, host=None, port=None, database='admin', authdb=None)

	Get MongoDB instance version

	user
	The user to connect to MongoDB as. Default is None.

	password
	The password to use to connect to MongoDB as. Default is None.

	host
	The host where MongoDB is running. Default is None.

	port
	The host where MongoDB is running. Default is None.

	authdb
	The MongoDB database to use for authentication. Default is None.

CLI Example:

salt '*' mongodb.version <user> <password> <host> <port> <database>

salt.modules.monit

Monit service module. This module will create a monit type
service watcher.

	
salt.modules.monit.configtest()

	
New in version 2016.3.0.

Test monit configuration syntax

CLI Example:

salt '*' monit.configtest

	
salt.modules.monit.id_(reset=False)

	
New in version 2016.3.0.

Return monit unique id.

	resetFalse
	Reset current id and generate a new id when it's True.

CLI Example:

salt '*' monit.id [reset=True]

	
salt.modules.monit.monitor(name)

	monitor service via monit

CLI Example:

salt '*' monit.monitor <service name>

	
salt.modules.monit.reload_()

	
New in version 2016.3.0.

Reload monit configuration

CLI Example:

salt '*' monit.reload

	
salt.modules.monit.restart(name)

	Restart service via monit

CLI Example:

salt '*' monit.restart <service name>

	
salt.modules.monit.start(name)

	CLI Example:

salt '*' monit.start <service name>

	
salt.modules.monit.status(svc_name='')

	Display a process status from monit

CLI Example:

salt '*' monit.status
salt '*' monit.status <service name>

	
salt.modules.monit.stop(name)

	Stops service via monit

CLI Example:

salt '*' monit.stop <service name>

	
salt.modules.monit.summary(svc_name='')

	Display a summary from monit

CLI Example:

salt '*' monit.summary
salt '*' monit.summary <service name>

	
salt.modules.monit.unmonitor(name)

	Unmonitor service via monit

CLI Example:

salt '*' monit.unmonitor <service name>

	
salt.modules.monit.validate()

	
New in version 2016.3.0.

Check all services

CLI Example:

salt '*' monit.validate

	
salt.modules.monit.version()

	
New in version 2016.3.0.

Return version from monit -V

CLI Example:

salt '*' monit.version

salt.modules.moosefs

Module for gathering and managing information about MooseFS

	
salt.modules.moosefs.dirinfo(path, opts=None)

	Return information on a directory located on the Moose

CLI Example:

salt '*' moosefs.dirinfo /path/to/dir/ [-[n][h|H]]

	
salt.modules.moosefs.fileinfo(path)

	Return information on a file located on the Moose

CLI Example:

salt '*' moosefs.fileinfo /path/to/dir/

	
salt.modules.moosefs.getgoal(path, opts=None)

	Return goal(s) for a file or directory

CLI Example:

salt '*' moosefs.getgoal /path/to/file [-[n][h|H]]
salt '*' moosefs.getgoal /path/to/dir/ [-[n][h|H][r]]

	
salt.modules.moosefs.mounts()

	Return a list of current MooseFS mounts

CLI Example:

salt '*' moosefs.mounts

salt.modules.mount

Salt module to manage Unix mounts and the fstab file

	
salt.modules.mount.active(extended=False)

	List the active mounts.

CLI Example:

salt '*' mount.active

	
salt.modules.mount.automaster(config='/etc/auto_salt')

	List the contents of the auto master

CLI Example:

salt '*' mount.automaster

	
salt.modules.mount.delete_mount_cache(real_name)

	
New in version 2018.3.0.

Provide information if the path is mounted

CLI Example:

salt '*' mount.delete_mount_cache /mnt/share

	
salt.modules.mount.filesystems(config='/etc/filesystems')

	
New in version 2018.3.3.

List the contents of the filesystems

CLI Example:

salt '*' mount.filesystems

	
salt.modules.mount.fstab(config='/etc/fstab')

	
Changed in version 2016.3.2.

List the contents of the fstab

CLI Example:

salt '*' mount.fstab

	
salt.modules.mount.get_device_from_path(path)

	Return the underlying device for a specified path.

New in version 3006.0.

	path
	The path for the function to evaluate.

CLI Example:

salt '*' mount.get_device_from_path /

	
salt.modules.mount.get_mount_from_path(path)

	Return the mount providing a specified path.

New in version 3006.0.

	path
	The path for the function to evaluate.

CLI Example:

salt '*' mount.get_mount_from_path /opt/some/nested/path

	
salt.modules.mount.is_fuse_exec(cmd)

	Returns true if the command passed is a fuse mountable application.

CLI Example:

salt '*' mount.is_fuse_exec sshfs

	
salt.modules.mount.is_mounted(name)

	
New in version 2014.7.0.

Provide information if the path is mounted

CLI Example:

salt '*' mount.is_mounted /mnt/share

	
salt.modules.mount.mount(name, device=False, mkmnt=False, fstype='', opts='defaults', user=None, util='mount')

	Mount a device

CLI Example:

salt '*' mount.mount /mnt/foo /dev/sdz1 True

	
salt.modules.mount.read_mount_cache(name)

	
New in version 2018.3.0.

Provide information if the path is mounted

CLI Example:

salt '*' mount.read_mount_cache /mnt/share

	
salt.modules.mount.remount(name, device, mkmnt=False, fstype='', opts='defaults', user=None)

	Attempt to remount a device, if the device is not already mounted, mount
is called

CLI Example:

salt '*' mount.remount /mnt/foo /dev/sdz1 True

	
salt.modules.mount.rm_automaster(name, device, config='/etc/auto_salt')

	Remove the mount point from the auto_master

CLI Example:

salt '*' mount.rm_automaster /mnt/foo /dev/sdg

	
salt.modules.mount.rm_filesystems(name, device, config='/etc/filesystems')

	
New in version 2018.3.3.

Remove the mount point from the filesystems

CLI Example:

salt '*' mount.rm_filesystems /mnt/foo /dev/sdg

	
salt.modules.mount.rm_fstab(name, device, config='/etc/fstab')

	
Changed in version 2016.3.2.

Remove the mount point from the fstab

CLI Example:

salt '*' mount.rm_fstab /mnt/foo /dev/sdg

	
salt.modules.mount.rm_vfstab(name, device, config='/etc/vfstab')

	
New in version 2016.3.2.

Remove the mount point from the vfstab

CLI Example:

salt '*' mount.rm_vfstab /mnt/foo /device/c0t0d0p0

	
salt.modules.mount.set_automaster(name, device, fstype, opts='', config='/etc/auto_salt', test=False, not_change=False, **kwargs)

	Verify that this mount is represented in the auto_salt, change the mount
to match the data passed, or add the mount if it is not present.

CLI Example:

salt '*' mount.set_automaster /mnt/foo /dev/sdz1 ext4

	
salt.modules.mount.set_filesystems(name, device, vfstype, opts='-', mount='true', config='/etc/filesystems', test=False, match_on='auto', not_change=False, **kwargs)

	
New in version 2018.3.3.

Verify that this mount is represented in the filesystems, change the mount
to match the data passed, or add the mount if it is not present on AIX

If the entry is found via match_on and not_change is True, the
current line will be preserved.

Provide information if the path is mounted

	Parameters:

	
	name -- The name of the mount point where the device is mounted.

	device -- The device that is being mounted.

	vfstype -- The file system that is used (AIX has two fstypes, fstype and vfstype - similar to Linux fstype)

	opts -- Additional options used when mounting the device.

	mount -- Mount if not mounted, default True.

	config -- Configuration file, default /etc/filesystems.

	match -- File systems type to match on, default auto

CLI Example:

salt '*' mount.set_filesystems /mnt/foo /dev/sdz1 jfs2

	
salt.modules.mount.set_fstab(name, device, fstype, opts='defaults', dump=0, pass_num=0, config='/etc/fstab', test=False, match_on='auto', not_change=False, **kwargs)

	Verify that this mount is represented in the fstab, change the mount
to match the data passed, or add the mount if it is not present.

If the entry is found via match_on and not_change is True, the
current line will be preserved.

CLI Example:

salt '*' mount.set_fstab /mnt/foo /dev/sdz1 ext4

	
salt.modules.mount.set_vfstab(name, device, fstype, opts='-', device_fsck='-', pass_fsck='-', mount_at_boot='yes', config='/etc/vfstab', test=False, match_on='auto', not_change=False, **kwargs)

	
New in version 2016.3.2.

Verify that this mount is represented in the fstab, change the mount
to match the data passed, or add the mount if it is not present.

If the entry is found via match_on and not_change is True, the
current line will be preserved.

CLI Example:

salt '*' mount.set_vfstab /mnt/foo /device/c0t0d0p0 ufs

	
salt.modules.mount.swapoff(name)

	Deactivate a named swap mount

Changed in version 2016.3.2.

CLI Example:

salt '*' mount.swapoff /root/swapfile

	
salt.modules.mount.swapon(name, priority=None)

	Activate a swap disk

Changed in version 2016.3.2.

CLI Example:

salt '*' mount.swapon /root/swapfile

	
salt.modules.mount.swaps()

	Return a dict containing information on active swap

Changed in version 2016.3.2.

CLI Example:

salt '*' mount.swaps

	
salt.modules.mount.umount(name, device=None, user=None, util='mount', lazy=False)

	Attempt to unmount a device by specifying the directory it is mounted on

CLI Example:

salt '*' mount.umount /mnt/foo

New in version 2015.5.0.

salt '*' mount.umount /mnt/foo /dev/xvdc1

	
salt.modules.mount.vfstab(config='/etc/vfstab')

	
New in version 2016.3.2.

List the contents of the vfstab

CLI Example:

salt '*' mount.vfstab

	
salt.modules.mount.write_mount_cache(real_name, device, mkmnt, fstype, mount_opts)

	
New in version 2018.3.0.

Provide information if the path is mounted

	Parameters:

	
	real_name -- The real name of the mount point where the device is mounted.

	device -- The device that is being mounted.

	mkmnt -- Whether or not the mount point should be created.

	fstype -- The file system that is used.

	mount_opts -- Additional options used when mounting the device.

	Returns:

	Boolean if message was sent successfully.

CLI Example:

salt '*' mount.write_mount_cache /mnt/share /dev/sda1 False ext4 defaults,nosuid

salt.modules.mssql

Module to provide MS SQL Server compatibility to salt.

	depends:

	
	FreeTDS

	pymssql Python module

	configuration:

	In order to connect to MS SQL Server, certain configuration is
required in minion configs/pillars on the relevant minions. Some sample
pillars might look like:

mssql.server: 'localhost'
mssql.port: 1433
mssql.user: 'sysdba'
mssql.password: 'Some preferable complex password'
mssql.database: ''

The default for the port is '1433' and for the database is '' (empty string);
in most cases they can be left at the default setting.
Options that are directly passed into functions will overwrite options from
configs or pillars.

	
salt.modules.mssql.db_create(database, containment='NONE', new_database_options=None, **kwargs)

	Creates a new database.
Does not update options of existing databases.
new_database_options can only be a list of strings

CLI Example:

salt minion mssql.db_create DB_NAME

	
salt.modules.mssql.db_exists(database_name, **kwargs)

	Find if a specific database exists on the MS SQL server.

CLI Example:

salt minion mssql.db_exists database_name='DBNAME'

	
salt.modules.mssql.db_list(**kwargs)

	Return the database list created on a MS SQL server.

CLI Example:

salt minion mssql.db_list

	
salt.modules.mssql.db_remove(database_name, **kwargs)

	Drops a specific database from the MS SQL server.
It will not drop any of 'master', 'model', 'msdb' or 'tempdb'.

CLI Example:

salt minion mssql.db_remove database_name='DBNAME'

	
salt.modules.mssql.login_create(login, new_login_password=None, new_login_domain='', new_login_roles=None, new_login_options=None, **kwargs)

	Creates a new login. Does not update password of existing logins. For
Windows authentication, provide new_login_domain. For SQL Server
authentication, prvide new_login_password. Since hashed passwords are
varbinary values, if the new_login_password is 'int / long', it will
be considered to be HASHED.

	new_login_roles
	a list of SERVER roles

	new_login_options
	a list of strings

CLI Example:

salt minion mssql.login_create LOGIN_NAME database=DBNAME [new_login_password=PASSWORD]

	
salt.modules.mssql.login_exists(login, domain='', **kwargs)

	Find if a login exists in the MS SQL server.
domain, if provided, will be prepended to login

CLI Example:

salt minion mssql.login_exists 'LOGIN'

	
salt.modules.mssql.login_remove(login, **kwargs)

	Removes an login.

CLI Example:

salt minion mssql.login_remove LOGINNAME

	
salt.modules.mssql.role_create(role, owner=None, grants=None, **kwargs)

	Creates a new database role.
If no owner is specified, the role will be owned by the user that
executes CREATE ROLE, which is the user argument or mssql.user option.
grants is list of strings.

CLI Example:

salt minion mssql.role_create role=product01 owner=sysdba grants='["SELECT", "INSERT", "UPDATE", "DELETE", "EXECUTE"]'

	
salt.modules.mssql.role_exists(role, **kwargs)

	Checks if a role exists.

CLI Example:

salt minion mssql.role_exists db_owner

	
salt.modules.mssql.role_list(**kwargs)

	Lists database roles.

CLI Example:

salt minion mssql.role_list

	
salt.modules.mssql.role_remove(role, **kwargs)

	Remove a database role.

CLI Example:

salt minion mssql.role_create role=test_role01

	
salt.modules.mssql.tsql_query(query, **kwargs)

	Run a SQL query and return query result as list of tuples, or a list of dictionaries if as_dict was passed, or an empty list if no data is available.

CLI Example:

salt minion mssql.tsql_query 'SELECT @@version as version' as_dict=True

	
salt.modules.mssql.user_create(username, login=None, domain='', database=None, roles=None, options=None, **kwargs)

	Creates a new user. If login is not specified, the user will be created
without a login. domain, if provided, will be prepended to username.
options can only be a list of strings

CLI Example:

salt minion mssql.user_create USERNAME database=DBNAME

	
salt.modules.mssql.user_exists(username, domain='', database=None, **kwargs)

	Find if an user exists in a specific database on the MS SQL server.
domain, if provided, will be prepended to username

CLI Example:

salt minion mssql.user_exists 'USERNAME' [database='DBNAME']

	
salt.modules.mssql.user_list(**kwargs)

	Get the user list for a specific database on the MS SQL server.

CLI Example:

salt minion mssql.user_list [database='DBNAME']

	
salt.modules.mssql.user_remove(username, **kwargs)

	Removes an user.

CLI Example:

salt minion mssql.user_remove USERNAME database=DBNAME

	
salt.modules.mssql.version(**kwargs)

	Return the version of a MS SQL server.

CLI Example:

salt minion mssql.version

salt.modules.msteams

Module for sending messages to MS Teams

New in version 2017.7.0.

	configuration:

	This module can be used by either passing a hook_url
directly or by specifying it in a configuration profile in the salt
master/minion config. For example:

msteams:
 hook_url: https://outlook.office.com/webhook/837

	
salt.modules.msteams.post_card(message, hook_url=None, title=None, theme_color=None)

	Send a message to an MS Teams channel.
:param message: The message to send to the MS Teams channel.
:param hook_url: The Teams webhook URL, if not specified in the configuration.
:param title: Optional title for the posted card
:param theme_color: Optional hex color highlight for the posted card
:return: Boolean if message was sent successfully.

CLI Example:

salt '*' msteams.post_card message="Build is done"

salt.modules.munin

Run munin plugins/checks from salt and format the output as data.

	
salt.modules.munin.list_plugins()

	List all the munin plugins

CLI Example:

salt '*' munin.list_plugins

	
salt.modules.munin.run(plugins)

	Run one or more named munin plugins

CLI Example:

salt '*' munin.run uptime
salt '*' munin.run uptime,cpu,load,memory

	
salt.modules.munin.run_all()

	Run all the munin plugins

CLI Example:

salt '*' munin.run_all

salt.modules.mysql

Module to provide MySQL compatibility to salt.

	depends:

	
	Python module: MySQLdb, mysqlclient, or PyMYSQL

	configuration:

	In order to connect to MySQL, certain configuration is required
in either the relevant minion config (/etc/salt/minion), or pillar.

Some sample configs might look like:

mysql.host: 'localhost'
mysql.port: 3306
mysql.user: 'root'
mysql.pass: ''
mysql.db: 'mysql'
mysql.unix_socket: '/tmp/mysql.sock'
mysql.charset: 'utf8'

You can also use a defaults file:

mysql.default_file: '/etc/mysql/debian.cnf'

Changed in version 2014.1.0: 'charset' connection argument added. This is a MySQL charset, not a python one.

Changed in version 0.16.2: Connection arguments from the minion config file can be overridden on the
CLI by using the arguments defined here.
Additionally, it is now possible to setup a user with no password.

	
salt.modules.mysql.alter_db(name, character_set=None, collate=None, **connection_args)

	Modify database using ALTER DATABASE %(dbname)s CHARACTER SET %(charset)s
COLLATE %(collation)s; query.

CLI Example:

salt '*' mysql.alter_db testdb charset='latin1'

	
salt.modules.mysql.db_check(name, table=None, **connection_args)

	Repairs the full database or just a given table

CLI Example:

salt '*' mysql.db_check dbname
salt '*' mysql.db_check dbname dbtable

	
salt.modules.mysql.db_create(name, character_set=None, collate=None, **connection_args)

	Adds a databases to the MySQL server.

	name
	The name of the database to manage

	character_set
	The character set, if left empty the MySQL default will be used

	collate
	The collation, if left empty the MySQL default will be used

CLI Example:

salt '*' mysql.db_create 'dbname'
salt '*' mysql.db_create 'dbname' 'utf8' 'utf8_general_ci'

	
salt.modules.mysql.db_exists(name, **connection_args)

	Checks if a database exists on the MySQL server.

CLI Example:

salt '*' mysql.db_exists 'dbname'

	
salt.modules.mysql.db_get(name, **connection_args)

	Return a list of databases of a MySQL server using the output
from the SELECT DEFAULT_CHARACTER_SET_NAME, DEFAULT_COLLATION_NAME FROM
INFORMATION_SCHEMA.SCHEMATA WHERE SCHEMA_NAME='dbname'; query.

CLI Example:

salt '*' mysql.db_get test

	
salt.modules.mysql.db_list(**connection_args)

	Return a list of databases of a MySQL server using the output
from the SHOW DATABASES query.

CLI Example:

salt '*' mysql.db_list

	
salt.modules.mysql.db_optimize(name, table=None, **connection_args)

	Optimizes the full database or just a given table

CLI Example:

salt '*' mysql.db_optimize dbname

	
salt.modules.mysql.db_remove(name, **connection_args)

	Removes a databases from the MySQL server.

CLI Example:

salt '*' mysql.db_remove 'dbname'

	
salt.modules.mysql.db_repair(name, table=None, **connection_args)

	Repairs the full database or just a given table

CLI Example:

salt '*' mysql.db_repair dbname

	
salt.modules.mysql.db_tables(name, **connection_args)

	Shows the tables in the given MySQL database (if exists)

CLI Example:

salt '*' mysql.db_tables 'database'

	
salt.modules.mysql.file_query(database, file_name, **connection_args)

	Run an arbitrary SQL query from the specified file and return the
the number of affected rows.

New in version 2017.7.0.

database

database to run script inside

file_name

File name of the script. This can be on the minion, or a file that is reachable by the fileserver

CLI Example:

salt '*' mysql.file_query mydb file_name=/tmp/sqlfile.sql
salt '*' mysql.file_query mydb file_name=salt://sqlfile.sql

Return data:

{'query time': {'human': '39.0ms', 'raw': '0.03899'}, 'rows affected': 1L}

	
salt.modules.mysql.free_slave(**connection_args)

	Frees a slave from its master. This is a WIP, do not use.

CLI Example:

salt '*' mysql.free_slave

	
salt.modules.mysql.get_master_status(**connection_args)

	Retrieves the master status from the minion.

Returns:

{'host.domain.com': {'Binlog_Do_DB': '',
 'Binlog_Ignore_DB': '',
 'File': 'mysql-bin.000021',
 'Position': 107}}

CLI Example:

salt '*' mysql.get_master_status

	
salt.modules.mysql.get_slave_status(**connection_args)

	Retrieves the slave status from the minion.

Returns:

{'host.domain.com': {'Connect_Retry': 60,
 'Exec_Master_Log_Pos': 107,
 'Last_Errno': 0,
 'Last_Error': '',
 'Last_IO_Errno': 0,
 'Last_IO_Error': '',
 'Last_SQL_Errno': 0,
 'Last_SQL_Error': '',
 'Master_Host': 'comet.scion-eng.com',
 'Master_Log_File': 'mysql-bin.000021',
 'Master_Port': 3306,
 'Master_SSL_Allowed': 'No',
 'Master_SSL_CA_File': '',
 'Master_SSL_CA_Path': '',
 'Master_SSL_Cert': '',
 'Master_SSL_Cipher': '',
 'Master_SSL_Key': '',
 'Master_SSL_Verify_Server_Cert': 'No',
 'Master_Server_Id': 1,
 'Master_User': 'replu',
 'Read_Master_Log_Pos': 107,
 'Relay_Log_File': 'klo-relay-bin.000071',
 'Relay_Log_Pos': 253,
 'Relay_Log_Space': 553,
 'Relay_Master_Log_File': 'mysql-bin.000021',
 'Replicate_Do_DB': '',
 'Replicate_Do_Table': '',
 'Replicate_Ignore_DB': '',
 'Replicate_Ignore_Server_Ids': '',
 'Replicate_Ignore_Table': '',
 'Replicate_Wild_Do_Table': '',
 'Replicate_Wild_Ignore_Table': '',
 'Seconds_Behind_Master': 0,
 'Skip_Counter': 0,
 'Slave_IO_Running': 'Yes',
 'Slave_IO_State': 'Waiting for master to send event',
 'Slave_SQL_Running': 'Yes',
 'Until_Condition': 'None',
 'Until_Log_File': '',
 'Until_Log_Pos': 0}}

CLI Example:

salt '*' mysql.get_slave_status

	
salt.modules.mysql.grant_add(grant, database, user, host='localhost', grant_option=False, escape=True, ssl_option=False, **connection_args)

	Adds a grant to the MySQL server.

For database, make sure you specify database.table or database.*

CLI Example:

salt '*' mysql.grant_add 'SELECT,INSERT,UPDATE,...' 'database.*' 'frank' 'localhost'

	
salt.modules.mysql.grant_exists(grant, database, user, host='localhost', grant_option=False, escape=True, **connection_args)

	Checks to see if a grant exists in the database

CLI Example:

salt '*' mysql.grant_exists 'SELECT,INSERT,UPDATE,...' 'database.*' 'frank' 'localhost'

	
salt.modules.mysql.grant_revoke(grant, database, user, host='localhost', grant_option=False, escape=True, **connection_args)

	Removes a grant from the MySQL server.

CLI Example:

salt '*' mysql.grant_revoke 'SELECT,INSERT,UPDATE' 'database.*' 'frank' 'localhost'

	
salt.modules.mysql.plugin_add(name, soname=None, **connection_args)

	Add a plugina.

CLI Example:

salt '*' mysql.plugin_add auth_socket

	
salt.modules.mysql.plugin_remove(name, **connection_args)

	Remove a plugin.

CLI Example:

salt '*' mysql.plugin_remove auth_socket

	
salt.modules.mysql.plugin_status(name, **connection_args)

	Return the status of a plugin.

CLI Example:

salt '*' mysql.plugin_status auth_socket

	
salt.modules.mysql.plugins_list(**connection_args)

	Return a list of plugins and their status
from the SHOW PLUGINS query.

CLI Example:

salt '*' mysql.plugins_list

	
salt.modules.mysql.processlist(**connection_args)

	Retrieves the processlist from the MySQL server via
"SHOW FULL PROCESSLIST".

Returns: a list of dicts, with each dict representing a process:

{'Command': 'Query',
'Host': 'localhost',
'Id': 39,
'Info': 'SHOW FULL PROCESSLIST',
'Rows_examined': 0,
'Rows_read': 1,
'Rows_sent': 0,
'State': None,
'Time': 0,
'User': 'root',
'db': 'mysql'}

CLI Example:

salt '*' mysql.processlist

	
salt.modules.mysql.query(database, query, **connection_args)

	Run an arbitrary SQL query and return the results or
the number of affected rows.

CLI Example:

salt '*' mysql.query mydb "UPDATE mytable set myfield=1 limit 1"

Return data:

{'query time': {'human': '39.0ms', 'raw': '0.03899'}, 'rows affected': 1L}

CLI Example:

salt '*' mysql.query mydb "SELECT id,name,cash from users limit 3"

Return data:

{'columns': ('id', 'name', 'cash'),
 'query time': {'human': '1.0ms', 'raw': '0.001'},
 'results': ((1L, 'User 1', Decimal('110.000000')),
 (2L, 'User 2', Decimal('215.636756')),
 (3L, 'User 3', Decimal('0.040000'))),
 'rows returned': 3L}

CLI Example:

salt '*' mysql.query mydb 'INSERT into users values (null,"user 4", 5)'

Return data:

{'query time': {'human': '25.6ms', 'raw': '0.02563'}, 'rows affected': 1L}

CLI Example:

salt '*' mysql.query mydb 'DELETE from users where id = 4 limit 1'

Return data:

{'query time': {'human': '39.0ms', 'raw': '0.03899'}, 'rows affected': 1L}

Jinja Example: Run a query on mydb and use row 0, column 0's data.

{{ salt['mysql.query']('mydb', 'SELECT info from mytable limit 1')['results'][0][0] }}

	
salt.modules.mysql.quote_identifier(identifier, for_grants=False)

	Return an identifier name (column, table, database, etc) escaped for MySQL

This means surrounded by "`" character and escaping this character inside.
It also means doubling the '%' character for MySQLdb internal usage.

	Parameters:

	
	identifier -- the table, column or database identifier

	for_grants -- is False by default, when using database names on grant
queries you should set it to True to also escape "_" and "%" characters as
requested by MySQL. Note that theses characters should only be escaped when
requesting grants on the database level (my_%db.*) but not for table
level grants (my_%db.`foo`)

CLI Example:

salt '*' mysql.quote_identifier 'foo`bar'

	
salt.modules.mysql.showglobal(**connection_args)

	Retrieves the show global variables from the minion.

	Returns::
	show global variables full dict

CLI Example:

salt '*' mysql.showglobal

	
salt.modules.mysql.showvariables(**connection_args)

	Retrieves the show variables from the minion.

	Returns::
	show variables full dict

CLI Example:

salt '*' mysql.showvariables

	
salt.modules.mysql.slave_lag(**connection_args)

	Return the number of seconds that a slave SQL server is lagging behind the
master, if the host is not a slave it will return -1. If the server is
configured to be a slave for replication but slave IO is not running then
-2 will be returned. If there was an error connecting to the database or
checking the slave status, -3 will be returned.

CLI Example:

salt '*' mysql.slave_lag

	
salt.modules.mysql.status(**connection_args)

	Return the status of a MySQL server using the output from the SHOW
STATUS query.

CLI Example:

salt '*' mysql.status

	
salt.modules.mysql.tokenize_grant(grant)

	External wrapper function
:param grant:
:return: dict

CLI Example:

salt '*' mysql.tokenize_grant "GRANT SELECT, INSERT ON testdb.* TO 'testuser'@'localhost'"

	
salt.modules.mysql.user_chpass(user, host='localhost', password=None, password_hash=None, allow_passwordless=False, unix_socket=None, password_column=None, **connection_args)

	Change password for a MySQL user

	host
	Host for which this user/password combo applies

	password
	The password to set for the new user. Will take precedence over the
password_hash option if both are specified.

	password_hash
	The password in hashed form. Be sure to quote the password because YAML
doesn't like the *. A password hash can be obtained from the mysql
command-line client like so:

mysql> SELECT PASSWORD('mypass');
+---+
| PASSWORD('mypass') |
+---+
| *6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4 |
+---+
1 row in set (0.00 sec)

	allow_passwordless
	If True, then password and password_hash can be omitted (or
set to None) to permit a passwordless login.

New in version 0.16.2: The allow_passwordless option was added.

CLI Examples:

salt '*' mysql.user_chpass frank localhost newpassword
salt '*' mysql.user_chpass frank localhost password_hash='hash'
salt '*' mysql.user_chpass frank localhost allow_passwordless=True

	
salt.modules.mysql.user_create(user, host='localhost', password=None, password_hash=None, allow_passwordless=False, unix_socket=False, password_column=None, auth_plugin='mysql_native_password', **connection_args)

	Creates a MySQL user

	host
	Host for which this user/password combo applies

	password
	The password to use for the new user. Will take precedence over the
password_hash option if both are specified.

	password_hash
	The password in hashed form. Be sure to quote the password because YAML
doesn't like the *. A password hash can be obtained from the mysql
command-line client like so:

mysql> SELECT PASSWORD('mypass');
+---+
| PASSWORD('mypass') |
+---+
| *6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4 |
+---+
1 row in set (0.00 sec)

	allow_passwordless
	If True, then password and password_hash can be omitted (or
set to None) to permit a passwordless login.

	unix_socket
	If True and allow_passwordless is True then will be used unix_socket auth plugin.

	password_column
	The password column to use in the user table.

	auth_plugin
	The authentication plugin to use, default is to use the mysql_native_password plugin.

New in version 0.16.2: The allow_passwordless option was added.

CLI Examples:

salt '*' mysql.user_create 'username' 'hostname' 'password'
salt '*' mysql.user_create 'username' 'hostname' password_hash='hash'
salt '*' mysql.user_create 'username' 'hostname' allow_passwordless=True

	
salt.modules.mysql.user_exists(user, host='localhost', password=None, password_hash=None, passwordless=False, unix_socket=False, password_column=None, **connection_args)

	Checks if a user exists on the MySQL server. A login can be checked to see
if passwordless login is permitted by omitting password and
password_hash, and using passwordless=True.

New in version 0.16.2: The passwordless option was added.

CLI Example:

salt '*' mysql.user_exists 'username' 'hostname' 'password'
salt '*' mysql.user_exists 'username' 'hostname' password_hash='hash'
salt '*' mysql.user_exists 'username' passwordless=True
salt '*' mysql.user_exists 'username' password_column='authentication_string'

	
salt.modules.mysql.user_grants(user, host='localhost', **connection_args)

	Shows the grants for the given MySQL user (if it exists)

CLI Example:

salt '*' mysql.user_grants 'frank' 'localhost'

	
salt.modules.mysql.user_info(user, host='localhost', **connection_args)

	Get full info on a MySQL user

CLI Example:

salt '*' mysql.user_info root localhost

	
salt.modules.mysql.user_list(**connection_args)

	Return a list of users on a MySQL server

CLI Example:

salt '*' mysql.user_list

	
salt.modules.mysql.user_remove(user, host='localhost', **connection_args)

	Delete MySQL user

CLI Example:

salt '*' mysql.user_remove frank localhost

	
salt.modules.mysql.verify_login(user, password=None, **connection_args)

	Attempt to login using the provided credentials.
If successful, return true. Otherwise, return False.

CLI Example:

salt '*' mysql.verify_login root password

	
salt.modules.mysql.version(**connection_args)

	Return the version of a MySQL server using the output from the SELECT
VERSION() query.

CLI Example:

salt '*' mysql.version

salt.modules.nacl

This module helps include encrypted passwords in pillars, grains and salt state files.

	depends:

	PyNaCl, https://github.com/pyca/pynacl

This is often useful if you wish to store your pillars in source control or
share your pillar data with others that you trust. I don't advise making your pillars public
regardless if they are encrypted or not.

When generating keys and encrypting passwords use --local when using salt-call for extra
security. Also consider using just the salt runner nacl when encrypting pillar passwords.

	configuration:

	The following configuration defaults can be
define (pillar or config files) Avoid storing private keys in pillars! Ensure master does not have pillar_opts=True:

cat /etc/salt/master.d/nacl.conf
nacl.config:
 # NOTE: `key` and `key_file` have been renamed to `sk`, `sk_file`
 # also `box_type` default changed from secretbox to sealedbox.
 box_type: sealedbox (default)
 sk_file: /etc/salt/pki/master/nacl (default)
 pk_file: /etc/salt/pki/master/nacl.pub (default)
 sk: None
 pk: None

Usage can override the config defaults:

salt-call nacl.enc sk_file=/etc/salt/pki/master/nacl pk_file=/etc/salt/pki/master/nacl.pub

The nacl lib uses 32byte keys, these keys are base64 encoded to make your life more simple.
To generate your sk_file and pk_file use:

salt-call --local nacl.keygen sk_file=/etc/salt/pki/master/nacl
or if you want to work without files.
salt-call --local nacl.keygen
local:

 pk:
 /kfGX7PbWeu099702PBbKWLpG/9p06IQRswkdWHCDk0=
 sk:
 SVWut5SqNpuPeNzb1b9y6b2eXg2PLIog43GBzp48Sow=

Now with your keypair, you can encrypt data:

You have two option, sealedbox or secretbox.

SecretBox is data encrypted using private key pk. Sealedbox is encrypted using public key pk.

Recommend using Sealedbox because the one way encryption permits developers to encrypt data for source control but not decrypt.
Sealedbox only has one key that is for both encryption and decryption.

salt-call --local nacl.enc asecretpass pk=/kfGX7PbWeu099702PBbKWLpG/9p06IQRswkdWHCDk0=
tqXzeIJnTAM9Xf0mdLcpEdklMbfBGPj2oTKmlgrm3S1DTVVHNnh9h8mU1GKllGq/+cYsk6m5WhGdk58=

To decrypt the data:

salt-call --local nacl.dec data='tqXzeIJnTAM9Xf0mdLcpEdklMbfBGPj2oTKmlgrm3S1DTVVHNnh9h8mU1GKllGq/+cYsk6m5WhGdk58=' sk='SVWut5SqNpuPeNzb1b9y6b2eXg2PLIog43GBzp48Sow='

When the keys are defined in the master config you can use them from the nacl runner
without extra parameters:

cat /etc/salt/master.d/nacl.conf
nacl.config:
 sk_file: /etc/salt/pki/master/nacl
 pk: 'cTIqXwnUiD1ulg4kXsbeCE7/NoeKEzd4nLeYcCFpd9k='

salt-run nacl.enc 'asecretpass'
salt-run nacl.dec data='tqXzeIJnTAM9Xf0mdLcpEdklMbfBGPj2oTKmlgrm3S1DTVVHNnh9h8mU1GKllGq/+cYsk6m5WhGdk58='

a salt developers minion could have pillar data that includes a nacl public key
nacl.config:
 pk: '/kfGX7PbWeu099702PBbKWLpG/9p06IQRswkdWHCDk0='

The developer can then use a less-secure system to encrypt data.

salt-call --local nacl.enc apassword

Pillar files can include protected data that the salt master decrypts:

pillarexample:
 user: root
 password1: {{salt.nacl.dec('DRB7Q6/X5gGSRCTpZyxS6hlbWj0llUA+uaVyvou3vJ4=')|json}}
 cert_key: {{salt.nacl.dec_file('/srv/salt/certs/example.com/key.nacl')|json}}
 cert_key2: {{salt.nacl.dec_file('salt:///certs/example.com/key.nacl')|json}}

Larger files like certificates can be encrypted with:

salt-call nacl.enc_file /tmp/cert.crt out=/tmp/cert.nacl
or more advanced
cert=$(cat /tmp/cert.crt)
salt-call --out=newline_values_only nacl.enc_pub data="$cert" > /tmp/cert.nacl

In pillars rended with jinja be sure to include |json so line breaks are encoded:

cert: "{{salt.nacl.dec('S2uogToXkgENz9...085KYt')|json}}"

In states rendered with jinja it is also good pratice to include |json:

{{sls}} private key:
 file.managed:
 - name: /etc/ssl/private/cert.key
 - mode: 700
 - contents: "{{pillar['pillarexample']['cert_key']|json}}"

Optional small program to encrypt data without needing salt modules.

#!/bin/python3
import sys, base64, nacl.public
pk = base64.b64decode('YOURPUBKEY')
b = nacl.public.SealedBox(pk)
data = sys.stdin.buffer.read()
print(base64.b64encode(b.encrypt(data)).decode())

echo 'apassword' | nacl_enc.py

	
salt.modules.nacl.dec(data, **kwargs)

	Alias to {box_type}_decrypt

box_type: secretbox, sealedbox(default)

	
salt.modules.nacl.dec_file(name, out=None, **kwargs)

	This is a helper function to decrypt a file and return its contents.

You can provide an optional output file using out

name can be a local file or when not using salt-run can be a url like salt://, https:// etc.

CLI Examples:

salt-run nacl.dec_file name=/tmp/id_rsa.nacl
salt-call nacl.dec_file name=salt://crt/mycert.nacl out=/tmp/id_rsa
salt-run nacl.dec_file name=/tmp/id_rsa.nacl box_type=secretbox sk_file=/etc/salt/pki/master/nacl.pub

	
salt.modules.nacl.enc(data, **kwargs)

	Alias to {box_type}_encrypt

box_type: secretbox, sealedbox(default)

	
salt.modules.nacl.enc_file(name, out=None, **kwargs)

	This is a helper function to encrypt a file and return its contents.

You can provide an optional output file using out

name can be a local file or when not using salt-run can be a url like salt://, https:// etc.

CLI Examples:

salt-run nacl.enc_file name=/tmp/id_rsa
salt-call nacl.enc_file name=salt://crt/mycert out=/tmp/cert
salt-run nacl.enc_file name=/tmp/id_rsa box_type=secretbox sk_file=/etc/salt/pki/master/nacl.pub

	
salt.modules.nacl.keygen(sk_file=None, pk_file=None, **kwargs)

	Use PyNaCl to generate a keypair.

If no sk_file is defined return a keypair.

If only the sk_file is defined pk_file will use the same name with a postfix .pub.

When the sk_file is already existing, but pk_file is not. The pk_file will be generated
using the sk_file.

CLI Examples:

salt-call nacl.keygen
salt-call nacl.keygen sk_file=/etc/salt/pki/master/nacl
salt-call nacl.keygen sk_file=/etc/salt/pki/master/nacl pk_file=/etc/salt/pki/master/nacl.pub
salt-call --local nacl.keygen

	
salt.modules.nacl.sealedbox_decrypt(data, **kwargs)

	Decrypt data using a secret key that was encrypted using a public key with nacl.sealedbox_encrypt.

CLI Examples:

salt-call nacl.sealedbox_decrypt pEXHQM6cuaF7A=
salt-call --local nacl.sealedbox_decrypt data='pEXHQM6cuaF7A=' sk_file=/etc/salt/pki/master/nacl
salt-call --local nacl.sealedbox_decrypt data='pEXHQM6cuaF7A=' sk='YmFkcGFzcwo='

	
salt.modules.nacl.sealedbox_encrypt(data, **kwargs)

	Encrypt data using a public key generated from nacl.keygen.
The encryptd data can be decrypted using nacl.sealedbox_decrypt only with the secret key.

CLI Examples:

salt-run nacl.sealedbox_encrypt datatoenc
salt-call --local nacl.sealedbox_encrypt datatoenc pk_file=/etc/salt/pki/master/nacl.pub
salt-call --local nacl.sealedbox_encrypt datatoenc pk='vrwQF7cNiNAVQVAiS3bvcbJUnF0cN6fU9YTZD9mBfzQ='

	
salt.modules.nacl.secretbox_decrypt(data, **kwargs)

	Decrypt data that was encrypted using nacl.secretbox_encrypt using the secret key
that was generated from nacl.keygen.

CLI Examples:

salt-call nacl.secretbox_decrypt pEXHQM6cuaF7A=
salt-call --local nacl.secretbox_decrypt data='pEXHQM6cuaF7A=' sk_file=/etc/salt/pki/master/nacl
salt-call --local nacl.secretbox_decrypt data='pEXHQM6cuaF7A=' sk='YmFkcGFzcwo='

	
salt.modules.nacl.secretbox_encrypt(data, **kwargs)

	Encrypt data using a secret key generated from nacl.keygen.
The same secret key can be used to decrypt the data using nacl.secretbox_decrypt.

CLI Examples:

salt-run nacl.secretbox_encrypt datatoenc
salt-call --local nacl.secretbox_encrypt datatoenc sk_file=/etc/salt/pki/master/nacl
salt-call --local nacl.secretbox_encrypt datatoenc sk='YmFkcGFzcwo='

salt.modules.nagios

Run nagios plugins/checks from salt and get the return as data.

	
salt.modules.nagios.list_plugins()

	List all the nagios plugins

CLI Example:

salt '*' nagios.list_plugins

	
salt.modules.nagios.retcode(plugin, args='', key_name=None)

	Run one nagios plugin and return retcode of the execution

	
salt.modules.nagios.retcode_pillar(pillar_name)

	Run one or more nagios plugins from pillar data and get the result of cmd.retcode
The pillar have to be in this format:

webserver:
 Ping_google:
 - check_icmp: 8.8.8.8
 - check_icmp: google.com
 Load:
 - check_load: -w 0.8 -c 1
 APT:
 - check_apt

webserver is the role to check, the next keys are the group and the items
the check with the arguments if needed

You must to group different checks(one o more) and always it will return
the highest value of all the checks

CLI Example:

salt '*' nagios.retcode webserver

	
salt.modules.nagios.run(plugin, args='')

	Run nagios plugin and return all the data execution with cmd.run

CLI Example:

salt '*' nagios.run check_apt
salt '*' nagios.run check_icmp '8.8.8.8'

	
salt.modules.nagios.run_all(plugin, args='')

	Run nagios plugin and return all the data execution with cmd.run_all

	
salt.modules.nagios.run_all_pillar(pillar_name)

	Run one or more nagios plugins from pillar data and get the result of cmd.run_all
The pillar have to be in this format:

webserver:
 Ping_google:
 - check_icmp: 8.8.8.8
 - check_icmp: google.com
 Load:
 - check_load: -w 0.8 -c 1
 APT:
 - check_apt

webserver is the role to check, the next keys are the group and the items
the check with the arguments if needed

You have to group different checks in a group

CLI Example:

salt '*' nagios.run webserver

	
salt.modules.nagios.run_pillar(pillar_name)

	Run one or more nagios plugins from pillar data and get the result of cmd.run
The pillar have to be in this format:

webserver:
 Ping_google:
 - check_icmp: 8.8.8.8
 - check_icmp: google.com
 Load:
 - check_load: -w 0.8 -c 1
 APT:
 - check_apt

webserver is the role to check, the next keys are the group and the items
the check with the arguments if needed

You have to group different checks in a group

CLI Example:

salt '*' nagios.run webserver

salt.modules.nagios_rpc

Check Host & Service status from Nagios via JSON RPC.

New in version 2015.8.0.

	
salt.modules.nagios_rpc.host_status(hostname=None, **kwargs)

	Check status of a particular host By default
statuses are returned in a numeric format.

Parameters:

	hostname
	The hostname to check the status of the service in Nagios.

	numeric
	Turn to false in order to return status in text format
('OK' instead of 0, 'Warning' instead of 1 etc)

	Returns:

	status: 'OK', 'Warning', 'Critical' or 'Unknown'

CLI Example:

salt '*' nagios_rpc.host_status hostname=webserver.domain.com
salt '*' nagios_rpc.host_status hostname=webserver.domain.com numeric=False

	
salt.modules.nagios_rpc.service_status(hostname=None, service=None, **kwargs)

	Check status of a particular service on a host on it in Nagios.
By default statuses are returned in a numeric format.

Parameters:

	hostname
	The hostname to check the status of the service in Nagios.

	service
	The service to check the status of in Nagios.

	numeric
	Turn to false in order to return status in text format
('OK' instead of 0, 'Warning' instead of 1 etc)

	Returns:

	status: 'OK', 'Warning', 'Critical' or 'Unknown'

CLI Example:

salt '*' nagios_rpc.service_status hostname=webserver.domain.com service='HTTP'
salt '*' nagios_rpc.service_status hostname=webserver.domain.com service='HTTP' numeric=False

salt.modules.namecheap_domains

Namecheap Domain Management

New in version 2017.7.0.

Prerequisites

This module uses the requests Python module to communicate to the namecheap
API.

Configuration

The Namecheap username, API key and URL should be set in the minion configuration
file, or in the Pillar data.

namecheap.name: companyname
namecheap.key: a1b2c3d4e5f67a8b9c0d1e2f3
namecheap.client_ip: 162.155.30.172
#Real url
namecheap.url: https://api.namecheap.com/xml.response
#Sandbox url
#namecheap.url: https://api.sandbox.namecheap.xml.response

	
salt.modules.namecheap_domains.check(*domains_to_check)

	Checks the availability of domains

	domains_to_check
	array of strings List of domains to check

Returns a dictionary mapping the each domain name to a boolean denoting
whether or not it is available.

CLI Example:

salt 'my-minion' namecheap_domains.check domain-to-check

	
salt.modules.namecheap_domains.create(domain_name, years, **kwargs)

	Try to register the specified domain name

	domain_name
	The domain name to be registered

	years
	Number of years to register

Returns the following information:

	Whether or not the domain was renewed successfully

	Whether or not WhoisGuard is enabled

	Whether or not registration is instant

	The amount charged for registration

	The domain ID

	The order ID

	The transaction ID

CLI Example:

salt 'my-minion' namecheap_domains.create my-domain-name 2

	
salt.modules.namecheap_domains.get_info(domain_name)

	Returns information about the requested domain

returns a dictionary of information about the domain_name

	domain_name
	string Domain name to get information about

CLI Example:

salt 'my-minion' namecheap_domains.get_info my-domain-name

	
salt.modules.namecheap_domains.get_list(list_type=None, search_term=None, page=None, page_size=None, sort_by=None)

	Returns a list of domains for the particular user as a list of objects
offset by page length of page_size

	list_typeALL
	One of ALL, EXPIRING, EXPIRED

	search_term
	Keyword to look for on the domain list

	page1
	Number of result page to return

	page_size20
	Number of domains to be listed per page (minimum: 10, maximum:
100)

	sort_by
	One of NAME, NAME_DESC, EXPIREDATE, EXPIREDATE_DESC,
CREATEDATE, or CREATEDATE_DESC

CLI Example:

salt 'my-minion' namecheap_domains.get_list

	
salt.modules.namecheap_domains.get_tld_list()

	Returns a list of TLDs as objects

CLI Example:

salt 'my-minion' namecheap_domains.get_tld_list

	
salt.modules.namecheap_domains.reactivate(domain_name)

	Try to reactivate the expired domain name

Returns the following information:

	Whether or not the domain was reactivated successfully

	The amount charged for reactivation

	The order ID

	The transaction ID

CLI Example:

salt 'my-minion' namecheap_domains.reactivate my-domain-name

	
salt.modules.namecheap_domains.renew(domain_name, years, promotion_code=None)

	Try to renew the specified expiring domain name for a specified number of years

	domain_name
	The domain name to be renewed

	years
	Number of years to renew

Returns the following information:

	Whether or not the domain was renewed successfully

	The domain ID

	The order ID

	The transaction ID

	The amount charged for renewal

CLI Example:

salt 'my-minion' namecheap_domains.renew my-domain-name 5

salt.modules.namecheap_domains_dns

Namecheap DNS Management

New in version 2017.7.0.

Prerequisites

This module uses the requests Python module to communicate to the namecheap
API.

Configuration

The Namecheap username, API key and URL should be set in the minion configuration
file, or in the Pillar data.

namecheap.name: companyname
namecheap.key: a1b2c3d4e5f67a8b9c0d1e2f3
namecheap.client_ip: 162.155.30.172
#Real url
namecheap.url: https://api.namecheap.com/xml.response
#Sandbox url
#namecheap.url: https://api.sandbox.namecheap.xml.response

	
salt.modules.namecheap_domains_dns.get_hosts(sld, tld)

	Retrieves DNS host record settings for the requested domain.

returns a dictionary of information about the requested domain

	sld
	SLD of the domain name

	tld
	TLD of the domain name

CLI Example:

salt 'my-minion' namecheap_domains_dns.get_hosts sld tld

	
salt.modules.namecheap_domains_dns.get_list(sld, tld)

	Gets a list of DNS servers associated with the requested domain.

returns a dictionary of information about requested domain

	sld
	SLD of the domain name

	tld
	TLD of the domain name

CLI Example:

salt 'my-minion' namecheap_domains_dns.get_list sld tld

	
salt.modules.namecheap_domains_dns.set_custom(sld, tld, nameservers)

	Sets domain to use custom DNS servers.

returns True if the custom nameservers were set successfully

	sld
	SLD of the domain name

	tld
	TLD of the domain name

	nameservers
	array of strings List of nameservers to be associated with this domain

CLI Example:

salt 'my-minion' namecheap_domains_dns.set_custom sld tld nameserver

	
salt.modules.namecheap_domains_dns.set_default(sld, tld)

	Sets domain to use namecheap default DNS servers. Required for free
services like Host record management, URL forwarding, email forwarding,
dynamic DNS and other value added services.

	sld
	SLD of the domain name

	tld
	TLD of the domain name

Returns True if the domain was successfully pointed at the default DNS
servers.

CLI Example:

salt 'my-minion' namecheap_domains_dns.set_default sld tld

	
salt.modules.namecheap_domains_dns.set_hosts(sld, tld, hosts)

	Sets DNS host records settings for the requested domain.

returns True if the host records were set successfully

	sld
	SLD of the domain name

	tld
	TLD of the domain name

	hosts
	Must be passed as a list of Python dictionaries, with each dictionary
containing the following keys:

	hostname

	recordtype - One of A, AAAA, CNAME, MX, MXE,
TXT, URL, URL301, or FRAME

	address - URL or IP address

	ttl - An integer between 60 and 60000 (default: 1800)

Additionally, the mxpref key can be present, but must be accompanied
by an emailtype key.

CLI Example:

salt 'my-minion' namecheap_domains_dns.set_hosts sld tld hosts

salt.modules.namecheap_domains_ns

Namecheap Nameserver Management

New in version 2017.7.0.

Prerequisites

This module uses the requests Python module to communicate to the namecheap
API.

Configuration

The Namecheap username, API key and URL should be set in the minion configuration
file, or in the Pillar data.

namecheap.name: companyname
namecheap.key: a1b2c3d4e5f67a8b9c0d1e2f3
namecheap.client_ip: 162.155.30.172
#Real url
namecheap.url: https://api.namecheap.com/xml.response
#Sandbox url
#namecheap.url: https://api.sandbox.namecheap.xml.response

	
salt.modules.namecheap_domains_ns.create(sld, tld, nameserver, ip)

	Creates a new nameserver. Returns True if the nameserver was created
successfully.

	sld
	SLD of the domain name

	tld
	TLD of the domain name

	nameserver
	Nameserver to create

	ip
	Nameserver IP address

CLI Example:

salt '*' namecheap_domains_ns.create sld tld nameserver ip

	
salt.modules.namecheap_domains_ns.delete(sld, tld, nameserver)

	Deletes a nameserver. Returns True if the nameserver was deleted
successfully

	sld
	SLD of the domain name

	tld
	TLD of the domain name

	nameserver
	Nameserver to delete

CLI Example:

salt '*' namecheap_domains_ns.delete sld tld nameserver

	
salt.modules.namecheap_domains_ns.get_info(sld, tld, nameserver)

	Retrieves information about a registered nameserver. Returns the following
information:

	IP Address set for the nameserver

	Domain name which was queried

	A list of nameservers and their statuses

	sld
	SLD of the domain name

	tld
	TLD of the domain name

	nameserver
	Nameserver to retrieve

CLI Example:

salt '*' namecheap_domains_ns.get_info sld tld nameserver

	
salt.modules.namecheap_domains_ns.update(sld, tld, nameserver, old_ip, new_ip)

	Deletes a nameserver. Returns True if the nameserver was updated
successfully.

	sld
	SLD of the domain name

	tld
	TLD of the domain name

	nameserver
	Nameserver to create

	old_ip
	Current ip address

	new_ip
	New ip address

CLI Example:

salt '*' namecheap_domains_ns.update sld tld nameserver old_ip new_ip

salt.modules.namecheap_ssl

Namecheap SSL Certificate Management

New in version 2017.7.0.

Prerequisites

This module uses the requests Python module to communicate to the namecheap
API.

Configuration

The Namecheap username, API key and URL should be set in the minion configuration
file, or in the Pillar data.

namecheap.name: companyname
namecheap.key: a1b2c3d4e5f67a8b9c0d1e2f3
namecheap.client_ip: 162.155.30.172
#Real url
namecheap.url: https://api.namecheap.com/xml.response
#Sandbox url
#namecheap.url: https://api.sandbox.namecheap.xml.response

	
salt.modules.namecheap_ssl.activate(csr_file, certificate_id, web_server_type, approver_email=None, http_dc_validation=False, **kwargs)

	Activates a newly-purchased SSL certificate. Returns a dictionary of result
values.

	csr_file
	Path to Certificate Signing Request file

	certificate_id
	Unique ID of the SSL certificate you wish to activate

	web_server_type
	The type of certificate format to return. Possible values include:

	apache2

	apacheapachessl

	apacheopenssl

	apacheraven

	apachessl

	apachessleay

	c2net

	cobaltseries

	cpanel

	domino

	dominogo4625

	dominogo4626

	ensim

	hsphere

	ibmhttp

	iis

	iis4

	iis5

	iplanet

	ipswitch

	netscape

	other

	plesk

	tomcat

	weblogic

	website

	webstar

	zeusv3

	approver_email
	The email ID which is on the approver email list.

Note

http_dc_validation must be set to False if this option is
used.

	http_dc_validationFalse
	Whether or not to activate using HTTP-based validation.

Note

For other parameters which may be required, see here [https://www.namecheap.com/support/api/methods/ssl/activate.aspx].

CLI Example:

salt 'my-minion' namecheap_ssl.activate my-csr-file my-cert-id apachessl

	
salt.modules.namecheap_ssl.create(years, certificate_type, promotion_code=None, sans_to_add=None)

	Creates a new SSL certificate. Returns the following information:

	Whether or not the SSL order was successful

	The certificate ID

	The order ID

	The transaction ID

	The amount charged for the order

	The date on which the certificate was created

	The date on which the certificate will expire

	The type of SSL certificate

	The number of years for which the certificate was purchased

	The current status of the SSL certificate

	years1
	Number of years to register

	certificate_type
	Type of SSL Certificate. Possible values include:

	EV Multi Domain SSL

	EV SSL

	EV SSL SGC

	EssentialSSL

	EssentialSSL Wildcard

	InstantSSL

	InstantSSL Pro

	Multi Domain SSL

	PositiveSSL

	PositiveSSL Multi Domain

	PositiveSSL Wildcard

	PremiumSSL

	PremiumSSL Wildcard

	QuickSSL Premium

	RapidSSL

	RapidSSL Wildcard

	SGC Supercert

	SSL Web Server

	SSL Webserver EV

	SSL123

	Secure Site

	Secure Site Pro

	Secure Site Pro with EV

	Secure Site with EV

	True BusinessID

	True BusinessID Multi Domain

	True BusinessID Wildcard

	True BusinessID with EV

	True BusinessID with EV Multi Domain

	Unified Communications

	promotional_code
	An optional promo code to use when creating the certificate

	sans_to_add0
	This parameter defines the number of add-on domains to be purchased in
addition to the default number of domains included with a multi-domain
certificate. Each certificate that supports SANs has the default number
of domains included. You may check the default number of domains
included and the maximum number of domains that can be added to it in
the table below.

	Provider

	Product name

	Default number of
domains (domain from
CSR is counted here)

	Maximum number of
total domains

	Maximum number
of domains
that can be
passed in
sans_to_add
parameter

	Comodo

	PositiveSSL
Multi-Domain

	3

	100

	97

	Comodo

	Multi-Domain
SSL

	3

	100

	97

	Comodo

	EV Multi-
Domain SSL

	3

	100

	97

	Comodo

	Unified
Communications

	3

	100

	97

	GeoTrust

	QuickSSL
Premium

	1

	1 domain +
4 subdomains

	The only
supported
value is 4

	GeoTrust

	True
BusinessID
with EV
Multi-Domain

	5

	25

	20

	GeoTrust

	True Business
ID Multi-
Domain

	5

	25

	20

	Thawte

	SSL Web
Server

	1

	25

	24

	Thawte

	SSL Web
Server with
EV

	1

	25

	24

	Thawte

	SGC Supercerts

	1

	25

	24

	Symantec

	Secure Site
Pro with EV

	1

	25

	24

	Symantec

	Secure Site
with EV

	1

	25

	24

	Symantec

	Secure Site

	1

	25

	24

	Symantec

	Secure Site
Pro

	1

	25

	24

CLI Example:

salt 'my-minion' namecheap_ssl.create 2 RapidSSL

	
salt.modules.namecheap_ssl.get_info(certificate_id, returncertificate=False, returntype=None)

	Retrieves information about the requested SSL certificate. Returns a
dictionary of information about the SSL certificate with two keys:

	ssl - Contains the metadata information

	certificate - Contains the details for the certificate such as the
CSR, Approver, and certificate data

	certificate_id
	Unique ID of the SSL certificate

	returncertificateFalse
	Set to True to ask for the certificate in response

	returntype
	Optional type for the returned certificate. Can be either "Individual"
(for X.509 format) or "PKCS7"

Note

Required if returncertificate is True

CLI Example:

salt 'my-minion' namecheap_ssl.get_info my-cert-id

	
salt.modules.namecheap_ssl.get_list(**kwargs)

	Returns a list of SSL certificates for a particular user

	ListTypeAll
	Possible values:

	All

	Processing

	EmailSent

	TechnicalProblem

	InProgress

	Completed

	Deactivated

	Active

	Cancelled

	NewPurchase

	NewRenewal

	SearchTerm
	Keyword to look for on the SSL list

	Page1
	Page number to return

	PageSize20
	Total number of SSL certificates to display per page (minimum:
10, maximum: 100)

	SoryBy
	One of PURCHASEDATE, PURCHASEDATE_DESC, SSLTYPE,
SSLTYPE_DESC, EXPIREDATETIME, EXPIREDATETIME_DESC,
Host_Name, or Host_Name_DESC

CLI Example:

salt 'my-minion' namecheap_ssl.get_list Processing

	
salt.modules.namecheap_ssl.parse_csr(csr_file, certificate_type, http_dc_validation=False)

	Parses the CSR. Returns a dictionary of result values.

	csr_file
	Path to Certificate Signing Request file

	certificate_type
	Type of SSL Certificate. Possible values include:

	EV Multi Domain SSL

	EV SSL

	EV SSL SGC

	EssentialSSL

	EssentialSSL Wildcard

	InstantSSL

	InstantSSL Pro

	Multi Domain SSL

	PositiveSSL

	PositiveSSL Multi Domain

	PositiveSSL Wildcard

	PremiumSSL

	PremiumSSL Wildcard

	QuickSSL Premium

	RapidSSL

	RapidSSL Wildcard

	SGC Supercert

	SSL Web Server

	SSL Webserver EV

	SSL123

	Secure Site

	Secure Site Pro

	Secure Site Pro with EV

	Secure Site with EV

	True BusinessID

	True BusinessID Multi Domain

	True BusinessID Wildcard

	True BusinessID with EV

	True BusinessID with EV Multi Domain

	Unified Communications

	http_dc_validationFalse
	Set to True if a Comodo certificate and validation should be
done with files instead of emails and to return the info to do so

CLI Example:

salt 'my-minion' namecheap_ssl.parse_csr my-csr-file PremiumSSL

	
salt.modules.namecheap_ssl.reissue(csr_file, certificate_id, web_server_type, approver_email=None, http_dc_validation=False, **kwargs)

	Reissues a purchased SSL certificate. Returns a dictionary of result
values.

	csr_file
	Path to Certificate Signing Request file

	certificate_id
	Unique ID of the SSL certificate you wish to activate

	web_server_type
	The type of certificate format to return. Possible values include:

	apache2

	apacheapachessl

	apacheopenssl

	apacheraven

	apachessl

	apachessleay

	c2net

	cobaltseries

	cpanel

	domino

	dominogo4625

	dominogo4626

	ensim

	hsphere

	ibmhttp

	iis

	iis4

	iis5

	iplanet

	ipswitch

	netscape

	other

	plesk

	tomcat

	weblogic

	website

	webstar

	zeusv3

	approver_email
	The email ID which is on the approver email list.

Note

http_dc_validation must be set to False if this option is
used.

	http_dc_validationFalse
	Whether or not to activate using HTTP-based validation.

Note

For other parameters which may be required, see here [https://www.namecheap.com/support/api/methods/ssl/reissue.aspx].

CLI Example:

salt 'my-minion' namecheap_ssl.reissue my-csr-file my-cert-id apachessl

	
salt.modules.namecheap_ssl.renew(years, certificate_id, certificate_type, promotion_code=None)

	Renews an SSL certificate if it is ACTIVE and Expires <= 30 days. Returns
the following information:

	The certificate ID

	The order ID

	The transaction ID

	The amount charged for the order

	years1
	Number of years to register

	certificate_id
	Unique ID of the SSL certificate you wish to renew

	certificate_type
	Type of SSL Certificate. Possible values include:

	EV Multi Domain SSL

	EV SSL

	EV SSL SGC

	EssentialSSL

	EssentialSSL Wildcard

	InstantSSL

	InstantSSL Pro

	Multi Domain SSL

	PositiveSSL

	PositiveSSL Multi Domain

	PositiveSSL Wildcard

	PremiumSSL

	PremiumSSL Wildcard

	QuickSSL Premium

	RapidSSL

	RapidSSL Wildcard

	SGC Supercert

	SSL Web Server

	SSL Webserver EV

	SSL123

	Secure Site

	Secure Site Pro

	Secure Site Pro with EV

	Secure Site with EV

	True BusinessID

	True BusinessID Multi Domain

	True BusinessID Wildcard

	True BusinessID with EV

	True BusinessID with EV Multi Domain

	Unified Communications

	promotional_code
	An optional promo code to use when renewing the certificate

CLI Example:

salt 'my-minion' namecheap_ssl.renew 1 my-cert-id RapidSSL

salt.modules.namecheap_users

Namecheap User Management

New in version 2017.7.0.

Prerequisites

This module uses the requests Python module to communicate to the namecheap
API.

Configuration

The Namecheap username, API key and URL should be set in the minion configuration
file, or in the Pillar data.

namecheap.name: companyname
namecheap.key: a1b2c3d4e5f67a8b9c0d1e2f3
namecheap.client_ip: 162.155.30.172
#Real url
namecheap.url: https://api.namecheap.com/xml.response
#Sandbox url
#namecheap.url: https://api.sandbox.namecheap.xml.response

	
salt.modules.namecheap_users.check_balances(minimum=100)

	Checks if the provided minimum value is present in the user's account.

Returns a boolean. Returns False if the user's account balance is less
than the provided minimum or True if greater than the minimum.

	minimum100
	The value to check

CLI Example:

salt 'my-minion' namecheap_users.check_balances
salt 'my-minion' namecheap_users.check_balances minimum=150

	
salt.modules.namecheap_users.get_balances()

	Gets information about fund in the user's account. This method returns the
following information: Available Balance, Account Balance, Earned Amount,
Withdrawable Amount and Funds Required for AutoRenew.

Note

If a domain setup with automatic renewal is expiring within the next 90
days, the FundsRequiredForAutoRenew attribute shows the amount needed
in your Namecheap account to complete auto renewal.

CLI Example:

salt 'my-minion' namecheap_users.get_balances

salt.modules.napalm_bgp

NAPALM BGP

Manages BGP configuration on network devices and provides statistics.

	codeauthor:

	Mircea Ulinic <ping@mirceaulinic.net> & Jerome Fleury <jf@cloudflare.com>

	maturity:

	new

	depends:

	napalm

	platform:

	unix

Dependencies

	napalm proxy minion

New in version 2016.11.0.

	
salt.modules.napalm_bgp.config(group=None, neighbor=None, **kwargs)

	Provides the BGP configuration on the device.

	Parameters:

	
	group -- Name of the group selected to display the configuration.

	neighbor -- IP Address of the neighbor to display the configuration.
If the group parameter is not specified, the neighbor setting will be
ignored.

	Returns:

	A dictionary containing the BGP configuration from the network
device. The keys of the main dictionary are the group names.

Each group has the following properties:

	type (string)

	description (string)

	apply_groups (string list)

	multihop_ttl (int)

	multipath (True/False)

	local_address (string)

	local_as (int)

	remote_as (int)

	import_policy (string)

	export_policy (string)

	remove_private_as (True/False)

	prefix_limit (dictionary)

	neighbors (dictionary)

Each neighbor in the dictionary of neighbors provides:

	description (string)

	import_policy (string)

	export_policy (string)

	local_address (string)

	local_as (int)

	remote_as (int)

	authentication_key (string)

	prefix_limit (dictionary)

	route_reflector_client (True/False)

	nhs (True/False)

CLI Example:

salt '*' bgp.config # entire BGP config
salt '*' bgp.config PEERS-GROUP-NAME # provides detail only about BGP group PEERS-GROUP-NAME
salt '*' bgp.config PEERS-GROUP-NAME 172.17.17.1 # provides details only about BGP neighbor 172.17.17.1,
configured in the group PEERS-GROUP-NAME

Output Example:

{
 'PEERS-GROUP-NAME':{
 'type' : 'external',
 'description' : 'Here we should have a nice description',
 'apply_groups' : ['BGP-PREFIX-LIMIT'],
 'import_policy' : 'PUBLIC-PEER-IN',
 'export_policy' : 'PUBLIC-PEER-OUT',
 'remove_private': True,
 'multipath' : True,
 'multihop_ttl' : 30,
 'neighbors' : {
 '192.168.0.1': {
 'description' : 'Facebook [CDN]',
 'prefix_limit' : {
 'inet': {
 'unicast': {
 'limit': 100,
 'teardown': {
 'threshold' : 95,
 'timeout' : 5
 }
 }
 }
 }
 'peer-as' : 32934,
 'route_reflector': False,
 'nhs' : True
 },
 '172.17.17.1': {
 'description' : 'Twitter [CDN]',
 'prefix_limit' : {
 'inet': {
 'unicast': {
 'limit': 500,
 'no-validate': 'IMPORT-FLOW-ROUTES'
 }
 }
 }
 'peer_as' : 13414
 'route_reflector': False,
 'nhs' : False
 }
 }
 }
}

	
salt.modules.napalm_bgp.neighbors(neighbor=None, **kwargs)

	Provides details regarding the BGP sessions configured on the network device.

	Parameters:

	neighbor -- IP Address of a specific neighbor.

	Returns:

	A dictionary with the statistics of the all/selected BGP
neighbors. Outer dictionary keys represent the VRF name. Keys of inner
dictionary represent the AS numbers, while the values are lists of
dictionaries, having the following keys:

	up (True/False)

	local_as (int)

	remote_as (int)

	local_address (string)

	routing_table (string)

	local_address_configured (True/False)

	local_port (int)

	remote_address (string)

	remote_port (int)

	multihop (True/False)

	multipath (True/False)

	remove_private_as (True/False)

	import_policy (string)

	export_policy (string)

	input_messages (int)

	output_messages (int)

	input_updates (int)

	output_updates (int)

	messages_queued_out (int)

	connection_state (string)

	previous_connection_state (string)

	last_event (string)

	suppress_4byte_as (True/False)

	local_as_prepend (True/False)

	holdtime (int)

	configured_holdtime (int)

	keepalive (int)

	configured_keepalive (int)

	active_prefix_count (int)

	received_prefix_count (int)

	accepted_prefix_count (int)

	suppressed_prefix_count (int)

	advertised_prefix_count (int)

	flap_count (int)

CLI Example:

salt '*' bgp.neighbors # all neighbors
salt '*' bgp.neighbors 172.17.17.1 # only session with BGP neighbor(s) 172.17.17.1

Output Example:

{
 'default': {
 8121: [
 {
 'up' : True,
 'local_as' : 13335,
 'remote_as' : 8121,
 'local_address' : '172.101.76.1',
 'local_address_configured' : True,
 'local_port' : 179,
 'remote_address' : '192.247.78.0',
 'router_id' : '192.168.0.1',
 'remote_port' : 58380,
 'multihop' : False,
 'import_policy' : '4-NTT-TRANSIT-IN',
 'export_policy' : '4-NTT-TRANSIT-OUT',
 'input_messages' : 123,
 'output_messages' : 13,
 'input_updates' : 123,
 'output_updates' : 5,
 'messages_queued_out' : 23,
 'connection_state' : 'Established',
 'previous_connection_state' : 'EstabSync',
 'last_event' : 'RecvKeepAlive',
 'suppress_4byte_as' : False,
 'local_as_prepend' : False,
 'holdtime' : 90,
 'configured_holdtime' : 90,
 'keepalive' : 30,
 'configured_keepalive' : 30,
 'active_prefix_count' : 132808,
 'received_prefix_count' : 566739,
 'accepted_prefix_count' : 566479,
 'suppressed_prefix_count' : 0,
 'advertise_prefix_count' : 0,
 'flap_count' : 27
 }
]
 }
}

salt.modules.napalm_formula

NAPALM Formula helpers

New in version 2019.2.0.

This is an Execution Module providing helpers for various NAPALM formulas,
e.g., napalm-interfaces-formula, napalm-bgp-formula, napalm-ntp-formula etc.,
meant to provide various helper functions to make the templates more readable.

	
salt.modules.napalm_formula.container_path(model, key=None, container=None, delim=':')

	Return the list of all the possible paths in a container, down to the
config container.
This function can be used to verify that the model is a Python object
correctly structured and respecting the OpenConfig hierarchy.

	model
	The OpenConfig-structured object to inspect.

	delim: :
	The key delimiter. In particular cases, it is indicated to use //
as : might be already used in various cases, e.g., IPv6 addresses,
interface name (e.g., Juniper QFX series), etc.

CLI Example:

salt '*' napalm_formula.container_path "{'interfaces': {'interface': {'Ethernet1': {'config': {'name': 'Ethernet1'}}}}}"

The example above would return a list with the following element:
interfaces:interface:Ethernet1:config which is the only possible path
in that hierarchy.

Other output examples:

- interfaces:interface:Ethernet1:config
- interfaces:interface:Ethernet1:subinterfaces:subinterface:0:config
- interfaces:interface:Ethernet2:config

	
salt.modules.napalm_formula.defaults(model, defaults_, delim='//', flipped_merge=False)

	Apply the defaults to a Python dictionary having the structure as described
in the OpenConfig standards.

	model
	The OpenConfig model to apply the defaults to.

	defaults
	The dictionary of defaults. This argument must equally be structured
with respect to the OpenConfig standards.

For ease of use, the keys of these support glob matching, therefore
we don't have to provide the defaults for each entity but only for
the entity type. See an example below.

	delim: //
	The key delimiter to use. Generally, // should cover all the possible
cases, and you don't need to override this value.

	flipped_merge: False
	Whether should merge the model into the defaults, or the defaults
into the model. Default: False (merge the model into the defaults,
i.e., any defaults would be overridden by the values from the model).

CLI Example:

salt '*' napalm_formula.defaults "{'interfaces': {'interface': {'Ethernet1': {'config': {'name': 'Ethernet1'}}}}}" "{'interfaces': {'interface': {'*': {'config': {'enabled': True}}}}}"

As one can notice in the example above, the * corresponds to the
interface name, therefore, the defaults will be applied on all the
interfaces.

	
salt.modules.napalm_formula.dictupdate(dest, upd, recursive_update=True, merge_lists=False)

	Recursive version of the default dict.update

Merges upd recursively into dest

If recursive_update=False, will use the classic dict.update, or fall back
on a manual merge (helpful for non-dict types like FunctionWrapper).

If merge_lists=True, will aggregate list object types instead of replace.
The list in upd is added to the list in dest, so the resulting list
is dest[key] + upd[key]. This behaviour is only activated when
recursive_update=True. By default merge_lists=False.

	
salt.modules.napalm_formula.render_field(dictionary, field, prepend=None, append=None, quotes=False, **opts)

	Render a field found under the field level of the hierarchy in the
dictionary object.
This is useful to render a field in a Jinja template without worrying that
the hierarchy might not exist. For example if we do the following in Jinja:
{{ interfaces.interface.Ethernet5.config.description }} for the
following object:
{'interfaces': {'interface': {'Ethernet1': {'config': {'enabled': True}}}}}
it would error, as the Ethernet5 key does not exist.
With this helper, we can skip this and avoid existence checks. This must be
however used with care.

	dictionary
	The dictionary to traverse.

	field
	The key name or part to traverse in the dictionary.

	prepend: None
	The text to prepend in front of the text. Usually, we need to have the
name of the field too when generating the configuration.

	append: None
	Text to append at the end.

	quotes: False
	Whether should wrap the text around quotes.

CLI Example:

salt '*' napalm_formula.render_field "{'enabled': True}" enabled
This would return the value of the ``enabled`` leaf key
salt '*' napalm_formula.render_field "{'enabled': True}" description
This would not error

Jinja usage example:

{%- set config = {'enabled': True, 'description': 'Interface description'} %}
{{ salt.napalm_formula.render_field(config, 'description', quotes=True) }}

The example above would be rendered on Arista / Cisco as:

description "Interface description"

While on Junos (the semicolon is important to be added, otherwise the
configuration won't be accepted by Junos):

description "Interface description";

	
salt.modules.napalm_formula.render_fields(dictionary, *fields, **opts)

	This function works similarly to
render_field but for a
list of fields from the same dictionary, rendering, indenting and
distributing them on separate lines.

	dictionary
	The dictionary to traverse.

	fields
	A list of field names or paths in the dictionary.

	indent: 0
	The indentation to use, prepended to the rendered field.

	separator: \n
	The separator to use between fields.

CLI Example:

salt '*' napalm_formula.render_fields "{'mtu': 68, 'description': 'Interface description'}" mtu description

Jinja usage example:

{%- set config={'mtu': 68, 'description': 'Interface description'} %}
{{ salt.napalm_formula.render_fields(config, 'mtu', 'description', quotes=True) }}

The Jinja example above would generate the following configuration:

mtu "68"
description "Interface description"

	
salt.modules.napalm_formula.setval(key, val, dict_=None, delim=':')

	Set a value under the dictionary hierarchy identified
under the key. The target 'foo/bar/baz' returns the
dictionary hierarchy {'foo': {'bar': {'baz': {}}}}.

Note

Currently this doesn't work with integers, i.e.
cannot build lists dynamically.

CLI Example:

salt '*' formula.setval foo:baz:bar True

	
salt.modules.napalm_formula.traverse(data, key, default=None, delimiter=':')

	Traverse a dict or list using a colon-delimited (or otherwise delimited,
using the delimiter param) target string. The target foo:bar:0 will
return data['foo']['bar'][0] if this value exists, and will otherwise
return the dict in the default argument.
Function will automatically determine the target type.
The target foo:bar:0 will return data['foo']['bar'][0] if data like
{'foo':{'bar':['baz']}} , if data like {'foo':{'bar':{'0':'baz'}}}
then return data['foo']['bar']['0']

CLI Example:

salt '*' napalm_formula.traverse "{'foo': {'bar': {'baz': True}}}" foo:baz:bar

salt.modules.napalm_mod

NAPALM helpers

Helpers for the NAPALM modules.

New in version 2017.7.0.

	
salt.modules.napalm_mod.alive(**kwargs)

	Returns the alive status of the connection layer.
The output is a dictionary under the usual dictionary
output of the NAPALM modules.

CLI Example:

salt '*' napalm.alive

Output Example:

result: True
out:
 is_alive: False
comment: ''

	
salt.modules.napalm_mod.call(method, *args, **kwargs)

	Execute arbitrary methods from the NAPALM library.
To see the expected output, please consult the NAPALM documentation.

Note

This feature is not recommended to be used in production.
It should be used for testing only!

CLI Example:

salt '*' napalm.call get_lldp_neighbors
salt '*' napalm.call get_firewall_policies
salt '*' napalm.call get_bgp_config group='my-group'

	
salt.modules.napalm_mod.compliance_report(filepath=None, string=None, renderer='jinja|yaml', **kwargs)

	Return the compliance report.

	filepath
	The absolute path to the validation file.

Changed in version 2019.2.0.

Beginning with release codename 2019.2.0, this function has been
enhanced, to be able to leverage the multi-engine template rendering
of Salt, besides the possibility to retrieve the file source from
remote systems, the URL schemes supported being:

	salt://

	http:// and https://

	ftp://

	s3://

	swift:/

Or on the local file system (on the Minion).

Note

The rendering result does not necessarily need to be YAML, instead
it can be any format interpreted by Salt's rendering pipeline
(including pure Python).

	string
	
New in version 2019.2.0.

The compliance report send as inline string, to be used as the file to
send through the renderer system. Note, not all renderer modules can
work with strings; the 'py' renderer requires a file, for example.

	renderer: jinja|yaml
	
New in version 2019.2.0.

The renderer pipe to send the file through; this is overridden by a
"she-bang" at the top of the file.

	kwargs
	
Changed in version 2019.2.0.

Keyword args to pass to Salt's compile_template() function.

CLI Example:

salt '*' napalm.compliance_report ~/validate.yml
salt '*' napalm.compliance_report salt://path/to/validator.sls

Validation File Example (pure YAML):

- get_facts:
 os_version: 4.17

- get_interfaces_ip:
 Management1:
 ipv4:
 10.0.2.14:
 prefix_length: 24
 _mode: strict

Validation File Example (as Jinja + YAML):

- get_facts:
 os_version: {{ grains.version }}
- get_interfaces_ip:
 Loopback0:
 ipv4:
 {{ grains.lo0.ipv4 }}:
 prefix_length: 24
 _mode: strict
- get_bgp_neighbors: {{ pillar.bgp.neighbors }}

Output Example:

device1:

 comment:
 out:

 complies:
 False
 get_facts:

 complies:
 False
 extra:
 missing:
 present:

 os_version:

 actual_value:
 15.1F6-S1.4
 complies:
 False
 nested:
 False
 get_interfaces_ip:

 complies:
 False
 extra:
 missing:
 - Management1
 present:

 skipped:
 result:
 True

	
salt.modules.napalm_mod.config_diff_text(source1='candidate', candidate_path=None, source2='running', running_path=None)

	
New in version 2019.2.0.

Return the diff, as text, between the two different configuration sources.
The sources can be either specified using the source1 and source2
arguments when retrieving from the managed network device.

	source1: candidate
	The source from where to retrieve the configuration to be compared with.
Available options: candidate, running, startup. Default:
candidate.

	candidate_path
	Absolute or remote path from where to load the candidate configuration
text. This argument allows any URI supported by
cp.get_url), e.g., salt://,
https://, s3://, ftp:/, etc.

	source2: running
	The source from where to retrieve the configuration to compare with.
Available options: candidate, running, startup. Default:
running.

	running_path
	Absolute or remote path from where to load the running configuration
text. This argument allows any URI supported by
cp.get_url), e.g., salt://,
https://, s3://, ftp:/, etc.

	saltenv: base
	Salt fileserver environment from which to retrieve the file.
Ignored if candidate_path or running_path is not a
salt:// URL.

CLI Example:

salt '*' napalm.config_diff_text
salt '*' napalm.config_diff_text candidate_path=https://bit.ly/2mAdq7z
Would compare the running config with the configuration available at
https://bit.ly/2mAdq7z

	
salt.modules.napalm_mod.config_diff_tree(source1='candidate', candidate_path=None, source2='running', running_path=None)

	
New in version 2019.2.0.

Return the diff, as Python dictionary, between two different sources.
The sources can be either specified using the source1 and source2
arguments when retrieving from the managed network device.

	source1: candidate
	The source from where to retrieve the configuration to be compared with.
Available options: candidate, running, startup. Default:
candidate.

	candidate_path
	Absolute or remote path from where to load the candidate configuration
text. This argument allows any URI supported by
cp.get_url), e.g., salt://,
https://, s3://, ftp:/, etc.

	source2: running
	The source from where to retrieve the configuration to compare with.
Available options: candidate, running, startup. Default:
running.

	running_path
	Absolute or remote path from where to load the running configuration
text. This argument allows any URI supported by
cp.get_url), e.g., salt://,
https://, s3://, ftp:/, etc.

	saltenv: base
	Salt fileserver environment from which to retrieve the file.
Ignored if candidate_path or running_path is not a
salt:// URL.

CLI Example:

salt '*' napalm.config_diff_text
salt '*' napalm.config_diff_text candidate_path=https://bit.ly/2mAdq7z
Would compare the running config with the configuration available at
https://bit.ly/2mAdq7z

CLI Example:

salt '*' napalm.config_diff_tree
salt '*' napalm.config_diff_tree running startup

	
salt.modules.napalm_mod.config_filter_lines(parent_regex, child_regex, source='running')

	
New in version 2019.2.0.

Return a list of detailed matches, for the configuration blocks (parent-child
relationship) whose parent respects the regular expressions configured via
the parent_regex argument, and the child matches the child_regex
regular expression. The result is a list of dictionaries with the following
keys:

	match: a boolean value that tells whether child_regex matched any
children lines.

	parent: the parent line (as text).

	child: the child line (as text). If no child line matched, this field
will be None.

Note

This function is only available only when the underlying library
ciscoconfparse [http://www.pennington.net/py/ciscoconfparse/index.html]
is installed. See
ciscoconfparse module for
more details.

	parent_regex
	The regular expression to match the parent configuration lines against.

	child_regex
	The regular expression to match the child configuration lines against.

	source: running
	The configuration type to retrieve from the network device. Default:
running. Available options: running, startup, candidate.

CLI Example:

salt '*' napalm.config_filter_lines '^interface' 'ip address'
salt '*' napalm.config_filter_lines '^interface' 'shutdown' source=candidate

	
salt.modules.napalm_mod.config_find_lines(regex, source='running')

	
New in version 2019.2.0.

Return the configuration lines that match the regular expressions from the
regex argument. The configuration is read from the network device
interrogated.

	regex
	The regular expression to match the configuration lines against.

	source: running
	The configuration type to retrieve from the network device. Default:
running. Available options: running, startup, candidate.

CLI Example:

salt '*' napalm.config_find_lines '^interface Ethernet1\d'

	
salt.modules.napalm_mod.config_lines_w_child(parent_regex, child_regex, source='running')

	

New in version 2019.2.0.

Return the configuration lines that match the regular expressions from the
parent_regex argument, having child lines matching child_regex.
The configuration is read from the network device interrogated.

Note

This function is only available only when the underlying library
ciscoconfparse [http://www.pennington.net/py/ciscoconfparse/index.html]
is installed. See
ciscoconfparse module for
more details.

	parent_regex
	The regular expression to match the parent configuration lines against.

	child_regex
	The regular expression to match the child configuration lines against.

	source: running
	The configuration type to retrieve from the network device. Default:
running. Available options: running, startup, candidate.

CLI Example:

salt '*' napalm.config_lines_w_child '^interface' 'ip address'
salt '*' napalm.config_lines_w_child '^interface' 'shutdown' source=candidate

	
salt.modules.napalm_mod.config_lines_wo_child(parent_regex, child_regex, source='running')

	

New in version 2019.2.0.

Return the configuration lines that match the regular expressions from the
parent_regex argument, having the child lines not matching
child_regex.
The configuration is read from the network device interrogated.

Note

This function is only available only when the underlying library
ciscoconfparse [http://www.pennington.net/py/ciscoconfparse/index.html]
is installed. See
ciscoconfparse module for
more details.

	parent_regex
	The regular expression to match the parent configuration lines against.

	child_regex
	The regular expression to match the child configuration lines against.

	source: running
	The configuration type to retrieve from the network device. Default:
running. Available options: running, startup, candidate.

CLI Example:

salt '*' napalm.config_lines_wo_child '^interface' 'ip address'
salt '*' napalm.config_lines_wo_child '^interface' 'shutdown' source=candidate

	
salt.modules.napalm_mod.config_merge_diff(source='running', merge_config=None, merge_path=None, saltenv='base')

	
New in version 2019.2.0.

Return the merge diff, as text, after merging the merge config into the
configuration source requested (without loading the config on the device).

	source: running
	The configuration type to retrieve from the network device. Default:
running. Available options: running, startup, candidate.

	merge_config
	The config to be merged into the initial config, sent as text. This
argument is ignored when merge_path is set.

	merge_path
	Absolute or remote path from where to load the merge configuration
text. This argument allows any URI supported by
cp.get_url), e.g., salt://,
https://, s3://, ftp:/, etc.

	saltenv: base
	Salt fileserver environment from which to retrieve the file.
Ignored if merge_path is not a salt:// URL.

CLI Example:

salt '*' napalm.config_merge_diff merge_path=salt://path/to/merge.cfg

	
salt.modules.napalm_mod.config_merge_text(source='running', merge_config=None, merge_path=None, saltenv='base')

	
New in version 2019.2.0.

Return the merge result of the configuration from source with the
merge configuration, as plain text (without loading the config on the
device).

	source: running
	The configuration type to retrieve from the network device. Default:
running. Available options: running, startup, candidate.

	merge_config
	The config to be merged into the initial config, sent as text. This
argument is ignored when merge_path is set.

	merge_path
	Absolute or remote path from where to load the merge configuration
text. This argument allows any URI supported by
cp.get_url), e.g., salt://,
https://, s3://, ftp:/, etc.

	saltenv: base
	Salt fileserver environment from which to retrieve the file.
Ignored if merge_path is not a salt:// URL.

CLI Example:

salt '*' napalm.config_merge_text merge_path=salt://path/to/merge.cfg

	
salt.modules.napalm_mod.config_merge_tree(source='running', merge_config=None, merge_path=None, saltenv='base')

	
New in version 2019.2.0.

Return the merge tree of the initial_config with the merge_config,
as a Python dictionary.

	source: running
	The configuration type to retrieve from the network device. Default:
running. Available options: running, startup, candidate.

	merge_config
	The config to be merged into the initial config, sent as text. This
argument is ignored when merge_path is set.

	merge_path
	Absolute or remote path from where to load the merge configuration
text. This argument allows any URI supported by
cp.get_url), e.g., salt://,
https://, s3://, ftp:/, etc.

	saltenv: base
	Salt fileserver environment from which to retrieve the file.
Ignored if merge_path is not a salt:// URL.

CLI Example:

salt '*' napalm.config_merge_tree merge_path=salt://path/to/merge.cfg

	
salt.modules.napalm_mod.config_tree(source='running', with_tags=False)

	
New in version 2019.2.0.

Transform Cisco IOS style configuration to structured Python dictionary.
Depending on the value of the with_tags argument, this function may
provide different views, valuable in different situations.

	source: running
	The configuration type to retrieve from the network device. Default:
running. Available options: running, startup, candidate.

	with_tags: False
	Whether this function should return a detailed view, with tags.

CLI Example:

salt '*' napalm.config_tree

	
salt.modules.napalm_mod.junos_call(fun, *args, **kwargs)

	
New in version 2019.2.0.

Execute an arbitrary function from the
junos execution module. To check what args
and kwargs you must send to the function, please consult the appropriate
documentation.

	fun
	The name of the function. E.g., set_hostname.

	args
	List of arguments to send to the junos function invoked.

	kwargs
	Dictionary of key-value arguments to send to the juno function
invoked.

CLI Example:

salt '*' napalm.junos_fun cli 'show system commit'

	
salt.modules.napalm_mod.junos_cli(command, format=None, dev_timeout=None, dest=None, **kwargs)

	
New in version 2019.2.0.

Execute a CLI command and return the output in the specified format.

	command
	The command to execute on the Junos CLI.

	format: text
	Format in which to get the CLI output (either text or xml).

	dev_timeout: 30
	The NETCONF RPC timeout (in seconds).

	dest
	Destination file where the RPC output is stored. Note that the file will
be stored on the Proxy Minion. To push the files to the Master, use
cp.push.

CLI Example:

salt '*' napalm.junos_cli 'show lldp neighbors'

	
salt.modules.napalm_mod.junos_commit(**kwargs)

	
New in version 2019.2.0.

Commit the changes loaded in the candidate configuration.

	dev_timeout: 30
	The NETCONF RPC timeout (in seconds).

	comment
	Provide a comment for the commit.

	confirm
	Provide time in minutes for commit confirmation. If this option is
specified, the commit will be rolled back in the specified amount of time
unless the commit is confirmed.

	sync: False
	When True, on dual control plane systems, requests that the candidate
configuration on one control plane be copied to the other control plane,
checked for correct syntax, and committed on both Routing Engines.

	force_sync: False
	When True, on dual control plane systems, force the candidate
configuration on one control plane to be copied to the other control
plane.

	full
	When True, requires all the daemons to check and evaluate the new
configuration.

	detail
	When True, return commit detail.

CLI Examples:

salt '*' napalm.junos_commit comment='Commitiing via Salt' detail=True
salt '*' napalm.junos_commit dev_timeout=60 confirm=10
salt '*' napalm.junos_commit sync=True dev_timeout=90

	
salt.modules.napalm_mod.junos_copy_file(src, dst, **kwargs)

	
New in version 2019.2.0.

Copies the file on the remote Junos device.

	src
	The source file path. This argument accepts the usual Salt URIs (e.g.,
salt://, http://, https://, s3://, ftp://, etc.).

	dst
	The destination path on the device where to copy the file.

CLI Example:

salt '*' napalm.junos_copy_file https://example.com/junos.cfg /var/tmp/myjunos.cfg

	
salt.modules.napalm_mod.junos_facts(**kwargs)

	
New in version 2019.2.0.

The complete list of Junos facts collected by junos-eznc.

CLI Example:

salt '*' napalm.junos_facts

	
salt.modules.napalm_mod.junos_install_os(path=None, **kwargs)

	
New in version 2019.2.0.

Installs the given image on the device.

	path
	The image file source. This argument supports the following URIs:

	Absolute path on the Minion.

	salt:// to fetch from the Salt fileserver.

	http:// and https://

	ftp://

	swift:/

	s3://

	dev_timeout: 30
	The NETCONF RPC timeout (in seconds)

	reboot: False
	Whether to reboot the device after the installation is complete.

	no_copy: False
	If True the software package will not be copied to the remote
device.

CLI Example:

salt '*' napalm.junos_install_os salt://images/junos_16_1.tgz reboot=True

	
salt.modules.napalm_mod.junos_rpc(cmd=None, dest=None, format=None, **kwargs)

	
New in version 2019.2.0.

Execute an RPC request on the remote Junos device.

	cmd
	The RPC request to the executed. To determine the RPC request, you can
check the from the command line of the device, by executing the usual
command followed by | display xml rpc, e.g.,
show lldp neighbors | display xml rpc.

	dest
	Destination file where the RPC output is stored. Note that the file will
be stored on the Proxy Minion. To push the files to the Master, use
cp.push Execution function.

	format: xml
	The format in which the RPC reply is received from the device.

	dev_timeout: 30
	The NETCONF RPC timeout.

	filter
	Used with the get-config RPC request to filter out the config tree.

	terse: False
	Whether to return terse output.

Note

Some RPC requests may not support this argument.

	interface_name
	Name of the interface to query.

CLI Example:

salt '*' napalm.junos_rpc get-lldp-neighbors-information
salt '*' napalm.junos_rpc get-config <configuration><system><ntp/></system></configuration>

	
salt.modules.napalm_mod.netmiko_args(**kwargs)

	
New in version 2019.2.0.

Return the key-value arguments used for the authentication arguments for
the netmiko module.

When running in a non-native NAPALM driver (e.g., panos, f5`, mos -
either from https://github.com/napalm-automation-community or defined in
user's own environment, one can specify the Netmiko device type (the
device_type argument) via the netmiko_device_type_map configuration
option / Pillar key, e.g.,

netmiko_device_type_map:
 f5: f5_ltm
 dellos10: dell_os10

The configuration above defines the mapping between the NAPALM os Grain
and the Netmiko device_type, e.g., when the NAPALM Grain is f5, it
would use the f5_ltm SSH Netmiko driver to execute commands over SSH on
the remote network device.

CLI Example:

salt '*' napalm.netmiko_args

	
salt.modules.napalm_mod.netmiko_call(method, *args, **kwargs)

	
New in version 2019.2.0.

Execute an arbitrary Netmiko method, passing the authentication details from
the existing NAPALM connection.

	method
	The name of the Netmiko method to execute.

	args
	List of arguments to send to the Netmiko method specified in method.

	kwargs
	Key-value arguments to send to the execution function specified in
method.

CLI Example:

salt '*' napalm.netmiko_call send_command 'show version'

	
salt.modules.napalm_mod.netmiko_commands(*commands, **kwargs)

	
New in version 2019.2.0.

Invoke one or more commands to be executed on the remote device, via Netmiko.
Returns a list of strings, with the output from each command.

	commands
	A list of commands to be executed.

	expect_string
	Regular expression pattern to use for determining end of output.
If left blank will default to being based on router prompt.

	delay_factor: 1
	Multiplying factor used to adjust delays (default: 1).

	max_loops: 500
	Controls wait time in conjunction with delay_factor. Will default to be
based upon self.timeout.

	auto_find_prompt: True
	Whether it should try to auto-detect the prompt (default: True).

	strip_prompt: True
	Remove the trailing router prompt from the output (default: True).

	strip_command: True
	Remove the echo of the command from the output (default: True).

	normalize: True
	Ensure the proper enter is sent at end of command (default: True).

	use_textfsm: False
	Process command output through TextFSM template (default: False).

CLI Example:

salt '*' napalm.netmiko_commands 'show version' 'show interfaces'

	
salt.modules.napalm_mod.netmiko_config(*config_commands, **kwargs)

	
New in version 2019.2.0.

Load a list of configuration commands on the remote device, via Netmiko.

Warning

Please remember that netmiko does not have any rollback safeguards
and any configuration change will be directly loaded into the running
config if the platform doesn't have the concept of candidate config.

On Junos, or other platforms that have this capability, the changes will
not be loaded into the running config, and the user must set the
commit argument to True to transfer the changes from the
candidate into the running config before exiting.

	config_commands
	A list of configuration commands to be loaded on the remote device.

	config_file
	Read the configuration commands from a file. The file can equally be a
template that can be rendered using the engine of choice (see
template_engine).

This can be specified using the absolute path to the file, or using one
of the following URL schemes:

	salt://, to fetch the file from the Salt fileserver.

	http:// or https://

	ftp://

	s3://

	swift://

	exit_config_mode: True
	Determines whether or not to exit config mode after complete.

	delay_factor: 1
	Factor to adjust delays.

	max_loops: 150
	Controls wait time in conjunction with delay_factor (default: 150).

	strip_prompt: False
	Determines whether or not to strip the prompt (default: False).

	strip_command: False
	Determines whether or not to strip the command (default: False).

	config_mode_command
	The command to enter into config mode.

	commit: False
	Commit the configuration changes before exiting the config mode. This
option is by default disabled, as many platforms don't have this
capability natively.

CLI Example:

salt '*' napalm.netmiko_config 'set system ntp peer 1.2.3.4' commit=True
salt '*' napalm.netmiko_config https://bit.ly/2sgljCB

	
salt.modules.napalm_mod.netmiko_fun(fun, *args, **kwargs)

	
New in version 2019.2.0.

Call an arbitrary function from the Netmiko
module, passing the authentication details from the existing NAPALM
connection.

	fun
	The name of the function from the Netmiko
to invoke.

	args
	List of arguments to send to the execution function specified in
fun.

	kwargs
	Key-value arguments to send to the execution function specified in
fun.

CLI Example:

salt '*' napalm.netmiko_fun send_command 'show version'

	
salt.modules.napalm_mod.netmiko_multi_call(*methods, **kwargs)

	
New in version 2019.2.0.

Execute a list of arbitrary Netmiko methods, passing the authentication
details from the existing NAPALM connection.

	methods
	List of dictionaries with the following keys:

	name: the name of the Netmiko function to invoke.

	args: list of arguments to send to the name method.

	kwargs: key-value arguments to send to the name method.

CLI Example:

salt '*' napalm.netmiko_multi_call "{'name': 'send_command', 'args': ['show version']}" "{'name': 'send_command', 'args': ['show interfaces']}"

	
salt.modules.napalm_mod.nxos_api_config(commands=None, config_file=None, template_engine='jinja', context=None, defaults=None, saltenv='base', **kwargs)

	

New in version 2019.2.0.

Configures the Nexus switch with the specified commands, via the NX-API.

	commands
	The list of configuration commands to load on the Nexus switch.

Note

This argument is ignored when config_file is specified.

	config_file
	The source file with the configuration commands to be sent to the device.

The file can also be a template that can be rendered using the template
engine of choice. This can be specified using the absolute path to the
file, or using one of the following URL schemes:

	salt://

	https://

	ftp:/

	s3:/

	swift://

	template_engine: jinja
	The template engine to use when rendering the source file. Default:
jinja. To simply fetch the file without attempting to render, set
this argument to None.

	context: None
	Variables to add to the template context.

	defaults: None
	Default values of the context dict.

	saltenv: base
	Salt fileserver environment from which to retrieve the file. Ignored if
config_file is not a salt:// URL.

CLI Example:

salt '*' napalm.nxos_api_config 'spanning-tree mode mstp'
salt '*' napalm.nxos_api_config config_file=https://bit.ly/2LGLcDy context="{'servers': ['1.2.3.4']}"

	
salt.modules.napalm_mod.nxos_api_rpc(commands, method='cli', **kwargs)

	
New in version 2019.2.0.

Execute an arbitrary RPC request via the Nexus API.

	commands
	The RPC commands to be executed.

	method: cli
	The type of the response, i.e., raw text (cli_ascii) or structured
document (cli). Defaults to cli (structured data).

CLI Example:

salt '*' napalm.nxos_api_rpc 'show version'

	
salt.modules.napalm_mod.nxos_api_show(commands, raw_text=True, **kwargs)

	
New in version 2019.2.0.

Execute one or more show (non-configuration) commands.

	commands
	The commands to be executed.

	raw_text: True
	Whether to return raw text or structured data.

CLI Example:

salt '*' napalm.nxos_api_show 'show version'
salt '*' napalm.nxos_api_show 'show bgp sessions' 'show processes' raw_text=False

	
salt.modules.napalm_mod.pyeapi_call(method, *args, **kwargs)

	
New in version 2019.2.0.

Invoke an arbitrary method from the pyeapi library.
This function forwards the existing connection details to the
pyeapi.run_commands
execution function.

	method
	The name of the pyeapi method to invoke.

	kwargs
	Key-value arguments to send to the pyeapi method.

CLI Example:

salt '*' napalm.pyeapi_call run_commands 'show version' encoding=text
salt '*' napalm.pyeapi_call get_config as_string=True

	
salt.modules.napalm_mod.pyeapi_config(commands=None, config_file=None, template_engine='jinja', context=None, defaults=None, saltenv='base', **kwargs)

	
New in version 2019.2.0.

Configures the Arista switch with the specified commands, via the pyeapi
library. This function forwards the existing connection details to the
pyeapi.run_commands
execution function.

	commands
	The list of configuration commands to load on the Arista switch.

Note

This argument is ignored when config_file is specified.

	config_file
	The source file with the configuration commands to be sent to the device.

The file can also be a template that can be rendered using the template
engine of choice. This can be specified using the absolute path to the
file, or using one of the following URL schemes:

	salt://

	https://

	ftp:/

	s3:/

	swift://

	template_engine: jinja
	The template engine to use when rendering the source file. Default:
jinja. To simply fetch the file without attempting to render, set
this argument to None.

	context: None
	Variables to add to the template context.

	defaults: None
	Default values of the context dict.

	saltenv: base
	Salt fileserver environment from which to retrieve the file. Ignored if
config_file is not a salt:// URL.

CLI Example:

salt '*' napalm.pyeapi_config 'ntp server 1.2.3.4'

	
salt.modules.napalm_mod.pyeapi_nxos_api_args(**prev_kwargs)

	
New in version 2019.2.0.

Return the key-value arguments used for the authentication arguments for the
pyeapi execution module.

CLI Example:

salt '*' napalm.pyeapi_nxos_api_args

	
salt.modules.napalm_mod.pyeapi_run_commands(*commands, **kwargs)

	Execute a list of commands on the Arista switch, via the pyeapi library.
This function forwards the existing connection details to the
pyeapi.run_commands
execution function.

	commands
	A list of commands to execute.

	encoding: json
	The requested encoding of the command output. Valid values for encoding
are json (default) or text.

CLI Example:

salt '*' napalm.pyeapi_run_commands 'show version' encoding=text
salt '*' napalm.pyeapi_run_commands 'show ip bgp neighbors'

	
salt.modules.napalm_mod.reconnect(force=False, **kwargs)

	Reconnect the NAPALM proxy when the connection
is dropped by the network device.
The connection can be forced to be restarted
using the force argument.

Note

This function can be used only when running proxy minions.

CLI Example:

salt '*' napalm.reconnect
salt '*' napalm.reconnect force=True

	
salt.modules.napalm_mod.rpc(command, **kwargs)

	
New in version 2019.2.0.

This is a wrapper to execute RPC requests on various network operating
systems supported by NAPALM, invoking the following functions for the NAPALM
native drivers:

	napalm.junos_rpc for junos

	napalm.pyeapi_run_commands
for eos

	napalm.nxos_api_rpc for
nxos

	napalm.netmiko_commands
for ios, iosxr, and nxos_ssh

	command
	The RPC command to execute. This depends on the nature of the operating
system.

	kwargs
	Key-value arguments to be sent to the underlying Execution function.

The function capabilities are extensible in the user environment via the
napalm_rpc_map configuration option / Pillar, e.g.,

napalm_rpc_map:
 f5: napalm.netmiko_commands
 panos: panos.call

The mapping above reads: when the NAPALM os Grain is f5, then call
napalm.netmiko_commands for RPC requests.

By default, if the user does not specify any map, non-native NAPALM drivers
will invoke the napalm.netmiko_commands Execution function.

CLI Example:

salt '*' napalm.rpc 'show version'
salt '*' napalm.rpc get-interfaces

	
salt.modules.napalm_mod.scp_get(remote_path, local_path='', recursive=False, preserve_times=False, **kwargs)

	
New in version 2019.2.0.

Transfer files and directories from remote network device to the localhost
of the Minion.

Note

This function is only available only when the underlying library
scp [https://github.com/jbardin/scp.py]
is installed. See
scp module for
more details.

	remote_path
	Path to retrieve from remote host. Since this is evaluated by scp on the
remote host, shell wildcards and environment variables may be used.

	recursive: False
	Transfer files and directories recursively.

	preserve_times: False
	Preserve mtime and atime of transferred files and directories.

	passphrase
	Used for decrypting private keys.

	pkey
	An optional private key to use for authentication.

	key_filename
	The filename, or list of filenames, of optional private key(s) and/or
certificates to try for authentication.

	timeout
	An optional timeout (in seconds) for the TCP connect.

	socket_timeout: 10
	The channel socket timeout in seconds.

	buff_size: 16384
	The size of the SCP send buffer.

	allow_agent: True
	Set to False to disable connecting to the SSH agent.

	look_for_keys: True
	Set to False to disable searching for discoverable private key
files in ~/.ssh/

	banner_timeout
	An optional timeout (in seconds) to wait for the SSH banner to be
presented.

	auth_timeout
	An optional timeout (in seconds) to wait for an authentication
response.

	auto_add_policy: False
	Automatically add the host to the known_hosts.

CLI Example:

salt '*' napalm.scp_get /var/tmp/file /tmp/file auto_add_policy=True

	
salt.modules.napalm_mod.scp_put(files, remote_path=None, recursive=False, preserve_times=False, saltenv='base', **kwargs)

	
New in version 2019.2.0.

Transfer files and directories to remote network device.

Note

This function is only available only when the underlying library
scp [https://github.com/jbardin/scp.py]
is installed. See
scp module for
more details.

	files
	A single path or a list of paths to be transferred.

	remote_path
	The path on the remote device where to store the files.

	recursive: True
	Transfer files and directories recursively.

	preserve_times: False
	Preserve mtime and atime of transferred files and directories.

	saltenv: base
	The name of the Salt environment. Ignored when files is not a
salt:// URL.

	hostname
	The hostname of the remote device.

	port: 22
	The port of the remote device.

	username
	The username required for SSH authentication on the device.

	password
	Used for password authentication. It is also used for private key
decryption if passphrase is not given.

	passphrase
	Used for decrypting private keys.

	pkey
	An optional private key to use for authentication.

	key_filename
	The filename, or list of filenames, of optional private key(s) and/or
certificates to try for authentication.

	timeout
	An optional timeout (in seconds) for the TCP connect.

	socket_timeout: 10
	The channel socket timeout in seconds.

	buff_size: 16384
	The size of the SCP send buffer.

	allow_agent: True
	Set to False to disable connecting to the SSH agent.

	look_for_keys: True
	Set to False to disable searching for discoverable private key
files in ~/.ssh/

	banner_timeout
	An optional timeout (in seconds) to wait for the SSH banner to be
presented.

	auth_timeout
	An optional timeout (in seconds) to wait for an authentication
response.

	auto_add_policy: False
	Automatically add the host to the known_hosts.

CLI Example:

salt '*' napalm.scp_put /path/to/file /var/tmp/file auto_add_policy=True

salt.modules.napalm_netacl

NAPALM ACL

Generate and load ACL (firewall) configuration on network devices.

New in version 2017.7.0.

	codeauthor:

	Mircea Ulinic <ping@mirceaulinic.net>

	maturity:

	new

	depends:

	capirca, napalm

	platform:

	unix

Dependencies

The firewall configuration is generated by Capirca [https://github.com/google/capirca].

To install Capirca, execute: pip install capirca.

To be able to load configuration on network devices,
it requires NAPALM [https://napalm.readthedocs.io] library to be installed: pip install napalm.
Please check Installation [https://napalm.readthedocs.io/en/latest/installation/index.html] for complete details.

	
salt.modules.napalm_netacl.get_filter_pillar(filter_name, pillar_key='acl', pillarenv=None, saltenv=None)

	Helper that can be used inside a state SLS,
in order to get the filter configuration given its name.

	filter_name
	The name of the filter.

	pillar_key
	The root key of the whole policy config.

	pillarenv
	Query the master to generate fresh pillar data on the fly,
specifically from the requested pillar environment.

	saltenv
	Included only for compatibility with
pillarenv_from_saltenv, and is otherwise ignored.

	
salt.modules.napalm_netacl.get_term_pillar(filter_name, term_name, pillar_key='acl', pillarenv=None, saltenv=None)

	Helper that can be used inside a state SLS,
in order to get the term configuration given its name,
under a certain filter uniquely identified by its name.

	filter_name
	The name of the filter.

	term_name
	The name of the term.

	pillar_key: acl
	The root key of the whole policy config. Default: acl.

	pillarenv
	Query the master to generate fresh pillar data on the fly,
specifically from the requested pillar environment.

	saltenv
	Included only for compatibility with
pillarenv_from_saltenv, and is otherwise ignored.

	
salt.modules.napalm_netacl.load_filter_config(filter_name, filter_options=None, terms=None, prepend=True, pillar_key='acl', pillarenv=None, saltenv=None, merge_pillar=True, only_lower_merge=False, revision_id=None, revision_no=None, revision_date=True, revision_date_format='%Y/%m/%d', test=False, commit=True, debug=False, **kwargs)

	Generate and load the configuration of a policy filter.

Note

The order of the terms is very important. The configuration loaded
on the device respects the order defined in the terms and/or
inside the pillar.

When merging the terms with the pillar data, consider the
prepend argument to make sure the order is correct!

	filter_name
	The name of the policy filter.

	filter_options
	Additional filter options. These options are platform-specific.
See the complete list of options [https://github.com/google/capirca/wiki/Policy-format#header-section].

	terms
	List of terms for this policy filter.
If not specified or empty, will try to load the configuration from the pillar,
unless merge_pillar is set as False.

	prepend: True
	When merge_pillar is set as True, the final list of terms generated by merging
the terms from terms with those defined in the pillar (if any): new terms are prepended
at the beginning, while existing ones will preserve the position. To add the new terms
at the end of the list, set this argument to False.

	pillar_key: acl
	The key in the pillar containing the default attributes values. Default: acl.

	pillarenv
	Query the master to generate fresh pillar data on the fly,
specifically from the requested pillar environment.

	saltenv
	Included only for compatibility with
pillarenv_from_saltenv, and is otherwise ignored.

	merge_pillar: True
	Merge the CLI variables with the pillar. Default: True.

The merge logic depends on the prepend argument and
the CLI has higher priority than the pillar.

	only_lower_merge: False
	Specify if it should merge only the terms fields. Otherwise it will try
to merge also filters fields. Default: False.
This option requires merge_pillar, otherwise it is ignored.

	revision_id
	Add a comment in the filter config having the description for the changes applied.

	revision_no
	The revision count.

	revision_date: True
	Boolean flag: display the date when the filter configuration was generated. Default: True.

	revision_date_format: %Y/%m/%d
	The date format to be used when generating the perforce data. Default: %Y/%m/%d (<year>/<month>/<day>).

	test: False
	Dry run? If set as True, will apply the config, discard and return the changes.
Default: False and will commit the changes on the device.

	commit: True
	Commit? Default: True.

	debug: False
	Debug mode. Will insert a new key under the output dictionary,
as loaded_config containing the raw configuration loaded on the device.

The output is a dictionary having the same form as net.load_config.

CLI Example:

salt 'edge01.bjm01' netacl.load_filter_config my-filter pillar_key=netacl debug=True

Output Example:

edge01.bjm01:

 already_configured:
 False
 comment:
 diff:
 [edit firewall]
 + family inet {
 + /*
 + ** $Date: 2017/03/22 $
 + **
 + */
 + filter my-filter {
 + interface-specific;
 + term my-term {
 + from {
 + source-port [1234 1235];
 + }
 + then {
 + reject;
 + }
 + }
 + term my-other-term {
 + from {
 + protocol tcp;
 + source-port 5678-5680;
 + }
 + then accept;
 + }
 + }
 + }
 loaded_config:
 firewall {
 family inet {
 replace:
 /*
 ** $Date: 2017/03/22 $
 **
 */
 filter my-filter {
 interface-specific;
 term my-term {
 from {
 source-port [1234 1235];
 }
 then {
 reject;
 }
 }
 term my-other-term {
 from {
 protocol tcp;
 source-port 5678-5680;
 }
 then accept;
 }
 }
 }
 }
 result:
 True

The filter configuration has been loaded from the pillar, having the following structure:

netacl:
 - my-filter:
 terms:
 - my-term:
 source_port:
 - 1234
 - 1235
 action: reject
 - my-other-term:
 source_port:
 - - 5678
 - 5680
 protocol: tcp
 action: accept

	
salt.modules.napalm_netacl.load_policy_config(filters=None, prepend=True, pillar_key='acl', pillarenv=None, saltenv=None, merge_pillar=True, only_lower_merge=False, revision_id=None, revision_no=None, revision_date=True, revision_date_format='%Y/%m/%d', test=False, commit=True, debug=False, **kwargs)

	Generate and load the configuration of the whole policy.

Note

The order of the filters and their terms is very important.
The configuration loaded on the device respects the order
defined in the filters and/or inside the pillar.

When merging the filters with the pillar data, consider the
prepend argument to make sure the order is correct!

	filters
	List of filters for this policy.
If not specified or empty, will try to load the configuration from the pillar,
unless merge_pillar is set as False.

	prepend: True
	When merge_pillar is set as True, the final list of filters generated by merging
the filters from filters with those defined in the pillar (if any): new filters are prepended
at the beginning, while existing ones will preserve the position. To add the new filters
at the end of the list, set this argument to False.

	pillar_key: acl
	The key in the pillar containing the default attributes values. Default: acl.

	pillarenv
	Query the master to generate fresh pillar data on the fly,
specifically from the requested pillar environment.

	saltenv
	Included only for compatibility with
pillarenv_from_saltenv, and is otherwise ignored.

	merge_pillar: True
	Merge the CLI variables with the pillar. Default: True.

The merge logic depends on the prepend argument and
the CLI has higher priority than the pillar.

	only_lower_merge: False
	Specify if it should merge only the filters and terms fields. Otherwise it will try
to merge everything at the policy level. Default: False.
This option requires merge_pillar, otherwise it is ignored.

	revision_id
	Add a comment in the policy config having the description for the changes applied.

	revision_no
	The revision count.

	revision_date: True
	Boolean flag: display the date when the policy configuration was generated. Default: True.

	revision_date_format: %Y/%m/%d
	The date format to be used when generating the perforce data. Default: %Y/%m/%d (<year>/<month>/<day>).

	test: False
	Dry run? If set as True, will apply the config, discard and return the changes.
Default: False and will commit the changes on the device.

	commit: True
	Commit? Default: True.

	debug: False
	Debug mode. Will insert a new key under the output dictionary,
as loaded_config containing the raw configuration loaded on the device.

The output is a dictionary having the same form as net.load_config.

CLI Example:

salt 'edge01.flw01' netacl.load_policy_config debug=True

Output Example:

edge01.flw01:

 already_configured:
 False
 comment:
 diff:

 +++
 @@ -1228,9 +1228,24 @@
 !
 +ipv4 access-list my-filter
 + 10 remark my-term
 + 20 deny tcp host 1.2.3.4 eq 1234 any
 + 30 deny udp host 1.2.3.4 eq 1234 any
 + 40 deny tcp host 1.2.3.4 eq 1235 any
 + 50 deny udp host 1.2.3.4 eq 1235 any
 + 60 remark my-other-term
 + 70 permit tcp any range 5678 5680 any
 +!
 +!
 +ipv4 access-list block-icmp
 + 10 remark first-term
 + 20 deny icmp any any
 !
 loaded_config:
 ! $Date: 2017/03/22 $
 no ipv4 access-list my-filter
 ipv4 access-list my-filter
 remark my-term
 deny tcp host 1.2.3.4 eq 1234 any
 deny udp host 1.2.3.4 eq 1234 any
 deny tcp host 1.2.3.4 eq 1235 any
 deny udp host 1.2.3.4 eq 1235 any
 remark my-other-term
 permit tcp any range 5678 5680 any
 exit
 no ipv4 access-list block-icmp
 ipv4 access-list block-icmp
 remark first-term
 deny icmp any any
 exit
 result:
 True

The policy configuration has been loaded from the pillar, having the following structure:

acl:
 - my-filter:
 terms:
 - my-term:
 source_port:
 - 1234
 - 1235
 protocol:
 - tcp
 - udp
 source_address: 1.2.3.4
 action: reject
 - my-other-term:
 source_port:
 - [5678, 5680]
 protocol: tcp
 action: accept
 - block-icmp:
 terms:
 - first-term:
 protocol:
 - icmp
 action: reject

	
salt.modules.napalm_netacl.load_term_config(filter_name, term_name, filter_options=None, pillar_key='acl', pillarenv=None, saltenv=None, merge_pillar=True, revision_id=None, revision_no=None, revision_date=True, revision_date_format='%Y/%m/%d', test=False, commit=True, debug=False, source_service=None, destination_service=None, **term_fields)

	Generate and load the configuration of a policy term.

	filter_name
	The name of the policy filter.

	term_name
	The name of the term.

	filter_options
	Additional filter options. These options are platform-specific.
See the complete list of options [https://github.com/google/capirca/wiki/Policy-format#header-section].

	pillar_key: acl
	The key in the pillar containing the default attributes values. Default: acl.
If the pillar contains the following structure:

firewall:
 - my-filter:
 terms:
 - my-term:
 source_port: 1234
 source_address:
 - 1.2.3.4/32
 - 5.6.7.8/32

The pillar_key field would be specified as firewall.

	pillarenv
	Query the master to generate fresh pillar data on the fly,
specifically from the requested pillar environment.

	saltenv
	Included only for compatibility with
pillarenv_from_saltenv, and is otherwise ignored.

	merge_pillar: True
	Merge the CLI variables with the pillar. Default: True.

The properties specified through the CLI have higher priority than the pillar.

	revision_id
	Add a comment in the term config having the description for the changes applied.

	revision_no
	The revision count.

	revision_date: True
	Boolean flag: display the date when the term configuration was generated. Default: True.

	revision_date_format: %Y/%m/%d
	The date format to be used when generating the perforce data. Default: %Y/%m/%d (<year>/<month>/<day>).

	test: False
	Dry run? If set as True, will apply the config, discard and return the changes.
Default: False and will commit the changes on the device.

	commit: True
	Commit? Default: True.

	debug: False
	Debug mode. Will insert a new key under the output dictionary,
as loaded_config containing the raw configuration loaded on the device.

	source_service
	A special service to choose from. This is a helper so the user is able to
select a source just using the name, instead of specifying a source_port and protocol.

As this module is available on Unix platforms only,
it reads the IANA [http://www.iana.org/assignments/port-numbers] port assignment from /etc/services.

If the user requires additional shortcuts to be referenced, they can add entries under /etc/services,
which can be managed using the file state.

	destination_service
	A special service to choose from. This is a helper so the user is able to
select a source just using the name, instead of specifying a destination_port and protocol.
Allows the same options as source_service.

	term_fields
	Term attributes. To see what fields are supported, please consult the
list of supported keywords [https://github.com/google/capirca/wiki/Policy-format#keywords]. Some platforms have a few other optional [https://github.com/google/capirca/wiki/Policy-format#optionally-supported-keywords]
keywords.

Note

The following fields are accepted (some being platform-specific):

	action

	address

	address_exclude

	comment

	counter

	expiration

	destination_address

	destination_address_exclude

	destination_port

	destination_prefix

	forwarding_class

	forwarding_class_except

	logging

	log_name

	loss_priority

	option

	policer

	port

	precedence

	principals

	protocol

	protocol_except

	qos

	pan_application

	routing_instance

	source_address

	source_address_exclude

	source_port

	source_prefix

	verbatim

	packet_length

	fragment_offset

	hop_limit

	icmp_type

	ether_type

	traffic_class_count

	traffic_type

	translated

	dscp_set

	dscp_match

	dscp_except

	next_ip

	flexible_match_range

	source_prefix_except

	destination_prefix_except

	vpn

	source_tag

	destination_tag

	source_interface

	destination_interface

	flattened

	flattened_addr

	flattened_saddr

	flattened_daddr

	priority

Note

The following fields can be also a single value and a list of values:

	action

	address

	address_exclude

	comment

	destination_address

	destination_address_exclude

	destination_port

	destination_prefix

	forwarding_class

	forwarding_class_except

	logging

	option

	port

	precedence

	principals

	protocol

	protocol_except

	pan_application

	source_address

	source_address_exclude

	source_port

	source_prefix

	verbatim

	icmp_type

	ether_type

	traffic_type

	dscp_match

	dscp_except

	flexible_match_range

	source_prefix_except

	destination_prefix_except

	source_tag

	destination_tag

	source_service

	destination_service

Example: destination_address can be either defined as:

destination_address: 172.17.17.1/24

or as a list of destination IP addresses:

destination_address:
 - 172.17.17.1/24
 - 172.17.19.1/24

or a list of services to be matched:

source_service:
 - ntp
 - snmp
 - ldap
 - bgpd

Note

The port fields source_port and destination_port can be used as above to select either
a single value, either a list of values, but also they can select port ranges. Example:

source_port:
 - - 1000
 - 2000
 - - 3000
 - 4000

With the configuration above, the user is able to select the 1000-2000 and 3000-4000 source port ranges.

The output is a dictionary having the same form as net.load_config.

CLI Example:

salt 'edge01.bjm01' netacl.load_term_config filter-name term-name source_address=1.2.3.4 destination_address=5.6.7.8 action=accept test=True debug=True

Output Example:

edge01.bjm01:

 already_configured:
 False
 comment:
 Configuration discarded.
 diff:
 [edit firewall]
 + family inet {
 + /*
 + ** $Date: 2017/03/22 $
 + **
 + */
 + filter filter-name {
 + interface-specific;
 + term term-name {
 + from {
 + source-address {
 + 1.2.3.4/32;
 + }
 + destination-address {
 + 5.6.7.8/32;
 + }
 + }
 + then accept;
 + }
 + }
 + }
 loaded_config:
 firewall {
 family inet {
 replace:
 /*
 ** $Date: 2017/03/22 $
 **
 */
 filter filter-name {
 interface-specific;
 term term-name {
 from {
 source-address {
 1.2.3.4/32;
 }
 destination-address {
 5.6.7.8/32;
 }
 }
 then accept;
 }
 }
 }
 }
 result:
 True

salt.modules.napalm_network

NAPALM Network

Basic methods for interaction with the network device through the virtual proxy 'napalm'.

	codeauthor:

	Mircea Ulinic <ping@mirceaulinic.net> & Jerome Fleury <jf@cloudflare.com>

	maturity:

	new

	depends:

	napalm

	platform:

	unix

Dependencies

	napalm proxy minion

New in version 2016.11.0.

Changed in version 2017.7.0.

	
salt.modules.napalm_network.arp(interface='', ipaddr='', macaddr='', **kwargs)

	NAPALM returns a list of dictionaries with details of the ARP entries.

	Parameters:

	
	interface -- interface name to filter on

	ipaddr -- IP address to filter on

	macaddr -- MAC address to filter on

	Returns:

	List of the entries in the ARP table

CLI Example:

salt '*' net.arp
salt '*' net.arp macaddr='5c:5e:ab:da:3c:f0'

Example output:

[
 {
 'interface' : 'MgmtEth0/RSP0/CPU0/0',
 'mac' : '5c:5e:ab:da:3c:f0',
 'ip' : '172.17.17.1',
 'age' : 1454496274.84
 },
 {
 'interface': 'MgmtEth0/RSP0/CPU0/0',
 'mac' : '66:0e:94:96:e0:ff',
 'ip' : '172.17.17.2',
 'age' : 1435641582.49
 }
]

	
salt.modules.napalm_network.blockreplace(marker_start, marker_end, content='', append_if_not_found=False, prepend_if_not_found=False, show_changes=True, append_newline=False, source='running', path=None, test=False, commit=True, debug=False, replace=True)

	
New in version 2019.2.0.

Replace content of the configuration source, delimited by the line markers.

A block of content delimited by comments can help you manage several lines
without worrying about old entries removal.

	marker_start
	The line content identifying a line as the start of the content block.
Note that the whole line containing this marker will be considered,
so whitespace or extra content before or after the marker is included
in final output.

	marker_end
	The line content identifying a line as the end of the content block.
Note that the whole line containing this marker will be considered,
so whitespace or extra content before or after the marker is included
in final output.

	content
	The content to be used between the two lines identified by
marker_start and marker_stop.

	append_if_not_found: False
	If markers are not found and set to True then, the markers and content
will be appended to the file.

	prepend_if_not_found: False
	If markers are not found and set to True then, the markers and content
will be prepended to the file.

	append_newline: False
	Controls whether or not a newline is appended to the content block.
If the value of this argument is True then a newline will be added
to the content block. If it is False, then a newline will not be
added to the content block. If it is None then a newline will only
be added to the content block if it does not already end in a newline.

	show_changes: True
	Controls how changes are presented. If True, this function will
return the of the changes made.
If False, then it will return a boolean (True if any changes
were made, otherwise False).

	source: running
	The configuration source. Choose from: running, candidate, or
startup. Default: running.

	path: None
	Save the temporary configuration to a specific path, then read from
there. This argument is optional, can be used when you prefers a
particular location of the temporary file.

	test: False
	Dry run? If set as True, will apply the config, discard and return
the changes. Default: False and will commit the changes on the
device.

	commit: True
	Commit the configuration changes? Default: True.

	debug: False
	Debug mode. Will insert a new key in the output dictionary, as
loaded_config containing the raw configuration loaded on the device.

	replace: True
	Load and replace the configuration. Default: True.

CLI Example:

salt '*' net.blockreplace 'ntp' 'interface' ''

	
salt.modules.napalm_network.cancel_commit(jid)

	
New in version 2019.2.0.

Cancel a commit scheduled to be executed via the commit_in and
commit_at arguments from the
net.load_template or
net.load_config
execution functions. The commit ID is displayed when the commit is scheduled
via the functions named above.

CLI Example:

salt '*' net.cancel_commit 20180726083540640360

	
salt.modules.napalm_network.cli(*commands, **kwargs)

	Returns a dictionary with the raw output of all commands passed as arguments.

	commands
	List of commands to be executed on the device.

	textfsm_parse: False
	Try parsing the outputs using the TextFSM templates.

New in version 2018.3.0.

Note

This option can be also specified in the minion configuration
file or pillar as napalm_cli_textfsm_parse.

	textfsm_path
	The path where the TextFSM templates can be found. This option implies
the usage of the TextFSM index file.
textfsm_path can be either absolute path on the server,
either specified using the following URL mschemes: file://,
salt://, http://, https://, ftp://,
s3://, swift://.

New in version 2018.3.0.

Note

This needs to be a directory with a flat structure, having an
index file (whose name can be specified using the index_file option)
and a number of TextFSM templates.

Note

This option can be also specified in the minion configuration
file or pillar as textfsm_path.

	textfsm_template
	The path to a certain the TextFSM template.
This can be specified using the absolute path
to the file, or using one of the following URL schemes:

	salt://, to fetch the template from the Salt fileserver.

	http:// or https://

	ftp://

	s3://

	swift://

New in version 2018.3.0.

	textfsm_template_dict
	A dictionary with the mapping between a command
and the corresponding TextFSM path to use to extract the data.
The TextFSM paths can be specified as in textfsm_template.

New in version 2018.3.0.

Note

This option can be also specified in the minion configuration
file or pillar as napalm_cli_textfsm_template_dict.

	platform_grain_name: os
	The name of the grain used to identify the platform name
in the TextFSM index file. Default: os.

New in version 2018.3.0.

Note

This option can be also specified in the minion configuration
file or pillar as textfsm_platform_grain.

	platform_column_name: Platform
	The column name used to identify the platform,
exactly as specified in the TextFSM index file.
Default: Platform.

New in version 2018.3.0.

Note

This is field is case sensitive, make sure
to assign the correct value to this option,
exactly as defined in the index file.

Note

This option can be also specified in the minion configuration
file or pillar as textfsm_platform_column_name.

	index_file: index
	The name of the TextFSM index file, under the textfsm_path. Default: index.

New in version 2018.3.0.

Note

This option can be also specified in the minion configuration
file or pillar as textfsm_index_file.

	saltenv: base
	Salt fileserver environment from which to retrieve the file.
Ignored if textfsm_path is not a salt:// URL.

New in version 2018.3.0.

	include_empty: False
	Include empty files under the textfsm_path.

New in version 2018.3.0.

	include_pat
	Glob or regex to narrow down the files cached from the given path.
If matching with a regex, the regex must be prefixed with E@,
otherwise the expression will be interpreted as a glob.

New in version 2018.3.0.

	exclude_pat
	Glob or regex to exclude certain files from being cached from the given path.
If matching with a regex, the regex must be prefixed with E@,
otherwise the expression will be interpreted as a glob.

New in version 2018.3.0.

Note

If used with include_pat, files matching this pattern will be
excluded from the subset of files defined by include_pat.

CLI Example:

salt '*' net.cli "show version" "show chassis fan"

CLI Example with TextFSM template:

salt '*' net.cli textfsm_parse=True textfsm_path=salt://textfsm/

Example output:

{
 'show version and haiku': 'Hostname: re0.edge01.arn01
 Model: mx480
 Junos: 13.3R6.5
 Help me, Obi-Wan
 I just saw Episode Two
 You're my only hope
 ',
 'show chassis fan' : 'Item Status RPM Measurement
 Top Rear Fan OK 3840 Spinning at intermediate-speed
 Bottom Rear Fan OK 3840 Spinning at intermediate-speed
 Top Middle Fan OK 3900 Spinning at intermediate-speed
 Bottom Middle Fan OK 3840 Spinning at intermediate-speed
 Top Front Fan OK 3810 Spinning at intermediate-speed
 Bottom Front Fan OK 3840 Spinning at intermediate-speed
 '
}

Example output with TextFSM parsing:

{
 "comment": "",
 "result": true,
 "out": {
 "sh ver": [
 {
 "kernel": "9.1S3.5",
 "documentation": "9.1S3.5",
 "boot": "9.1S3.5",
 "crypto": "9.1S3.5",
 "chassis": "",
 "routing": "9.1S3.5",
 "base": "9.1S3.5",
 "model": "mx960"
 }
]
 }
}

	
salt.modules.napalm_network.commit(inherit_napalm_device=None, **kwargs)

	Commits the configuration changes made on the network device.

CLI Example:

salt '*' net.commit

	
salt.modules.napalm_network.compare_config(inherit_napalm_device=None, **kwargs)

	Returns the difference between the running config and the candidate config.

CLI Example:

salt '*' net.compare_config

	
salt.modules.napalm_network.config(source=None, **kwargs)

	
New in version 2017.7.0.

Return the whole configuration of the network device. By default, it will
return all possible configuration sources supported by the network device.
At most, there will be:

	running config

	startup config

	candidate config

To return only one of the configurations, you can use the source
argument.

	source
	Which configuration type you want to display, default is all of them.

Options:

	running

	candidate

	startup

	Returns:

	The object returned is a dictionary with the following keys:

	running (string): Representation of the native running configuration.

	
	candidate (string): Representation of the native candidate configuration.
	If the device doesn't differentiate between running and startup
configuration this will an empty string.

	
	startup (string): Representation of the native startup configuration.
	If the device doesn't differentiate between running and startup
configuration this will an empty string.

CLI Example:

salt '*' net.config
salt '*' net.config source=candidate

	
salt.modules.napalm_network.config_changed(inherit_napalm_device=None, **kwargs)

	Will prompt if the configuration has been changed.

	Returns:

	A tuple with a boolean that specifies if the config was changed on the device. And a string that provides more details of the reason why the configuration was not changed.

CLI Example:

salt '*' net.config_changed

	
salt.modules.napalm_network.config_control(inherit_napalm_device=None, **kwargs)

	Will check if the configuration was changed.
If differences found, will try to commit.
In case commit unsuccessful, will try to rollback.

	Returns:

	A tuple with a boolean that specifies if the config was changed/committed/rollbacked on the device. And a string that provides more details of the reason why the configuration was not committed properly.

CLI Example:

salt '*' net.config_control

	
salt.modules.napalm_network.confirm_commit(jid)

	
New in version 2019.2.0.

Confirm a commit scheduled to be reverted via the revert_in and
revert_at arguments from the
net.load_template or
net.load_config
execution functions. The commit ID is displayed when the commit confirmed
is scheduled via the functions named above.

CLI Example:

salt '*' net.confirm_commit 20180726083540640360

	
salt.modules.napalm_network.connected(**kwargs)

	Specifies if the connection to the device succeeded.

CLI Example:

salt '*' net.connected

	
salt.modules.napalm_network.discard_config(inherit_napalm_device=None, **kwargs)

	Discards the changes applied.

CLI Example:

salt '*' net.discard_config

	
salt.modules.napalm_network.environment(**kwargs)

	Returns the environment of the device.

CLI Example:

salt '*' net.environment

Example output:

{
 'fans': {
 'Bottom Rear Fan': {
 'status': True
 },
 'Bottom Middle Fan': {
 'status': True
 },
 'Top Middle Fan': {
 'status': True
 },
 'Bottom Front Fan': {
 'status': True
 },
 'Top Front Fan': {
 'status': True
 },
 'Top Rear Fan': {
 'status': True
 }
 },
 'memory': {
 'available_ram': 16349,
 'used_ram': 4934
 },
 'temperature': {
 'FPC 0 Exhaust A': {
 'is_alert': False,
 'temperature': 35.0,
 'is_critical': False
 }
 },
 'cpu': {
 '1': {
 '%usage': 19.0
 },
 '0': {
 '%usage': 35.0
 }
 }
}

	
salt.modules.napalm_network.facts(**kwargs)

	Returns characteristics of the network device.
:return: a dictionary with the following keys:

	uptime - Uptime of the device in seconds.

	vendor - Manufacturer of the device.

	model - Device model.

	hostname - Hostname of the device

	fqdn - Fqdn of the device

	os_version - String with the OS version running on the device.

	serial_number - Serial number of the device

	interface_list - List of the interfaces of the device

CLI Example:

salt '*' net.facts

Example output:

{
 'os_version': '13.3R6.5',
 'uptime': 10117140,
 'interface_list': [
 'lc-0/0/0',
 'pfe-0/0/0',
 'pfh-0/0/0',
 'xe-0/0/0',
 'xe-0/0/1',
 'xe-0/0/2',
 'xe-0/0/3',
 'gr-0/0/10',
 'ip-0/0/10'
],
 'vendor': 'Juniper',
 'serial_number': 'JN131356FBFA',
 'model': 'MX480',
 'hostname': 're0.edge05.syd01',
 'fqdn': 're0.edge05.syd01'
}

	
salt.modules.napalm_network.interfaces(**kwargs)

	Returns details of the interfaces on the device.

	Returns:

	Returns a dictionary of dictionaries. The keys for the first
dictionary will be the interfaces in the devices.

CLI Example:

salt '*' net.interfaces

Example output:

{
 'Management1': {
 'is_up': False,
 'is_enabled': False,
 'description': '',
 'last_flapped': -1,
 'speed': 1000,
 'mac_address': 'dead:beef:dead',
 },
 'Ethernet1':{
 'is_up': True,
 'is_enabled': True,
 'description': 'foo',
 'last_flapped': 1429978575.1554043,
 'speed': 1000,
 'mac_address': 'beef:dead:beef',
 }
}

	
salt.modules.napalm_network.ipaddrs(**kwargs)

	Returns IP addresses configured on the device.

	Returns:

	A dictionary with the IPv4 and IPv6 addresses of the interfaces.
Returns all configured IP addresses on all interfaces as a dictionary
of dictionaries. Keys of the main dictionary represent the name of the
interface. Values of the main dictionary represent are dictionaries
that may consist of two keys 'ipv4' and 'ipv6' (one, both or none)
which are themselvs dictionaries with the IP addresses as keys.

CLI Example:

salt '*' net.ipaddrs

Example output:

{
 'FastEthernet8': {
 'ipv4': {
 '10.66.43.169': {
 'prefix_length': 22
 }
 }
 },
 'Loopback555': {
 'ipv4': {
 '192.168.1.1': {
 'prefix_length': 24
 }
 },
 'ipv6': {
 '1::1': {
 'prefix_length': 64
 },
 '2001:DB8:1::1': {
 'prefix_length': 64
 },
 'FE80::3': {
 'prefix_length': 'N/A'
 }
 }
 }
}

	
salt.modules.napalm_network.lldp(interface='', **kwargs)

	Returns a detailed view of the LLDP neighbors.

	Parameters:

	interface -- interface name to filter on

	Returns:

	A dictionary with the LLDL neighbors. The keys are the
interfaces with LLDP activated on.

CLI Example:

salt '*' net.lldp
salt '*' net.lldp interface='TenGigE0/0/0/8'

Example output:

{
 'TenGigE0/0/0/8': [
 {
 'parent_interface': 'Bundle-Ether8',
 'interface_description': 'TenGigE0/0/0/8',
 'remote_chassis_id': '8c60.4f69.e96c',
 'remote_system_name': 'switch',
 'remote_port': 'Eth2/2/1',
 'remote_port_description': 'Ethernet2/2/1',
 'remote_system_description': 'Cisco Nexus Operating System (NX-OS) Software 7.1(0)N1(1a)
 TAC support: http://www.cisco.com/tac
 Copyright (c) 2002-2015, Cisco Systems, Inc. All rights reserved.',
 'remote_system_capab': 'B, R',
 'remote_system_enable_capab': 'B'
 }
]
}

	
salt.modules.napalm_network.load_config(filename=None, text=None, test=False, commit=True, debug=False, replace=False, commit_in=None, commit_at=None, revert_in=None, revert_at=None, commit_jid=None, inherit_napalm_device=None, saltenv='base', **kwargs)

	Applies configuration changes on the device. It can be loaded from a file or from inline string.
If you send both a filename and a string containing the configuration, the file has higher precedence.

By default this function will commit the changes. If there are no changes, it does not commit and
the flag already_configured will be set as True to point this out.

To avoid committing the configuration, set the argument test to True and will discard (dry run).

To keep the changes but not commit, set commit to False.

To replace the config, set replace to True.

	filename
	Path to the file containing the desired configuration.
This can be specified using the absolute path to the file,
or using one of the following URL schemes:

	salt://, to fetch the template from the Salt fileserver.

	http:// or https://

	ftp://

	s3://

	swift://

Changed in version 2018.3.0.

	text
	String containing the desired configuration.
This argument is ignored when filename is specified.

	test: False
	Dry run? If set as True, will apply the config, discard and return the changes. Default: False
and will commit the changes on the device.

	commit: True
	Commit? Default: True.

	debug: False
	Debug mode. Will insert a new key under the output dictionary, as loaded_config containing the raw
configuration loaded on the device.

New in version 2016.11.2.

	replace: False
	Load and replace the configuration. Default: False.

New in version 2016.11.2.

	commit_in: None
	Commit the changes in a specific number of minutes / hours. Example of
accepted formats: 5 (commit in 5 minutes), 2m (commit in 2
minutes), 1h (commit the changes in 1 hour)`, 5h30m (commit
the changes in 5 hours and 30 minutes).

Note

This feature works on any platforms, as it does not rely on the
native features of the network operating system.

Note

After the command is executed and the diff is not satisfactory,
or for any other reasons you have to discard the commit, you are
able to do so using the
net.cancel_commit
execution function, using the commit ID returned by this function.

Warning

Using this feature, Salt will load the exact configuration you
expect, however the diff may change in time (i.e., if an user
applies a manual configuration change, or a different process or
command changes the configuration in the meanwhile).

New in version 2019.2.0.

	commit_at: None
	Commit the changes at a specific time. Example of accepted formats:
1am (will commit the changes at the next 1AM), 13:20 (will
commit at 13:20), 1:20am, etc.

Note

This feature works on any platforms, as it does not rely on the
native features of the network operating system.

Note

After the command is executed and the diff is not satisfactory,
or for any other reasons you have to discard the commit, you are
able to do so using the
net.cancel_commit
execution function, using the commit ID returned by this function.

Warning

Using this feature, Salt will load the exact configuration you
expect, however the diff may change in time (i.e., if an user
applies a manual configuration change, or a different process or
command changes the configuration in the meanwhile).

New in version 2019.2.0.

	revert_in: None
	Commit and revert the changes in a specific number of minutes / hours.
Example of accepted formats: 5 (revert in 5 minutes), 2m (revert
in 2 minutes), 1h (revert the changes in 1 hour)`, 5h30m (revert
the changes in 5 hours and 30 minutes).

Note

To confirm the commit, and prevent reverting the changes, you will
have to execute the
net.confirm_commit
function, using the commit ID returned by this function.

Warning

This works on any platform, regardless if they have or don't have
native capabilities to confirming a commit. However, please be
very cautious when using this feature: on Junos (as it is the only
NAPALM core platform supporting this natively) it executes a commit
confirmed as you would do from the command line.
All the other platforms don't have this capability natively,
therefore the revert is done via Salt. That means, your device needs
to be reachable at the moment when Salt will attempt to revert your
changes. Be cautious when pushing configuration changes that would
prevent you reach the device.

Similarly, if an user or a different process apply other
configuration changes in the meanwhile (between the moment you
commit and till the changes are reverted), these changes would be
equally reverted, as Salt cannot be aware of them.

New in version 2019.2.0.

	revert_at: None
	Commit and revert the changes at a specific time. Example of accepted
formats: 1am (will commit and revert the changes at the next 1AM),
13:20 (will commit and revert at 13:20), 1:20am, etc.

Note

To confirm the commit, and prevent reverting the changes, you will
have to execute the
net.confirm_commit
function, using the commit ID returned by this function.

Warning

This works on any platform, regardless if they have or don't have
native capabilities to confirming a commit. However, please be
very cautious when using this feature: on Junos (as it is the only
NAPALM core platform supporting this natively) it executes a commit
confirmed as you would do from the command line.
All the other platforms don't have this capability natively,
therefore the revert is done via Salt. That means, your device needs
to be reachable at the moment when Salt will attempt to revert your
changes. Be cautious when pushing configuration changes that would
prevent you reach the device.

Similarly, if an user or a different process apply other
configuration changes in the meanwhile (between the moment you
commit and till the changes are reverted), these changes would be
equally reverted, as Salt cannot be aware of them.

New in version 2019.2.0.

	saltenv: base
	Specifies the Salt environment name.

New in version 2018.3.0.

	Returns:

	a dictionary having the following keys:

	result (bool): if the config was applied successfully. It is False only in case of failure. In case there are no changes to be applied and successfully performs all operations it is still True and so will be the already_configured flag (example below)

	comment (str): a message for the user

	already_configured (bool): flag to check if there were no changes applied

	loaded_config (str): the configuration loaded on the device. Requires debug to be set as True

	diff (str): returns the config changes applied

CLI Example:

salt '*' net.load_config text='ntp peer 192.168.0.1'
salt '*' net.load_config filename='/absolute/path/to/your/file'
salt '*' net.load_config filename='/absolute/path/to/your/file' test=True
salt '*' net.load_config filename='/absolute/path/to/your/file' commit=False

Example output:

{
 'comment': 'Configuration discarded.',
 'already_configured': False,
 'result': True,
 'diff': '[edit interfaces xe-0/0/5]+ description "Adding a description";'
}

	
salt.modules.napalm_network.load_template(template_name=None, template_source=None, context=None, defaults=None, template_engine='jinja', saltenv='base', template_hash=None, template_hash_name=None, skip_verify=False, test=False, commit=True, debug=False, replace=False, commit_in=None, commit_at=None, revert_in=None, revert_at=None, inherit_napalm_device=None, **template_vars)

	Renders a configuration template (default: Jinja) and loads the result on the device.

By default this function will commit the changes. If there are no changes,
it does not commit, discards he config and the flag already_configured
will be set as True to point this out.

To avoid committing the configuration, set the argument test to True
and will discard (dry run).

To preserve the changes, set commit to False.
However, this is recommended to be used only in exceptional cases
when there are applied few consecutive states
and/or configuration changes.
Otherwise the user might forget that the config DB is locked
and the candidate config buffer is not cleared/merged in the running config.

To replace the config, set replace to True.

	template_name
	Identifies path to the template source.
The template can be either stored on the local machine, either remotely.
The recommended location is under the file_roots
as specified in the master config file.
For example, let's suppose the file_roots is configured as:

file_roots:
 base:
 - /etc/salt/states

Placing the template under /etc/salt/states/templates/example.jinja,
it can be used as salt://templates/example.jinja.
Alternatively, for local files, the user can specify the absolute path.
If remotely, the source can be retrieved via http, https or ftp.

Examples:

	salt://my_template.jinja

	/absolute/path/to/my_template.jinja

	http://example.com/template.cheetah

	https:/example.com/template.mako

	ftp://example.com/template.py

Changed in version 2019.2.0: This argument can now support a list of templates to be rendered.
The resulting configuration text is loaded at once, as a single
configuration chunk.

	template_source: None
	Inline config template to be rendered and loaded on the device.

	template_hash: None
	Hash of the template file. Format: {hash_type: 'md5', 'hsum': <md5sum>}

New in version 2016.11.2.

	context: None
	Overrides default context variables passed to the template.

New in version 2019.2.0.

	template_hash_name: None
	When template_hash refers to a remote file,
this specifies the filename to look for in that file.

New in version 2016.11.2.

	saltenv: base
	Specifies the template environment.
This will influence the relative imports inside the templates.

New in version 2016.11.2.

	template_engine: jinja
	The following templates engines are supported:

	cheetah

	genshi

	jinja

	mako

	py

	wempy

New in version 2016.11.2.

	skip_verify: True
	If True, hash verification of remote file sources
(http://, https://, ftp://) will be skipped,
and the source_hash argument will be ignored.

New in version 2016.11.2.

	test: False
	Dry run? If set to True, will apply the config,
discard and return the changes.
Default: False and will commit the changes on the device.

	commit: True
	Commit? (default: True)

	debug: False
	Debug mode. Will insert a new key under the output dictionary,
as loaded_config containing the raw result after the template was rendered.

New in version 2016.11.2.

	replace: False
	Load and replace the configuration.

New in version 2016.11.2.

	commit_in: None
	Commit the changes in a specific number of minutes / hours. Example of
accepted formats: 5 (commit in 5 minutes), 2m (commit in 2
minutes), 1h (commit the changes in 1 hour)`, 5h30m (commit
the changes in 5 hours and 30 minutes).

Note

This feature works on any platforms, as it does not rely on the
native features of the network operating system.

Note

After the command is executed and the diff is not satisfactory,
or for any other reasons you have to discard the commit, you are
able to do so using the
net.cancel_commit
execution function, using the commit ID returned by this function.

Warning

Using this feature, Salt will load the exact configuration you
expect, however the diff may change in time (i.e., if an user
applies a manual configuration change, or a different process or
command changes the configuration in the meanwhile).

New in version 2019.2.0.

	commit_at: None
	Commit the changes at a specific time. Example of accepted formats:
1am (will commit the changes at the next 1AM), 13:20 (will
commit at 13:20), 1:20am, etc.

Note

This feature works on any platforms, as it does not rely on the
native features of the network operating system.

Note

After the command is executed and the diff is not satisfactory,
or for any other reasons you have to discard the commit, you are
able to do so using the
net.cancel_commit
execution function, using the commit ID returned by this function.

Warning

Using this feature, Salt will load the exact configuration you
expect, however the diff may change in time (i.e., if an user
applies a manual configuration change, or a different process or
command changes the configuration in the meanwhile).

New in version 2019.2.0.

	revert_in: None
	Commit and revert the changes in a specific number of minutes / hours.
Example of accepted formats: 5 (revert in 5 minutes), 2m (revert
in 2 minutes), 1h (revert the changes in 1 hour)`, 5h30m (revert
the changes in 5 hours and 30 minutes).

Note

To confirm the commit, and prevent reverting the changes, you will
have to execute the
net.confirm_commit
function, using the commit ID returned by this function.

Warning

This works on any platform, regardless if they have or don't have
native capabilities to confirming a commit. However, please be
very cautious when using this feature: on Junos (as it is the only
NAPALM core platform supporting this natively) it executes a commit
confirmed as you would do from the command line.
All the other platforms don't have this capability natively,
therefore the revert is done via Salt. That means, your device needs
to be reachable at the moment when Salt will attempt to revert your
changes. Be cautious when pushing configuration changes that would
prevent you reach the device.

Similarly, if an user or a different process apply other
configuration changes in the meanwhile (between the moment you
commit and till the changes are reverted), these changes would be
equally reverted, as Salt cannot be aware of them.

New in version 2019.2.0.

	revert_at: None
	Commit and revert the changes at a specific time. Example of accepted
formats: 1am (will commit and revert the changes at the next 1AM),
13:20 (will commit and revert at 13:20), 1:20am, etc.

Note

To confirm the commit, and prevent reverting the changes, you will
have to execute the
net.confirm_commit
function, using the commit ID returned by this function.

Warning

This works on any platform, regardless if they have or don't have
native capabilities to confirming a commit. However, please be
very cautious when using this feature: on Junos (as it is the only
NAPALM core platform supporting this natively) it executes a commit
confirmed as you would do from the command line.
All the other platforms don't have this capability natively,
therefore the revert is done via Salt. That means, your device needs
to be reachable at the moment when Salt will attempt to revert your
changes. Be cautious when pushing configuration changes that would
prevent you reach the device.

Similarly, if an user or a different process apply other
configuration changes in the meanwhile (between the moment you
commit and till the changes are reverted), these changes would be
equally reverted, as Salt cannot be aware of them.

New in version 2019.2.0.

	defaults: None
	Default variables/context passed to the template.

New in version 2016.11.2.

	template_vars
	Dictionary with the arguments/context to be used when the template is rendered.

Note

Do not explicitly specify this argument. This represents any other
variable that will be sent to the template rendering system.
Please see the examples below!

Note

It is more recommended to use the context argument to avoid
conflicts between CLI arguments and template variables.

	Returns:

	a dictionary having the following keys:

	result (bool): if the config was applied successfully. It is False
only in case of failure. In case there are no changes to be applied and
successfully performs all operations it is still True and so will be
the already_configured flag (example below)

	comment (str): a message for the user

	already_configured (bool): flag to check if there were no changes applied

	loaded_config (str): the configuration loaded on the device, after
rendering the template. Requires debug to be set as True

	diff (str): returns the config changes applied

The template can use variables from the grains, pillar or opts, for example:

{% set router_model = grains.get('model') -%}
{% set router_vendor = grains.get('vendor') -%}
{% set os_version = grains.get('version') -%}
{% set hostname = pillar.get('proxy', {}).get('host') -%}
{% if router_vendor|lower == 'juniper' %}
system {
 host-name {{hostname}};
}
{% elif router_vendor|lower == 'cisco' %}
hostname {{hostname}}
{% endif %}

CLI Examples:

salt '*' net.load_template set_ntp_peers peers=[192.168.0.1] # uses NAPALM default templates

inline template:
salt -G 'os:junos' net.load_template template_source='system { host-name {{host_name}}; }' host_name='MX480.lab'

inline template using grains info:
salt -G 'os:junos' net.load_template template_source='system { host-name {{grains.model}}.lab; }'
if the device is a MX480, the command above will set the hostname as: MX480.lab

inline template using pillar data:
salt -G 'os:junos' net.load_template template_source='system { host-name {{pillar.proxy.host}}; }'

salt '*' net.load_template https://bit.ly/2OhSgqP hostname=example # will commit
salt '*' net.load_template https://bit.ly/2OhSgqP hostname=example test=True # dry run

salt '*' net.load_template salt://templates/example.jinja debug=True # Using the salt:// URI

render a mako template:
salt '*' net.load_template salt://templates/example.mako template_engine=mako debug=True

render remote template
salt -G 'os:junos' net.load_template http://bit.ly/2fReJg7 test=True debug=True peers=['192.168.0.1']
salt -G 'os:ios' net.load_template http://bit.ly/2gKOj20 test=True debug=True peers=['192.168.0.1']

render multiple templates at once
salt '*' net.load_template "['https://bit.ly/2OhSgqP', 'salt://templates/example.jinja']" context="{'hostname': 'example'}"

Example output:

{
 'comment': '',
 'already_configured': False,
 'result': True,
 'diff': '[edit system]+ host-name edge01.bjm01',
 'loaded_config': 'system { host-name edge01.bjm01; }''
}

	
salt.modules.napalm_network.mac(address='', interface='', vlan=0, **kwargs)

	Returns the MAC Address Table on the device.

	Parameters:

	
	address -- MAC address to filter on

	interface -- Interface name to filter on

	vlan -- VLAN identifier

	Returns:

	A list of dictionaries representing the entries in the MAC Address Table

CLI Example:

salt '*' net.mac
salt '*' net.mac vlan=10

Example output:

[
 {
 'mac' : '00:1c:58:29:4a:71',
 'interface' : 'xe-3/0/2',
 'static' : False,
 'active' : True,
 'moves' : 1,
 'vlan' : 10,
 'last_move' : 1454417742.58
 },
 {
 'mac' : '8c:60:4f:58:e1:c1',
 'interface' : 'xe-1/0/1',
 'static' : False,
 'active' : True,
 'moves' : 2,
 'vlan' : 42,
 'last_move' : 1453191948.11
 }
]

	
salt.modules.napalm_network.optics(**kwargs)

	
New in version 2017.7.0.

Fetches the power usage on the various transceivers installed
on the network device (in dBm), and returns a view that conforms with the
OpenConfig model openconfig-platform-transceiver.yang.

	Returns:

	
	Returns a dictionary where the keys are as listed below:
	
	
	intf_name (unicode)
	
	
	physical_channels
	
	
	channels (list of dicts)
	
	index (int)

	
	state
	
	
	input_power
	
	instant (float)

	avg (float)

	min (float)

	max (float)

	
	output_power
	
	instant (float)

	avg (float)

	min (float)

	max (float)

	
	laser_bias_current
	
	instant (float)

	avg (float)

	min (float)

	max (float)

CLI Example:

salt '*' net.optics

	
salt.modules.napalm_network.patch(patchfile, options='', saltenv='base', source_hash=None, show_changes=True, source='running', path=None, test=False, commit=True, debug=False, replace=True)

	
New in version 2019.2.0.

Apply a patch to the configuration source, and load the result into the
running config of the device.

	patchfile
	A patch file to apply to the configuration source.

	options
	Options to pass to patch.

	source_hash
	If the patch file (specified via the patchfile argument) is an
HTTP(S) or FTP URL and the file exists in the minion's file cache, this
option can be passed to keep the minion from re-downloading the file if
the cached copy matches the specified hash.

	show_changes: True
	Controls how changes are presented. If True, this function will
return the of the changes made.
If False, then it will return a boolean (True if any changes
were made, otherwise False).

	source: running
	The configuration source. Choose from: running, candidate, or
startup. Default: running.

	path: None
	Save the temporary configuration to a specific path, then read from
there. This argument is optional, can the user prefers a particular
location of the temporary file.

	test: False
	Dry run? If set as True, will apply the config, discard and return
the changes. Default: False and will commit the changes on the
device.

	commit: True
	Commit the configuration changes? Default: True.

	debug: False
	Debug mode. Will insert a new key in the output dictionary, as
loaded_config containing the raw configuration loaded on the device.

	replace: True
	Load and replace the configuration. Default: True.

CLI Example:

salt '*' net.patch https://example.com/running_config.patch

	
salt.modules.napalm_network.ping(destination, source=None, ttl=None, timeout=None, size=None, count=None, vrf=None, **kwargs)

	Executes a ping on the network device and returns a dictionary as a result.

	destination
	Hostname or IP address of remote host

	source
	Source address of echo request

	ttl
	IP time-to-live value (IPv6 hop-limit value) (1..255 hops)

	timeout
	Maximum wait time after sending final packet (seconds)

	size
	Size of request packets (0..65468 bytes)

	count
	Number of ping requests to send (1..2000000000 packets)

	vrf
	VRF (routing instance) for ping attempt

New in version 2016.11.4.

CLI Example:

salt '*' net.ping 8.8.8.8
salt '*' net.ping 8.8.8.8 ttl=3 size=65468
salt '*' net.ping 8.8.8.8 source=127.0.0.1 timeout=1 count=100

	
salt.modules.napalm_network.replace_pattern(pattern, repl, count=0, flags=8, bufsize=1, append_if_not_found=False, prepend_if_not_found=False, not_found_content=None, search_only=False, show_changes=True, backslash_literal=False, source=None, path=None, test=False, replace=True, debug=False, commit=True)

	
New in version 2019.2.0.

Replace occurrences of a pattern in the configuration source. If
show_changes is True, then a diff of what changed will be returned,
otherwise a True will be returned when changes are made, and False
when no changes are made.
This is a pure Python implementation that wraps Python's sub() [https://docs.python.org/3/library/re.html#re.sub].

	pattern
	A regular expression, to be matched using Python's
search() [https://docs.python.org/3/library/re.html#re.search].

	repl
	The replacement text.

	count: 0
	Maximum number of pattern occurrences to be replaced. If count is a
positive integer n, only n occurrences will be replaced,
otherwise all occurrences will be replaced.

	flags (list or int): 8
	A list of flags defined in the re module documentation from the
Python standard library. Each list item should be a string that will
correlate to the human-friendly flag name. E.g., ['IGNORECASE',
'MULTILINE']. Optionally, flags may be an int, with a value
corresponding to the XOR (|) of all the desired flags. Defaults to
8 (which supports 'MULTILINE').

	bufsize (int or str): 1
	How much of the configuration to buffer into memory at once. The
default value 1 processes one line at a time. The special value
file may be specified which will read the entire file into memory
before processing.

	append_if_not_found: False
	If set to True, and pattern is not found, then the content will be
appended to the file.

	prepend_if_not_found: False
	If set to True and pattern is not found, then the content will be
prepended to the file.

	not_found_content
	Content to use for append/prepend if not found. If None (default), uses
repl. Useful when repl uses references to group in pattern.

	search_only: False
	If set to true, this no changes will be performed on the file, and this
function will simply return True if the pattern was matched, and
False if not.

	show_changes: True
	If True, return a diff of changes made. Otherwise, return True
if changes were made, and False if not.

	backslash_literal: False
	Interpret backslashes as literal backslashes for the repl and not
escape characters. This will help when using append/prepend so that
the backslashes are not interpreted for the repl on the second run of
the state.

	source: running
	The configuration source. Choose from: running, candidate, or
startup. Default: running.

	path
	Save the temporary configuration to a specific path, then read from
there.

	test: False
	Dry run? If set as True, will apply the config, discard and return
the changes. Default: False and will commit the changes on the
device.

	commit: True
	Commit the configuration changes? Default: True.

	debug: False
	Debug mode. Will insert a new key in the output dictionary, as
loaded_config containing the raw configuration loaded on the device.

	replace: True
	Load and replace the configuration. Default: True.

If an equal sign (=) appears in an argument to a Salt command it is
interpreted as a keyword argument in the format key=val. That
processing can be bypassed in order to pass an equal sign through to the
remote shell command by manually specifying the kwarg:

salt '*' net.replace_pattern "bind-address\s*=" "bind-address:"

CLI Example:

salt '*' net.replace_pattern PREFIX-LIST_NAME new-prefix-list-name
salt '*' net.replace_pattern bgp-group-name new-bgp-group-name count=1

	
salt.modules.napalm_network.rollback(inherit_napalm_device=None, **kwargs)

	Rollbacks the configuration.

CLI Example:

salt '*' net.rollback

	
salt.modules.napalm_network.save_config(source=None, path=None)

	
New in version 2019.2.0.

Save the configuration to a file on the local file system.

	source: running
	The configuration source. Choose from: running, candidate,
startup. Default: running.

	path
	Absolute path to file where to save the configuration.
To push the files to the Master, use
cp.push Execution function.

CLI Example:

salt '*' net.save_config source=running

	
salt.modules.napalm_network.traceroute(destination, source=None, ttl=None, timeout=None, vrf=None, **kwargs)

	Calls the method traceroute from the NAPALM driver object and returns a dictionary with the result of the traceroute
command executed on the device.

	destination
	Hostname or address of remote host

	source
	Source address to use in outgoing traceroute packets

	ttl
	IP maximum time-to-live value (or IPv6 maximum hop-limit value)

	timeout
	Number of seconds to wait for response (seconds)

	vrf
	VRF (routing instance) for traceroute attempt

New in version 2016.11.4.

CLI Example:

salt '*' net.traceroute 8.8.8.8
salt '*' net.traceroute 8.8.8.8 source=127.0.0.1 ttl=5 timeout=1

salt.modules.napalm_ntp

NAPALM NTP

Manages NTP on network devices.

	codeauthor:

	Mircea Ulinic <ping@mirceaulinic.net> & Jerome Fleury <jf@cloudflare.com>

	maturity:

	new

	depends:

	napalm

	platform:

	unix

Dependencies

	NAPALM proxy minion

	NET basic features

See also

NTP peers management state

New in version 2016.11.0.

	
salt.modules.napalm_ntp.delete_peers(*peers, **options)

	Removes NTP peers configured on the device.

	Parameters:

	
	peers -- list of IP Addresses/Domain Names to be removed as NTP peers

	(bool) (commit) -- discard loaded config. By default test is False
(will not dicard the changes)

	(bool) -- commit loaded config. By default commit is True
(will commit the changes). Useful when the user does not want to commit
after each change, but after a couple.

By default this function will commit the config changes (if any). To load
without committing, use the commit option. For a dry run, use the
test argument.

CLI Example:

salt '*' ntp.delete_peers 8.8.8.8 time.apple.com
salt '*' ntp.delete_peers 172.17.17.1 test=True # only displays the diff
salt '*' ntp.delete_peers 192.168.0.1 commit=False # preserves the changes, but does not commit

	
salt.modules.napalm_ntp.delete_servers(*servers, **options)

	Removes NTP servers configured on the device.

	Parameters:

	
	servers -- list of IP Addresses/Domain Names to be removed as NTP
servers

	(bool) (commit) -- discard loaded config. By default test is False
(will not dicard the changes)

	(bool) -- commit loaded config. By default commit is True
(will commit the changes). Useful when the user does not want to commit
after each change, but after a couple.

By default this function will commit the config changes (if any). To load
without committing, use the commit option. For dry run use the test
argument.

CLI Example:

salt '*' ntp.delete_servers 8.8.8.8 time.apple.com
salt '*' ntp.delete_servers 172.17.17.1 test=True # only displays the diff
salt '*' ntp.delete_servers 192.168.0.1 commit=False # preserves the changes, but does not commit

	
salt.modules.napalm_ntp.peers(**kwargs)

	Returns a list the NTP peers configured on the network device.

	Returns:

	configured NTP peers as list.

CLI Example:

salt '*' ntp.peers

Example output:

[
 '192.168.0.1',
 '172.17.17.1',
 '172.17.17.2',
 '2400:cb00:6:1024::c71b:840a'
]

	
salt.modules.napalm_ntp.servers(**kwargs)

	Returns a list of the configured NTP servers on the device.

CLI Example:

salt '*' ntp.servers

Example output:

[
 '192.168.0.1',
 '172.17.17.1',
 '172.17.17.2',
 '2400:cb00:6:1024::c71b:840a'
]

	
salt.modules.napalm_ntp.set_peers(*peers, **options)

	Configures a list of NTP peers on the device.

	Parameters:

	
	peers -- list of IP Addresses/Domain Names

	(bool) (test) -- discard loaded config. By default test is False
(will not dicard the changes)

	Commit commit (bool):

	commit loaded config. By default commit is True
(will commit the changes). Useful when the user does not want to commit
after each change, but after a couple.

By default this function will commit the config changes (if any). To load without committing, use the commit
option. For dry run use the test argument.

CLI Example:

salt '*' ntp.set_peers 192.168.0.1 172.17.17.1 time.apple.com
salt '*' ntp.set_peers 172.17.17.1 test=True # only displays the diff
salt '*' ntp.set_peers 192.168.0.1 commit=False # preserves the changes, but does not commit

	
salt.modules.napalm_ntp.set_servers(*servers, **options)

	Configures a list of NTP servers on the device.

	Parameters:

	
	servers -- list of IP Addresses/Domain Names

	(bool) (test) -- discard loaded config. By default test is False
(will not dicard the changes)

	Commit commit (bool):

	commit loaded config. By default commit is True
(will commit the changes). Useful when the user does not want to commit
after each change, but after a couple.

By default this function will commit the config changes (if any). To load without committing, use the commit
option. For dry run use the test argument.

CLI Example:

salt '*' ntp.set_servers 192.168.0.1 172.17.17.1 time.apple.com
salt '*' ntp.set_servers 172.17.17.1 test=True # only displays the diff
salt '*' ntp.set_servers 192.168.0.1 commit=False # preserves the changes, but does not commit

	
salt.modules.napalm_ntp.stats(peer=None, **kwargs)

	Returns a dictionary containing synchronization details of the NTP peers.

	Parameters:

	peer -- Returns only the details of a specific NTP peer.

	Returns:

	a list of dictionaries, with the following keys:

	remote

	referenceid

	synchronized

	stratum

	type

	when

	hostpoll

	reachability

	delay

	offset

	jitter

CLI Example:

salt '*' ntp.stats

Example output:

[
 {
 'remote' : '188.114.101.4',
 'referenceid' : '188.114.100.1',
 'synchronized' : True,
 'stratum' : 4,
 'type' : '-',
 'when' : '107',
 'hostpoll' : 256,
 'reachability' : 377,
 'delay' : 164.228,
 'offset' : -13.866,
 'jitter' : 2.695
 }
]

salt.modules.napalm_probes

NAPALM Probes

Manages RPM/SLA probes on the network device.

	codeauthor:

	Mircea Ulinic <ping@mirceaulinic.net> & Jerome Fleury <jf@cloudflare.com>

	maturity:

	new

	depends:

	napalm

	platform:

	unix

Dependencies

	napalm proxy minion

	NET basic features

See also

Probes configuration management state

New in version 2016.11.0.

	
salt.modules.napalm_probes.config(**kwargs)

	Returns the configuration of the RPM probes.

	Returns:

	A dictionary containing the configuration of the RPM/SLA probes.

CLI Example:

salt '*' probes.config

Output Example:

{
 'probe1':{
 'test1': {
 'probe_type' : 'icmp-ping',
 'target' : '192.168.0.1',
 'source' : '192.168.0.2',
 'probe_count' : 13,
 'test_interval': 3
 },
 'test2': {
 'probe_type' : 'http-ping',
 'target' : '172.17.17.1',
 'source' : '192.17.17.2',
 'probe_count' : 5,
 'test_interval': 60
 }
 }
}

	
salt.modules.napalm_probes.delete_probes(probes, test=False, commit=True, **kwargs)

	Removes RPM/SLA probes from the network device.
Calls the configuration template 'delete_probes' from the NAPALM library,
providing as input a rich formatted dictionary with the configuration details of the probes to be removed
from the configuration of the device.

	Parameters:

	
	probes -- Dictionary with a similar format as the output dictionary of
the function config(), where the details are not necessary.

	test -- Dry run? If set as True, will apply the config, discard and
return the changes. Default: False

	commit -- Commit? (default: True) Sometimes it is not needed to commit
the config immediately after loading the changes. E.g.: a state loads a
couple of parts (add / remove / update) and would not be optimal to
commit after each operation. Also, from the CLI when the user needs to
apply the similar changes before committing, can specify commit=False
and will not discard the config.

	Raises:

	MergeConfigException -- If there is an error on the configuration sent.

	Returns:

	A dictionary having the following keys:

	result (bool): if the config was applied successfully. It is False only
in case of failure. In case there are no changes to be applied and
successfully performs all operations it is still True and so will be
the already_configured flag (example below)

	comment (str): a message for the user

	already_configured (bool): flag to check if there were no changes applied

	diff (str): returns the config changes applied

Input example:

probes = {
 'existing_probe':{
 'existing_test1': {},
 'existing_test2': {}
 }
}

	
salt.modules.napalm_probes.results(**kwargs)

	Provides the results of the measurements of the RPM/SLA probes.

:return a dictionary with the results of the probes.

CLI Example:

salt '*' probes.results

Output example:

{
 'probe1': {
 'test1': {
 'last_test_min_delay' : 63.120,
 'global_test_min_delay' : 62.912,
 'current_test_avg_delay': 63.190,
 'global_test_max_delay' : 177.349,
 'current_test_max_delay': 63.302,
 'global_test_avg_delay' : 63.802,
 'last_test_avg_delay' : 63.438,
 'last_test_max_delay' : 65.356,
 'probe_type' : 'icmp-ping',
 'rtt' : 63.138,
 'last_test_loss' : 0,
 'round_trip_jitter' : -59.0,
 'target' : '192.168.0.1',
 'source' : '192.168.0.2',
 'probe_count' : 15,
 'current_test_min_delay': 63.138
 },
 'test2': {
 'last_test_min_delay' : 176.384,
 'global_test_min_delay' : 169.226,
 'current_test_avg_delay': 177.098,
 'global_test_max_delay' : 292.628,
 'current_test_max_delay': 180.055,
 'global_test_avg_delay' : 177.959,
 'last_test_avg_delay' : 177.178,
 'last_test_max_delay' : 184.671,
 'probe_type' : 'icmp-ping',
 'rtt' : 176.449,
 'last_test_loss' : 0,
 'round_trip_jitter' : -34.0,
 'target' : '172.17.17.1',
 'source' : '172.17.17.2',
 'probe_count' : 15,
 'current_test_min_delay': 176.402
 }
 }
}

	
salt.modules.napalm_probes.schedule_probes(probes, test=False, commit=True, **kwargs)

	Will schedule the probes. On Cisco devices, it is not enough to define the
probes, it is also necessary to schedule them.

This function calls the configuration template schedule_probes from the
NAPALM library, providing as input a rich formatted dictionary with the
names of the probes and the tests to be scheduled.

	Parameters:

	
	probes -- Dictionary with a similar format as the output dictionary of
the function config(), where the details are not necessary.

	test -- Dry run? If set as True, will apply the config, discard and
return the changes. Default: False

	commit -- Commit? (default: True) Sometimes it is not needed to commit
the config immediately after loading the changes. E.g.: a state loads a
couple of parts (add / remove / update) and would not be optimal to
commit after each operation. Also, from the CLI when the user needs to
apply the similar changes before committing, can specify commit=False
and will not discard the config.

	Raises:

	MergeConfigException -- If there is an error on the configuration sent.

	Returns:

	a dictionary having the following keys:

	result (bool): if the config was applied successfully. It is False only
in case of failure. In case there are no changes to be applied and
successfully performs all operations it is still True and so will be
the already_configured flag (example below)

	comment (str): a message for the user

	already_configured (bool): flag to check if there were no changes applied

	diff (str): returns the config changes applied

Input example:

probes = {
 'new_probe':{
 'new_test1': {},
 'new_test2': {}
 }
}

	
salt.modules.napalm_probes.set_probes(probes, test=False, commit=True, **kwargs)

	Configures RPM/SLA probes on the device.
Calls the configuration template 'set_probes' from the NAPALM library,
providing as input a rich formatted dictionary with the configuration details of the probes to be configured.

	Parameters:

	
	probes -- Dictionary formatted as the output of the function config()

	test -- Dry run? If set as True, will apply the config, discard and return the changes. Default: False

	commit -- Commit? (default: True) Sometimes it is not needed to commit
the config immediately after loading the changes. E.g.: a state loads a
couple of parts (add / remove / update) and would not be optimal to
commit after each operation. Also, from the CLI when the user needs to
apply the similar changes before committing, can specify commit=False
and will not discard the config.

	Raises:

	MergeConfigException -- If there is an error on the configuration sent.

	Return a dictionary having the following keys:

	
	result (bool): if the config was applied successfully. It is False
only in case of failure. In case there are no changes to be applied
and successfully performs all operations it is still True and so
will be the already_configured flag (example below)

	comment (str): a message for the user

	already_configured (bool): flag to check if there were no changes applied

	diff (str): returns the config changes applied

Input example - via state/script:

probes = {
 'new_probe':{
 'new_test1': {
 'probe_type' : 'icmp-ping',
 'target' : '192.168.0.1',
 'source' : '192.168.0.2',
 'probe_count' : 13,
 'test_interval': 3
 },
 'new_test2': {
 'probe_type' : 'http-ping',
 'target' : '172.17.17.1',
 'source' : '192.17.17.2',
 'probe_count' : 5,
 'test_interval': 60
 }
 }
}
set_probes(probes)

CLI Example - to push changes on the fly (not recommended):

salt 'junos_minion' probes.set_probes "{'new_probe':{'new_test1':{'probe_type':'icmp-ping', 'target':'192.168.0.1','source':'192.168.0.2','probe_count':13,'test_interval':3}}}" test=True

Output example - for the CLI example above:

junos_minion:

 already_configured:
 False
 comment:
 Configuration discarded.
 diff:
 [edit services rpm]
 probe transit { ... }
 + probe new_probe {
 + test new_test1 {
 + probe-type icmp-ping;
 + target address 192.168.0.1;
 + probe-count 13;
 + test-interval 3;
 + source-address 192.168.0.2;
 + }
 + }
 result:
 True

salt.modules.napalm_route

NAPALM Route

Retrieves route details from network devices.

	codeauthor:

	Mircea Ulinic <ping@mirceaulinic.net>

	maturity:

	new

	depends:

	napalm

	platform:

	unix

Dependencies

	NAPALM proxy minion

New in version 2016.11.0.

	
salt.modules.napalm_route.show(destination, protocol=None, **kwargs)

	Displays all details for a certain route learned via a specific protocol.
If the protocol is not specified, will return all possible routes.

Note

This function return the routes from the RIB.
In case the destination prefix is too short,
there may be too many routes matched.
Therefore in cases of devices having a very high number of routes
it may be necessary to adjust the prefix length and request
using a longer prefix.

	destination
	destination prefix.

	protocol (optional)
	protocol used to learn the routes to the destination.

Changed in version 2017.7.0.

CLI Example:

salt 'my_router' route.show 172.16.0.0/25
salt 'my_router' route.show 172.16.0.0/25 bgp

Output example:

{
 '172.16.0.0/25': [
 {
 'protocol': 'BGP',
 'last_active': True,
 'current_active': True,
 'age': 1178693,
 'routing_table': 'inet.0',
 'next_hop': '192.168.0.11',
 'outgoing_interface': 'xe-1/1/1.100',
 'preference': 170,
 'selected_next_hop': False,
 'protocol_attributes': {
 'remote_as': 65001,
 'metric': 5,
 'local_as': 13335,
 'as_path': '',
 'remote_address': '192.168.0.11',
 'metric2': 0,
 'local_preference': 0,
 'communities': [
 '0:2',
 'no-export'
],
 'preference2': -1
 },
 'inactive_reason': ''
 },
 {
 'protocol': 'BGP',
 'last_active': False,
 'current_active': False,
 'age': 2359429,
 'routing_table': 'inet.0',
 'next_hop': '192.168.0.17',
 'outgoing_interface': 'xe-1/1/1.100',
 'preference': 170,
 'selected_next_hop': True,
 'protocol_attributes': {
 'remote_as': 65001,
 'metric': 5,
 'local_as': 13335,
 'as_path': '',
 'remote_address': '192.168.0.17',
 'metric2': 0,
 'local_preference': 0,
 'communities': [
 '0:3',
 'no-export'
],
 'preference2': -1
 },
 'inactive_reason': 'Not Best in its group - Router ID'
 }
]
}

salt.modules.napalm_snmp

NAPALM SNMP

Manages SNMP on network devices.

	codeauthor:

	Mircea Ulinic <ping@mirceaulinic.net>

	maturity:

	new

	depends:

	napalm

	platform:

	unix

Dependencies

	NAPALM proxy minion

	NET basic features

See also

SNMP configuration management state

New in version 2016.11.0.

	
salt.modules.napalm_snmp.config(**kwargs)

	Returns the SNMP configuration

CLI Example:

salt '*' snmp.config

	
salt.modules.napalm_snmp.remove_config(chassis_id=None, community=None, contact=None, location=None, test=False, commit=True, **kwargs)

	Removes a configuration element from the SNMP configuration.

	Parameters:

	
	chassis_id -- (optional) Chassis ID

	community -- (optional) A dictionary having the following optional keys:

	acl (if any policy / ACL need to be set)

	mode: rw or ro. Default: ro

	Parameters:

	
	contact -- Contact details

	location -- Location

	test -- Dry run? If set as True, will apply the config, discard and return the changes. Default: False

	commit -- Commit? (default: True) Sometimes it is not needed to commit
the config immediately after loading the changes. E.g.: a state loads a
couple of parts (add / remove / update) and would not be optimal to
commit after each operation. Also, from the CLI when the user needs to
apply the similar changes before committing, can specify commit=False
and will not discard the config.

	Raises:

	MergeConfigException -- If there is an error on the configuration sent.

	Returns:

	A dictionary having the following keys:

	result (bool): if the config was applied successfully. It is False
only in case of failure. In case there are no changes to be applied
and successfully performs all operations it is still True and so
will be the already_configured flag (example below)

	comment (str): a message for the user

	already_configured (bool): flag to check if there were no changes applied

	diff (str): returns the config changes applied

CLI Example:

salt '*' snmp.remove_config community='abcd'

	
salt.modules.napalm_snmp.update_config(chassis_id=None, community=None, contact=None, location=None, test=False, commit=True, **kwargs)

	Updates the SNMP configuration.

	Parameters:

	
	chassis_id -- (optional) Chassis ID

	community -- (optional) A dictionary having the following optional keys:

	acl (if any policy / ACL need to be set)

	mode: rw or ro. Default: ro

	Parameters:

	
	contact -- Contact details

	location -- Location

	test -- Dry run? If set as True, will apply the config, discard and return the changes. Default: False

	commit -- Commit? (default: True) Sometimes it is not needed to commit the config immediately
after loading the changes. E.g.: a state loads a couple of parts (add / remove / update)
and would not be optimal to commit after each operation.
Also, from the CLI when the user needs to apply the similar changes before committing,
can specify commit=False and will not discard the config.

	Raises:

	MergeConfigException -- If there is an error on the configuration sent.

	Return a dictionary having the following keys:

	

	result (bool): if the config was applied successfully. It is False only
in case of failure. In case there are no changes to be applied and
successfully performs all operations it is still True and so will be
the already_configured flag (example below)

	comment (str): a message for the user

	already_configured (bool): flag to check if there were no changes applied

	diff (str): returns the config changes applied

CLI Example:

salt 'edge01.lon01' snmp.update_config location="Greenwich, UK" test=True

Output example (for the CLI example above):

edge01.lon01:

 already_configured:
 False
 comment:
 Configuration discarded.
 diff:
 [edit snmp]
 - location "London, UK";
 + location "Greenwich, UK";
 result:
 True

salt.modules.napalm_users

NAPALM Users

Manages the configuration of the users on network devices.

	codeauthor:

	Mircea Ulinic <ping@mirceaulinic.net>

	maturity:

	new

	depends:

	napalm

	platform:

	unix

Dependencies

	NAPALM proxy minion

See also

Users management state

New in version 2016.11.0.

	
salt.modules.napalm_users.config(**kwargs)

	Returns the configuration of the users on the device

CLI Example:

salt '*' users.config

Output example:

{
 'mircea': {
 'level': 15,
 'password': '$1$0P70xKPa$4jt5/10cBTckk6I/w/',
 'sshkeys': [
 'ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC4pFn+shPwTb2yELO4L7NtQrKOJXNeCl1je l9STXVaGnRAnuc2PXl35vnWmcUq6YbUEcgUTRzzXfmelJKuVJTJIlMXii7h2xkbQp0YZIEs4P 8ipwnRBAxFfk/ZcDsN3mjep4/yjN56ejk345jhk345jk345jk341p3A/9LIL7l6YewLBCwJj6 D+fWSJ0/YW+7oH17Fk2HH+tw0L5PcWLHkwA4t60iXn16qDbIk/ze6jv2hDGdCdz7oYQeCE55C CHOHMJWYfN3jcL4s0qv8/u6Ka1FVkV7iMmro7ChThoV/5snI4Ljf2wKqgHH7TfNaCfpU0WvHA nTs8zhOrGScSrtb mircea@master-roshi'
]
 }
}

	
salt.modules.napalm_users.delete_users(users, test=False, commit=True, **kwargs)

	Removes users from the configuration of network devices.

	Parameters:

	
	users -- Dictionary formatted as the output of the function config()

	test -- Dry run? If set as True, will apply the config, discard and return the changes. Default: False

	commit -- Commit? (default: True) Sometimes it is not needed to commit the config immediately
after loading the changes. E.g.: a state loads a couple of parts (add / remove / update)
and would not be optimal to commit after each operation.
Also, from the CLI when the user needs to apply the similar changes before committing,
can specify commit=False and will not discard the config.

	Raises:

	MergeConfigException -- If there is an error on the configuration sent.

	Return a dictionary having the following keys:

	
	result (bool): if the config was applied successfully. It is False
only in case of failure. In case there are no changes to be applied
and successfully performs all operations it is still True and so
will be the already_configured flag (example below)

	comment (str): a message for the user

	already_configured (bool): flag to check if there were no changes applied

	diff (str): returns the config changes applied

CLI Example:

salt '*' users.delete_users "{'mircea': {}}"

	
salt.modules.napalm_users.set_users(users, test=False, commit=True, **kwargs)

	Configures users on network devices.

	Parameters:

	
	users -- Dictionary formatted as the output of the function config()

	test -- Dry run? If set as True, will apply the config, discard and
return the changes. Default: False

	commit -- Commit? (default: True) Sometimes it is not needed to commit
the config immediately after loading the changes. E.g.: a state loads a
couple of parts (add / remove / update) and would not be optimal to
commit after each operation. Also, from the CLI when the user needs to
apply the similar changes before committing, can specify commit=False
and will not discard the config.

	Raises:

	MergeConfigException -- If there is an error on the configuration sent.

	Return a dictionary having the following keys:

	

	result (bool): if the config was applied successfully. It is False only
in case of failure. In case there are no changes to be applied and
successfully performs all operations it is still True and so will be
the already_configured flag (example below)

	comment (str): a message for the user

	already_configured (bool): flag to check if there were no changes applied

	diff (str): returns the config changes applied

CLI Example:

salt '*' users.set_users "{'mircea': {}}"

salt.modules.napalm_yang_mod

NAPALM YANG

NAPALM YANG basic operations.

New in version 2017.7.0.

	
salt.modules.napalm_yang_mod.compliance_report(data, *models, **kwargs)

	Return the compliance report using YANG objects.

	data
	Dictionary structured with respect to the models referenced.

	models
	A list of models to be used when generating the config.

	filepath
	The absolute path to the validation file.

CLI Example:

salt '*' napalm_yang.compliance_report {} models.openconfig_interfaces filepath=~/validate.yml

Output Example:

{
 "skipped": [],
 "complies": true,
 "get_interfaces_ip": {
 "missing": [],
 "complies": true,
 "present": {
 "ge-0/0/0.0": {
 "complies": true,
 "nested": true
 }
 },
 "extra": []
 }
}

	
salt.modules.napalm_yang_mod.diff(candidate, running, *models)

	Returns the difference between two configuration entities structured
according to the YANG model.

Note

This function is recommended to be used mostly as a state helper.

	candidate
	First model to compare.

	running
	Second model to compare.

	models
	A list of models to be used when comparing.

CLI Example:

salt '*' napalm_yang.diff {} {} models.openconfig_interfaces

Output Example:

{
 "interfaces": {
 "interface": {
 "both": {
 "Port-Channel1": {
 "config": {
 "mtu": {
 "first": "0",
 "second": "9000"
 }
 }
 }
 },
 "first_only": [
 "Loopback0"
],
 "second_only": [
 "Loopback1"
]
 }
 }
}

	
salt.modules.napalm_yang_mod.get_config(data, *models, **kwargs)

	Return the native config.

	data
	Dictionary structured with respect to the models referenced.

	models
	A list of models to be used when generating the config.

	profiles: None
	Use certain profiles to generate the config.
If not specified, will use the platform default profile(s).

CLI Example:

salt '*' napalm_yang.get_config {} models.openconfig_interfaces

Output Example:

interface et1
 ip address 192.168.1.1/24
 description Uplink1
 mtu 9000
interface et2
 ip address 192.168.2.1/24
 description Uplink2
 mtu 9000

	
salt.modules.napalm_yang_mod.load_config(data, *models, **kwargs)

	Generate and load the config on the device using the OpenConfig or IETF
models and device profiles.

	data
	Dictionary structured with respect to the models referenced.

	models
	A list of models to be used when generating the config.

	profiles: None
	Use certain profiles to generate the config.
If not specified, will use the platform default profile(s).

	test: False
	Dry run? If set as True, will apply the config, discard
and return the changes. Default: False and will commit
the changes on the device.

	commit: True
	Commit? Default: True.

	debug: False
	Debug mode. Will insert a new key under the output dictionary,
as loaded_config containing the raw configuration loaded on the device.

	replace: False
	Should replace the config with the new generate one?

CLI Example:

salt '*' napalm_yang.load_config {} models.openconfig_interfaces test=True debug=True

Output Example:

device1:

 already_configured:
 False
 comment:
 diff:
 [edit interfaces ge-0/0/0]
 - mtu 1400;
 [edit interfaces ge-0/0/0 unit 0 family inet]
 - dhcp;
 [edit interfaces lo0]
 - unit 0 {
 - description lo0.0;
 - }
 + unit 1 {
 + description "new loopback";
 + }
 loaded_config:
 <configuration>
 <interfaces replace="replace">
 <interface>
 <name>ge-0/0/0</name>
 <unit>
 <name>0</name>
 <family>
 <inet/>
 </family>
 <description>ge-0/0/0.0</description>
 </unit>
 <description>management interface</description>
 </interface>
 <interface>
 <name>ge-0/0/1</name>
 <disable/>
 <description>ge-0/0/1</description>
 </interface>
 <interface>
 <name>ae0</name>
 <unit>
 <name>0</name>
 <vlan-id>100</vlan-id>
 <family>
 <inet>
 <address>
 <name>192.168.100.1/24</name>
 </address>
 <address>
 <name>172.20.100.1/24</name>
 </address>
 </inet>
 </family>
 <description>a description</description>
 </unit>
 <vlan-tagging/>
 <unit>
 <name>1</name>
 <vlan-id>1</vlan-id>
 <family>
 <inet>
 <address>
 <name>192.168.101.1/24</name>
 </address>
 </inet>
 </family>
 <disable/>
 <description>ae0.1</description>
 </unit>
 <vlan-tagging/>
 <unit>
 <name>2</name>
 <vlan-id>2</vlan-id>
 <family>
 <inet>
 <address>
 <name>192.168.102.1/24</name>
 </address>
 </inet>
 </family>
 <description>ae0.2</description>
 </unit>
 <vlan-tagging/>
 </interface>
 <interface>
 <name>lo0</name>
 <unit>
 <name>1</name>
 <description>new loopback</description>
 </unit>
 <description>lo0</description>
 </interface>
 </interfaces>
 </configuration>
 result:
 True

	
salt.modules.napalm_yang_mod.parse(*models, **kwargs)

	Parse configuration from the device.

	models
	A list of models to be used when parsing.

	config: False
	Parse config.

	state: False
	Parse state.

	profiles: None
	Use certain profiles to parse. If not specified, will use the device
default profile(s).

CLI Example:

salt '*' napalm_yang.parse models.openconfig_interfaces

Output Example:

{
 "interfaces": {
 "interface": {
 ".local.": {
 "name": ".local.",
 "state": {
 "admin-status": "UP",
 "counters": {
 "in-discards": 0,
 "in-errors": 0,
 "out-errors": 0
 },
 "enabled": True,
 "ifindex": 0,
 "last-change": 0,
 "oper-status": "UP",
 "type": "softwareLoopback"
 },
 "subinterfaces": {
 "subinterface": {
 ".local..0": {
 "index": ".local..0",
 "state": {
 "ifindex": 0,
 "name": ".local..0"
 }
 }
 }
 }
 },
 "ae0": {
 "name": "ae0",
 "state": {
 "admin-status": "UP",
 "counters": {
 "in-discards": 0,
 "in-errors": 0,
 "out-errors": 0
 },
 "enabled": True,
 "ifindex": 531,
 "last-change": 255203,
 "mtu": 1518,
 "oper-status": "DOWN"
 },
 "subinterfaces": {
 "subinterface": {
 "ae0.0": {
 "index": "ae0.0",
 "state": {
 "description": "ASDASDASD",
 "ifindex": 532,
 "name": "ae0.0"
 }
 }
 "ae0.32767": {
 "index": "ae0.32767",
 "state": {
 "ifindex": 535,
 "name": "ae0.32767"
 }
 }
 }
 }
 },
 "dsc": {
 "name": "dsc",
 "state": {
 "admin-status": "UP",
 "counters": {
 "in-discards": 0,
 "in-errors": 0,
 "out-errors": 0
 },
 "enabled": True,
 "ifindex": 5,
 "last-change": 0,
 "oper-status": "UP"
 }
 },
 "ge-0/0/0": {
 "name": "ge-0/0/0",
 "state": {
 "admin-status": "UP",
 "counters": {
 "in-broadcast-pkts": 0,
 "in-discards": 0,
 "in-errors": 0,
 "in-multicast-pkts": 0,
 "in-unicast-pkts": 16877,
 "out-broadcast-pkts": 0,
 "out-errors": 0,
 "out-multicast-pkts": 0,
 "out-unicast-pkts": 15742
 },
 "description": "management interface",
 "enabled": True,
 "ifindex": 507,
 "last-change": 258467,
 "mtu": 1400,
 "oper-status": "UP"
 },
 "subinterfaces": {
 "subinterface": {
 "ge-0/0/0.0": {
 "index": "ge-0/0/0.0",
 "state": {
 "description": "ge-0/0/0.0",
 "ifindex": 521,
 "name": "ge-0/0/0.0"
 }
 }
 }
 }
 }
 "irb": {
 "name": "irb",
 "state": {
 "admin-status": "UP",
 "counters": {
 "in-discards": 0,
 "in-errors": 0,
 "out-errors": 0
 },
 "enabled": True,
 "ifindex": 502,
 "last-change": 0,
 "mtu": 1514,
 "oper-status": "UP",
 "type": "ethernetCsmacd"
 }
 },
 "lo0": {
 "name": "lo0",
 "state": {
 "admin-status": "UP",
 "counters": {
 "in-discards": 0,
 "in-errors": 0,
 "out-errors": 0
 },
 "description": "lo0",
 "enabled": True,
 "ifindex": 6,
 "last-change": 0,
 "oper-status": "UP",
 "type": "softwareLoopback"
 },
 "subinterfaces": {
 "subinterface": {
 "lo0.0": {
 "index": "lo0.0",
 "state": {
 "description": "lo0.0",
 "ifindex": 16,
 "name": "lo0.0"
 }
 },
 "lo0.16384": {
 "index": "lo0.16384",
 "state": {
 "ifindex": 21,
 "name": "lo0.16384"
 }
 },
 "lo0.16385": {
 "index": "lo0.16385",
 "state": {
 "ifindex": 22,
 "name": "lo0.16385"
 }
 },
 "lo0.32768": {
 "index": "lo0.32768",
 "state": {
 "ifindex": 248,
 "name": "lo0.32768"
 }
 }
 }
 }
 }
 }
 }
}

salt.modules.netaddress

Module for getting information about network addresses.

New in version 2016.3.0.

	depends:

	netaddr

	
salt.modules.netaddress.cidr_broadcast(cidr)

	Get the broadcast address associated with a CIDR address.

CLI Example:

salt myminion netaddress.cidr_netmask 192.168.0.0/20

	
salt.modules.netaddress.cidr_netmask(cidr)

	Get the netmask address associated with a CIDR address.

CLI Example:

salt myminion netaddress.cidr_netmask 192.168.0.0/20

	
salt.modules.netaddress.list_cidr_ips(cidr)

	Get a list of IP addresses from a CIDR.

CLI Example:

salt myminion netaddress.list_cidr_ips 192.168.0.0/20

	
salt.modules.netaddress.list_cidr_ips_ipv6(cidr)

	Get a list of IPv6 addresses from a CIDR.

CLI Example:

salt myminion netaddress.list_cidr_ips_ipv6 192.168.0.0/20

salt.modules.netbox

NetBox

Module to query NetBox

	codeauthor:

	Zach Moody <zmoody@do.co>

	maturity:

	new

	depends:

	pynetbox

The following config should be in the minion config file. In order to
work with secrets you should provide a token and path to your
private key file:

netbox:
 url: <NETBOX_URL>
 token: <NETBOX_USERNAME_API_TOKEN (OPTIONAL)>
 keyfile: </PATH/TO/NETBOX/KEY (OPTIONAL)>

New in version 2018.3.0.

	
salt.modules.netbox.create_circuit(name, provider_id, circuit_type, description=None)

	
New in version 2019.2.0.

Create a new Netbox circuit

	name
	Name of the circuit

	provider_id
	The netbox id of the circuit provider

	circuit_type
	The name of the circuit type

	asn
	The ASN of the circuit provider

	description
	The description of the circuit

CLI Example:

salt myminion netbox.create_circuit NEW_CIRCUIT_01 Telia Transit 1299 "New Telia circuit"

	
salt.modules.netbox.create_circuit_provider(name, asn=None)

	
New in version 2019.2.0.

Create a new Netbox circuit provider

	name
	The name of the circuit provider

	asn
	The ASN of the circuit provider

CLI Example:

salt myminion netbox.create_circuit_provider Telia 1299

	
salt.modules.netbox.create_circuit_termination(circuit, interface, device, speed, xconnect_id=None, term_side='A')

	
New in version 2019.2.0.

Terminate a circuit on an interface

	circuit
	The name of the circuit

	interface
	The name of the interface to terminate on

	device
	The name of the device the interface belongs to

	speed
	The speed of the circuit, in Kbps

	xconnect_id
	The cross-connect identifier

	term_side
	The side of the circuit termination

CLI Example:

salt myminion netbox.create_circuit_termination NEW_CIRCUIT_01 xe-0/0/1 myminion 10000 xconnect_id=XCON01

	
salt.modules.netbox.create_circuit_type(name)

	
New in version 2019.2.0.

Create a new Netbox circuit type.

	name
	The name of the circuit type

CLI Example:

salt myminion netbox.create_circuit_type Transit

	
salt.modules.netbox.create_device(name, role, model, manufacturer, site)

	
New in version 2019.2.0.

Create a new device with a name, role, model, manufacturer and site.
All these components need to be already in Netbox.

	name
	The name of the device, e.g., edge_router

	role
	String of device role, e.g., router

	model
	String of device model, e.g., MX480

	manufacturer
	String of device manufacturer, e.g., Juniper

	site
	String of device site, e.g., BRU

CLI Example:

salt myminion netbox.create_device edge_router router MX480 Juniper BRU

	
salt.modules.netbox.create_device_role(role, color)

	
New in version 2019.2.0.

Create a device role

	role
	String of device role, e.g., router

CLI Example:

salt myminion netbox.create_device_role router

	
salt.modules.netbox.create_device_type(model, manufacturer)

	
New in version 2019.2.0.

Create a device type. If the manufacturer doesn't exist, create a new manufacturer.

	model
	String of device model, e.g., MX480

	manufacturer
	String of device manufacturer, e.g., Juniper

CLI Example:

salt myminion netbox.create_device_type MX480 Juniper

	
salt.modules.netbox.create_interface(device_name, interface_name, mac_address=None, description=None, enabled=None, lag=None, lag_parent=None, form_factor=None)

	
New in version 2019.2.0.

Attach an interface to a device. If not all arguments are provided,
they will default to Netbox defaults.

	device_name
	The name of the device, e.g., edge_router

	interface_name
	The name of the interface, e.g., TenGigE0/0/0/0

	mac_address
	String of mac address, e.g., 50:87:89:73:92:C8

	description
	String of interface description, e.g., NTT

	enabled
	String of boolean interface status, e.g., True

	lag:
	Boolean of interface lag status, e.g., True

	lag_parent
	String of interface lag parent name, e.g., ae13

	form_factor
	Integer of form factor id, obtained through _choices API endpoint, e.g., 200

CLI Example:

salt myminion netbox.create_interface edge_router ae13 description="Core uplink"

	
salt.modules.netbox.create_interface_connection(interface_a, interface_b)

	
New in version 2019.2.0.

Create an interface connection between 2 interfaces

	interface_a
	Interface id for Side A

	interface_b
	Interface id for Side B

CLI Example:

salt myminion netbox.create_interface_connection 123 456

	
salt.modules.netbox.create_inventory_item(device_name, item_name, manufacturer_name=None, serial='', part_id='', description='')

	
New in version 2019.2.0.

Add an inventory item to an existing device.

	device_name
	The name of the device, e.g., edge_router.

	item_name
	String of inventory item name, e.g., Transceiver.

	manufacturer_name
	String of inventory item manufacturer, e.g., Fiberstore.

	serial
	String of inventory item serial, e.g., FS1238931.

	part_id
	String of inventory item part id, e.g., 740-01234.

	description
	String of inventory item description, e.g., SFP+-10G-LR.

CLI Example:

salt myminion netbox.create_inventory_item edge_router Transceiver part_id=740-01234

	
salt.modules.netbox.create_ipaddress(ip_address, family, device=None, interface=None)

	
New in version 2019.2.0.

Add an IP address, and optionally attach it to an interface.

	ip_address
	The IP address and CIDR, e.g., 192.168.1.1/24

	family
	Integer of IP family, e.g., 4

	device
	The name of the device to attach IP to, e.g., edge_router

	interface
	The name of the interface to attach IP to, e.g., ae13

CLI Example:

salt myminion netbox.create_ipaddress 192.168.1.1/24 4 device=edge_router interface=ae13

	
salt.modules.netbox.create_manufacturer(name)

	
New in version 2019.2.0.

Create a device manufacturer.

	name
	The name of the manufacturer, e.g., Juniper

CLI Example:

salt myminion netbox.create_manufacturer Juniper

	
salt.modules.netbox.create_platform(platform)

	
New in version 2019.2.0.

Create a new device platform

	platform
	String of device platform, e.g., junos

CLI Example:

salt myminion netbox.create_platform junos

	
salt.modules.netbox.create_site(site)

	
New in version 2019.2.0.

Create a new device site

	site
	String of device site, e.g., BRU

CLI Example:

salt myminion netbox.create_site BRU

	
salt.modules.netbox.delete_interface(device_name, interface_name)

	
New in version 2019.2.0.

Delete an interface from a device.

	device_name
	The name of the device, e.g., edge_router.

	interface_name
	The name of the interface, e.g., ae13

CLI Example:

salt myminion netbox.delete_interface edge_router ae13

	
salt.modules.netbox.delete_inventory_item(item_id)

	
New in version 2019.2.0.

Remove an item from a devices inventory. Identified by the netbox id

	item_id
	Integer of item to be deleted

CLI Example:

salt myminion netbox.delete_inventory_item 1354

	
salt.modules.netbox.delete_ipaddress(ipaddr_id)

	
New in version 2019.2.0.

Delete an IP address. IP addresses in Netbox are a combination of address
and the interface it is assigned to.

	id
	The Netbox id for the IP address.

CLI Example:

salt myminion netbox.delete_ipaddress 9002

	
salt.modules.netbox.filter_(app, endpoint, **kwargs)

	Get a list of items from NetBox.

	app
	String of netbox app, e.g., dcim, circuits, ipam

	endpoint
	String of app endpoint, e.g., sites, regions, devices

	kwargs
	Optional arguments that can be used to filter.
All filter keywords are available in Netbox,
which can be found by surfing to the corresponding API endpoint,
and clicking Filters. e.g., role=router

Returns a list of dictionaries

salt myminion netbox.filter dcim devices status=1 role=router

	
salt.modules.netbox.get_(app, endpoint, id=None, **kwargs)

	Get a single item from NetBox.

	app
	String of netbox app, e.g., dcim, circuits, ipam

	endpoint
	String of app endpoint, e.g., sites, regions, devices

Returns a single dictionary

To get an item based on ID.

salt myminion netbox.get dcim devices id=123

Or using named arguments that correspond with accepted filters on
the NetBox endpoint.

salt myminion netbox.get dcim devices name=my-router

	
salt.modules.netbox.get_circuit_provider(name, asn=None)

	
New in version 2019.2.0.

Get a circuit provider with a given name and optional ASN.

	name
	The name of the circuit provider

	asn
	The ASN of the circuit provider

CLI Example:

salt myminion netbox.get_circuit_provider Telia 1299

	
salt.modules.netbox.get_interfaces(device_name=None, **kwargs)

	
New in version 2019.2.0.

Returns interfaces for a specific device using arbitrary netbox filters

	device_name
	The name of the device, e.g., edge_router

	kwargs
	Optional arguments to be used for filtering

CLI Example:

salt myminion netbox.get_interfaces edge_router name="et-0/0/5"

	
salt.modules.netbox.get_ipaddresses(device_name=None, **kwargs)

	
New in version 2019.2.0.

Filters for an IP address using specified filters

	device_name
	The name of the device to check for the IP address

	kwargs
	Optional arguments that can be used to filter, e.g., family=4

CLI Example:

salt myminion netbox.get_ipaddresses device_name family=4

	
salt.modules.netbox.make_interface_child(device_name, interface_name, parent_name)

	
New in version 2019.2.0.

Set an interface as part of a LAG.

	device_name
	The name of the device, e.g., edge_router.

	interface_name
	The name of the interface to be attached to LAG, e.g., xe-1/0/2.

	parent_name
	The name of the LAG interface, e.g., ae13.

CLI Example:

salt myminion netbox.make_interface_child xe-1/0/2 ae13

	
salt.modules.netbox.make_interface_lag(device_name, interface_name)

	
New in version 2019.2.0.

Update an interface to be a LAG.

	device_name
	The name of the device, e.g., edge_router.

	interface_name
	The name of the interface, e.g., ae13.

CLI Example:

salt myminion netbox.make_interface_lag edge_router ae13

	
salt.modules.netbox.openconfig_interfaces(device_name=None)

	
New in version 2019.2.0.

Return a dictionary structured as standardised in the
openconfig-interfaces [http://ops.openconfig.net/branches/models/master/openconfig-interfaces.html]
YANG model, containing physical and configuration data available in Netbox,
e.g., IP addresses, MTU, enabled / disabled, etc.

	device_name: None
	The name of the device to query the interface data for. If not provided,
will use the Minion ID.

CLI Example:

salt '*' netbox.openconfig_interfaces
salt '*' netbox.openconfig_interfaces device_name=cr1.thn.lon

	
salt.modules.netbox.openconfig_lacp(device_name=None)

	
New in version 2019.2.0.

Return a dictionary structured as standardised in the
openconfig-lacp [http://ops.openconfig.net/branches/models/master/openconfig-lacp.html]
YANG model, with configuration data for Link Aggregation Control Protocol
(LACP) for aggregate interfaces.

Note

The interval and lacp_mode keys have the values set as SLOW
and ACTIVE respectively, as this data is not currently available
in Netbox, therefore defaulting to the values defined in the standard.
See interval [http://ops.openconfig.net/branches/models/master/docs/openconfig-lacp.html#lacp-interfaces-interface-config-interval]
and lacp-mode [http://ops.openconfig.net/branches/models/master/docs/openconfig-lacp.html#lacp-interfaces-interface-config-lacp-mode]
for further details.

	device_name: None
	The name of the device to query the LACP information for. If not provided,
will use the Minion ID.

CLI Example:

salt '*' netbox.openconfig_lacp
salt '*' netbox.openconfig_lacp device_name=cr1.thn.lon

	
salt.modules.netbox.slugify(value)

	'
Slugify given value.
Credit to Djangoproject https://docs.djangoproject.com/en/2.0/_modules/django/utils/text/#slugify

	
salt.modules.netbox.update_device(name, **kwargs)

	
New in version 2019.2.0.

Add attributes to an existing device, identified by name.

	name
	The name of the device, e.g., edge_router

	kwargs
	Arguments to change in device, e.g., serial=JN2932930

CLI Example:

salt myminion netbox.update_device edge_router serial=JN2932920

	
salt.modules.netbox.update_interface(device_name, interface_name, **kwargs)

	
New in version 2019.2.0.

Update an existing interface with new attributes.

	device_name
	The name of the device, e.g., edge_router

	interface_name
	The name of the interface, e.g., ae13

	kwargs
	Arguments to change in interface, e.g., mac_address=50:87:69:53:32:D0

CLI Example:

salt myminion netbox.update_interface edge_router ae13 mac_address=50:87:69:53:32:D0

salt.modules.netbsd_sysctl

Module for viewing and modifying sysctl parameters

	
salt.modules.netbsd_sysctl.assign(name, value)

	Assign a single sysctl parameter for this minion

CLI Example:

salt '*' sysctl.assign net.inet.icmp.icmplim 50

	
salt.modules.netbsd_sysctl.get(name)

	Return a single sysctl parameter for this minion

CLI Example:

salt '*' sysctl.get hw.physmem

	
salt.modules.netbsd_sysctl.persist(name, value, config='/etc/sysctl.conf')

	Assign and persist a simple sysctl parameter for this minion

CLI Example:

salt '*' sysctl.persist net.inet.icmp.icmplim 50

	
salt.modules.netbsd_sysctl.show(config_file=False)

	Return a list of sysctl parameters for this minion

	config: Pull the data from the system configuration file
	instead of the live data.

CLI Example:

salt '*' sysctl.show

salt.modules.netbsdservice

The service module for NetBSD

Important

If you feel that Salt should be using this module to manage services on a
minion, and it is using a different module (or gives an error similar to
'service.start' is not available), see here.

	
salt.modules.netbsdservice.available(name)

	Returns True if the specified service is available, otherwise returns
False.

CLI Example:

salt '*' service.available sshd

	
salt.modules.netbsdservice.disable(name, **kwargs)

	Disable the named service to start at boot

CLI Example:

salt '*' service.disable <service name>

	
salt.modules.netbsdservice.disabled(name)

	Return True if the named service is enabled, false otherwise

CLI Example:

salt '*' service.disabled <service name>

	
salt.modules.netbsdservice.enable(name, **kwargs)

	Enable the named service to start at boot

CLI Example:

salt '*' service.enable <service name>

	
salt.modules.netbsdservice.enabled(name, **kwargs)

	Return True if the named service is enabled, false otherwise

CLI Example:

salt '*' service.enabled <service name>

	
salt.modules.netbsdservice.force_reload(name)

	Force-reload the named service

CLI Example:

salt '*' service.force_reload <service name>

	
salt.modules.netbsdservice.get_all()

	Return all available boot services

CLI Example:

salt '*' service.get_all

	
salt.modules.netbsdservice.get_disabled()

	Return a set of services that are installed but disabled

CLI Example:

salt '*' service.get_disabled

	
salt.modules.netbsdservice.get_enabled()

	Return a list of service that are enabled on boot

CLI Example:

salt '*' service.get_enabled

	
salt.modules.netbsdservice.missing(name)

	The inverse of service.available.
Returns True if the specified service is not available, otherwise returns
False.

CLI Example:

salt '*' service.missing sshd

	
salt.modules.netbsdservice.reload_(name)

	Reload the named service

CLI Example:

salt '*' service.reload <service name>

	
salt.modules.netbsdservice.restart(name)

	Restart the named service

CLI Example:

salt '*' service.restart <service name>

	
salt.modules.netbsdservice.start(name)

	Start the specified service

CLI Example:

salt '*' service.start <service name>

	
salt.modules.netbsdservice.status(name, sig=None)

	Return the status for a service.
If the name contains globbing, a dict mapping service name to True/False
values is returned.

Changed in version 2018.3.0: The service name can now be a glob (e.g. salt*)

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service to check

	sig (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Signature to use to find the service via ps

	Returns:

	True if running, False otherwise
dict: Maps service name to True if running, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.status <service name> [service signature]

	
salt.modules.netbsdservice.stop(name)

	Stop the specified service

CLI Example:

salt '*' service.stop <service name>

salt.modules.netmiko_mod

Netmiko Execution Module

New in version 2019.2.0.

Execution module to interface the connection with a remote network device. It is
flexible enough to execute the commands both when running under a Netmiko Proxy
Minion, as well as running under a Regular Minion by specifying the connection
arguments, i.e., device_type, ip, username, password etc.

	codeauthor:

	Mircea Ulinic <ping@mirceaulinic.net> & Kirk Byers <ktbyers@twb-tech.com>

	maturity:

	new

	depends:

	netmiko

	platform:

	unix

Dependencies

The netmiko proxy modules requires Netmiko to be installed: pip install netmiko.

Usage

This module can equally be used via the netmiko
Proxy module (check documentation), or directly from an arbitrary (Proxy) Minion
that is running on a server (computer) having access to the network device, and
has the netmiko library installed.

When running outside of the netmiko Proxy (i.e.,
from another Proxy Minion type, or regular Minion), the netmiko connection
arguments can be either specified from the CLI when executing the command, or
in a configuration block under the netmiko key in the configuration opts
(i.e., (Proxy) Minion configuration file), or Pillar. The module supports these
simultaneously. These fields are the exact same supported by the netmiko
Proxy Module:

	device_type - Class selection based on device type. Supported options:

	a10: A10 Networks

	accedian: Accedian Networks

	alcatel_aos: Alcatel AOS

	alcatel_sros: Alcatel SROS

	apresia_aeos: Apresia AEOS

	arista_eos: Arista EOS

	aruba_os: Aruba

	avaya_ers: Avaya ERS

	avaya_vsp: Avaya VSP

	brocade_fastiron: Brocade Fastiron

	brocade_netiron: Brocade Netiron

	brocade_nos: Brocade NOS

	brocade_vdx: Brocade NOS

	brocade_vyos: VyOS

	checkpoint_gaia: Check Point GAiA

	calix_b6: Calix B6

	ciena_saos: Ciena SAOS

	cisco_asa: Cisco SA

	cisco_ios: Cisco IOS

	cisco_nxos: Cisco NX-oS

	cisco_s300: Cisco S300

	cisco_tp: Cisco TpTcCe

	cisco_wlc: Cisco WLC

	cisco_xe: Cisco IOS

	cisco_xr: Cisco XR

	coriant: Coriant

	dell_force10: Dell Force10

	dell_os10: Dell OS10

	dell_powerconnect: Dell PowerConnect

	eltex: Eltex

	enterasys: Enterasys

	extreme: Extreme

	extreme_wing: Extreme Wing

	f5_ltm: F5 LTM

	fortinet: Fortinet

	generic_termserver: TerminalServer

	hp_comware: HP Comware

	hp_procurve: HP Procurve

	huawei: Huawei

	huawei_vrpv8: Huawei VRPV8

	juniper: Juniper Junos

	juniper_junos: Juniper Junos

	linux: Linux

	mellanox: Mellanox

	mrv_optiswitch: MrvOptiswitch

	netapp_cdot: NetAppcDot

	netscaler: Netscaler

	ovs_linux: OvsLinux

	paloalto_panos: PaloAlto Panos

	pluribus: Pluribus

	quanta_mesh: Quanta Mesh

	ruckus_fastiron: Ruckus Fastiron

	ubiquiti_edge: Ubiquiti Edge

	ubiquiti_edgeswitch: Ubiquiti Edge

	vyatta_vyos: VyOS

	vyos: VyOS

	brocade_fastiron_telnet: Brocade Fastiron over Telnet

	brocade_netiron_telnet: Brocade Netiron over Telnet

	cisco_ios_telnet: Cisco IOS over Telnet

	apresia_aeos_telnet: Apresia AEOS over Telnet

	arista_eos_telnet: Arista EOS over Telnet

	hp_procurve_telnet: HP Procurve over Telnet

	hp_comware_telnet: HP Comware over Telnet

	juniper_junos_telnet: Juniper Junos over Telnet

	calix_b6_telnet: Calix B6 over Telnet

	dell_powerconnect_telnet: Dell PowerConnect over Telnet

	generic_termserver_telnet: TerminalServer over Telnet

	extreme_telnet: Extreme Networks over Telnet

	ruckus_fastiron_telnet: Ruckus Fastiron over Telnet

	cisco_ios_serial: Cisco IOS over serial port

	ip - IP address of target device (not required if host is provided)

	host - Hostname of target device (not required if ip is provided)

	username - Username to authenticate against target device, if required

	password - Password to authenticate against target device, if required

	secret - The enable password if target device requires one

	port - The destination port used to connect to the target device

	global_delay_factor - Multiplication factor affecting Netmiko delays
(default: 1)

	use_keys - Connect to target device using SSH keys (default: False)

	key_file - Filename path of the SSH key file to use

	allow_agent - Enable use of SSH key-agent

	ssh_strict - Automatically reject unknown SSH host keys (default:
False, which means unknown SSH host keys will be accepted)

	system_host_keys - Load host keys from the user's "known_hosts" file
(default: False)

	alt_host_keys - If True, host keys will be loaded from the file
specified in alt_key_file (default: False)

	alt_key_file - SSH host key file to use (if alt_host_keys=True)

	ssh_config_file - File name of OpenSSH configuration file

	timeout - Connection timeout, in seconds (default: 90)

	session_timeout - Set a timeout for parallel requests, in seconds
(default: 60)

	keepalive - Send SSH keepalive packets at a specific interval, in
seconds. Currently defaults to 0, for backwards compatibility (it will
not attempt to keep the connection alive using the KEEPALIVE packets).

	default_enter - Character(s) to send to correspond to enter key (default:
\n)

	response_return - Character(s) to use in normalized return data to
represent enter key (default: \n)

Example (when not running in a netmiko Proxy Minion):

netmiko:
 username: test
 password: test

In case the username and password are the same on any device you are
targeting, the block above (besides other parameters specific to your
environment you might need) should suffice to be able to execute commands from
outside a netmiko Proxy, e.g.:

salt '*' netmiko.send_command 'show version' host=router1.example.com device_type=juniper
salt '*' netmiko.send_config https://bit.ly/2sgljCB host=sw2.example.com device_type=cisco_ios

Note

Remember that the above applies only when not running in a netmiko Proxy
Minion. If you want to use the <salt.proxy.netmiko_px>, please follow
the documentation notes for a proper setup.

	
salt.modules.netmiko_mod.call(method, *args, **kwargs)

	Invoke an arbitrary Netmiko method.

	method
	The name of the Netmiko method to invoke.

	args
	A list of arguments to send to the method invoked.

	kwargs
	Key-value dictionary to send to the method invoked.

	
salt.modules.netmiko_mod.commit(**kwargs)

	Commit the configuration changes.

Warning

This function is supported only on the platforms that support the
commit operation.

CLI Example:

salt '*' netmiko.commit

	
salt.modules.netmiko_mod.enter_config_mode(**kwargs)

	Enter into config mode.

	config_command
	Configuration command to send to the device.

	pattern
	Pattern to terminate reading of channel.

CLI Example:

salt '*' netmiko.enter_config_mode
salt '*' netmiko.enter_config_mode device_type='juniper_junos' ip='192.168.0.1' username='example'

	
salt.modules.netmiko_mod.exit_config_mode(**kwargs)

	Exit from configuration mode.

	exit_config
	Command to exit configuration mode.

	pattern
	Pattern to terminate reading of channel.

CLI Example:

salt '*' netmiko.exit_config_mode
salt '*' netmiko.exit_config_mode device_type='juniper' ip='192.168.0.1' username='example'

	
salt.modules.netmiko_mod.get_connection(**kwargs)

	Return the Netmiko connection object.

Warning

This function returns an unserializable object, hence it is not meant
to be used on the CLI. This should mainly be used when invoked from
other modules for the low level connection with the network device.

	kwargs
	Key-value dictionary with the authentication details.

USAGE Example:

conn = __salt__['netmiko.get_connection'](host='router1.example.com',
 username='example',
 password='example')
show_if = conn.send_command('show interfaces')
conn.disconnect()

	
salt.modules.netmiko_mod.multi_call(*methods, **kwargs)

	Invoke multiple Netmiko methods at once, and return their output, as list.

	methods
	A list of dictionaries with the following keys:

	name: the name of the Netmiko method to be executed.

	args: list of arguments to be sent to the Netmiko method.

	kwargs: dictionary of arguments to be sent to the Netmiko method.

	kwargs
	Key-value dictionary with the connection details (when not running
under a Proxy Minion).

	
salt.modules.netmiko_mod.send_command(command_string, **kwargs)

	Execute command_string on the SSH channel using a pattern-based mechanism.
Generally used for show commands. By default this method will keep waiting
to receive data until the network device prompt is detected. The current
network device prompt will be determined automatically.

	command_string
	The command to be executed on the remote device.

	expect_string
	Regular expression pattern to use for determining end of output.
If left blank will default to being based on router prompt.

	delay_factor: 1
	Multiplying factor used to adjust delays (default: 1).

	max_loops: 500
	Controls wait time in conjunction with delay_factor. Will default to be
based upon self.timeout.

	auto_find_prompt: True
	Whether it should try to auto-detect the prompt (default: True).

	strip_prompt: True
	Remove the trailing router prompt from the output (default: True).

	strip_command: True
	Remove the echo of the command from the output (default: True).

	normalize: True
	Ensure the proper enter is sent at end of command (default: True).

	use_textfsm: False
	Process command output through TextFSM template (default: False).

CLI Example:

salt '*' netmiko.send_command 'show version'
salt '*' netmiko.send_command 'show_version' host='router1.example.com' username='example' device_type='cisco_ios'

	
salt.modules.netmiko_mod.send_command_timing(command_string, **kwargs)

	Execute command_string on the SSH channel using a delay-based mechanism.
Generally used for show commands.

	command_string
	The command to be executed on the remote device.

	delay_factor: 1
	Multiplying factor used to adjust delays (default: 1).

	max_loops: 500
	Controls wait time in conjunction with delay_factor. Will default to be
based upon self.timeout.

	strip_prompt: True
	Remove the trailing router prompt from the output (default: True).

	strip_command: True
	Remove the echo of the command from the output (default: True).

	normalize: True
	Ensure the proper enter is sent at end of command (default: True).

	use_textfsm: False
	Process command output through TextFSM template (default: False).

CLI Example:

salt '*' netmiko.send_command_timing 'show version'
salt '*' netmiko.send_command_timing 'show version' host='router1.example.com' username='example' device_type='arista_eos'

	
salt.modules.netmiko_mod.send_config(config_file=None, config_commands=None, template_engine='jinja', commit=False, context=None, defaults=None, saltenv='base', **kwargs)

	Send configuration commands down the SSH channel.
Return the configuration lines sent to the device.

The function is flexible to send the configuration from a local or remote
file, or simply the commands as list.

	config_file
	The source file with the configuration commands to be sent to the
device.

The file can also be a template that can be rendered using the template
engine of choice.

This can be specified using the absolute path to the file, or using one
of the following URL schemes:

	salt://, to fetch the file from the Salt fileserver.

	http:// or https://

	ftp://

	s3://

	swift://

	config_commands
	Multiple configuration commands to be sent to the device.

Note

This argument is ignored when config_file is specified.

	template_engine: jinja
	The template engine to use when rendering the source file. Default:
jinja. To simply fetch the file without attempting to render, set
this argument to None.

	commit: False
	Commit the configuration changes before exiting the config mode. This
option is by default disabled, as many platforms don't have this
capability natively.

	context
	Variables to add to the template context.

	defaults
	Default values of the context_dict.

	exit_config_mode: True
	Determines whether or not to exit config mode after complete.

	delay_factor: 1
	Factor to adjust delays.

	max_loops: 150
	Controls wait time in conjunction with delay_factor (default: 150).

	strip_prompt: False
	Determines whether or not to strip the prompt (default: False).

	strip_command: False
	Determines whether or not to strip the command (default: False).

	config_mode_command
	The command to enter into config mode.

CLI Example:

salt '*' netmiko.send_config config_commands="['interface GigabitEthernet3', 'no ip address']"
salt '*' netmiko.send_config config_commands="['snmp-server location {{ grains.location }}']"
salt '*' netmiko.send_config config_file=salt://config.txt
salt '*' netmiko.send_config config_file=https://bit.ly/2sgljCB device_type='cisco_ios' ip='1.2.3.4' username='example'

salt.modules.netscaler

Module to provide Citrix Netscaler compatibility to Salt (compatible with netscaler 9.2+)

New in version 2015.2.0.

	depends:

	

	nsnitro Python module

Note

You can install nsnitro using:

pip install nsnitro

	configuration:

	This module accepts connection configuration details either as
parameters, or as configuration settings in /etc/salt/minion on the relevant
minions

netscaler.host: 1.2.3.4
netscaler.user: user
netscaler.pass: password

This data can also be passed into pillar. Options passed into opts will
overwrite options passed into pillar.

CLI Examples:

Calls relying on configuration passed using /etc/salt/minion, grains, or pillars:

salt-call netscaler.server_exists server_name

Calls passing configuration as opts

salt-call netscaler.server_exists server_name netscaler_host=1.2.3.4 netscaler_user=username netscaler_pass=password
salt-call netscaler.server_exists server_name netscaler_host=1.2.3.5 netscaler_user=username2 netscaler_pass=password2
salt-call netscaler.server_enable server_name2 netscaler_host=1.2.3.5
salt-call netscaler.server_up server_name3 netscaler_host=1.2.3.6 netscaler_useSSL=False

	
salt.modules.netscaler.server_add(s_name, s_ip, s_state=None, **connection_args)

	Add a server
Note: The default server state is ENABLED

CLI Example:

salt '*' netscaler.server_add 'serverName' 'serverIpAddress'
salt '*' netscaler.server_add 'serverName' 'serverIpAddress' 'serverState'

	
salt.modules.netscaler.server_delete(s_name, **connection_args)

	Delete a server

CLI Example:

salt '*' netscaler.server_delete 'serverName'

	
salt.modules.netscaler.server_disable(s_name, **connection_args)

	Disable a server globally

CLI Example:

salt '*' netscaler.server_disable 'serverName'

	
salt.modules.netscaler.server_enable(s_name, **connection_args)

	Enables a server globally

CLI Example:

salt '*' netscaler.server_enable 'serverName'

	
salt.modules.netscaler.server_enabled(s_name, **connection_args)

	Check if a server is enabled globally

CLI Example:

salt '*' netscaler.server_enabled 'serverName'

	
salt.modules.netscaler.server_exists(s_name, ip=None, s_state=None, **connection_args)

	Checks if a server exists

CLI Example:

salt '*' netscaler.server_exists 'serverName'

	
salt.modules.netscaler.server_update(s_name, s_ip, **connection_args)

	Update a server's attributes

CLI Example:

salt '*' netscaler.server_update 'serverName' 'serverIP'

	
salt.modules.netscaler.service_disable(s_name, s_delay=None, **connection_args)

	Disable a service

CLI Example:

salt '*' netscaler.service_disable 'serviceName'
salt '*' netscaler.service_disable 'serviceName' 'delayInSeconds'

	
salt.modules.netscaler.service_enable(s_name, **connection_args)

	Enable a service

CLI Example:

salt '*' netscaler.service_enable 'serviceName'

	
salt.modules.netscaler.service_exists(s_name, **connection_args)

	Checks if a service exists

CLI Example:

salt '*' netscaler.service_exists 'serviceName'

	
salt.modules.netscaler.service_up(s_name, **connection_args)

	Checks if a service is UP

CLI Example:

salt '*' netscaler.service_up 'serviceName'

	
salt.modules.netscaler.servicegroup_add(sg_name, sg_type='HTTP', **connection_args)

	Add a new service group
If no service type is specified, HTTP will be used.
Most common service types: HTTP, SSL, and SSL_BRIDGE

CLI Example:

salt '*' netscaler.servicegroup_add 'serviceGroupName'
salt '*' netscaler.servicegroup_add 'serviceGroupName' 'serviceGroupType'

	
salt.modules.netscaler.servicegroup_delete(sg_name, **connection_args)

	Delete a new service group

CLI Example:

salt '*' netscaler.servicegroup_delete 'serviceGroupName'

	
salt.modules.netscaler.servicegroup_exists(sg_name, sg_type=None, **connection_args)

	Checks if a service group exists

CLI Example:

salt '*' netscaler.servicegroup_exists 'serviceGroupName'

	
salt.modules.netscaler.servicegroup_server_add(sg_name, s_name, s_port, **connection_args)

	Add a server:port member to a servicegroup

CLI Example:

salt '*' netscaler.servicegroup_server_add 'serviceGroupName' 'serverName' 'serverPort'

	
salt.modules.netscaler.servicegroup_server_delete(sg_name, s_name, s_port, **connection_args)

	Remove a server:port member from a servicegroup

CLI Example:

salt '*' netscaler.servicegroup_server_delete 'serviceGroupName' 'serverName' 'serverPort'

	
salt.modules.netscaler.servicegroup_server_disable(sg_name, s_name, s_port, **connection_args)

	Disable a server:port member of a servicegroup

CLI Example:

salt '*' netscaler.servicegroup_server_disable 'serviceGroupName' 'serverName' 'serverPort'

	
salt.modules.netscaler.servicegroup_server_enable(sg_name, s_name, s_port, **connection_args)

	Enable a server:port member of a servicegroup

CLI Example:

salt '*' netscaler.servicegroup_server_enable 'serviceGroupName' 'serverName' 'serverPort'

	
salt.modules.netscaler.servicegroup_server_exists(sg_name, s_name, s_port=None, **connection_args)

	Check if a server:port combination is a member of a servicegroup

CLI Example:

salt '*' netscaler.servicegroup_server_exists 'serviceGroupName' 'serverName' 'serverPort'

	
salt.modules.netscaler.servicegroup_server_up(sg_name, s_name, s_port, **connection_args)

	Check if a server:port combination is in state UP in a servicegroup

CLI Example:

salt '*' netscaler.servicegroup_server_up 'serviceGroupName' 'serverName' 'serverPort'

	
salt.modules.netscaler.vserver_add(v_name, v_ip, v_port, v_type, **connection_args)

	Add a new lb vserver

CLI Example:

salt '*' netscaler.vserver_add 'vserverName' 'vserverIP' 'vserverPort' 'vserverType'
salt '*' netscaler.vserver_add 'alex.patate.chaude.443' '1.2.3.4' '443' 'SSL'

	
salt.modules.netscaler.vserver_delete(v_name, **connection_args)

	Delete a lb vserver

CLI Example:

salt '*' netscaler.vserver_delete 'vserverName'

	
salt.modules.netscaler.vserver_exists(v_name, v_ip=None, v_port=None, v_type=None, **connection_args)

	Checks if a vserver exists

CLI Example:

salt '*' netscaler.vserver_exists 'vserverName'

	
salt.modules.netscaler.vserver_servicegroup_add(v_name, sg_name, **connection_args)

	Bind a servicegroup to a vserver

CLI Example:

salt '*' netscaler.vserver_servicegroup_add 'vserverName' 'serviceGroupName'

	
salt.modules.netscaler.vserver_servicegroup_delete(v_name, sg_name, **connection_args)

	Unbind a servicegroup from a vserver

CLI Example:

salt '*' netscaler.vserver_servicegroup_delete 'vserverName' 'serviceGroupName'

	
salt.modules.netscaler.vserver_servicegroup_exists(v_name, sg_name, **connection_args)

	Checks if a servicegroup is tied to a vserver

CLI Example:

salt '*' netscaler.vserver_servicegroup_exists 'vserverName' 'serviceGroupName'

	
salt.modules.netscaler.vserver_sslcert_add(v_name, sc_name, **connection_args)

	Binds a SSL certificate to a vserver

CLI Example:

salt '*' netscaler.vserver_sslcert_add 'vserverName' 'sslCertificateName'

	
salt.modules.netscaler.vserver_sslcert_delete(v_name, sc_name, **connection_args)

	Unbinds a SSL certificate from a vserver

CLI Example:

salt '*' netscaler.vserver_sslcert_delete 'vserverName' 'sslCertificateName'

	
salt.modules.netscaler.vserver_sslcert_exists(v_name, sc_name, **connection_args)

	Checks if a SSL certificate is tied to a vserver

CLI Example:

salt '*' netscaler.vserver_sslcert_exists 'vserverName' 'sslCertificateName'

salt.modules.network

Module for gathering and managing network information

	
salt.modules.network.active_tcp()

	Return a dict containing information on all of the running TCP connections (currently linux and solaris only)

Changed in version 2015.8.4: Added support for SunOS

CLI Example:

salt '*' network.active_tcp

	
salt.modules.network.arp()

	Return the arp table from the minion

Changed in version 2015.8.0: Added support for SunOS

CLI Example:

salt '*' network.arp

	
salt.modules.network.calc_net(ip_addr, netmask=None)

	Returns the CIDR of a subnet based on
an IP address (CIDR notation supported)
and optional netmask.

CLI Example:

salt '*' network.calc_net 172.17.0.5 255.255.255.240
salt '*' network.calc_net 2a02:f6e:a000:80:84d8:8332:7866:4e07/64

New in version 2015.8.0.

	
salt.modules.network.connect(host, port=None, **kwargs)

	Test connectivity to a host using a particular
port from the minion.

New in version 2014.7.0.

CLI Example:

salt '*' network.connect archlinux.org 80

salt '*' network.connect archlinux.org 80 timeout=3

salt '*' network.connect archlinux.org 80 timeout=3 family=ipv4

salt '*' network.connect google-public-dns-a.google.com port=53 proto=udp timeout=3

	
salt.modules.network.convert_cidr(cidr)

	returns the network address, subnet mask and broadcast address of a cidr address

New in version 2016.3.0.

CLI Example:

salt '*' network.convert_cidr 172.31.0.0/16

	
salt.modules.network.default_route(family=None)

	Return default route(s) from routing table

Changed in version 2015.8.0: Added support for SunOS (Solaris 10, Illumos, SmartOS)

Changed in version 2016.11.4: Added support for AIX

CLI Example:

salt '*' network.default_route

	
salt.modules.network.dig(host)

	Performs a DNS lookup with dig

CLI Example:

salt '*' network.dig archlinux.org

	
salt.modules.network.fqdns()

	Return all known FQDNs for the system by enumerating all interfaces and
then trying to reverse resolve them (excluding 'lo' interface).

CLI Example:

salt '*' network.fqdns

	
salt.modules.network.get_bufsize(iface)

	Return network buffer sizes as a dict (currently linux only)

CLI Example:

salt '*' network.get_bufsize eth0

	
salt.modules.network.get_fqdn()

	Get fully qualified domain name

CLI Example:

salt '*' network.get_fqdn

	
salt.modules.network.get_hostname()

	Get hostname

CLI Example:

salt '*' network.get_hostname

	
salt.modules.network.get_route(ip)

	Return routing information for given destination ip

New in version 2015.5.3.

Changed in version 2015.8.0: Added support for SunOS (Solaris 10, Illumos, SmartOS)
Added support for OpenBSD

Changed in version 2016.11.4: Added support for AIX

CLI Example:

salt '*' network.get_route 10.10.10.10

	
salt.modules.network.hw_addr(iface)

	Return the hardware address (a.k.a. MAC address) for a given interface

CLI Example:

salt '*' network.hw_addr eth0

	
salt.modules.network.hwaddr(iface)

	This function is an alias of hw_addr.

Return the hardware address (a.k.a. MAC address) for a given interface

CLI Example:

salt '*' network.hw_addr eth0

	
salt.modules.network.ifacestartswith(cidr)

	Retrieve the interface name from a specific CIDR

New in version 2016.11.0.

CLI Example:

salt '*' network.ifacestartswith 10.0

	
salt.modules.network.in_subnet(cidr)

	Returns True if host is within specified subnet, otherwise False.

CLI Example:

salt '*' network.in_subnet 10.0.0.0/16

	
salt.modules.network.interface(iface)

	Return the inet address for a given interface

New in version 2014.7.0.

CLI Example:

salt '*' network.interface eth0

	
salt.modules.network.interface_ip(iface)

	Return the inet address for a given interface

New in version 2014.7.0.

CLI Example:

salt '*' network.interface_ip eth0

	
salt.modules.network.interfaces()

	Return a dictionary of information about all the interfaces on the minion

CLI Example:

salt '*' network.interfaces

	
salt.modules.network.ip_addrs(interface=None, include_loopback=False, cidr=None, type=None)

	Returns a list of IPv4 addresses assigned to the host. 127.0.0.1 is
ignored, unless 'include_loopback=True' is indicated. If 'interface' is
provided, then only IP addresses from that interface will be returned.
Providing a CIDR via 'cidr="10.0.0.0/8"' will return only the addresses
which are within that subnet. If 'type' is 'public', then only public
addresses will be returned. Ditto for 'type'='private'.

Changed in version 3001: interface can now be a single interface name or a list of
interfaces. Globbing is also supported.

CLI Example:

salt '*' network.ip_addrs

	
salt.modules.network.ip_addrs6(interface=None, include_loopback=False, cidr=None)

	Returns a list of IPv6 addresses assigned to the host. ::1 is ignored,
unless 'include_loopback=True' is indicated. If 'interface' is provided,
then only IP addresses from that interface will be returned.
Providing a CIDR via 'cidr="2000::/3"' will return only the addresses
which are within that subnet.

Changed in version 3001: interface can now be a single interface name or a list of
interfaces. Globbing is also supported.

CLI Example:

salt '*' network.ip_addrs6

	
salt.modules.network.ip_in_subnet(ip_addr, cidr)

	Returns True if given IP is within specified subnet, otherwise False.

CLI Example:

salt '*' network.ip_in_subnet 172.17.0.4 172.16.0.0/12

	
salt.modules.network.ip_neighs()

	Return the ip neighbour (arp) table from the minion for IPv4 addresses

New in version 3007.0.

CLI Example:

salt '*' network.ip_neighs

	
salt.modules.network.ip_neighs6()

	Return the ip neighbour (arp) table from the minion for IPv6 addresses

New in version 3007.0.

CLI Example:

salt '*' network.ip_neighs6

	
salt.modules.network.ip_networks(interface=None, include_loopback=False, verbose=False)

	
New in version 3001.

Returns a list of IPv4 networks to which the minion belongs.

	interface
	Restrict results to the specified interface(s). This value can be
either a single interface name or a list of interfaces. Globbing is
also supported.

CLI Example:

salt '*' network.ip_networks
salt '*' network.ip_networks interface=docker0
salt '*' network.ip_networks interface=docker0,enp*
salt '*' network.ip_networks interface=eth*

	
salt.modules.network.ip_networks6(interface=None, include_loopback=False, verbose=False)

	
New in version 3001.

Returns a list of IPv6 networks to which the minion belongs.

	interface
	Restrict results to the specified interface(s). This value can be
either a single interface name or a list of interfaces. Globbing is
also supported.

CLI Example:

salt '*' network.ip_networks6
salt '*' network.ip_networks6 interface=docker0
salt '*' network.ip_networks6 interface=docker0,enp*
salt '*' network.ip_networks6 interface=eth*

	
salt.modules.network.ipaddrs(interface=None, include_loopback=False, cidr=None, type=None)

	This function is an alias of ip_addrs.

Returns a list of IPv4 addresses assigned to the host. 127.0.0.1 is
ignored, unless 'include_loopback=True' is indicated. If 'interface' is
provided, then only IP addresses from that interface will be returned.
Providing a CIDR via 'cidr="10.0.0.0/8"' will return only the addresses
which are within that subnet. If 'type' is 'public', then only public
addresses will be returned. Ditto for 'type'='private'.

Changed in version 3001: interface can now be a single interface name or a list of
interfaces. Globbing is also supported.

CLI Example:

salt '*' network.ip_addrs

	
salt.modules.network.ipaddrs6(interface=None, include_loopback=False, cidr=None)

	This function is an alias of ip_addrs6.

Returns a list of IPv6 addresses assigned to the host. ::1 is ignored,
unless 'include_loopback=True' is indicated. If 'interface' is provided,
then only IP addresses from that interface will be returned.
Providing a CIDR via 'cidr="2000::/3"' will return only the addresses
which are within that subnet.

Changed in version 3001: interface can now be a single interface name or a list of
interfaces. Globbing is also supported.

CLI Example:

salt '*' network.ip_addrs6

	
salt.modules.network.iphexval(ip)

	Retrieve the hexadecimal representation of an IP address

New in version 2016.11.0.

CLI Example:

salt '*' network.iphexval 10.0.0.1

	
salt.modules.network.ipneighs()

	This function is an alias of ip_neighs.

Return the ip neighbour (arp) table from the minion for IPv4 addresses

New in version 3007.0.

CLI Example:

salt '*' network.ip_neighs

	
salt.modules.network.ipneighs6()

	This function is an alias of ip_neighs6.

Return the ip neighbour (arp) table from the minion for IPv6 addresses

New in version 3007.0.

CLI Example:

salt '*' network.ip_neighs6

	
salt.modules.network.is_loopback(ip_addr)

	Check if the given IP address is a loopback address

New in version 2014.7.0.

Changed in version 2015.8.0: IPv6 support

CLI Example:

salt '*' network.is_loopback 127.0.0.1

	
salt.modules.network.is_private(ip_addr)

	Check if the given IP address is a private address

New in version 2014.7.0.

Changed in version 2015.8.0: IPv6 support

CLI Example:

salt '*' network.is_private 10.0.0.3

	
salt.modules.network.mod_bufsize(iface, *args, **kwargs)

	Modify network interface buffers (currently linux only)

CLI Example:

salt '*' network.mod_bufsize tx=<val> rx=<val> rx-mini=<val> rx-jumbo=<val>

	
salt.modules.network.mod_hostname(hostname)

	Modify hostname

Changed in version 2015.8.0: Added support for SunOS (Solaris 10, Illumos, SmartOS)

CLI Example:

salt '*' network.mod_hostname master.saltstack.com

	
salt.modules.network.netstat()

	Return information on open ports and states

Note

On BSD minions, the output contains PID info (where available) for each
netstat entry, fetched from sockstat/fstat output.

Changed in version 2014.1.4: Added support for OpenBSD, FreeBSD, and NetBSD

Changed in version 2015.8.0: Added support for SunOS

Changed in version 2016.11.4: Added support for AIX

CLI Example:

salt '*' network.netstat

	
salt.modules.network.ping(host, timeout=False, return_boolean=False)

	Performs an ICMP ping to a host

Changed in version 2015.8.0: Added support for SunOS

CLI Example:

salt '*' network.ping archlinux.org

New in version 2015.5.0.

Return a True or False instead of ping output.

salt '*' network.ping archlinux.org return_boolean=True

Set the time to wait for a response in seconds.

salt '*' network.ping archlinux.org timeout=3

	
salt.modules.network.reverse_ip(ip_addr)

	Returns the reversed IP address

Changed in version 2015.8.0: IPv6 support

CLI Example:

salt '*' network.reverse_ip 172.17.0.4

	
salt.modules.network.routes(family=None)

	Return currently configured routes from routing table

Changed in version 2015.8.0: Added support for SunOS (Solaris 10, Illumos, SmartOS)

Changed in version 2016.11.4: Added support for AIX

CLI Example:

salt '*' network.routes

	
salt.modules.network.subnets(interfaces=None)

	Returns a list of IPv4 subnets to which the host belongs

CLI Example:

salt '*' network.subnets
salt '*' network.subnets interfaces=eth1

	
salt.modules.network.subnets6()

	Returns a list of IPv6 subnets to which the host belongs

CLI Example:

salt '*' network.subnets

	
salt.modules.network.traceroute(host)

	Performs a traceroute to a 3rd party host

Changed in version 2015.8.0: Added support for SunOS

Changed in version 2016.11.4: Added support for AIX

CLI Example:

salt '*' network.traceroute archlinux.org

	
salt.modules.network.wol(mac, bcast='255.255.255.255', destport=9)

	Send Wake On Lan packet to a host

CLI Example:

salt '*' network.wol 08-00-27-13-69-77
salt '*' network.wol 080027136977 255.255.255.255 7
salt '*' network.wol 08:00:27:13:69:77 255.255.255.255 7

salt.modules.neutron

Module for handling OpenStack Neutron calls

	depends:

	
	neutronclient Python module

	configuration:

	This module is not usable until the user, password, tenant, and
auth URL are specified either in a pillar or in the minion's config file.
For example:

keystone.user: 'admin'
keystone.password: 'password'
keystone.tenant: 'admin'
keystone.auth_url: 'http://127.0.0.1:5000/v2.0/'
keystone.region_name: 'RegionOne'
keystone.service_type: 'network'

If configuration for multiple OpenStack accounts is required, they can be
set up as different configuration profiles:
For example:

openstack1:
 keystone.user: 'admin'
 keystone.password: 'password'
 keystone.tenant: 'admin'
 keystone.auth_url: 'http://127.0.0.1:5000/v2.0/'
 keystone.region_name: 'RegionOne'
 keystone.service_type: 'network'

openstack2:
 keystone.user: 'admin'
 keystone.password: 'password'
 keystone.tenant: 'admin'
 keystone.auth_url: 'http://127.0.0.2:5000/v2.0/'
 keystone.region_name: 'RegionOne'
 keystone.service_type: 'network'

With this configuration in place, any of the neutron functions
can make use of a configuration profile by declaring it explicitly.
For example:

salt '*' neutron.network_list profile=openstack1

To use keystoneauth1 instead of keystoneclient, include the use_keystoneauth
option in the pillar or minion config.

Note

this is required to use keystone v3 as for authentication.

keystone.user: admin
keystone.password: verybadpass
keystone.tenant: admin
keystone.auth_url: 'http://127.0.0.1:5000/v3/'
keystone.region_name: 'RegionOne'
keystone.service_type: 'network'
keystone.use_keystoneauth: true
keystone.verify: '/path/to/custom/certs/ca-bundle.crt'

Note: by default the neutron module will attempt to verify its connection
utilizing the system certificates. If you need to verify against another bundle
of CA certificates or want to skip verification altogether you will need to
specify the verify option. You can specify True or False to verify (or not)
against system certificates, a path to a bundle or CA certs to check against, or
None to allow keystoneauth to search for the certificates on its own.(defaults to True)

	
salt.modules.neutron.add_gateway_router(router, ext_network, profile=None)

	Adds an external network gateway to the specified router

CLI Example:

salt '*' neutron.add_gateway_router router-name ext-network-name

	Parameters:

	
	router -- ID or name of the router

	ext_network -- ID or name of the external network the gateway

	profile -- Profile to build on (Optional)

	Returns:

	Added Gateway router information

	
salt.modules.neutron.add_interface_router(router, subnet, profile=None)

	Adds an internal network interface to the specified router

CLI Example:

salt '*' neutron.add_interface_router router-name subnet-name

	Parameters:

	
	router -- ID or name of the router

	subnet -- ID or name of the subnet

	profile -- Profile to build on (Optional)

	Returns:

	Added interface information

	
salt.modules.neutron.create_firewall_rule(protocol, action, profile=None, **kwargs)

	Creates a new firewall rule

CLI Example:

salt '*' neutron.create_firewall_rule protocol action
 tenant_id=TENANT_ID name=NAME description=DESCRIPTION ip_version=IP_VERSION
 source_ip_address=SOURCE_IP_ADDRESS destination_ip_address=DESTINATION_IP_ADDRESS source_port=SOURCE_PORT
 destination_port=DESTINATION_PORT shared=SHARED enabled=ENABLED

	Parameters:

	
	protocol -- Protocol for the firewall rule, choose "tcp","udp","icmp" or "None".

	action -- Action for the firewall rule, choose "allow" or "deny".

	tenant_id -- The owner tenant ID. (Optional)

	name -- Name for the firewall rule. (Optional)

	description -- Description for the firewall rule. (Optional)

	ip_version -- IP protocol version, default: 4. (Optional)

	source_ip_address -- Source IP address or subnet. (Optional)

	destination_ip_address -- Destination IP address or subnet. (Optional)

	source_port -- Source port (integer in [1, 65535] or range in a:b). (Optional)

	destination_port -- Destination port (integer in [1, 65535] or range in a:b). (Optional)

	shared -- Set shared to True, default: False. (Optional)

	enabled -- To enable this rule, default: True. (Optional)

	
salt.modules.neutron.create_floatingip(floating_network, port=None, profile=None)

	Creates a new floatingIP

CLI Example:

salt '*' neutron.create_floatingip network-name port-name

	Parameters:

	
	floating_network -- Network name or ID to allocate floatingIP from

	port -- Of the port to be associated with the floatingIP (Optional)

	profile -- Profile to build on (Optional)

	Returns:

	Created floatingIP information

	
salt.modules.neutron.create_ikepolicy(name, profile=None, **kwargs)

	Creates a new IKEPolicy

CLI Example:

salt '*' neutron.create_ikepolicy ikepolicy-name
 phase1_negotiation_mode=main auth_algorithm=sha1
 encryption_algorithm=aes-128 pfs=group5

	Parameters:

	
	name -- Name of the IKE policy

	phase1_negotiation_mode -- IKE Phase1 negotiation mode in lowercase,
default: main (Optional)

	auth_algorithm -- Authentication algorithm in lowercase,
default: sha1 (Optional)

	encryption_algorithm -- Encryption algorithm in lowercase.
default:aes-128 (Optional)

	pfs -- Prefect Forward Security in lowercase,
default: group5 (Optional)

	units -- IKE lifetime attribute. default: seconds (Optional)

	value -- IKE lifetime attribute. default: 3600 (Optional)

	ike_version -- IKE version in lowercase, default: v1 (Optional)

	profile -- Profile to build on (Optional)

	kwargs --

	Returns:

	Created IKE policy information

	
salt.modules.neutron.create_ipsec_site_connection(name, ipsecpolicy, ikepolicy, vpnservice, peer_cidrs, peer_address, peer_id, psk, admin_state_up=True, profile=None, **kwargs)

	Creates a new IPsecSiteConnection

CLI Example:

salt '*' neutron.show_ipsec_site_connection connection-name
 ipsec-policy-name ikepolicy-name vpnservice-name
 192.168.XXX.XXX/24 192.168.XXX.XXX 192.168.XXX.XXX secret

	Parameters:

	
	name -- Set friendly name for the connection

	ipsecpolicy -- IPSec policy ID or name associated with this connection

	ikepolicy -- IKE policy ID or name associated with this connection

	vpnservice -- VPN service instance ID or name associated with
this connection

	peer_cidrs -- Remote subnet(s) in CIDR format

	peer_address -- Peer gateway public IPv4/IPv6 address or FQDN

	peer_id -- Peer router identity for authentication
Can be IPv4/IPv6 address, e-mail address, key id, or FQDN

	psk -- Pre-shared key string

	initiator -- Initiator state in lowercase, default:bi-directional

	admin_state_up -- Set admin state up to true or false,
default: True (Optional)

	mtu -- size for the connection, default:1500 (Optional)

	dpd_action -- Dead Peer Detection attribute: hold/clear/disabled/
restart/restart-by-peer (Optional)

	dpd_interval -- Dead Peer Detection attribute (Optional)

	dpd_timeout -- Dead Peer Detection attribute (Optional)

	profile -- Profile to build on (Optional)

	Returns:

	Created IPSec site connection information

	
salt.modules.neutron.create_ipsecpolicy(name, profile=None, **kwargs)

	Creates a new IPsecPolicy

CLI Example:

salt '*' neutron.create_ipsecpolicy ipsecpolicy-name
 transform_protocol=esp auth_algorithm=sha1
 encapsulation_mode=tunnel encryption_algorithm=aes-128

	Parameters:

	
	name -- Name of the IPSec policy

	transform_protocol -- Transform protocol in lowercase,
default: esp (Optional)

	auth_algorithm -- Authentication algorithm in lowercase,
default: sha1 (Optional)

	encapsulation_mode -- Encapsulation mode in lowercase,
default: tunnel (Optional)

	encryption_algorithm -- Encryption algorithm in lowercase,
default:aes-128 (Optional)

	pfs -- Prefect Forward Security in lowercase,
default: group5 (Optional)

	units -- IPSec lifetime attribute. default: seconds (Optional)

	value -- IPSec lifetime attribute. default: 3600 (Optional)

	profile -- Profile to build on (Optional)

	Returns:

	Created IPSec policy information

	
salt.modules.neutron.create_network(name, router_ext=None, admin_state_up=True, network_type=None, physical_network=None, segmentation_id=None, shared=None, profile=None)

	Creates a new network

CLI Example:

salt '*' neutron.create_network network-name
salt '*' neutron.create_network network-name profile=openstack1

	Parameters:

	
	name -- Name of network to create

	admin_state_up -- should the state of the network be up?
default: True (Optional)

	router_ext -- True then if create the external network (Optional)

	network_type -- the Type of network that the provider is such as GRE, VXLAN, VLAN, FLAT, or LOCAL (Optional)

	physical_network -- the name of the physical network as neutron knows it (Optional)

	segmentation_id -- the vlan id or GRE id (Optional)

	shared -- is the network shared or not (Optional)

	profile -- Profile to build on (Optional)

	Returns:

	Created network information

	
salt.modules.neutron.create_port(name, network, device_id=None, admin_state_up=True, profile=None)

	Creates a new port

CLI Example:

salt '*' neutron.create_port network-name port-name

	Parameters:

	
	name -- Name of port to create

	network -- Network name or ID

	device_id -- ID of device (Optional)

	admin_state_up -- Set admin state up to true or false,
default: true (Optional)

	profile -- Profile to build on (Optional)

	Returns:

	Created port information

	
salt.modules.neutron.create_router(name, ext_network=None, admin_state_up=True, profile=None)

	Creates a new router

CLI Example:

salt '*' neutron.create_router new-router-name

	Parameters:

	
	name -- Name of router to create (must be first)

	ext_network -- ID or name of the external for the gateway (Optional)

	admin_state_up -- Set admin state up to true or false,
default:true (Optional)

	profile -- Profile to build on (Optional)

	Returns:

	Created router information

	
salt.modules.neutron.create_security_group(name=None, description=None, profile=None)

	Creates a new security group

CLI Example:

salt '*' neutron.create_security_group security-group-name description='Security group for servers'

	Parameters:

	
	name -- Name of security group (Optional)

	description -- Description of security group (Optional)

	profile -- Profile to build on (Optional)

	Returns:

	Created security group information

	
salt.modules.neutron.create_security_group_rule(security_group, remote_group_id=None, direction='ingress', protocol=None, port_range_min=None, port_range_max=None, ethertype='IPv4', profile=None)

	Creates a new security group rule

CLI Example:

salt '*' neutron.show_security_group_rule security-group-rule-id

	Parameters:

	
	security_group -- Security group name or ID to add rule

	remote_group_id -- Remote security group name or ID to
apply rule (Optional)

	direction -- Direction of traffic: ingress/egress,
default: ingress (Optional)

	protocol -- Protocol of packet: null/icmp/tcp/udp,
default: null (Optional)

	port_range_min -- Starting port range (Optional)

	port_range_max -- Ending port range (Optional)

	ethertype -- IPv4/IPv6, default: IPv4 (Optional)

	profile -- Profile to build on (Optional)

	Returns:

	Created security group rule information

	
salt.modules.neutron.create_subnet(network, cidr, name=None, ip_version=4, profile=None)

	Creates a new subnet

CLI Example:

salt '*' neutron.create_subnet network-name 192.168.1.0/24

	Parameters:

	
	network -- Network ID or name this subnet belongs to

	cidr -- CIDR of subnet to create (Ex. '192.168.1.0/24')

	name -- Name of the subnet to create (Optional)

	ip_version -- Version to use, default is 4(IPv4) (Optional)

	profile -- Profile to build on (Optional)

	Returns:

	Created subnet information

	
salt.modules.neutron.create_vpnservice(subnet, router, name, admin_state_up=True, profile=None)

	Creates a new VPN service

CLI Example:

salt '*' neutron.create_vpnservice router-name name

	Parameters:

	
	subnet -- Subnet unique identifier for the VPN service deployment

	router -- Router unique identifier for the VPN service

	name -- Set a name for the VPN service

	admin_state_up -- Set admin state up to true or false,
default:True (Optional)

	profile -- Profile to build on (Optional)

	Returns:

	Created VPN service information

	
salt.modules.neutron.delete_firewall_rule(firewall_rule, profile=None)

	Deletes the specified firewall_rule

CLI Example:

salt '*' neutron.delete_firewall_rule firewall-rule

	Parameters:

	
	firewall_rule -- ID or name of firewall rule to delete

	profile -- Profile to build on (Optional)

	Returns:

	True(Succeed) or False

	
salt.modules.neutron.delete_floatingip(floatingip_id, profile=None)

	Deletes the specified floating IP

CLI Example:

salt '*' neutron.delete_floatingip floatingip-id

	Parameters:

	
	floatingip_id -- ID of floatingIP to delete

	profile -- Profile to build on (Optional)

	Returns:

	True(Succeed) or False

	
salt.modules.neutron.delete_ikepolicy(ikepolicy, profile=None)

	Deletes the specified IKEPolicy

CLI Example:

salt '*' neutron.delete_ikepolicy ikepolicy-name

	Parameters:

	
	ikepolicy -- ID or name of IKE policy to delete

	profile -- Profile to build on (Optional)

	Returns:

	True(Succeed) or False

	
salt.modules.neutron.delete_ipsec_site_connection(ipsec_site_connection, profile=None)

	Deletes the specified IPsecSiteConnection

CLI Example:

salt '*' neutron.delete_ipsec_site_connection connection-name

	Parameters:

	
	ipsec_site_connection -- ID or name of ipsec site connection to delete

	profile -- Profile to build on (Optional)

	Returns:

	True(Succeed) or False

	
salt.modules.neutron.delete_ipsecpolicy(ipsecpolicy, profile=None)

	Deletes the specified IPsecPolicy

CLI Example:

salt '*' neutron.delete_ipsecpolicy ipsecpolicy-name

	Parameters:

	
	ipsecpolicy -- ID or name of IPSec policy to delete

	profile -- Profile to build on (Optional)

	Returns:

	True(Succeed) or False

	
salt.modules.neutron.delete_network(network, profile=None)

	Deletes the specified network

CLI Example:

salt '*' neutron.delete_network network-name
salt '*' neutron.delete_network network-name profile=openstack1

	Parameters:

	
	network -- ID or name of network to delete

	profile -- Profile to build on (Optional)

	Returns:

	True(Succeed) or False

	
salt.modules.neutron.delete_port(port, profile=None)

	Deletes the specified port

CLI Example:

salt '*' neutron.delete_network port-name
salt '*' neutron.delete_network port-name profile=openstack1

	Parameters:

	
	port -- port name or ID

	profile -- Profile to build on (Optional)

	Returns:

	True(Succeed) or False

	
salt.modules.neutron.delete_quota(tenant_id, profile=None)

	Delete the specified tenant's quota value

CLI Example:

salt '*' neutron.update_quota tenant-id
salt '*' neutron.update_quota tenant-id profile=openstack1

	Parameters:

	
	tenant_id -- ID of tenant to quota delete

	profile -- Profile to build on (Optional)

	Returns:

	True(Delete succeed) or False(Delete failed)

	
salt.modules.neutron.delete_router(router, profile=None)

	Delete the specified router

CLI Example:

salt '*' neutron.delete_router router-name

	Parameters:

	
	router -- ID or name of router to delete

	profile -- Profile to build on (Optional)

	Returns:

	True(Succeed) or False

	
salt.modules.neutron.delete_security_group(security_group, profile=None)

	Deletes the specified security group

CLI Example:

salt '*' neutron.delete_security_group security-group-name

	Parameters:

	
	security_group -- ID or name of security group to delete

	profile -- Profile to build on (Optional)

	Returns:

	True(Succeed) or False

	
salt.modules.neutron.delete_security_group_rule(security_group_rule_id, profile=None)

	Deletes the specified security group rule

CLI Example:

salt '*' neutron.delete_security_group_rule security-group-rule-id

	Parameters:

	
	security_group_rule_id -- ID of security group rule to delete

	profile -- Profile to build on (Optional)

	Returns:

	True(Succeed) or False

	
salt.modules.neutron.delete_subnet(subnet, profile=None)

	Deletes the specified subnet

CLI Example:

salt '*' neutron.delete_subnet subnet-name
salt '*' neutron.delete_subnet subnet-name profile=openstack1

	Parameters:

	
	subnet -- ID or name of subnet to delete

	profile -- Profile to build on (Optional)

	Returns:

	True(Succeed) or False

	
salt.modules.neutron.delete_vpnservice(vpnservice, profile=None)

	Deletes the specified VPN service

CLI Example:

salt '*' neutron.delete_vpnservice vpnservice-name

	Parameters:

	
	vpnservice -- ID or name of vpn service to delete

	profile -- Profile to build on (Optional)

	Returns:

	True(Succeed) or False

	
salt.modules.neutron.get_quotas_tenant(profile=None)

	Fetches tenant info in server's context for following quota operation

CLI Example:

salt '*' neutron.get_quotas_tenant
salt '*' neutron.get_quotas_tenant profile=openstack1

	Parameters:

	profile -- Profile to build on (Optional)

	Returns:

	Quotas information

	
salt.modules.neutron.list_agents(profile=None)

	List agents.

CLI Example:

salt '*' neutron.list_agents

	Parameters:

	profile -- Profile to build on (Optional)

	Returns:

	agents message.

	
salt.modules.neutron.list_extensions(profile=None)

	Fetches a list of all extensions on server side

CLI Example:

salt '*' neutron.list_extensions
salt '*' neutron.list_extensions profile=openstack1

	Parameters:

	profile -- Profile to build on (Optional)

	Returns:

	List of extensions

	
salt.modules.neutron.list_firewall_rules(profile=None)

	Fetches a list of all firewall rules for a tenant

CLI Example:

salt '*' neutron.list_firewall_rules

	Parameters:

	profile -- Profile to build on (Optional)

	Returns:

	List of firewall rules

	
salt.modules.neutron.list_firewalls(profile=None)

	Fetches a list of all firewalls for a tenant

CLI Example:

salt '*' neutron.list_firewalls

	Parameters:

	profile -- Profile to build on (Optional)

	Returns:

	List of firewalls

	
salt.modules.neutron.list_floatingips(profile=None)

	Fetch a list of all floatingIPs for a tenant

CLI Example:

salt '*' neutron.list_floatingips
salt '*' neutron.list_floatingips profile=openstack1

	Parameters:

	profile -- Profile to build on (Optional)

	Returns:

	List of floatingIP

	
salt.modules.neutron.list_ikepolicies(profile=None)

	Fetches a list of all configured IKEPolicies for a tenant

CLI Example:

salt '*' neutron.list_ikepolicies
salt '*' neutron.list_ikepolicies profile=openstack1

	Parameters:

	profile -- Profile to build on (Optional)

	Returns:

	List of IKE policy

	
salt.modules.neutron.list_ipsec_site_connections(profile=None)

	Fetches all configured IPsec Site Connections for a tenant

CLI Example:

salt '*' neutron.list_ipsec_site_connections
salt '*' neutron.list_ipsec_site_connections profile=openstack1

	Parameters:

	profile -- Profile to build on (Optional)

	Returns:

	List of IPSec site connection

	
salt.modules.neutron.list_ipsecpolicies(profile=None)

	Fetches a list of all configured IPsecPolicies for a tenant

CLI Example:

salt '*' neutron.list_ipsecpolicies ipsecpolicy-name
salt '*' neutron.list_ipsecpolicies ipsecpolicy-name profile=openstack1

	Parameters:

	profile -- Profile to build on (Optional)

	Returns:

	List of IPSec policy

	
salt.modules.neutron.list_l3_agent_hosting_routers(router, profile=None)

	List L3 agents hosting a router.

CLI Example:

salt '*' neutron.list_l3_agent_hosting_routers router

:param router:router name or ID to query.
:param profile: Profile to build on (Optional)
:return: L3 agents message.

	
salt.modules.neutron.list_networks(profile=None)

	Fetches a list of all networks for a tenant

CLI Example:

salt '*' neutron.list_networks
salt '*' neutron.list_networks profile=openstack1

	Parameters:

	profile -- Profile to build on (Optional)

	Returns:

	List of network

	
salt.modules.neutron.list_ports(profile=None)

	Fetches a list of all networks for a tenant

CLI Example:

salt '*' neutron.list_ports
salt '*' neutron.list_ports profile=openstack1

	Parameters:

	profile -- Profile to build on (Optional)

	Returns:

	List of port

	
salt.modules.neutron.list_quotas(profile=None)

	Fetches all tenants quotas

CLI Example:

salt '*' neutron.list_quotas
salt '*' neutron.list_quotas profile=openstack1

	Parameters:

	profile -- Profile to build on (Optional)

	Returns:

	List of quotas

	
salt.modules.neutron.list_routers(profile=None)

	Fetches a list of all routers for a tenant

CLI Example:

salt '*' neutron.list_routers
salt '*' neutron.list_routers profile=openstack1

	Parameters:

	profile -- Profile to build on (Optional)

	Returns:

	List of router

	
salt.modules.neutron.list_security_group_rules(profile=None)

	Fetches a list of all security group rules for a tenant

CLI Example:

salt '*' neutron.list_security_group_rules
salt '*' neutron.list_security_group_rules profile=openstack1

	Parameters:

	profile -- Profile to build on (Optional)

	Returns:

	List of security group rule

	
salt.modules.neutron.list_security_groups(profile=None)

	Fetches a list of all security groups for a tenant

CLI Example:

salt '*' neutron.list_security_groups
salt '*' neutron.list_security_groups profile=openstack1

	Parameters:

	profile -- Profile to build on (Optional)

	Returns:

	List of security group

	
salt.modules.neutron.list_subnets(profile=None)

	Fetches a list of all networks for a tenant

CLI Example:

salt '*' neutron.list_subnets
salt '*' neutron.list_subnets profile=openstack1

	Parameters:

	profile -- Profile to build on (Optional)

	Returns:

	List of subnet

	
salt.modules.neutron.list_vpnservices(retrieve_all=True, profile=None, **kwargs)

	Fetches a list of all configured VPN services for a tenant

CLI Example:

salt '*' neutron.list_vpnservices

	Parameters:

	
	retrieve_all -- True or False, default: True (Optional)

	profile -- Profile to build on (Optional)

	Returns:

	List of VPN service

	
salt.modules.neutron.remove_gateway_router(router, profile=None)

	Removes an external network gateway from the specified router

CLI Example:

salt '*' neutron.remove_gateway_router router-name

	Parameters:

	
	router -- ID or name of router

	profile -- Profile to build on (Optional)

	Returns:

	True(Succeed) or False

	
salt.modules.neutron.remove_interface_router(router, subnet, profile=None)

	Removes an internal network interface from the specified router

CLI Example:

salt '*' neutron.remove_interface_router router-name subnet-name

	Parameters:

	
	router -- ID or name of the router

	subnet -- ID or name of the subnet

	profile -- Profile to build on (Optional)

	Returns:

	True(Succeed) or False

	
salt.modules.neutron.show_firewall(firewall, profile=None)

	Fetches information of a specific firewall rule

CLI Example:

salt '*' neutron.show_firewall firewall

	Parameters:

	
	firewall -- ID or name of firewall to look up

	profile -- Profile to build on (Optional)

	Returns:

	firewall information

	
salt.modules.neutron.show_firewall_rule(firewall_rule, profile=None)

	Fetches information of a specific firewall rule

CLI Example:

salt '*' neutron.show_firewall_rule firewall-rule-name

	Parameters:

	
	ipsecpolicy -- ID or name of firewall rule to look up

	profile -- Profile to build on (Optional)

	Returns:

	firewall rule information

	
salt.modules.neutron.show_floatingip(floatingip_id, profile=None)

	Fetches information of a certain floatingIP

CLI Example:

salt '*' neutron.show_floatingip floatingip-id

	Parameters:

	
	floatingip_id -- ID of floatingIP to look up

	profile -- Profile to build on (Optional)

	Returns:

	Floating IP information

	
salt.modules.neutron.show_ikepolicy(ikepolicy, profile=None)

	Fetches information of a specific IKEPolicy

CLI Example:

salt '*' neutron.show_ikepolicy ikepolicy-name

	Parameters:

	
	ikepolicy -- ID or name of ikepolicy to look up

	profile -- Profile to build on (Optional)

	Returns:

	IKE policy information

	
salt.modules.neutron.show_ipsec_site_connection(ipsec_site_connection, profile=None)

	Fetches information of a specific IPsecSiteConnection

CLI Example:

salt '*' neutron.show_ipsec_site_connection connection-name

	Parameters:

	
	ipsec_site_connection -- ID or name of ipsec site connection
to look up

	profile -- Profile to build on (Optional)

	Returns:

	IPSec site connection information

	
salt.modules.neutron.show_ipsecpolicy(ipsecpolicy, profile=None)

	Fetches information of a specific IPsecPolicy

CLI Example:

salt '*' neutron.show_ipsecpolicy ipsecpolicy-name

	Parameters:

	
	ipsecpolicy -- ID or name of IPSec policy to look up

	profile -- Profile to build on (Optional)

	Returns:

	IPSec policy information

	
salt.modules.neutron.show_network(network, profile=None)

	Fetches information of a certain network

CLI Example:

salt '*' neutron.show_network network-name
salt '*' neutron.show_network network-name profile=openstack1

	Parameters:

	
	network -- ID or name of network to look up

	profile -- Profile to build on (Optional)

	Returns:

	Network information

	
salt.modules.neutron.show_port(port, profile=None)

	Fetches information of a certain port

CLI Example:

salt '*' neutron.show_port port-id
salt '*' neutron.show_port port-id profile=openstack1

	Parameters:

	
	port -- ID or name of port to look up

	profile -- Profile to build on (Optional)

	Returns:

	Port information

	
salt.modules.neutron.show_quota(tenant_id, profile=None)

	Fetches information of a certain tenant's quotas

CLI Example:

salt '*' neutron.show_quota tenant-id
salt '*' neutron.show_quota tenant-id profile=openstack1

	Parameters:

	
	tenant_id -- ID of tenant

	profile -- Profile to build on (Optional)

	Returns:

	Quota information

	
salt.modules.neutron.show_router(router, profile=None)

	Fetches information of a certain router

CLI Example:

salt '*' neutron.show_router router-name

	Parameters:

	
	router -- ID or name of router to look up

	profile -- Profile to build on (Optional)

	Returns:

	Router information

	
salt.modules.neutron.show_security_group(security_group, profile=None)

	Fetches information of a certain security group

CLI Example:

salt '*' neutron.show_security_group security-group-name

	Parameters:

	
	security_group -- ID or name of security group to look up

	profile -- Profile to build on (Optional)

	Returns:

	Security group information

	
salt.modules.neutron.show_security_group_rule(security_group_rule_id, profile=None)

	Fetches information of a certain security group rule

CLI Example:

salt '*' neutron.show_security_group_rule security-group-rule-id

	Parameters:

	
	security_group_rule_id -- ID of security group rule to look up

	profile -- Profile to build on (Optional)

	Returns:

	Security group rule information

	
salt.modules.neutron.show_subnet(subnet, profile=None)

	Fetches information of a certain subnet

CLI Example:

salt '*' neutron.show_subnet subnet-name

	Parameters:

	
	subnet -- ID or name of subnet to look up

	profile -- Profile to build on (Optional)

	Returns:

	Subnet information

	
salt.modules.neutron.show_vpnservice(vpnservice, profile=None, **kwargs)

	Fetches information of a specific VPN service

CLI Example:

salt '*' neutron.show_vpnservice vpnservice-name

	Parameters:

	
	vpnservice -- ID or name of vpn service to look up

	profile -- Profile to build on (Optional)

	Returns:

	VPN service information

	
salt.modules.neutron.update_firewall_rule(firewall_rule, protocol=None, action=None, name=None, description=None, ip_version=None, source_ip_address=None, destination_ip_address=None, source_port=None, destination_port=None, shared=None, enabled=None, profile=None)

	Update a firewall rule

CLI Example:

salt '*' neutron.update_firewall_rule firewall_rule protocol=PROTOCOL action=ACTION
 name=NAME description=DESCRIPTION ip_version=IP_VERSION
 source_ip_address=SOURCE_IP_ADDRESS destination_ip_address=DESTINATION_IP_ADDRESS
 source_port=SOURCE_PORT destination_port=DESTINATION_PORT shared=SHARED enabled=ENABLED

	Parameters:

	
	firewall_rule -- ID or name of firewall rule to update.

	protocol -- Protocol for the firewall rule, choose "tcp","udp","icmp" or "None". (Optional)

	action -- Action for the firewall rule, choose "allow" or "deny". (Optional)

	name -- Name for the firewall rule. (Optional)

	description -- Description for the firewall rule. (Optional)

	ip_version -- IP protocol version, default: 4. (Optional)

	source_ip_address -- Source IP address or subnet. (Optional)

	destination_ip_address -- Destination IP address or subnet. (Optional)

	source_port -- Source port (integer in [1, 65535] or range in a:b). (Optional)

	destination_port -- Destination port (integer in [1, 65535] or range in a:b). (Optional)

	shared -- Set shared to True, default: False. (Optional)

	enabled -- To enable this rule, default: True. (Optional)

	profile -- Profile to build on (Optional)

	
salt.modules.neutron.update_floatingip(floatingip_id, port=None, profile=None)

	Updates a floatingIP

CLI Example:

salt '*' neutron.update_floatingip network-name port-name

	Parameters:

	
	floatingip_id -- ID of floatingIP

	port -- ID or name of port, to associate floatingip to None or do
not specify to disassociate the floatingip (Optional)

	profile -- Profile to build on (Optional)

	Returns:

	Value of updated floating IP information

	
salt.modules.neutron.update_network(network, name, profile=None)

	Updates a network

CLI Example:

salt '*' neutron.update_network network-name new-network-name

	Parameters:

	
	network -- ID or name of network to update

	name -- Name of this network

	profile -- Profile to build on (Optional)

	Returns:

	Value of updated network information

	
salt.modules.neutron.update_port(port, name, admin_state_up=True, profile=None)

	Updates a port

CLI Example:

salt '*' neutron.update_port port-name network-name new-port-name

	Parameters:

	
	port -- Port name or ID

	name -- Name of this port

	admin_state_up -- Set admin state up to true or false,
default: true (Optional)

	profile -- Profile to build on (Optional)

	Returns:

	Value of updated port information

	
salt.modules.neutron.update_quota(tenant_id, subnet=None, router=None, network=None, floatingip=None, port=None, security_group=None, security_group_rule=None, profile=None)

	Update a tenant's quota

CLI Example:

salt '*' neutron.update_quota tenant-id subnet=40 router=50
 network=10 floatingip=30 port=30

	Parameters:

	
	tenant_id -- ID of tenant

	subnet -- Value of subnet quota (Optional)

	router -- Value of router quota (Optional)

	network -- Value of network quota (Optional)

	floatingip -- Value of floatingip quota (Optional)

	port -- Value of port quota (Optional)

	security_group -- Value of security group (Optional)

	security_group_rule -- Value of security group rule (Optional)

	profile -- Profile to build on (Optional)

	Returns:

	Value of updated quota

	
salt.modules.neutron.update_router(router, name=None, admin_state_up=None, profile=None, **kwargs)

	Updates a router

CLI Example:

salt '*' neutron.update_router router_id name=new-router-name
 admin_state_up=True

	Parameters:

	
	router -- ID or name of router to update

	name -- Name of this router

	ext_network -- ID or name of the external for the gateway (Optional)

	admin_state_up -- Set admin state up to true or false,
default: true (Optional)

	profile -- Profile to build on (Optional)

	kwargs --

	Returns:

	Value of updated router information

	
salt.modules.neutron.update_security_group(security_group, name=None, description=None, profile=None)

	Updates a security group

CLI Example:

salt '*' neutron.update_security_group security-group-name new-security-group-name

	Parameters:

	
	security_group -- ID or name of security group to update

	name -- Name of this security group (Optional)

	description -- Description of security group (Optional)

	profile -- Profile to build on (Optional)

	Returns:

	Value of updated security group information

	
salt.modules.neutron.update_subnet(subnet, name, profile=None)

	Updates a subnet

CLI Example:

salt '*' neutron.update_subnet subnet-name new-subnet-name

	Parameters:

	
	subnet -- ID or name of subnet to update

	name -- Name of this subnet

	profile -- Profile to build on (Optional)

	Returns:

	Value of updated subnet information

	
salt.modules.neutron.update_vpnservice(vpnservice, desc, profile=None)

	Updates a VPN service

CLI Example:

salt '*' neutron.update_vpnservice vpnservice-name desc='VPN Service1'

	Parameters:

	
	vpnservice -- ID or name of vpn service to update

	desc -- Set a description for the VPN service

	profile -- Profile to build on (Optional)

	Returns:

	Value of updated VPN service information

salt.modules.neutronng

Neutron module for interacting with OpenStack Neutron

New in version 2018.3.0.

:depends:shade

Example configuration

neutron:
 cloud: default

neutron:
 auth:
 username: admin
 password: password123
 user_domain_name: mydomain
 project_name: myproject
 project_domain_name: myproject
 auth_url: https://example.org:5000/v3
 identity_api_version: 3

	
salt.modules.neutronng.compare_changes(obj, **kwargs)

	Compare two dicts returning only keys that exist in the first dict and are
different in the second one

	
salt.modules.neutronng.get_openstack_cloud(auth=None)

	Return an openstack_cloud

	
salt.modules.neutronng.get_operator_cloud(auth=None)

	Return an operator_cloud

	
salt.modules.neutronng.list_networks(auth=None, **kwargs)

	List networks

	filters
	A Python dictionary of filter conditions to push down

CLI Example:

salt '*' neutronng.list_networks
salt '*' neutronng.list_networks filters='{"tenant_id": "1dcac318a83b4610b7a7f7ba01465548"}'

	
salt.modules.neutronng.list_subnets(auth=None, **kwargs)

	List subnets

	filters
	A Python dictionary of filter conditions to push down

CLI Example:

salt '*' neutronng.list_subnets
salt '*' neutronng.list_subnets filters='{"tenant_id": "1dcac318a83b4610b7a7f7ba01465548"}'

	
salt.modules.neutronng.network_create(auth=None, **kwargs)

	Create a network

	name
	Name of the network being created

	sharedFalse
	If True, set the network as shared

	admin_state_upTrue
	If True, Set the network administrative state to "up"

	externalFalse
	Control whether or not this network is externally accessible

	provider
	An optional Python dictionary of network provider options

	project_id
	The project ID on which this network will be created

CLI Example:

salt '*' neutronng.network_create name=network2 shared=True admin_state_up=True external=True

salt '*' neutronng.network_create name=network3 provider='{"network_type": "vlan", "segmentation_id": "4010", "physical_network": "provider"}' project_id=1dcac318a83b4610b7a7f7ba01465548

	
salt.modules.neutronng.network_delete(auth=None, **kwargs)

	Delete a network

	name_or_id
	Name or ID of the network being deleted

CLI Example:

salt '*' neutronng.network_delete name_or_id=network1
salt '*' neutronng.network_delete name_or_id=1dcac318a83b4610b7a7f7ba01465548

	
salt.modules.neutronng.network_get(auth=None, **kwargs)

	Get a single network

	filters
	A Python dictionary of filter conditions to push down

CLI Example:

salt '*' neutronng.network_get name=XLB4

	
salt.modules.neutronng.security_group_create(auth=None, **kwargs)

	Create a security group. Use security_group_get to create default.

	project_id
	The project ID on which this security group will be created

CLI Example:

salt '*' neutronng.security_group_create name=secgroup1 description="Very secure security group"
salt '*' neutronng.security_group_create name=secgroup1 description="Very secure security group" project_id=1dcac318a83b4610b7a7f7ba01465548

	
salt.modules.neutronng.security_group_delete(auth=None, **kwargs)

	Delete a security group

	name_or_id
	The name or unique ID of the security group

CLI Example:

salt '*' neutronng.security_group_delete name_or_id=secgroup1

	
salt.modules.neutronng.security_group_get(auth=None, **kwargs)

	Get a single security group. This will create a default security group
if one does not exist yet for a particular project id.

	filters
	A Python dictionary of filter conditions to push down

CLI Example:

salt '*' neutronng.security_group_get name=1dcac318a83b4610b7a7f7ba01465548

salt '*' neutronng.security_group_get name=default filters='{"tenant_id":"2e778bb64ca64a199eb526b5958d8710"}'

	
salt.modules.neutronng.security_group_rule_create(auth=None, **kwargs)

	Create a rule in a security group

	secgroup_name_or_id
	The security group name or ID to associate with this security group
rule. If a non-unique group name is given, an exception is raised.

	port_range_min
	The minimum port number in the range that is matched by the security
group rule. If the protocol is TCP or UDP, this value must be less than
or equal to the port_range_max attribute value. If nova is used by the
cloud provider for security groups, then a value of None will be
transformed to -1.

	port_range_max
	The maximum port number in the range that is matched by the security
group rule. The port_range_min attribute constrains the port_range_max
attribute. If nova is used by the cloud provider for security groups,
then a value of None will be transformed to -1.

	protocol
	The protocol that is matched by the security group rule. Valid values
are None, tcp, udp, and icmp.

	remote_ip_prefix
	The remote IP prefix to be associated with this security group rule.
This attribute matches the specified IP prefix as the source IP address
of the IP packet.

	remote_group_id
	The remote group ID to be associated with this security group rule

	direction
	Either ingress or egress; the direction in which the security
group rule is applied. For a compute instance, an ingress security
group rule is applied to incoming (ingress) traffic for that instance.
An egress rule is applied to traffic leaving the instance

	ethertype
	Must be IPv4 or IPv6, and addresses represented in CIDR must match the
ingress or egress rules

	project_id
	Specify the project ID this security group will be created on
(admin-only)

CLI Example:

salt '*' neutronng.security_group_rule_create secgroup_name_or_id=secgroup1

salt '*' neutronng.security_group_rule_create secgroup_name_or_id=secgroup2 port_range_min=8080 port_range_max=8080 direction='egress'

salt '*' neutronng.security_group_rule_create secgroup_name_or_id=c0e1d1ce-7296-405e-919d-1c08217be529 protocol=icmp project_id=1dcac318a83b4610b7a7f7ba01465548

	
salt.modules.neutronng.security_group_rule_delete(auth=None, **kwargs)

	Delete a security group

	name_or_id
	The unique ID of the security group rule

CLI Example:

salt '*' neutronng.security_group_rule_delete name_or_id=1dcac318a83b4610b7a7f7ba01465548

	
salt.modules.neutronng.security_group_update(secgroup=None, auth=None, **kwargs)

	Update a security group

	secgroup
	Name, ID or Raw Object of the security group to update

	name
	New name for the security group

	description
	New description for the security group

CLI Example:

salt '*' neutronng.security_group_update secgroup=secgroup1 description="Very secure security group"
salt '*' neutronng.security_group_update secgroup=secgroup1 description="Very secure security group" project_id=1dcac318a83b4610b7a7f7ba01465548

	
salt.modules.neutronng.setup_clouds(auth=None)

	Call functions to create Shade cloud objects in __context__ to take
advantage of Shade's in-memory caching across several states

	
salt.modules.neutronng.subnet_create(auth=None, **kwargs)

	Create a subnet

	network_name_or_id
	The unique name or ID of the attached network. If a non-unique name is
supplied, an exception is raised.

	cidr
	The CIDR

	ip_version
	The IP version, which is 4 or 6.

	enable_dhcpFalse
	Set to True if DHCP is enabled and False if disabled

	subnet_name
	The name of the subnet

	tenant_id
	The ID of the tenant who owns the network. Only administrative users
can specify a tenant ID other than their own.

	allocation_pools
	A list of dictionaries of the start and end addresses for the
allocation pools.

	gateway_ip
	The gateway IP address. When you specify both allocation_pools and
gateway_ip, you must ensure that the gateway IP does not overlap
with the specified allocation pools.

	disable_gateway_ipFalse
	Set to True if gateway IP address is disabled and False if
enabled. It is not allowed with gateway_ip.

	dns_nameservers
	A list of DNS name servers for the subnet

	host_routes
	A list of host route dictionaries for the subnet

	ipv6_ra_mode
	IPv6 Router Advertisement mode. Valid values are dhcpv6-stateful,
dhcpv6-stateless, or slaac.

	ipv6_address_mode
	IPv6 address mode. Valid values are dhcpv6-stateful,
dhcpv6-stateless, or slaac.

	use_default_subnetpool
	If True, use the default subnetpool for ip_version to obtain a
CIDR. It is required to pass None to the cidr argument when
enabling this option.

CLI Example:

salt '*' neutronng.subnet_create network_name_or_id=network1
 subnet_name=subnet1

salt '*' neutronng.subnet_create subnet_name=subnet2 network_name_or_id=network2 enable_dhcp=True allocation_pools='[{"start": "192.168.199.2", "end": "192.168.199.254"}]' gateway_ip='192.168.199.1' cidr=192.168.199.0/24

salt '*' neutronng.subnet_create network_name_or_id=network1 subnet_name=subnet1 dns_nameservers='["8.8.8.8", "8.8.8.7"]'

	
salt.modules.neutronng.subnet_delete(auth=None, **kwargs)

	Delete a subnet

	name
	Name or ID of the subnet to update

CLI Example:

salt '*' neutronng.subnet_delete name=subnet1
salt '*' neutronng.subnet_delete name=1dcac318a83b4610b7a7f7ba01465548

	
salt.modules.neutronng.subnet_get(auth=None, **kwargs)

	Get a single subnet

	filters
	A Python dictionary of filter conditions to push down

CLI Example:

salt '*' neutronng.subnet_get name=subnet1

	
salt.modules.neutronng.subnet_update(auth=None, **kwargs)

	Update a subnet

	name_or_id
	Name or ID of the subnet to update

	subnet_name
	The new name of the subnet

	enable_dhcp
	Set to True if DHCP is enabled and False if disabled

	gateway_ip
	The gateway IP address. When you specify both allocation_pools and
gateway_ip, you must ensure that the gateway IP does not overlap with
the specified allocation pools.

	disable_gateway_ipFalse
	Set to True if gateway IP address is disabled and False if enabled.
It is not allowed with gateway_ip.

	allocation_pools
	A list of dictionaries of the start and end addresses for the
allocation pools.

	dns_nameservers
	A list of DNS name servers for the subnet

	host_routes
	A list of host route dictionaries for the subnet

salt '*' neutronng.subnet_update name=subnet1 subnet_name=subnet2
salt '*' neutronng.subnet_update name=subnet1 dns_nameservers='["8.8.8.8", "8.8.8.7"]'

salt.modules.nexus

Module for fetching artifacts from Nexus 3.x

New in version 2018.3.0.

	
salt.modules.nexus.get_latest_release(nexus_url, repository, group_id, artifact_id, packaging, target_dir='/tmp', target_file=None, classifier=None, username=None, password=None)

	Gets the latest release of the artifact

	nexus_url
	URL of nexus instance

	repository
	Release repository in nexus to retrieve artifact from, for example: libs-releases

	group_id
	Group Id of the artifact

	artifact_id
	Artifact Id of the artifact

	packaging
	Packaging type (jar,war,ear,etc)

	target_dir
	Target directory to download artifact to (default: /tmp)

	target_file
	Target file to download artifact to (by default it is target_dir/artifact_id-version.packaging)

	classifier
	Artifact classifier name (ex: sources,javadoc,etc). Optional parameter.

	username
	nexus username. Optional parameter.

	password
	nexus password. Optional parameter.

	
salt.modules.nexus.get_latest_snapshot(nexus_url, repository, group_id, artifact_id, packaging, target_dir='/tmp', target_file=None, classifier=None, username=None, password=None)

	Gets latest snapshot of the given artifact

	nexus_url
	URL of nexus instance

	repository
	Snapshot repository in nexus to retrieve artifact from, for example: libs-snapshots

	group_id
	Group Id of the artifact

	artifact_id
	Artifact Id of the artifact

	packaging
	Packaging type (jar,war,ear,etc)

	target_dir
	Target directory to download artifact to (default: /tmp)

	target_file
	Target file to download artifact to (by default it is target_dir/artifact_id-snapshot_version.packaging)

	classifier
	Artifact classifier name (ex: sources,javadoc,etc). Optional parameter.

	username
	nexus username. Optional parameter.

	password
	nexus password. Optional parameter.

	
salt.modules.nexus.get_release(nexus_url, repository, group_id, artifact_id, packaging, version, target_dir='/tmp', target_file=None, classifier=None, username=None, password=None)

	Gets the specified release of the artifact

	nexus_url
	URL of nexus instance

	repository
	Release repository in nexus to retrieve artifact from, for example: libs-releases

	group_id
	Group Id of the artifact

	artifact_id
	Artifact Id of the artifact

	packaging
	Packaging type (jar,war,ear,etc)

	version
	Version of the artifact

	target_dir
	Target directory to download artifact to (default: /tmp)

	target_file
	Target file to download artifact to (by default it is target_dir/artifact_id-version.packaging)

	classifier
	Artifact classifier name (ex: sources,javadoc,etc). Optional parameter.

	username
	nexus username. Optional parameter.

	password
	nexus password. Optional parameter.

	
salt.modules.nexus.get_snapshot(nexus_url, repository, group_id, artifact_id, packaging, version, snapshot_version=None, target_dir='/tmp', target_file=None, classifier=None, username=None, password=None)

	Gets snapshot of the desired version of the artifact

	nexus_url
	URL of nexus instance

	repository
	Snapshot repository in nexus to retrieve artifact from, for example: libs-snapshots

	group_id
	Group Id of the artifact

	artifact_id
	Artifact Id of the artifact

	packaging
	Packaging type (jar,war,ear,etc)

	version
	Version of the artifact

	target_dir
	Target directory to download artifact to (default: /tmp)

	target_file
	Target file to download artifact to (by default it is target_dir/artifact_id-snapshot_version.packaging)

	classifier
	Artifact classifier name (ex: sources,javadoc,etc). Optional parameter.

	username
	nexus username. Optional parameter.

	password
	nexus password. Optional parameter.

	
salt.modules.nexus.get_snapshot_version_string(nexus_url, repository, group_id, artifact_id, packaging, version, classifier=None, username=None, password=None)

	Gets the specific version string of a snapshot of the desired version of the artifact

	nexus_url
	URL of nexus instance

	repository
	Snapshot repository in nexus to retrieve artifact from, for example: libs-snapshots

	group_id
	Group Id of the artifact

	artifact_id
	Artifact Id of the artifact

	packaging
	Packaging type (jar,war,ear,etc)

	version
	Version of the artifact

	classifier
	Artifact classifier name (ex: sources,javadoc,etc). Optional parameter.

	username
	nexus username. Optional parameter.

	password
	nexus password. Optional parameter.

	
exception salt.modules.nexus.nexusError(value)

	

salt.modules.nfs3

Module for managing NFS version 3.

	
salt.modules.nfs3.add_export(exports='/etc/exports', path=None, hosts=None, options=None)

	Add an export

CLI Example:

salt '*' nfs3.add_export path='/srv/test' hosts='127.0.0.1' options=['rw']

	
salt.modules.nfs3.del_export(exports='/etc/exports', path=None)

	Remove an export

CLI Example:

salt '*' nfs.del_export /media/storage

	
salt.modules.nfs3.list_exports(exports='/etc/exports')

	List configured exports

CLI Example:

salt '*' nfs.list_exports

	
salt.modules.nfs3.reload_exports()

	Trigger a reload of the exports file to apply changes

CLI Example:

salt '*' nfs3.reload_exports

salt.modules.nftables

Support for nftables

	
salt.modules.nftables.append(table='filter', chain=None, rule=None, family='ipv4')

	Append a rule to the specified table & chain.

	This function accepts a rule in a standard nftables command format,
	starting with the chain. Trying to force users to adapt to a new
method of creating rules would be irritating at best, and we
already have a parser that can handle it.

CLI Example:

salt '*' nftables.append filter input \
 rule='tcp dport 22 log accept'

IPv6:
salt '*' nftables.append filter input \
 rule='tcp dport 22 log accept' \
 family=ipv6

	
salt.modules.nftables.build_rule(table=None, chain=None, command=None, position='', full=None, family='ipv4', **kwargs)

	Build a well-formatted nftables rule based on kwargs.
A table and chain are not required, unless full is True.

If full is True, then table, chain and command are required.
command may be specified as either insert, append, or delete.
This will return the nftables command, exactly as it would
be used from the command line.

If a position is required (as with insert or delete), it may be specified as
position. This will only be useful if full is True.

If connstate is passed in, it will automatically be changed to state.

CLI Examples:

salt '*' nftables.build_rule match=state \
 connstate=RELATED,ESTABLISHED jump=ACCEPT
salt '*' nftables.build_rule filter input command=insert position=3 \
 full=True match=state state=related,established jump=accept

IPv6:
salt '*' nftables.build_rule match=state \
 connstate=related,established jump=accept \
 family=ipv6
salt '*' nftables.build_rule filter input command=insert position=3 \
 full=True match=state state=related,established jump=accept \
 family=ipv6

	
salt.modules.nftables.check(table='filter', chain=None, rule=None, family='ipv4')

	Check for the existence of a rule in the table and chain

	This function accepts a rule in a standard nftables command format,
	starting with the chain. Trying to force users to adapt to a new
method of creating rules would be irritating at best, and we
already have a parser that can handle it.

CLI Example:

salt '*' nftables.check filter input \
 rule='tcp dport 22 log accept'

IPv6:
salt '*' nftables.check filter input \
 rule='tcp dport 22 log accept' \
 family=ipv6

	
salt.modules.nftables.check_chain(table='filter', chain=None, family='ipv4')

	
New in version 2014.7.0.

Check for the existence of a chain in the table

CLI Example:

salt '*' nftables.check_chain filter input

IPv6:
salt '*' nftables.check_chain filter input family=ipv6

	
salt.modules.nftables.check_table(table=None, family='ipv4')

	Check for the existence of a table

CLI Example:

salt '*' nftables.check_table nat

	
salt.modules.nftables.delete(table, chain=None, position=None, rule=None, family='ipv4')

	
	Delete a rule from the specified table & chain, specifying either the rule
	in its entirety, or the rule's position in the chain.

	This function accepts a rule in a standard nftables command format,
	starting with the chain. Trying to force users to adapt to a new
method of creating rules would be irritating at best, and we
already have a parser that can handle it.

CLI Examples:

salt '*' nftables.delete filter input position=3

salt '*' nftables.delete filter input \
 rule='tcp dport 22 log accept'

IPv6:
salt '*' nftables.delete filter input position=3 family=ipv6

salt '*' nftables.delete filter input \
 rule='tcp dport 22 log accept' \
 family=ipv6

	
salt.modules.nftables.delete_chain(table='filter', chain=None, family='ipv4')

	
New in version 2014.7.0.

Delete the chain from the specified table.

CLI Example:

salt '*' nftables.delete_chain filter input

salt '*' nftables.delete_chain filter foo

IPv6:
salt '*' nftables.delete_chain filter input family=ipv6

salt '*' nftables.delete_chain filter foo family=ipv6

	
salt.modules.nftables.delete_table(table, family='ipv4')

	
New in version 2014.7.0.

Create new custom table.

CLI Example:

salt '*' nftables.delete_table filter

IPv6:
salt '*' nftables.delete_table filter family=ipv6

	
salt.modules.nftables.flush(table='filter', chain='', family='ipv4')

	Flush the chain in the specified table, flush all chains in the specified
table if chain is not specified.

CLI Example:

salt '*' nftables.flush filter

salt '*' nftables.flush filter input

IPv6:
salt '*' nftables.flush filter input family=ipv6

	
salt.modules.nftables.get_policy(table='filter', chain=None, family='ipv4')

	
New in version 3002.

Return the current policy for the specified table/chain

	table
	Name of the table containing the chain to check

	chain
	Name of the chain to get the policy for

	family
	Networking family, either ipv4 or ipv6

CLI Example:

salt '*' nftables.get_policy filter input

IPv6:
salt '*' nftables.get_policy filter input family=ipv6

	
salt.modules.nftables.get_rule_handle(table='filter', chain=None, rule=None, family='ipv4')

	Get the handle for a particular rule

	This function accepts a rule in a standard nftables command format,
	starting with the chain. Trying to force users to adapt to a new
method of creating rules would be irritating at best, and we
already have a parser that can handle it.

CLI Example:

salt '*' nftables.get_rule_handle filter input \
 rule='tcp dport 22 log accept'

IPv6:
salt '*' nftables.get_rule_handle filter input \
 rule='tcp dport 22 log accept' \
 family=ipv6

	
salt.modules.nftables.get_rules(family='ipv4')

	Return a data structure of the current, in-memory rules

CLI Example:

salt '*' nftables.get_rules

salt '*' nftables.get_rules family=ipv6

	
salt.modules.nftables.get_rules_json(family='ipv4')

	
New in version 3002.

Return a list of dictionaries comprising the current, in-memory rules

	family
	Networking family, either ipv4 or ipv6

CLI Example:

salt '*' nftables.get_rules_json

salt '*' nftables.get_rules_json family=ipv6

	
salt.modules.nftables.get_saved_rules(conf_file=None)

	Return a data structure of the rules in the conf file

CLI Example:

salt '*' nftables.get_saved_rules

	
salt.modules.nftables.insert(table='filter', chain=None, position=None, rule=None, family='ipv4')

	Insert a rule into the specified table & chain, at the specified position.

If position is not specified, rule will be inserted in first position.

	This function accepts a rule in a standard nftables command format,
	starting with the chain. Trying to force users to adapt to a new
method of creating rules would be irritating at best, and we
already have a parser that can handle it.

CLI Examples:

salt '*' nftables.insert filter input \
 rule='tcp dport 22 log accept'

salt '*' nftables.insert filter input position=3 \
 rule='tcp dport 22 log accept'

IPv6:
salt '*' nftables.insert filter input \
 rule='tcp dport 22 log accept' \
 family=ipv6

salt '*' nftables.insert filter input position=3 \
 rule='tcp dport 22 log accept' \
 family=ipv6

	
salt.modules.nftables.list_tables(family='ipv4')

	Return a data structure of the current, in-memory tables

CLI Example:

salt '*' nftables.list_tables

salt '*' nftables.list_tables family=ipv6

	
salt.modules.nftables.new_chain(table='filter', chain=None, table_type=None, hook=None, priority=None, family='ipv4')

	
New in version 2014.7.0.

Create new chain to the specified table.

CLI Example:

salt '*' nftables.new_chain filter input

salt '*' nftables.new_chain filter input \
 table_type=filter hook=input priority=0

salt '*' nftables.new_chain filter foo

IPv6:
salt '*' nftables.new_chain filter input family=ipv6

salt '*' nftables.new_chain filter input \
 table_type=filter hook=input priority=0 family=ipv6

salt '*' nftables.new_chain filter foo family=ipv6

	
salt.modules.nftables.new_table(table, family='ipv4')

	
New in version 2014.7.0.

Create new custom table.

CLI Example:

salt '*' nftables.new_table filter

IPv6:
salt '*' nftables.new_table filter family=ipv6

	
salt.modules.nftables.save(filename=None, family='ipv4')

	
Changed in version 3002.

Save the current in-memory rules to disk. On systems where /etc/nftables is
a directory, a file named salt-all-in-one.nft will be dropped inside by default.
The main nftables configuration will need to include this file.

CLI Example:

salt '*' nftables.save /etc/nftables

	
salt.modules.nftables.set_policy(table='filter', chain=None, policy=None, family='ipv4')

	
New in version 3002.

Set the current policy for the specified table/chain. This only works on
chains with an existing base chain.

	table
	Name of the table containing the chain to modify

	chain
	Name of the chain to set the policy for

	policy
	accept or drop

	family
	Networking family, either ipv4 or ipv6

CLI Example:

salt '*' nftables.set_policy filter input accept

IPv6:
salt '*' nftables.set_policy filter input accept family=ipv6

	
salt.modules.nftables.version()

	Return version from nftables --version

CLI Example:

salt '*' nftables.version

salt.modules.nginx

Support for nginx

	
salt.modules.nginx.build_info()

	Return server and build arguments

CLI Example:

salt '*' nginx.build_info

	
salt.modules.nginx.configtest()

	test configuration and exit

CLI Example:

salt '*' nginx.configtest

	
salt.modules.nginx.signal(signal=None)

	Signals nginx to start, reload, reopen or stop.

CLI Example:

salt '*' nginx.signal reload

	
salt.modules.nginx.status(url='http://127.0.0.1/status')

	Return the data from an Nginx status page as a dictionary.
http://wiki.nginx.org/HttpStubStatusModule

	url
	The URL of the status page. Defaults to 'http://127.0.0.1/status'

CLI Example:

salt '*' nginx.status

	
salt.modules.nginx.version()

	Return server version from nginx -v

CLI Example:

salt '*' nginx.version

salt.modules.nilrt_ip

The networking module for NI Linux Real-Time distro

	
salt.modules.nilrt_ip.apply_network_settings(**settings)

	Apply global network configuration.

CLI Example:

salt '*' ip.apply_network_settings

	
salt.modules.nilrt_ip.build_interface(iface, iface_type, enabled, **settings)

	Build an interface script for a network interface.

CLI Example:

salt '*' ip.build_interface eth0 eth <settings>

	
salt.modules.nilrt_ip.build_network_settings(**settings)

	Build the global network script.

CLI Example:

salt '*' ip.build_network_settings <settings>

	
salt.modules.nilrt_ip.disable(interface)

	Disable the specified interface

Change adapter mode to Disabled. If previous adapter mode was EtherCAT, the target will need reboot.

	Parameters:

	interface (str [https://docs.python.org/3/library/stdtypes.html#str]) -- interface label

	Returns:

	True if the service was disabled, otherwise an exception will be thrown.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' ip.disable interface-label

	
salt.modules.nilrt_ip.down(interface, iface_type=None)

	Disable the specified interface

Change adapter mode to Disabled. If previous adapter mode was EtherCAT, the target will need reboot.

	Parameters:

	interface (str [https://docs.python.org/3/library/stdtypes.html#str]) -- interface label

	Returns:

	True if the service was disabled, otherwise an exception will be thrown.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' ip.down interface-label

	
salt.modules.nilrt_ip.enable(interface)

	Enable the specified interface

Change adapter mode to TCP/IP. If previous adapter mode was EtherCAT, the target will need reboot.

	Parameters:

	interface (str [https://docs.python.org/3/library/stdtypes.html#str]) -- interface label

	Returns:

	True if the service was enabled, otherwise an exception will be thrown.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' ip.enable interface-label

	
salt.modules.nilrt_ip.get_interface(iface)

	Returns details about given interface.

CLI Example:

salt '*' ip.get_interface eth0

	
salt.modules.nilrt_ip.get_interfaces_details()

	Get details about all the interfaces on the minion

	Returns:

	information about all interfaces omitting loopback

	Return type:

	dictionary

CLI Example:

salt '*' ip.get_interfaces_details

	
salt.modules.nilrt_ip.get_network_settings()

	Return the contents of the global network script.

CLI Example:

salt '*' ip.get_network_settings

	
salt.modules.nilrt_ip.set_dhcp_linklocal_all(interface)

	Configure specified adapter to use DHCP with linklocal fallback

Change adapter mode to TCP/IP. If previous adapter mode was EtherCAT, the target will need reboot.

	Parameters:

	interface (str [https://docs.python.org/3/library/stdtypes.html#str]) -- interface label

	Returns:

	True if the settings were applied, otherwise an exception will be thrown.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' ip.set_dhcp_linklocal_all interface-label

	
salt.modules.nilrt_ip.set_dhcp_only_all(interface)

	Configure specified adapter to use DHCP only

Change adapter mode to TCP/IP. If previous adapter mode was EtherCAT, the target will need reboot.

	Parameters:

	interface (str [https://docs.python.org/3/library/stdtypes.html#str]) -- interface label

	Returns:

	True if the settings were applied, otherwise an exception will be thrown.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' ip.dhcp_only_all interface-label

	
salt.modules.nilrt_ip.set_ethercat(interface, master_id)

	Configure specified adapter to use EtherCAT adapter mode. If successful, the target will need reboot if it doesn't
already use EtherCAT adapter mode, otherwise will return true.

	Parameters:

	
	interface -- interface label

	master_id -- EtherCAT Master ID

	Returns:

	True if the settings were applied, otherwise an exception will be thrown.

CLI Example:

salt '*' ip.set_ethercat interface-label master-id

	
salt.modules.nilrt_ip.set_linklocal_only_all(interface)

	Configure specified adapter to use linklocal only

Change adapter mode to TCP/IP. If previous adapter mode was EtherCAT, the target will need reboot.

	Parameters:

	interface (str [https://docs.python.org/3/library/stdtypes.html#str]) -- interface label

	Returns:

	True if the settings were applied, otherwise an exception will be thrown.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' ip.linklocal_only_all interface-label

	
salt.modules.nilrt_ip.set_static_all(interface, address, netmask, gateway, nameservers=None)

	Configure specified adapter to use ipv4 manual settings

Change adapter mode to TCP/IP. If previous adapter mode was EtherCAT, the target will need reboot.

	Parameters:

	
	interface (str [https://docs.python.org/3/library/stdtypes.html#str]) -- interface label

	address (str [https://docs.python.org/3/library/stdtypes.html#str]) -- ipv4 address

	netmask (str [https://docs.python.org/3/library/stdtypes.html#str]) -- ipv4 netmask

	gateway (str [https://docs.python.org/3/library/stdtypes.html#str]) -- ipv4 gateway

	nameservers (str [https://docs.python.org/3/library/stdtypes.html#str]) -- list of nameservers servers separated by spaces (Optional)

	Returns:

	True if the settings were applied, otherwise an exception will be thrown.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' ip.set_static_all interface-label address netmask gateway nameservers

	
salt.modules.nilrt_ip.up(interface, iface_type=None)

	Enable the specified interface

Change adapter mode to TCP/IP. If previous adapter mode was EtherCAT, the target will need reboot.

	Parameters:

	interface (str [https://docs.python.org/3/library/stdtypes.html#str]) -- interface label

	Returns:

	True if the service was enabled, otherwise an exception will be thrown.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' ip.up interface-label

salt.modules.nix

Work with Nix packages

New in version 2017.7.0.

Does not require the machine to be Nixos, just have Nix installed and available
to use for the user running this command. Their profile must be located in
their home, under $HOME/.nix-profile/, and the nix store, unless specially
set up, should be in /nix. To easily use this with multiple users or a root
user, set up the nix-daemon [https://nixos.org/nix/manual/#ssec-multi-user].

This module exposes most of the common nix operations. Currently not meant to be run as a pkg module, but explicitly as nix.*.

For more information on nix, see the nix documentation [https://nixos.org/nix/manual/].

	
salt.modules.nix.collect_garbage()

	Completely removed all currently 'uninstalled' packages in the nix store.

Tells the user how many store paths were removed and how much space was freed.

	Returns:

	How much space was freed and how many derivations were removed

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

Warning

This is a destructive action on the nix store.

salt '*' nix.collect_garbage

	
salt.modules.nix.install(*pkgs, **kwargs)

	Installs a single or multiple packages via nix

	Parameters:

	
	pkgs (list [https://docs.python.org/3/library/stdtypes.html#list](str [https://docs.python.org/3/library/stdtypes.html#str])) -- packages to update

	attributes (bool [https://docs.python.org/3/library/functions.html#bool]) -- Pass the list of packages or single package as attribues, not package names.
default: False

	Returns:

	Installed packages. Example element: gcc-3.3.2

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list](str [https://docs.python.org/3/library/stdtypes.html#str])

salt '*' nix.install package [package2 ...]
salt '*' nix.install attributes=True attr.name [attr.name2 ...]

	
salt.modules.nix.list_pkgs(installed=True, attributes=True)

	Lists installed packages. Due to how nix works, it defaults to just doing a nix-env -q.

	Parameters:

	
	installed (bool [https://docs.python.org/3/library/functions.html#bool]) -- list only installed packages. This can be a very long list (12,000+ elements), so caution is advised.
Default: True

	attributes (bool [https://docs.python.org/3/library/functions.html#bool]) -- show the attributes of the packages when listing all packages.
Default: True

	Returns:

	Packages installed or available, along with their attributes.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list](list [https://docs.python.org/3/library/stdtypes.html#list](str [https://docs.python.org/3/library/stdtypes.html#str]))

salt '*' nix.list_pkgs
salt '*' nix.list_pkgs installed=False

	
salt.modules.nix.uninstall(*pkgs)

	Erases a package from the current nix profile. Nix uninstalls work differently than other package managers, and the symlinks in the
profile are removed, while the actual package remains. There is also a nix.purge function, to clear the package cache of unused
packages.

	Parameters:

	pkgs (list [https://docs.python.org/3/library/stdtypes.html#list](str [https://docs.python.org/3/library/stdtypes.html#str])) -- List, single package to uninstall

	Returns:

	Packages that have been uninstalled

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list](str [https://docs.python.org/3/library/stdtypes.html#str])

salt '*' nix.uninstall pkg1 [pkg2 ...]

	
salt.modules.nix.upgrade(*pkgs)

	Runs an update operation on the specified packages, or all packages if none is specified.

	Parameters:

	pkgs (list [https://docs.python.org/3/library/stdtypes.html#list](str [https://docs.python.org/3/library/stdtypes.html#str])) -- List of packages to update

	Returns:

	The upgraded packages. Example element: ['libxslt-1.1.0', 'libxslt-1.1.10']

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list](tuple [https://docs.python.org/3/library/stdtypes.html#tuple](str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]))

salt '*' nix.update
salt '*' nix.update pkgs=one,two

salt.modules.nova

Module for handling OpenStack Nova calls

	depends:

	
	novaclient Python module

	configuration:

	This module is not usable until the user, password, tenant, and
auth URL are specified either in a pillar or in the minion's config file.
For example:

keystone.user: admin
keystone.password: verybadpass
keystone.tenant: admin
keystone.auth_url: 'http://127.0.0.1:5000/v2.0/'
Optional
keystone.region_name: 'RegionOne'

If configuration for multiple OpenStack accounts is required, they can be
set up as different configuration profiles:
For example:

openstack1:
 keystone.user: admin
 keystone.password: verybadpass
 keystone.tenant: admin
 keystone.auth_url: 'http://127.0.0.1:5000/v2.0/'

openstack2:
 keystone.user: admin
 keystone.password: verybadpass
 keystone.tenant: admin
 keystone.auth_url: 'http://127.0.0.2:5000/v2.0/'

With this configuration in place, any of the nova functions can make use of
a configuration profile by declaring it explicitly.
For example:

salt '*' nova.flavor_list profile=openstack1

To use keystoneauth1 instead of keystoneclient, include the use_keystoneauth
option in the pillar or minion config.

Note

This is required to use keystone v3 as for authentication.

keystone.user: admin
keystone.password: verybadpass
keystone.tenant: admin
keystone.auth_url: 'http://127.0.0.1:5000/v3/'
keystone.use_keystoneauth: true
keystone.verify: '/path/to/custom/certs/ca-bundle.crt'

Note

By default the nova module will attempt to verify its connection
utilizing the system certificates. If you need to verify against
another bundle of CA certificates or want to skip verification
altogether you will need to specify the verify option. You can
specify True or False to verify (or not) against system certificates, a
path to a bundle or CA certs to check against, or None to allow
keystoneauth to search for the certificates on its own. (defaults to
True)

	
salt.modules.nova.boot(name, flavor_id=0, image_id=0, profile=None, timeout=300)

	Boot (create) a new instance

	name
	Name of the new instance (must be first)

	flavor_id
	Unique integer ID for the flavor

	image_id
	Unique integer ID for the image

	timeout
	How long to wait, after creating the instance, for the provider to
return information about it (default 300 seconds).

New in version 2014.1.0.

CLI Example:

salt '*' nova.boot myinstance flavor_id=4596 image_id=2

The flavor_id and image_id are obtained from nova.flavor_list and
nova.image_list

salt '*' nova.flavor_list
salt '*' nova.image_list

	
salt.modules.nova.delete(instance_id, profile=None)

	Delete an instance

	instance_id
	ID of the instance to be deleted

CLI Example:

salt '*' nova.delete 1138

	
salt.modules.nova.flavor_create(name, flavor_id=0, ram=0, disk=0, vcpus=1, profile=None)

	Add a flavor to nova (nova flavor-create). The following parameters are
required:

	name
	Name of the new flavor (must be first)

	flavor_id
	Unique integer ID for the new flavor

	ram
	Memory size in MB

	disk
	Disk size in GB

	vcpus
	Number of vcpus

CLI Example:

salt '*' nova.flavor_create myflavor flavor_id=6 ram=4096 disk=10 vcpus=1

	
salt.modules.nova.flavor_delete(flavor_id, profile=None)

	Delete a flavor from nova by id (nova flavor-delete)

CLI Example:

salt '*' nova.flavor_delete 7

	
salt.modules.nova.flavor_list(profile=None)

	Return a list of available flavors (nova flavor-list)

CLI Example:

salt '*' nova.flavor_list

	
salt.modules.nova.image_list(name=None, profile=None)

	Return a list of available images (nova images-list + nova image-show)
If a name is provided, only that image will be displayed.

CLI Examples:

salt '*' nova.image_list
salt '*' nova.image_list myimage

	
salt.modules.nova.image_meta_delete(image_id=None, name=None, keys=None, profile=None)

	Delete a key=value pair from the metadata for an image
(nova image-meta set)

CLI Examples:

salt '*' nova.image_meta_delete 6f52b2ff-0b31-4d84-8fd1-af45b84824f6 keys=cheese
salt '*' nova.image_meta_delete name=myimage keys=salad,beans

	
salt.modules.nova.image_meta_set(image_id=None, name=None, profile=None, **kwargs)

	Sets a key=value pair in the metadata for an image (nova image-meta set)

CLI Examples:

salt '*' nova.image_meta_set 6f52b2ff-0b31-4d84-8fd1-af45b84824f6 cheese=gruyere
salt '*' nova.image_meta_set name=myimage salad=pasta beans=baked

	
salt.modules.nova.keypair_add(name, pubfile=None, pubkey=None, profile=None)

	Add a keypair to nova (nova keypair-add)

CLI Examples:

salt '*' nova.keypair_add mykey pubfile=/home/myuser/.ssh/id_rsa.pub
salt '*' nova.keypair_add mykey pubkey='ssh-rsa <key> myuser@mybox'

	
salt.modules.nova.keypair_delete(name, profile=None)

	Add a keypair to nova (nova keypair-delete)

CLI Example:

salt '*' nova.keypair_delete mykey

	
salt.modules.nova.keypair_list(profile=None)

	Return a list of available keypairs (nova keypair-list)

CLI Example:

salt '*' nova.keypair_list

	
salt.modules.nova.list_(profile=None)

	To maintain the feel of the nova command line, this function simply calls
the server_list function.

CLI Example:

salt '*' nova.list

	
salt.modules.nova.lock(instance_id, profile=None)

	Lock an instance

	instance_id
	ID of the instance to be locked

CLI Example:

salt '*' nova.lock 1138

	
salt.modules.nova.resume(instance_id, profile=None)

	Resume an instance

	instance_id
	ID of the instance to be resumed

CLI Example:

salt '*' nova.resume 1138

	
salt.modules.nova.secgroup_create(name, description, profile=None)

	Add a secgroup to nova (nova secgroup-create)

CLI Example:

salt '*' nova.secgroup_create mygroup 'This is my security group'

	
salt.modules.nova.secgroup_delete(name, profile=None)

	Delete a secgroup to nova (nova secgroup-delete)

CLI Example:

salt '*' nova.secgroup_delete mygroup

	
salt.modules.nova.secgroup_list(profile=None)

	Return a list of available security groups (nova items-list)

CLI Example:

salt '*' nova.secgroup_list

	
salt.modules.nova.server_by_name(name, profile=None)

	Return information about a server

	name
	Server Name

CLI Example:

salt '*' nova.server_by_name myserver profile=openstack

	
salt.modules.nova.server_list(profile=None)

	Return list of active servers

CLI Example:

salt '*' nova.server_list

	
salt.modules.nova.server_list_detailed(profile=None)

	Return detailed list of active servers

CLI Example:

salt '*' nova.server_list_detailed

	
salt.modules.nova.server_show(server_id, profile=None)

	Return detailed information for an active server

CLI Example:

salt '*' nova.server_show <server_id>

	
salt.modules.nova.show(server_id, profile=None)

	To maintain the feel of the nova command line, this function simply calls
the server_show function.

CLI Example:

salt '*' nova.show

	
salt.modules.nova.suspend(instance_id, profile=None)

	Suspend an instance

	instance_id
	ID of the instance to be suspended

CLI Example:

salt '*' nova.suspend 1138

	
salt.modules.nova.volume_attach(name, server_name, device='/dev/xvdb', profile=None, timeout=300)

	Attach a block storage volume

	name
	Name of the new volume to attach

	server_name
	Name of the server to attach to

	device
	Name of the device on the server

	profile
	Profile to build on

CLI Example:

salt '*' nova.volume_attach myblock slice.example.com profile=openstack
salt '*' nova.volume_attach myblock server.example.com device='/dev/xvdb' profile=openstack

	
salt.modules.nova.volume_create(name, size=100, snapshot=None, voltype=None, profile=None)

	Create a block storage volume

	name
	Name of the new volume (must be first)

	size
	Volume size

	snapshot
	Block storage snapshot id

	voltype
	Type of storage

	profile
	Profile to build on

CLI Example:

salt '*' nova.volume_create myblock size=300 profile=openstack

	
salt.modules.nova.volume_delete(name, profile=None)

	Destroy the volume

	name
	Name of the volume

	profile
	Profile to build on

CLI Example:

salt '*' nova.volume_delete myblock profile=openstack

	
salt.modules.nova.volume_detach(name, profile=None, timeout=300)

	Attach a block storage volume

	name
	Name of the new volume to attach

	server_name
	Name of the server to detach from

	profile
	Profile to build on

CLI Example:

salt '*' nova.volume_detach myblock profile=openstack

	
salt.modules.nova.volume_list(search_opts=None, profile=None)

	List storage volumes

	search_opts
	Dictionary of search options

	profile
	Profile to use

CLI Example:

salt '*' nova.volume_list search_opts='{"display_name": "myblock"}' profile=openstack

	
salt.modules.nova.volume_show(name, profile=None)

	Create a block storage volume

	name
	Name of the volume

	profile
	Profile to use

CLI Example:

salt '*' nova.volume_show myblock profile=openstack

salt.modules.npm

Manage and query NPM packages.

	
salt.modules.npm.cache_clean(path=None, runas=None, env=None, force=False)

	Clean cached NPM packages.

If no path for a specific package is provided the entire cache will be cleared.

	path
	The cache subpath to delete, or None to clear the entire cache

	runas
	The user to run NPM with

	env
	Environment variables to set when invoking npm. Uses the same env
format as the cmd.run execution
function.

	force
	Force cleaning of cache. Required for npm@5 and greater

New in version 2016.11.6.

CLI Example:

salt '*' npm.cache_clean force=True

	
salt.modules.npm.cache_list(path=None, runas=None, env=None)

	List NPM cached packages.

If no path for a specific package is provided this will list all the cached packages.

	path
	The cache subpath to list, or None to list the entire cache

	runas
	The user to run NPM with

	env
	Environment variables to set when invoking npm. Uses the same env
format as the cmd.run execution
function.

CLI Example:

salt '*' npm.cache_clean

	
salt.modules.npm.cache_path(runas=None, env=None)

	List path of the NPM cache directory.

	runas
	The user to run NPM with

	env
	Environment variables to set when invoking npm. Uses the same env
format as the cmd.run execution
function.

CLI Example:

salt '*' npm.cache_path

	
salt.modules.npm.install(pkg=None, pkgs=None, dir=None, runas=None, registry=None, env=None, dry_run=False, silent=True)

	Install an NPM package.

If no directory is specified, the package will be installed globally. If
no package is specified, the dependencies (from package.json) of the
package in the given directory will be installed.

	pkg
	A package name in any format accepted by NPM, including a version
identifier

	pkgs
	A list of package names in the same format as the name parameter

New in version 2014.7.0.

	dir
	The target directory in which to install the package, or None for
global installation

	runas
	The user to run NPM with

	registry
	The NPM registry to install the package from.

New in version 2014.7.0.

	env
	Environment variables to set when invoking npm. Uses the same env
format as the cmd.run execution
function.

New in version 2014.7.0.

	silent
	Whether or not to run NPM install with --silent flag.

New in version 2016.3.0.

	dry_run
	Whether or not to run NPM install with --dry-run flag.

New in version 2015.8.4.

	silent
	Whether or not to run NPM install with --silent flag.

New in version 2015.8.5.

CLI Example:

salt '*' npm.install coffee-script

salt '*' npm.install coffee-script@1.0.1

	
salt.modules.npm.list_(pkg=None, dir=None, runas=None, env=None, depth=None)

	List installed NPM packages.

If no directory is specified, this will return the list of globally-
installed packages.

	pkg
	Limit package listing by name

	dir
	The directory whose packages will be listed, or None for global
installation

	runas
	The user to run NPM with

New in version 2014.7.0.

	env
	Environment variables to set when invoking npm. Uses the same env
format as the cmd.run execution
function.

New in version 2014.7.0.

	depth
	Limit the depth of the packages listed

New in version 2016.11.6,2017.7.0.

CLI Example:

salt '*' npm.list

	
salt.modules.npm.uninstall(pkg, dir=None, runas=None, env=None)

	Uninstall an NPM package.

If no directory is specified, the package will be uninstalled globally.

	pkg
	A package name in any format accepted by NPM

	dir
	The target directory from which to uninstall the package, or None for
global installation

	runas
	The user to run NPM with

	env
	Environment variables to set when invoking npm. Uses the same env
format as the cmd.run execution
function.

New in version 2015.5.3.

CLI Example:

salt '*' npm.uninstall coffee-script

salt.modules.nspawn

Manage nspawn containers

New in version 2015.8.0.

systemd-nspawn(1) [http://www.freedesktop.org/software/systemd/man/systemd-nspawn.html] is a tool used to manage lightweight namespace
containers. This execution module provides several functions to help manage
these containers.

Minions running systemd >= 219 will place new containers in
/var/lib/machines, while those running systemd < 219 will place them in
/var/lib/container.

	
salt.modules.nspawn.bootstrap_container(name, dist=None, version=None)

	Bootstrap a container from package servers, if dist is None the os the
minion is running as will be created, otherwise the needed bootstrapping
tools will need to be available on the host.

CLI Example:

salt myminion nspawn.bootstrap_container <name>

	
salt.modules.nspawn.bootstrap_salt(name, config=None, approve_key=True, install=True, pub_key=None, priv_key=None, bootstrap_url=None, force_install=False, unconditional_install=False, bootstrap_delay=None, bootstrap_args=None, bootstrap_shell=None)

	Bootstrap a container from package servers, if dist is None the os the
minion is running as will be created, otherwise the needed bootstrapping
tools will need to be available on the host.

CLI Example:

salt '*' nspawn.bootstrap_salt arch1

	
salt.modules.nspawn.copy_to(name, source, dest, overwrite=False, makedirs=False)

	Copy a file from the host into a container

	name
	Container name

	source
	File to be copied to the container

	dest
	Destination on the container. Must be an absolute path.

	overwriteFalse
	Unless this option is set to True, then if a file exists at the
location specified by the dest argument, an error will be raised.

makedirs : False

Create the parent directory on the container if it does not already
exist.

CLI Example:

salt 'minion' nspawn.copy_to /tmp/foo /root/foo

	
salt.modules.nspawn.cp(name, source, dest, overwrite=False, makedirs=False)

	This function is an alias of copy_to.

Copy a file from the host into a container

	name
	Container name

	source
	File to be copied to the container

	dest
	Destination on the container. Must be an absolute path.

	overwriteFalse
	Unless this option is set to True, then if a file exists at the
location specified by the dest argument, an error will be raised.

makedirs : False

Create the parent directory on the container if it does not already
exist.

CLI Example:

salt 'minion' nspawn.copy_to /tmp/foo /root/foo

	
salt.modules.nspawn.destroy(name, stop=False)

	This function is an alias of remove.

Remove the named container

Warning

This function will remove all data associated with the container. It
will not, however, remove the btrfs subvolumes created by pulling
container images (nspawn.pull_raw, nspawn.pull_tar, nspawn.pull_dkr).

	stopFalse
	If True, the container will be destroyed even if it is
running/frozen.

CLI Examples:

salt '*' nspawn.remove foo
salt '*' nspawn.remove foo stop=True

	
salt.modules.nspawn.disable(name)

	Set the named container to not be launched at boot

CLI Example:

salt myminion nspawn.enable <name>

	
salt.modules.nspawn.enable(name)

	Set the named container to be launched at boot

CLI Example:

salt myminion nspawn.enable <name>

	
salt.modules.nspawn.exists(name)

	Returns true if the named container exists

CLI Example:

salt myminion nspawn.exists <name>

	
salt.modules.nspawn.info(name, **kwargs)

	Return info about a container

Note

The container must be running for machinectl to gather information
about it. If the container is stopped, then this function will start
it.

	startFalse
	If True, then the container will be started to retrieve the info. A
Started key will be in the return data if the container was
started.

CLI Example:

salt myminion nspawn.info arch1
salt myminion nspawn.info arch1 force_start=False

	
salt.modules.nspawn.list_()

	This function is an alias of list_running.

Lists running nspawn containers

Note

nspawn.list also works to list running containers

CLI Example:

salt myminion nspawn.list_running
salt myminion nspawn.list

	
salt.modules.nspawn.list_all()

	Lists all nspawn containers

CLI Example:

salt myminion nspawn.list_all

	
salt.modules.nspawn.list_running()

	Lists running nspawn containers

Note

nspawn.list also works to list running containers

CLI Example:

salt myminion nspawn.list_running
salt myminion nspawn.list

	
salt.modules.nspawn.list_stopped()

	Lists stopped nspawn containers

CLI Example:

salt myminion nspawn.list_stopped

	
salt.modules.nspawn.pid(name)

	Returns the PID of a container

	name
	Container name

CLI Example:

salt myminion nspawn.pid arch1

	
salt.modules.nspawn.poweroff(name)

	Issue a clean shutdown to the container. Equivalent to running
machinectl poweroff on the named container.

For convenience, running nspawn.stop``(as shown in the CLI examples
below) is equivalent to running ``nspawn.poweroff.

Note

machinectl poweroff is only supported in systemd >= 219. On earlier
systemd versions, running this function will simply issue a clean
shutdown via systemctl.

CLI Examples:

salt myminion nspawn.poweroff arch1
salt myminion nspawn.stop arch1

	
salt.modules.nspawn.pull_dkr(url, name, index)

	Execute a machinectl pull-dkr to download a docker image and add it to
/var/lib/machines as a new container.

Note

Requires systemd >= 219

	url
	URL from which to download the container

	name
	Name for the new container

	index
	URL of the Docker index server from which to pull (must be an
http:// or https:// URL).

CLI Examples:

salt myminion nspawn.pull_dkr centos/centos6 cent6 index=https://get.docker.com
salt myminion nspawn.pull_docker centos/centos6 cent6 index=https://get.docker.com

	
salt.modules.nspawn.pull_docker(url, name, index)

	This function is an alias of pull_dkr.

Execute a machinectl pull-dkr to download a docker image and add it to
/var/lib/machines as a new container.

Note

Requires systemd >= 219

	url
	URL from which to download the container

	name
	Name for the new container

	index
	URL of the Docker index server from which to pull (must be an
http:// or https:// URL).

CLI Examples:

salt myminion nspawn.pull_dkr centos/centos6 cent6 index=https://get.docker.com
salt myminion nspawn.pull_docker centos/centos6 cent6 index=https://get.docker.com

	
salt.modules.nspawn.pull_raw(url, name, verify=False)

	Execute a machinectl pull-raw to download a .qcow2 or raw disk image,
and add it to /var/lib/machines as a new container.

Note

Requires systemd >= 219

	url
	URL from which to download the container

	name
	Name for the new container

	verifyFalse
	Perform signature or checksum verification on the container. See the
machinectl(1) man page (section titled "Image Transfer Commands")
for more information on requirements for image verification. To perform
signature verification, use verify=signature. For checksum
verification, use verify=checksum. By default, no verification will
be performed.

CLI Examples:

salt myminion nspawn.pull_raw http://ftp.halifax.rwth-aachen.de/fedora/linux/releases/21/Cloud/Images/x86_64/Fedora-Cloud-Base-20141203-21.x86_64.raw.xz fedora21

	
salt.modules.nspawn.pull_tar(url, name, verify=False)

	Execute a machinectl pull-raw to download a .tar container image,
and add it to /var/lib/machines as a new container.

Note

Requires systemd >= 219

	url
	URL from which to download the container

	name
	Name for the new container

	verifyFalse
	Perform signature or checksum verification on the container. See the
machinectl(1) man page (section titled "Image Transfer Commands")
for more information on requirements for image verification. To perform
signature verification, use verify=signature. For checksum
verification, use verify=checksum. By default, no verification will
be performed.

CLI Examples:

salt myminion nspawn.pull_tar http://foo.domain.tld/containers/archlinux-2015.02.01.tar.gz arch2

	
salt.modules.nspawn.reboot(name, kill=False)

	Reboot the container by sending a SIGINT to its init process. Equivalent
to running machinectl reboot on the named container.

For convenience, running nspawn.restart (as shown in the CLI examples
below) is equivalent to running nspawn.reboot.

Note

machinectl reboot is only supported in systemd >= 219. On earlier
systemd versions, running this function will instead restart the
container via systemctl.

CLI Examples:

salt myminion nspawn.reboot arch1
salt myminion nspawn.restart arch1

	
salt.modules.nspawn.remove(name, stop=False)

	Remove the named container

Warning

This function will remove all data associated with the container. It
will not, however, remove the btrfs subvolumes created by pulling
container images (nspawn.pull_raw, nspawn.pull_tar, nspawn.pull_dkr).

	stopFalse
	If True, the container will be destroyed even if it is
running/frozen.

CLI Examples:

salt '*' nspawn.remove foo
salt '*' nspawn.remove foo stop=True

	
salt.modules.nspawn.restart(name)

	This is a compatibility function which simply calls nspawn.reboot.

	
salt.modules.nspawn.retcode(name, cmd, no_start=False, preserve_state=True, stdin=None, python_shell=True, output_loglevel='debug', use_vt=False, ignore_retcode=False, keep_env=None)

	Run cmd.retcode within a container

	name
	Name of the container in which to run the command

	cmd
	Command to run

	no_startFalse
	If the container is not running, don't start it

	preserve_stateTrue
	After running the command, return the container to its previous state

	stdinNone
	Standard input to be used for the command

	output_logleveldebug
	Level at which to log the output from the command. Set to quiet to
suppress logging.

	use_vtFalse
	Use SaltStack's utils.vt to stream output to console. Assumes
output=all.

	keep_envNone
	If not passed, only a sane default PATH environment variable will be
set. If True, all environment variables from the container's host
will be kept. Otherwise, a comma-separated list (or Python list) of
environment variable names can be passed, and those environment
variables will be kept.

CLI Example:

salt myminion nspawn.retcode mycontainer 'ip addr show'

	
salt.modules.nspawn.run(name, cmd, no_start=False, preserve_state=True, stdin=None, python_shell=True, output_loglevel='debug', use_vt=False, ignore_retcode=False, keep_env=None)

	Run cmd.run within a container

	name
	Name of the container in which to run the command

	cmd
	Command to run

	no_startFalse
	If the container is not running, don't start it

	preserve_stateTrue
	After running the command, return the container to its previous state

	stdinNone
	Standard input to be used for the command

	output_logleveldebug
	Level at which to log the output from the command. Set to quiet to
suppress logging.

	use_vtFalse
	Use SaltStack's utils.vt to stream output to console.

	keep_envNone
	If not passed, only a sane default PATH environment variable will be
set. If True, all environment variables from the container's host
will be kept. Otherwise, a comma-separated list (or Python list) of
environment variable names can be passed, and those environment
variables will be kept.

CLI Example:

salt myminion nspawn.run mycontainer 'ip addr show'

	
salt.modules.nspawn.run_all(name, cmd, no_start=False, preserve_state=True, stdin=None, python_shell=True, output_loglevel='debug', use_vt=False, ignore_retcode=False, keep_env=None)

	Run cmd.run_all within a container

Note

While the command is run within the container, it is initiated from the
host. Therefore, the PID in the return dict is from the host, not from
the container.

	name
	Name of the container in which to run the command

	cmd
	Command to run

	no_startFalse
	If the container is not running, don't start it

	preserve_stateTrue
	After running the command, return the container to its previous state

	stdinNone
	Standard input to be used for the command

	output_logleveldebug
	Level at which to log the output from the command. Set to quiet to
suppress logging.

	use_vtFalse
	Use SaltStack's utils.vt to stream output to console. Assumes
output=all.

	keep_envNone
	If not passed, only a sane default PATH environment variable will be
set. If True, all environment variables from the container's host
will be kept. Otherwise, a comma-separated list (or Python list) of
environment variable names can be passed, and those environment
variables will be kept.

CLI Example:

salt myminion nspawn.run_all mycontainer 'ip addr show'

	
salt.modules.nspawn.run_stderr(name, cmd, no_start=False, preserve_state=True, stdin=None, python_shell=True, output_loglevel='debug', use_vt=False, ignore_retcode=False, keep_env=None)

	Run cmd.run_stderr within a container

	name
	Name of the container in which to run the command

	cmd
	Command to run

	no_startFalse
	If the container is not running, don't start it

	preserve_stateTrue
	After running the command, return the container to its previous state

	stdinNone
	Standard input to be used for the command

	output_logleveldebug
	Level at which to log the output from the command. Set to quiet to
suppress logging.

	use_vtFalse
	Use SaltStack's utils.vt to stream output to console. Assumes
output=all.

	keep_envNone
	If not passed, only a sane default PATH environment variable will be
set. If True, all environment variables from the container's host
will be kept. Otherwise, a comma-separated list (or Python list) of
environment variable names can be passed, and those environment
variables will be kept.

CLI Example:

salt myminion nspawn.run_stderr mycontainer 'ip addr show'

	
salt.modules.nspawn.run_stdout(name, cmd, no_start=False, preserve_state=True, stdin=None, python_shell=True, output_loglevel='debug', use_vt=False, ignore_retcode=False, keep_env=None)

	Run cmd.run_stdout within a container

	name
	Name of the container in which to run the command

	cmd
	Command to run

	no_startFalse
	If the container is not running, don't start it

	preserve_stateTrue
	After running the command, return the container to its previous state

	stdinNone
	Standard input to be used for the command

	output_logleveldebug
	Level at which to log the output from the command. Set to quiet to
suppress logging.

	use_vtFalse
	Use SaltStack's utils.vt to stream output to console. Assumes
output=all.

	keep_envNone
	If not passed, only a sane default PATH environment variable will be
set. If True, all environment variables from the container's host
will be kept. Otherwise, a comma-separated list (or Python list) of
environment variable names can be passed, and those environment
variables will be kept.

CLI Example:

salt myminion nspawn.run_stdout mycontainer 'ip addr show'

	
salt.modules.nspawn.start(name)

	Start the named container

CLI Example:

salt myminion nspawn.start <name>

	
salt.modules.nspawn.state(name)

	Return state of container (running or stopped)

CLI Example:

salt myminion nspawn.state <name>

	
salt.modules.nspawn.stop(name, kill=False)

	This is a compatibility function which provides the logic for
nspawn.poweroff and nspawn.terminate.

	
salt.modules.nspawn.terminate(name)

	Kill all processes in the container without issuing a clean shutdown.
Equivalent to running machinectl terminate on the named container.

For convenience, running nspawn.stop and passing kill=True (as
shown in the CLI examples below) is equivalent to running
nspawn.terminate.

Note

machinectl terminate is only supported in systemd >= 219. On
earlier systemd versions, running this function will simply issue a
clean shutdown via systemctl.

CLI Examples:

salt myminion nspawn.terminate arch1
salt myminion nspawn.stop arch1 kill=True

salt.modules.nxos

Execution module for Cisco NX OS Switches.

New in version 2016.11.0.

	This module supports execution using a Proxy Minion or Native Minion:
	1) Proxy Minion: Connect over SSH or NX-API HTTP(S).
See salt.proxy.nxos for proxy minion setup details.
2) Native Minion: Connect over NX-API Unix Domain Socket (UDS).
Install the minion inside the GuestShell running on the NX-OS device.

	maturity:

	new

	platform:

	nxos

Note

To use this module over remote NX-API the feature must be enabled on the
NX-OS device by executing feature nxapi in configuration mode.

This is not required for NX-API over UDS.

Configuration example:

switch# conf t
switch(config)# feature nxapi

To check that NX-API is properly enabled, execute show nxapi.

Output example:

switch# show nxapi
nxapi enabled
HTTPS Listen on port 443

Native minion configuration options:

nxos:
 cookie: 'username'
 save_config: False

	cookie
	Use the option to override the default cookie 'admin:local' when
connecting over UDS and use 'username:local' instead. This is needed when
running the salt-minion in the GuestShell using a non-admin user.

This option is ignored for SSH and NX-API Proxy minions.

	save_config:
	If True, 'copy running-config starting-config' is issues for every
configuration command.
If False, Running config is not saved to startup config
Default: True

The recommended approach is to use the save_running_config function
instead of this option to improve performance. The default behavior
controlled by this option is preserved for backwards compatibility.

The APIs defined in this execution module can also be executed using
salt-call from the GuestShell environment as follows.

salt-call --local nxos.sendline 'show lldp neighbors' raw_text

Note

The functions in this module should be executed like so:

salt '*' nxos.<function>
salt '*' nxos.get_user username=admin

For backwards compatibility, the following syntax will be supported
until the 3001 release.

salt '*' nxos.cmd <function>
salt '*' nxos.cmd get_user username=admin

	
salt.modules.nxos.add_config(lines, **kwargs)

	Add one or more config lines to the NX-OS device running config.

	lines
	Configuration lines to add

	save_config
	If False, don't save configuration commands to startup configuration.
If True, save configuration to startup configuration.
Default: True

salt '*' nxos.add_config 'snmp-server community TESTSTRINGHERE group network-operator'

Note

For more than one config added per command, lines should be a list.

	
salt.modules.nxos.check_password(username, password, encrypted=False, **kwargs)

	Verify user password.

	username
	Username on which to perform password check

	password
	Password to check

	encrypted
	Whether or not the password is encrypted
Default: False

	
salt.modules.nxos.check_role(username, role, **kwargs)

	Verify role assignment for user.

salt '*' nxos.check_role username=admin role=network-admin

	
salt.modules.nxos.cmd(command, *args, **kwargs)

	NOTE: This function is preserved for backwards compatibility. This allows
commands to be executed using either of the following syntactic forms.

salt '*' nxos.cmd <function>

or

salt '*' nxos.<function>

	command
	function from salt.modules.nxos to run

	args
	positional args to pass to command function

	kwargs
	key word arguments to pass to command function

salt '*' nxos.cmd sendline 'show ver'
salt '*' nxos.cmd show_run
salt '*' nxos.cmd check_password username=admin password='5lkjsdfoi$blahblahblah' encrypted=True

	
salt.modules.nxos.config(commands=None, config_file=None, template_engine='jinja', context=None, defaults=None, saltenv='base', **kwargs)

	Configures the Nexus switch with the specified commands.

This method is used to send configuration commands to the switch. It
will take either a string or a list and prepend the necessary commands
to put the session into config mode.

Warning

All the commands will be applied directly to the running-config.

	config_file
	The source file with the configuration commands to be sent to the
device.

The file can also be a template that can be rendered using the template
engine of choice.

This can be specified using the absolute path to the file, or using one
of the following URL schemes:

	salt://, to fetch the file from the Salt fileserver.

	http:// or https://

	ftp://

	s3://

	swift://

	commands
	The commands to send to the switch in config mode. If the commands
argument is a string it will be cast to a list.
The list of commands will also be prepended with the necessary commands
to put the session in config mode.

Note

This argument is ignored when config_file is specified.

	template_engine: jinja
	The template engine to use when rendering the source file. Default:
jinja. To simply fetch the file without attempting to render, set
this argument to None.

	context
	Variables to add to the template context.

	defaults
	Default values of the context_dict.

	save_config
	If False, don't save configuration commands to startup configuration.
If True, save configuration to startup configuration.
Default: True

CLI Example:

salt '*' nxos.config commands="['spanning-tree mode mstp']"
salt '*' nxos.config config_file=salt://config.txt
salt '*' nxos.config config_file=https://bit.ly/2LGLcDy context="{'servers': ['1.2.3.4']}"

	
salt.modules.nxos.delete_config(lines, **kwargs)

	Delete one or more config lines to the switch running config.

	lines
	Configuration lines to remove.

	save_config
	If False, don't save configuration commands to startup configuration.
If True, save configuration to startup configuration.
Default: True

salt '*' nxos.delete_config 'snmp-server community TESTSTRINGHERE group network-operator'

Note

For more than one config deleted per command, lines should be a list.

	
salt.modules.nxos.find(pattern, **kwargs)

	Find all instances where the pattern is in the running configuration.

salt '*' nxos.find '^snmp-server.*$'

Note

This uses the re.MULTILINE regex format for python, and runs the
regex against the whole show_run output.

	
salt.modules.nxos.get_roles(username, **kwargs)

	Get roles assigned to a username.

	
salt.modules.nxos.get_user(username, **kwargs)

	Get username line from switch.

	
salt.modules.nxos.grains(**kwargs)

	Get grains for minion.

	
salt.modules.nxos.grains_refresh(**kwargs)

	Refresh the grains for the NX-OS device.

	
salt.modules.nxos.ping(**kwargs)

	Ping the device on the other end of the connection.

	
salt.modules.nxos.remove_user(username, **kwargs)

	Remove user from switch.

	username
	Username to remove

	save_config
	If False, don't save configuration commands to startup configuration.
If True, save configuration to startup configuration.
Default: True

salt '*' nxos.remove_user username=daniel

	
salt.modules.nxos.replace(old_value, new_value, full_match=False, **kwargs)

	Replace string or full line matches in switch's running config.

If full_match is set to True, then the whole line will need to be matched
as part of the old value.

salt '*' nxos.replace 'TESTSTRINGHERE' 'NEWTESTSTRINGHERE'

	
salt.modules.nxos.save_running_config(**kwargs)

	Save the running configuration to startup configuration.

salt '*' nxos.save_running_config

	
salt.modules.nxos.sendline(command, method='cli_show_ascii', **kwargs)

	Send arbitrary commands to the NX-OS device.

	command
	The command or list of commands to be sent.
['cmd1', 'cmd2'] is converted to 'cmd1 ; cmd2'.

	method:
	cli_show_ascii: Return raw test or unstructured output.
cli_show: Return structured output.
cli_conf: Send configuration commands to the device.
Defaults to cli_show_ascii.
NOTE: method is ignored for SSH proxy minion. All data is returned
unstructured.

	error_pattern
	Use the option to pass in a regular expression to search for in the
returned output of the command that indicates an error has occurred.
This option is only used when proxy minion connection type is ssh and
otherwise ignored.

	
salt.modules.nxos.set_password(username, password, encrypted=False, role=None, crypt_salt=None, algorithm='sha256', **kwargs)

	Set users password on switch.

	username
	Username to configure

	password
	Password to configure for username

	encrypted
	Whether or not to encrypt the password
Default: False

	role
	Configure role for the username
Default: None

	crypt_salt
	Configure crypt_salt setting
Default: None

	algorithm
	Encryption algorithm
Default: sha256

	save_config
	If False, don't save configuration commands to startup configuration.
If True, save configuration to startup configuration.
Default: True

salt '*' nxos.set_password admin TestPass
salt '*' nxos.set_password admin \
 password='$5$2fWwO2vK$s7.Hr3YltMNHuhywQQ3nfOd.gAPHgs3SOBYYdGT3E.A' \
 encrypted=True

	
salt.modules.nxos.set_role(username, role, **kwargs)

	Assign role to username.

	username
	Username for role configuration

	role
	Configure role for username

	save_config
	If False, don't save configuration commands to startup configuration.
If True, save configuration to startup configuration.
Default: True

salt '*' nxos.set_role username=daniel role=vdc-admin.

	
salt.modules.nxos.show(commands, raw_text=True, **kwargs)

	Execute one or more show (non-configuration) commands.

	commands
	The commands to be executed.

	raw_text: True
	Whether to return raw text or structured data.
NOTE: raw_text option is ignored for SSH proxy minion. Data is
returned unstructured.

CLI Example:

salt-call --local nxos.show 'show version'
salt '*' nxos.show 'show bgp sessions ; show processes' raw_text=False
salt 'regular-minion' nxos.show 'show interfaces' host=sw01.example.com username=test password=test

	
salt.modules.nxos.show_run(**kwargs)

	Shortcut to run show running-config on the NX-OS device.

salt '*' nxos.show_run

	
salt.modules.nxos.show_ver(**kwargs)

	Shortcut to run show version on the NX-OS device.

salt '*' nxos.show_ver

	
salt.modules.nxos.system_info(**kwargs)

	Return system information for grains of the minion.

salt '*' nxos.system_info

	
salt.modules.nxos.unset_role(username, role, **kwargs)

	Remove role from username.

	username
	Username for role removal

	role
	Role to remove

	save_config
	If False, don't save configuration commands to startup configuration.
If True, save configuration to startup configuration.
Default: True

salt '*' nxos.unset_role username=daniel role=vdc-admin

salt.modules.nxos_api

Execution module to manage Cisco Nexus Switches (NX-OS) over the NX-API

New in version 2019.2.0.

Execution module used to interface the interaction with a remote or local Nexus
switch whether we're running in a Proxy Minion or regular Minion (or regular
Minion running directly on the Nexus switch).

	codeauthor:

	Mircea Ulinic <ping@mirceaulinic.net>

	maturity:

	new

	platform:

	any

Note

To be able to use this module you need to enable to NX-API on your switch,
by executing feature nxapi in configuration mode.

Configuration example:

switch# conf t
switch(config)# feature nxapi

To check that NX-API is properly enabled, execute show nxapi.

Output example:

switch# show nxapi
nxapi enabled
HTTPS Listen on port 443

Note

NX-API requires modern NXOS distributions, typically at least 7.0 depending
on the hardware. Due to reliability reasons it is recommended to run the
most recent version.

Check https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus7000/sw/programmability/guide/b_Cisco_Nexus_7000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_7000_Series_NX-OS_Programmability_Guide_chapter_0101.html
for more details.

Usage

This module can equally be used via the nxos_api
Proxy module or directly from an arbitrary (Proxy) Minion that is running on a
machine having access to the network device API. Given that there are no
external dependencies, this module can very well used when using the regular
Salt Minion directly installed on the switch.

When running outside of the nxos_api Proxy
(i.e., from another Proxy Minion type, or regular Minion), the NX-API connection
arguments can be either specified from the CLI when executing the command, or
in a configuration block under the nxos_api key in the configuration opts
(i.e., (Proxy) Minion configuration file), or Pillar. The module supports these
simultaneously. These fields are the exact same supported by the nxos_api
Proxy Module:

	transport: https
	Specifies the type of connection transport to use. Valid values for the
connection are http, and https.

	host: localhost
	The IP address or DNS host name of the connection device.

	username: admin
	The username to pass to the device to authenticate the NX-API connection.

	password
	The password to pass to the device to authenticate the NX-API connection.

	port
	The TCP port of the endpoint for the NX-API connection. If this keyword is
not specified, the default value is automatically determined by the
transport type (80 for http, or 443 for https).

	timeout: 60
	Time in seconds to wait for the device to respond. Default: 60 seconds.

	verify: True
	Either a boolean, in which case it controls whether we verify the NX-API
TLS certificate, or a string, in which case it must be a path to a CA bundle
to use. Defaults to True.

When there is no certificate configuration on the device and this option is
set as True (default), the commands will fail with the following error:
SSLError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:581).
In this case, you either need to configure a proper certificate on the
device (recommended), or bypass the checks setting this argument as False
with all the security risks considered.

Check https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/programmability/6_x/b_Cisco_Nexus_3000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_3000_Series_NX-OS_Programmability_Guide_chapter_01.html
to see how to properly configure the certificate.

Example (when not running in a nxos_api Proxy Minion):

nxos_api:
 username: test
 password: test

In case the username and password are the same on any device you are
targeting, the block above (besides other parameters specific to your
environment you might need) should suffice to be able to execute commands from
outside a nxos_api Proxy, e.g.:

salt-call --local nxos_api.show 'show lldp neighbors' raw_text
The command above is available when running in a regular Minion where Salt is installed

salt '*' nxos_api.show 'show version' raw_text=False

Note

Remember that the above applies only when not running in a nxos_api Proxy
Minion. If you want to use the nxos_api Proxy,
please follow the documentation notes for a proper setup.

	
salt.modules.nxos_api.config(commands=None, config_file=None, template_engine='jinja', context=None, defaults=None, saltenv='base', **kwargs)

	Configures the Nexus switch with the specified commands.

This method is used to send configuration commands to the switch. It
will take either a string or a list and prepend the necessary commands
to put the session into config mode.

Warning

All the commands will be applied directly into the running-config.

	config_file
	The source file with the configuration commands to be sent to the
device.

The file can also be a template that can be rendered using the template
engine of choice.

This can be specified using the absolute path to the file, or using one
of the following URL schemes:

	salt://, to fetch the file from the Salt fileserver.

	http:// or https://

	ftp://

	s3://

	swift://

	commands
	The commands to send to the switch in config mode. If the commands
argument is a string it will be cast to a list.
The list of commands will also be prepended with the necessary commands
to put the session in config mode.

Note

This argument is ignored when config_file is specified.

	template_engine: jinja
	The template engine to use when rendering the source file. Default:
jinja. To simply fetch the file without attempting to render, set
this argument to None.

	context
	Variables to add to the template context.

	defaults
	Default values of the context_dict.

	transport: https
	Specifies the type of connection transport to use. Valid values for the
connection are http, and https.

	host: localhost
	The IP address or DNS host name of the connection device.

	username: admin
	The username to pass to the device to authenticate the NX-API connection.

	password
	The password to pass to the device to authenticate the NX-API connection.

	port
	The TCP port of the endpoint for the NX-API connection. If this keyword is
not specified, the default value is automatically determined by the
transport type (80 for http, or 443 for https).

	timeout: 60
	Time in seconds to wait for the device to respond. Default: 60 seconds.

	verify: True
	Either a boolean, in which case it controls whether we verify the NX-API
TLS certificate, or a string, in which case it must be a path to a CA bundle
to use. Defaults to True.

CLI Example:

salt '*' nxos_api.config commands="['spanning-tree mode mstp']"
salt '*' nxos_api.config config_file=salt://config.txt
salt '*' nxos_api.config config_file=https://bit.ly/2LGLcDy context="{'servers': ['1.2.3.4']}"

	
salt.modules.nxos_api.rpc(commands, method='cli', **kwargs)

	Execute an arbitrary RPC request via the Nexus API.

	commands
	The commands to be executed.

	method: cli
	The type of the response, i.e., raw text (cli_ascii) or structured
document (cli). Defaults to cli (structured data).

	transport: https
	Specifies the type of connection transport to use. Valid values for the
connection are http, and https.

	host: localhost
	The IP address or DNS host name of the connection device.

	username: admin
	The username to pass to the device to authenticate the NX-API connection.

	password
	The password to pass to the device to authenticate the NX-API connection.

	port
	The TCP port of the endpoint for the NX-API connection. If this keyword is
not specified, the default value is automatically determined by the
transport type (80 for http, or 443 for https).

	timeout: 60
	Time in seconds to wait for the device to respond. Default: 60 seconds.

	verify: True
	Either a boolean, in which case it controls whether we verify the NX-API
TLS certificate, or a string, in which case it must be a path to a CA bundle
to use. Defaults to True.

CLI Example:

salt-call --local nxos_api.rpc 'show version'

	
salt.modules.nxos_api.show(commands, raw_text=True, **kwargs)

	Execute one or more show (non-configuration) commands.

	commands
	The commands to be executed. Multiple commands should
be specified as a list.

	raw_text: True
	Whether to return raw text or structured data.

	transport: https
	Specifies the type of connection transport to use. Valid values for the
connection are http, and https.

	host: localhost
	The IP address or DNS host name of the connection device.

	username: admin
	The username to pass to the device to authenticate the NX-API connection.

	password
	The password to pass to the device to authenticate the NX-API connection.

	port
	The TCP port of the endpoint for the NX-API connection. If this keyword is
not specified, the default value is automatically determined by the
transport type (80 for http, or 443 for https).

	timeout: 60
	Time in seconds to wait for the device to respond. Default: 60 seconds.

	verify: True
	Either a boolean, in which case it controls whether we verify the NX-API
TLS certificate, or a string, in which case it must be a path to a CA bundle
to use. Defaults to True.

CLI Example:

salt-call --local nxos_api.show 'show version'
salt '*' nxos_api.show "['show bgp sessions','show processes']" raw_text=False
salt 'regular-minion' nxos_api.show 'show interfaces' host=sw01.example.com username=test password=test

salt.modules.nxos_upgrade

Execution module to upgrade Cisco NX-OS Switches.

New in version 3001.

	This module supports execution using a Proxy Minion or Native Minion:
	
	Proxy Minion: Connect over SSH or NX-API HTTP(S).
See salt.proxy.nxos for proxy minion setup details.

	Native Minion: Connect over NX-API Unix Domain Socket (UDS).
Install the minion inside the GuestShell running on the NX-OS device.

	maturity:

	new

	platform:

	nxos

	codeauthor:

	Michael G Wiebe

Note

To use this module over remote NX-API the feature must be enabled on the
NX-OS device by executing feature nxapi in configuration mode.

This is not required for NX-API over UDS.

Configuration example:

switch# conf t
switch(config)# feature nxapi

To check that NX-API is properly enabled, execute show nxapi.

Output example:

switch# show nxapi
nxapi enabled
HTTPS Listen on port 443

	
salt.modules.nxos_upgrade.check_upgrade_impact(system_image, kickstart_image=None, issu=True, **kwargs)

	Display upgrade impact information without actually upgrading the device.

	system_image (Mandatory Option)
	Path on bootflash: to system image upgrade file.

	kickstart_image
	Path on bootflash: to kickstart image upgrade file.
(Not required if using combined system/kickstart image file)
Default: None

	issu
	In Service Software Upgrade (non-disruptive). When True,
the upgrade will abort if issu is not possible.
When False: Force (disruptive) Upgrade/Downgrade.
Default: True

	timeout
	Timeout in seconds for long running 'install all' impact command.
Default: 900

	error_pattern
	Use the option to pass in a regular expression to search for in the
output of the 'install all impact' command that indicates an error
has occurred. This option is only used when proxy minion connection
type is ssh and otherwise ignored.

salt 'n9k' nxos.check_upgrade_impact system_image=nxos.9.2.1.bin
salt 'n7k' nxos.check_upgrade_impact system_image=n7000-s2-dk9.8.1.1.bin \
 kickstart_image=n7000-s2-kickstart.8.1.1.bin issu=False

	
salt.modules.nxos_upgrade.upgrade(system_image, kickstart_image=None, issu=True, **kwargs)

	Upgrade NX-OS switch.

	system_image (Mandatory Option)
	Path on bootflash: to system image upgrade file.

	kickstart_image
	Path on bootflash: to kickstart image upgrade file.
(Not required if using combined system/kickstart image file)
Default: None

	issu
	Set this option to True when an In Service Software Upgrade or
non-disruptive upgrade is required. The upgrade will abort if issu is
not possible.
Default: True

	timeout
	Timeout in seconds for long running 'install all' upgrade command.
Default: 900

	error_pattern
	Use the option to pass in a regular expression to search for in the
output of the 'install all upgrade command that indicates an error
has occurred. This option is only used when proxy minion connection
type is ssh and otherwise ignored.

salt 'n9k' nxos.upgrade system_image=nxos.9.2.1.bin
salt 'n7k' nxos.upgrade system_image=n7000-s2-dk9.8.1.1.bin \
 kickstart_image=n7000-s2-kickstart.8.1.1.bin issu=False

salt.modules.omapi

This module interacts with an ISC DHCP Server via OMAPI.
server_ip and server_port params may be set in the minion
config or pillar:

omapi.server_ip: 127.0.0.1
omapi.server_port: 7991

	depends:

	pypureomapi Python module

	
salt.modules.omapi.add_host(mac, name=None, ip=None, ddns=False, group=None, supersede_host=False)

	Add a host object for the given mac.

CLI Example:

salt dhcp-server omapi.add_host ab:ab:ab:ab:ab:ab name=host1

Add ddns-hostname and a fixed-ip statements:

salt dhcp-server omapi.add_host ab:ab:ab:ab:ab:ab name=host1 ip=10.1.1.1 ddns=true

	
salt.modules.omapi.delete_host(mac=None, name=None)

	Delete the host with the given mac or name.

CLI Examples:

salt dhcp-server omapi.delete_host name=host1
salt dhcp-server omapi.delete_host mac=ab:ab:ab:ab:ab:ab

salt.modules.openbsd_sysctl

Module for viewing and modifying OpenBSD sysctl parameters

	
salt.modules.openbsd_sysctl.assign(name, value)

	Assign a single sysctl parameter for this minion

CLI Example:

salt '*' sysctl.assign net.inet.ip.forwarding 1

	
salt.modules.openbsd_sysctl.get(name)

	Return a single sysctl parameter for this minion

CLI Example:

salt '*' sysctl.get hw.physmem

	
salt.modules.openbsd_sysctl.persist(name, value, config='/etc/sysctl.conf')

	Assign and persist a simple sysctl parameter for this minion

CLI Example:

salt '*' sysctl.persist net.inet.ip.forwarding 1

	
salt.modules.openbsd_sysctl.show(config_file=False)

	Return a list of sysctl parameters for this minion

	config: Pull the data from the system configuration file
	instead of the live data.

CLI Example:

salt '*' sysctl.show

salt.modules.openbsdpkg

Package support for OpenBSD

Note

The package repository is configured on each host using /etc/installurl
from OpenBSD 6.1 onwards. Earlier releases relied on /etc/pkg.conf.

Changed in version 2016.3.5: Package versions on OpenBSD are not normally specified explicitly; instead
packages may be available in multiple flavors, and branches which are
specified by the format of the package name. This module allows you to use
the same formatting as pkg_add(1), and will select the empty flavor and
default branch by default. Examples:

- rsync
- vim--no_x11
- ruby%2.3

	
salt.modules.openbsdpkg.install(name=None, pkgs=None, sources=None, **kwargs)

	Install the passed package

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example, Install one package:

salt '*' pkg.install <package name>

CLI Example, Install more than one package:

salt '*' pkg.install pkgs='["<package name>", "<package name>"]'

CLI Example, Install more than one package from a alternate source (e.g.
salt file-server, HTTP, FTP, local filesystem):

salt '*' pkg.install sources='[{"<pkg name>": "salt://pkgs/<pkg filename>"}]'

	
salt.modules.openbsdpkg.latest_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>

	
salt.modules.openbsdpkg.list_pkgs(versions_as_list=False, **kwargs)

	List the packages currently installed as a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

	
salt.modules.openbsdpkg.purge(name=None, pkgs=None, **kwargs)

	Remove a package and extra configuration files.

	name
	The name of the package to be deleted.

Multiple Package Options:

	pkgs
	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

	
salt.modules.openbsdpkg.remove(name=None, pkgs=None, purge=False, **kwargs)

	Remove a single package with pkg_delete

Multiple Package Options:

	pkgs
	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.openbsdpkg.upgrade(name=None, pkgs=None, **kwargs)

	Run a full package upgrade (pkg_add -u), or upgrade a specific package
if name or pkgs is provided.
name is ignored when pkgs is specified.

Returns a dictionary containing the changes:

New in version 2019.2.0.

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade
salt '*' pkg.upgrade python%2.7

	
salt.modules.openbsdpkg.upgrade_available(name, **kwargs)

	Check whether or not an upgrade is available for a given package

New in version 2019.2.0.

CLI Example:

salt '*' pkg.upgrade_available <package name>

	
salt.modules.openbsdpkg.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

salt.modules.openbsdrcctl_service.py

The rcctl service module for OpenBSD

	
salt.modules.openbsdrcctl_service.available(name)

	Return True if the named service is available.

CLI Example:

salt '*' service.available sshd

	
salt.modules.openbsdrcctl_service.disable(name, **kwargs)

	Disable the named service to not start at boot.

CLI Example:

salt '*' service.disable <service name>

	
salt.modules.openbsdrcctl_service.disabled(name)

	Return True if the named service is disabled at boot, False otherwise.

CLI Example:

salt '*' service.disabled <service name>

	
salt.modules.openbsdrcctl_service.enable(name, **kwargs)

	Enable the named service to start at boot.

	flagsNone
	Set optional flags to run the service with.

service.flags can be used to change the default flags.

CLI Example:

salt '*' service.enable <service name>
salt '*' service.enable <service name> flags=<flags>

	
salt.modules.openbsdrcctl_service.enabled(name, **kwargs)

	Return True if the named service is enabled at boot and the provided
flags match the configured ones (if any). Return False otherwise.

	name
	Service name

CLI Example:

salt '*' service.enabled <service name>
salt '*' service.enabled <service name> flags=<flags>

	
salt.modules.openbsdrcctl_service.get_all()

	Return all installed services.

CLI Example:

salt '*' service.get_all

	
salt.modules.openbsdrcctl_service.get_disabled()

	Return what services are available but not enabled to start at boot.

CLI Example:

salt '*' service.get_disabled

	
salt.modules.openbsdrcctl_service.get_enabled()

	Return what services are set to run on boot.

CLI Example:

salt '*' service.get_enabled

	
salt.modules.openbsdrcctl_service.missing(name)

	The inverse of service.available.
Return True if the named service is not available.

CLI Example:

salt '*' service.missing sshd

	
salt.modules.openbsdrcctl_service.reload_(name)

	Reload the named service.

CLI Example:

salt '*' service.reload <service name>

	
salt.modules.openbsdrcctl_service.restart(name)

	Restart the named service.

CLI Example:

salt '*' service.restart <service name>

	
salt.modules.openbsdrcctl_service.start(name)

	Start the named service.

CLI Example:

salt '*' service.start <service name>

	
salt.modules.openbsdrcctl_service.status(name, sig=None)

	Return the status for a service, returns a bool whether the service is
running.

CLI Example:

salt '*' service.status <service name>

	
salt.modules.openbsdrcctl_service.stop(name)

	Stop the named service.

CLI Example:

salt '*' service.stop <service name>

salt.modules.openbsdservice

The service module for OpenBSD

Important

If you feel that Salt should be using this module to manage services on a
minion, and it is using a different module (or gives an error similar to
'service.start' is not available), see here.

	
salt.modules.openbsdservice.available(name)

	
New in version 2014.7.0.

Returns True if the specified service is available, otherwise returns
False.

CLI Example:

salt '*' service.available sshd

	
salt.modules.openbsdservice.disabled(name)

	
New in version 2014.7.0.

Return True if the named service is disabled, false otherwise

CLI Example:

salt '*' service.disabled <service name>

	
salt.modules.openbsdservice.enabled(name, **kwargs)

	
New in version 2014.7.0.

Return True if the named service is enabled, false otherwise

CLI Example:

salt '*' service.enabled <service name>

	
salt.modules.openbsdservice.get_all()

	
New in version 2014.7.0.

Return all available boot services

CLI Example:

salt '*' service.get_all

	
salt.modules.openbsdservice.get_disabled()

	
New in version 2014.7.0.

Return a set of services that are installed but disabled

CLI Example:

salt '*' service.get_disabled

	
salt.modules.openbsdservice.get_enabled()

	
New in version 2014.7.0.

Return a list of service that are enabled on boot

CLI Example:

salt '*' service.get_enabled

	
salt.modules.openbsdservice.missing(name)

	
New in version 2014.7.0.

The inverse of service.available.
Returns True if the specified service is not available, otherwise returns
False.

CLI Example:

salt '*' service.missing sshd

	
salt.modules.openbsdservice.reload_(name)

	
New in version 2014.7.0.

Reload the named service

CLI Example:

salt '*' service.reload <service name>

	
salt.modules.openbsdservice.restart(name)

	Restart the named service

CLI Example:

salt '*' service.restart <service name>

	
salt.modules.openbsdservice.start(name)

	Start the specified service

CLI Example:

salt '*' service.start <service name>

	
salt.modules.openbsdservice.status(name, sig=None)

	Return the status for a service.
If the name contains globbing, a dict mapping service name to True/False
values is returned.

Changed in version 2018.3.0: The service name can now be a glob (e.g. salt*)

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service to check

	sig (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Signature to use to find the service via ps

	Returns:

	True if running, False otherwise
dict: Maps service name to True if running, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.status <service name> [service signature]

	
salt.modules.openbsdservice.stop(name)

	Stop the specified service

CLI Example:

salt '*' service.stop <service name>

salt.modules.openscap

Module for OpenSCAP Management

	
salt.modules.openscap.xccdf(params)

	Run oscap xccdf commands on minions.
It uses cp.push_dir to upload the generated files to the salt master
in the master's minion files cachedir
(defaults to /var/cache/salt/master/minions/minion-id/files)

It needs file_recv set to True in the master configuration file.

CLI Example:

salt '*' openscap.xccdf "eval --profile Default /usr/share/openscap/scap-yast2sec-xccdf.xml"

	
salt.modules.openscap.xccdf_eval(xccdffile, ovalfiles=None, profile=None, rule=None, oval_results=None, results=None, report=None, fetch_remote_resources=None, tailoring_file=None, tailoring_id=None, remediate=None)

	Run oscap xccdf eval commands on minions.

New in version 3007.0.

It uses cp.push_dir to upload the generated files to the salt master
in the master's minion files cachedir
(defaults to /var/cache/salt/master/minions/minion-id/files)

It needs file_recv set to True in the master configuration file.

	xccdffile
	the path to the xccdf file to evaluate

	ovalfiles
	additional oval definition files

	profile
	the name of Profile to be evaluated

	rule
	the name of a single rule to be evaluated

	oval_results
	save OVAL results as well (True or False)

	results
	write XCCDF Results into given file

	report
	write HTML report into given file

	fetch_remote_resources
	download remote content referenced by XCCDF (True or False)

	tailoring_file
	use given XCCDF Tailoring file

	tailoring_id
	use given DS component as XCCDF Tailoring file

	remediate
	automatically execute XCCDF fix elements for failed rules.
Use of this option is always at your own risk. (True or False)

CLI Example:

salt '*' openscap.xccdf_eval /usr/share/openscap/scap-yast2sec-xccdf.xml profile=Default

salt.modules.openstack_config

Modify, retrieve, or delete values from OpenStack configuration files.

	maintainer:

	Jeffrey C. Ollie <jeff@ocjtech.us>

	maturity:

	new

	depends:

	

	platform:

	linux

	
salt.modules.openstack_config.delete(filename, section, parameter)

	Delete a value from an OpenStack configuration file.

	filename
	The full path to the configuration file

	section
	The section from which to delete the parameter

	parameter
	The parameter to delete

CLI Example:

salt-call openstack_config.delete /etc/keystone/keystone.conf sql connection

	
salt.modules.openstack_config.get(filename, section, parameter)

	Get a value from an OpenStack configuration file.

	filename
	The full path to the configuration file

	section
	The section from which to search for the parameter

	parameter
	The parameter to return

CLI Example:

salt-call openstack_config.get /etc/keystone/keystone.conf sql connection

	
salt.modules.openstack_config.set_(filename, section, parameter, value)

	Set a value in an OpenStack configuration file.

	filename
	The full path to the configuration file

	section
	The section in which the parameter will be set

	parameter
	The parameter to change

	value
	The value to set

CLI Example:

salt-call openstack_config.set /etc/keystone/keystone.conf sql connection foo

salt.modules.openstack_mng

Module for OpenStack Management

	codeauthor:

	Konrad Mosoń <mosonkonrad@gmail.com>

	maturity:

	new

	depends:

	openstack-utils

	platform:

	linux

	
salt.modules.openstack_mng.restart_service(service_name, minimum_running_time=None)

	Restart OpenStack service immediately, or only if it's running longer than
specified value

CLI Example:

salt '*' openstack_mng.restart_service neutron
salt '*' openstack_mng.restart_service neutron minimum_running_time=600

	
salt.modules.openstack_mng.start_service(service_name)

	Start OpenStack service immediately

CLI Example:

salt '*' openstack_mng.start_service neutron

	
salt.modules.openstack_mng.stop_service(service_name)

	Stop OpenStack service immediately

CLI Example:

salt '*' openstack_mng.stop_service neutron

salt.modules.openvswitch

Support for Open vSwitch - module with basic Open vSwitch commands.

Suitable for setting up Openstack Neutron.

	codeauthor:

	Jiri Kotlin <jiri.kotlin@ultimum.io>

	
salt.modules.openvswitch.bridge_create(br, may_exist=True, parent=None, vlan=None)

	Creates a new bridge.

	Parameters:

	
	br -- string
bridge name

	may_exist -- bool
if False - attempting to create a bridge that exists returns False.

	parent -- string
name of the parent bridge (if the bridge shall be created as a fake
bridge). If specified, vlan must also be specified.

	versionadded: (..) -- 3006.0:

	vlan -- int
VLAN ID of the bridge (if the bridge shall be created as a fake
bridge). If specified, parent must also be specified.

	versionadded: -- 3006.0:

	Returns:

	True on success, else False.

New in version 2016.3.0.

CLI Example:

salt '*' openvswitch.bridge_create br0

	
salt.modules.openvswitch.bridge_delete(br, if_exists=True)

	Deletes bridge and all of its ports.

	Parameters:

	
	br -- A string - bridge name

	if_exists -- Bool, if False - attempting to delete a bridge that does not exist returns False.

	Returns:

	True on success, else False.

New in version 2016.3.0.

CLI Example:

salt '*' openvswitch.bridge_delete br0

	
salt.modules.openvswitch.bridge_exists(br)

	Tests whether bridge exists as a real or fake bridge.

	Returns:

	True if Bridge exists, else False.

New in version 2016.3.0.

CLI Example:

salt '*' openvswitch.bridge_exists br0

	
salt.modules.openvswitch.bridge_list()

	Lists all existing real and fake bridges.

	Returns:

	List of bridges (or empty list), False on failure.

New in version 2016.3.0.

CLI Example:

salt '*' openvswitch.bridge_list

	
salt.modules.openvswitch.bridge_to_parent(br)

	
New in version 3006.0.

Returns the parent bridge of a bridge.

	Parameters:

	br -- string
bridge name

	Returns:

	Name of the parent bridge. This is the same as the bridge name if the
bridge is not a fake bridge. If the bridge does not exist, False is
returned.

CLI Example:

salt '*' openvswitch.bridge_to_parent br0

	
salt.modules.openvswitch.bridge_to_vlan(br)

	
New in version 3006.0.

Returns the VLAN ID of a bridge.

	Parameters:

	br -- string
bridge name

	Returns:

	VLAN ID of the bridge. The VLAN ID is 0 if the bridge is not a fake
bridge. If the bridge does not exist, False is returned.

CLI Example:

salt '*' openvswitch.bridge_to_parent br0

	
salt.modules.openvswitch.db_get(table, record, column, if_exists=False)

	
New in version 3006.0.

Gets a column's value for a specific record.

	Parameters:

	
	table -- string
name of the database table

	record -- string
identifier of the record

	column -- string
name of the column

	if_exists -- boolean
if True, it is not an error if the record does not exist.

	Returns:

	The column's value.

CLI Example:

salt '*' openvswitch.db_get Port br0 vlan_mode

	
salt.modules.openvswitch.db_set(table, record, column, value, if_exists=False)

	
New in version 3006.0.

Sets a column's value for a specific record.

	Parameters:

	
	table -- string
name of the database table

	record -- string
identifier of the record

	column -- string
name of the column

	value -- string
the value to be set

	if_exists -- boolean
if True, it is not an error if the record does not exist.

	Returns:

	None on success and an error message on failure.

CLI Example:

salt '*' openvswitch.db_set Interface br0 mac 02:03:04:05:06:07

	
salt.modules.openvswitch.interface_get_options(port)

	Port's interface's optional parameters.

	Parameters:

	port -- A string - port name.

	Returns:

	String containing optional parameters of port's interface, False on failure.

New in version 2016.3.0.

CLI Example:

salt '*' openvswitch.interface_get_options tap0

	
salt.modules.openvswitch.interface_get_type(port)

	Type of port's interface.

	Parameters:

	port -- A string - port name.

	Returns:

	String - type of interface or empty string, False on failure.

New in version 2016.3.0.

CLI Example:

salt '*' openvswitch.interface_get_type tap0

	
salt.modules.openvswitch.port_add(br, port, may_exist=False, internal=False)

	Creates on bridge a new port named port.

	Returns:

	True on success, else False.

	Parameters:

	
	br -- A string - bridge name

	port -- A string - port name

	may_exist -- Bool, if False - attempting to create a port that exists returns False.

	internal -- A boolean to create an internal interface if one does not exist.

New in version 2016.3.0.

CLI Example:

salt '*' openvswitch.port_add br0 8080

	
salt.modules.openvswitch.port_create_gre(br, port, id, remote)

	Generic Routing Encapsulation - creates GRE tunnel between endpoints.

	Parameters:

	
	br -- A string - bridge name.

	port -- A string - port name.

	id -- An integer - unsigned 32-bit number, tunnel's key.

	remote -- A string - remote endpoint's IP address.

	Returns:

	True on success, else False.

New in version 2016.3.0.

CLI Example:

salt '*' openvswitch.port_create_gre br0 gre1 5001 192.168.1.10

	
salt.modules.openvswitch.port_create_vlan(br, port, id, internal=False)

	Isolate VM traffic using VLANs.

	Parameters:

	
	br -- A string - bridge name.

	port -- A string - port name.

	id -- An integer in the valid range 0 to 4095 (inclusive), name of VLAN.

	internal -- A boolean to create an internal interface if one does not exist.

	Returns:

	True on success, else False.

New in version 2016.3.0.

CLI Example:

salt '*' openvswitch.port_create_vlan br0 tap0 100

	
salt.modules.openvswitch.port_create_vxlan(br, port, id, remote, dst_port=None)

	Virtual eXtensible Local Area Network - creates VXLAN tunnel between endpoints.

	Parameters:

	
	br -- A string - bridge name.

	port -- A string - port name.

	id -- An integer - unsigned 64-bit number, tunnel's key.

	remote -- A string - remote endpoint's IP address.

	dst_port -- An integer - port to use when creating tunnelport in the switch.

	Returns:

	True on success, else False.

New in version 2016.3.0.

CLI Example:

salt '*' openvswitch.port_create_vxlan br0 vx1 5001 192.168.1.10 8472

	
salt.modules.openvswitch.port_get_tag(port)

	Lists tags of the port.

	Parameters:

	port -- A string - port name.

	Returns:

	List of tags (or empty list), False on failure.

New in version 2016.3.0.

CLI Example:

salt '*' openvswitch.port_get_tag tap0

	
salt.modules.openvswitch.port_list(br)

	Lists all of the ports within bridge.

	Parameters:

	br -- A string - bridge name.

	Returns:

	List of bridges (or empty list), False on failure.

New in version 2016.3.0.

CLI Example:

salt '*' openvswitch.port_list br0

	
salt.modules.openvswitch.port_remove(br, port, if_exists=True)

	
Deletes port.

	Parameters:

	
	br -- A string - bridge name (If bridge is None, port is removed from whatever bridge contains it)

	port -- A string - port name.

	if_exists -- Bool, if False - attempting to delete a por that does not exist returns False. (Default True)

	Returns:

	True on success, else False.

New in version 2016.3.0.

CLI Example:

salt '*' openvswitch.port_remove br0 8080

salt.modules.opkg

Support for Opkg

Important

If you feel that Salt should be using this module to manage packages on a
minion, and it is using a different module (or gives an error similar to
'pkg.install' is not available), see here.

New in version 2016.3.0.

Note

For version comparison support on opkg < 0.3.4, the opkg-utils package
must be installed.

	
salt.modules.opkg.available_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	
salt.modules.opkg.check_extra_requirements(pkgname, pkgver)

	Check if the installed package already has the given requirements.
There's nothing do to here for nipkg.py, therefore it will always
return True.

	
salt.modules.opkg.del_repo(repo, **kwargs)

	Delete a repo from /etc/opkg/*.conf

If the file does not contain any other repo configuration, the file itself
will be deleted.

CLI Examples:

salt '*' pkg.del_repo repo

	
salt.modules.opkg.file_dict(*packages, **kwargs)

	List the files that belong to a package, grouped by package. Not
specifying any packages will return a list of _every_ file on the system's
package database (not generally recommended).

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

	
salt.modules.opkg.file_list(*packages, **kwargs)

	List the files that belong to a package. Not specifying any packages will
return a list of _every_ file on the system's package database (not
generally recommended).

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

	
salt.modules.opkg.get_repo(repo, **kwargs)

	Display a repo from the /etc/opkg/*.conf

CLI Examples:

salt '*' pkg.get_repo repo

	
salt.modules.opkg.hold(name=None, pkgs=None, sources=None, **kwargs)

	Set package in 'hold' state, meaning it will not be upgraded.

	name
	The name of the package, e.g., 'tmux'

CLI Example:

salt '*' pkg.hold <package name>

	pkgs
	A list of packages to hold. Must be passed as a python list.

CLI Example:

salt '*' pkg.hold pkgs='["foo", "bar"]'

	
salt.modules.opkg.info_installed(*names, **kwargs)

	Return the information of the named package(s), installed on the system.

New in version 2017.7.0.

	Parameters:

	
	names -- Names of the packages to get information about. If none are specified,
will return information for all installed packages.

	attr -- Comma-separated package attributes. If no 'attr' is specified, all available attributes returned.

	Valid attributes are:
	arch, conffiles, conflicts, depends, description, filename, group,
install_date_time_t, md5sum, packager, provides, recommends,
replaces, size, source, suggests, url, version

CLI Example:

salt '*' pkg.info_installed
salt '*' pkg.info_installed attr=version,packager
salt '*' pkg.info_installed <package1>
salt '*' pkg.info_installed <package1> <package2> <package3> ...
salt '*' pkg.info_installed <package1> attr=version,packager
salt '*' pkg.info_installed <package1> <package2> <package3> ... attr=version,packager

	
salt.modules.opkg.install(name=None, refresh=False, pkgs=None, sources=None, reinstall=False, **kwargs)

	Install the passed package, add refresh=True to update the opkg database.

	name
	The name of the package to be installed. Note that this parameter is
ignored if either "pkgs" or "sources" is passed. Additionally, please
note that this option can only be used to install packages from a
software repository. To install a package file manually, use the
"sources" option.

CLI Example:

salt '*' pkg.install <package name>

	refresh
	Whether or not to refresh the package database before installing.

	version
	Install a specific version of the package, e.g. 1.2.3~0ubuntu0. Ignored
if "pkgs" or "sources" is passed.

New in version 2017.7.0.

	reinstallFalse
	Specifying reinstall=True will use opkg install --force-reinstall
rather than simply opkg install for requested packages that are
already installed.

If a version is specified with the requested package, then opkg
install --force-reinstall will only be used if the installed version
matches the requested version.

New in version 2017.7.0.

Multiple Package Installation Options:

	pkgs
	A list of packages to install from a software repository. Must be
passed as a python list.

CLI Example:

salt '*' pkg.install pkgs='["foo", "bar"]'
salt '*' pkg.install pkgs='["foo", {"bar": "1.2.3-0ubuntu0"}]'

	sources
	A list of IPK packages to install. Must be passed as a list of dicts,
with the keys being package names, and the values being the source URI
or local path to the package. Dependencies are automatically resolved
and marked as auto-installed.

CLI Example:

salt '*' pkg.install sources='[{"foo": "salt://foo.deb"},{"bar": "salt://bar.deb"}]'

	install_recommends
	Whether to install the packages marked as recommended. Default is True.

	only_upgrade
	Only upgrade the packages (disallow downgrades), if they are already
installed. Default is False.

New in version 2017.7.0.

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

	
salt.modules.opkg.latest_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	
salt.modules.opkg.list_pkgs(versions_as_list=False, **kwargs)

	List the packages currently installed in a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs
salt '*' pkg.list_pkgs versions_as_list=True

	
salt.modules.opkg.list_repos(**kwargs)

	Lists all repos on /etc/opkg/*.conf

CLI Example:

salt '*' pkg.list_repos

	
salt.modules.opkg.list_upgrades(refresh=True, **kwargs)

	List all available package upgrades.

CLI Example:

salt '*' pkg.list_upgrades

	
salt.modules.opkg.mod_repo(repo, **kwargs)

	Modify one or more values for a repo. If the repo does not exist, it will
be created, so long as uri is defined.

The following options are available to modify a repo definition:

	repo
	alias by which opkg refers to the repo.

	uri
	the URI to the repo.

	compressed
	defines (True or False) if the index file is compressed

	enabled
	enable or disable (True or False) repository
but do not remove if disabled.

	refresh
	enable or disable (True or False) auto-refresh of the repositories

CLI Examples:

salt '*' pkg.mod_repo repo uri=http://new/uri
salt '*' pkg.mod_repo repo enabled=False

	
salt.modules.opkg.owner(*paths, **kwargs)

	Return the name of the package that owns the file. Multiple file paths can
be passed. Like pkg.version <salt.modules.opkg.version, if a single
path is passed, a string will be returned, and if multiple paths are passed,
a dictionary of file/package name pairs will be returned.

If the file is not owned by a package, or is not present on the minion,
then an empty string will be returned for that path.

CLI Example:

salt '*' pkg.owner /usr/bin/apachectl
salt '*' pkg.owner /usr/bin/apachectl /usr/bin/basename

	
salt.modules.opkg.purge(name=None, pkgs=None, **kwargs)

	Package purges are not supported by opkg, this function is identical to
pkg.remove.

	name
	The name of the package to be deleted.

Multiple Package Options:

	pkgs
	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

	
salt.modules.opkg.refresh_db(failhard=False, **kwargs)

	Updates the opkg database to latest packages based upon repositories

Returns a dict, with the keys being package databases and the values being
the result of the update attempt. Values can be one of the following:

	True: Database updated successfully

	False: Problem updating database

	failhard
	If False, return results of failed lines as False for the package
database that encountered the error.
If True, raise an error with a list of the package databases that
encountered errors.

New in version 2018.3.0.

CLI Example:

salt '*' pkg.refresh_db

	
salt.modules.opkg.remove(name=None, pkgs=None, **kwargs)

	Remove packages using opkg remove.

	name
	The name of the package to be deleted.

Multiple Package Options:

	pkgs
	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

	remove_dependencies
	Remove package and all dependencies

New in version 2019.2.0.

	auto_remove_deps
	Remove packages that were installed automatically to satisfy dependencies

New in version 2019.2.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'
salt '*' pkg.remove pkgs='["foo", "bar"]' remove_dependencies=True auto_remove_deps=True

	
salt.modules.opkg.unhold(name=None, pkgs=None, sources=None, **kwargs)

	Set package current in 'hold' state to install state,
meaning it will be upgraded.

	name
	The name of the package, e.g., 'tmux'

CLI Example:

salt '*' pkg.unhold <package name>

	pkgs
	A list of packages to hold. Must be passed as a python list.

CLI Example:

salt '*' pkg.unhold pkgs='["foo", "bar"]'

	
salt.modules.opkg.upgrade(refresh=True, **kwargs)

	Upgrades all packages via opkg upgrade

Returns a dictionary containing the changes:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade

	
salt.modules.opkg.upgrade_available(name, **kwargs)

	Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pkg.upgrade_available <package name>

	
salt.modules.opkg.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

	
salt.modules.opkg.version_clean(version)

	Clean the version string removing extra data.
There's nothing do to here for nipkg.py, therefore it will always
return the given version.

	
salt.modules.opkg.version_cmp(pkg1, pkg2, ignore_epoch=False, **kwargs)

	Do a cmp-style comparison on two packages. Return -1 if pkg1 < pkg2, 0 if
pkg1 == pkg2, and 1 if pkg1 > pkg2. Return None if there was a problem
making the comparison.

	ignore_epochFalse
	Set to True to ignore the epoch when comparing versions

New in version 2016.3.4.

CLI Example:

salt '*' pkg.version_cmp '0.2.4-0' '0.2.4.1-0'

salt.modules.opsgenie

Module for sending data to OpsGenie

New in version 2018.3.0.

	configuration:

	This module can be used in Reactor System for
posting data to OpsGenie as a remote-execution function.

For example:

opsgenie_event_poster:
 local.opsgenie.post_data:
 - tgt: 'salt-minion'
 - kwarg:
 name: event.reactor
 api_key: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
 reason: {{ data['data']['reason'] }}
 action_type: Create

	
salt.modules.opsgenie.post_data(api_key=None, name='OpsGenie Execution Module', reason=None, action_type=None)

	Post data to OpsGenie. It's designed for Salt's Event Reactor.

After configuring the sls reaction file as shown above, you can trigger the
module with your designated tag (og-tag in this case).

CLI Example:

salt-call event.send 'og-tag' '{"reason" : "Overheating CPU!"}'

Required parameters:

	api_key
	It's the API Key you've copied while adding integration in OpsGenie.

	reason
	It will be used as alert's default message in OpsGenie.

	action_type
	OpsGenie supports the default values Create/Close for action_type. You
can customize this field with OpsGenie's custom actions for other
purposes like adding notes or acknowledging alerts.

Optional parameters:

	name
	It will be used as alert's alias. If you want to use the close
functionality you must provide name field for both states like in
this case.

salt.modules.oracle

Oracle DataBase connection module

	maintainer:

	Vladimir Bormotov <bormotov@gmail.com>

	maturity:

	new

	depends:

	cx_Oracle

	platform:

	all

	configuration:

	module provide connections for multiple Oracle DB instances.

OS Environment

ORACLE_HOME: path to oracle product
PATH: path to Oracle Client libs need to be in PATH

pillar

oracle:
 dbs:
 <db>:
 uri: connection credentials in format:
 user/password@host[:port]/sid[servicename as {sysdba|sysoper}]
 optional keyword servicename will determine whether it is a sid or service_name
 <db>:
 uri:

	
salt.modules.oracle.client_version()

	Oracle Client Version

CLI Example:

salt '*' oracle.client_version

	
salt.modules.oracle.run_query(db, query)

	Run SQL query and return result

CLI Example:

salt '*' oracle.run_query my_db "select * from my_table"

	
salt.modules.oracle.show_dbs(*dbs)

	Show databases configuration from pillar. Filter by *args

CLI Example:

salt '*' oracle.show_dbs
salt '*' oracle.show_dbs my_db

	
salt.modules.oracle.show_env()

	Show Environment used by Oracle Client

CLI Example:

salt '*' oracle.show_env

Note

at first _connect() NLS_LANG will forced to '.AL32UTF8'

	
salt.modules.oracle.show_pillar(item=None)

	Show Pillar segment oracle.* and subitem with notation "item:subitem"

CLI Example:

salt '*' oracle.show_pillar
salt '*' oracle.show_pillar dbs:my_db

	
salt.modules.oracle.version(*dbs)

	Server Version (select banner from v$version)

CLI Example:

salt '*' oracle.version
salt '*' oracle.version my_db

salt.modules.osquery

Support for OSQuery - https://osquery.io.

New in version 2015.8.0.

	
salt.modules.osquery.acpi_tables(attrs=None, where=None)

	Return acpi_tables information from osquery

CLI Example:

salt '*' osquery.acpi_tables

	
salt.modules.osquery.alf(attrs=None, where=None)

	Return alf information from osquery

CLI Example:

salt '*' osquery.alf

	
salt.modules.osquery.alf_exceptions(attrs=None, where=None)

	Return alf_exceptions information from osquery

CLI Example:

salt '*' osquery.alf_exceptions

	
salt.modules.osquery.alf_explicit_auths(attrs=None, where=None)

	Return alf_explicit_auths information from osquery

CLI Example:

salt '*' osquery.alf_explicit_auths

	
salt.modules.osquery.alf_services(attrs=None, where=None)

	Return alf_services information from osquery

CLI Example:

salt '*' osquery.alf_services

	
salt.modules.osquery.apps(attrs=None, where=None)

	Return apps information from osquery

CLI Example:

salt '*' osquery.apps

	
salt.modules.osquery.apt_sources(attrs=None, where=None)

	Return apt_sources information from osquery

CLI Example:

salt '*' osquery.apt_sources

	
salt.modules.osquery.arp_cache(attrs=None, where=None)

	Return arp_cache information from osquery

CLI Example:

salt '*' osquery.arp_cache

	
salt.modules.osquery.block_devices(attrs=None, where=None)

	Return block_devices information from osquery

CLI Example:

salt '*' osquery.block_devices

	
salt.modules.osquery.certificates(attrs=None, where=None)

	Return certificates information from osquery

CLI Example:

salt '*' osquery.certificates

	
salt.modules.osquery.chrome_extensions(attrs=None, where=None)

	Return chrome_extensions information from osquery

CLI Example:

salt '*' osquery.chrome_extensions

	
salt.modules.osquery.cpuid(attrs=None, where=None)

	Return cpuid information from osquery

CLI Example:

salt '*' osquery.cpuid

	
salt.modules.osquery.crontab(attrs=None, where=None)

	Return crontab information from osquery

CLI Example:

salt '*' osquery.crontab

	
salt.modules.osquery.deb_packages(attrs=None, where=None)

	Return deb_packages information from osquery

CLI Example:

salt '*' osquery.deb_packages

	
salt.modules.osquery.etc_hosts(attrs=None, where=None)

	Return etc_hosts information from osquery

CLI Example:

salt '*' osquery.etc_hosts

	
salt.modules.osquery.etc_services(attrs=None, where=None)

	Return etc_services information from osquery

CLI Example:

salt '*' osquery.etc_services

	
salt.modules.osquery.file_(attrs=None, where=None)

	Return file information from osquery

CLI Example:

salt '*' osquery.file

	
salt.modules.osquery.file_changes(attrs=None, where=None)

	Return file_changes information from osquery

CLI Example:

salt '*' osquery.file_changes

	
salt.modules.osquery.firefox_addons(attrs=None, where=None)

	Return firefox_addons information from osquery

CLI Example:

salt '*' osquery.firefox_addons

	
salt.modules.osquery.groups(attrs=None, where=None)

	Return groups information from osquery

CLI Example:

salt '*' osquery.groups

	
salt.modules.osquery.hardware_events(attrs=None, where=None)

	Return hardware_events information from osquery

CLI Example:

salt '*' osquery.hardware_events

	
salt.modules.osquery.hash_(attrs=None, where=None)

	Return hash information from osquery

CLI Example:

salt '*' osquery.hash

	
salt.modules.osquery.homebrew_packages(attrs=None, where=None)

	Return homebrew_packages information from osquery

CLI Example:

salt '*' osquery.homebrew_packages

	
salt.modules.osquery.interface_addresses(attrs=None, where=None)

	Return interface_addresses information from osquery

CLI Example:

salt '*' osquery.interface_addresses

	
salt.modules.osquery.interface_details(attrs=None, where=None)

	Return interface_details information from osquery

CLI Example:

salt '*' osquery.interface_details

	
salt.modules.osquery.iokit_devicetree(attrs=None, where=None)

	Return iokit_devicetree information from osquery

CLI Example:

salt '*' osquery.iokit_devicetree

	
salt.modules.osquery.iokit_registry(attrs=None, where=None)

	Return iokit_registry information from osquery

CLI Example:

salt '*' osquery.iokit_registry

	
salt.modules.osquery.kernel_extensions(attrs=None, where=None)

	Return kernel_extensions information from osquery

CLI Example:

salt '*' osquery.kernel_extensions

	
salt.modules.osquery.kernel_info(attrs=None, where=None)

	Return kernel_info information from osquery

CLI Example:

salt '*' osquery.kernel_info

	
salt.modules.osquery.kernel_integrity(attrs=None, where=None)

	Return kernel_integrity information from osquery

CLI Example:

salt '*' osquery.kernel_integrity

	
salt.modules.osquery.kernel_modules(attrs=None, where=None)

	Return kernel_modules information from osquery

CLI Example:

salt '*' osquery.kernel_modules

	
salt.modules.osquery.keychain_items(attrs=None, where=None)

	Return keychain_items information from osquery

CLI Example:

salt '*' osquery.keychain_items

	
salt.modules.osquery.last(attrs=None, where=None)

	Return last information from osquery

CLI Example:

salt '*' osquery.last

	
salt.modules.osquery.launchd(attrs=None, where=None)

	Return launchd information from osquery

CLI Example:

salt '*' osquery.launchd

	
salt.modules.osquery.listening_ports(attrs=None, where=None)

	Return listening_ports information from osquery

CLI Example:

salt '*' osquery.listening_ports

	
salt.modules.osquery.logged_in_users(attrs=None, where=None)

	Return logged_in_users information from osquery

CLI Example:

salt '*' osquery.logged_in_users

	
salt.modules.osquery.memory_map(attrs=None, where=None)

	Return memory_map information from osquery

CLI Example:

salt '*' osquery.memory_map

	
salt.modules.osquery.mounts(attrs=None, where=None)

	Return mounts information from osquery

CLI Example:

salt '*' osquery.mounts

	
salt.modules.osquery.nfs_shares(attrs=None, where=None)

	Return nfs_shares information from osquery

CLI Example:

salt '*' osquery.nfs_shares

	
salt.modules.osquery.nvram(attrs=None, where=None)

	Return nvram information from osquery

CLI Example:

salt '*' osquery.nvram

	
salt.modules.osquery.os_version(attrs=None, where=None)

	Return os_version information from osquery

CLI Example:

salt '*' osquery.os_version

	
salt.modules.osquery.osquery_extensions(attrs=None, where=None)

	Return osquery_extensions information from osquery

CLI Example:

salt '*' osquery.osquery_extensions

	
salt.modules.osquery.osquery_flags(attrs=None, where=None)

	Return osquery_flags information from osquery

CLI Example:

salt '*' osquery.osquery_flags

	
salt.modules.osquery.osquery_info(attrs=None, where=None)

	Return osquery_info information from osquery

CLI Example:

salt '*' osquery.osquery_info

	
salt.modules.osquery.osquery_registry(attrs=None, where=None)

	Return osquery_registry information from osquery

CLI Example:

salt '*' osquery.osquery_registry

	
salt.modules.osquery.passwd_changes(attrs=None, where=None)

	Return passwd_changes information from osquery

CLI Example:

salt '*' osquery.passwd_changes

	
salt.modules.osquery.pci_devices(attrs=None, where=None)

	Return pci_devices information from osquery

CLI Example:

salt '*' osquery.pci_devices

	
salt.modules.osquery.preferences(attrs=None, where=None)

	Return preferences information from osquery

CLI Example:

salt '*' osquery.preferences

	
salt.modules.osquery.process_envs(attrs=None, where=None)

	Return process_envs information from osquery

CLI Example:

salt '*' osquery.process_envs

	
salt.modules.osquery.process_memory_map(attrs=None, where=None)

	Return process_memory_map information from osquery

CLI Example:

salt '*' osquery.process_memory_map

	
salt.modules.osquery.process_open_files(attrs=None, where=None)

	Return process_open_files information from osquery

CLI Example:

salt '*' osquery.process_open_files

	
salt.modules.osquery.process_open_sockets(attrs=None, where=None)

	Return process_open_sockets information from osquery

CLI Example:

salt '*' osquery.process_open_sockets

	
salt.modules.osquery.processes(attrs=None, where=None)

	Return processes information from osquery

CLI Example:

salt '*' osquery.processes

	
salt.modules.osquery.quarantine(attrs=None, where=None)

	Return quarantine information from osquery

CLI Example:

salt '*' osquery.quarantine

	
salt.modules.osquery.query(sql=None)

	Return time information from osquery

CLI Example:

salt '*' osquery.query "select * from users;"

	
salt.modules.osquery.routes(attrs=None, where=None)

	Return routes information from osquery

CLI Example:

salt '*' osquery.routes

	
salt.modules.osquery.rpm_packages(attrs=None, where=None)

	Return cpuid information from osquery

CLI Example:

salt '*' osquery.rpm_packages

	
salt.modules.osquery.safari_extensions(attrs=None, where=None)

	Return safari_extensions information from osquery

CLI Example:

salt '*' osquery.safari_extensions

	
salt.modules.osquery.shared_memory(attrs=None, where=None)

	Return shared_memory information from osquery

CLI Example:

salt '*' osquery.shared_memory

	
salt.modules.osquery.shell_history(attrs=None, where=None)

	Return shell_history information from osquery

CLI Example:

salt '*' osquery.shell_history

	
salt.modules.osquery.smbios_tables(attrs=None, where=None)

	Return smbios_tables information from osquery

CLI Example:

salt '*' osquery.smbios_tables

	
salt.modules.osquery.startup_items(attrs=None, where=None)

	Return startup_items information from osquery

CLI Example:

salt '*' osquery.startup_items

	
salt.modules.osquery.suid_bin(attrs=None, where=None)

	Return suid_bin information from osquery

CLI Example:

salt '*' osquery.suid_bin

	
salt.modules.osquery.system_controls(attrs=None, where=None)

	Return system_controls information from osquery

CLI Example:

salt '*' osquery.system_controls

	
salt.modules.osquery.time_(attrs=None)

	Return time information from osquery

CLI Example:

salt '*' osquery.time

	
salt.modules.osquery.usb_devices(attrs=None, where=None)

	Return usb_devices information from osquery

CLI Example:

salt '*' osquery.usb_devices

	
salt.modules.osquery.users(attrs=None, where=None)

	Return users information from osquery

CLI Example:

salt '*' osquery.users

	
salt.modules.osquery.version()

	Return version of osquery

CLI Example:

salt '*' osquery.version

	
salt.modules.osquery.xattr_where_from(attrs=None, where=None)

	Return xattr_where_from information from osquery

CLI Example:

salt '*' osquery.xattr_where_from

	
salt.modules.osquery.xprotect_entries(attrs=None, where=None)

	Return xprotect_entries information from osquery

CLI Example:

salt '*' osquery.xprotect_entries

	
salt.modules.osquery.xprotect_reports(attrs=None, where=None)

	Return xprotect_reports information from osquery

CLI Example:

salt '*' osquery.xprotect_reports

salt.modules.out

Output Module

New in version 2018.3.0.

Execution module that processes JSON serializable data
and returns string having the format as processed by the outputters.

Although this does not bring much value on the CLI, it turns very handy
in applications that require human readable data rather than Python objects.

For example, inside a Jinja template:

{{ salt.out.string_format(complex_object, out='highstate') }}

	
salt.modules.out.html_format(data, out='nested', opts=None, **kwargs)

	Return the formatted string as HTML.

	data
	The JSON serializable object.

	out: nested
	The name of the output to use to transform the data. Default: nested.

	opts
	Dictionary of configuration options. Default: __opts__.

	kwargs
	Arguments to sent to the outputter module.

CLI Example:

salt '*' out.html_format "{'key': 'value'}" out=yaml

	
salt.modules.out.out_format(data, out='nested', opts=None, **kwargs)

	Return the formatted outputter string for the Python object.

	data
	The JSON serializable object.

	out: nested
	The name of the output to use to transform the data. Default: nested.

	opts
	Dictionary of configuration options. Default: __opts__.

	kwargs
	Arguments to sent to the outputter module.

CLI Example:

salt '*' out.out_format "{'key': 'value'}"

	
salt.modules.out.string_format(data, out='nested', opts=None, **kwargs)

	Return the outputter formatted string, removing the ANSI escape sequences.

	data
	The JSON serializable object.

	out: nested
	The name of the output to use to transform the data. Default: nested.

	opts
	Dictionary of configuration options. Default: __opts__.

	kwargs
	Arguments to sent to the outputter module.

CLI Example:

salt '*' out.string_format "{'key': 'value'}" out=table

salt.modules.pacmanpkg

A module to wrap pacman calls, since Arch is the best
(https://wiki.archlinux.org/index.php/Arch_is_the_best)

Important

If you feel that Salt should be using this module to manage packages on a
minion, and it is using a different module (or gives an error similar to
'pkg.install' is not available), see here.

	
salt.modules.pacmanpkg.available_version(*names, **kwargs)

	This function is an alias of latest_version.

Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	
salt.modules.pacmanpkg.file_dict(*packages, **kwargs)

	List the files that belong to a package, grouped by package. Not
specifying any packages will return a list of _every_ file on the system's
package database (not generally recommended).

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

	
salt.modules.pacmanpkg.file_list(*packages, **kwargs)

	List the files that belong to a package. Not specifying any packages will
return a list of _every_ file on the system's package database (not
generally recommended).

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

	
salt.modules.pacmanpkg.group_diff(name)

	
New in version 2016.11.0.

Lists which of a group's packages are installed and which are not
installed

Compatible with yumpkg.group_diff for easy support of state.pkg.group_installed

CLI Example:

salt '*' pkg.group_diff 'xorg'

	
salt.modules.pacmanpkg.group_info(name)

	
New in version 2016.11.0.

Lists all packages in the specified group

CLI Example:

salt '*' pkg.group_info 'xorg'

	
salt.modules.pacmanpkg.group_list()

	
New in version 2016.11.0.

Lists all groups known by pacman on this system

CLI Example:

salt '*' pkg.group_list

	
salt.modules.pacmanpkg.install(name=None, refresh=False, sysupgrade=None, pkgs=None, sources=None, **kwargs)

	
Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands which modify installed packages from the
salt-minion daemon's control group. This is done to keep systemd
from killing any pacman commands spawned by Salt when the
salt-minion service is restarted. (see KillMode in the
systemd.kill(5) [https://www.freedesktop.org/software/systemd/man/systemd.kill.html] manpage for more information). If desired, usage of
systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by setting a config option called systemd.scope, with a value of
False (no quotes).

Install (pacman -S) the specified packag(s). Add refresh=True to
install with -y, add sysupgrade=True to install with -u.

	name
	The name of the package to be installed. Note that this parameter is
ignored if either pkgs or sources is passed. Additionally,
please note that this option can only be used to install packages from
a software repository. To install a package file manually, use the
sources option.

CLI Example:

salt '*' pkg.install <package name>

	refresh
	Whether or not to refresh the package database before installing.

	sysupgrade
	Whether or not to upgrade the system packages before installing.
If refresh is set to True but sysupgrade is not specified, -u will be
applied

Multiple Package Installation Options:

	pkgs
	A list of packages to install from a software repository. Must be
passed as a python list. A specific version number can be specified
by using a single-element dict representing the package and its
version. As with the version parameter above, comparison operators
can be used to target a specific version of a package.

CLI Examples:

salt '*' pkg.install pkgs='["foo", "bar"]'
salt '*' pkg.install pkgs='["foo", {"bar": "1.2.3-4"}]'
salt '*' pkg.install pkgs='["foo", {"bar": "<1.2.3-4"}]'

	sources
	A list of packages to install. Must be passed as a list of dicts,
with the keys being package names, and the values being the source URI
or local path to the package.

CLI Example:

salt '*' pkg.install sources='[{"foo": "salt://foo.pkg.tar.xz"}, {"bar": "salt://bar.pkg.tar.xz"}]'

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

	
salt.modules.pacmanpkg.latest_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	
salt.modules.pacmanpkg.list_pkgs(versions_as_list=False, **kwargs)

	List the packages currently installed as a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

	
salt.modules.pacmanpkg.list_repo_pkgs(*args, **kwargs)

	Returns all available packages. Optionally, package names (and name globs)
can be passed and the results will be filtered to packages matching those
names.

This function can be helpful in discovering the version or repo to specify
in a pkg.installed state.

The return data will be a dictionary mapping package names to a list of
version numbers, ordered from newest to oldest. If byrepo is set to
True, then the return dictionary will contain repository names at the
top level, and each repository will map packages to lists of version
numbers. For example:

With byrepo=False (default)
{
 'bash': ['4.4.005-2'],
 'nginx': ['1.10.2-2']
}
With byrepo=True
{
 'core': {
 'bash': ['4.4.005-2']
 },
 'extra': {
 'nginx': ['1.10.2-2']
 }
}

	fromrepoNone
	Only include results from the specified repo(s). Multiple repos can be
specified, comma-separated.

	byrepoFalse
	When True, the return data for each package will be organized by
repository.

	refreshFalse
	When True, the package database will be refreshed (i.e. pacman
-Sy) before checking for available versions.

CLI Examples:

salt '*' pkg.list_repo_pkgs
salt '*' pkg.list_repo_pkgs foo bar baz
salt '*' pkg.list_repo_pkgs 'samba4*' fromrepo=base,updates
salt '*' pkg.list_repo_pkgs 'python2-*' byrepo=True

	
salt.modules.pacmanpkg.list_upgrades(refresh=False, root=None, **kwargs)

	List all available package upgrades on this system

CLI Example:

salt '*' pkg.list_upgrades

	
salt.modules.pacmanpkg.owner(*paths, **kwargs)

	
New in version 2014.7.0.

Return the name of the package that owns the file. Multiple file paths can
be passed. Like pkg.version, if a
single path is passed, a string will be returned, and if multiple paths are
passed, a dictionary of file/package name pairs will be returned.

If the file is not owned by a package, or is not present on the minion,
then an empty string will be returned for that path.

CLI Example:

salt '*' pkg.owner /usr/bin/apachectl
salt '*' pkg.owner /usr/bin/apachectl /usr/bin/zsh

	
salt.modules.pacmanpkg.purge(name=None, pkgs=None, **kwargs)

	
Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands which modify installed packages from the
salt-minion daemon's control group. This is done to keep systemd
from killing any pacman commands spawned by Salt when the
salt-minion service is restarted. (see KillMode in the
systemd.kill(5) [https://www.freedesktop.org/software/systemd/man/systemd.kill.html] manpage for more information). If desired, usage of
systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by setting a config option called systemd.scope, with a value of
False (no quotes).

Recursively remove a package and all dependencies which were installed
with it, this will call a pacman -Rsc

	name
	The name of the package to be deleted.

Multiple Package Options:

	pkgs
	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

	
salt.modules.pacmanpkg.refresh_db(root=None, **kwargs)

	Just run a pacman -Sy, return a dict:

{'<database name>': Bool}

CLI Example:

salt '*' pkg.refresh_db

	
salt.modules.pacmanpkg.remove(name=None, pkgs=None, **kwargs)

	
Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands which modify installed packages from the
salt-minion daemon's control group. This is done to keep systemd
from killing any pacman commands spawned by Salt when the
salt-minion service is restarted. (see KillMode in the
systemd.kill(5) [https://www.freedesktop.org/software/systemd/man/systemd.kill.html] manpage for more information). If desired, usage of
systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by setting a config option called systemd.scope, with a value of
False (no quotes).

Remove packages with pacman -R.

	name
	The name of the package to be deleted.

Multiple Package Options:

	pkgs
	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.pacmanpkg.upgrade(refresh=False, root=None, **kwargs)

	
Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands which modify installed packages from the
salt-minion daemon's control group. This is done to keep systemd
from killing any pacman commands spawned by Salt when the
salt-minion service is restarted. (see KillMode in the
systemd.kill(5) [https://www.freedesktop.org/software/systemd/man/systemd.kill.html] manpage for more information). If desired, usage of
systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by setting a config option called systemd.scope, with a value of
False (no quotes).

Run a full system upgrade, a pacman -Syu

	refresh
	Whether or not to refresh the package database before installing.

Returns a dictionary containing the changes:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade

	
salt.modules.pacmanpkg.upgrade_available(name, **kwargs)

	Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pkg.upgrade_available <package name>

	
salt.modules.pacmanpkg.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

salt.modules.pagerduty

Module for Firing Events via PagerDuty

New in version 2014.1.0.

	configuration:

	This module can be used by specifying the name of a
configuration profile in the minion config, minion pillar, or master
config.

For example:

my-pagerduty-account:
 pagerduty.api_key: F3Rbyjbve43rfFWf2214
 pagerduty.subdomain: mysubdomain

	
salt.modules.pagerduty.create_event(service_key=None, description=None, details=None, incident_key=None, profile=None)

	Create an event in PagerDuty. Designed for use in states.

CLI Example:

salt myminion pagerduty.create_event <service_key> <description> <details> profile=my-pagerduty-account

The following parameters are required:

	service_key
	This key can be found by using pagerduty.list_services.

	description
	This is a short description of the event.

	details
	This can be a more detailed description of the event.

	profile
	This refers to the configuration profile to use to connect to the
PagerDuty service.

	
salt.modules.pagerduty.list_escalation_policies(profile=None, api_key=None)

	This function is an alias of list_policies.

List escalation policies belonging to this account

CLI Example:

salt myminion pagerduty.list_policies my-pagerduty-account
salt myminion pagerduty.list_escalation_policies my-pagerduty-account

	
salt.modules.pagerduty.list_incidents(profile=None, api_key=None)

	List incidents belonging to this account

CLI Example:

salt myminion pagerduty.list_incidents my-pagerduty-account

	
salt.modules.pagerduty.list_maintenance_windows(profile=None, api_key=None)

	This function is an alias of list_windows.

List maintenance windows belonging to this account

CLI Example:

salt myminion pagerduty.list_windows my-pagerduty-account
salt myminion pagerduty.list_maintenance_windows my-pagerduty-account

	
salt.modules.pagerduty.list_policies(profile=None, api_key=None)

	List escalation policies belonging to this account

CLI Example:

salt myminion pagerduty.list_policies my-pagerduty-account
salt myminion pagerduty.list_escalation_policies my-pagerduty-account

	
salt.modules.pagerduty.list_schedules(profile=None, api_key=None)

	List schedules belonging to this account

CLI Example:

salt myminion pagerduty.list_schedules my-pagerduty-account

	
salt.modules.pagerduty.list_services(profile=None, api_key=None)

	List services belonging to this account

CLI Example:

salt myminion pagerduty.list_services my-pagerduty-account

	
salt.modules.pagerduty.list_users(profile=None, api_key=None)

	List users belonging to this account

CLI Example:

salt myminion pagerduty.list_users my-pagerduty-account

	
salt.modules.pagerduty.list_windows(profile=None, api_key=None)

	List maintenance windows belonging to this account

CLI Example:

salt myminion pagerduty.list_windows my-pagerduty-account
salt myminion pagerduty.list_maintenance_windows my-pagerduty-account

salt.modules.pagerduty_util

Module for manageing PagerDuty resource

	configuration:

	This module can be used by specifying the name of a
configuration profile in the minion config, minion pillar, or master
config. The default configuration profile name is 'pagerduty.'

For example:

pagerduty:
 pagerduty.api_key: F3Rbyjbve43rfFWf2214
 pagerduty.subdomain: mysubdomain

For PagerDuty API details, see https://developer.pagerduty.com/documentation/rest

	
salt.modules.pagerduty_util.create_or_update_resource(resource_name, identifier_fields, data, diff=None, profile='pagerduty', subdomain=None, api_key=None)

	create or update any pagerduty resource
Helper method for present().

Determining if two resources are the same is different for different PD resource, so this method accepts a diff function.
The diff function will be invoked as diff(state_information, object_returned_from_pagerduty), and
should return a dict of data to pass to the PagerDuty update API method, or None if no update
is to be performed. If no diff method is provided, the default behavor is to scan the keys in the state_information,
comparing the matching values in the object_returned_from_pagerduty, and update any values that differ.

Examples

create_or_update_resource("user", ["id","name","email"])
create_or_update_resource("escalation_policies", ["id","name"], diff=my_diff_function)

	
salt.modules.pagerduty_util.delete_resource(resource_name, key, identifier_fields, profile='pagerduty', subdomain=None, api_key=None)

	delete any pagerduty resource

Helper method for absent()

Example

delete_resource("users", key, ["id","name","email"]) # delete by id or name or email

	
salt.modules.pagerduty_util.get_escalation_policies(profile='pagerduty', subdomain=None, api_key=None)

	List escalation_policies belonging to this account

CLI Example:

salt myminion pagerduty.get_escalation_policies

	
salt.modules.pagerduty_util.get_resource(resource_name, key, identifier_fields, profile='pagerduty', subdomain=None, api_key=None)

	Get any single pagerduty resource by key.

We allow flexible lookup by any of a list of identifier_fields.
So, for example, you can look up users by email address or name by calling:

get_resource('users', key, ['name', 'email'], ...)

This method is mainly used to translate state sls into pagerduty id's for dependent objects.
For example, a pagerduty escalation policy contains one or more schedules, which must be passed
by their pagerduty id. We look up the schedules by name (using this method), and then translate
the names into id's.

This method is implemented by getting all objects of the resource type (cached into __context__),
then brute force searching through the list and trying to match any of the identifier_fields.
The __context__ cache is purged after any create, update or delete to the resource.

	
salt.modules.pagerduty_util.get_schedules(profile='pagerduty', subdomain=None, api_key=None)

	List schedules belonging to this account

CLI Example:

salt myminion pagerduty.get_schedules

	
salt.modules.pagerduty_util.get_services(profile='pagerduty', subdomain=None, api_key=None)

	List services belonging to this account

CLI Example:

salt myminion pagerduty.get_services

	
salt.modules.pagerduty_util.get_users(profile='pagerduty', subdomain=None, api_key=None)

	List users belonging to this account

CLI Example:

salt myminion pagerduty.get_users

	
salt.modules.pagerduty_util.resource_absent(resource, identifier_fields, profile='pagerduty', subdomain=None, api_key=None, **kwargs)

	Generic resource.absent state method. Pagerduty state modules should be a thin wrapper over this method,
with a custom diff function.

This method calls delete_resource() and formats the result as a salt state return value.

Example

resource_absent("users", ["id","name","email"])

	
salt.modules.pagerduty_util.resource_present(resource, identifier_fields, diff=None, profile='pagerduty', subdomain=None, api_key=None, **kwargs)

	Generic resource.present state method. Pagerduty state modules should be a thin wrapper over this method,
with a custom diff function.

This method calls create_or_update_resource() and formats the result as a salt state return value.

Example

resource_present("users", ["id","name","email"])

salt.modules.pam

Support for pam

	
salt.modules.pam.read_file(file_name)

	This is just a test function, to make sure parsing works

CLI Example:

salt '*' pam.read_file /etc/pam.d/login

salt.modules.panos

Module to provide Palo Alto compatibility to Salt

	codeauthor:

	Spencer Ervin <spencer_ervin@hotmail.com>

	maturity:

	new

	depends:

	none

	platform:

	unix

New in version 2018.3.0.

Configuration

This module accepts connection configuration details either as
parameters, or as configuration settings in pillar as a Salt proxy.
Options passed into opts will be ignored if options are passed into pillar.

See also

Palo Alto Proxy Module

About

This execution module was designed to handle connections to a Palo Alto based
firewall. This module adds support to send connections directly to the device
through the XML API or through a brokered connection to Panorama.

	
salt.modules.panos.add_config_lock()

	Prevent other users from changing configuration until the lock is released.

CLI Example:

salt '*' panos.add_config_lock

	
salt.modules.panos.check_antivirus()

	Get anti-virus information from PaloAlto Networks server

CLI Example:

salt '*' panos.check_antivirus

	
salt.modules.panos.check_software()

	Get software information from PaloAlto Networks server.

CLI Example:

salt '*' panos.check_software

	
salt.modules.panos.clear_commit_tasks()

	Clear all commit tasks.

CLI Example:

salt '*' panos.clear_commit_tasks

	
salt.modules.panos.commit()

	Commits the candidate configuration to the running configuration.

CLI Example:

salt '*' panos.commit

	
salt.modules.panos.deactivate_license(key_name=None)

	Deactivates an installed license.
Required version 7.0.0 or greater.

key_name(str): The file name of the license key installed.

CLI Example:

salt '*' panos.deactivate_license key_name=License_File_Name.key

	
salt.modules.panos.delete_license(key_name=None)

	Remove license keys on disk.

key_name(str): The file name of the license key to be deleted.

CLI Example:

salt '*' panos.delete_license key_name=License_File_Name.key

	
salt.modules.panos.download_antivirus()

	Download the most recent anti-virus package.

CLI Example:

salt '*' panos.download_antivirus

	
salt.modules.panos.download_software_file(filename=None, synch=False)

	Download software packages by filename.

	Parameters:

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The filename of the PANOS file to download.

	synch (bool [https://docs.python.org/3/library/functions.html#bool]) -- If true then the file will synch to the peer unit.

CLI Example:

salt '*' panos.download_software_file PanOS_5000-8.0.0
salt '*' panos.download_software_file PanOS_5000-8.0.0 True

	
salt.modules.panos.download_software_version(version=None, synch=False)

	Download software packages by version number.

	Parameters:

	
	version (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The version of the PANOS file to download.

	synch (bool [https://docs.python.org/3/library/functions.html#bool]) -- If true then the file will synch to the peer unit.

CLI Example:

salt '*' panos.download_software_version 8.0.0
salt '*' panos.download_software_version 8.0.0 True

	
salt.modules.panos.fetch_license(auth_code=None)

	Get new license(s) using from the Palo Alto Network Server.

	auth_code
	The license authorization code.

CLI Example:

salt '*' panos.fetch_license
salt '*' panos.fetch_license auth_code=foobar

	
salt.modules.panos.get_address(address=None, vsys='1')

	Get the candidate configuration for the specified get_address object. This will not return address objects that are
marked as pre-defined objects.

address(str): The name of the address object.

vsys(str): The string representation of the VSYS ID.

CLI Example:

salt '*' panos.get_address myhost
salt '*' panos.get_address myhost 3

	
salt.modules.panos.get_address_group(addressgroup=None, vsys='1')

	Get the candidate configuration for the specified address group. This will not return address groups that are
marked as pre-defined objects.

addressgroup(str): The name of the address group.

vsys(str): The string representation of the VSYS ID.

CLI Example:

salt '*' panos.get_address_group foobar
salt '*' panos.get_address_group foobar 3

	
salt.modules.panos.get_admins_active()

	Show active administrators.

CLI Example:

salt '*' panos.get_admins_active

	
salt.modules.panos.get_admins_all()

	Show all administrators.

CLI Example:

salt '*' panos.get_admins_all

	
salt.modules.panos.get_antivirus_info()

	Show information about available anti-virus packages.

CLI Example:

salt '*' panos.get_antivirus_info

	
salt.modules.panos.get_arp()

	Show ARP information.

CLI Example:

salt '*' panos.get_arp

	
salt.modules.panos.get_cli_idle_timeout()

	Show timeout information for this administrative session.

CLI Example:

salt '*' panos.get_cli_idle_timeout

	
salt.modules.panos.get_cli_permissions()

	Show cli administrative permissions.

CLI Example:

salt '*' panos.get_cli_permissions

	
salt.modules.panos.get_disk_usage()

	Report filesystem disk space usage.

CLI Example:

salt '*' panos.get_disk_usage

	
salt.modules.panos.get_dns_server_config()

	Get the DNS server configuration from the candidate configuration.

CLI Example:

salt '*' panos.get_dns_server_config

	
salt.modules.panos.get_domain_config()

	Get the domain name configuration from the candidate configuration.

CLI Example:

salt '*' panos.get_domain_config

	
salt.modules.panos.get_dos_blocks()

	Show the DoS block-ip table.

CLI Example:

salt '*' panos.get_dos_blocks

	
salt.modules.panos.get_fqdn_cache()

	Print FQDNs used in rules and their IPs.

CLI Example:

salt '*' panos.get_fqdn_cache

	
salt.modules.panos.get_ha_config()

	Get the high availability configuration.

CLI Example:

salt '*' panos.get_ha_config

	
salt.modules.panos.get_ha_link()

	
Show high-availability link-monitoring state.

CLI Example:

salt '*' panos.get_ha_link

	
salt.modules.panos.get_ha_path()

	Show high-availability path-monitoring state.

CLI Example:

salt '*' panos.get_ha_path

	
salt.modules.panos.get_ha_state()

	Show high-availability state information.

CLI Example:

salt '*' panos.get_ha_state

	
salt.modules.panos.get_ha_transitions()

	Show high-availability transition statistic information.

CLI Example:

salt '*' panos.get_ha_transitions

	
salt.modules.panos.get_hostname()

	Get the hostname of the device.

CLI Example:

salt '*' panos.get_hostname

	
salt.modules.panos.get_interface_counters(name='all')

	Get the counter statistics for interfaces.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the interface to view. By default, all interface statistics are viewed.

CLI Example:

salt '*' panos.get_interface_counters
salt '*' panos.get_interface_counters ethernet1/1

	
salt.modules.panos.get_interfaces(name='all')

	Show interface information.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the interface to view. By default, all interface statistics are viewed.

CLI Example:

salt '*' panos.get_interfaces
salt '*' panos.get_interfaces ethernet1/1

	
salt.modules.panos.get_job(jid=None)

	List all a single job by ID.

	jid
	The ID of the job to retrieve.

CLI Example:

salt '*' panos.get_job jid=15

	
salt.modules.panos.get_jobs(state='all')

	List all jobs on the device.

	state
	The state of the jobs to display. Valid options are all, pending, or processed. Pending jobs are jobs
that are currently in a running or waiting state. Processed jobs are jobs that have completed
execution.

CLI Example:

salt '*' panos.get_jobs
salt '*' panos.get_jobs state=pending

	
salt.modules.panos.get_lacp()

	Show LACP state.

CLI Example:

salt '*' panos.get_lacp

	
salt.modules.panos.get_license_info()

	Show information about owned license(s).

CLI Example:

salt '*' panos.get_license_info

	
salt.modules.panos.get_license_tokens()

	Show license token files for manual license deactivation.

CLI Example:

salt '*' panos.get_license_tokens

	
salt.modules.panos.get_lldp_config()

	Show lldp config for interfaces.

CLI Example:

salt '*' panos.get_lldp_config

	
salt.modules.panos.get_lldp_counters()

	Show lldp counters for interfaces.

CLI Example:

salt '*' panos.get_lldp_counters

	
salt.modules.panos.get_lldp_local()

	Show lldp local info for interfaces.

CLI Example:

salt '*' panos.get_lldp_local

	
salt.modules.panos.get_lldp_neighbors()

	Show lldp neighbors info for interfaces.

CLI Example:

salt '*' panos.get_lldp_neighbors

	
salt.modules.panos.get_local_admins()

	Show all local administrator accounts.

CLI Example:

salt '*' panos.get_local_admins

	
salt.modules.panos.get_logdb_quota()

	Report the logdb quotas.

CLI Example:

salt '*' panos.get_logdb_quota

	
salt.modules.panos.get_master_key()

	Get the master key properties.

CLI Example:

salt '*' panos.get_master_key

	
salt.modules.panos.get_ntp_config()

	Get the NTP configuration from the candidate configuration.

CLI Example:

salt '*' panos.get_ntp_config

	
salt.modules.panos.get_ntp_servers()

	Get list of configured NTP servers.

CLI Example:

salt '*' panos.get_ntp_servers

	
salt.modules.panos.get_operational_mode()

	Show device operational mode setting.

CLI Example:

salt '*' panos.get_operational_mode

	
salt.modules.panos.get_panorama_status()

	Show panorama connection status.

CLI Example:

salt '*' panos.get_panorama_status

	
salt.modules.panos.get_permitted_ips()

	Get the IP addresses that are permitted to establish management connections to the device.

CLI Example:

salt '*' panos.get_permitted_ips

	
salt.modules.panos.get_platform()

	Get the platform model information and limitations.

CLI Example:

salt '*' panos.get_platform

	
salt.modules.panos.get_predefined_application(application=None)

	Get the configuration for the specified pre-defined application object. This will only return pre-defined
application objects.

application(str): The name of the pre-defined application object.

CLI Example:

salt '*' panos.get_predefined_application saltstack

	
salt.modules.panos.get_security_rule(rulename=None, vsys='1')

	Get the candidate configuration for the specified security rule.

rulename(str): The name of the security rule.

vsys(str): The string representation of the VSYS ID.

CLI Example:

salt '*' panos.get_security_rule rule01
salt '*' panos.get_security_rule rule01 3

	
salt.modules.panos.get_service(service=None, vsys='1')

	Get the candidate configuration for the specified service object. This will not return services that are marked
as pre-defined objects.

service(str): The name of the service object.

vsys(str): The string representation of the VSYS ID.

CLI Example:

salt '*' panos.get_service tcp-443
salt '*' panos.get_service tcp-443 3

	
salt.modules.panos.get_service_group(servicegroup=None, vsys='1')

	Get the candidate configuration for the specified service group. This will not return service groups that are
marked as pre-defined objects.

servicegroup(str): The name of the service group.

vsys(str): The string representation of the VSYS ID.

CLI Example:

salt '*' panos.get_service_group foobar
salt '*' panos.get_service_group foobar 3

	
salt.modules.panos.get_session_info()

	Show device session statistics.

CLI Example:

salt '*' panos.get_session_info

	
salt.modules.panos.get_snmp_config()

	Get the SNMP configuration from the device.

CLI Example:

salt '*' panos.get_snmp_config

	
salt.modules.panos.get_software_info()

	Show information about available software packages.

CLI Example:

salt '*' panos.get_software_info

	
salt.modules.panos.get_system_date_time()

	Get the system date/time.

CLI Example:

salt '*' panos.get_system_date_time

	
salt.modules.panos.get_system_files()

	List important files in the system.

CLI Example:

salt '*' panos.get_system_files

	
salt.modules.panos.get_system_info()

	Get the system information.

CLI Example:

salt '*' panos.get_system_info

	
salt.modules.panos.get_system_services()

	Show system services.

CLI Example:

salt '*' panos.get_system_services

	
salt.modules.panos.get_system_state(mask=None)

	Show the system state variables.

	mask
	Filters by a subtree or a wildcard.

CLI Example:

salt '*' panos.get_system_state
salt '*' panos.get_system_state mask=cfg.ha.config.enabled
salt '*' panos.get_system_state mask=cfg.ha.*

	
salt.modules.panos.get_uncommitted_changes()

	Retrieve a list of all uncommitted changes on the device.
Requires PANOS version 8.0.0 or greater.

CLI Example:

salt '*' panos.get_uncommitted_changes

	
salt.modules.panos.get_users_config()

	Get the local administrative user account configuration.

CLI Example:

salt '*' panos.get_users_config

	
salt.modules.panos.get_vlans()

	Show all VLAN information.

CLI Example:

salt '*' panos.get_vlans

	
salt.modules.panos.get_xpath(xpath='')

	Retrieve a specified xpath from the candidate configuration.

xpath(str): The specified xpath in the candidate configuration.

CLI Example:

salt '*' panos.get_xpath /config/shared/service

	
salt.modules.panos.get_zone(zone='', vsys='1')

	Get the candidate configuration for the specified zone.

zone(str): The name of the zone.

vsys(str): The string representation of the VSYS ID.

CLI Example:

salt '*' panos.get_zone trust
salt '*' panos.get_zone trust 2

	
salt.modules.panos.get_zones(vsys='1')

	Get all the zones in the candidate configuration.

vsys(str): The string representation of the VSYS ID.

CLI Example:

salt '*' panos.get_zones
salt '*' panos.get_zones 2

	
salt.modules.panos.install_antivirus(version=None, latest=False, synch=False, skip_commit=False)

	Install anti-virus packages.

	Parameters:

	
	version (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The version of the PANOS file to install.

	latest (bool [https://docs.python.org/3/library/functions.html#bool]) -- If true, the latest anti-virus file will be installed.
The specified version option will be ignored.

	synch (bool [https://docs.python.org/3/library/functions.html#bool]) -- If true, the anti-virus will synch to the peer unit.

	skip_commit (bool [https://docs.python.org/3/library/functions.html#bool]) -- If true, the install will skip committing to the device.

CLI Example:

salt '*' panos.install_antivirus 8.0.0

	
salt.modules.panos.install_license()

	Install the license key(s).

CLI Example:

salt '*' panos.install_license

	
salt.modules.panos.install_software(version=None)

	Upgrade to a software package by version.

	Parameters:

	version (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The version of the PANOS file to install.

CLI Example:

salt '*' panos.install_license 8.0.0

	
salt.modules.panos.reboot()

	Reboot a running system.

CLI Example:

salt '*' panos.reboot

	
salt.modules.panos.refresh_fqdn_cache(force=False)

	Force refreshes all FQDNs used in rules.

	force
	Forces all fqdn refresh

CLI Example:

salt '*' panos.refresh_fqdn_cache
salt '*' panos.refresh_fqdn_cache force=True

	
salt.modules.panos.remove_config_lock()

	Release config lock previously held.

CLI Example:

salt '*' panos.remove_config_lock

	
salt.modules.panos.resolve_address(address=None, vsys=None)

	Resolve address to ip address.
Required version 7.0.0 or greater.

	address
	Address name you want to resolve.

	vsys
	The vsys name.

CLI Example:

salt '*' panos.resolve_address foo.bar.com
salt '*' panos.resolve_address foo.bar.com vsys=2

	
salt.modules.panos.save_device_config(filename=None)

	Save device configuration to a named file.

	filename
	The filename to save the configuration to.

CLI Example:

salt '*' panos.save_device_config foo.xml

	
salt.modules.panos.save_device_state()

	Save files needed to restore device to local disk.

CLI Example:

salt '*' panos.save_device_state

	
salt.modules.panos.set_authentication_profile(profile=None, deploy=False)

	Set the authentication profile of the Palo Alto proxy minion. A commit will be required before this is processed.

CLI Example:

	Parameters:

	
	profile (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the authentication profile to set.

	deploy (bool [https://docs.python.org/3/library/functions.html#bool]) -- If true then commit the full candidate configuration, if false only set pending change.

salt '*' panos.set_authentication_profile foo
salt '*' panos.set_authentication_profile foo deploy=True

	
salt.modules.panos.set_hostname(hostname=None, deploy=False)

	Set the hostname of the Palo Alto proxy minion. A commit will be required before this is processed.

CLI Example:

	Parameters:

	
	hostname (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The hostname to set

	deploy (bool [https://docs.python.org/3/library/functions.html#bool]) -- If true then commit the full candidate configuration, if false only set pending change.

salt '*' panos.set_hostname newhostname
salt '*' panos.set_hostname newhostname deploy=True

	
salt.modules.panos.set_management_http(enabled=True, deploy=False)

	Enables or disables the HTTP management service on the device.

CLI Example:

	Parameters:

	
	enabled (bool [https://docs.python.org/3/library/functions.html#bool]) -- If true the service will be enabled. If false the service will be disabled.

	deploy (bool [https://docs.python.org/3/library/functions.html#bool]) -- If true then commit the full candidate configuration, if false only set pending change.

salt '*' panos.set_management_http
salt '*' panos.set_management_http enabled=False deploy=True

	
salt.modules.panos.set_management_https(enabled=True, deploy=False)

	Enables or disables the HTTPS management service on the device.

CLI Example:

	Parameters:

	
	enabled (bool [https://docs.python.org/3/library/functions.html#bool]) -- If true the service will be enabled. If false the service will be disabled.

	deploy (bool [https://docs.python.org/3/library/functions.html#bool]) -- If true then commit the full candidate configuration, if false only set pending change.

salt '*' panos.set_management_https
salt '*' panos.set_management_https enabled=False deploy=True

	
salt.modules.panos.set_management_icmp(enabled=True, deploy=False)

	Enables or disables the ICMP management service on the device.

CLI Example:

	Parameters:

	
	enabled (bool [https://docs.python.org/3/library/functions.html#bool]) -- If true the service will be enabled. If false the service will be disabled.

	deploy (bool [https://docs.python.org/3/library/functions.html#bool]) -- If true then commit the full candidate configuration, if false only set pending change.

salt '*' panos.set_management_icmp
salt '*' panos.set_management_icmp enabled=False deploy=True

	
salt.modules.panos.set_management_ocsp(enabled=True, deploy=False)

	Enables or disables the HTTP OCSP management service on the device.

CLI Example:

	Parameters:

	
	enabled (bool [https://docs.python.org/3/library/functions.html#bool]) -- If true the service will be enabled. If false the service will be disabled.

	deploy (bool [https://docs.python.org/3/library/functions.html#bool]) -- If true then commit the full candidate configuration, if false only set pending change.

salt '*' panos.set_management_ocsp
salt '*' panos.set_management_ocsp enabled=False deploy=True

	
salt.modules.panos.set_management_snmp(enabled=True, deploy=False)

	Enables or disables the SNMP management service on the device.

CLI Example:

	Parameters:

	
	enabled (bool [https://docs.python.org/3/library/functions.html#bool]) -- If true the service will be enabled. If false the service will be disabled.

	deploy (bool [https://docs.python.org/3/library/functions.html#bool]) -- If true then commit the full candidate configuration, if false only set pending change.

salt '*' panos.set_management_snmp
salt '*' panos.set_management_snmp enabled=False deploy=True

	
salt.modules.panos.set_management_ssh(enabled=True, deploy=False)

	Enables or disables the SSH management service on the device.

CLI Example:

	Parameters:

	
	enabled (bool [https://docs.python.org/3/library/functions.html#bool]) -- If true the service will be enabled. If false the service will be disabled.

	deploy (bool [https://docs.python.org/3/library/functions.html#bool]) -- If true then commit the full candidate configuration, if false only set pending change.

salt '*' panos.set_management_ssh
salt '*' panos.set_management_ssh enabled=False deploy=True

	
salt.modules.panos.set_management_telnet(enabled=True, deploy=False)

	Enables or disables the Telnet management service on the device.

CLI Example:

	Parameters:

	
	enabled (bool [https://docs.python.org/3/library/functions.html#bool]) -- If true the service will be enabled. If false the service will be disabled.

	deploy (bool [https://docs.python.org/3/library/functions.html#bool]) -- If true then commit the full candidate configuration, if false only set pending change.

salt '*' panos.set_management_telnet
salt '*' panos.set_management_telnet enabled=False deploy=True

	
salt.modules.panos.set_ntp_authentication(target=None, authentication_type=None, key_id=None, authentication_key=None, algorithm=None, deploy=False)

	Set the NTP authentication of the Palo Alto proxy minion. A commit will be required before this is processed.

CLI Example:

	Parameters:

	
	target (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Determines the target of the authentication. Valid options are primary, secondary, or both.

	authentication_type (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The authentication type to be used. Valid options are symmetric, autokey, and none.

	key_id (int [https://docs.python.org/3/library/functions.html#int]) -- The NTP authentication key ID.

	authentication_key (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The authentication key.

	algorithm (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The algorithm type to be used for a symmetric key. Valid options are md5 and sha1.

	deploy (bool [https://docs.python.org/3/library/functions.html#bool]) -- If true then commit the full candidate configuration, if false only set pending change.

salt '*' ntp.set_authentication target=both authentication_type=autokey
salt '*' ntp.set_authentication target=primary authentication_type=none
salt '*' ntp.set_authentication target=both authentication_type=symmetric key_id=15 authentication_key=mykey algorithm=md5
salt '*' ntp.set_authentication target=both authentication_type=symmetric key_id=15 authentication_key=mykey algorithm=md5 deploy=True

	
salt.modules.panos.set_ntp_servers(primary_server=None, secondary_server=None, deploy=False)

	Set the NTP servers of the Palo Alto proxy minion. A commit will be required before this is processed.

CLI Example:

	Parameters:

	
	primary_server (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The primary NTP server IP address or FQDN.

	secondary_server (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The secondary NTP server IP address or FQDN.

	deploy (bool [https://docs.python.org/3/library/functions.html#bool]) -- If true then commit the full candidate configuration, if false only set pending change.

salt '*' ntp.set_servers 0.pool.ntp.org 1.pool.ntp.org
salt '*' ntp.set_servers primary_server=0.pool.ntp.org secondary_server=1.pool.ntp.org
salt '*' ntp.ser_servers 0.pool.ntp.org 1.pool.ntp.org deploy=True

	
salt.modules.panos.set_permitted_ip(address=None, deploy=False)

	Add an IPv4 address or network to the permitted IP list.

CLI Example:

	Parameters:

	
	address (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IPv4 address or network to allow access to add to the Palo Alto device.

	deploy (bool [https://docs.python.org/3/library/functions.html#bool]) -- If true then commit the full candidate configuration, if false only set pending change.

salt '*' panos.set_permitted_ip 10.0.0.1
salt '*' panos.set_permitted_ip 10.0.0.0/24
salt '*' panos.set_permitted_ip 10.0.0.1 deploy=True

	
salt.modules.panos.set_timezone(tz=None, deploy=False)

	Set the timezone of the Palo Alto proxy minion. A commit will be required before this is processed.

CLI Example:

	Parameters:

	
	tz (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the timezone to set.

	deploy (bool [https://docs.python.org/3/library/functions.html#bool]) -- If true then commit the full candidate configuration, if false only set pending change.

salt '*' panos.set_timezone UTC
salt '*' panos.set_timezone UTC deploy=True

	
salt.modules.panos.shutdown()

	Shutdown a running system.

CLI Example:

salt '*' panos.shutdown

	
salt.modules.panos.test_fib_route(ip=None, vr='vr1')

	Perform a route lookup within active route table (fib).

ip (str): The destination IP address to test.

vr (str): The name of the virtual router to test.

CLI Example:

salt '*' panos.test_fib_route 4.2.2.2
salt '*' panos.test_fib_route 4.2.2.2 my-vr

	
salt.modules.panos.test_security_policy(sourcezone=None, destinationzone=None, source=None, destination=None, protocol=None, port=None, application=None, category=None, vsys='1', allrules=False)

	Checks which security policy as connection will match on the device.

sourcezone (str): The source zone matched against the connection.

destinationzone (str): The destination zone matched against the connection.

source (str): The source address. This must be a single IP address.

destination (str): The destination address. This must be a single IP address.

protocol (int): The protocol number for the connection. This is the numerical representation of the protocol.

port (int): The port number for the connection.

application (str): The application that should be matched.

category (str): The category that should be matched.

vsys (int): The numerical representation of the VSYS ID.

allrules (bool): Show all potential match rules until first allow rule.

CLI Example:

salt '*' panos.test_security_policy sourcezone=trust destinationzone=untrust protocol=6 port=22
salt '*' panos.test_security_policy sourcezone=trust destinationzone=untrust protocol=6 port=22 vsys=2

	
salt.modules.panos.unlock_admin(username=None)

	Unlocks a locked administrator account.

	username
	Username of the administrator.

CLI Example:

salt '*' panos.unlock_admin username=bob

salt.modules.parallels

Manage Parallels Desktop VMs with prlctl and prlsrvctl. Only some of
the prlctl commands implemented so far. Of those that have been implemented,
not all of the options may have been provided yet. For a complete reference,
see the Parallels Desktop Reference Guide [http://download.parallels.com/desktop/v9/ga/docs/en_US/Parallels%20Command%20Line%20Reference%20Guide.pdf].

This module requires the prlctl binary to be installed to run most functions.
To run parallels.prlsrvctl, the prlsrvctl binary is required.

What has not been implemented yet can be accessed through parallels.prlctl
and parallels.prlsrvctl (note the preceding double dash -- as
necessary):

salt '*' parallels.prlctl installtools macvm runas=macdev
salt -- '*' parallels.prlctl capture 'macvm --file macvm.display.png' runas=macdev
salt -- '*' parallels.prlsrvctl set '--mem-limit auto' runas=macdev

New in version 2016.3.0.

	
salt.modules.parallels.clone(name, new_name, linked=False, template=False, runas=None)

	Clone a VM

New in version 2016.11.0.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name/ID of VM to clone

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name of the new VM

	linked (bool [https://docs.python.org/3/library/functions.html#bool]) -- Create a linked virtual machine.

	template (bool [https://docs.python.org/3/library/functions.html#bool]) -- Create a virtual machine template instead of a real virtual machine.

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user that the prlctl command will be run as

Example:

salt '*' parallels.clone macvm macvm_new runas=macdev
salt '*' parallels.clone macvm macvm_templ template=True runas=macdev

	
salt.modules.parallels.delete(name, runas=None)

	Delete a VM

New in version 2016.11.0.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name/ID of VM to clone

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user that the prlctl command will be run as

Example:

salt '*' parallels.exec macvm 'find /etc/paths.d' runas=macdev

	
salt.modules.parallels.delete_snapshot(name, snap_name, runas=None, all=False)

	Delete a snapshot

Note

Deleting a snapshot from which other snapshots are dervied will not
delete the derived snapshots

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name/ID of VM whose snapshot will be deleted

	snap_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name/ID of snapshot to delete

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user that the prlctl command will be run as

	all (bool [https://docs.python.org/3/library/functions.html#bool]) -- Delete all snapshots having the name given

New in version 2016.11.0.

Example:

salt '*' parallels.delete_snapshot macvm 'unneeded snapshot' runas=macdev
salt '*' parallels.delete_snapshot macvm 'Snapshot for linked clone' all=True runas=macdev

	
salt.modules.parallels.exec_(name, command, runas=None)

	Run a command on a VM

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name/ID of VM whose exec will be returned

	command (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Command to run on the VM

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user that the prlctl command will be run as

Example:

salt '*' parallels.exec macvm 'find /etc/paths.d' runas=macdev

	
salt.modules.parallels.exists(name, runas=None)

	Query whether a VM exists

New in version 2016.11.0.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name/ID of VM

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user that the prlctl command will be run as

Example:

salt '*' parallels.exists macvm runas=macdev

	
salt.modules.parallels.list_snapshots(name, snap_name=None, tree=False, names=False, runas=None)

	List the snapshots

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name/ID of VM whose snapshots will be listed

	snap_id (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name/ID of snapshot to display information about. If tree=True is
also specified, display the snapshot subtree having this snapshot as
the root snapshot

	tree (bool [https://docs.python.org/3/library/functions.html#bool]) -- List snapshots in tree format rather than tabular format

	names (bool [https://docs.python.org/3/library/functions.html#bool]) -- List snapshots as ID, name pairs

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user that the prlctl command will be run as

Example:

salt '*' parallels.list_snapshots macvm runas=macdev
salt '*' parallels.list_snapshots macvm tree=True runas=macdev
salt '*' parallels.list_snapshots macvm snap_name=original runas=macdev
salt '*' parallels.list_snapshots macvm names=True runas=macdev

	
salt.modules.parallels.list_vms(name=None, info=False, all=False, args=None, runas=None, template=False)

	List information about the VMs

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name/ID of VM to list

Changed in version 2016.11.0: No longer implies info=True

	info (str [https://docs.python.org/3/library/stdtypes.html#str]) -- List extra information

	all (bool [https://docs.python.org/3/library/functions.html#bool]) -- List all non-template VMs

	args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) -- Additional arguments given to prctl list

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user that the prlctl command will be run as

	template (bool [https://docs.python.org/3/library/functions.html#bool]) -- List the available virtual machine templates. The real virtual
machines will not be included in the output

New in version 2016.11.0.

Example:

salt '*' parallels.list_vms runas=macdev
salt '*' parallels.list_vms name=macvm info=True runas=macdev
salt '*' parallels.list_vms info=True runas=macdev
salt '*' parallels.list_vms ' -o uuid,status' all=True runas=macdev

	
salt.modules.parallels.prlctl(sub_cmd, args=None, runas=None)

	Execute a prlctl command

	Parameters:

	
	sub_cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) -- prlctl subcommand to execute

	args (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The arguments supplied to prlctl <sub_cmd>

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user that the prlctl command will be run as

Example:

salt '*' parallels.prlctl user list runas=macdev
salt '*' parallels.prlctl exec 'macvm uname' runas=macdev
salt -- '*' parallels.prlctl capture 'macvm --file macvm.display.png' runas=macdev

	
salt.modules.parallels.prlsrvctl(sub_cmd, args=None, runas=None)

	Execute a prlsrvctl command

New in version 2016.11.0.

	Parameters:

	
	sub_cmd (str [https://docs.python.org/3/library/stdtypes.html#str]) -- prlsrvctl subcommand to execute

	args (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The arguments supplied to prlsrvctl <sub_cmd>

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user that the prlsrvctl command will be run as

Example:

salt '*' parallels.prlsrvctl info runas=macdev
salt '*' parallels.prlsrvctl usb list runas=macdev
salt -- '*' parallels.prlsrvctl set '--mem-limit auto' runas=macdev

	
salt.modules.parallels.reset(name, runas=None)

	Reset a VM by performing a hard shutdown and then a restart

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name/ID of VM to reset

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user that the prlctl command will be run as

Example:

salt '*' parallels.reset macvm runas=macdev

	
salt.modules.parallels.restart(name, runas=None)

	Restart a VM by gracefully shutting it down and then restarting
it

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name/ID of VM to restart

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user that the prlctl command will be run as

Example:

salt '*' parallels.restart macvm runas=macdev

	
salt.modules.parallels.revert_snapshot(name, snap_name, runas=None)

	Revert a VM to a snapshot

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name/ID of VM to revert to a snapshot

	snap_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name/ID of snapshot to revert to

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user that the prlctl command will be run as

Example:

salt '*' parallels.revert_snapshot macvm base-with-updates runas=macdev

	
salt.modules.parallels.snapshot(name, snap_name=None, desc=None, runas=None)

	Create a snapshot

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name/ID of VM to take a snapshot of

	snap_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name of snapshot

	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Description of snapshot

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user that the prlctl command will be run as

Example:

salt '*' parallels.create_snapshot macvm snap_name=macvm-original runas=macdev
salt '*' parallels.create_snapshot macvm snap_name=macvm-updates desc='clean install with updates' runas=macdev

	
salt.modules.parallels.snapshot_id_to_name(name, snap_id, strict=False, runas=None)

	Attempt to convert a snapshot ID to a snapshot name. If the snapshot has
no name or if the ID is not found or invalid, an empty string will be returned

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name/ID of VM whose snapshots are inspected

	snap_id (str [https://docs.python.org/3/library/stdtypes.html#str]) -- ID of the snapshot

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) -- Raise an exception if a name cannot be found for the given snap_id

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user that the prlctl command will be run as

Example data

ID: {a5b8999f-5d95-4aff-82de-e515b0101b66}
Name: original
Date: 2016-03-04 10:50:34
Current: yes
State: poweroff
Description: original state

CLI Example:

salt '*' parallels.snapshot_id_to_name macvm a5b8999f-5d95-4aff-82de-e515b0101b66 runas=macdev

	
salt.modules.parallels.snapshot_name_to_id(name, snap_name, strict=False, runas=None)

	Attempt to convert a snapshot name to a snapshot ID. If the name is not
found an empty string is returned. If multiple snapshots share the same
name, a list will be returned

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name/ID of VM whose snapshots are inspected

	snap_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name of the snapshot

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) -- Raise an exception if multiple snapshot IDs are found

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user that the prlctl command will be run as

CLI Example:

salt '*' parallels.snapshot_id_to_name macvm original runas=macdev

	
salt.modules.parallels.start(name, runas=None)

	Start a VM

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name/ID of VM to start

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user that the prlctl command will be run as

Example:

salt '*' parallels.start macvm runas=macdev

	
salt.modules.parallels.status(name, runas=None)

	Status of a VM

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name/ID of VM whose status will be returned

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user that the prlctl command will be run as

Example:

salt '*' parallels.status macvm runas=macdev

	
salt.modules.parallels.stop(name, kill=False, runas=None)

	Stop a VM

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name/ID of VM to stop

	kill (bool [https://docs.python.org/3/library/functions.html#bool]) -- Perform a hard shutdown

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user that the prlctl command will be run as

Example:

salt '*' parallels.stop macvm runas=macdev
salt '*' parallels.stop macvm kill=True runas=macdev

salt.modules.parted_partition

Module for managing partitions on POSIX-like systems.

	depends:

	
	parted, partprobe, lsblk (usually parted and util-linux packages)

Some functions may not be available, depending on your version of parted.

Check the manpage for parted(8) for more information, or the online docs
at:

http://www.gnu.org/software/parted/manual/html_chapter/parted_2.html

In light of parted not directly supporting partition IDs, some of this module
has been written to utilize sfdisk instead. For further information, please
reference the man page for sfdisk(8).

	
salt.modules.parted_partition.align_check(device, part_type, partition)

	Check if partition satisfies the alignment constraint of part_type.
Type must be "minimal" or "optimal".

CLI Example:

salt '*' partition.align_check /dev/sda minimal 1

	
salt.modules.parted_partition.check(device, minor)

	Checks if the file system on partition <minor> has any errors.

CLI Example:

salt '*' partition.check 1

	
salt.modules.parted_partition.cp(device, from_minor, to_minor)

	Copies the file system on the partition <from-minor> to partition
<to-minor>, deleting the original contents of the destination
partition.

CLI Example:

salt '*' partition.cp /dev/sda 2 3

	
salt.modules.parted_partition.disk_set(device, flag, state)

	Changes a flag on selected device.

A flag can be either "on" or "off" (make sure to use proper
quoting, see YAML Idiosyncrasies). Some or all of these flags will be
available, depending on what disk label you are using.

	Valid flags are:
	
	cylinder_alignment

	pmbr_boot

	implicit_partition_table

CLI Example:

salt '*' partition.disk_set /dev/sda pmbr_boot '"on"'

	
salt.modules.parted_partition.disk_toggle(device, flag)

	Toggle the state of <flag> on <device>. Valid flags are the same
as the disk_set command.

CLI Example:

salt '*' partition.disk_toggle /dev/sda pmbr_boot

	
salt.modules.parted_partition.exists(device='')

	Check to see if the partition exists

CLI Example:

salt '*' partition.exists /dev/sdb1

	
salt.modules.parted_partition.get_block_device()

	Retrieve a list of disk devices

New in version 2014.7.0.

CLI Example:

salt '*' partition.get_block_device

	
salt.modules.parted_partition.get_id(device, minor)

	Prints the system ID for the partition. Some typical values are:

 b: FAT32 (vfat)
 7: HPFS/NTFS
82: Linux Swap
83: Linux
8e: Linux LVM
fd: Linux RAID Auto

CLI Example:

salt '*' partition.get_id /dev/sda 1

	
salt.modules.parted_partition.list_(device, unit=None)

	Prints partition information of given <device>

CLI Examples:

salt '*' partition.list /dev/sda
salt '*' partition.list /dev/sda unit=s
salt '*' partition.list /dev/sda unit=kB

	
salt.modules.parted_partition.mkfs(device, fs_type)

	Makes a file system <fs_type> on partition <device>, destroying all data
that resides on that partition. <fs_type> must be one of "ext2", "fat32",
"fat16", "linux-swap" or "reiserfs" (if libreiserfs is installed)

CLI Example:

salt '*' partition.mkfs /dev/sda2 fat32

	
salt.modules.parted_partition.mklabel(device, label_type)

	Create a new disklabel (partition table) of label_type.

Type should be one of "aix", "amiga", "bsd", "dvh", "gpt", "loop", "mac",
"msdos", "pc98", or "sun".

CLI Example:

salt '*' partition.mklabel /dev/sda msdos

	
salt.modules.parted_partition.mkpart(device, part_type, fs_type=None, start=None, end=None)

	Make a part_type partition for filesystem fs_type, beginning at start and
ending at end (by default in megabytes). part_type should be one of
"primary", "logical", or "extended".

CLI Examples:

salt '*' partition.mkpart /dev/sda primary fs_type=fat32 start=0 end=639
salt '*' partition.mkpart /dev/sda primary start=0 end=639

	
salt.modules.parted_partition.mkpartfs(device, part_type, fs_type=None, start=None, end=None)

	The mkpartfs actually is an alias to mkpart and is kept for compatibility.
To know the valid options and usage syntax read mkpart documentation.

CLI Examples:

salt '*' partition.mkpartfs /dev/sda primary fs_type=fat32 start=0 end=639
salt '*' partition.mkpartfs /dev/sda primary start=0 end=639

	
salt.modules.parted_partition.name(device, partition, name)

	Set the name of partition to name. This option works only on Mac, PC98, and
GPT disklabels. The name can be placed in quotes, if necessary.

CLI Example:

salt '*' partition.name /dev/sda 1 'My Documents'

	
salt.modules.parted_partition.probe(*devices)

	Ask the kernel to update its local partition data. When no args are
specified all block devices are tried.

Caution: Generally only works on devices with no mounted partitions and
may take a long time to return if specified devices are in use.

CLI Examples:

salt '*' partition.probe
salt '*' partition.probe /dev/sda
salt '*' partition.probe /dev/sda /dev/sdb

	
salt.modules.parted_partition.rescue(device, start, end)

	Rescue a lost partition that was located somewhere between start and end.
If a partition is found, parted will ask if you want to create an
entry for it in the partition table.

CLI Example:

salt '*' partition.rescue /dev/sda 0 8056

	
salt.modules.parted_partition.resize(device, minor, start, end)

	Resizes the partition with number <minor>.

The partition will start <start> from the beginning of the disk, and end
<end> from the beginning of the disk. resize never changes the minor number.
Extended partitions can be resized, so long as the new extended partition
completely contains all logical partitions.

CLI Example:

salt '*' partition.resize /dev/sda 3 200 850

	
salt.modules.parted_partition.rm(device, minor)

	Removes the partition with number <minor>.

CLI Example:

salt '*' partition.rm /dev/sda 5

	
salt.modules.parted_partition.set_(device, minor, flag, state)

	Changes a flag on the partition with number <minor>.

A flag can be either "on" or "off" (make sure to use proper quoting, see
YAML Idiosyncrasies). Some or all of these
flags will be available, depending on what disk label you are using.

	Valid flags are:
	
	boot

	root

	swap

	hidden

	raid

	lvm

	lba

	hp-service

	palo

	prep

	msftres

	bios_grub

	atvrecv

	diag

	legacy_boot

	msftdata

	irst

	esp

	type

CLI Example:

salt '*' partition.set /dev/sda 1 boot '"on"'

	
salt.modules.parted_partition.set_id(device, minor, system_id)

	Sets the system ID for the partition. Some typical values are:

 b: FAT32 (vfat)
 7: HPFS/NTFS
82: Linux Swap
83: Linux
8e: Linux LVM
fd: Linux RAID Auto

CLI Example:

salt '*' partition.set_id /dev/sda 1 83

	
salt.modules.parted_partition.system_types()

	List the system types that are supported by the installed version of sfdisk

CLI Example:

salt '*' partition.system_types

	
salt.modules.parted_partition.toggle(device, partition, flag)

	
	Toggle the state of <flag> on <partition>. Valid flags are the same as
	the set command.

CLI Example:

salt '*' partition.toggle /dev/sda 1 boot

salt.modules.pcs

Configure a Pacemaker/Corosync cluster with PCS

Configure Pacemaker/Cororsync clusters with the
Pacemaker/Cororsync conifguration system (PCS)

	depends:

	pcs

New in version 2016.3.0.

	
salt.modules.pcs.auth(nodes, pcsuser='hacluster', pcspasswd='hacluster', extra_args=None)

	Authorize nodes to the cluster

	nodes
	a list of nodes which should be authorized to the cluster

	pcsuser
	user for communitcation with PCS (default: hacluster)

	pcspasswd
	password for pcsuser (default: hacluster)

	extra_args
	list of extra option for the 'pcs cluster auth' command. The newer cluster host command has no extra args and so will ignore it.

CLI Example:

salt '*' pcs.auth nodes='[node1.example.org, node2.example.org]' pcsuser=hacluster pcspasswd=hoonetorg extra_args=['--force']

	
salt.modules.pcs.cib_create(cibfile, scope='configuration', extra_args=None)

	Create a CIB-file from the current CIB of the cluster

	cibfile
	name/path of the file containing the CIB

	scope
	specific section of the CIB (default: configuration)

	extra_args
	additional options for creating the CIB-file

CLI Example:

salt '*' pcs.cib_create cibfile='/tmp/VIP_apache_1.cib' scope=False

	
salt.modules.pcs.cib_push(cibfile, scope='configuration', extra_args=None)

	Push a CIB-file as the new CIB to the cluster

	cibfile
	name/path of the file containing the CIB

	scope
	specific section of the CIB (default: configuration)

	extra_args
	additional options for creating the CIB-file

CLI Example:

salt '*' pcs.cib_push cibfile='/tmp/VIP_apache_1.cib' scope=False

	
salt.modules.pcs.cluster_destroy(extra_args=None)

	Destroy corosync cluster using the pcs command

	extra_args
	list of extra option for the 'pcs cluster destroy' command (only really --all)

CLI Example:

salt '*' pcs.cluster_destroy extra_args=--all

	
salt.modules.pcs.cluster_node_add(node, extra_args=None)

	Add a node to the pacemaker cluster via pcs command

	node
	node that should be added

	extra_args
	list of extra option for the 'pcs cluster node add' command

CLI Example:

salt '*' pcs.cluster_node_add node=node2.example.org

	
salt.modules.pcs.cluster_setup(nodes, pcsclustername='pcscluster', extra_args=None)

	Setup pacemaker cluster via pcs command

	nodes
	a list of nodes which should be set up

	pcsclustername
	Name of the Pacemaker cluster (default: pcscluster)

	extra_args
	list of extra option for the 'pcs cluster setup' command

CLI Example:

salt '*' pcs.cluster_setup nodes='[node1.example.org, node2.example.org]' pcsclustername=pcscluster

	
salt.modules.pcs.config_show(cibfile=None)

	Show config of cluster

	cibfile
	name/path of the file containing the CIB

CLI Example:

salt '*' pcs.config_show cibfile='/tmp/cib_for_galera'

	
salt.modules.pcs.is_auth(nodes, pcsuser='hacluster', pcspasswd='hacluster')

	Check if nodes are already authorized

	nodes
	a list of nodes to be checked for authorization to the cluster

	pcsuser
	user for communitcation with PCS (default: hacluster)

	pcspasswd
	password for pcsuser (default: hacluster)

CLI Example:

salt '*' pcs.is_auth nodes='[node1.example.org, node2.example.org]' pcsuser=hacluster pcspasswd=hoonetorg

	
salt.modules.pcs.item_create(item, item_id, item_type, create='create', extra_args=None, cibfile=None)

	Create an item via pcs command
(mainly for use with the pcs state module)

	item
	config, property, resource, constraint etc.

	item_id
	id of the item

	item_type
	item type

	create
	create command (create or set f.e., default: create)

	extra_args
	additional options for the pcs command

	cibfile
	use cibfile instead of the live CIB

	
salt.modules.pcs.item_show(item, item_id=None, item_type=None, show='show', extra_args=None, cibfile=None)

	Show an item via pcs command
(mainly for use with the pcs state module)

	item
	config, property, resource, constraint etc.

	item_id
	id of the item

	item_type
	item type

	show
	show command (probably None, default: show or status for newer implementation)

	extra_args
	additional options for the pcs command

	cibfile
	use cibfile instead of the live CIB

	
salt.modules.pcs.prop_set(prop, value, extra_args=None, cibfile=None)

	Set the value of a cluster property

	prop
	name of the property

	value
	value of the property prop

	extra_args
	additional options for the pcs property command

	cibfile
	use cibfile instead of the live CIB

CLI Example:

salt '*' pcs.prop_set prop='no-quorum-policy' value='ignore' cibfile='/tmp/2_node_cluster.cib'

	
salt.modules.pcs.prop_show(prop, extra_args=None, cibfile=None)

	Show the value of a cluster property

	prop
	name of the property

	extra_args
	additional options for the pcs property command

	cibfile
	use cibfile instead of the live CIB

CLI Example:

salt '*' pcs.prop_show cibfile='/tmp/2_node_cluster.cib' prop='no-quorum-policy' cibfile='/tmp/2_node_cluster.cib'

	
salt.modules.pcs.resource_create(resource_id, resource_type, resource_options=None, cibfile=None)

	Create a resource via pcs command

	resource_id
	name for the resource

	resource_type
	resource type (f.e. ocf:heartbeat:IPaddr2 or VirtualIP)

	resource_options
	additional options for creating the resource

	cibfile
	use cibfile instead of the live CIB for manipulation

CLI Example:

salt '*' pcs.resource_create resource_id='galera' resource_type='ocf:heartbeat:galera' resource_options="['wsrep_cluster_address=gcomm://node1.example.org,node2.example.org,node3.example.org', '--master']" cibfile='/tmp/cib_for_galera.cib'

	
salt.modules.pcs.resource_show(resource_id, extra_args=None, cibfile=None)

	Show a resource via pcs command

	resource_id
	name of the resource

	extra_args
	additional options for the pcs command

	cibfile
	use cibfile instead of the live CIB

CLI Example:

salt '*' pcs.resource_show resource_id='galera' cibfile='/tmp/cib_for_galera.cib'

	
salt.modules.pcs.stonith_create(stonith_id, stonith_device_type, stonith_device_options=None, cibfile=None)

	Create a stonith resource via pcs command

	stonith_id
	name for the stonith resource

	stonith_device_type
	name of the stonith agent fence_eps, fence_xvm f.e.

	stonith_device_options
	additional options for creating the stonith resource

	cibfile
	use cibfile instead of the live CIB for manipulation

CLI Example:

salt '*' pcs.stonith_create stonith_id='eps_fence' stonith_device_type='fence_eps'
 stonith_device_options="['pcmk_host_map=node1.example.org:01;node2.example.org:02', 'ipaddr=myepsdevice.example.org', 'action=reboot', 'power_wait=5', 'verbose=1', 'debug=/var/log/pcsd/eps_fence.log', 'login=hidden', 'passwd=hoonetorg']" cibfile='/tmp/cib_for_stonith.cib'

	
salt.modules.pcs.stonith_show(stonith_id, extra_args=None, cibfile=None)

	Show the value of a cluster stonith

	stonith_id
	name for the stonith resource

	extra_args
	additional options for the pcs stonith command

	cibfile
	use cibfile instead of the live CIB

CLI Example:

salt '*' pcs.stonith_show stonith_id='eps_fence' cibfile='/tmp/2_node_cluster.cib'

salt.modules.pdbedit

Manage accounts in Samba's passdb using pdbedit

	maintainer:

	Jorge Schrauwen <sjorge@blackdot.be>

	maturity:

	new

	platform:

	posix

New in version 2017.7.0.

	
salt.modules.pdbedit.create(login, password, password_hashed=False, machine_account=False)

	Create user account

	loginstring
	login name

	passwordstring
	password

	password_hashedboolean
	set if password is a nt hash instead of plain text

	machine_accountboolean
	set to create a machine trust account instead

CLI Example:

salt '*' pdbedit.create zoe 9764951149F84E770889011E1DC4A927 nthash
salt '*' pdbedit.create river 1sw4ll0w3d4bug

	
salt.modules.pdbedit.delete(login)

	Delete user account

	loginstring
	login name

CLI Example:

salt '*' pdbedit.delete wash

	
salt.modules.pdbedit.generate_nt_hash(password)

	Generate a NT HASH

CLI Example:

salt '*' pdbedit.generate_nt_hash my_passwd

	
salt.modules.pdbedit.get_user(login, hashes=False)

	Get user account details

	loginstring
	login name

	hashesboolean
	include NTHASH and LMHASH in verbose output

CLI Example:

salt '*' pdbedit.get kaylee

	
salt.modules.pdbedit.list_users(verbose=True, hashes=False)

	List user accounts

	verboseboolean
	return all information

	hashesboolean
	include NT HASH and LM HASH in verbose output

CLI Example:

salt '*' pdbedit.list

	
salt.modules.pdbedit.modify(login, password=None, password_hashed=False, domain=None, profile=None, script=None, drive=None, homedir=None, fullname=None, account_desc=None, account_control=None, machine_sid=None, user_sid=None, reset_login_hours=False, reset_bad_password_count=False)

	Modify user account

	loginstring
	login name

	passwordstring
	password

	password_hashedboolean
	set if password is a nt hash instead of plain text

	domainstring
	users domain

	profilestring
	profile path

	scriptstring
	logon script

	drivestring
	home drive

	homedirstring
	home directory

	fullnamestring
	full name

	account_descstring
	account description

	machine_sidstring
	specify the machines new primary group SID or rid

	user_sidstring
	specify the users new primary group SID or rid

	account_controlstring
	specify user account control properties

Note

Only the following can be set:
- N: No password required
- D: Account disabled
- H: Home directory required
- L: Automatic Locking
- X: Password does not expire

	reset_login_hoursboolean
	reset the users allowed logon hours

	reset_bad_password_countboolean
	reset the stored bad login counter

Note

if user is absent and password is provided, the user will be created

CLI Example:

salt '*' pdbedit.modify inara fullname='Inara Serra'
salt '*' pdbedit.modify simon password=r1v3r
salt '*' pdbedit.modify jane drive='V:' homedir='\\serenity\jane\profile'
salt '*' pdbedit.modify mal account_control=NX

salt.modules.pecl

Manage PHP pecl extensions.

	
salt.modules.pecl.install(pecls, defaults=False, force=False, preferred_state='stable')

	
New in version 0.17.0.

Installs one or several pecl extensions.

	pecls
	The pecl extensions to install.

	defaults
	Use default answers for extensions such as pecl_http which ask
questions before installation. Without this option, the pecl.installed
state will hang indefinitely when trying to install these extensions.

	force
	Whether to force the installed version or not

CLI Example:

salt '*' pecl.install fuse

	
salt.modules.pecl.list_(channel=None)

	List installed pecl extensions.

CLI Example:

salt '*' pecl.list

	
salt.modules.pecl.uninstall(pecls)

	Uninstall one or several pecl extensions.

	pecls
	The pecl extensions to uninstall.

CLI Example:

salt '*' pecl.uninstall fuse

	
salt.modules.pecl.update(pecls)

	Update one or several pecl extensions.

	pecls
	The pecl extensions to update.

CLI Example:

salt '*' pecl.update fuse

salt.modules.peeringdb

PeeringDB Module

New in version 2019.2.0.

Execution module for the basic interaction with the
PeeringDB [https://www.peeringdb.com/] API.

While for GET operations (the functions prefixed by get_) the credentials
are optional, there are some specific details that are visible only to
authenticated users. Moreover, the credentials are required when adding or
updating information. That means, the module can equally work out of the box
without any further configuration with the limitations imposed by the PeeringDB
API.

For complete API documentation, please refer to https://www.peeringdb.com/apidocs/.

Configuration (in the opts or Pillar):

peeringdb:
 username: salt
 password: 5@1t

	
salt.modules.peeringdb.get_fac(**kwargs)

	Return the details of the facility identified using the search
filters specified in the query.

Note

If no id or filter arguments are specified, it will return all the
possible facilities registered in PeeringDB.

The available filters are documented at:
https://www.peeringdb.com/apidocs/#!/netfac/netfac_list

CLI Example:

salt '*' peeringdb.get_fac id=1774
salt '*' peeringdb.get_fac state=UT

	
salt.modules.peeringdb.get_ix(**kwargs)

	Return the details of an IX (Internet Exchange) using the search filters
specified in the query.

Note

If no id or filter arguments are specified, it will return all the
possible IXs registered in PeeringDB.

The available filters are documented at:
https://www.peeringdb.com/apidocs/#!/ix/ix_list

CLI Example:

salt '*' peeringdb.get_ix id=1
salt '*' peeringdb.get_ix city='Milwaukee'

	
salt.modules.peeringdb.get_ixfac(**kwargs)

	Return the details of an IX (Internet Exchange) facility using the search
filters specified in the query.

Note

If no id or filter arguments are specified, it will return all the
possible IX facilities registered in PeeringDB.

The available filters are documented at:
https://www.peeringdb.com/apidocs/#!/ixfac/ixfac_list

CLI Example:

salt '*' peeringdb.get_ixfac id=1
salt '*' peeringdb.get_ixfac city='Milwaukee'

	
salt.modules.peeringdb.get_ixlan(**kwargs)

	Return the details of an IX (Internet Exchange) together with the networks
available in this location (and their details), using the search filters
specified in the query.

Note

If no id or filter arguments are specified, it will return all the
possible IX LAN facilities registered in PeeringDB.

The available filters are documented at:
https://www.peeringdb.com/apidocs/#!/ixlan/ixlan_list

CLI Example:

salt '*' peeringdb.get_ixlan id=780
salt '*' peeringdb.get_ixlan city='Milwaukee'

	
salt.modules.peeringdb.get_ixpfx(**kwargs)

	Return the details of an IX (Internet Exchange) together with the PeeringDB
IDs of the networks available in this location, using the search filters
specified in the query.

Note

If no id or filter arguments are specified, it will return all the
possible IX LAN facilities registered in PeeringDB.

The available filters are documented at:
https://www.peeringdb.com/apidocs/#!/ixpfx/ixpfx_list

CLI Example:

salt '*' peeringdb.get_ixpfx id=780
salt '*' peeringdb.get_ixpfx city='Milwaukee'

	
salt.modules.peeringdb.get_net(**kwargs)

	Return the details of a network identified using the search filters
specified in the query.

Note

If no id or filter arguments are specified, it will return all the
possible networks registered in PeeringDB.

The available filters are documented at:
https://www.peeringdb.com/apidocs/#!/net/net_list

CLI Example:

salt '*' peeringdb.get_net id=4224
salt '*' peeringdb.get_net asn=13335
salt '*' peeringdb.get_net city='Salt Lake City'
salt '*' peeringdb.get_net name__startswith=GTT

	
salt.modules.peeringdb.get_netfac(**kwargs)

	Return the list of facilities used by a particular network, given the id
or other filters specified in the query.

Note

If no id or filter arguments are specified, it will return all the
possible network facilities registered in PeeringDB.

The available filters are documented at:
https://www.peeringdb.com/apidocs/#!/netfac/netfac_list

CLI Example:

salt '*' peeringdb.get_netfac id=780
salt '*' peeringdb.get_netfac city='Milwaukee'

	
salt.modules.peeringdb.get_netixlan(**kwargs)

	Return the IP addresses used by a particular network at all the IXs where it
is available. The network is selected either via the id argument or the
other filters specified in the query.

Note

If no id or filter arguments are specified, it will return all the
possible IP addresses, of all networks, at all IXs, registered in
PeeringDB.

The available filters are documented at:
https://www.peeringdb.com/apidocs/#!/netixlan/netixlan_list

CLI Example:

salt '*' peeringdb.get_netixlan asn=13335
salt '*' peeringdb.get_netixlan ipaddr4=185.1.114.25

	
salt.modules.peeringdb.get_org(**kwargs)

	Return the details of an organisation together with the networks
available in this location, using the search filters specified in the query.

Note

If no id or filter arguments are specified, it will return all the
possible organisations registered in PeeringDB.

The available filters are documented at:
https://www.peeringdb.com/apidocs/#!/org/org_list

CLI Example:

salt '*' peeringdb.get_org id=2
salt '*' peeringdb.get_org city=Duesseldorf

	
salt.modules.peeringdb.get_poc(**kwargs)

	Return the details of a person of contact together using the search filters
specified in the query.

Note

If no id or filter arguments are specified, it will return all the
possible contacts registered in PeeringDB.

The available filters are documented at:
https://www.peeringdb.com/apidocs/#!/poc/poc_list

CLI Example:

salt '*' peeringdb.get_poc id=6721
salt '*' peeringdb.get_poc email__contains='@cloudflare.com'

salt.modules.pf

Control the OpenBSD packet filter (PF).

	codeauthor:

	Jasper Lievisse Adriaanse <j@jasper.la>

New in version 2019.2.0.

	
salt.modules.pf.disable()

	Disable the Packet Filter.

CLI Example:

salt '*' pf.disable

	
salt.modules.pf.enable()

	Enable the Packet Filter.

CLI Example:

salt '*' pf.enable

	
salt.modules.pf.flush(modifier)

	Flush the specified packet filter parameters.

	modifier:
	Should be one of the following:

	all

	info

	osfp

	rules

	sources

	states

	tables

Please refer to the OpenBSD pfctl(8) [https://man.openbsd.org/pfctl#T]
documentation for a detailed explanation of each command.

CLI Example:

salt '*' pf.flush states

	
salt.modules.pf.load(file='/etc/pf.conf', noop=False)

	Load a ruleset from the specific file, overwriting the currently loaded ruleset.

	file:
	Full path to the file containing the ruleset.

	noop:
	Don't actually load the rules, just parse them.

CLI Example:

salt '*' pf.load /etc/pf.conf.d/lockdown.conf

	
salt.modules.pf.loglevel(level)

	Set the debug level which limits the severity of log messages printed by pf(4).

	level:
	Log level. Should be one of the following: emerg, alert, crit, err, warning, notice,
info or debug (OpenBSD); or none, urgent, misc, loud (FreeBSD).

CLI Example:

salt '*' pf.loglevel emerg

	
salt.modules.pf.show(modifier)

	Show filter parameters.

	modifier:
	Modifier to apply for filtering. Only a useful subset of what pfctl supports
can be used with Salt.

	rules

	states

	tables

CLI Example:

salt '*' pf.show rules

	
salt.modules.pf.table(command, table, **kwargs)

	Apply a command on the specified table.

	table:
	Name of the table.

	command:
	Command to apply to the table. Supported commands are:

	add

	delete

	expire

	flush

	kill

	replace

	show

	test

	zero

Please refer to the OpenBSD pfctl(8) [https://man.openbsd.org/pfctl#T]
documentation for a detailed explanation of each command.

CLI Example:

salt '*' pf.table expire table=spam_hosts number=300
salt '*' pf.table add table=local_hosts addresses='["127.0.0.1", "::1"]'

salt.modules.philips_hue

Philips HUE lamps module for proxy.

New in version 2015.8.3.

salt.modules.pillar

Extract the pillar data for this minion

	
salt.modules.pillar.data(*args, pillar=None, pillar_enc=None, pillarenv=None, saltenv=None)

	Calls the master for a fresh pillar, generates the pillar data on the
fly (same as items())

	pillar
	If specified, allows for a dictionary of pillar data to be made
available to pillar and ext_pillar rendering. these pillar variables
will also override any variables of the same name in pillar or
ext_pillar.

	pillar_enc
	If specified, the data passed in the pillar argument will be passed
through this renderer to decrypt it.

Note

This will decrypt on the minion side, so the specified renderer
must be set up on the minion for this to work. Alternatively,
pillar data can be decrypted master-side. For more information, see
the Pillar Encryption documentation.
Pillar data that is decrypted master-side, is not decrypted until
the end of pillar compilation though, so minion-side decryption
will be necessary if the encrypted pillar data must be made
available in an decrypted state pillar/ext_pillar rendering.

	pillarenv
	Pass a specific pillar environment from which to compile pillar data.
If not specified, then the minion's pillarenv option is
not used, and if that also is not specified then all configured pillar
environments will be merged into a single pillar dictionary and
returned.

	saltenv
	Included only for compatibility with
pillarenv_from_saltenv, and is otherwise ignored.

CLI Examples:

salt '*' pillar.data

	
salt.modules.pillar.ext(external, pillar=None)

	
Changed in version 2016.3.6,2016.11.3,2017.7.0: The supported ext_pillar types are now tunable using the
on_demand_ext_pillar config option. Earlier releases
used a hard-coded default.

Generate the pillar and apply an explicit external pillar

	external
	A single ext_pillar to add to the ext_pillar configuration. This must
be passed as a single section from the ext_pillar configuration (see
CLI examples below). For more complicated ext_pillar
configurations, it can be helpful to use the Python shell to load YAML
configuration into a dictionary, and figure out

>>> import salt.utils.yaml
>>> ext_pillar = salt.utils.yaml.safe_load("""
... ext_pillar:
... - git:
... - issue38440 https://github.com/terminalmage/git_pillar:
... - env: base
... """)
>>> ext_pillar
{'ext_pillar': [{'git': [{'mybranch https://github.com/myuser/myrepo': [{'env': 'base'}]}]}]}
>>> ext_pillar['ext_pillar'][0]
{'git': [{'mybranch https://github.com/myuser/myrepo': [{'env': 'base'}]}]}

In the above example, the value to pass would be
{'git': [{'mybranch https://github.com/myuser/myrepo': [{'env': 'base'}]}]}.
Note that this would need to be quoted when passing on the CLI (as in
the CLI examples below).

	pillarNone
	If specified, allows for a dictionary of pillar data to be made
available to pillar and ext_pillar rendering. These pillar variables
will also override any variables of the same name in pillar or
ext_pillar.

New in version 2015.5.0.

CLI Examples:

salt '*' pillar.ext '{libvirt: _}'
salt '*' pillar.ext "{'git': ['master https://github.com/myuser/myrepo']}"
salt '*' pillar.ext "{'git': [{'mybranch https://github.com/myuser/myrepo': [{'env': 'base'}]}]}"

	
salt.modules.pillar.fetch(key, default=<Constant.NOT_SET>, merge=False, merge_nested_lists=None, delimiter=':', pillarenv=None, saltenv=None)

	
New in version 0.14.0.

Attempt to retrieve the named value from in-memory pillar data. If the pillar key is not present in the in-memory
pillar, then the value specified in the default option (described
below) will be returned.

If the merge parameter is set to True, the default will be recursively
merged into the returned pillar data.

The value can also represent a value in a nested dict using a ":" delimiter
for the dict. This means that if a dict in pillar looks like this:

{'pkg': {'apache': 'httpd'}}

To retrieve the value associated with the apache key in the pkg
dict this key can be passed as:

pkg:apache

	key
	The pillar key to get value from

	default
	The value specified by this option will be returned if the desired
pillar key does not exist.

If a default value is not specified, then it will be an empty string,
unless pillar_raise_on_missing is set to True, in
which case an error will be raised.

	mergeFalse
	If True, the retrieved values will be merged into the passed
default. When the default and the retrieved value are both
dictionaries, the dictionaries will be recursively merged.

New in version 2014.7.0.

Changed in version 2016.3.7,2016.11.4,2017.7.0: If the default and the retrieved value are not of the same type,
then merging will be skipped and the retrieved value will be
returned. Earlier releases raised an error in these cases.

	merge_nested_lists
	If set to False, lists nested within the retrieved pillar
dictionary will overwrite lists in default. If set to True,
nested lists will be merged into lists in default. If unspecified
(the default), this option is inherited from the
pillar_merge_lists minion config option.

Note

This option is ignored when merge is set to False.

New in version 2016.11.6.

	delimiter
	Specify an alternate delimiter to use when traversing a nested dict.
This is useful for when the desired key contains a colon. See CLI
example below for usage.

New in version 2014.7.0.

	pillarenv
	If specified, this function will query the master to generate fresh
pillar data on the fly, specifically from the requested pillar
environment. Note that this can produce different pillar data than
executing this function without an environment, as its normal behavior
is just to return a value from minion's pillar data in memory (which
can be sourced from more than one pillar environment).

Using this argument will not affect the pillar data in memory. It will
however be slightly slower and use more resources on the master due to
the need for the master to generate and send the minion fresh pillar
data. This tradeoff in performance however allows for the use case
where pillar data is desired only from a single environment.

New in version 2017.7.0.

	saltenv
	Included only for compatibility with
pillarenv_from_saltenv, and is otherwise ignored.

New in version 2017.7.0.

CLI Example:

salt '*' pillar.get pkg:apache
salt '*' pillar.get abc::def|ghi delimiter='|'

	
salt.modules.pillar.file_exists(path, saltenv=None)

	
New in version 2016.3.0.

This is a master-only function. Calling from the minion is not supported.

Use the given path and search relative to the pillar environments to see if
a file exists at that path.

If the saltenv argument is given, restrict search to that environment
only.

Will only work with pillar_roots, not external pillars.

Returns True if the file is found, and False otherwise.

	path
	The path to the file in question. Will be treated as a relative path

	saltenv
	Optional argument to restrict the search to a specific saltenv

CLI Example:

salt '*' pillar.file_exists foo/bar.sls

	
salt.modules.pillar.filter_by(lookup_dict, pillar, merge=None, default='default', base=None)

	
New in version 2017.7.0.

Look up the given pillar in a given dictionary and return the result

	Parameters:

	
	lookup_dict -- A dictionary, keyed by a pillar, containing a value or
values relevant to systems matching that pillar. For example, a key
could be a pillar for a role and the value could the name of a package
on that particular OS.

The dictionary key can be a globbing pattern. The function will return
the corresponding lookup_dict value where the pillar value matches
the pattern. For example:

this will render 'got some salt' if ``role`` begins with 'salt'
salt '*' pillar.filter_by '{salt*: got some salt, default: salt is not here}' role

	pillar -- The name of a pillar to match with the system's pillar. For
example, the value of the "role" pillar could be used to pull values
from the lookup_dict dictionary.

The pillar value can be a list. The function will return the
lookup_dict value for a first found item in the list matching
one of the lookup_dict keys.

	merge -- A dictionary to merge with the results of the pillar
selection from lookup_dict. This allows another dictionary to
override the values in the lookup_dict.

	default -- default lookup_dict's key used if the pillar does not exist
or if the pillar value has no match on lookup_dict. If unspecified
the value is "default".

	base -- A lookup_dict key to use for a base dictionary. The
pillar-selected lookup_dict is merged over this and then finally
the merge dictionary is merged. This allows common values for
each case to be collected in the base and overridden by the pillar
selection dictionary and the merge dictionary. Default is unset.

CLI Example:

salt '*' pillar.filter_by '{web: Serve it up, db: I query, default: x_x}' role

	
salt.modules.pillar.get(key, default=<Constant.NOT_SET>, merge=False, merge_nested_lists=None, delimiter=':', pillarenv=None, saltenv=None)

	
New in version 0.14.0.

Attempt to retrieve the named value from in-memory pillar data. If the pillar key is not present in the in-memory
pillar, then the value specified in the default option (described
below) will be returned.

If the merge parameter is set to True, the default will be recursively
merged into the returned pillar data.

The value can also represent a value in a nested dict using a ":" delimiter
for the dict. This means that if a dict in pillar looks like this:

{'pkg': {'apache': 'httpd'}}

To retrieve the value associated with the apache key in the pkg
dict this key can be passed as:

pkg:apache

	key
	The pillar key to get value from

	default
	The value specified by this option will be returned if the desired
pillar key does not exist.

If a default value is not specified, then it will be an empty string,
unless pillar_raise_on_missing is set to True, in
which case an error will be raised.

	mergeFalse
	If True, the retrieved values will be merged into the passed
default. When the default and the retrieved value are both
dictionaries, the dictionaries will be recursively merged.

New in version 2014.7.0.

Changed in version 2016.3.7,2016.11.4,2017.7.0: If the default and the retrieved value are not of the same type,
then merging will be skipped and the retrieved value will be
returned. Earlier releases raised an error in these cases.

	merge_nested_lists
	If set to False, lists nested within the retrieved pillar
dictionary will overwrite lists in default. If set to True,
nested lists will be merged into lists in default. If unspecified
(the default), this option is inherited from the
pillar_merge_lists minion config option.

Note

This option is ignored when merge is set to False.

New in version 2016.11.6.

	delimiter
	Specify an alternate delimiter to use when traversing a nested dict.
This is useful for when the desired key contains a colon. See CLI
example below for usage.

New in version 2014.7.0.

	pillarenv
	If specified, this function will query the master to generate fresh
pillar data on the fly, specifically from the requested pillar
environment. Note that this can produce different pillar data than
executing this function without an environment, as its normal behavior
is just to return a value from minion's pillar data in memory (which
can be sourced from more than one pillar environment).

Using this argument will not affect the pillar data in memory. It will
however be slightly slower and use more resources on the master due to
the need for the master to generate and send the minion fresh pillar
data. This tradeoff in performance however allows for the use case
where pillar data is desired only from a single environment.

New in version 2017.7.0.

	saltenv
	Included only for compatibility with
pillarenv_from_saltenv, and is otherwise ignored.

New in version 2017.7.0.

CLI Example:

salt '*' pillar.get pkg:apache
salt '*' pillar.get abc::def|ghi delimiter='|'

	
salt.modules.pillar.item(*args, default=None, delimiter=None, pillarenv=None, saltenv=None)

	
New in version 0.16.2.

Return one or more pillar entries from the in-memory pillar data.

	delimiter
	Delimiter used to traverse nested dictionaries.

Note

This is different from pillar.get in that no default value can be
specified. pillar.get should
probably still be used in most cases to retrieve nested pillar
values, as it is a bit more flexible. One reason to use this
function instead of pillar.get
however is when it is desirable to retrieve the values of more than
one key, since pillar.get can
only retrieve one key at a time.

New in version 2015.8.0.

	pillarenv
	If specified, this function will query the master to generate fresh
pillar data on the fly, specifically from the requested pillar
environment. Note that this can produce different pillar data than
executing this function without an environment, as its normal behavior
is just to return a value from minion's pillar data in memory (which
can be sourced from more than one pillar environment).

Using this argument will not affect the pillar data in memory. It will
however be slightly slower and use more resources on the master due to
the need for the master to generate and send the minion fresh pillar
data. This tradeoff in performance however allows for the use case
where pillar data is desired only from a single environment.

New in version 2017.7.6,2018.3.1.

	saltenv
	Included only for compatibility with
pillarenv_from_saltenv, and is otherwise ignored.

New in version 2017.7.6,2018.3.1.

CLI Examples:

salt '*' pillar.item foo
salt '*' pillar.item foo:bar
salt '*' pillar.item foo bar baz

	
salt.modules.pillar.items(*args, pillar=None, pillar_enc=None, pillarenv=None, saltenv=None)

	Calls the master for a fresh pillar and generates the pillar data on the
fly

Contrast with raw() which returns the pillar data that is
currently loaded into the minion.

	pillar
	If specified, allows for a dictionary of pillar data to be made
available to pillar and ext_pillar rendering. these pillar variables
will also override any variables of the same name in pillar or
ext_pillar.

New in version 2015.5.0.

	pillar_enc
	If specified, the data passed in the pillar argument will be passed
through this renderer to decrypt it.

Note

This will decrypt on the minion side, so the specified renderer
must be set up on the minion for this to work. Alternatively,
pillar data can be decrypted master-side. For more information, see
the Pillar Encryption documentation.
Pillar data that is decrypted master-side, is not decrypted until
the end of pillar compilation though, so minion-side decryption
will be necessary if the encrypted pillar data must be made
available in an decrypted state pillar/ext_pillar rendering.

New in version 2017.7.0.

	pillarenv
	Pass a specific pillar environment from which to compile pillar data.
If not specified, then the minion's pillarenv option is
not used, and if that also is not specified then all configured pillar
environments will be merged into a single pillar dictionary and
returned.

New in version 2016.11.2.

	saltenv
	Included only for compatibility with
pillarenv_from_saltenv, and is otherwise ignored.

CLI Example:

salt '*' pillar.items

	
salt.modules.pillar.keys(key, delimiter=':')

	
New in version 2015.8.0.

Attempt to retrieve a list of keys from the named value from the pillar.

The value can also represent a value in a nested dict using a ":" delimiter
for the dict, similar to how pillar.get works.

	delimiter
	Specify an alternate delimiter to use when traversing a nested dict

CLI Example:

salt '*' pillar.keys web:sites

	
salt.modules.pillar.ls(*args, pillar=None, pillar_enc=None, pillarenv=None, saltenv=None)

	
New in version 2015.8.0.

Calls the master for a fresh pillar, generates the pillar data on the
fly (same as items()), but only shows the available main keys.

	pillar
	If specified, allows for a dictionary of pillar data to be made
available to pillar and ext_pillar rendering. these pillar variables
will also override any variables of the same name in pillar or
ext_pillar.

	pillar_enc
	If specified, the data passed in the pillar argument will be passed
through this renderer to decrypt it.

Note

This will decrypt on the minion side, so the specified renderer
must be set up on the minion for this to work. Alternatively,
pillar data can be decrypted master-side. For more information, see
the Pillar Encryption documentation.
Pillar data that is decrypted master-side, is not decrypted until
the end of pillar compilation though, so minion-side decryption
will be necessary if the encrypted pillar data must be made
available in an decrypted state pillar/ext_pillar rendering.

	pillarenv
	Pass a specific pillar environment from which to compile pillar data.
If not specified, then the minion's pillarenv option is
not used, and if that also is not specified then all configured pillar
environments will be merged into a single pillar dictionary and
returned.

	saltenv
	Included only for compatibility with
pillarenv_from_saltenv, and is otherwise ignored.

CLI Examples:

salt '*' pillar.ls

	
salt.modules.pillar.obfuscate(*args, pillar=None, pillar_enc=None, pillarenv=None, saltenv=None)

	
New in version 2015.8.0.

Same as items(), but replace pillar values with a simple type indication.

This is useful to avoid displaying sensitive information on console or
flooding the console with long output, such as certificates.
For many debug or control purposes, the stakes lie more in dispatching than in
actual values.

In case the value is itself a collection type, obfuscation occurs within the value.
For mapping types, keys are not obfuscated.
Here are some examples:

	'secret password' becomes '<str>'

	['secret', 1] becomes ['<str>', '<int>']

	{'login': 'somelogin', 'pwd': 'secret'} becomes
{'login': '<str>', 'pwd': '<str>'}

CLI Examples:

salt '*' pillar.obfuscate

	
salt.modules.pillar.raw(key=None)

	Return the raw pillar data that is currently loaded into the minion.

Contrast with items() which calls the master to fetch the most
up-to-date Pillar.

CLI Example:

salt '*' pillar.raw

With the optional key argument, you can select a subtree of the
pillar raw data.:

salt '*' pillar.raw key='roles'

salt.modules.pip

Install Python packages with pip to either the system or a virtualenv

Windows Support

New in version 2014.7.4.

Salt now uses a portable python. As a result the entire pip module is now
functional on the salt installation itself. You can pip install dependencies
for your custom modules. You can even upgrade salt itself using pip. For this
to work properly, you must specify the Current Working Directory (cwd) and
the Pip Binary (bin_env) salt should use. The variable pip_bin can be
either a virtualenv path or the path to the pip binary itself.

For example, the following command will list all software installed using pip
to your current salt environment:

salt <minion> pip.list cwd='C:\salt\bin\Scripts' bin_env='C:\salt\bin\Scripts\pip.exe'

Specifying the cwd and bin_env options ensures you're modifying the
salt environment. If these are omitted, it will default to the local
installation of python. If python is not installed locally it will fail saying
it couldn't find pip.

State File Support

This functionality works in states as well. If you need to pip install colorama
with a state, for example, the following will work:

install_colorama:
 pip.installed:
 - name: colorama
 - cwd: 'C:\salt\bin\scripts'
 - bin_env: 'C:\salt\bin\scripts\pip.exe'
 - upgrade: True

Upgrading Salt using Pip

You can now update salt using pip to any version from the 2014.7 branch
forward. Previous version require recompiling some of the dependencies which is
painful in windows.

To do this you just use pip with git to update to the version you want and then
restart the service. Here is a sample state file that upgrades salt to the head
of the 2015.5 branch:

install_salt:
 pip.installed:
 - cwd: 'C:\salt\bin\scripts'
 - bin_env: 'C:\salt\bin\scripts\pip.exe'
 - editable: git+https://github.com/saltstack/salt@2015.5#egg=salt
 - upgrade: True

restart_service:
 service.running:
 - name: salt-minion
 - enable: True
 - watch:
 - pip: install_salt

Note

If you're having problems, you might try doubling the back slashes. For
example, cwd: 'C:\salt\bin\scripts'. Sometimes python thinks the single
back slash is an escape character.

There is a known incompatibility between Python2 pip>=10.* and Salt <=2018.3.0.
The issue is described here: https://github.com/saltstack/salt/issues/46163

	
salt.modules.pip.freeze(bin_env=None, user=None, cwd=None, use_vt=False, env_vars=None, **kwargs)

	Return a list of installed packages either globally or in the specified
virtualenv

	bin_env
	Path to pip (or to a virtualenv). This can be used to specify the path
to the pip to use when more than one Python release is installed (e.g.
/usr/bin/pip-2.7 or /usr/bin/pip-2.6. If a directory path is
specified, it is assumed to be a virtualenv.

	user
	The user under which to run pip

	cwd
	Directory from which to run pip

Note

If the version of pip available is older than 8.0.3, the list will not
include the packages pip, wheel, setuptools, or
distribute even if they are installed.

CLI Example:

salt '*' pip.freeze bin_env=/home/code/path/to/virtualenv

	
salt.modules.pip.install(pkgs=None, requirements=None, bin_env=None, use_wheel=False, no_use_wheel=False, log=None, proxy=None, timeout=None, editable=None, find_links=None, index_url=None, extra_index_url=None, no_index=False, mirrors=None, build=None, target=None, download=None, download_cache=None, source=None, upgrade=False, force_reinstall=False, ignore_installed=False, exists_action=None, no_deps=False, no_install=False, no_download=False, global_options=None, install_options=None, user=None, cwd=None, pre_releases=False, cert=None, allow_all_external=False, allow_external=None, allow_unverified=None, process_dependency_links=False, saltenv='base', env_vars=None, use_vt=False, trusted_host=None, no_cache_dir=False, extra_args=None, cache_dir=None, no_binary=None, disable_version_check=False, **kwargs)

	Install packages with pip

Install packages individually or from a pip requirements file. Install
packages globally or to a virtualenv.

	pkgs
	Comma separated list of packages to install

	requirements
	Path to requirements

	bin_env
	Path to pip (or to a virtualenv). This can be used to specify the path
to the pip to use when more than one Python release is installed (e.g.
/usr/bin/pip-2.7 or /usr/bin/pip-2.6. If a directory path is
specified, it is assumed to be a virtualenv.

Note

For Windows, if the pip module is being used to upgrade the pip
package, bin_env should be the path to the virtualenv or to the
python binary that should be used. The pip command is unable to
upgrade itself in Windows.

	use_wheel
	Prefer wheel archives (requires pip>=1.4)

	no_use_wheel
	Force to not use wheel archives (requires pip>=1.4,<10.0.0)

	no_binary
	Force to not use binary packages (requires pip >= 7.0.0)
Accepts either :all: to disable all binary packages, :none: to empty the set,
or one or more package names with commas between them

	log
	Log file where a complete (maximum verbosity) record will be kept.
If this file doesn't exist and the parent directory is writeable,
it will be created.

	proxy
	Specify a proxy in the form user:passwd@proxy.server:port. Note
that the user:password@ is optional and required only if you are
behind an authenticated proxy. If you provide
user@proxy.server:port then you will be prompted for a password.

Note

If the Minion has a globaly configured proxy - it will be used
even if no proxy was set here. To explicitly disable proxy for pip
you should pass False as a value.

	timeout
	Set the socket timeout (default 15 seconds)

	editable
	install something editable (e.g.
git+https://github.com/worldcompany/djangoembed.git#egg=djangoembed)

	find_links
	URL to search for packages

	index_url
	Base URL of Python Package Index

	extra_index_url
	Extra URLs of package indexes to use in addition to index_url

	no_index
	Ignore package index

	mirrors
	Specific mirror URL(s) to query (automatically adds --use-mirrors)

Warning

This option has been deprecated and removed in pip version 7.0.0.
Please use index_url and/or extra_index_url instead.

	build
	Unpack packages into build dir

	target
	Install packages into target dir

	download
	Download packages into download instead of installing them

	download_cache | cache_dir
	Cache downloaded packages in download_cache or cache_dir dir

	source
	Check out editable packages into source dir

	upgrade
	Upgrade all packages to the newest available version

	force_reinstall
	When upgrading, reinstall all packages even if they are already
up-to-date.

	ignore_installed
	Ignore the installed packages (reinstalling instead)

	exists_action
	Default action when a path already exists: (s)witch, (i)gnore, (w)ipe,
(b)ackup

	no_deps
	Ignore package dependencies

	no_install
	Download and unpack all packages, but don't actually install them

	no_download
	Don't download any packages, just install the ones already downloaded
(completes an install run with --no-install)

	install_options
	Extra arguments to be supplied to the setup.py install command (e.g.
like --install-option='--install-scripts=/usr/local/bin'). Use
multiple --install-option options to pass multiple options to setup.py
install. If you are using an option with a directory path, be sure to
use absolute path.

	global_options
	Extra global options to be supplied to the setup.py call before the
install command.

	user
	The user under which to run pip

	cwd
	Directory from which to run pip

	pre_releases
	Include pre-releases in the available versions

	cert
	Provide a path to an alternate CA bundle

	allow_all_external
	Allow the installation of all externally hosted files

	allow_external
	Allow the installation of externally hosted files (comma separated
list)

	allow_unverified
	Allow the installation of insecure and unverifiable files (comma
separated list)

	process_dependency_links
	Enable the processing of dependency links

	env_vars
	Set environment variables that some builds will depend on. For example,
a Python C-module may have a Makefile that needs INCLUDE_PATH set to
pick up a header file while compiling. This must be in the form of a
dictionary or a mapping.

Example:

salt '*' pip.install django_app env_vars="{'CUSTOM_PATH': '/opt/django_app'}"

	trusted_host
	Mark this host as trusted, even though it does not have valid or any
HTTPS.

	use_vt
	Use VT terminal emulation (see output while installing)

	no_cache_dir
	Disable the cache.

	extra_args
	pip keyword and positional arguments not yet implemented in salt

salt '*' pip.install pandas extra_args="[{'--latest-pip-kwarg':'param'}, '--latest-pip-arg']"

Warning

If unsupported options are passed here that are not supported in a
minion's version of pip, a No such option error will be thrown.

Will be translated into the following pip command:

pip install pandas --latest-pip-kwarg param --latest-pip-arg

	disable_version_check
	Pip may periodically check PyPI to determine whether a new version of
pip is available to download. Passing True for this option disables
that check.

CLI Example:

salt '*' pip.install <package name>,<package2 name>
salt '*' pip.install requirements=/path/to/requirements.txt
salt '*' pip.install <package name> bin_env=/path/to/virtualenv
salt '*' pip.install <package name> bin_env=/path/to/pip_bin

Complicated CLI Example:

salt '*' pip.install markdown,django editable=git+https://github.com/worldcompany/djangoembed.git#egg=djangoembed upgrade=True no_deps=True

	
salt.modules.pip.is_installed(pkgname, bin_env=None, user=None, cwd=None)

	
New in version 2018.3.0.

Changed in version 3006.0.

Filter list of installed modules and return True if pkgname exists in
the list of packages installed.

CLI Example:

salt '*' pip.is_installed salt

	
salt.modules.pip.list_(prefix=None, bin_env=None, user=None, cwd=None, env_vars=None, **kwargs)

	
Changed in version 3006.0.

Output list of installed apps from pip list in JSON format and check to
see if prefix exists in the list of packages installed.

Note

If the version of pip available is older than 9.0.0, parsing the
freeze function output will be used to determine the name and
version of installed modules.

CLI Example:

salt '*' pip.list salt

	
salt.modules.pip.list_all_versions(pkg, bin_env=None, include_alpha=False, include_beta=False, include_rc=False, user=None, cwd=None, index_url=None, extra_index_url=None)

	
New in version 2017.7.3.

List all available versions of a pip package

	pkg
	The package to check

	bin_env
	Path to pip (or to a virtualenv). This can be used to specify the path
to the pip to use when more than one Python release is installed (e.g.
/usr/bin/pip-2.7 or /usr/bin/pip-2.6. If a directory path is
specified, it is assumed to be a virtualenv.

	include_alpha
	Include alpha versions in the list

	include_beta
	Include beta versions in the list

	include_rc
	Include release candidates versions in the list

	user
	The user under which to run pip

	cwd
	Directory from which to run pip

	index_url
	Base URL of Python Package Index
.. versionadded:: 2019.2.0

	extra_index_url
	Additional URL of Python Package Index
.. versionadded:: 2019.2.0

CLI Example:

salt '*' pip.list_all_versions <package name>

	
salt.modules.pip.list_freeze_parse(prefix=None, bin_env=None, user=None, cwd=None, env_vars=None, **kwargs)

	
New in version 3006.0.

Filter list of installed apps from freeze and check to see if
prefix exists in the list of packages installed.

Note

If the version of pip available is older than 8.0.3, the packages
wheel, setuptools, and distribute will not be reported by
this function even if they are installed. Unlike pip.freeze, this function always reports the version of
pip which is installed.

CLI Example:

salt '*' pip.list_freeze_parse salt

	
salt.modules.pip.list_upgrades(bin_env=None, user=None, cwd=None)

	Check whether or not an upgrade is available for all packages

CLI Example:

salt '*' pip.list_upgrades

	
salt.modules.pip.uninstall(pkgs=None, requirements=None, bin_env=None, log=None, proxy=None, timeout=None, user=None, cwd=None, saltenv='base', use_vt=False)

	Uninstall packages individually or from a pip requirements file

	pkgs
	comma separated list of packages to install

	requirements
	Path to requirements file

	bin_env
	Path to pip (or to a virtualenv). This can be used to specify the path
to the pip to use when more than one Python release is installed (e.g.
/usr/bin/pip-2.7 or /usr/bin/pip-2.6. If a directory path is
specified, it is assumed to be a virtualenv.

	log
	Log file where a complete (maximum verbosity) record will be kept

	proxy
	Specify a proxy in the format user:passwd@proxy.server:port. Note
that the user:password@ is optional and required only if you are
behind an authenticated proxy. If you provide
user@proxy.server:port then you will be prompted for a password.

Note

If the Minion has a globaly configured proxy - it will be used
even if no proxy was set here. To explicitly disable proxy for pip
you should pass False as a value.

	timeout
	Set the socket timeout (default 15 seconds)

	user
	The user under which to run pip

	cwd
	Directory from which to run pip

	use_vt
	Use VT terminal emulation (see output while installing)

CLI Example:

salt '*' pip.uninstall <package name>,<package2 name>
salt '*' pip.uninstall requirements=/path/to/requirements.txt
salt '*' pip.uninstall <package name> bin_env=/path/to/virtualenv
salt '*' pip.uninstall <package name> bin_env=/path/to/pip_bin

	
salt.modules.pip.upgrade(bin_env=None, user=None, cwd=None, use_vt=False)

	
New in version 2015.5.0.

Upgrades outdated pip packages.

Note

On Windows you can't update salt from pip using salt, so salt will be
skipped

Returns a dict containing the changes.

	{'<package>': {'old': '<old-version>',
	'new': '<new-version>'}}

CLI Example:

salt '*' pip.upgrade

	
salt.modules.pip.upgrade_available(pkg, bin_env=None, user=None, cwd=None)

	
New in version 2015.5.0.

Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pip.upgrade_available <package name>

	
salt.modules.pip.version(bin_env=None, cwd=None, user=None)

	
New in version 0.17.0.

Returns the version of pip. Use bin_env to specify the path to a
virtualenv and get the version of pip in that virtualenv.

If unable to detect the pip version, returns None.

Changed in version 3001.1: The user parameter was added, to allow specifying the user who runs
the version command.

CLI Example:

salt '*' pip.version

salt.modules.pkg_resource

Resources needed by pkg providers

	
salt.modules.pkg_resource.add_pkg(pkgs, name, pkgver)

	Add a package to a dict of installed packages.

CLI Example:

salt '*' pkg_resource.add_pkg '{}' bind 9

	
salt.modules.pkg_resource.check_extra_requirements(pkgname, pkgver)

	Check if the installed package already has the given requirements.
This function will return the result of pkg.check_extra_requirements if
this function exists for the minion, otherwise it will return True.

CLI Example:

salt '*' pkg_resource.check_extra_requirements <pkgname> <extra_requirements>

	
salt.modules.pkg_resource.format_pkg_list(packages, versions_as_list, attr)

	Formats packages according to parameters for list_pkgs.

	
salt.modules.pkg_resource.format_version(epoch, version, release)

	Formats a version string for list_pkgs.

	
salt.modules.pkg_resource.pack_sources(sources, normalize=True)

	Accepts list of dicts (or a string representing a list of dicts) and packs
the key/value pairs into a single dict.

'[{"foo": "salt://foo.rpm"}, {"bar": "salt://bar.rpm"}]' would become
{"foo": "salt://foo.rpm", "bar": "salt://bar.rpm"}

	normalizeTrue
	Normalize the package name by removing the architecture, if the
architecture of the package is different from the architecture of the
operating system. The ability to disable this behavior is useful for
poorly-created packages which include the architecture as an actual
part of the name, such as kernel modules which match a specific kernel
version.

New in version 2015.8.0.

CLI Example:

salt '*' pkg_resource.pack_sources '[{"foo": "salt://foo.rpm"}, {"bar": "salt://bar.rpm"}]'

	
salt.modules.pkg_resource.parse_targets(name=None, pkgs=None, sources=None, saltenv='base', normalize=True, **kwargs)

	Parses the input to pkg.install and returns back the package(s) to be
installed. Returns a list of packages, as well as a string noting whether
the packages are to come from a repository or a binary package.

CLI Example:

salt '*' pkg_resource.parse_targets

	
salt.modules.pkg_resource.sort_pkglist(pkgs)

	Accepts a dict obtained from pkg.list_pkgs() and sorts in place the list of
versions for any packages that have multiple versions installed, so that
two package lists can be compared to one another.

CLI Example:

salt '*' pkg_resource.sort_pkglist '["3.45", "2.13"]'

	
salt.modules.pkg_resource.stringify(pkgs)

	Takes a dict of package name/version information and joins each list of
installed versions into a string.

CLI Example:

salt '*' pkg_resource.stringify 'vim: 7.127'

	
salt.modules.pkg_resource.version(*names, **kwargs)

	Common interface for obtaining the version of installed packages.

CLI Example:

salt '*' pkg_resource.version vim
salt '*' pkg_resource.version foo bar baz
salt '*' pkg_resource.version 'python*'

	
salt.modules.pkg_resource.version_clean(verstr)

	Clean the version string removing extra data.
This function will simply try to call pkg.version_clean.

CLI Example:

salt '*' pkg_resource.version_clean <version_string>

	
salt.modules.pkg_resource.version_compare(ver1, oper, ver2, ignore_epoch=False)

	
New in version 3001.

Perform a version comparison, using (where available) platform-specific
version comparison tools to make the comparison.

	ver1
	The first version to be compared

	oper
	One of ==, !=, >=, <=, >, <

	ver2
	The second version to be compared

Note

To avoid shell interpretation, each of the above values should be
quoted when this function is used on the CLI.

	ignore_epochFalse
	If True, both package versions will have their epoch prefix
stripped before comparison.

This function is useful in Jinja templates, to perform specific actions
when a package's version meets certain criteria. For example:

{%- set postfix_version = salt.pkg.version('postfix') %}
{%- if postfix_version and salt.pkg_resource.version_compare(postfix_version, '>=', '3.3', ignore_epoch=True) %}
 {#- do stuff #}
{%- endif %}

CLI Examples:

salt myminion pkg_resource.version_compare '3.5' '<=' '2.4'
salt myminion pkg_resource.version_compare '3.5' '<=' '2.4' ignore_epoch=True

salt.modules.pkgin

Package support for pkgin based systems, inspired from freebsdpkg module

Important

If you feel that Salt should be using this module to manage packages on a
minion, and it is using a different module (or gives an error similar to
'pkg.install' is not available), see here.

	
salt.modules.pkgin.available_version(*names, **kwargs)

	This function is an alias of latest_version.

Changed in version 2016.3.0.

Return the latest version of the named package available for upgrade or
installation.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> ...

	
salt.modules.pkgin.file_dict(*packages, **kwargs)

	
Changed in version 2016.3.0.

List the files that belong to a package.

CLI Examples:

salt '*' pkg.file_dict nginx
salt '*' pkg.file_dict nginx varnish

	
salt.modules.pkgin.file_list(package, **kwargs)

	List the files that belong to a package.

CLI Examples:

salt '*' pkg.file_list nginx

	
salt.modules.pkgin.install(name=None, refresh=False, fromrepo=None, pkgs=None, sources=None, **kwargs)

	Install the passed package

	name
	The name of the package to be installed.

	refresh
	Whether or not to refresh the package database before installing.

	fromrepo
	Specify a package repository to install from.

Multiple Package Installation Options:

	pkgs
	A list of packages to install from a software repository. Must be
passed as a python list.

CLI Example:

salt '*' pkg.install pkgs='["foo","bar"]'

	sources
	A list of packages to install. Must be passed as a list of dicts,
with the keys being package names, and the values being the source URI
or local path to the package.

CLI Example:

salt '*' pkg.install sources='[{"foo": "salt://foo.deb"},{"bar": "salt://bar.deb"}]'

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.install <package name>

	
salt.modules.pkgin.latest_version(*names, **kwargs)

	
Changed in version 2016.3.0.

Return the latest version of the named package available for upgrade or
installation.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> ...

	
salt.modules.pkgin.list_pkgs(versions_as_list=False, **kwargs)

	
Changed in version 2016.3.0.

List the packages currently installed as a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

	
salt.modules.pkgin.list_upgrades(refresh=True, **kwargs)

	List all available package upgrades.

New in version 2018.3.0.

	refresh
	Whether or not to refresh the package database before installing.

CLI Example:

salt '*' pkg.list_upgrades

	
salt.modules.pkgin.normalize_name(pkgs, **kwargs)

	Normalize package names

Note

Nothing special to do to normalize, just return
the original. (We do need it to be compatible
with the pkg_resource provider.)

	
salt.modules.pkgin.purge(name=None, pkgs=None, **kwargs)

	Package purges are not supported, this function is identical to
remove().

	name
	The name of the package to be deleted.

Multiple Package Options:

	pkgs
	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

	
salt.modules.pkgin.refresh_db(force=False, **kwargs)

	Use pkg update to get latest pkg_summary

	force
	Pass -f so that the cache is always refreshed.

New in version 2018.3.0.

CLI Example:

salt '*' pkg.refresh_db

	
salt.modules.pkgin.remove(name=None, pkgs=None, **kwargs)

	
	name
	The name of the package to be deleted.

Multiple Package Options:

	pkgs
	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a list containing the removed packages.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.pkgin.search(pkg_name, **kwargs)

	Searches for an exact match using pkgin ^package$

CLI Example:

salt '*' pkg.search 'mysql-server'

	
salt.modules.pkgin.upgrade(refresh=True, pkgs=None, **kwargs)

	Run pkg upgrade, if pkgin used. Otherwise do nothing

	refresh
	Whether or not to refresh the package database before installing.

Multiple Package Upgrade Options:

	pkgs
	A list of packages to upgrade from a software repository. Must be
passed as a python list.

CLI Example:

salt '*' pkg.upgrade pkgs='["foo","bar"]'

Returns a dictionary containing the changes:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade

	
salt.modules.pkgin.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

salt.modules.pkgng

Support for pkgng, the new package manager for FreeBSD

Important

If you feel that Salt should be using this module to manage packages on a
minion, and it is using a different module (or gives an error similar to
'pkg.install' is not available), see here.

Warning

This module has been completely rewritten. Up to and including version
0.17.x, it was available as the pkgng module, (pkgng.install,
pkgng.delete, etc.), but moving forward this module will no longer be
available as pkgng, as it will behave like a normal Salt pkg
provider. The documentation below should not be considered to apply to this
module in versions <= 0.17.x. If your minion is running a 0.17.x release or
older, then the documentation for this module can be viewed using the
sys.doc function:

salt bsdminion sys.doc pkgng

This module provides an interface to pkg(8). It acts as the default
package provider for FreeBSD 10 and newer. For FreeBSD hosts which have
been upgraded to use pkgng, you will need to override the pkg provider
by setting the providers parameter in your Minion config
file, in order to use this module to manage packages, like so:

providers:
 pkg: pkgng

	
salt.modules.pkgng.audit(jail=None, chroot=None, root=None)

	Audits installed packages against known vulnerabilities

CLI Example:

salt '*' pkg.audit

	jail
	Audit packages within the specified jail

CLI Example:

salt '*' pkg.audit jail=<jail name or id>

	chroot
	Audit packages within the specified chroot (ignored if jail is
specified)

	root
	Audit packages within the specified root (ignored if jail is
specified)

CLI Example:

salt '*' pkg.audit chroot=/path/to/chroot

	
salt.modules.pkgng.autoremove(jail=None, chroot=None, root=None, dryrun=False)

	Delete packages which were automatically installed as dependencies and are
not required anymore.

	dryrun
	Dry-run mode. The list of changes to packages is always printed,
but no changes are actually made.

CLI Example:

salt '*' pkg.autoremove
salt '*' pkg.autoremove jail=<jail name or id>
salt '*' pkg.autoremove dryrun=True
salt '*' pkg.autoremove jail=<jail name or id> dryrun=True

	
salt.modules.pkgng.available_version(*names, **kwargs)

	This function is an alias of latest_version.

Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package name> jail=<jail name or id>
salt '*' pkg.latest_version <package name> chroot=/path/to/chroot

	
salt.modules.pkgng.backup(file_name, jail=None, chroot=None, root=None)

	Export installed packages into yaml+mtree file

CLI Example:

salt '*' pkg.backup /tmp/pkg

	jail
	Backup packages from the specified jail. Note that this will run the
command within the jail, and so the path to the backup file will be
relative to the root of the jail

CLI Example:

salt '*' pkg.backup /tmp/pkg jail=<jail name or id>

	chroot
	Backup packages from the specified chroot (ignored if jail is
specified). Note that this will run the command within the chroot, and
so the path to the backup file will be relative to the root of the
chroot.

	root
	Backup packages from the specified root (ignored if jail is
specified). Note that this will run the command within the root, and
so the path to the backup file will be relative to the root of the
root.

CLI Example:

salt '*' pkg.backup /tmp/pkg chroot=/path/to/chroot

	
salt.modules.pkgng.check(jail=None, chroot=None, root=None, depends=False, recompute=False, checksum=False, checklibs=False)

	Sanity checks installed packages

	jail
	Perform the sanity check in the specified jail

CLI Example:

salt '*' pkg.check jail=<jail name or id>

	chroot
	Perform the sanity check in the specified chroot (ignored if jail
is specified)

	root
	Perform the sanity check in the specified root (ignored if jail
is specified)

CLI Example:

salt '*' pkg.check chroot=/path/to/chroot

Of the below, at least one must be set to True.

	depends
	Check for and install missing dependencies.

CLI Example:

salt '*' pkg.check depends=True

	recompute
	Recompute sizes and checksums of installed packages.

CLI Example:

salt '*' pkg.check recompute=True

	checksum
	Find invalid checksums for installed packages.

CLI Example:

salt '*' pkg.check checksum=True

	checklibs
	Regenerates the library dependency metadata for a package.

CLI Example:

salt '*' pkg.check checklibs=True

	
salt.modules.pkgng.clean(jail=None, chroot=None, root=None, clean_all=False, dryrun=False)

	Cleans the local cache of fetched remote packages

CLI Example:

salt '*' pkg.clean

	jail
	Cleans the package cache in the specified jail

CLI Example:

salt '*' pkg.clean jail=<jail name or id>

	chroot
	Cleans the package cache in the specified chroot (ignored if jail
is specified)

	root
	Cleans the package cache in the specified root (ignored if jail
is specified)

CLI Example:

salt '*' pkg.clean chroot=/path/to/chroot

	clean_all
	Clean all packages from the local cache (not just those that have been
superseded by newer versions).

CLI Example:

salt '*' pkg.clean clean_all=True

	dryrun
	Dry-run mode. This list of changes to the local cache is always
printed, but no changes are actually made.

CLI Example:

salt '*' pkg.clean dryrun=True

	
salt.modules.pkgng.delete(name=None, pkgs=None, jail=None, chroot=None, root=None, all_installed=False, force=False, glob=False, dryrun=False, recurse=False, regex=False, pcre=False, **kwargs)

	This function is an alias of remove.

Remove a package from the database and system

Note

This function can accessed using pkg.delete in addition to
pkg.remove, to more closely match the CLI usage of pkg(8).

	name
	The package to remove

CLI Example:

salt '*' pkg.remove <package name>

	jail
	Delete the package from the specified jail

	chroot
	Delete the package from the specified chroot (ignored if jail is
specified)

	root
	Delete the package from the specified root (ignored if jail is
specified)

	all_installed
	Deletes all installed packages from the system and empties the
database. USE WITH CAUTION!

CLI Example:

salt '*' pkg.remove all all_installed=True force=True

	force
	Forces packages to be removed despite leaving unresolved
dependencies.

CLI Example:

salt '*' pkg.remove <package name> force=True

	glob
	Treat the package names as shell glob patterns.

CLI Example:

salt '*' pkg.remove <package name> glob=True

	dryrun
	Dry run mode. The list of packages to delete is always printed, but
no packages are actually deleted.

CLI Example:

salt '*' pkg.remove <package name> dryrun=True

	recurse
	Delete all packages that require the listed package as well.

CLI Example:

salt '*' pkg.remove <package name> recurse=True

	regex
	Treat the package names as regular expressions.

CLI Example:

salt '*' pkg.remove <regular expression> regex=True

	pcre
	Treat the package names as extended regular expressions.

CLI Example:

salt '*' pkg.remove <extended regular expression> pcre=True

	
salt.modules.pkgng.fetch(name, jail=None, chroot=None, root=None, fetch_all=False, quiet=False, fromrepo=None, glob=True, regex=False, pcre=False, local=False, depends=False)

	Fetches remote packages

CLI Example:

salt '*' pkg.fetch <package name>

	jail
	Fetch package in the specified jail

CLI Example:

salt '*' pkg.fetch <package name> jail=<jail name or id>

	chroot
	Fetch package in the specified chroot (ignored if jail is
specified)

	root
	Fetch package in the specified root (ignored if jail is
specified)

CLI Example:

salt '*' pkg.fetch <package name> chroot=/path/to/chroot

	fetch_all
	Fetch all packages.

CLI Example:

salt '*' pkg.fetch <package name> fetch_all=True

	quiet
	Quiet mode. Show less output.

CLI Example:

salt '*' pkg.fetch <package name> quiet=True

	fromrepo
	Fetches packages from the given repo if multiple repo support
is enabled. See pkg.conf(5).

CLI Example:

salt '*' pkg.fetch <package name> fromrepo=repo

	glob
	Treat pkg_name as a shell glob pattern.

CLI Example:

salt '*' pkg.fetch <package name> glob=True

	regex
	Treat pkg_name as a regular expression.

CLI Example:

salt '*' pkg.fetch <regular expression> regex=True

	pcre
	Treat pkg_name is an extended regular expression.

CLI Example:

salt '*' pkg.fetch <extended regular expression> pcre=True

	local
	Skip updating the repository catalogs with pkg-update(8). Use the
local cache only.

CLI Example:

salt '*' pkg.fetch <package name> local=True

	depends
	Fetch the package and its dependencies as well.

CLI Example:

salt '*' pkg.fetch <package name> depends=True

	
salt.modules.pkgng.hold(name=None, pkgs=None, **kwargs)

	Version-lock packages

Note

This function is provided primarily for compatibility with some
parts of states.pkg.
Consider using Consider using pkg.lock instead. instead.

	name
	The name of the package to be held.

Multiple Package Options:

	pkgs
	A list of packages to hold. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.hold <package name>
salt '*' pkg.hold pkgs='["foo", "bar"]'

	
salt.modules.pkgng.info(*names, **kwargs)

	This function is an alias of version.

Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

Note

This function can accessed using pkg.info in addition to
pkg.version, to more closely match the CLI usage of pkg(8).

	jail
	Get package version information for the specified jail

	chroot
	Get package version information for the specified chroot (ignored if
jail is specified)

	root
	Get package version information for the specified root (ignored if
jail is specified)

	with_originFalse
	Return a nested dictionary containing both the origin name and version
for each specified package.

New in version 2014.1.0.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package name> jail=<jail name or id>
salt '*' pkg.version <package1> <package2> <package3> ...

	
salt.modules.pkgng.install(name=None, fromrepo=None, pkgs=None, sources=None, jail=None, chroot=None, root=None, orphan=False, force=False, glob=False, local=False, dryrun=False, quiet=False, reinstall_requires=False, regex=False, pcre=False, batch=False, **kwargs)

	Install package(s) from a repository

	name
	The name of the package to install

CLI Example:

salt '*' pkg.install <package name>

	jail
	Install the package into the specified jail

	chroot
	Install the package into the specified chroot (ignored if jail is
specified)

	root
	Install the package into the specified root (ignored if jail is
specified)

	orphan
	Mark the installed package as orphan. Will be automatically removed
if no other packages depend on them. For more information please
refer to pkg-autoremove(8).

CLI Example:

salt '*' pkg.install <package name> orphan=True

	force
	Force the reinstallation of the package if already installed.

CLI Example:

salt '*' pkg.install <package name> force=True

	glob
	Treat the package names as shell glob patterns.

CLI Example:

salt '*' pkg.install <package name> glob=True

	local
	Do not update the repository catalogs with pkg-update(8). A
value of True here is equivalent to using the -U flag with
pkg install.

CLI Example:

salt '*' pkg.install <package name> local=True

	dryrun
	Dru-run mode. The list of changes to packages is always printed,
but no changes are actually made.

CLI Example:

salt '*' pkg.install <package name> dryrun=True

	quiet
	Force quiet output, except when dryrun is used, where pkg install
will always show packages to be installed, upgraded or deleted.

CLI Example:

salt '*' pkg.install <package name> quiet=True

	reinstall_requires
	When used with force, reinstalls any packages that require the
given package.

CLI Example:

salt '*' pkg.install <package name> reinstall_requires=True force=True

Changed in version 2014.7.0: require kwarg renamed to reinstall_requires

	fromrepo
	In multi-repo mode, override the pkg.conf ordering and only attempt
to download packages from the named repository.

CLI Example:

salt '*' pkg.install <package name> fromrepo=repo

	regex
	Treat the package names as a regular expression

CLI Example:

salt '*' pkg.install <regular expression> regex=True

	pcre
	Treat the package names as extended regular expressions.

CLI Example:

	batch
	Use BATCH=true for pkg install, skipping all questions.
Be careful when using in production.

CLI Example:

salt '*' pkg.install <package name> batch=True

	
salt.modules.pkgng.latest_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package name> jail=<jail name or id>
salt '*' pkg.latest_version <package name> chroot=/path/to/chroot

	
salt.modules.pkgng.list_locked(**kwargs)

	Query the package database those packages which are
locked against reinstallation, modification or deletion.

Returns returns a list of package names with version strings

CLI Example:

salt '*' pkg.list_locked

	jail
	List locked packages within the specified jail

CLI Example:

salt '*' pkg.list_locked jail=<jail name or id>

	chroot
	List locked packages within the specified chroot (ignored if jail is
specified)

CLI Example:

salt '*' pkg.list_locked chroot=/path/to/chroot

	root
	List locked packages within the specified root (ignored if jail is
specified)

CLI Example:

salt '*' pkg.list_locked root=/path/to/chroot

	
salt.modules.pkgng.list_pkgs(versions_as_list=False, jail=None, chroot=None, root=None, with_origin=False, **kwargs)

	List the packages currently installed as a dict:

{'<package_name>': '<version>'}

	jail
	List the packages in the specified jail

	chroot
	List the packages in the specified chroot (ignored if jail is
specified)

	root
	List the packages in the specified root (ignored if jail is
specified)

	with_originFalse
	Return a nested dictionary containing both the origin name and version
for each installed package.

New in version 2014.1.0.

CLI Example:

salt '*' pkg.list_pkgs
salt '*' pkg.list_pkgs jail=<jail name or id>
salt '*' pkg.list_pkgs chroot=/path/to/chroot

	
salt.modules.pkgng.list_upgrades(refresh=True, **kwargs)

	List those packages for which an upgrade is available

The fromrepo argument is also supported, as used in pkg states.

CLI Example:

salt '*' pkg.list_upgrades

	jail
	List upgrades within the specified jail

CLI Example:

salt '*' pkg.list_upgrades jail=<jail name or id>

	chroot
	List upgrades within the specified chroot (ignored if jail is
specified)

CLI Example:

salt '*' pkg.list_upgrades chroot=/path/to/chroot

	root
	List upgrades within the specified root (ignored if jail is
specified)

CLI Example:

salt '*' pkg.list_upgrades root=/path/to/chroot

	
salt.modules.pkgng.lock(name, **kwargs)

	Lock the named package against reinstallation, modification or deletion.

Returns True if the named package was successfully locked.

CLI Example:

salt '*' pkg.lock <package name>

	jail
	Lock packages within the specified jail

CLI Example:

salt '*' pkg.lock <package name> jail=<jail name or id>

	chroot
	Lock packages within the specified chroot (ignored if jail is
specified)

CLI Example:

salt '*' pkg.lock <package name> chroot=/path/to/chroot

	root
	Lock packages within the specified root (ignored if jail is
specified)

CLI Example:

salt '*' pkg.lock <package name> root=/path/to/chroot

	
salt.modules.pkgng.locked(name, **kwargs)

	Query the package database to determine if the named package
is locked against reinstallation, modification or deletion.

Returns True if the named package is locked, False otherwise.

CLI Example:

salt '*' pkg.locked <package name>

	jail
	Test if a package is locked within the specified jail

CLI Example:

salt '*' pkg.locked <package name> jail=<jail name or id>

	chroot
	Test if a package is locked within the specified chroot (ignored if jail is
specified)

CLI Example:

salt '*' pkg.locked <package name> chroot=/path/to/chroot

	root
	Test if a package is locked within the specified root (ignored if jail is
specified)

CLI Example:

salt '*' pkg.locked <package name> root=/path/to/chroot

	
salt.modules.pkgng.parse_config(file_name='/usr/local/etc/pkg.conf')

	Return dict of uncommented global variables.

CLI Example:

salt '*' pkg.parse_config

NOTE: not working properly right now

	
salt.modules.pkgng.purge(name=None, pkgs=None, jail=None, chroot=None, root=None, all_installed=False, force=False, glob=False, dryrun=False, recurse=False, regex=False, pcre=False, **kwargs)

	This function is an alias of remove.

Remove a package from the database and system

Note

This function can accessed using pkg.delete in addition to
pkg.remove, to more closely match the CLI usage of pkg(8).

	name
	The package to remove

CLI Example:

salt '*' pkg.remove <package name>

	jail
	Delete the package from the specified jail

	chroot
	Delete the package from the specified chroot (ignored if jail is
specified)

	root
	Delete the package from the specified root (ignored if jail is
specified)

	all_installed
	Deletes all installed packages from the system and empties the
database. USE WITH CAUTION!

CLI Example:

salt '*' pkg.remove all all_installed=True force=True

	force
	Forces packages to be removed despite leaving unresolved
dependencies.

CLI Example:

salt '*' pkg.remove <package name> force=True

	glob
	Treat the package names as shell glob patterns.

CLI Example:

salt '*' pkg.remove <package name> glob=True

	dryrun
	Dry run mode. The list of packages to delete is always printed, but
no packages are actually deleted.

CLI Example:

salt '*' pkg.remove <package name> dryrun=True

	recurse
	Delete all packages that require the listed package as well.

CLI Example:

salt '*' pkg.remove <package name> recurse=True

	regex
	Treat the package names as regular expressions.

CLI Example:

salt '*' pkg.remove <regular expression> regex=True

	pcre
	Treat the package names as extended regular expressions.

CLI Example:

salt '*' pkg.remove <extended regular expression> pcre=True

	
salt.modules.pkgng.refresh_db(jail=None, chroot=None, root=None, force=False, **kwargs)

	Refresh PACKAGESITE contents

Note

This function can accessed using pkg.update in addition to
pkg.refresh_db, to more closely match the CLI usage of pkg(8).

CLI Example:

salt '*' pkg.refresh_db

	jail
	Refresh the pkg database within the specified jail

	chroot
	Refresh the pkg database within the specified chroot (ignored if
jail is specified)

	root
	Refresh the pkg database within the specified root (ignored if
jail is specified)

	force
	Force a full download of the repository catalog without regard to the
respective ages of the local and remote copies of the catalog.

CLI Example:

salt '*' pkg.refresh_db force=True

	
salt.modules.pkgng.remove(name=None, pkgs=None, jail=None, chroot=None, root=None, all_installed=False, force=False, glob=False, dryrun=False, recurse=False, regex=False, pcre=False, **kwargs)

	Remove a package from the database and system

Note

This function can accessed using pkg.delete in addition to
pkg.remove, to more closely match the CLI usage of pkg(8).

	name
	The package to remove

CLI Example:

salt '*' pkg.remove <package name>

	jail
	Delete the package from the specified jail

	chroot
	Delete the package from the specified chroot (ignored if jail is
specified)

	root
	Delete the package from the specified root (ignored if jail is
specified)

	all_installed
	Deletes all installed packages from the system and empties the
database. USE WITH CAUTION!

CLI Example:

salt '*' pkg.remove all all_installed=True force=True

	force
	Forces packages to be removed despite leaving unresolved
dependencies.

CLI Example:

salt '*' pkg.remove <package name> force=True

	glob
	Treat the package names as shell glob patterns.

CLI Example:

salt '*' pkg.remove <package name> glob=True

	dryrun
	Dry run mode. The list of packages to delete is always printed, but
no packages are actually deleted.

CLI Example:

salt '*' pkg.remove <package name> dryrun=True

	recurse
	Delete all packages that require the listed package as well.

CLI Example:

salt '*' pkg.remove <package name> recurse=True

	regex
	Treat the package names as regular expressions.

CLI Example:

salt '*' pkg.remove <regular expression> regex=True

	pcre
	Treat the package names as extended regular expressions.

CLI Example:

salt '*' pkg.remove <extended regular expression> pcre=True

	
salt.modules.pkgng.restore(file_name, jail=None, chroot=None, root=None)

	Reads archive created by pkg backup -d and recreates the database.

CLI Example:

salt '*' pkg.restore /tmp/pkg

	jail
	Restore database to the specified jail. Note that this will run the
command within the jail, and so the path to the file from which the pkg
database will be restored is relative to the root of the jail.

CLI Example:

salt '*' pkg.restore /tmp/pkg jail=<jail name or id>

	chroot
	Restore database to the specified chroot (ignored if jail is
specified). Note that this will run the command within the chroot, and
so the path to the file from which the pkg database will be restored is
relative to the root of the chroot.

	root
	Restore database to the specified root (ignored if jail is
specified). Note that this will run the command within the root, and
so the path to the file from which the pkg database will be restored is
relative to the root of the root.

CLI Example:

salt '*' pkg.restore /tmp/pkg chroot=/path/to/chroot

	
salt.modules.pkgng.search(name, jail=None, chroot=None, root=None, exact=False, glob=False, regex=False, pcre=False, comment=False, desc=False, full=False, depends=False, size=False, quiet=False, origin=False, prefix=False)

	Searches in remote package repositories

CLI Example:

salt '*' pkg.search pattern

	jail
	Perform the search using the pkg.conf(5) from the specified jail

CLI Example:

salt '*' pkg.search pattern jail=<jail name or id>

	chroot
	Perform the search using the pkg.conf(5) from the specified chroot
(ignored if jail is specified)

	root
	Perform the search using the pkg.conf(5) from the specified root
(ignored if jail is specified)

CLI Example:

salt '*' pkg.search pattern chroot=/path/to/chroot

	exact
	Treat pattern as exact pattern.

CLI Example:

salt '*' pkg.search pattern exact=True

	glob
	Treat pattern as a shell glob pattern.

CLI Example:

salt '*' pkg.search pattern glob=True

	regex
	Treat pattern as a regular expression.

CLI Example:

salt '*' pkg.search pattern regex=True

	pcre
	Treat pattern as an extended regular expression.

CLI Example:

salt '*' pkg.search pattern pcre=True

	comment
	Search for pattern in the package comment one-line description.

CLI Example:

salt '*' pkg.search pattern comment=True

	desc
	Search for pattern in the package description.

CLI Example:

salt '*' pkg.search pattern desc=True

	full
	Displays full information about the matching packages.

CLI Example:

salt '*' pkg.search pattern full=True

	depends
	Displays the dependencies of pattern.

CLI Example:

salt '*' pkg.search pattern depends=True

	size
	Displays the size of the package

CLI Example:

salt '*' pkg.search pattern size=True

	quiet
	Be quiet. Prints only the requested information without displaying
many hints.

CLI Example:

salt '*' pkg.search pattern quiet=True

	origin
	Displays pattern origin.

CLI Example:

salt '*' pkg.search pattern origin=True

	prefix
	Displays the installation prefix for each package matching pattern.

CLI Example:

salt '*' pkg.search pattern prefix=True

	
salt.modules.pkgng.stats(local=False, remote=False, jail=None, chroot=None, root=None, bytes=False)

	Return pkgng stats.

CLI Example:

salt '*' pkg.stats

	local
	Display stats only for the local package database.

CLI Example:

salt '*' pkg.stats local=True

	remote
	Display stats only for the remote package database(s).

CLI Example:

salt '*' pkg.stats remote=True

	bytes
	Display disk space usage in bytes only.

CLI Example:

salt '*' pkg.stats bytes=True

	jail
	Retrieve stats from the specified jail.

CLI Example:

salt '*' pkg.stats jail=<jail name or id>
salt '*' pkg.stats jail=<jail name or id> local=True
salt '*' pkg.stats jail=<jail name or id> remote=True

	chroot
	Retrieve stats from the specified chroot (ignored if jail is
specified).

	root
	Retrieve stats from the specified root (ignored if jail is
specified).

CLI Example:

salt '*' pkg.stats chroot=/path/to/chroot
salt '*' pkg.stats chroot=/path/to/chroot local=True
salt '*' pkg.stats chroot=/path/to/chroot remote=True

	
salt.modules.pkgng.unhold(name=None, pkgs=None, **kwargs)

	Remove version locks

Note

This function is provided primarily for compatibility with some parts of
states.pkg. Consider using
pkg.unlock instead.

	name
	The name of the package to be unheld

Multiple Package Options:

	pkgs
	A list of packages to unhold. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.unhold <package name>
salt '*' pkg.unhold pkgs='["foo", "bar"]'

	
salt.modules.pkgng.unlock(name, **kwargs)

	Unlock the named package against reinstallation, modification or deletion.

Returns True if the named package was successfully unlocked.

CLI Example:

salt '*' pkg.unlock <package name>

	jail
	Unlock packages within the specified jail

CLI Example:

salt '*' pkg.unlock <package name> jail=<jail name or id>

	chroot
	Unlock packages within the specified chroot (ignored if jail is
specified)

CLI Example:

salt '*' pkg.unlock <package name> chroot=/path/to/chroot

	root
	Unlock packages within the specified root (ignored if jail is
specified)

CLI Example:

salt '*' pkg.unlock <package name> root=/path/to/chroot

	
salt.modules.pkgng.update(jail=None, chroot=None, root=None, force=False, **kwargs)

	This function is an alias of refresh_db.

Refresh PACKAGESITE contents

Note

This function can accessed using pkg.update in addition to
pkg.refresh_db, to more closely match the CLI usage of pkg(8).

CLI Example:

salt '*' pkg.refresh_db

	jail
	Refresh the pkg database within the specified jail

	chroot
	Refresh the pkg database within the specified chroot (ignored if
jail is specified)

	root
	Refresh the pkg database within the specified root (ignored if
jail is specified)

	force
	Force a full download of the repository catalog without regard to the
respective ages of the local and remote copies of the catalog.

CLI Example:

salt '*' pkg.refresh_db force=True

	
salt.modules.pkgng.update_package_site(new_url)

	Updates remote package repo URL, PACKAGESITE var to be exact.

Must use http://, ftp://, or https:// protocol

CLI Example:

salt '*' pkg.update_package_site http://127.0.0.1/

	
salt.modules.pkgng.updating(name, jail=None, chroot=None, root=None, filedate=None, filename=None)

	'
Displays UPDATING entries of software packages

CLI Example:

salt '*' pkg.updating foo

	jail
	Perform the action in the specified jail

CLI Example:

salt '*' pkg.updating foo jail=<jail name or id>

	chroot
	Perform the action in the specified chroot (ignored if jail is
specified)

	root
	Perform the action in the specified root (ignored if jail is
specified)

CLI Example:

salt '*' pkg.updating foo chroot=/path/to/chroot

	filedate
	Only entries newer than date are shown. Use a YYYYMMDD date format.

CLI Example:

salt '*' pkg.updating foo filedate=20130101

	filename
	Defines an alternative location of the UPDATING file.

CLI Example:

salt '*' pkg.updating foo filename=/tmp/UPDATING

	
salt.modules.pkgng.upgrade(*names, **kwargs)

	Upgrade named or all packages (run a pkg upgrade). If <package name> is
omitted, the operation is executed on all packages.

Returns a dictionary containing the changes:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade <package name>

	jail
	Audit packages within the specified jail

CLI Example:

salt '*' pkg.upgrade <package name> jail=<jail name or id>

	chroot
	Audit packages within the specified chroot (ignored if jail is
specified)

	root
	Audit packages within the specified root (ignored if jail is
specified)

CLI Example:

salt '*' pkg.upgrade <package name> chroot=/path/to/chroot

Any of the below options can also be used with jail or chroot.

	force
	Force reinstalling/upgrading the whole set of packages.

CLI Example:

salt '*' pkg.upgrade <package name> force=True

	local
	Do not update the repository catalogs with pkg-update(8). A value
of True here is equivalent to using the -U flag with pkg
upgrade.

CLI Example:

salt '*' pkg.upgrade <package name> local=True

	dryrun
	Dry-run mode: show what packages have updates available, but do not
perform any upgrades. Repository catalogs will be updated as usual
unless the local option is also given.

CLI Example:

salt '*' pkg.upgrade <package name> dryrun=True

	fromrepo
	In multi-repo mode, override the pkg.conf ordering and only attempt
to upgrade packages from the named repository.

CLI Example:

salt '*' pkg.upgrade <package name> fromrepo=repo

	fetchonly
	Do not perform installation of packages, merely fetch
packages that should be upgraded and detect possible conflicts.

CLI Example:

salt '*' pkg.upgrade <package name> fetchonly=True

	
salt.modules.pkgng.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

Note

This function can accessed using pkg.info in addition to
pkg.version, to more closely match the CLI usage of pkg(8).

	jail
	Get package version information for the specified jail

	chroot
	Get package version information for the specified chroot (ignored if
jail is specified)

	root
	Get package version information for the specified root (ignored if
jail is specified)

	with_originFalse
	Return a nested dictionary containing both the origin name and version
for each specified package.

New in version 2014.1.0.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package name> jail=<jail name or id>
salt '*' pkg.version <package1> <package2> <package3> ...

	
salt.modules.pkgng.version_cmp(pkg1, pkg2, ignore_epoch=False, **kwargs)

	Do a cmp-style comparison on two packages. Return -1 if pkg1 < pkg2, 0 if
pkg1 == pkg2, and 1 if pkg1 > pkg2. Return None if there was a problem
making the comparison.

CLI Example:

salt '*' pkg.version_cmp '2.1.11' '2.1.12'

	
salt.modules.pkgng.which(path, jail=None, chroot=None, root=None, origin=False, quiet=False)

	Displays which package installed a specific file

CLI Example:

salt '*' pkg.which <file name>

	jail
	Perform the check in the specified jail

CLI Example:

salt '*' pkg.which <file name> jail=<jail name or id>

	chroot
	Perform the check in the specified chroot (ignored if jail is
specified)

	root
	Perform the check in the specified root (ignored if jail is
specified)

CLI Example:

salt '*' pkg.which <file name> chroot=/path/to/chroot

	origin
	Shows the origin of the package instead of name-version.

CLI Example:

salt '*' pkg.which <file name> origin=True

	quiet
	Quiet output.

CLI Example:

salt '*' pkg.which <file name> quiet=True

salt.modules.pkgutil

Pkgutil support for Solaris

Important

If you feel that Salt should be using this module to manage packages on a
minion, and it is using a different module (or gives an error similar to
'pkg.install' is not available), see here.

	
salt.modules.pkgutil.available_version(*names, **kwargs)

	This function is an alias of latest_version.

Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

CLI Example:

salt '*' pkgutil.latest_version CSWpython
salt '*' pkgutil.latest_version <package1> <package2> <package3> ...

	
salt.modules.pkgutil.install(name=None, refresh=False, version=None, pkgs=None, **kwargs)

	Install packages using the pkgutil tool.

CLI Example:

salt '*' pkg.install <package_name>
salt '*' pkg.install SMClgcc346

Multiple Package Installation Options:

	pkgs
	A list of packages to install from OpenCSW. Must be passed as a python
list.

CLI Example:

salt '*' pkg.install pkgs='["foo", "bar"]'
salt '*' pkg.install pkgs='["foo", {"bar": "1.2.3"}]'

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

	
salt.modules.pkgutil.latest_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

CLI Example:

salt '*' pkgutil.latest_version CSWpython
salt '*' pkgutil.latest_version <package1> <package2> <package3> ...

	
salt.modules.pkgutil.list_pkgs(versions_as_list=False, **kwargs)

	List the packages currently installed as a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs
salt '*' pkg.list_pkgs versions_as_list=True

	
salt.modules.pkgutil.list_upgrades(refresh=True, **kwargs)

	List all available package upgrades on this system

CLI Example:

salt '*' pkgutil.list_upgrades

	
salt.modules.pkgutil.purge(name=None, pkgs=None, **kwargs)

	Package purges are not supported, this function is identical to
remove().

	name
	The name of the package to be deleted.

Multiple Package Options:

	pkgs
	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

	
salt.modules.pkgutil.refresh_db()

	Updates the pkgutil repo database (pkgutil -U)

CLI Example:

salt '*' pkgutil.refresh_db

	
salt.modules.pkgutil.remove(name=None, pkgs=None, **kwargs)

	Remove a package and all its dependencies which are not in use by other
packages.

	name
	The name of the package to be deleted.

Multiple Package Options:

	pkgs
	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.pkgutil.upgrade(refresh=True)

	Upgrade all of the packages to the latest available version.

Returns a dict containing the changes:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkgutil.upgrade

	
salt.modules.pkgutil.upgrade_available(name)

	Check if there is an upgrade available for a certain package

CLI Example:

salt '*' pkgutil.upgrade_available CSWpython

	
salt.modules.pkgutil.version(*names, **kwargs)

	Returns a version if the package is installed, else returns an empty string

CLI Example:

salt '*' pkgutil.version CSWpython

salt.modules.portage_config

Configure portage(5)

	
salt.modules.portage_config.append_to_package_conf(conf, atom='', flags=None, string='', overwrite=False)

	Append a string or a list of flags for a given package or DEPEND atom to a
given configuration file.

CLI Example:

salt '*' portage_config.append_to_package_conf use string="app-admin/salt ldap -libvirt"
salt '*' portage_config.append_to_package_conf use atom="> = app-admin/salt-0.14.1" flags="['ldap', '-libvirt']"

	
salt.modules.portage_config.append_use_flags(atom, uses=None, overwrite=False)

	Append a list of use flags for a given package or DEPEND atom

CLI Example:

salt '*' portage_config.append_use_flags "app-admin/salt[ldap, -libvirt]"
salt '*' portage_config.append_use_flags ">=app-admin/salt-0.14.1" "['ldap', '-libvirt']"

	
salt.modules.portage_config.enforce_nice_config()

	Enforce a nice tree structure for /etc/portage/package.* configuration
files.

See also

	salt.modules.ebuild.ex_mod_init()
	for information on automatically running this when pkg is used.

CLI Example:

salt '*' portage_config.enforce_nice_config

	
salt.modules.portage_config.filter_flags(use, use_expand_hidden, usemasked, useforced)

	
New in version 2015.8.0.

Filter function to remove hidden or otherwise not normally
visible USE flags from a list.

@type use: list
@param use: the USE flag list to be filtered.
@type use_expand_hidden: list
@param use_expand_hidden: list of flags hidden.
@type usemasked: list
@param usemasked: list of masked USE flags.
@type useforced: list
@param useforced: the forced USE flags.
@rtype: list
@return the filtered USE flags.

	
salt.modules.portage_config.get_all_cpv_use(cp)

	
New in version 2015.8.0.

Uses portage to determine final USE flags and settings for an emerge.

@type cp: string
@param cp: eg cat/pkg
@rtype: lists
@return use, use_expand_hidden, usemask, useforce

	
salt.modules.portage_config.get_cleared_flags(cp)

	
New in version 2015.8.0.

Uses portage for compare use flags which is used for installing package
and use flags which now exist int /etc/portage/package.use/

@type cp: string
@param cp: eg cat/pkg
@rtype: tuple
@rparam: tuple with two lists - list of used flags and
list of flags which will be used

	
salt.modules.portage_config.get_flags_from_package_conf(conf, atom)

	Get flags for a given package or DEPEND atom.
Warning: This only works if the configuration files tree is in the correct
format (the one enforced by enforce_nice_config)

CLI Example:

salt '*' portage_config.get_flags_from_package_conf license salt

	
salt.modules.portage_config.get_installed_use(cp, use='USE')

	
New in version 2015.8.0.

Gets the installed USE flags from the VARDB.

@type: cp: string
@param cp: cat/pkg
@type use: string
@param use: 1 of ["USE", "PKGUSE"]
@rtype list
@returns [] or the list of IUSE flags

	
salt.modules.portage_config.get_iuse(cp)

	
New in version 2015.8.0.

Gets the current IUSE flags from the tree.

@type: cpv: string
@param cpv: cat/pkg
@rtype list
@returns [] or the list of IUSE flags

	
salt.modules.portage_config.get_missing_flags(conf, atom, flags)

	Find out which of the given flags are currently not set.

CLI Example:

salt '*' portage_config.get_missing_flags use salt "['ldap', '-libvirt', 'openssl']"

	
salt.modules.portage_config.has_flag(conf, atom, flag)

	Verify if the given package or DEPEND atom has the given flag.
Warning: This only works if the configuration files tree is in the correct
format (the one enforced by enforce_nice_config)

CLI Example:

salt '*' portage_config.has_flag license salt Apache-2.0

	
salt.modules.portage_config.has_use(atom, use)

	Verify if the given package or DEPEND atom has the given use flag.
Warning: This only works if the configuration files tree is in the correct
format (the one enforced by enforce_nice_config)

CLI Example:

salt '*' portage_config.has_use salt libvirt

	
salt.modules.portage_config.is_changed_uses(cp)

	
New in version 2015.8.0.

Uses portage for determine if the use flags of installed package
is compatible with use flags in portage configs.

@type cp: string
@param cp: eg cat/pkg

	
salt.modules.portage_config.is_present(conf, atom)

	Tell if a given package or DEPEND atom is present in the configuration
files tree.
Warning: This only works if the configuration files tree is in the correct
format (the one enforced by enforce_nice_config)

CLI Example:

salt '*' portage_config.is_present unmask salt

salt.modules.postfix

Support for Postfix

This module is currently little more than a config file viewer and editor. It
is able to read the master.cf file (which is one style) and files in the style
of main.cf (which is a different style, that is used in multiple postfix
configuration files).

The design of this module is such that when files are edited, a minimum of
changes are made to them. Each file should look as if it has been edited by
hand; order, comments and whitespace are all preserved.

	
salt.modules.postfix.delete(queue_id)

	Delete message(s) from the mail queue

CLI Example:

salt '*' postfix.delete 5C33CA0DEA

salt '*' postfix.delete ALL

	
salt.modules.postfix.hold(queue_id)

	Put message(s) on hold from the mail queue

CLI Example:

salt '*' postfix.hold 5C33CA0DEA

salt '*' postfix.hold ALL

	
salt.modules.postfix.requeue(queue_id)

	Requeue message(s) in the mail queue

CLI Example:

salt '*' postfix.requeue 5C33CA0DEA

salt '*' postfix.requeue ALL

	
salt.modules.postfix.set_main(key, value, path='/etc/postfix/main.cf')

	Set a single config value in the main.cf file. If the value does not already
exist, it will be appended to the end.

CLI Example:

salt <minion> postfix.set_main mailq_path /usr/bin/mailq

	
salt.modules.postfix.set_master(service, conn_type, private='y', unpriv='y', chroot='y', wakeup='n', maxproc='100', command='', write_conf=True, path='/etc/postfix/master.cf')

	Set a single config value in the master.cf file. If the value does not
already exist, it will be appended to the end.

Because of shell parsing issues, '-' cannot be set as a value, as is normal
in the master.cf file; either 'y', 'n' or a number should be used when
calling this function from the command line. If the value used matches the
default, it will internally be converted to a '-'. Calling this function
from the Python API is not affected by this limitation

The settings and their default values, in order, are: service (required),
conn_type (required), private (y), unpriv (y), chroot (y), wakeup (n),
maxproc (100), command (required).

By default, this function will write out the changes to the master.cf file,
and then returns the full contents of the file. By setting the
write_conf option to False, it will skip writing the file.

CLI Example:

salt <minion> postfix.set_master smtp inet n y n n 100 smtpd

	
salt.modules.postfix.show_main(path='/etc/postfix/main.cf')

	Return a dict of active config values. This does not include comments,
spacing or order. Bear in mind that order is functionally important in the
main.cf file, since keys can be referred to as variables. This means that
the data returned from this function should not be used for direct
modification of the main.cf file; other functions are available for that.

CLI Examples:

salt <minion> postfix.show_main
salt <minion> postfix.show_main path=/path/to/main.cf

	
salt.modules.postfix.show_master(path='/etc/postfix/master.cf')

	Return a dict of active config values. This does not include comments,
spacing or order.

The data returned from this function should not be used for direct
modification of the main.cf file; other functions are available for that.

CLI Examples:

salt <minion> postfix.show_master
salt <minion> postfix.show_master path=/path/to/master.cf

	
salt.modules.postfix.show_queue()

	Show contents of the mail queue

CLI Example:

salt '*' postfix.show_queue

	
salt.modules.postfix.unhold(queue_id)

	Set held message(s) in the mail queue to unheld

CLI Example:

salt '*' postfix.unhold 5C33CA0DEA

salt '*' postfix.unhold ALL

salt.modules.postgres

Module to provide Postgres compatibility to salt.

	configuration:

	In order to connect to Postgres, certain configuration is
required in /etc/salt/minion on the relevant minions. Some sample configs
might look like:

postgres.host: 'localhost'
postgres.port: '5432'
postgres.user: 'postgres' -> db user
postgres.pass: ''
postgres.maintenance_db: 'postgres'

The default for the maintenance_db is 'postgres' and in most cases it can
be left at the default setting.
This data can also be passed into pillar. Options passed into opts will
overwrite options passed into pillar

To prevent Postgres commands from running arbitrarily long, a timeout (in seconds) can be set

postgres.timeout: 60

New in version 3006.0.

	note:

	This module uses MD5 hashing which may not be compliant with certain
security audits.

	note:

	When installing postgres from the official postgres repos, on certain
linux distributions, either the psql or the initdb binary is not
automatically placed on the path. Add a configuration to the location
of the postgres bin's path to the relevant minion for this module:

postgres.bins_dir: '/usr/pgsql-9.5/bin/'

	
salt.modules.postgres.available_extensions(user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	List available postgresql extensions

CLI Example:

salt '*' postgres.available_extensions

	
salt.modules.postgres.create_extension(name, if_not_exists=None, schema=None, ext_version=None, from_version=None, user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	Install a postgresql extension

CLI Example:

salt '*' postgres.create_extension 'adminpack'

	
salt.modules.postgres.create_metadata(name, ext_version=None, schema=None, user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	Get lifecycle information about an extension

CLI Example:

salt '*' postgres.create_metadata adminpack

	
salt.modules.postgres.datadir_exists(name)

	
New in version 2016.3.0.

Checks if postgres data directory has been initialized

CLI Example:

salt '*' postgres.datadir_exists '/var/lib/pgsql/data'

	name
	Name of the directory to check

	
salt.modules.postgres.datadir_init(name, auth='password', user=None, password=None, encoding='UTF8', locale=None, waldir=None, checksums=False, runas=None)

	
New in version 2016.3.0.

Initializes a postgres data directory

CLI Example:

salt '*' postgres.datadir_init '/var/lib/pgsql/data'

	name
	The name of the directory to initialize

	auth
	The default authentication method for local connections

	password
	The password to set for the postgres user

	user
	The database superuser name

	encoding
	The default encoding for new databases

	locale
	The default locale for new databases

	waldir
	The transaction log (WAL) directory (default is to keep WAL
inside the data directory)

New in version 2019.2.0.

	checksums
	If True, the cluster will be created with data page checksums.

Note

Data page checksums are supported since PostgreSQL 9.3.

New in version 2019.2.0.

	runas
	The system user the operation should be performed on behalf of

	
salt.modules.postgres.db_alter(name, user=None, host=None, port=None, maintenance_db=None, password=None, tablespace=None, owner=None, owner_recurse=False, runas=None)

	Change tablespace or/and owner of database.

CLI Example:

salt '*' postgres.db_alter dbname owner=otheruser

	
salt.modules.postgres.db_create(name, user=None, host=None, port=None, maintenance_db=None, password=None, tablespace=None, encoding=None, lc_collate=None, lc_ctype=None, owner=None, template=None, runas=None)

	Adds a databases to the Postgres server.

CLI Example:

salt '*' postgres.db_create 'dbname'

salt '*' postgres.db_create 'dbname' template=template_postgis

	
salt.modules.postgres.db_exists(name, user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	Checks if a database exists on the Postgres server.

CLI Example:

salt '*' postgres.db_exists 'dbname'

	
salt.modules.postgres.db_list(user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	Return dictionary with information about databases of a Postgres server.

CLI Example:

salt '*' postgres.db_list

	
salt.modules.postgres.db_remove(name, user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	Removes a databases from the Postgres server.

CLI Example:

salt '*' postgres.db_remove 'dbname'

	
salt.modules.postgres.drop_extension(name, if_exists=None, restrict=None, cascade=None, user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	Drop an installed postgresql extension

CLI Example:

salt '*' postgres.drop_extension 'adminpack'

	
salt.modules.postgres.get_available_extension(name, user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	Get info about an available postgresql extension

CLI Example:

salt '*' postgres.get_available_extension plpgsql

	
salt.modules.postgres.get_installed_extension(name, user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	Get info about an installed postgresql extension

CLI Example:

salt '*' postgres.get_installed_extension plpgsql

	
salt.modules.postgres.group_create(groupname, user=None, host=None, port=None, maintenance_db=None, password=None, createdb=None, createroles=None, encrypted=None, login=None, inherit=None, superuser=None, replication=None, rolepassword=None, groups=None, runas=None)

	Creates a Postgres group. A group is postgres is similar to a user, but
cannot login.

CLI Example:

salt '*' postgres.group_create 'groupname' user='user' \
 host='hostname' port='port' password='password' \
 rolepassword='rolepassword'

	
salt.modules.postgres.group_remove(groupname, user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	Removes a group from the Postgres server.

CLI Example:

salt '*' postgres.group_remove 'groupname'

	
salt.modules.postgres.group_update(groupname, user=None, host=None, port=None, maintenance_db=None, password=None, createdb=None, createroles=None, encrypted=None, inherit=None, login=None, superuser=None, replication=None, rolepassword=None, groups=None, runas=None)

	Updates a postgres group

CLI Examples:

salt '*' postgres.group_update 'username' user='user' \
 host='hostname' port='port' password='password' \
 rolepassword='rolepassword'

	
salt.modules.postgres.has_privileges(name, object_name, object_type, privileges=None, grant_option=None, prepend='public', maintenance_db=None, user=None, host=None, port=None, password=None, runas=None)

	
New in version 2016.3.0.

Check if a role has the specified privileges on an object

CLI Example:

salt '*' postgres.has_privileges user_name table_name table \
SELECT,INSERT maintenance_db=db_name

	name
	Name of the role whose privileges should be checked on object_type

	object_name
	Name of the object on which the check is to be performed

	object_type
	The object type, which can be one of the following:

	table

	sequence

	schema

	tablespace

	language

	database

	group

	function

	privileges
	Comma separated list of privileges to check, from the list below:

	INSERT

	CREATE

	TRUNCATE

	CONNECT

	TRIGGER

	SELECT

	USAGE

	TEMPORARY

	UPDATE

	EXECUTE

	REFERENCES

	DELETE

	ALL

	grant_option
	If grant_option is set to True, the grant option check is performed

	prepend
	Table and Sequence object types live under a schema so this should be
provided if the object is not under the default public schema

	maintenance_db
	The database to connect to

	user
	database username if different from config or default

	password
	user password if any password for a specified user

	host
	Database host if different from config or default

	port
	Database port if different from config or default

	runas
	System user all operations should be performed on behalf of

	
salt.modules.postgres.installed_extensions(user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	List installed postgresql extensions

CLI Example:

salt '*' postgres.installed_extensions

	
salt.modules.postgres.is_available_extension(name, user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	Test if a specific extension is available

CLI Example:

salt '*' postgres.is_available_extension

	
salt.modules.postgres.is_installed_extension(name, user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	Test if a specific extension is installed

CLI Example:

salt '*' postgres.is_installed_extension

	
salt.modules.postgres.language_create(name, maintenance_db, user=None, host=None, port=None, password=None, runas=None)

	
New in version 2016.3.0.

Installs a language into a database

CLI Example:

salt '*' postgres.language_create plpgsql dbname

	name
	Language to install

	maintenance_db
	The database to install the language in

	user
	database username if different from config or default

	password
	user password if any password for a specified user

	host
	Database host if different from config or default

	port
	Database port if different from config or default

	runas
	System user all operations should be performed on behalf of

	
salt.modules.postgres.language_exists(name, maintenance_db, user=None, host=None, port=None, password=None, runas=None)

	
New in version 2016.3.0.

Checks if language exists in a database.

CLI Example:

salt '*' postgres.language_exists plpgsql dbname

	name
	Language to check for

	maintenance_db
	The database to check in

	user
	database username if different from config or default

	password
	user password if any password for a specified user

	host
	Database host if different from config or default

	port
	Database port if different from config or default

	runas
	System user all operations should be performed on behalf of

	
salt.modules.postgres.language_list(maintenance_db, user=None, host=None, port=None, password=None, runas=None)

	
New in version 2016.3.0.

Return a list of languages in a database.

CLI Example:

salt '*' postgres.language_list dbname

	maintenance_db
	The database to check

	user
	database username if different from config or default

	password
	user password if any password for a specified user

	host
	Database host if different from config or default

	port
	Database port if different from config or default

	runas
	System user all operations should be performed on behalf of

	
salt.modules.postgres.language_remove(name, maintenance_db, user=None, host=None, port=None, password=None, runas=None)

	
New in version 2016.3.0.

Removes a language from a database

CLI Example:

salt '*' postgres.language_remove plpgsql dbname

	name
	Language to remove

	maintenance_db
	The database to install the language in

	user
	database username if different from config or default

	password
	user password if any password for a specified user

	host
	Database host if different from config or default

	port
	Database port if different from config or default

	runas
	System user all operations should be performed on behalf of

	
salt.modules.postgres.owner_to(dbname, ownername, user=None, host=None, port=None, password=None, runas=None)

	Set the owner of all schemas, functions, tables, views and sequences to
the given username.

CLI Example:

salt '*' postgres.owner_to 'dbname' 'username'

	
salt.modules.postgres.privileges_grant(name, object_name, object_type, privileges=None, grant_option=None, prepend='public', maintenance_db=None, user=None, host=None, port=None, password=None, runas=None)

	
New in version 2016.3.0.

Grant privileges on a postgres object

CLI Example:

salt '*' postgres.privileges_grant user_name table_name table \
SELECT,UPDATE maintenance_db=db_name

	name
	Name of the role to which privileges should be granted

	object_name
	Name of the object on which the grant is to be performed

	object_type
	The object type, which can be one of the following:

	table

	sequence

	schema

	tablespace

	language

	database

	group

	function

	privileges
	Comma separated list of privileges to grant, from the list below:

	INSERT

	CREATE

	TRUNCATE

	CONNECT

	TRIGGER

	SELECT

	USAGE

	TEMPORARY

	UPDATE

	EXECUTE

	REFERENCES

	DELETE

	ALL

	grant_option
	If grant_option is set to True, the recipient of the privilege can
in turn grant it to others

	prepend
	Table and Sequence object types live under a schema so this should be
provided if the object is not under the default public schema

	maintenance_db
	The database to connect to

	user
	database username if different from config or default

	password
	user password if any password for a specified user

	host
	Database host if different from config or default

	port
	Database port if different from config or default

	runas
	System user all operations should be performed on behalf of

	
salt.modules.postgres.privileges_list(name, object_type, prepend='public', maintenance_db=None, user=None, host=None, port=None, password=None, runas=None)

	
New in version 2016.3.0.

Return a list of privileges for the specified object.

CLI Example:

salt '*' postgres.privileges_list table_name table maintenance_db=db_name

	name
	Name of the object for which the permissions should be returned

	object_type
	The object type, which can be one of the following:

	table

	sequence

	schema

	tablespace

	language

	database

	group

	function

	prepend
	Table and Sequence object types live under a schema so this should be
provided if the object is not under the default public schema

	maintenance_db
	The database to connect to

	user
	database username if different from config or default

	password
	user password if any password for a specified user

	host
	Database host if different from config or default

	port
	Database port if different from config or default

	runas
	System user all operations should be performed on behalf of

	
salt.modules.postgres.privileges_revoke(name, object_name, object_type, privileges=None, prepend='public', maintenance_db=None, user=None, host=None, port=None, password=None, runas=None)

	
New in version 2016.3.0.

Revoke privileges on a postgres object

CLI Example:

salt '*' postgres.privileges_revoke user_name table_name table \
SELECT,UPDATE maintenance_db=db_name

	name
	Name of the role whose privileges should be revoked

	object_name
	Name of the object on which the revoke is to be performed

	object_type
	The object type, which can be one of the following:

	table

	sequence

	schema

	tablespace

	language

	database

	group

	function

	privileges
	Comma separated list of privileges to revoke, from the list below:

	INSERT

	CREATE

	TRUNCATE

	CONNECT

	TRIGGER

	SELECT

	USAGE

	TEMPORARY

	UPDATE

	EXECUTE

	REFERENCES

	DELETE

	ALL

	maintenance_db
	The database to connect to

	user
	database username if different from config or default

	password
	user password if any password for a specified user

	host
	Database host if different from config or default

	port
	Database port if different from config or default

	runas
	System user all operations should be performed on behalf of

	
salt.modules.postgres.psql_query(query, user=None, host=None, port=None, maintenance_db=None, password=None, runas=None, write=False)

	Run an SQL-Query and return the results as a list. This command
only supports SELECT statements. This limitation can be worked around
with a query like this:

WITH updated AS (UPDATE pg_authid SET rolconnlimit = 2000 WHERE
rolname = 'rolename' RETURNING rolconnlimit) SELECT * FROM updated;

	query
	The query string.

	user
	Database username, if different from config or default.

	host
	Database host, if different from config or default.

	port
	Database port, if different from the config or default.

	maintenance_db
	The database to run the query against.

	password
	User password, if different from the config or default.

	runas
	User to run the command as.

	write
	Mark query as READ WRITE transaction.

CLI Example:

salt '*' postgres.psql_query 'select * from pg_stat_activity'

	
salt.modules.postgres.role_get(name, user=None, host=None, port=None, maintenance_db=None, password=None, runas=None, return_password=False)

	Return a dict with information about users of a Postgres server.

Set return_password to True to get password hash in the result.

CLI Example:

salt '*' postgres.role_get postgres

	
salt.modules.postgres.schema_create(dbname, name, owner=None, user=None, db_user=None, db_password=None, db_host=None, db_port=None)

	Creates a Postgres schema.

CLI Example:

salt '*' postgres.schema_create dbname name owner='owner' \
 user='user' \
 db_user='user' db_password='password'
 db_host='hostname' db_port='port'

	
salt.modules.postgres.schema_exists(dbname, name, user=None, db_user=None, db_password=None, db_host=None, db_port=None)

	Checks if a schema exists on the Postgres server.

CLI Example:

salt '*' postgres.schema_exists dbname schemaname

	dbname
	Database name we query on

	name
	Schema name we look for

	user
	The system user the operation should be performed on behalf of

	db_user
	database username if different from config or default

	db_password
	user password if any password for a specified user

	db_host
	Database host if different from config or default

	db_port
	Database port if different from config or default

	
salt.modules.postgres.schema_get(dbname, name, user=None, db_user=None, db_password=None, db_host=None, db_port=None)

	Return a dict with information about schemas in a database.

CLI Example:

salt '*' postgres.schema_get dbname name

	dbname
	Database name we query on

	name
	Schema name we look for

	user
	The system user the operation should be performed on behalf of

	db_user
	database username if different from config or default

	db_password
	user password if any password for a specified user

	db_host
	Database host if different from config or default

	db_port
	Database port if different from config or default

	
salt.modules.postgres.schema_list(dbname, user=None, db_user=None, db_password=None, db_host=None, db_port=None)

	Return a dict with information about schemas in a Postgres database.

CLI Example:

salt '*' postgres.schema_list dbname

	dbname
	Database name we query on

	user
	The system user the operation should be performed on behalf of

	db_user
	database username if different from config or default

	db_password
	user password if any password for a specified user

	db_host
	Database host if different from config or default

	db_port
	Database port if different from config or default

	
salt.modules.postgres.schema_remove(dbname, name, user=None, db_user=None, db_password=None, db_host=None, db_port=None)

	Removes a schema from the Postgres server.

CLI Example:

salt '*' postgres.schema_remove dbname schemaname

	dbname
	Database name we work on

	schemaname
	The schema's name we'll remove

	user
	System user all operations should be performed on behalf of

	db_user
	database username if different from config or default

	db_password
	user password if any password for a specified user

	db_host
	Database host if different from config or default

	db_port
	Database port if different from config or default

	
salt.modules.postgres.tablespace_alter(name, user=None, host=None, port=None, maintenance_db=None, password=None, new_name=None, new_owner=None, set_option=None, reset_option=None, runas=None)

	Change tablespace name, owner, or options.

CLI Example:

salt '*' postgres.tablespace_alter tsname new_owner=otheruser
salt '*' postgres.tablespace_alter index_space new_name=fast_raid
salt '*' postgres.tablespace_alter test set_option="{'seq_page_cost': '1.1'}"
salt '*' postgres.tablespace_alter tsname reset_option=seq_page_cost

New in version 2015.8.0.

	
salt.modules.postgres.tablespace_create(name, location, options=None, owner=None, user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	Adds a tablespace to the Postgres server.

CLI Example:

salt '*' postgres.tablespace_create tablespacename '/path/datadir'

New in version 2015.8.0.

	
salt.modules.postgres.tablespace_exists(name, user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	Checks if a tablespace exists on the Postgres server.

CLI Example:

salt '*' postgres.tablespace_exists 'dbname'

New in version 2015.8.0.

	
salt.modules.postgres.tablespace_list(user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	Return dictionary with information about tablespaces of a Postgres server.

CLI Example:

salt '*' postgres.tablespace_list

New in version 2015.8.0.

	
salt.modules.postgres.tablespace_remove(name, user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	Removes a tablespace from the Postgres server.

CLI Example:

salt '*' postgres.tablespace_remove tsname

New in version 2015.8.0.

	
salt.modules.postgres.user_create(username, user=None, host=None, port=None, maintenance_db=None, password=None, createdb=None, createroles=None, inherit=None, login=None, connlimit=None, encrypted=None, superuser=None, replication=None, rolepassword=None, valid_until=None, groups=None, runas=None)

	Creates a Postgres user.

CLI Examples:

salt '*' postgres.user_create 'username' user='user' \
 host='hostname' port='port' password='password' \
 rolepassword='rolepassword' valid_until='valid_until'

	
salt.modules.postgres.user_exists(name, user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	Checks if a user exists on the Postgres server.

CLI Example:

salt '*' postgres.user_exists 'username'

	
salt.modules.postgres.user_list(user=None, host=None, port=None, maintenance_db=None, password=None, runas=None, return_password=False)

	Return a dict with information about users of a Postgres server.

Set return_password to True to get password hash in the result.

CLI Example:

salt '*' postgres.user_list

	
salt.modules.postgres.user_remove(username, user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	Removes a user from the Postgres server.

CLI Example:

salt '*' postgres.user_remove 'username'

	
salt.modules.postgres.user_update(username, user=None, host=None, port=None, maintenance_db=None, password=None, createdb=None, createroles=None, encrypted=None, superuser=None, inherit=None, login=None, connlimit=None, replication=None, rolepassword=None, valid_until=None, groups=None, runas=None)

	Updates a Postgres user.

CLI Examples:

salt '*' postgres.user_update 'username' user='user' \
 host='hostname' port='port' password='password' \
 rolepassword='rolepassword' valid_until='valid_until'

	
salt.modules.postgres.version(user=None, host=None, port=None, maintenance_db=None, password=None, runas=None)

	Return the version of a Postgres server.

CLI Example:

salt '*' postgres.version

salt.modules.poudriere

Support for poudriere

	
salt.modules.poudriere.bulk_build(jail, pkg_file, keep=False)

	Run bulk build on poudriere server.

Return number of pkg builds, failures, and errors, on error dump to CLI

CLI Example:

salt -N buildbox_group poudriere.bulk_build 90amd64 /root/pkg_list

	
salt.modules.poudriere.create_jail(name, arch, version='9.0-RELEASE')

	Creates a new poudriere jail if one does not exist

NOTE creating a new jail will take some time the master is not hanging

CLI Example:

salt '*' poudriere.create_jail 90amd64 amd64

	
salt.modules.poudriere.create_ports_tree()

	Not working need to run portfetch non interactive

	
salt.modules.poudriere.delete_jail(name)

	Deletes poudriere jail with name

CLI Example:

salt '*' poudriere.delete_jail 90amd64

	
salt.modules.poudriere.info_jail(name)

	Show information on name poudriere jail

CLI Example:

salt '*' poudriere.info_jail head-amd64

	
salt.modules.poudriere.is_jail(name)

	Return True if jail exists False if not

CLI Example:

salt '*' poudriere.is_jail <jail name>

	
salt.modules.poudriere.list_jails()

	Return a list of current jails managed by poudriere

CLI Example:

salt '*' poudriere.list_jails

	
salt.modules.poudriere.list_ports()

	Return a list of current port trees managed by poudriere

CLI Example:

salt '*' poudriere.list_ports

	
salt.modules.poudriere.make_pkgng_aware(jname)

	Make jail jname pkgng aware

CLI Example:

salt '*' poudriere.make_pkgng_aware <jail name>

	
salt.modules.poudriere.parse_config(config_file=None)

	Returns a dict of poudriere main configuration definitions

CLI Example:

salt '*' poudriere.parse_config

	
salt.modules.poudriere.update_jail(name)

	Run freebsd-update on name poudriere jail

CLI Example:

salt '*' poudriere.update_jail freebsd:10:x86:64

	
salt.modules.poudriere.update_ports_tree(ports_tree)

	Updates the ports tree, either the default or the ports_tree specified

CLI Example:

salt '*' poudriere.update_ports_tree staging

	
salt.modules.poudriere.version()

	Return poudriere version

CLI Example:

salt '*' poudriere.version

salt.modules.powerpath

powerpath support.

Assumes RedHat

	
salt.modules.powerpath.add_license(key)

	Add a license

	
salt.modules.powerpath.has_powerpath()

	

	
salt.modules.powerpath.list_licenses()

	returns a list of applied powerpath license keys

	
salt.modules.powerpath.remove_license(key)

	Remove a license

salt.modules.proxy

This module allows you to manage proxy settings

salt '*' network.get_http_proxy

	
salt.modules.proxy.get_ftp_proxy(network_service='Ethernet')

	Returns the current ftp proxy settings

	network_service
	The network service to apply the changes to, this only necessary on
macOS

CLI Example:

salt '*' proxy.get_ftp_proxy Ethernet

	
salt.modules.proxy.get_http_proxy(network_service='Ethernet')

	Returns the current http proxy settings

	network_service
	The network service to apply the changes to, this only necessary on
macOS

CLI Example:

salt '*' proxy.get_http_proxy Ethernet

	
salt.modules.proxy.get_https_proxy(network_service='Ethernet')

	Returns the current https proxy settings

	network_service
	The network service to apply the changes to, this only necessary on
macOS

CLI Example:

salt '*' proxy.get_https_proxy Ethernet

	
salt.modules.proxy.get_proxy_bypass(network_service='Ethernet')

	Returns the current domains that can bypass the proxy

	network_service
	The network service to get the bypass domains from, this is only
necessary on macOS

CLI Example:

salt '*' proxy.get_proxy_bypass

	
salt.modules.proxy.get_proxy_win()

	Gets all of the proxy settings in one call, only available on Windows

CLI Example:

salt '*' proxy.get_proxy_win

	
salt.modules.proxy.set_ftp_proxy(server, port, user=None, password=None, network_service='Ethernet', bypass_hosts=None)

	Sets the ftp proxy settings

	server
	The proxy server to use

	port
	The port used by the proxy server

	user
	The username to use for the proxy server if required

	password
	The password to use if required by the server

	network_service
	The network service to apply the changes to, this only necessary on
macOS

	bypass_hosts
	The hosts that are allowed to by pass the proxy. Only used on Windows
for other OS's use set_proxy_bypass to edit the bypass hosts.

CLI Example:

salt '*' proxy.set_ftp_proxy example.com 1080 user=proxy_user password=proxy_pass network_service=Ethernet

	
salt.modules.proxy.set_http_proxy(server, port, user=None, password=None, network_service='Ethernet', bypass_hosts=None)

	Sets the http proxy settings. Note: On Windows this will override any other
proxy settings you have, the preferred method of updating proxies on windows
is using set_proxy.

	server
	The proxy server to use

	port
	The port used by the proxy server

	user
	The username to use for the proxy server if required

	password
	The password to use if required by the server

	network_service
	The network service to apply the changes to, this only necessary on
macOS

	bypass_hosts
	The hosts that are allowed to by pass the proxy. Only used on Windows
for other OS's use set_proxy_bypass to edit the bypass hosts.

CLI Example:

salt '*' proxy.set_http_proxy example.com 1080 user=proxy_user password=proxy_pass network_service=Ethernet

	
salt.modules.proxy.set_https_proxy(server, port, user=None, password=None, network_service='Ethernet', bypass_hosts=None)

	Sets the https proxy settings. Note: On Windows this will override any other
proxy settings you have, the preferred method of updating proxies on windows
is using set_proxy.

	server
	The proxy server to use

	port
	The port used by the proxy server

	user
	The username to use for the proxy server if required

	password
	The password to use if required by the server

	network_service
	The network service to apply the changes to, this only necessary on
macOS

	bypass_hosts
	The hosts that are allowed to by pass the proxy. Only used on Windows
for other OS's use set_proxy_bypass to edit the bypass hosts.

CLI Example:

salt '*' proxy.set_https_proxy example.com 1080 user=proxy_user password=proxy_pass network_service=Ethernet

	
salt.modules.proxy.set_proxy_bypass(domains, network_service='Ethernet')

	Sets the domains that can bypass the proxy

	domains
	An array of domains allowed to bypass the proxy

	network_service
	The network service to apply the changes to, this only necessary on
macOS

CLI Example:

salt '*' proxy.set_proxy_bypass "['127.0.0.1', 'localhost']"

	
salt.modules.proxy.set_proxy_win(server, port, types=None, bypass_hosts=None)

	Sets the http proxy settings, only works with Windows.

	server
	The proxy server to use

	password
	The password to use if required by the server

	types
	The types of proxy connections should be setup with this server. Valid
types are:

	http

	https

	ftp

	bypass_hosts
	The hosts that are allowed to by pass the proxy.

CLI Example:

salt '*' proxy.set_http_proxy example.com 1080 types="['http', 'https']"

salt.modules.ps

A salt interface to psutil, a system and process library.
See http://code.google.com/p/psutil.

	depends:

	
	python-utmp package (optional)

	
salt.modules.ps.boot_time(time_format=None)

	Return the boot time in number of seconds since the epoch began.

CLI Example:

	time_format
	Optionally specify a strftime [https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior] format string. Use
time_format='%c' to get a nicely-formatted locale specific date and
time (i.e. Fri May 2 19:08:32 2014).

New in version 2014.1.4.

salt '*' ps.boot_time

	
salt.modules.ps.cpu_percent(interval=0.1, per_cpu=False)

	Return the percent of time the CPU is busy.

	interval
	the number of seconds to sample CPU usage over

	per_cpu
	if True return an array of CPU percent busy for each CPU, otherwise
aggregate all percents into one number

CLI Example:

salt '*' ps.cpu_percent

	
salt.modules.ps.cpu_times(per_cpu=False)

	Return the percent of time the CPU spends in each state,
e.g. user, system, idle, nice, iowait, irq, softirq.

	per_cpu
	if True return an array of percents for each CPU, otherwise aggregate
all percents into one number

CLI Example:

salt '*' ps.cpu_times

	
salt.modules.ps.disk_io_counters(device=None)

	Return disk I/O statistics.

CLI Example:

salt '*' ps.disk_io_counters

salt '*' ps.disk_io_counters device=sda1

	
salt.modules.ps.disk_partition_usage(all=False)

	Return a list of disk partitions plus the mount point, filesystem and usage
statistics.

CLI Example:

salt '*' ps.disk_partition_usage

	
salt.modules.ps.disk_partitions(all=False)

	Return a list of disk partitions and their device, mount point, and
filesystem type.

	all
	if set to False, only return local, physical partitions (hard disk,
USB, CD/DVD partitions). If True, return all filesystems.

CLI Example:

salt '*' ps.disk_partitions

	
salt.modules.ps.disk_usage(path)

	Given a path, return a dict listing the total available space as well as
the free space, and used space.

CLI Example:

salt '*' ps.disk_usage /home

	
salt.modules.ps.get_pid_list()

	Return a list of process ids (PIDs) for all running processes.

CLI Example:

salt '*' ps.get_pid_list

	
salt.modules.ps.get_users()

	Return logged-in users.

CLI Example:

salt '*' ps.get_users

	
salt.modules.ps.kill_pid(pid, signal=15)

	Kill a process by PID.

salt 'minion' ps.kill_pid pid [signal=signal_number]

	pid
	PID of process to kill.

	signal
	Signal to send to the process. See manpage entry for kill
for possible values. Default: 15 (SIGTERM).

Example:

Send SIGKILL to process with PID 2000:

salt 'minion' ps.kill_pid 2000 signal=9

	
salt.modules.ps.lsof(name)

	Retrieve the lsof information of the given process name.

CLI Example:

salt '*' ps.lsof apache2

	
salt.modules.ps.netstat(name)

	Retrieve the netstat information of the given process name.

CLI Example:

salt '*' ps.netstat apache2

	
salt.modules.ps.network_io_counters(interface=None)

	Return network I/O statistics.

CLI Example:

salt '*' ps.network_io_counters

salt '*' ps.network_io_counters interface=eth0

	
salt.modules.ps.num_cpus()

	Return the number of CPUs.

CLI Example:

salt '*' ps.num_cpus

	
salt.modules.ps.pgrep(pattern, user=None, full=False, pattern_is_regex=False)

	Return the pids for processes matching a pattern.

If full is true, the full command line is searched for a match,
otherwise only the name of the command is searched.

salt '*' ps.pgrep pattern [user=username] [full=(true|false)]

	pattern
	Pattern to search for in the process list.

	user
	Limit matches to the given username. Default: All users.

	full
	A boolean value indicating whether only the name of the command or
the full command line should be matched against the pattern.

	pattern_is_regex
	This flag enables ps.pgrep to mirror the regex search functionality
found in the pgrep command line utility.

New in version 3001.

Examples:

Find all httpd processes on all 'www' minions:

salt 'www.*' ps.pgrep httpd

Find all bash processes owned by user 'tom':

salt '*' ps.pgrep bash user=tom

	
salt.modules.ps.pkill(pattern, user=None, signal=15, full=False)

	Kill processes matching a pattern.

salt '*' ps.pkill pattern [user=username] [signal=signal_number] \
 [full=(true|false)]

	pattern
	Pattern to search for in the process list.

	user
	Limit matches to the given username. Default: All users.

	signal
	Signal to send to the process(es). See manpage entry for kill
for possible values. Default: 15 (SIGTERM).

	full
	A boolean value indicating whether only the name of the command or
the full command line should be matched against the pattern.

Examples:

Send SIGHUP to all httpd processes on all 'www' minions:

salt 'www.*' ps.pkill httpd signal=1

Send SIGKILL to all bash processes owned by user 'tom':

salt '*' ps.pkill bash signal=9 user=tom

	
salt.modules.ps.proc_info(pid, attrs=None)

	Return a dictionary of information for a process id (PID).

CLI Example:

salt '*' ps.proc_info 2322
salt '*' ps.proc_info 2322 attrs='["pid", "name"]'

	pid
	PID of process to query.

	attrs
	Optional list of desired process attributes. The list of possible
attributes can be found here:
https://psutil.readthedocs.io/en/latest/#processes

	
salt.modules.ps.psaux(name)

	Retrieve information corresponding to a "ps aux" filtered
with the given pattern. It could be just a name or a regular
expression (using python search from "re" module).

CLI Example:

salt '*' ps.psaux www-data.+apache2

	
salt.modules.ps.ss(name)

	Retrieve the ss information of the given process name.

CLI Example:

salt '*' ps.ss apache2

New in version 2016.11.6.

	
salt.modules.ps.status(status)

	
New in version 3006.0.

Returns a list of processes according to their state.

CLI Example:

salt '*' ps.status STATUS

where STATUS is one of

	running

	sleeping

	disk_sleep

	stopped

	tracing_stop

	zombie

	dead

	wake_kill

	waking

	parked (Linux)

	idle (Linux, macOS, FreeBSD)

	locked (FreeBSD)

	waiting (FreeBSD)

	suspended (NetBSD)

See https://psutil.readthedocs.io/en/latest/index.html?highlight=status#process-status-constants

	
salt.modules.ps.swap_memory()

	
New in version 2014.7.0.

Return a dict that describes swap memory statistics.

Note

This function is only available in psutil version 0.6.0 and above.

CLI Example:

salt '*' ps.swap_memory

	
salt.modules.ps.top(num_processes=5, interval=3)

	Return a list of top CPU consuming processes during the interval.
num_processes = return the top N CPU consuming processes
interval = the number of seconds to sample CPU usage over

CLI Examples:

salt '*' ps.top

salt '*' ps.top 5 10

	
salt.modules.ps.total_physical_memory()

	Return the total number of bytes of physical memory.

CLI Example:

salt '*' ps.total_physical_memory

	
salt.modules.ps.virtual_memory()

	
New in version 2014.7.0.

Return a dict that describes statistics about system memory usage.

Note

This function is only available in psutil version 0.6.0 and above.

CLI Example:

salt '*' ps.virtual_memory

salt.modules.publish

Publish a command from a minion to a target

	
salt.modules.publish.full_data(tgt, fun, arg=None, tgt_type='glob', returner='', timeout=5)

	Return the full data about the publication, this is invoked in the same
way as the publish function

CLI Example:

salt system.example.com publish.full_data '*' cmd.run 'ls -la /tmp'

Attention

If you need to pass a value to a function argument and that value
contains an equal sign, you must include the argument name.
For example:

salt '*' publish.full_data test.kwarg arg='cheese=spam'

	
salt.modules.publish.publish(tgt, fun, arg=None, tgt_type='glob', returner='', timeout=5, via_master=None)

	Publish a command from the minion out to other minions.

Publications need to be enabled on the Salt master and the minion
needs to have permission to publish the command. The Salt master
will also prevent a recursive publication loop, this means that a
minion cannot command another minion to command another minion as
that would create an infinite command loop.

The tgt_type argument is used to pass a target other than a glob into
the execution, the available options are:

	glob

	pcre

	grain

	grain_pcre

	pillar

	pillar_pcre

	ipcidr

	range

	compound

Changed in version 2017.7.0: The expr_form argument has been renamed to tgt_type, earlier
releases must use expr_form.

Note that for pillar matches must be exact, both in the pillar matcher
and the compound matcher. No globbing is supported.

The arguments sent to the minion publish function are separated with
commas. This means that for a minion executing a command with multiple
args it will look like this:

salt system.example.com publish.publish '*' user.add 'foo,1020,1020'
salt system.example.com publish.publish 'os:Fedora' network.interfaces '' grain

CLI Example:

salt system.example.com publish.publish '*' cmd.run 'ls -la /tmp'

Attention

If you need to pass a value to a function argument and that value
contains an equal sign, you must include the argument name.
For example:

salt '*' publish.publish test.kwarg arg='cheese=spam'

Multiple keyword arguments should be passed as a list.

salt '*' publish.publish test.kwarg arg="['cheese=spam','spam=cheese']"

When running via salt-call, the via_master flag may be set to specific which
master the publication should be sent to. Only one master may be specified. If
unset, the publication will be sent only to the first master in minion configuration.

	
salt.modules.publish.runner(fun, arg=None, timeout=5)

	Execute a runner on the master and return the data from the runner
function

CLI Example:

salt publish.runner manage.down

salt.modules.puppet

Execute puppet routines

	
salt.modules.puppet.disable(message=None)

	
New in version 2014.7.0.

Disable the puppet agent

	message
	
New in version 2015.5.2.

Disable message to send to puppet

CLI Example:

salt '*' puppet.disable
salt '*' puppet.disable 'Disabled, contact XYZ before enabling'

	
salt.modules.puppet.enable()

	
New in version 2014.7.0.

Enable the puppet agent

CLI Example:

salt '*' puppet.enable

	
salt.modules.puppet.fact(name, puppet=False)

	Run facter for a specific fact

CLI Example:

salt '*' puppet.fact kernel

	
salt.modules.puppet.facts(puppet=False)

	Run facter and return the results

CLI Example:

salt '*' puppet.facts

	
salt.modules.puppet.noop(*args, **kwargs)

	Execute a puppet noop run and return a dict with the stderr, stdout,
return code, etc. Usage is the same as for puppet.run.

CLI Example:

salt '*' puppet.noop
salt '*' puppet.noop tags=basefiles::edit,apache::server
salt '*' puppet.noop debug
salt '*' puppet.noop apply /a/b/manifest.pp modulepath=/a/b/modules tags=basefiles::edit,apache::server

	
salt.modules.puppet.plugin_sync()

	Runs a plugin sync between the puppet master and agent

CLI Example:

salt '*' puppet.plugin_sync

	
salt.modules.puppet.run(*args, **kwargs)

	Execute a puppet run and return a dict with the stderr, stdout,
return code, etc. The first positional argument given is checked as a
subcommand. Following positional arguments should be ordered with arguments
required by the subcommand first, followed by non-keyword arguments.
Tags are specified by a tag keyword and comma separated list of values. --
http://docs.puppetlabs.com/puppet/latest/reference/lang_tags.html

CLI Examples:

salt '*' puppet.run
salt '*' puppet.run tags=basefiles::edit,apache::server
salt '*' puppet.run agent onetime no-daemonize no-usecacheonfailure no-splay ignorecache
salt '*' puppet.run debug
salt '*' puppet.run apply /a/b/manifest.pp modulepath=/a/b/modules tags=basefiles::edit,apache::server

	
salt.modules.puppet.status()

	
New in version 2014.7.0.

Display puppet agent status

CLI Example:

salt '*' puppet.status

	
salt.modules.puppet.summary()

	
New in version 2014.7.0.

Show a summary of the last puppet agent run

CLI Example:

salt '*' puppet.summary

salt.modules.purefa

Management of Pure Storage FlashArray

Installation Prerequisites

	You will need the purestorage python package in your python installation
path that is running salt.

pip install purestorage

	Configure Pure Storage FlashArray authentication. Use one of the following
three methods.

	From the minion config

pure_tags:
 fa:
 san_ip: management vip or hostname for the FlashArray
 api_token: A valid api token for the FlashArray being managed

	From environment (PUREFA_IP and PUREFA_API)

	From the pillar (PUREFA_IP and PUREFA_API)

	maintainer:

	Simon Dodsley (simon@purestorage.com)

	maturity:

	new

	requires:

	purestorage

	platform:

	all

New in version 2018.3.0.

	
salt.modules.purefa.hg_create(name, host=None, volume=None)

	Create a hostgroup on a Pure Storage FlashArray.

Will return False if hostgroup already exists, or if
named host or volume do not exist.

New in version 2018.3.0.

	namestring
	name of hostgroup (truncated to 63 characters)

	hoststring
	name of host to add to hostgroup

	volumestring
	name of volume to add to hostgroup

CLI Example:

salt '*' purefa.hg_create foo host=bar volume=vol

	
salt.modules.purefa.hg_delete(name)

	Delete a hostgroup on a Pure Storage FlashArray (removes all volumes and hosts).

Will return False is hostgroup is already in a deleted state.

New in version 2018.3.0.

	namestring
	name of hostgroup

CLI Example:

salt '*' purefa.hg_delete foo

	
salt.modules.purefa.hg_remove(name, volume=None, host=None)

	Remove a host and/or volume from a hostgroup on a Pure Storage FlashArray.

Will return False is hostgroup does not exist, or named host or volume are
not in the hostgroup.

New in version 2018.3.0.

	namestring
	name of hostgroup

	volumestring
	name of volume to remove from hostgroup

	hoststring
	name of host to remove from hostgroup

CLI Example:

salt '*' purefa.hg_remove foo volume=test host=bar

	
salt.modules.purefa.hg_update(name, host=None, volume=None)

	Adds entries to a hostgroup on a Pure Storage FlashArray.

Will return False is hostgroup doesn't exist, or host
or volume do not exist.

New in version 2018.3.0.

	namestring
	name of hostgroup

	hoststring
	name of host to add to hostgroup

	volumestring
	name of volume to add to hostgroup

CLI Example:

salt '*' purefa.hg_update foo host=bar volume=vol

	
salt.modules.purefa.host_create(name, iqn=None, wwn=None, nqn=None)

	Add a host on a Pure Storage FlashArray.

Will return False if host already exists, or the iSCSI or
Fibre Channel parameters are not in a valid format.
See Pure Storage FlashArray documentation.

New in version 2018.3.0.

	namestring
	name of host (truncated to 63 characters)

	iqnstring
	iSCSI IQN of host

	nqnstring
	NVMeF NQN of host
.. versionadded:: 3006.0

	wwnstring
	Fibre Channel WWN of host

CLI Example:

salt '*' purefa.host_create foo iqn='<Valid iSCSI IQN>' wwn='<Valid WWN>' nqn='<Valid NQN>'

	
salt.modules.purefa.host_delete(name)

	Delete a host on a Pure Storage FlashArray (detaches all volumes).

Will return False if the host doesn't exist.

New in version 2018.3.0.

	namestring
	name of host

CLI Example:

salt '*' purefa.host_delete foo

	
salt.modules.purefa.host_update(name, iqn=None, wwn=None, nqn=None)

	Update a hosts port definitions on a Pure Storage FlashArray.

Will return False if new port definitions are already in use
by another host, or are not in a valid format.
See Pure Storage FlashArray documentation.

New in version 2018.3.0.

	namestring
	name of host

	nqnstring
	Additional NVMeF NQN of host
.. versionadded:: 3006.0

	iqnstring
	Additional iSCSI IQN of host

	wwnstring
	Additional Fibre Channel WWN of host

CLI Example:

salt '*' purefa.host_update foo iqn='<Valid iSCSI IQN>' wwn='<Valid WWN>' nqn='<Valid NQN>'

	
salt.modules.purefa.pg_create(name, hostgroup=None, host=None, volume=None, enabled=True)

	Create a protection group on a Pure Storage FlashArray.

	Will return False is the following cases:
	
	Protection Grop already exists

	Protection Group in a deleted state

	More than one type is specified - protection groups are for only
hostgroups, hosts or volumes

	Named type for protection group does not exist

New in version 2018.3.0.

	namestring
	name of protection group

	hostgroupstring
	name of hostgroup to add to protection group

	hoststring
	name of host to add to protection group

	volumestring
	name of volume to add to protection group

CLI Example:

salt '*' purefa.pg_create foo [hostgroup=foo | host=bar | volume=vol] enabled=[true | false]

	
salt.modules.purefa.pg_delete(name, eradicate=False)

	Delete a protecton group on a Pure Storage FlashArray.

Will return False if protection group is already in a deleted state.

New in version 2018.3.0.

	namestring
	name of protection group

CLI Example:

salt '*' purefa.pg_delete foo

	
salt.modules.purefa.pg_eradicate(name)

	Eradicate a deleted protecton group on a Pure Storage FlashArray.

Will return False if protection group is not in a deleted state.

New in version 2018.3.0.

	namestring
	name of protection group

CLI Example:

salt '*' purefa.pg_eradicate foo

	
salt.modules.purefa.pg_remove(name, hostgroup=None, host=None, volume=None)

	Remove a hostgroup, host or volume from a protection group on a Pure Storage FlashArray.

	Will return False in the following cases:
	
	Protection group does not exist

	Specified type is not currently associated with the protection group

New in version 2018.3.0.

	namestring
	name of hostgroup

	hostgroupstring
	name of hostgroup to remove from protection group

	hoststring
	name of host to remove from hostgroup

	volumestring
	name of volume to remove from hostgroup

CLI Example:

salt '*' purefa.pg_remove foo [hostgroup=bar | host=test | volume=bar]

	
salt.modules.purefa.pg_update(name, hostgroup=None, host=None, volume=None)

	Update a protection group on a Pure Storage FlashArray.

	Will return False in the following cases:
	
	Protection group does not exist

	Incorrect type selected for current protection group type

	Specified type does not exist

New in version 2018.3.0.

	namestring
	name of protection group

	hostgroupstring
	name of hostgroup to add to protection group

	hoststring
	name of host to add to protection group

	volumestring
	name of volume to add to protection group

CLI Example:

salt '*' purefa.pg_update foo [hostgroup=foo | host=bar | volume=vol]

	
salt.modules.purefa.snap_create(name, suffix=None)

	Create a volume snapshot on a Pure Storage FlashArray.

Will return False is volume selected to snap does not exist.

New in version 2018.3.0.

	namestring
	name of volume to snapshot

	suffixstring
	if specificed forces snapshot name suffix. If not specified defaults to timestamp.

CLI Example:

salt '*' purefa.snap_create foo
salt '*' purefa.snap_create foo suffix=bar

	
salt.modules.purefa.snap_delete(name, suffix=None, eradicate=False)

	Delete a volume snapshot on a Pure Storage FlashArray.

Will return False if selected snapshot does not exist.

New in version 2018.3.0.

	namestring
	name of volume

	suffixstring
	name of snapshot

	eradicateboolean
	Eradicate snapshot after deletion if True. Default is False

CLI Example:

salt '*' purefa.snap_delete foo suffix=snap eradicate=True

	
salt.modules.purefa.snap_eradicate(name, suffix=None)

	Eradicate a deleted volume snapshot on a Pure Storage FlashArray.

Will return False if snapshot is not in a deleted state.

New in version 2018.3.0.

	namestring
	name of volume

	suffixstring
	name of snapshot

CLI Example:

salt '*' purefa.snap_eradicate foo suffix=snap

	
salt.modules.purefa.snap_volume_create(name, target, overwrite=False)

	Create R/W volume from snapshot on a Pure Storage FlashArray.

Will return False if target volume already exists and
overwrite is not specified, or selected snapshot doesn't exist.

New in version 2018.3.0.

	namestring
	name of volume snapshot

	targetstring
	name of clone volume

	overwriteboolean
	overwrite clone if already exists (default: False)

CLI Example:

salt '*' purefa.snap_volume_create foo.bar clone overwrite=True

	
salt.modules.purefa.volume_attach(name, host)

	Attach a volume to a host on a Pure Storage FlashArray.

Host and volume must exist or else will return False.

New in version 2018.3.0.

	namestring
	name of volume

	hoststring
	name of host

CLI Example:

salt '*' purefa.volume_attach foo bar

	
salt.modules.purefa.volume_clone(name, target, overwrite=False)

	Clone an existing volume on a Pure Storage FlashArray.

Will return False if source volume doesn't exist, or
target volume already exists and overwrite not specified.

New in version 2018.3.0.

	namestring
	name of volume

	targetstring
	name of clone volume

	overwriteboolean
	overwrite clone if already exists (default: False)

CLI Example:

salt '*' purefa.volume_clone foo bar overwrite=True

	
salt.modules.purefa.volume_create(name, size=None)

	Create a volume on a Pure Storage FlashArray.

Will return False if volume already exists.

New in version 2018.3.0.

	namestring
	name of volume (truncated to 63 characters)

	sizestring
	if specificed capacity of volume. If not specified default to 1G.
Refer to Pure Storage documentation for formatting rules.

CLI Example:

salt '*' purefa.volume_create foo
salt '*' purefa.volume_create foo size=10T

	
salt.modules.purefa.volume_delete(name, eradicate=False)

	Delete a volume on a Pure Storage FlashArray.

Will return False if volume doesn't exist is already in a deleted state.

New in version 2018.3.0.

	namestring
	name of volume

	eradicateboolean
	Eradicate volume after deletion if True. Default is False

CLI Example:

salt '*' purefa.volume_delete foo eradicate=True

	
salt.modules.purefa.volume_detach(name, host)

	Detach a volume from a host on a Pure Storage FlashArray.

Will return False if either host or volume do not exist, or
if selected volume isn't already connected to the host.

New in version 2018.3.0.

	namestring
	name of volume

	hoststring
	name of host

CLI Example:

salt '*' purefa.volume_detach foo bar

	
salt.modules.purefa.volume_eradicate(name)

	Eradicate a deleted volume on a Pure Storage FlashArray.

Will return False is volume is not in a deleted state.

New in version 2018.3.0.

	namestring
	name of volume

CLI Example:

salt '*' purefa.volume_eradicate foo

	
salt.modules.purefa.volume_extend(name, size)

	Extend an existing volume on a Pure Storage FlashArray.

Will return False if new size is less than or equal to existing size.

New in version 2018.3.0.

	namestring
	name of volume

	sizestring
	New capacity of volume.
Refer to Pure Storage documentation for formatting rules.

CLI Example:

salt '*' purefa.volume_extend foo 10T

salt.modules.purefb

Management of Pure Storage FlashBlade

Installation Prerequisites

	You will need the purity_fb python package in your python installation
path that is running salt.

pip install purity_fb

	Configure Pure Storage FlashBlade authentication. Use one of the following
three methods.

	From the minion config

pure_tags:
 fb:
 san_ip: management vip or hostname for the FlashBlade
 api_token: A valid api token for the FlashBlade being managed

	From environment (PUREFB_IP and PUREFB_API)

	From the pillar (PUREFB_IP and PUREFB_API)

	maintainer:

	Simon Dodsley (simon@purestorage.com)

	maturity:

	new

	requires:

	purity_fb

	platform:

	all

New in version 2019.2.0.

	
salt.modules.purefb.fs_create(name, size=None, proto='NFS', nfs_rules='*(rw,no_root_squash)', snapshot=False)

	Create a filesystem on a Pure Storage FlashBlade.

Will return False if filesystem already exists.

New in version 2019.2.0.

	namestring
	name of filesystem (truncated to 63 characters)

	protostring
	(Optional) Sharing protocol (NFS, CIFS or HTTP). If not specified default is NFS

	snapshot: boolean
	(Optional) Are snapshots enabled on the filesystem. Default is False

	nfs_rulesstring
	(Optional) export rules for NFS. If not specified default is
*(rw,no_root_squash). Refer to Pure Storage documentation for
formatting rules.

	sizestring
	if specified capacity of filesystem. If not specified default to 32G.
Refer to Pure Storage documentation for formatting rules.

CLI Example:

salt '*' purefb.fs_create foo proto=CIFS
salt '*' purefb.fs_create foo size=10T

	
salt.modules.purefb.fs_delete(name, eradicate=False)

	Delete a share on a Pure Storage FlashBlade.

Will return False if filesystem doesn't exist or is already in a deleted state.

New in version 2019.2.0.

	namestring
	name of filesystem

	eradicateboolean
	(Optional) Eradicate filesystem after deletion if True. Default is False

CLI Example:

salt '*' purefb.fs_delete foo eradicate=True

	
salt.modules.purefb.fs_eradicate(name)

	Eradicate a deleted filesystem on a Pure Storage FlashBlade.

Will return False is filesystem is not in a deleted state.

New in version 2019.2.0.

	namestring
	name of filesystem

CLI Example:

salt '*' purefb.fs_eradicate foo

	
salt.modules.purefb.fs_extend(name, size)

	Resize an existing filesystem on a Pure Storage FlashBlade.

Will return False if new size is less than or equal to existing size.

New in version 2019.2.0.

	namestring
	name of filesystem

	sizestring
	New capacity of filesystem.
Refer to Pure Storage documentation for formatting rules.

CLI Example:

salt '*' purefb.fs_extend foo 10T

	
salt.modules.purefb.fs_update(name, rules, snapshot=False)

	Update filesystem on a Pure Storage FlashBlade.

Allows for change of NFS export rules and enabling/disabled
of snapshotting capability.

New in version 2019.2.0.

	namestring
	name of filesystem

	rulesstring
	NFS export rules for filesystem
Refer to Pure Storage documentation for formatting rules.

	snapshot: boolean
	(Optional) Enable/Disable snapshots on the filesystem. Default is False

CLI Example:

salt '*' purefb.fs_nfs_update foo rules='10.234.112.23(ro), 10.234.112.24(rw)' snapshot=True

	
salt.modules.purefb.snap_create(name, suffix=None)

	Create a filesystem snapshot on a Pure Storage FlashBlade.

Will return False if filesystem selected to snap does not exist.

New in version 2019.2.0.

	namestring
	name of filesystem to snapshot

	suffixstring
	if specificed forces snapshot name suffix. If not specified defaults to timestamp.

CLI Example:

salt '*' purefb.snap_create foo
salt '*' purefb.snap_create foo suffix=bar

	
salt.modules.purefb.snap_delete(name, suffix=None, eradicate=False)

	Delete a filesystem snapshot on a Pure Storage FlashBlade.

Will return False if selected snapshot does not exist.

New in version 2019.2.0.

	namestring
	name of filesystem

	suffixstring
	name of snapshot

	eradicateboolean
	Eradicate snapshot after deletion if True. Default is False

CLI Example:

salt '*' purefb.snap_delete foo suffix=snap eradicate=True

	
salt.modules.purefb.snap_eradicate(name, suffix=None)

	Eradicate a deleted filesystem snapshot on a Pure Storage FlashBlade.

Will return False if snapshot is not in a deleted state.

New in version 2019.2.0.

	namestring
	name of filesystem

	suffixstring
	name of snapshot

CLI Example:

salt '*' purefb.snap_eradicate foo suffix=snap

salt.modules.pushbullet

Module for sending messages to Pushbullet (https://www.pushbullet.com)

New in version 2015.8.0.

Requires an api_key in /etc/salt/minion:

pushbullet:
 api_key: 'ABC123abc123ABC123abc123ABC123ab'

For example:

pushbullet:
 device: "Chrome"
 title: "Example push message"
 body: "Message body."

	
salt.modules.pushbullet.push_note(device=None, title=None, body=None)

	Pushing a text note.

	Parameters:

	
	device -- Pushbullet target device

	title -- Note title

	body -- Note body

	Returns:

	Boolean if message was sent successfully.

CLI Example:

salt "*" pushbullet.push_note device="Chrome" title="Example title" body="Example body."

salt.modules.pushover_notify

Warning

This module will be removed from Salt in version 3009 in favor of
the pushover Salt Extension [https://github.com/salt-extensions/saltext-pushover].

Module for sending messages to Pushover (https://www.pushover.net)

New in version 2016.3.0.

	configuration:

	This module can be used by either passing an api key and version
directly or by specifying both in a configuration profile in the salt
master/minion config.

For example:

pushover:
 token: abAHuZyCLtdH8P4zhmFZmgUHUsv1ei8

	
salt.modules.pushover_notify.post_message(user=None, device=None, message=None, title=None, priority=None, expire=None, retry=None, sound=None, api_version=1, token=None)

	Send a message to a Pushover user or group.

	Parameters:

	
	user -- The user or group to send to, must be key of user or group not email address.

	message -- The message to send to the PushOver user or group.

	title -- Specify who the message is from.

	priority -- The priority of the message, defaults to 0.

	expire -- The message should expire after N number of seconds.

	retry -- The number of times the message should be retried.

	sound -- The sound to associate with the message.

	api_version -- The PushOver API version, if not specified in the configuration.

	token -- The PushOver token, if not specified in the configuration.

	Returns:

	Boolean if message was sent successfully.

CLI Example:

salt '*' pushover.post_message user='xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx' title='Message from Salt' message='Build is done'

salt '*' pushover.post_message user='xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx' title='Message from Salt' message='Build is done' priority='2' expire='720' retry='5'

salt.modules.pw_group

Manage groups on FreeBSD

Important

If you feel that Salt should be using this module to manage groups on a
minion, and it is using a different module (or gives an error similar to
'group.info' is not available), see here.

	
salt.modules.pw_group.add(name, gid=None, **kwargs)

	
Changed in version 3006.0.

Add the specified group

	name
	Name of the new group

	gid
	Use GID for the new group

CLI Example:

salt '*' group.add foo 3456

	
salt.modules.pw_group.adduser(name, username)

	Add a user in the group.

CLI Example:

salt '*' group.adduser foo bar

Verifies if a valid username 'bar' as a member of an existing group 'foo',
if not then adds it.

	
salt.modules.pw_group.chgid(name, gid)

	Change the gid for a named group

CLI Example:

salt '*' group.chgid foo 4376

	
salt.modules.pw_group.delete(name)

	Remove the named group

CLI Example:

salt '*' group.delete foo

	
salt.modules.pw_group.deluser(name, username)

	Remove a user from the group.

CLI Example:

salt '*' group.deluser foo bar

Removes a member user 'bar' from a group 'foo'. If group is not present
then returns True.

	
salt.modules.pw_group.getent(refresh=False)

	Return info on all groups

CLI Example:

salt '*' group.getent

	
salt.modules.pw_group.info(name)

	Return information about a group

CLI Example:

salt '*' group.info foo

	
salt.modules.pw_group.members(name, members_list)

	Replaces members of the group with a provided list.

New in version 2015.5.4.

CLI Example:

salt '*' group.members foo 'user1,user2,user3,...'

	Replaces a membership list for a local group 'foo'.
	foo:x:1234:user1,user2,user3,...

salt.modules.pw_user

Manage users with the pw command

Important

If you feel that Salt should be using this module to manage users on a
minion, and it is using a different module (or gives an error similar to
'user.info' is not available), see here.

	
salt.modules.pw_user.add(name, uid=None, gid=None, groups=None, home=None, shell=None, unique=True, fullname='', roomnumber='', workphone='', homephone='', createhome=True, loginclass=None, **kwargs)

	Add a user to the minion

CLI Example:

salt '*' user.add name <uid> <gid> <groups> <home> <shell>

	
salt.modules.pw_user.chfullname(name, fullname)

	Change the user's Full Name

CLI Example:

salt '*' user.chfullname foo "Foo Bar"

	
salt.modules.pw_user.chgid(name, gid)

	Change the default group of the user

CLI Example:

salt '*' user.chgid foo 4376

	
salt.modules.pw_user.chgroups(name, groups, append=False)

	Change the groups to which a user belongs

	name
	Username to modify

	groups
	List of groups to set for the user. Can be passed as a comma-separated
list or a Python list.

	appendFalse
	Set to True to append these groups to the user's existing list of
groups. Otherwise, the specified groups will replace any existing
groups for the user.

CLI Example:

salt '*' user.chgroups foo wheel,root True

	
salt.modules.pw_user.chhome(name, home, persist=False)

	Set a new home directory for an existing user

	name
	Username to modify

	home
	New home directory to set

	persistFalse
	Set to True to prevent configuration files in the new home
directory from being overwritten by the files from the skeleton
directory.

CLI Example:

salt '*' user.chhome foo /home/users/foo True

	
salt.modules.pw_user.chhomephone(name, homephone)

	Change the user's Home Phone

CLI Example:

salt '*' user.chhomephone foo "7735551234"

	
salt.modules.pw_user.chloginclass(name, loginclass, root=None)

	Change the default login class of the user

New in version 2016.3.5.

CLI Example:

salt '*' user.chloginclass foo staff

	
salt.modules.pw_user.chroomnumber(name, roomnumber)

	Change the user's Room Number

CLI Example:

salt '*' user.chroomnumber foo 123

	
salt.modules.pw_user.chshell(name, shell)

	Change the default shell of the user

CLI Example:

salt '*' user.chshell foo /bin/zsh

	
salt.modules.pw_user.chuid(name, uid)

	Change the uid for a named user

CLI Example:

salt '*' user.chuid foo 4376

	
salt.modules.pw_user.chworkphone(name, workphone)

	Change the user's Work Phone

CLI Example:

salt '*' user.chworkphone foo "7735550123"

	
salt.modules.pw_user.delete(name, remove=False, force=False)

	Remove a user from the minion

CLI Example:

salt '*' user.delete name remove=True force=True

	
salt.modules.pw_user.get_loginclass(name)

	Get the login class of the user

New in version 2016.3.0.

CLI Example:

salt '*' user.get_loginclass foo

	
salt.modules.pw_user.getent(refresh=False)

	Return the list of all info for all users

CLI Example:

salt '*' user.getent

	
salt.modules.pw_user.info(name)

	Return user information

CLI Example:

salt '*' user.info root

	
salt.modules.pw_user.list_groups(name)

	Return a list of groups the named user belongs to

CLI Example:

salt '*' user.list_groups foo

	
salt.modules.pw_user.list_users()

	Return a list of all users

CLI Example:

salt '*' user.list_users

	
salt.modules.pw_user.rename(name, new_name)

	Change the username for a named user

CLI Example:

salt '*' user.rename name new_name

salt.modules.pyenv

Manage python installations with pyenv.

Note

Git needs to be installed and available via PATH if pyenv is to be
installed automatically by the module.

New in version 2014.4.0.

	
salt.modules.pyenv.default(python=None, runas=None)

	Returns or sets the currently defined default python.

	python=None
	The version to set as the default. Should match one of the versions
listed by pyenv.versions. Leave
blank to return the current default.

CLI Example:

salt '*' pyenv.default
salt '*' pyenv.default 2.0.0-p0

	
salt.modules.pyenv.do(cmdline=None, runas=None)

	Execute a python command with pyenv's shims from the user or the system.

CLI Example:

salt '*' pyenv.do 'gem list bundler'
salt '*' pyenv.do 'gem list bundler' deploy

	
salt.modules.pyenv.do_with_python(python, cmdline, runas=None)

	Execute a python command with pyenv's shims using a specific python version.

CLI Example:

salt '*' pyenv.do_with_python 2.0.0-p0 'gem list bundler'
salt '*' pyenv.do_with_python 2.0.0-p0 'gem list bundler' deploy

	
salt.modules.pyenv.install(runas=None, path=None)

	Install pyenv systemwide

CLI Example:

salt '*' pyenv.install

	
salt.modules.pyenv.install_python(python, runas=None)

	Install a python implementation.

	python
	The version of python to install, should match one of the
versions listed by pyenv.list

CLI Example:

salt '*' pyenv.install_python 2.0.0-p0

	
salt.modules.pyenv.is_installed(runas=None)

	Check if pyenv is installed.

CLI Example:

salt '*' pyenv.is_installed

	
salt.modules.pyenv.list_(runas=None)

	List the installable versions of python.

CLI Example:

salt '*' pyenv.list

	
salt.modules.pyenv.rehash(runas=None)

	Run pyenv rehash to update the installed shims.

CLI Example:

salt '*' pyenv.rehash

	
salt.modules.pyenv.uninstall_python(python, runas=None)

	Uninstall a python implementation.

	python
	The version of python to uninstall. Should match one of the versions
listed by pyenv.versions

CLI Example:

salt '*' pyenv.uninstall_python 2.0.0-p0

	
salt.modules.pyenv.update(runas=None, path=None)

	Updates the current versions of pyenv and python-Build

CLI Example:

salt '*' pyenv.update

	
salt.modules.pyenv.versions(runas=None)

	List the installed versions of python.

CLI Example:

salt '*' pyenv.versions

salt.modules.qemu_img

Qemu-img Command Wrapper

The qemu img command is wrapped for specific functions

	depends:

	qemu-img

	
salt.modules.qemu_img.convert(orig, dest, fmt)

	Convert an existing disk image to another format using qemu-img

CLI Example:

salt '*' qemu_img.convert /path/to/original.img /path/to/new.img qcow2

	
salt.modules.qemu_img.make_image(location, size, fmt)

	Create a blank virtual machine image file of the specified size in
megabytes. The image can be created in any format supported by qemu

CLI Example:

salt '*' qemu_img.make_image /tmp/image.qcow 2048 qcow2
salt '*' qemu_img.make_image /tmp/image.raw 10240 raw

salt.modules.qemu_nbd

Qemu Command Wrapper

The qemu system comes with powerful tools, such as qemu-img and qemu-nbd which
are used here to build up kvm images.

	
salt.modules.qemu_nbd.clear(mnt)

	Pass in the mnt dict returned from nbd_mount to unmount and disconnect
the image from nbd. If all of the partitions are unmounted return an
empty dict, otherwise return a dict containing the still mounted
partitions

CLI Example:

salt '*' qemu_nbd.clear '{"/mnt/foo": "/dev/nbd0p1"}'

	
salt.modules.qemu_nbd.connect(image)

	Activate nbd for an image file.

CLI Example:

salt '*' qemu_nbd.connect /tmp/image.raw

	
salt.modules.qemu_nbd.init(image, root=None)

	Mount the named image via qemu-nbd and return the mounted roots

CLI Example:

salt '*' qemu_nbd.init /srv/image.qcow2

	
salt.modules.qemu_nbd.mount(nbd, root=None)

	Pass in the nbd connection device location, mount all partitions and return
a dict of mount points

CLI Example:

salt '*' qemu_nbd.mount /dev/nbd0

salt.modules.quota

Module for managing quotas on POSIX-like systems.

	
salt.modules.quota.get_mode(device)

	Report whether the quota system for this device is on or off

CLI Example:

salt '*' quota.get_mode

	
salt.modules.quota.off(device)

	Turns off the quota system

CLI Example:

salt '*' quota.off

	
salt.modules.quota.on(device)

	Turns on the quota system

CLI Example:

salt '*' quota.on

	
salt.modules.quota.report(mount)

	Report on quotas for a specific volume

CLI Example:

salt '*' quota.report /media/data

	
salt.modules.quota.set_(device, **kwargs)

	Calls out to setquota, for a specific user or group

CLI Example:

salt '*' quota.set /media/data user=larry block-soft-limit=1048576
salt '*' quota.set /media/data group=painters file-hard-limit=1000

	
salt.modules.quota.stats()

	Runs the quotastats command, and returns the parsed output

CLI Example:

salt '*' quota.stats

	
salt.modules.quota.warn()

	Runs the warnquota command, to send warning emails to users who
are over their quota limit.

CLI Example:

salt '*' quota.warn

salt.modules.rabbitmq

Module to provide RabbitMQ compatibility to Salt.
Todo: A lot, need to add cluster support, logging, and minion configuration
data.

	
salt.modules.rabbitmq.add_user(name, password=None, runas=None)

	Add a rabbitMQ user via rabbitmqctl user_add <user> <password>

CLI Example:

salt '*' rabbitmq.add_user rabbit_user password

	
salt.modules.rabbitmq.add_vhost(vhost, runas=None)

	Adds a vhost via rabbitmqctl add_vhost.

CLI Example:

salt '*' rabbitmq add_vhost '<vhost_name>'

	
salt.modules.rabbitmq.change_password(name, password, runas=None)

	Changes a user's password.

CLI Example:

salt '*' rabbitmq.change_password rabbit_user password

	
salt.modules.rabbitmq.check_password(name, password, runas=None)

	
New in version 2016.3.0.

Checks if a user's password is valid.

CLI Example:

salt '*' rabbitmq.check_password rabbit_user password

	
salt.modules.rabbitmq.clear_password(name, runas=None)

	Removes a user's password.

CLI Example:

salt '*' rabbitmq.clear_password rabbit_user

	
salt.modules.rabbitmq.cluster_status(runas=None)

	return rabbitmq cluster_status

CLI Example:

salt '*' rabbitmq.cluster_status

	
salt.modules.rabbitmq.delete_policy(vhost, name, runas=None)

	Delete a policy based on rabbitmqctl clear_policy.

Reference: http://www.rabbitmq.com/ha.html

CLI Example:

salt '*' rabbitmq.delete_policy / HA

	
salt.modules.rabbitmq.delete_upstream(name, runas=None)

	Deletes an upstream via rabbitmqctl clear_parameter.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the upstream to delete.

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the user to run the command as.

CLI Example:

salt '*' rabbitmq.delete_upstream upstream_name

New in version 3000.

	
salt.modules.rabbitmq.delete_user(name, runas=None)

	Deletes a user via rabbitmqctl delete_user.

CLI Example:

salt '*' rabbitmq.delete_user rabbit_user

	
salt.modules.rabbitmq.delete_vhost(vhost, runas=None)

	Deletes a vhost rabbitmqctl delete_vhost.

CLI Example:

salt '*' rabbitmq.delete_vhost '<vhost_name>'

	
salt.modules.rabbitmq.disable_plugin(name, runas=None)

	Disable a RabbitMQ plugin via the rabbitmq-plugins command.

CLI Example:

salt '*' rabbitmq.disable_plugin foo

	
salt.modules.rabbitmq.enable_plugin(name, runas=None)

	Enable a RabbitMQ plugin via the rabbitmq-plugins command.

CLI Example:

salt '*' rabbitmq.enable_plugin foo

	
salt.modules.rabbitmq.force_reset(runas=None)

	Forcefully Return a RabbitMQ node to its virgin state

CLI Example:

salt '*' rabbitmq.force_reset

	
salt.modules.rabbitmq.join_cluster(host, user='rabbit', ram_node=None, runas=None)

	Join a rabbit cluster

CLI Example:

salt '*' rabbitmq.join_cluster rabbit.example.com rabbit

	
salt.modules.rabbitmq.list_available_plugins(runas=None)

	Returns a list of the names of all available plugins (enabled and disabled).

CLI Example:

salt '*' rabbitmq.list_available_plugins

	
salt.modules.rabbitmq.list_enabled_plugins(runas=None)

	Returns a list of the names of the enabled plugins.

CLI Example:

salt '*' rabbitmq.list_enabled_plugins

	
salt.modules.rabbitmq.list_permissions(vhost, runas=None)

	Lists permissions for vhost via rabbitmqctl list_permissions

CLI Example:

salt '*' rabbitmq.list_permissions /myvhost

	
salt.modules.rabbitmq.list_policies(vhost='/', runas=None)

	Return a dictionary of policies nested by vhost and name
based on the data returned from rabbitmqctl list_policies.

Reference: http://www.rabbitmq.com/ha.html

CLI Example:

salt '*' rabbitmq.list_policies

	
salt.modules.rabbitmq.list_queues(runas=None, *args)

	Returns queue details of the / virtual host

CLI Example:

salt '*' rabbitmq.list_queues messages consumers

	
salt.modules.rabbitmq.list_queues_vhost(vhost, runas=None, *args)

	Returns queue details of specified virtual host. This command will consider
first parameter as the vhost name and rest will be treated as
queueinfoitem. For getting details on vhost /, use list_queues instead).

CLI Example:

salt '*' rabbitmq.list_queues messages consumers

	
salt.modules.rabbitmq.list_upstreams(runas=None)

	Returns a dict of upstreams based on rabbitmqctl list_parameters.

	Parameters:

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the user to run this command as.

CLI Example:

salt '*' rabbitmq.list_upstreams

New in version 3000.

	
salt.modules.rabbitmq.list_user_permissions(name, runas=None)

	List permissions for a user via rabbitmqctl list_user_permissions

CLI Example:

salt '*' rabbitmq.list_user_permissions user

	
salt.modules.rabbitmq.list_users(runas=None)

	Return a list of users based off of rabbitmqctl user_list.

CLI Example:

salt '*' rabbitmq.list_users

	
salt.modules.rabbitmq.list_vhosts(runas=None)

	Return a list of vhost based on rabbitmqctl list_vhosts.

CLI Example:

salt '*' rabbitmq.list_vhosts

	
salt.modules.rabbitmq.plugin_is_enabled(name, runas=None)

	Return whether the plugin is enabled.

CLI Example:

salt '*' rabbitmq.plugin_is_enabled rabbitmq_plugin_name

	
salt.modules.rabbitmq.policy_exists(vhost, name, runas=None)

	Return whether the policy exists based on rabbitmqctl list_policies.

Reference: http://www.rabbitmq.com/ha.html

CLI Example:

salt '*' rabbitmq.policy_exists / HA

	
salt.modules.rabbitmq.reset(runas=None)

	Return a RabbitMQ node to its virgin state

CLI Example:

salt '*' rabbitmq.reset

	
salt.modules.rabbitmq.set_permissions(vhost, user, conf='.*', write='.*', read='.*', runas=None)

	Sets permissions for vhost via rabbitmqctl set_permissions

CLI Example:

salt '*' rabbitmq.set_permissions myvhost myuser

	
salt.modules.rabbitmq.set_policy(vhost, name, pattern, definition, priority=None, runas=None, apply_to=None)

	Set a policy based on rabbitmqctl set_policy.

Reference: http://www.rabbitmq.com/ha.html

CLI Example:

salt '*' rabbitmq.set_policy / HA '.*' '{"ha-mode":"all"}'

	
salt.modules.rabbitmq.set_upstream(name, uri, prefetch_count=None, reconnect_delay=None, ack_mode=None, trust_user_id=None, exchange=None, max_hops=None, expires=None, message_ttl=None, ha_policy=None, queue=None, runas=None)

	Configures an upstream via rabbitmqctl set_parameter. This can be an exchange-upstream,
a queue-upstream or both.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the upstream to configure.

The following parameters apply to federated exchanges and federated queues:

	Parameters:

	
	uri (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The AMQP URI(s) for the upstream.

	prefetch_count (int [https://docs.python.org/3/library/functions.html#int]) -- The maximum number of unacknowledged messages copied
over a link at any one time. Default: 1000

	reconnect_delay (int [https://docs.python.org/3/library/functions.html#int]) -- The duration (in seconds) to wait before reconnecting
to the broker after being disconnected. Default: 1

	ack_mode (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Determines how the link should acknowledge messages.
If set to on-confirm (the default), messages are acknowledged to the
upstream broker after they have been confirmed downstream. This handles
network errors and broker failures without losing messages, and is the
slowest option.
If set to on-publish, messages are acknowledged to the upstream broker
after they have been published downstream. This handles network errors
without losing messages, but may lose messages in the event of broker failures.
If set to no-ack, message acknowledgements are not used. This is the
fastest option, but may lose messages in the event of network or broker failures.

	trust_user_id (bool [https://docs.python.org/3/library/functions.html#bool]) -- Determines how federation should interact with the
validated user-id feature. If set to true, federation will pass through
any validated user-id from the upstream, even though it cannot validate
it itself. If set to false or not set, it will clear any validated user-id
it encounters. You should only set this to true if you trust the upstream
server (and by extension, all its upstreams) not to forge user-ids.

The following parameters apply to federated exchanges only:

	Parameters:

	
	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the upstream exchange. Default is to use the
same name as the federated exchange.

	max_hops (int [https://docs.python.org/3/library/functions.html#int]) -- The maximum number of federation links that a message
published to a federated exchange can traverse before it is discarded.
Default is 1. Note that even if max-hops is set to a value greater than 1,
messages will never visit the same node twice due to travelling in a loop.
However, messages may still be duplicated if it is possible for them to
travel from the source to the destination via multiple routes.

	expires (int [https://docs.python.org/3/library/functions.html#int]) -- The expiry time (in milliseconds) after which an upstream
queue for a federated exchange may be deleted, if a connection to the upstream
broker is lost. The default is 'none', meaning the queue should never expire.
This setting controls how long the upstream queue will last before it is
eligible for deletion if the connection is lost.
This value is used to set the "x-expires" argument for the upstream queue.

	message_ttl (int [https://docs.python.org/3/library/functions.html#int]) -- The expiry time for messages in the upstream queue
for a federated exchange (see expires), in milliseconds. Default is None,
meaning messages should never expire. This does not apply to federated queues.
This value is used to set the "x-message-ttl" argument for the upstream queue.

	ha_policy (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Determines the "x-ha-policy" argument for the upstream
queue for a federated exchange (see expires). This is only of interest
when connecting to old brokers which determine queue HA mode using this
argument. Default is None, meaning the queue is not HA.

The following parameter applies to federated queues only:

	Parameters:

	
	queue (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the upstream queue. Default is to use the same
name as the federated queue.

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the user to run the command as.

CLI Example:

salt '*' rabbitmq.set_upstream upstream_name ack_mode=on-confirm max_hops=1 trust_user_id=True uri=amqp://hostname

New in version 3000.

	
salt.modules.rabbitmq.set_user_tags(name, tags, runas=None)

	Add user tags via rabbitmqctl set_user_tags

CLI Example:

salt '*' rabbitmq.set_user_tags myadmin administrator

	
salt.modules.rabbitmq.start_app(runas=None)

	Start the RabbitMQ application.

CLI Example:

salt '*' rabbitmq.start_app

	
salt.modules.rabbitmq.status(runas=None)

	return rabbitmq status

CLI Example:

salt '*' rabbitmq.status

	
salt.modules.rabbitmq.stop_app(runas=None)

	Stops the RabbitMQ application, leaving the Erlang node running.

CLI Example:

salt '*' rabbitmq.stop_app

	
salt.modules.rabbitmq.upstream_exists(name, runas=None)

	Return whether the upstreamexists based on rabbitmqctl list_parameters.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the upstream to check for.

	runas (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the user to run the command as.

CLI Example:

salt '*' rabbitmq.upstream_exists rabbit_upstream

New in version 3000.

	
salt.modules.rabbitmq.user_exists(name, runas=None)

	Return whether the user exists based on rabbitmqctl list_users.

CLI Example:

salt '*' rabbitmq.user_exists rabbit_user

	
salt.modules.rabbitmq.vhost_exists(name, runas=None)

	Return whether the vhost exists based on rabbitmqctl list_vhosts.

CLI Example:

salt '*' rabbitmq.vhost_exists rabbit_host

salt.modules.rallydev

Support for RallyDev

New in version 2015.8.0.

Requires a username and a password in /etc/salt/minion:

rallydev:
 username: myuser@example.com
 password: 123pass

	
salt.modules.rallydev.list_items(name)

	List items of a particular type

CLI Examples:

salt myminion rallydev.list_<item name>s
salt myminion rallydev.list_users
salt myminion rallydev.list_artifacts

	
salt.modules.rallydev.list_users()

	List the users

CLI Example:

salt myminion rallydev.list_users

	
salt.modules.rallydev.query_item(name, query_string, order='Rank')

	Query a type of record for one or more items. Requires a valid query string.
See https://rally1.rallydev.com/slm/doc/webservice/introduction.jsp for
information on query syntax.

CLI Example:

salt myminion rallydev.query_<item name> <query string> [<order>]
salt myminion rallydev.query_task '(Name contains github)'
salt myminion rallydev.query_task '(Name contains reactor)' Rank

	
salt.modules.rallydev.query_user(query_string, order='UserName')

	Update a user

CLI Example:

salt myminion rallydev.query_user '(Name contains Jo)'

	
salt.modules.rallydev.show_artifact(id_)

	Show an artifact

CLI Example:

salt myminion rallydev.show_artifact <artifact id>

	
salt.modules.rallydev.show_item(name, id_)

	Show an item

CLI Example:

salt myminion rallydev.show_<item name> <item id>

	
salt.modules.rallydev.show_user(id_)

	Show a user

CLI Example:

salt myminion rallydev.show_user <user id>

	
salt.modules.rallydev.update_item(name, id_, field=None, value=None, postdata=None)

	Update an item. Either a field and a value, or a chunk of POST data, may be
used, but not both.

CLI Example:

salt myminion rallydev.update_<item name> <item id> field=<field> value=<value>
salt myminion rallydev.update_<item name> <item id> postdata=<post data>

	
salt.modules.rallydev.update_user(id_, field, value)

	Update a user

CLI Example:

salt myminion rallydev.update_user <user id> <field> <new value>

salt.modules.random_org

Module for retrieving random information from Random.org

New in version 2015.5.0.

	configuration:

	This module can be used by either passing an api key and version
directly or by specifying both in a configuration profile in the salt
master/minion config.

For example:

random_org:
 api_key: 7be1402d-5719-5bd3-a306-3def9f135da5
 api_version: 1

	
salt.modules.random_org.generateBlobs(api_key=None, api_version=None, **kwargs)

	List all Slack users.

	Parameters:

	
	api_key -- The Random.org api key.

	api_version -- The Random.org api version.

	format -- Specifies the format in which the
blobs will be returned. Values
allowed are base64 and hex.

	Returns:

	The user list.

CLI Example:

salt '*' get_integers number=5 min=1 max=6

salt '*' get_integers number=5 min=1 max=6

	
salt.modules.random_org.generateDecimalFractions(api_key=None, api_version=None, **kwargs)

	Generates true random decimal fractions

	Parameters:

	
	api_key -- The Random.org api key.

	api_version -- The Random.org api version.

	number -- How many random decimal fractions
you need. Must be within the [1,1e4] range.

	decimalPlaces -- The number of decimal places
to use. Must be within the [1,20] range.

	replacement -- Specifies whether the random numbers should
be picked with replacement. The default (true)
will cause the numbers to be picked with replacement,
i.e., the resulting numbers may contain duplicate
values (like a series of dice rolls). If you want the
numbers picked to be unique (like raffle tickets drawn
from a container), set this value to false.

	Returns:

	A list of decimal fraction

CLI Example:

salt '*' random_org.generateDecimalFractions number=10 decimalPlaces=4

salt '*' random_org.generateDecimalFractions number=10 decimalPlaces=4 replacement=True

	
salt.modules.random_org.generateGaussians(api_key=None, api_version=None, **kwargs)

	This method generates true random numbers from a
Gaussian distribution (also known as a normal distribution).

	Parameters:

	
	api_key -- The Random.org api key.

	api_version -- The Random.org api version.

	number -- How many random numbers you need.
Must be within the [1,1e4] range.

	mean -- The distribution's mean. Must be
within the [-1e6,1e6] range.

	standardDeviation -- The distribution's standard
deviation. Must be within
the [-1e6,1e6] range.

	significantDigits -- The number of significant digits
to use. Must be within the [2,20] range.

	Returns:

	The user list.

CLI Example:

salt '*' random_org.generateGaussians number=10 mean=0.0 standardDeviation=1.0 significantDigits=8

	
salt.modules.random_org.generateIntegers(api_key=None, api_version=None, **kwargs)

	Generate random integers

	Parameters:

	
	api_key -- The Random.org api key.

	api_version -- The Random.org api version.

	number -- The number of integers to generate

	minimum -- The lower boundary for the range from which the
random numbers will be picked. Must be within
the [-1e9,1e9] range.

	maximum -- The upper boundary for the range from which the
random numbers will be picked. Must be within
the [-1e9,1e9] range.

	replacement -- Specifies whether the random numbers should
be picked with replacement. The default (true)
will cause the numbers to be picked with replacement,
i.e., the resulting numbers may contain duplicate
values (like a series of dice rolls). If you want the
numbers picked to be unique (like raffle tickets drawn
from a container), set this value to false.

	base -- Specifies the base that will be used to display the numbers.
Values allowed are 2, 8, 10 and 16. This affects the JSON
types and formatting of the resulting data as discussed below.

	Returns:

	A list of integers.

CLI Example:

salt '*' random_org.generateIntegers number=5 minimum=1 maximum=6

salt '*' random_org.generateIntegers number=5 minimum=2 maximum=255 base=2

	
salt.modules.random_org.generateStrings(api_key=None, api_version=None, **kwargs)

	Generate random strings.

	Parameters:

	
	api_key -- The Random.org api key.

	api_version -- The Random.org api version.

	number -- The number of strings to generate.

	length -- The length of each string. Must be
within the [1,20] range. All strings
will be of the same length

	characters -- A string that contains the set of
characters that are allowed to occur
in the random strings. The maximum number
of characters is 80.

	replacement -- Specifies whether the random strings should be picked
with replacement. The default (true) will cause the
strings to be picked with replacement, i.e., the
resulting list of strings may contain duplicates (like
a series of dice rolls). If you want the strings to be
unique (like raffle tickets drawn from a container), set
this value to false.

	Returns:

	A list of strings.

CLI Example:

salt '*' random_org.generateStrings number=5 length=8 characters='abcdefghijklmnopqrstuvwxyz'

salt '*' random_org.generateStrings number=10 length=16 characters'abcdefghijklmnopqrstuvwxyz'

	
salt.modules.random_org.generateUUIDs(api_key=None, api_version=None, **kwargs)

	Generate a list of random UUIDs

	Parameters:

	
	api_key -- The Random.org api key.

	api_version -- The Random.org api version.

	number -- How many random UUIDs you need.
Must be within the [1,1e3] range.

	Returns:

	A list of UUIDs

CLI Example:

salt '*' random_org.generateUUIDs number=5

	
salt.modules.random_org.getUsage(api_key=None, api_version=None)

	Show current usages statistics

	Parameters:

	
	api_key -- The Random.org api key.

	api_version -- The Random.org api version.

	Returns:

	The current usage statistics.

CLI Example:

salt '*' random_org.getUsage

salt '*' random_org.getUsage api_key=peWcBiMOS9HrZG15peWcBiMOS9HrZG15 api_version=1

salt.modules.rbac_solaris

Module for Solaris' Role-Based Access Control

	
salt.modules.rbac_solaris.auth_add(user, auth)

	Add authorization to user

	userstring
	username

	authstring
	authorization name

CLI Example:

salt '*' rbac.auth_add martine solaris.zone.manage
salt '*' rbac.auth_add martine solaris.zone.manage,solaris.mail.mailq

	
salt.modules.rbac_solaris.auth_get(user, computed=True)

	List authorization for user

	userstring
	username

	computedboolean
	merge results from auths command into data from user_attr

CLI Example:

salt '*' rbac.auth_get leo

	
salt.modules.rbac_solaris.auth_list()

	List all available authorization

CLI Example:

salt '*' rbac.auth_list

	
salt.modules.rbac_solaris.auth_rm(user, auth)

	Remove authorization from user

	userstring
	username

	authstring
	authorization name

CLI Example:

salt '*' rbac.auth_rm jorge solaris.zone.manage
salt '*' rbac.auth_rm jorge solaris.zone.manage,solaris.mail.mailq

	
salt.modules.rbac_solaris.profile_add(user, profile)

	Add profile to user

	userstring
	username

	profilestring
	profile name

CLI Example:

salt '*' rbac.profile_add martine 'Primary Administrator'
salt '*' rbac.profile_add martine 'User Management,User Security'

	
salt.modules.rbac_solaris.profile_get(user, default_hidden=True)

	List profiles for user

	userstring
	username

	default_hiddenboolean
	hide default profiles

CLI Example:

salt '*' rbac.profile_get leo
salt '*' rbac.profile_get leo default_hidden=False

	
salt.modules.rbac_solaris.profile_list(default_only=False)

	List all available profiles

	default_onlyboolean
	return only default profile

CLI Example:

salt '*' rbac.profile_list

	
salt.modules.rbac_solaris.profile_rm(user, profile)

	Remove profile from user

	userstring
	username

	profilestring
	profile name

CLI Example:

salt '*' rbac.profile_rm jorge 'Primary Administrator'
salt '*' rbac.profile_rm jorge 'User Management,User Security'

	
salt.modules.rbac_solaris.role_add(user, role)

	Add role to user

	userstring
	username

	rolestring
	role name

CLI Example:

salt '*' rbac.role_add martine netcfg
salt '*' rbac.role_add martine netcfg,zfssnap

	
salt.modules.rbac_solaris.role_get(user)

	List roles for user

	userstring
	username

CLI Example:

salt '*' rbac.role_get leo

	
salt.modules.rbac_solaris.role_list()

	List all available roles

CLI Example:

salt '*' rbac.role_list

	
salt.modules.rbac_solaris.role_rm(user, role)

	Remove role from user

	userstring
	username

	rolestring
	role name

CLI Example:

salt '*' rbac.role_rm jorge netcfg
salt '*' rbac.role_rm jorge netcfg,zfssnap

salt.modules.rbenv

Manage ruby installations with rbenv. rbenv is supported on Linux and macOS.
rbenv doesn't work on Windows (and isn't really necessary on Windows as there is
no system Ruby on Windows). On Windows, the RubyInstaller and/or Pik are both
good alternatives to work with multiple versions of Ruby on the same box.

http://misheska.com/blog/2013/06/15/using-rbenv-to-manage-multiple-versions-of-ruby/

New in version 0.16.0.

	
salt.modules.rbenv.default(ruby=None, runas=None)

	Returns or sets the currently defined default ruby

	ruby
	The version to set as the default. Should match one of the versions
listed by rbenv.versions.
Leave blank to return the current default.

CLI Example:

salt '*' rbenv.default
salt '*' rbenv.default 2.0.0-p0

	
salt.modules.rbenv.do(cmdline, runas=None, env=None)

	Execute a ruby command with rbenv's shims from the user or the system

CLI Example:

salt '*' rbenv.do 'gem list bundler'
salt '*' rbenv.do 'gem list bundler' deploy

	
salt.modules.rbenv.do_with_ruby(ruby, cmdline, runas=None)

	Execute a ruby command with rbenv's shims using a specific ruby version

CLI Example:

salt '*' rbenv.do_with_ruby 2.0.0-p0 'gem list bundler'
salt '*' rbenv.do_with_ruby 2.0.0-p0 'gem list bundler' runas=deploy

	
salt.modules.rbenv.install(runas=None, path=None)

	Install rbenv systemwide

CLI Example:

salt '*' rbenv.install

	
salt.modules.rbenv.install_ruby(ruby, runas=None)

	Install a ruby implementation.

	ruby
	The version of Ruby to install, should match one of the
versions listed by rbenv.list

	runas
	The user under which to run rbenv. If not specified, then rbenv will be
run as the user under which Salt is running.

Additional environment variables can be configured in pillar /
grains / master:

rbenv:
 build_env: 'CONFIGURE_OPTS="--no-tcmalloc" CFLAGS="-fno-tree-dce"'

CLI Example:

salt '*' rbenv.install_ruby 2.0.0-p0

	
salt.modules.rbenv.is_installed(runas=None)

	Check if rbenv is installed

CLI Example:

salt '*' rbenv.is_installed

	
salt.modules.rbenv.list_(runas=None)

	List the installable versions of ruby

	runas
	The user under which to run rbenv. If not specified, then rbenv will be
run as the user under which Salt is running.

CLI Example:

salt '*' rbenv.list

	
salt.modules.rbenv.rehash(runas=None)

	Run rbenv rehash to update the installed shims

	runas
	The user under which to run rbenv. If not specified, then rbenv will be
run as the user under which Salt is running.

CLI Example:

salt '*' rbenv.rehash

	
salt.modules.rbenv.uninstall_ruby(ruby, runas=None)

	Uninstall a ruby implementation.

	ruby
	The version of ruby to uninstall. Should match one of the versions
listed by rbenv.versions.

	runas
	The user under which to run rbenv. If not specified, then rbenv will be
run as the user under which Salt is running.

CLI Example:

salt '*' rbenv.uninstall_ruby 2.0.0-p0

	
salt.modules.rbenv.update(runas=None, path=None)

	Updates the current versions of rbenv and ruby-build

	runas
	The user under which to run rbenv. If not specified, then rbenv will be
run as the user under which Salt is running.

CLI Example:

salt '*' rbenv.update

	
salt.modules.rbenv.versions(runas=None)

	List the installed versions of ruby

CLI Example:

salt '*' rbenv.versions

salt.modules.rdp

Manage RDP Service on Windows servers

	
salt.modules.rdp.disable()

	Disable RDP the service on the server

CLI Example:

salt '*' rdp.disable

	
salt.modules.rdp.disconnect_session(session_id)

	Disconnect a session.

New in version 2016.11.0.

	Parameters:

	session_id -- The numeric Id of the session.

	Returns:

	A boolean representing whether the disconnect succeeded.

CLI Example:

salt '*' rdp.disconnect_session session_id

salt '*' rdp.disconnect_session 99

	
salt.modules.rdp.enable()

	Enable RDP the service on the server

CLI Example:

salt '*' rdp.enable

	
salt.modules.rdp.get_session(session_id)

	Get information about a session.

New in version 2016.11.0.

	Parameters:

	session_id -- The numeric Id of the session.

	Returns:

	A dictionary of session information.

CLI Example:

salt '*' rdp.get_session session_id

salt '*' rdp.get_session 99

	
salt.modules.rdp.list_sessions(logged_in_users_only=False)

	List information about the sessions.

New in version 2016.11.0.

	Parameters:

	logged_in_users_only -- If True, only return sessions with users logged in.

	Returns:

	A list containing dictionaries of session information.

CLI Example:

salt '*' rdp.list_sessions

	
salt.modules.rdp.logoff_session(session_id)

	Initiate the logoff of a session.

New in version 2016.11.0.

	Parameters:

	session_id -- The numeric Id of the session.

	Returns:

	A boolean representing whether the logoff succeeded.

CLI Example:

salt '*' rdp.logoff_session session_id

salt '*' rdp.logoff_session 99

	
salt.modules.rdp.status()

	Show if rdp is enabled on the server

CLI Example:

salt '*' rdp.status

salt.modules.rebootmgr module

Module for rebootmgr
:maintainer: Alberto Planas <aplanas@suse.com>
:maturity: new
:depends: None
:platform: Linux

New in version 3004.

	
salt.modules.rebootmgr.cancel()

	Cancels an already running reboot.

CLI Example:

salt microos rebootmgr cancel

	
salt.modules.rebootmgr.get_group()

	The currently set lock group for etcd.

CLI Example:

salt microos rebootmgr get_group

	
salt.modules.rebootmgr.get_strategy()

	The currently used reboot strategy of rebootmgrd will be printed.

CLI Example:

salt microos rebootmgr get_strategy

	
salt.modules.rebootmgr.get_window()

	The currently set maintenance window will be printed.

CLI Example:

salt microos rebootmgr get_window

	
salt.modules.rebootmgr.is_active()

	Check if the rebootmgrd is running and active or not.

CLI Example:

salt microos rebootmgr is_active

	
salt.modules.rebootmgr.lock(machine_id=None, group=None)

	
	Lock a machine. If no group is specified, the local default group
	will be used. If no machine-id is specified, the local machine
will be locked.

	machine_id
	The machine-id is a network wide, unique ID. Per default the
ID from /etc/machine-id is used.

	group
	Group name

CLI Example:

salt microos rebootmgr lock group=group1

	
salt.modules.rebootmgr.reboot(order=None)

	Tells rebootmgr to schedule a reboot.

With the [now] option, a forced reboot is done, no lock from etcd
is requested and a set maintenance window is ignored. With the
[fast] option, a lock from etcd is requested if needed, but a
defined maintenance window is ignored.

	order
	If specified, can be "now" or "fast"

CLI Example:

salt microos rebootmgr reboot
salt microos rebootmgt reboot order=now

	
salt.modules.rebootmgr.set_group(group)

	
	Set the group, to which this machine belongs to get a reboot lock
	from etcd.

	group
	Group name

CLI Example:

salt microos rebootmgr set_group group=group_1

	
salt.modules.rebootmgr.set_max(max_locks, group=None)

	
	Set the maximal number of hosts in a group, which are allowed to
	reboot at the same time.

	number
	Maximal number of hosts in a group

	group
	Group name

CLI Example:

salt microos rebootmgr set_max 4

	
salt.modules.rebootmgr.set_strategy(strategy=None)

	A new strategy to reboot the machine is set and written into
/etc/rebootmgr.conf.

	strategy
	If specified, must be one of those options:

	best-effort - This is the default strategy. If etcd is
	running, etcd-lock is used. If no etcd is running, but a
maintenance window is specified, the strategy will be
maint-window. If no maintenance window is specified, the
machine is immediately rebooted (instantly).

	etcd-lock - A lock at etcd for the specified lock-group will
	be acquired before reboot. If a maintenance window is
specified, the lock is only acquired during this window.

	maint-window - Reboot does happen only during a specified
	maintenance window. If no window is specified, the
instantly strategy is followed.

	instantly - Other services will be informed that a reboot will
	happen. Reboot will be done without getting any locks or
waiting for a maintenance window.

	off - Reboot requests are temporary
	ignored. /etc/rebootmgr.conf is not modified.

CLI Example:

salt microos rebootmgr set_strategy stragegy=off

	
salt.modules.rebootmgr.set_window(time, duration)

	Set's the maintenance window.

	time
	The format of time is the same as described in
systemd.time(7).

	duration
	The format of duration is "[XXh][YYm]".

CLI Example:

salt microos rebootmgr set_window time="Thu,Fri 2020-*-1,5 11:12:13" duration=1h

	
salt.modules.rebootmgr.status()

	Returns the current status of rebootmgrd.

	Valid returned values are:
	0 - No reboot requested
1 - Reboot requested
2 - Reboot requested, waiting for maintenance window
3 - Reboot requested, waiting for etcd lock.

CLI Example:

salt microos rebootmgr status

	
salt.modules.rebootmgr.unlock(machine_id=None, group=None)

	
	Unlock a machine. If no group is specified, the local default group
	will be used. If no machine-id is specified, the local machine
will be locked.

	machine_id
	The machine-id is a network wide, unique ID. Per default the
ID from /etc/machine-id is used.

	group
	Group name

CLI Example:

salt microos rebootmgr unlock group=group1

	
salt.modules.rebootmgr.version()

	Return the version of rebootmgrd

CLI Example:

salt microos rebootmgr version

salt.modules.redis

Module to provide redis functionality to Salt

New in version 2014.7.0.

	configuration:

	This module requires the redis python module and uses the
following defaults which may be overridden in the minion configuration:

redis.host: 'salt'
redis.port: 6379
redis.db: 0
redis.password: None

	
salt.modules.redismod.bgrewriteaof(host=None, port=None, db=None, password=None)

	Asynchronously rewrite the append-only file

CLI Example:

salt '*' redis.bgrewriteaof

	
salt.modules.redismod.bgsave(host=None, port=None, db=None, password=None)

	Asynchronously save the dataset to disk

CLI Example:

salt '*' redis.bgsave

	
salt.modules.redismod.config_get(pattern='*', host=None, port=None, db=None, password=None)

	Get redis server configuration values

CLI Example:

salt '*' redis.config_get
salt '*' redis.config_get port

	
salt.modules.redismod.config_set(name, value, host=None, port=None, db=None, password=None)

	Set redis server configuration values

CLI Example:

salt '*' redis.config_set masterauth luv_kittens

	
salt.modules.redismod.dbsize(host=None, port=None, db=None, password=None)

	Return the number of keys in the selected database

CLI Example:

salt '*' redis.dbsize

	
salt.modules.redismod.delete(*keys, **connection_args)

	Deletes the keys from redis, returns number of keys deleted

CLI Example:

salt '*' redis.delete foo

	
salt.modules.redismod.exists(key, host=None, port=None, db=None, password=None)

	Return true if the key exists in redis

CLI Example:

salt '*' redis.exists foo

	
salt.modules.redismod.expire(key, seconds, host=None, port=None, db=None, password=None)

	Set a keys time to live in seconds

CLI Example:

salt '*' redis.expire foo 300

	
salt.modules.redismod.expireat(key, timestamp, host=None, port=None, db=None, password=None)

	Set a keys expire at given UNIX time

CLI Example:

salt '*' redis.expireat foo 1400000000

	
salt.modules.redismod.flushall(host=None, port=None, db=None, password=None)

	Remove all keys from all databases

CLI Example:

salt '*' redis.flushall

	
salt.modules.redismod.flushdb(host=None, port=None, db=None, password=None)

	Remove all keys from the selected database

CLI Example:

salt '*' redis.flushdb

	
salt.modules.redismod.get_key(key, host=None, port=None, db=None, password=None)

	Get redis key value

CLI Example:

salt '*' redis.get_key foo

	
salt.modules.redismod.get_master_ip(host=None, port=None, password=None)

	Get host information about slave

New in version 2016.3.0.

CLI Example:

salt '*' redis.get_master_ip

	
salt.modules.redismod.hdel(key, *fields, **options)

	Delete one of more hash fields.

New in version 2017.7.0.

CLI Example:

salt '*' redis.hdel foo_hash bar_field1 bar_field2

	
salt.modules.redismod.hexists(key, field, host=None, port=None, db=None, password=None)

	Determine if a hash fields exists.

New in version 2017.7.0.

CLI Example:

salt '*' redis.hexists foo_hash bar_field

	
salt.modules.redismod.hget(key, field, host=None, port=None, db=None, password=None)

	Get specific field value from a redis hash, returns dict

CLI Example:

salt '*' redis.hget foo_hash bar_field

	
salt.modules.redismod.hgetall(key, host=None, port=None, db=None, password=None)

	Get all fields and values from a redis hash, returns dict

CLI Example:

salt '*' redis.hgetall foo_hash

	
salt.modules.redismod.hincrby(key, field, increment=1, host=None, port=None, db=None, password=None)

	Increment the integer value of a hash field by the given number.

New in version 2017.7.0.

CLI Example:

salt '*' redis.hincrby foo_hash bar_field 5

	
salt.modules.redismod.hincrbyfloat(key, field, increment=1.0, host=None, port=None, db=None, password=None)

	Increment the float value of a hash field by the given number.

New in version 2017.7.0.

CLI Example:

salt '*' redis.hincrbyfloat foo_hash bar_field 5.17

	
salt.modules.redismod.hlen(key, host=None, port=None, db=None, password=None)

	Returns number of fields of a hash.

New in version 2017.7.0.

CLI Example:

salt '*' redis.hlen foo_hash

	
salt.modules.redismod.hmget(key, *fields, **options)

	Returns the values of all the given hash fields.

New in version 2017.7.0.

CLI Example:

salt '*' redis.hmget foo_hash bar_field1 bar_field2

	
salt.modules.redismod.hmset(key, **fieldsvals)

	Sets multiple hash fields to multiple values.

New in version 2017.7.0.

CLI Example:

salt '*' redis.hmset foo_hash bar_field1=bar_value1 bar_field2=bar_value2

	
salt.modules.redismod.hscan(key, cursor=0, match=None, count=None, host=None, port=None, db=None, password=None)

	Incrementally iterate hash fields and associated values.

New in version 2017.7.0.

CLI Example:

salt '*' redis.hscan foo_hash match='field_prefix_*' count=1

	
salt.modules.redismod.hset(key, field, value, host=None, port=None, db=None, password=None)

	Set the value of a hash field.

New in version 2017.7.0.

CLI Example:

salt '*' redis.hset foo_hash bar_field bar_value

	
salt.modules.redismod.hsetnx(key, field, value, host=None, port=None, db=None, password=None)

	Set the value of a hash field only if the field does not exist.

New in version 2017.7.0.

CLI Example:

salt '*' redis.hsetnx foo_hash bar_field bar_value

	
salt.modules.redismod.hvals(key, host=None, port=None, db=None, password=None)

	Return all the values in a hash.

New in version 2017.7.0.

CLI Example:

salt '*' redis.hvals foo_hash bar_field1 bar_value1

	
salt.modules.redismod.info(host=None, port=None, db=None, password=None)

	Get information and statistics about the server

CLI Example:

salt '*' redis.info

	
salt.modules.redismod.key_type(key, host=None, port=None, db=None, password=None)

	Get redis key type

CLI Example:

salt '*' redis.type foo

	
salt.modules.redismod.keys(pattern='*', host=None, port=None, db=None, password=None)

	Get redis keys, supports glob style patterns

CLI Example:

salt '*' redis.keys
salt '*' redis.keys test*

	
salt.modules.redismod.lastsave(host=None, port=None, db=None, password=None)

	Get the UNIX time in seconds of the last successful save to disk

CLI Example:

salt '*' redis.lastsave

	
salt.modules.redismod.llen(key, host=None, port=None, db=None, password=None)

	Get the length of a list in Redis

CLI Example:

salt '*' redis.llen foo_list

	
salt.modules.redismod.lrange(key, start, stop, host=None, port=None, db=None, password=None)

	Get a range of values from a list in Redis

CLI Example:

salt '*' redis.lrange foo_list 0 10

	
salt.modules.redismod.ping(host=None, port=None, db=None, password=None)

	Ping the server, returns False on connection errors

CLI Example:

salt '*' redis.ping

	
salt.modules.redismod.save(host=None, port=None, db=None, password=None)

	Synchronously save the dataset to disk

CLI Example:

salt '*' redis.save

	
salt.modules.redismod.sentinel_get_master_ip(master, host=None, port=None, password=None)

	Get ip for sentinel master

New in version 2016.3.0.

CLI Example:

salt '*' redis.sentinel_get_master_ip 'mymaster'

	
salt.modules.redismod.set_key(key, value, host=None, port=None, db=None, password=None)

	Set redis key value

CLI Example:

salt '*' redis.set_key foo bar

	
salt.modules.redismod.shutdown(host=None, port=None, db=None, password=None)

	Synchronously save the dataset to disk and then shut down the server

CLI Example:

salt '*' redis.shutdown

	
salt.modules.redismod.slaveof(master_host=None, master_port=None, host=None, port=None, db=None, password=None)

	Make the server a slave of another instance, or promote it as master

CLI Example:

Become slave of redis-n01.example.com:6379
salt '*' redis.slaveof redis-n01.example.com 6379
salt '*' redis.slaveof redis-n01.example.com
Become master
salt '*' redis.slaveof

	
salt.modules.redismod.smembers(key, host=None, port=None, db=None, password=None)

	Get members in a Redis set

CLI Example:

salt '*' redis.smembers foo_set

	
salt.modules.redismod.time(host=None, port=None, db=None, password=None)

	Return the current server UNIX time in seconds

CLI Example:

salt '*' redis.time

	
salt.modules.redismod.zcard(key, host=None, port=None, db=None, password=None)

	Get the length of a sorted set in Redis

CLI Example:

salt '*' redis.zcard foo_sorted

	
salt.modules.redismod.zrange(key, start, stop, host=None, port=None, db=None, password=None)

	Get a range of values from a sorted set in Redis by index

CLI Example:

salt '*' redis.zrange foo_sorted 0 10

salt.modules.reg

Manage the Windows registry

Hives

Hives are the main sections of the registry and all begin with the word HKEY.

	HKEY_LOCAL_MACHINE

	HKEY_CURRENT_USER

	HKEY_USER

Keys

Keys are the folders in the registry. Keys can have many nested subkeys. Keys
can have a value assigned to them under the (Default)

When passing a key on the CLI it must be quoted correctly depending on the
backslashes being used (\ vs \\). The following are valid methods of
passing the key on the CLI:

	Using single backslashes:
	"SOFTWARE\Python"
'SOFTWARE\Python' (will not work on a Windows Master)

	Using double backslashes:
	SOFTWARE\\Python

Values or Entries

Values or Entries are the name/data pairs beneath the keys and subkeys. All keys
have a default name/data pair. The name is (Default) with a displayed value
of (value not set). The actual value is Null.

Example

The following example is an export from the Windows startup portion of the
registry:

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run]
"RTHDVCPL"="\"C:\\Program Files\\Realtek\\Audio\\HDA\\RtkNGUI64.exe\" -s"
"NvBackend"="\"C:\\Program Files (x86)\\NVIDIA Corporation\\Update Core\\NvBackend.exe\""
"BTMTrayAgent"="rundll32.exe \"C:\\Program Files (x86)\\Intel\\Bluetooth\\btmshellex.dll\",TrayApp"

In this example these are the values for each:

	Hive:
	HKEY_LOCAL_MACHINE

	Key and subkeys:
	SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run

	Value:
	
	
	There are 3 value names:
	
	RTHDVCPL

	NvBackend

	BTMTrayAgent

	Each value name has a corresponding value

	depends:

	
	salt.utils.win_reg

	
salt.modules.reg.broadcast_change()

	Refresh the windows environment.

Note

This will only effect new processes and windows. Services will not see
the change until the system restarts.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' reg.broadcast_change

	
salt.modules.reg.delete_key_recursive(hive, key, use_32bit_registry=False)

	
New in version 2015.5.4.

Delete a registry key to include all subkeys and value/data pairs.

	Parameters:

	hive (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the hive. Can be one of the following

	HKEY_LOCAL_MACHINE or HKLM

	HKEY_CURRENT_USER or HKCU

	HKEY_USER or HKU

	HKEY_CLASSES_ROOT or HKCR

	HKEY_CURRENT_CONFIG or HKCC

	key (str):
	The key to remove (looks like a path)

	use_32bit_registry (bool):
	Deletes the 32bit portion of the registry on 64bit
installations. On 32bit machines this is ignored.

	Returns:

	
	A dictionary listing the keys that deleted successfully as well as
	those that failed to delete.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

The following example will remove delete_me and all its subkeys from the
SOFTWARE key in HKEY_LOCAL_MACHINE:

salt '*' reg.delete_key_recursive HKLM SOFTWARE\\delete_me

	
salt.modules.reg.delete_value(hive, key, vname=None, use_32bit_registry=False)

	Delete a registry value entry or the default value for a key.

	Parameters:

	
	hive (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the hive. Can be one of the following

	HKEY_LOCAL_MACHINE or HKLM

	HKEY_CURRENT_USER or HKCU

	HKEY_USER or HKU

	HKEY_CLASSES_ROOT or HKCR

	HKEY_CURRENT_CONFIG or HKCC

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The key (looks like a path) to the value name.

	vname (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The value name. These are the individual name/data pairs under the
key. If not passed, the key (Default) value will be deleted.

	use_32bit_registry (bool [https://docs.python.org/3/library/functions.html#bool]) -- Deletes the 32bit portion of the registry on 64bit installations. On
32bit machines this is ignored.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' reg.delete_value HKEY_CURRENT_USER 'SOFTWARE\\Salt' 'version'

	
salt.modules.reg.import_file(source, use_32bit_registry=False)

	Import registry settings from a Windows REG file by invoking REG.EXE.

New in version 2018.3.0.

	Parameters:

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The full path of the REG file. This can be either a local file
path or a URL type supported by salt (e.g. salt://salt_master_path)

	use_32bit_registry (bool [https://docs.python.org/3/library/functions.html#bool]) -- If the value of this parameter is True then the REG file
will be imported into the Windows 32 bit registry. Otherwise the
Windows 64 bit registry will be used.

	Returns:

	True if successful, otherwise an error is raised

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] -- If the value of source is an invalid path or otherwise
 causes cp.cache_file to return False

	CommandExecutionError -- If reg.exe exits with a non-0 exit code

CLI Example:

salt machine1 reg.import_file salt://win/printer_config/110_Canon/postinstall_config.reg

	
salt.modules.reg.key_exists(hive, key, use_32bit_registry=False)

	Check that the key is found in the registry. This refers to keys and not
value/data pairs.

	Parameters:

	
	hive (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The hive to connect to

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The key to check

	use_32bit_registry (bool [https://docs.python.org/3/library/functions.html#bool]) -- Look in the 32bit portion of the registry

	Returns:

	True if exists, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' reg.key_exists HKLM SOFTWARE\Microsoft

	
salt.modules.reg.list_keys(hive, key=None, use_32bit_registry=False)

	Enumerates the subkeys in a registry key or hive.

	Parameters:

	
	hive (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the hive. Can be one of the following:

	HKEY_LOCAL_MACHINE or HKLM

	HKEY_CURRENT_USER or HKCU

	HKEY_USER or HKU

	HKEY_CLASSES_ROOT or HKCR

	HKEY_CURRENT_CONFIG or HKCC

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The key (looks like a path) to the value name. If a key is not
passed, the keys under the hive will be returned.

	use_32bit_registry (bool [https://docs.python.org/3/library/functions.html#bool]) -- Accesses the 32bit portion of the registry on 64 bit installations.
On 32bit machines this is ignored.

	Returns:

	A list of keys/subkeys under the hive or key.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' reg.list_keys HKLM 'SOFTWARE'

	
salt.modules.reg.list_values(hive, key=None, use_32bit_registry=False)

	Enumerates the values in a registry key or hive.

Note

The (Default) value will only be returned if it is set, otherwise it
will not be returned in the list of values.

	Parameters:

	
	hive (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the hive. Can be one of the following:

	HKEY_LOCAL_MACHINE or HKLM

	HKEY_CURRENT_USER or HKCU

	HKEY_USER or HKU

	HKEY_CLASSES_ROOT or HKCR

	HKEY_CURRENT_CONFIG or HKCC

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The key (looks like a path) to the value name. If a key is not
passed, the values under the hive will be returned.

	use_32bit_registry (bool [https://docs.python.org/3/library/functions.html#bool]) -- Accesses the 32bit portion of the registry on 64 bit installations.
On 32bit machines this is ignored.

	Returns:

	A list of values under the hive or key.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' reg.list_values HKLM 'SYSTEM\\CurrentControlSet\\Services\\Tcpip'

	
salt.modules.reg.read_value(hive, key, vname=None, use_32bit_registry=False)

	Reads a registry value entry or the default value for a key. To read the
default value, don't pass vname

	Parameters:

	
	hive (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the hive. Can be one of the following:

	HKEY_LOCAL_MACHINE or HKLM

	HKEY_CURRENT_USER or HKCU

	HKEY_USER or HKU

	HKEY_CLASSES_ROOT or HKCR

	HKEY_CURRENT_CONFIG or HKCC

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The key (looks like a path) to the value name.

	vname (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The value name. These are the individual name/data pairs under the
key. If not passed, the key (Default) value will be returned.

	use_32bit_registry (bool [https://docs.python.org/3/library/functions.html#bool]) -- Accesses the 32bit portion of the registry on 64bit installations.
On 32bit machines this is ignored.

	Returns:

	A dictionary containing the passed settings as well as the
value_data if successful. If unsuccessful, sets success to False.

bool: Returns False if the key is not found

If vname is not passed:

	Returns the first unnamed value (Default) as a string.

	Returns none if first unnamed value is empty.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

The following will get the value of the version value name in the
HKEY_LOCAL_MACHINE\\SOFTWARE\\Salt key

salt '*' reg.read_value HKEY_LOCAL_MACHINE 'SOFTWARE\Salt' 'version'

CLI Example:

The following will get the default value of the
HKEY_LOCAL_MACHINE\\SOFTWARE\\Salt key

salt '*' reg.read_value HKEY_LOCAL_MACHINE 'SOFTWARE\Salt'

	
salt.modules.reg.set_value(hive, key, vname=None, vdata=None, vtype='REG_SZ', use_32bit_registry=False, volatile=False)

	Sets a value in the registry. If vname is passed, it will be the value
for that value name, otherwise it will be the default value for the
specified key

	Parameters:

	
	hive (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the hive. Can be one of the following

	HKEY_LOCAL_MACHINE or HKLM

	HKEY_CURRENT_USER or HKCU

	HKEY_USER or HKU

	HKEY_CLASSES_ROOT or HKCR

	HKEY_CURRENT_CONFIG or HKCC

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The key (looks like a path) to the value name.

	vname (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The value name. These are the individual name/data pairs under the
key. If not passed, the key (Default) value will be set.

	vdata (str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list], bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) -- The value you'd like to set. If a value name (vname) is passed, this
will be the data for that value name. If not, this will be the
(Default) value for the key.

The type of data this parameter expects is determined by the value
type specified in vtype. The correspondence is as follows:

	REG_BINARY: Binary data (str in Py2, bytes in Py3)

	REG_DWORD: int

	REG_EXPAND_SZ: str

	REG_MULTI_SZ: list of str

	REG_QWORD: int

	REG_SZ: str

Note

When setting REG_BINARY, string data will be converted to
binary.

Note

The type for the (Default) value is always REG_SZ and cannot be
changed.

Note

This parameter is optional. If vdata is not passed, the Key
will be created with no associated item/value pairs.

	vtype (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The value type. The possible values of the vtype parameter are
indicated above in the description of the vdata parameter.

	use_32bit_registry (bool [https://docs.python.org/3/library/functions.html#bool]) -- Sets the 32bit portion of the registry on 64bit installations. On
32bit machines this is ignored.

	volatile (bool [https://docs.python.org/3/library/functions.html#bool]) -- When this parameter has a value of True, the registry key will be
made volatile (i.e. it will not persist beyond a system reset or
shutdown). This parameter only has an effect when a key is being
created and at no other time.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

This will set the version value to 2015.5.2 in the SOFTWARESalt key in
the HKEY_LOCAL_MACHINE hive

salt '*' reg.set_value HKEY_LOCAL_MACHINE 'SOFTWARE\Salt' 'version' '2015.5.2'

CLI Example:

This function is strict about the type of vdata. For instance this
example will fail because vtype has a value of REG_SZ and vdata has a
type of int (as opposed to str as expected).

salt '*' reg.set_value HKEY_LOCAL_MACHINE 'SOFTWARE\Salt' 'str_data' 1.2

CLI Example:

In this next example vdata is properly quoted and should succeed.

salt '*' reg.set_value HKEY_LOCAL_MACHINE 'SOFTWARE\Salt' 'str_data' vtype=REG_SZ vdata="'1.2'"

CLI Example:

This is an example of using vtype REG_BINARY.

salt '*' reg.set_value HKEY_LOCAL_MACHINE 'SOFTWARE\Salt' 'bin_data' vtype=REG_BINARY vdata='Salty Data'

CLI Example:

An example of using vtype REG_MULTI_SZ is as follows:

salt '*' reg.set_value HKEY_LOCAL_MACHINE 'SOFTWARE\Salt' 'list_data' vtype=REG_MULTI_SZ vdata='["Salt", "is", "great"]'

	
salt.modules.reg.value_exists(hive, key, vname, use_32bit_registry=False)

	Check that the value/data pair is found in the registry.

New in version 3000.

	Parameters:

	
	hive (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The hive to connect to

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The key to check in

	vname (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the value/data pair you're checking

	use_32bit_registry (bool [https://docs.python.org/3/library/functions.html#bool]) -- Look in the 32bit portion of the registry

	Returns:

	True if exists, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' reg.value_exists HKLM SOFTWARE\Microsoft\Windows\CurrentVersion CommonFilesDir

salt.modules.rest_pkg

Package support for the REST example

	
salt.modules.rest_pkg.install(name=None, refresh=False, fromrepo=None, pkgs=None, sources=None, **kwargs)

	

	
salt.modules.rest_pkg.installed(name, version=None, refresh=False, fromrepo=None, skip_verify=False, pkgs=None, sources=None, **kwargs)

	

	
salt.modules.rest_pkg.list_pkgs(versions_as_list=False, **kwargs)

	

	
salt.modules.rest_pkg.remove(name=None, pkgs=None, **kwargs)

	

	
salt.modules.rest_pkg.upgrade(refresh=True, skip_verify=True, **kwargs)

	

	
salt.modules.rest_pkg.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

salt.modules.rest_sample_utils

Utility functions for the rest_sample

	
salt.modules.rest_sample_utils.fix_outage()

	"Fix" the outage

CLI Example:

salt 'rest-sample-proxy' rest_sample.fix_outage

	
salt.modules.rest_sample_utils.get_test_string()

	Helper function to test cross-calling to the __proxy__ dunder.

CLI Example:

salt 'rest-sample-proxy' rest_sample.get_test_string

salt.modules.rest_service

Provide the service module for the proxy-minion REST sample

	
salt.modules.rest_service.enabled(name, sig=None)

	Only the 'redbull' service is 'enabled' in the test

New in version 2015.8.1.

	
salt.modules.rest_service.get_all()

	Return a list of all available services

New in version 2015.8.0.

CLI Example:

salt '*' service.get_all

	
salt.modules.rest_service.list_()

	Return a list of all available services.

New in version 2015.8.1.

CLI Example:

salt '*' service.list

	
salt.modules.rest_service.restart(name, sig=None)

	Restart the specified service with rest_sample

New in version 2015.8.0.

CLI Example:

salt '*' service.restart <service name>

	
salt.modules.rest_service.running(name, sig=None)

	Return whether this service is running.

New in version 2015.8.0.

	
salt.modules.rest_service.start(name, sig=None)

	Start the specified service on the rest_sample

New in version 2015.8.0.

CLI Example:

salt '*' service.start <service name>

	
salt.modules.rest_service.status(name, sig=None)

	Return the status for a service via rest_sample.
If the name contains globbing, a dict mapping service name to True/False
values is returned.

New in version 2015.8.0.

Changed in version 2018.3.0: The service name can now be a glob (e.g. salt*)

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service to check

	sig (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Not implemented

	Returns:

	True if running, False otherwise
dict: Maps service name to True if running, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.status <service name>

	
salt.modules.rest_service.stop(name, sig=None)

	Stop the specified service on the rest_sample

New in version 2015.8.0.

CLI Example:

salt '*' service.stop <service name>

salt.modules.restartcheck

checkrestart functionality for Debian and Red Hat Based systems

Identifies services (processes) that are linked against deleted files (for example after downloading an updated
binary of a shared library).

Based on checkrestart script from debian-goodies (written by Matt Zimmerman for the Debian GNU/Linux distribution,
https://packages.debian.org/debian-goodies) and psdel by Sam Morris.

	codeauthor:

	Jiri Kotlin <jiri.kotlin@ultimum.io>

	
salt.modules.restartcheck.restartcheck(ignorelist=None, blacklist=None, excludepid=None, **kwargs)

	Analyzes files openeded by running processes and seeks for packages which need to be restarted.

	Parameters:

	
	ignorelist -- string or list of packages to be ignored.

	blacklist -- string or list of file paths to be ignored.

	excludepid -- string or list of process IDs to be ignored.

	verbose -- boolean, enables extensive output.

	timeout -- int, timeout in minute.

	Returns:

	{ 'result': False, 'comment': '<reason>' }.
String with checkrestart output if some package seems to need to be restarted or
if no packages need restarting.

	Return type:

	Dict on error

New in version 2015.8.3.

CLI Example:

salt '*' restartcheck.restartcheck

salt.modules.restconf

Execution module for RESTCONF Proxy minions

	codeauthor:

	Jamie (Bear) Murphy <jamiemurphyit@gmail.com>

	maturity:

	new

	platform:

	any

	
salt.modules.restconf.get_data(path)

	Returns an object containing the content of the request path with a GET request.
Data returned will contain a dict with at minimum a key of "status" containing the http status code
Other keys that should be available error (if http error), body, dict (parsed json to dict)

CLI Example:

salt '*' restconf.get_data restconf/yang-library-version

	
salt.modules.restconf.info()

	Returns the RESTCONF capabilities PATH

CLI Example:

salt '*' restconf.info

	
salt.modules.restconf.path_check(primary_path, init_path)

	Used to check which path responds with a 200 status
Returns an array of True/False and a dict with keys path + path_method + response data, used in states code.

CLI Example:

salt '*' restconf.path_check restconf/yang-library-version/specifc_item restconf/yang-library-version

	
salt.modules.restconf.set_data(path, method, dict_payload)

	Sends a post/patch/other type of rest method to a specified path with the specified method with specified payload

CLI Example:

salt '*' restconf.set_data restconf/yang-library-version method=PATCH dict_payload=""

salt.modules.ret

Module to integrate with the returner system and retrieve data sent to a salt returner

	
salt.modules.ret.get_fun(returner, fun)

	Return info about last time fun was called on each minion

CLI Example:

salt '*' ret.get_fun mysql network.interfaces

	
salt.modules.ret.get_jid(returner, jid)

	Return the information for a specified job id

CLI Example:

salt '*' ret.get_jid redis 20421104181954700505

	
salt.modules.ret.get_jids(returner)

	Return a list of all job ids

CLI Example:

salt '*' ret.get_jids mysql

	
salt.modules.ret.get_minions(returner)

	Return a list of all minions

CLI Example:

salt '*' ret.get_minions mysql

salt.modules.rh_ip

The networking module for RHEL/Fedora based distros

	
salt.modules.rh_ip.apply_network_settings(**settings)

	Apply global network configuration.

CLI Example:

salt '*' ip.apply_network_settings

	
salt.modules.rh_ip.build_interface(iface, iface_type, enabled, **settings)

	Build an interface script for a network interface.

CLI Example:

salt '*' ip.build_interface eth0 eth <settings>

	
salt.modules.rh_ip.build_network_settings(**settings)

	Build the global network script.

CLI Example:

salt '*' ip.build_network_settings <settings>

	
salt.modules.rh_ip.build_routes(iface, **settings)

	Build a route script for a network interface.

CLI Example:

salt '*' ip.build_routes eth0 <settings>

	
salt.modules.rh_ip.down(iface, iface_type)

	Shutdown a network interface

CLI Example:

salt '*' ip.down eth0

	
salt.modules.rh_ip.get_interface(iface)

	Return the contents of an interface script

CLI Example:

salt '*' ip.get_interface eth0

	
salt.modules.rh_ip.get_network_settings()

	Return the contents of the global network script.

CLI Example:

salt '*' ip.get_network_settings

	
salt.modules.rh_ip.get_routes(iface)

	Return the contents of the interface routes script.

CLI Example:

salt '*' ip.get_routes eth0

	
salt.modules.rh_ip.up(iface, iface_type)

	Start up a network interface

CLI Example:

salt '*' ip.up eth0

salt.modules.rh_service

Service support for RHEL-based systems, including support for both upstart and sysvinit

Important

If you feel that Salt should be using this module to manage services on a
minion, and it is using a different module (or gives an error similar to
'service.start' is not available), see here.

	
salt.modules.rh_service.available(name, limit='')

	Return True if the named service is available. Use the limit param to
restrict results to services of that type.

CLI Examples:

salt '*' service.available sshd
salt '*' service.available sshd limit=upstart
salt '*' service.available sshd limit=sysvinit

	
salt.modules.rh_service.delete(name, **kwargs)

	Delete the named service

New in version 2016.3.0.

CLI Example:

salt '*' service.delete <service name>

	
salt.modules.rh_service.disable(name, **kwargs)

	Disable the named service to start at boot

CLI Example:

salt '*' service.disable <service name>

	
salt.modules.rh_service.disabled(name)

	Check to see if the named service is disabled to start on boot

CLI Example:

salt '*' service.disabled <service name>

	
salt.modules.rh_service.enable(name, **kwargs)

	Enable the named service to start at boot

CLI Example:

salt '*' service.enable <service name>

	
salt.modules.rh_service.enabled(name, **kwargs)

	Check to see if the named service is enabled to start on boot

CLI Example:

salt '*' service.enabled <service name>

	
salt.modules.rh_service.get_all(limit='')

	Return all installed services. Use the limit param to restrict results
to services of that type.

CLI Example:

salt '*' service.get_all
salt '*' service.get_all limit=upstart
salt '*' service.get_all limit=sysvinit

	
salt.modules.rh_service.get_disabled(limit='')

	Return the disabled services. Use the limit param to restrict results
to services of that type.

CLI Example:

salt '*' service.get_disabled
salt '*' service.get_disabled limit=upstart
salt '*' service.get_disabled limit=sysvinit

	
salt.modules.rh_service.get_enabled(limit='')

	Return the enabled services. Use the limit param to restrict results
to services of that type.

CLI Examples:

salt '*' service.get_enabled
salt '*' service.get_enabled limit=upstart
salt '*' service.get_enabled limit=sysvinit

	
salt.modules.rh_service.missing(name, limit='')

	The inverse of service.available.
Return True if the named service is not available. Use the limit param to
restrict results to services of that type.

CLI Examples:

salt '*' service.missing sshd
salt '*' service.missing sshd limit=upstart
salt '*' service.missing sshd limit=sysvinit

	
salt.modules.rh_service.reload_(name)

	Reload the named service

CLI Example:

salt '*' service.reload <service name>

	
salt.modules.rh_service.restart(name)

	Restart the named service

CLI Example:

salt '*' service.restart <service name>

	
salt.modules.rh_service.start(name)

	Start the specified service

CLI Example:

salt '*' service.start <service name>

	
salt.modules.rh_service.status(name, sig=None)

	Return the status for a service.
If the name contains globbing, a dict mapping service name to True/False
values is returned.

Changed in version 2018.3.0: The service name can now be a glob (e.g. salt*)

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service to check

	sig (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Signature to use to find the service via ps

	Returns:

	True if running, False otherwise
dict: Maps service name to True if running, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.status <service name> [service signature]

	
salt.modules.rh_service.stop(name)

	Stop the specified service

CLI Example:

salt '*' service.stop <service name>

salt.modules.riak

Riak Salt Module

	
salt.modules.riak.cluster_commit()

	Commit Cluster Changes

Changed in version 2015.8.0.

CLI Example:

salt '*' riak.cluster_commit

	
salt.modules.riak.cluster_join(username, hostname)

	Join a Riak cluster

Changed in version 2015.8.0.

CLI Example:

salt '*' riak.cluster_join <user> <host>

username - The riak username to join the cluster
hostname - The riak hostname you are connecting to

	
salt.modules.riak.cluster_leave(username, hostname)

	Leave a Riak cluster

New in version 2015.8.0.

CLI Example:

salt '*' riak.cluster_leave <username> <host>

username - The riak username to join the cluster
hostname - The riak hostname you are connecting to

	
salt.modules.riak.cluster_plan()

	Review Cluster Plan

Changed in version 2015.8.0.

CLI Example:

salt '*' riak.cluster_plan

	
salt.modules.riak.member_status()

	Get cluster member status

Changed in version 2015.8.0.

CLI Example:

salt '*' riak.member_status

	
salt.modules.riak.services()

	List available services on a node

New in version 2015.8.0.

CLI Example:

salt '*' riak.services

	
salt.modules.riak.start()

	Start Riak

CLI Example:

salt '*' riak.start

	
salt.modules.riak.status()

	Current node status

New in version 2015.8.0.

CLI Example:

salt '*' riak.status

	
salt.modules.riak.stop()

	Stop Riak

Changed in version 2015.8.0.

CLI Example:

salt '*' riak.stop

	
salt.modules.riak.test()

	Runs a test of a few standard Riak operations

New in version 2015.8.0.

CLI Example:

salt '*' riak.test

salt.modules.rpm_lowpkg

Support for rpm

	
salt.modules.rpm_lowpkg.bin_pkg_info(path, saltenv='base')

	
New in version 2015.8.0.

Parses RPM metadata and returns a dictionary of information about the
package (name, version, etc.).

	path
	Path to the file. Can either be an absolute path to a file on the
minion, or a salt fileserver URL (e.g. salt://path/to/file.rpm).
If a salt fileserver URL is passed, the file will be cached to the
minion so that it can be examined.

	saltenvbase
	Salt fileserver environment from which to retrieve the package. Ignored
if path is a local file path on the minion.

CLI Example:

salt '*' lowpkg.bin_pkg_info /root/salt-2015.5.1-2.el7.noarch.rpm
salt '*' lowpkg.bin_pkg_info salt://salt-2015.5.1-2.el7.noarch.rpm

	
salt.modules.rpm_lowpkg.checksum(*paths, **kwargs)

	Return if the signature of a RPM file is valid.

	root
	use root as top level directory (default: "/")

CLI Example:

salt '*' lowpkg.checksum /path/to/package1.rpm
salt '*' lowpkg.checksum /path/to/package1.rpm /path/to/package2.rpm

	
salt.modules.rpm_lowpkg.diff(package_path, path)

	Return a formatted diff between current file and original in a package.
NOTE: this function includes all files (configuration and not), but does
not work on binary content.

	Parameters:

	
	package -- Full pack of the RPM file

	path -- Full path to the installed file

	Returns:

	Difference or empty string. For binary files only a notification.

CLI Example:

salt '*' lowpkg.diff /path/to/apache2.rpm /etc/apache2/httpd.conf

	
salt.modules.rpm_lowpkg.file_dict(*packages, **kwargs)

	List the files that belong to a package, sorted by group. Not specifying
any packages will return a list of _every_ file on the system's rpm
database (not generally recommended).

	root
	use root as top level directory (default: "/")

CLI Examples:

salt '*' lowpkg.file_dict httpd
salt '*' lowpkg.file_dict httpd postfix
salt '*' lowpkg.file_dict

	
salt.modules.rpm_lowpkg.file_list(*packages, **kwargs)

	List the files that belong to a package. Not specifying any packages will
return a list of _every_ file on the system's rpm database (not generally
recommended).

	root
	use root as top level directory (default: "/")

CLI Examples:

salt '*' lowpkg.file_list httpd
salt '*' lowpkg.file_list httpd postfix
salt '*' lowpkg.file_list

	
salt.modules.rpm_lowpkg.info(*packages, **kwargs)

	Return a detailed package(s) summary information.
If no packages specified, all packages will be returned.

	Parameters:

	
	packages --

	attr -- Comma-separated package attributes. If no 'attr' is specified, all available attributes returned.

	Valid attributes are:
	version, vendor, release, build_date, build_date_time_t, install_date, install_date_time_t,
build_host, group, source_rpm, arch, epoch, size, license, signature, packager, url, summary, description.

	all_versions -- Return information for all installed versions of the packages

	root -- use root as top level directory (default: "/")

	Returns:

	

CLI Example:

salt '*' lowpkg.info apache2 bash
salt '*' lowpkg.info apache2 bash attr=version
salt '*' lowpkg.info apache2 bash attr=version,build_date_iso,size
salt '*' lowpkg.info apache2 bash attr=version,build_date_iso,size all_versions=True

	
salt.modules.rpm_lowpkg.list_pkgs(*packages, **kwargs)

	List the packages currently installed in a dict:

{'<package_name>': '<version>'}

	root
	use root as top level directory (default: "/")

CLI Example:

salt '*' lowpkg.list_pkgs

	
salt.modules.rpm_lowpkg.modified(*packages, **flags)

	List the modified files that belong to a package. Not specifying any packages
will return a list of _all_ modified files on the system's RPM database.

New in version 2015.5.0.

	root
	use root as top level directory (default: "/")

CLI Examples:

salt '*' lowpkg.modified httpd
salt '*' lowpkg.modified httpd postfix
salt '*' lowpkg.modified

	
salt.modules.rpm_lowpkg.owner(*paths, **kwargs)

	Return the name of the package that owns the file. Multiple file paths can
be passed. If a single path is passed, a string will be returned,
and if multiple paths are passed, a dictionary of file/package name pairs
will be returned.

If the file is not owned by a package, or is not present on the minion,
then an empty string will be returned for that path.

	root
	use root as top level directory (default: "/")

CLI Examples:

salt '*' lowpkg.owner /usr/bin/apachectl
salt '*' lowpkg.owner /usr/bin/apachectl /etc/httpd/conf/httpd.conf

	
salt.modules.rpm_lowpkg.verify(*packages, **kwargs)

	Runs an rpm -Va on a system, and returns the results in a dict

	root
	use root as top level directory (default: "/")

Files with an attribute of config, doc, ghost, license or readme in the
package header can be ignored using the ignore_types keyword argument

CLI Example:

salt '*' lowpkg.verify
salt '*' lowpkg.verify httpd
salt '*' lowpkg.verify httpd postfix
salt '*' lowpkg.verify httpd postfix ignore_types=['config','doc']

	
salt.modules.rpm_lowpkg.version_cmp(ver1, ver2, ignore_epoch=False)

	
New in version 2015.8.9.

Do a cmp-style comparison on two packages. Return -1 if ver1 < ver2, 0 if
ver1 == ver2, and 1 if ver1 > ver2. Return None if there was a problem
making the comparison.

	ignore_epochFalse
	Set to True to ignore the epoch when comparing versions

New in version 2015.8.10,2016.3.2.

CLI Example:

salt '*' pkg.version_cmp '0.2-001' '0.2.0.1-002'

salt.modules.rpmbuild_pkgbuild

RPM Package builder system

New in version 2015.8.0.

This system allows for all of the components to build rpms safely in chrooted
environments. This also provides a function to generate yum repositories

This module implements the pkgbuild interface

	
salt.modules.rpmbuild_pkgbuild.build(runas, tgt, dest_dir, spec, sources, deps, env, template, saltenv='base', log_dir='/var/log/salt/pkgbuild')

	Given the package destination directory, the spec file source and package
sources, use mock to safely build the rpm defined in the spec file

CLI Example:

salt '*' pkgbuild.build mock epel-7-x86_64 /var/www/html
 https://raw.githubusercontent.com/saltstack/libnacl/master/pkg/rpm/python-libnacl.spec
 https://pypi.python.org/packages/source/l/libnacl/libnacl-1.3.5.tar.gz

This example command should build the libnacl package for rhel 7 using user
mock and place it in /var/www/html/ on the minion

	
salt.modules.rpmbuild_pkgbuild.make_repo(repodir, keyid=None, env=None, use_passphrase=False, gnupghome='/etc/salt/gpgkeys', runas='root', timeout=15.0)

	Make a package repository and optionally sign packages present

Given the repodir, create a yum repository out of the rpms therein
and optionally sign it and packages present, the name is directory to
turn into a repo. This state is best used with onchanges linked to
your package building states.

	repodir
	The directory to find packages that will be in the repository.

	keyid
	
Changed in version 2016.3.0.

Optional Key ID to use in signing packages and repository.
Utilizes Public and Private keys associated with keyid which have
been loaded into the minion's Pillar data.

For example, contents from a Pillar data file with named Public
and Private keys as follows:

gpg_pkg_priv_key: |
 -----BEGIN PGP PRIVATE KEY BLOCK-----
 Version: GnuPG v1

 lQO+BFciIfQBCADAPCtzx7I5Rl32escCMZsPzaEKWe7bIX1em4KCKkBoX47IG54b
 w82PCE8Y1jF/9Uk2m3RKVWp3YcLlc7Ap3gj6VO4ysvVz28UbnhPxsIkOlf2cq8qc
 .
 .
 Ebe+8JCQTwqSXPRTzXmy/b5WXDeM79CkLWvuGpXFor76D+ECMRPv/rawukEcNptn
 R5OmgHqvydEnO4pWbn8JzQO9YX/Us0SMHBVzLC8eIi5ZIopzalvX
 =JvW8
 -----END PGP PRIVATE KEY BLOCK-----

gpg_pkg_priv_keyname: gpg_pkg_key.pem

gpg_pkg_pub_key: |
 -----BEGIN PGP PUBLIC KEY BLOCK-----
 Version: GnuPG v1

 mQENBFciIfQBCADAPCtzx7I5Rl32escCMZsPzaEKWe7bIX1em4KCKkBoX47IG54b
 w82PCE8Y1jF/9Uk2m3RKVWp3YcLlc7Ap3gj6VO4ysvVz28UbnhPxsIkOlf2cq8qc
 .
 .
 bYP7t5iwJmQzRMyFInYRt77wkJBPCpJc9FPNebL9vlZcN4zv0KQta+4alcWivvoP
 4QIxE+/+trC6QRw2m2dHk6aAeq/J0Sc7ilZufwnNA71hf9SzRIwcFXMsLx4iLlki
 inNqW9c=
 =s1CX
 -----END PGP PUBLIC KEY BLOCK-----

gpg_pkg_pub_keyname: gpg_pkg_key.pub

	env
	
Changed in version 2016.3.0.

A dictionary of environment variables to be utilized in creating the
repository.

Note

This parameter is not used for making yum repositories.

	use_passphraseFalse
	
New in version 2016.3.0.

Use a passphrase with the signing key presented in keyid.
Passphrase is received from Pillar data which could be passed on the
command line with pillar parameter.

pillar='{ "gpg_passphrase" : "my_passphrase" }'

New in version 3001.1.

RHEL 8 and above leverages gpg-agent and gpg-preset-passphrase for
caching keys, etc.

	gnupghome/etc/salt/gpgkeys
	
New in version 2016.3.0.

Location where GPG related files are stored, used with keyid.

	runasroot
	
New in version 2016.3.0.

User to create the repository as, and optionally sign packages.

Note

Ensure the user has correct permissions to any files and
directories which are to be utilized.

	timeout15.0
	
New in version 2016.3.4.

Timeout in seconds to wait for the prompt for inputting the passphrase.

CLI Example:

salt '*' pkgbuild.make_repo /var/www/html/

	
salt.modules.rpmbuild_pkgbuild.make_src_pkg(dest_dir, spec, sources, env=None, template=None, saltenv='base', runas='root')

	Create a source rpm from the given spec file and sources

CLI Example:

salt '*' pkgbuild.make_src_pkg /var/www/html/
 https://raw.githubusercontent.com/saltstack/libnacl/master/pkg/rpm/python-libnacl.spec
 https://pypi.python.org/packages/source/l/libnacl/libnacl-1.3.5.tar.gz

This example command should build the libnacl SOURCE package and place it in
/var/www/html/ on the minion

Changed in version 2017.7.0.

	dest_dir
	The directory on the minion to place the built package(s)

	spec
	The location of the spec file (used for rpms)

	sources
	The list of package sources

	env
	A dictionary of environment variables to be set prior to execution.

	template
	Run the spec file through a templating engine
Optional argument, allows for no templating engine used to be
if none is desired.

	saltenv
	The saltenv to use for files downloaded from the salt filesever

	runas
	The user to run the build process as

New in version 2018.3.3.

Note

using SHA256 as digest and minimum level dist el6

salt.modules.rsync

Wrapper for rsync

New in version 2014.1.0.

This data can also be passed into pillar.
Options passed into opts will overwrite options passed into pillar.

	
salt.modules.rsync.config(conf_path='/etc/rsyncd.conf')

	
Changed in version 2016.3.0: Return data now contains just the contents of the rsyncd.conf as a
string, instead of a dictionary as returned from cmd.run_all.

Returns the contents of the rsync config file

	conf_path/etc/rsyncd.conf
	Path to the config file

CLI Example:

salt '*' rsync.config

	
salt.modules.rsync.rsync(src, dst, delete=False, force=False, update=False, passwordfile=None, exclude=None, excludefrom=None, dryrun=False, rsh=None, additional_opts=None, saltenv='base')

	
Changed in version 2016.3.0: Return data now contains just the output of the rsync command, instead
of a dictionary as returned from cmd.run_all.

Rsync files from src to dst

	src
	The source location where files will be rsynced from.

	dst
	The destination location where files will be rsynced to.

	deleteFalse
	Whether to enable the rsync --delete flag, which
will delete extraneous files from dest dirs

	forceFalse
	Whether to enable the rsync --force flag, which
will force deletion of dirs even if not empty.

	updateFalse
	Whether to enable the rsync --update flag, which
forces rsync to skip any files which exist on the
destination and have a modified time that is newer
than the source file.

	passwordfile
	A file that contains a password for accessing an
rsync daemon. The file should contain just the
password.

	exclude
	Whether to enable the rsync --exclude flag, which
will exclude files matching a PATTERN.

	excludefrom
	Whether to enable the rsync --excludefrom flag, which
will read exclude patterns from a file.

	dryrunFalse
	Whether to enable the rsync --dry-run flag, which
will perform a trial run with no changes made.

	rsh
	Whether to enable the rsync --rsh flag, to
specify the remote shell to use.

	additional_opts
	Any additional rsync options, should be specified as a list.

	saltenv
	Specify a salt fileserver environment to be used.

CLI Example:

salt '*' rsync.rsync /path/to/src /path/to/dest delete=True update=True passwordfile=/etc/pass.crt exclude=exclude/dir
salt '*' rsync.rsync /path/to/src delete=True excludefrom=/xx.ini
salt '*' rsync.rsync /path/to/src delete=True exclude='[exclude1/dir,exclude2/dir]' additional_opts='["--partial", "--bwlimit=5000"]'

	
salt.modules.rsync.version()

	
Changed in version 2016.3.0: Return data now contains just the version number as a string, instead
of a dictionary as returned from cmd.run_all.

Returns rsync version

CLI Example:

salt '*' rsync.version

salt.modules.runit

runit service module
(http://smarden.org/runit)

This module is compatible with the service states,
so it can be used to maintain services using the provider argument:

myservice:
 service:
 - running
 - provider: runit

Provides virtual service module on systems using runit as init.

Service management rules (sv command):

service $n is ENABLED if file SERVICE_DIR/$n/run exists
service $n is AVAILABLE if ENABLED or if file AVAIL_SVR_DIR/$n/run exists
service $n is DISABLED if AVAILABLE but not ENABLED

SERVICE_DIR/$n is normally a symlink to a AVAIL_SVR_DIR/$n folder

Service auto-start/stop mechanism:

sv (auto)starts/stops service as soon as SERVICE_DIR/<service> is
created/deleted, both on service creation or a boot time.

autostart feature is disabled if file SERVICE_DIR/<n>/down exists. This
does not affect the current's service status (if already running) nor
manual service management.

Service's alias:

Service sva is an alias of service svc when AVAIL_SVR_DIR/sva symlinks
to folder AVAIL_SVR_DIR/svc. svc can't be enabled if it is already
enabled through an alias already enabled, since sv files are stored in
folder SERVICE_DIR/svc/.

XBPS package management uses a service's alias to provides service
alternative(s), such as chrony and openntpd both aliased to ntpd.

	
salt.modules.runit.add_svc_avail_path(path)

	Add a path that may contain available services.
Return True if added (or already present), False on error.

	path
	directory to add to AVAIL_SVR_DIRS

	
salt.modules.runit.available(name)

	Returns True if the specified service is available, otherwise returns
False.

	name
	the service's name

CLI Example:

salt '*' runit.available <service name>

	
salt.modules.runit.disable(name, stop=False, **kwargs)

	Don't start service name at boot
Returns True if operation is successful

	name
	the service's name

	stop
	if True, also stops the service

CLI Example:

salt '*' service.disable <name> [stop=True]

	
salt.modules.runit.disabled(name)

	Return True if the named service is disabled, False otherwise

	name
	the service's name

CLI Example:

salt '*' service.disabled <service name>

	
salt.modules.runit.enable(name, start=False, **kwargs)

	Start service name at boot.
Returns True if operation is successful

	name
	the service's name

	startFalse
	If True, start the service once enabled.

CLI Example:

salt '*' service.enable <name> [start=True]

	
salt.modules.runit.enabled(name)

	Return True if the named service is enabled, False otherwise

	name
	the service's name

CLI Example:

salt '*' service.enabled <service name>

	
salt.modules.runit.full_restart(name)

	Calls runit.restart()

	name
	the service's name

CLI Example:

salt '*' runit.full_restart <service name>

	
salt.modules.runit.get_all()

	Return a list of all available services

CLI Example:

salt '*' runit.get_all

	
salt.modules.runit.get_disabled()

	Return a list of all disabled services

CLI Example:

salt '*' service.get_disabled

	
salt.modules.runit.get_enabled()

	Return a list of all enabled services

CLI Example:

salt '*' service.get_enabled

	
salt.modules.runit.get_svc_alias()

	Returns the list of service's name that are aliased and their alias path(s)

	
salt.modules.runit.get_svc_avail_path()

	Return list of paths that may contain available services

	
salt.modules.runit.get_svc_broken_path(name='*')

	Return list of broken path(s) in SERVICE_DIR that match name

A path is broken if it is a broken symlink or can not be a runit service

	name
	a glob for service name. default is '*'

CLI Example:

salt '*' runit.get_svc_broken_path <service name>

	
salt.modules.runit.missing(name)

	The inverse of runit.available.
Returns True if the specified service is not available, otherwise returns
False.

	name
	the service's name

CLI Example:

salt '*' runit.missing <service name>

	
salt.modules.runit.reload_(name)

	Reload service

	name
	the service's name

CLI Example:

salt '*' runit.reload <service name>

	
salt.modules.runit.remove(name)

	Remove the service <name> from system.
Returns True if operation is successful.
The service will be also stopped.

	name
	the service's name

CLI Example:

salt '*' service.remove <name>

	
salt.modules.runit.restart(name)

	Restart service

	name
	the service's name

CLI Example:

salt '*' runit.restart <service name>

	
salt.modules.runit.show(name)

	Show properties of one or more units/jobs or the manager

	name
	the service's name

CLI Example:

salt '*' service.show <service name>

	
salt.modules.runit.start(name)

	Start service

	name
	the service's name

CLI Example:

salt '*' runit.start <service name>

	
salt.modules.runit.status(name, sig=None)

	Return True if service is running

	name
	the service's name

	sig
	signature to identify with ps

CLI Example:

salt '*' runit.status <service name>

	
salt.modules.runit.status_autostart(name)

	Return True if service <name> is autostarted by sv
(file $service_folder/down does not exist)
NB: return False if the service is not enabled.

	name
	the service's name

CLI Example:

salt '*' runit.status_autostart <service name>

	
salt.modules.runit.stop(name)

	Stop service

	name
	the service's name

CLI Example:

salt '*' runit.stop <service name>

salt.modules.rvm

Manage ruby installations and gemsets with RVM, the Ruby Version Manager.

	
salt.modules.rvm.do(ruby, command, runas=None, cwd=None, env=None)

	Execute a command in an RVM controlled environment.

	ruby
	Which ruby to use

	command
	The rvm command to execute

	runas
	The user under which to run rvm. If not specified, then rvm will be run
as the user under which Salt is running.

	cwd
	The directory from which to run the rvm command. Defaults to the user's
home directory.

CLI Example:

salt '*' rvm.do 2.0.0 <command>

	
salt.modules.rvm.gemset_copy(source, destination, runas=None)

	Copy all gems from one gemset to another.

	source
	The name of the gemset to copy, complete with ruby version

	destination
	The destination gemset

	runas
	The user under which to run rvm. If not specified, then rvm will be run
as the user under which Salt is running.

CLI Example:

salt '*' rvm.gemset_copy foobar bazquo

	
salt.modules.rvm.gemset_create(ruby, gemset, runas=None)

	Creates a gemset.

	ruby
	The ruby version for which to create the gemset

	gemset
	The name of the gemset to create

	runas
	The user under which to run rvm. If not specified, then rvm will be run
as the user under which Salt is running.

CLI Example:

salt '*' rvm.gemset_create 2.0.0 foobar

	
salt.modules.rvm.gemset_delete(ruby, gemset, runas=None)

	Delete a gemset

	ruby
	The ruby version to which the gemset belongs

	gemset
	The gemset to delete

	runas
	The user under which to run rvm. If not specified, then rvm will be run
as the user under which Salt is running.

CLI Example:

salt '*' rvm.gemset_delete 2.0.0 foobar

	
salt.modules.rvm.gemset_empty(ruby, gemset, runas=None)

	Remove all gems from a gemset.

	ruby
	The ruby version to which the gemset belongs

	gemset
	The gemset to empty

	runas
	The user under which to run rvm. If not specified, then rvm will be run
as the user under which Salt is running.

CLI Example:

salt '*' rvm.gemset_empty 2.0.0 foobar

	
salt.modules.rvm.gemset_list(ruby='default', runas=None)

	List all gemsets for the given ruby.

	rubydefault
	The ruby version for which to list the gemsets

	runas
	The user under which to run rvm. If not specified, then rvm will be run
as the user under which Salt is running.

CLI Example:

salt '*' rvm.gemset_list

	
salt.modules.rvm.gemset_list_all(runas=None)

	List all gemsets for all installed rubies.

Note that you must have set a default ruby before this can work.

	runas
	The user under which to run rvm. If not specified, then rvm will be run
as the user under which Salt is running.

CLI Example:

salt '*' rvm.gemset_list_all

	
salt.modules.rvm.get(version='stable', runas=None)

	Update RVM

	versionstable
	Which version of RVM to install, (e.g. stable or head)

CLI Example:

salt '*' rvm.get

	
salt.modules.rvm.install(runas=None)

	Install RVM system-wide

	runas
	The user under which to run the rvm installer script. If not specified,
then it be run as the user under which Salt is running.

CLI Example:

salt '*' rvm.install

	
salt.modules.rvm.install_ruby(ruby, runas=None, opts=None, env=None)

	Install a ruby implementation.

	ruby
	The version of ruby to install

	runas
	The user under which to run rvm. If not specified, then rvm will be run
as the user under which Salt is running.

	env
	Environment to set for the install command. Useful for exporting compilation
flags such as RUBY_CONFIGURE_OPTS

	opts
	List of options to pass to the RVM installer (ie -C, --patch, etc)

CLI Example:

salt '*' rvm.install_ruby 1.9.3-p385

	
salt.modules.rvm.is_installed(runas=None)

	Check if RVM is installed.

CLI Example:

salt '*' rvm.is_installed

	
salt.modules.rvm.list_(runas=None)

	List all rvm-installed rubies

	runas
	The user under which to run rvm. If not specified, then rvm will be run
as the user under which Salt is running.

CLI Example:

salt '*' rvm.list

	
salt.modules.rvm.reinstall_ruby(ruby, runas=None, env=None)

	Reinstall a ruby implementation

	ruby
	The version of ruby to reinstall

	runas
	The user under which to run rvm. If not specified, then rvm will be run
as the user under which Salt is running.

CLI Example:

salt '*' rvm.reinstall_ruby 1.9.3-p385

	
salt.modules.rvm.rubygems(ruby, version, runas=None)

	Installs a specific rubygems version in the given ruby

	ruby
	The ruby for which to install rubygems

	version
	The version of rubygems to install, or 'remove' to use the version that
ships with 1.9

	runas
	The user under which to run rvm. If not specified, then rvm will be run
as the user under which Salt is running.

CLI Example:

salt '*' rvm.rubygems 2.0.0 1.8.24

	
salt.modules.rvm.set_default(ruby, runas=None)

	Set the default ruby

	ruby
	The version of ruby to make the default

	runas
	The user under which to run rvm. If not specified, then rvm will be run
as the user under which Salt is running.

CLI Example:

salt '*' rvm.set_default 2.0.0

	
salt.modules.rvm.wrapper(ruby_string, wrapper_prefix, runas=None, *binaries)

	Install RVM wrapper scripts

	ruby_string
	Ruby/gemset to install wrappers for

	wrapper_prefix
	What to prepend to the name of the generated wrapper binaries

	runas
	The user under which to run rvm. If not specified, then rvm will be run
as the user under which Salt is running.

	binariesNone
	The names of the binaries to create wrappers for. When nothing is
given, wrappers for ruby, gem, rake, irb, rdoc, ri and testrb are
generated.

CLI Example:

salt '*' rvm.wrapper <ruby_string> <wrapper_prefix>

salt.modules.s3

Connection module for Amazon S3

	configuration:

	This module accepts explicit s3 credentials but can also utilize
IAM roles assigned to the instance through Instance Profiles. Dynamic
credentials are then automatically obtained from AWS API and no further
configuration is necessary. More Information available at:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

If IAM roles are not used you need to specify them either in a pillar or
in the minion's config file:

s3.keyid: GKTADJGHEIQSXMKKRBJ08H
s3.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

Warning

This is literally the pillar key s3.keyid or the config option s3.keyid,
not:

s3:
 keyid: blah

A service_url may also be specified in the configuration:

s3.service_url: s3.amazonaws.com

A role_arn may also be specified in the configuration:

s3.role_arn: arn:aws:iam::111111111111:role/my-role-to-assume

If a service_url is not specified, the default is s3.amazonaws.com. This
may appear in various documentation as an "endpoint". A comprehensive list
for Amazon S3 may be found at:

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

The service_url will form the basis for the final endpoint that is used to
query the service.

Path style can be enabled:

s3.path_style: True

This can be useful if you need to use Salt with a proxy for a S3 compatible storage.

You can use either HTTPS protocol or HTTP protocol:

s3.https_enable: True

SSL verification may also be turned off in the configuration:

s3.verify_ssl: False

This is required if using S3 bucket names that contain a period, as
these will not match Amazon's S3 wildcard certificates. Certificate
verification is enabled by default.

AWS region may be specified in the configuration:

s3.location: eu-central-1

Default is us-east-1.

This module should be usable to query other S3-like services, such as
Eucalyptus.

	depends:

	requests

	
salt.modules.s3.delete(bucket, path=None, action=None, key=None, keyid=None, service_url=None, verify_ssl=None, kms_keyid=None, location=None, role_arn=None, path_style=None, https_enable=None)

	Delete a bucket, or delete an object from a bucket.

CLI Example to delete a bucket:

salt myminion s3.delete mybucket

CLI Example to delete an object from a bucket:

salt myminion s3.delete mybucket remoteobject

	
salt.modules.s3.get(bucket='', path='', return_bin=False, action=None, local_file=None, key=None, keyid=None, service_url=None, verify_ssl=None, kms_keyid=None, location=None, role_arn=None, path_style=None, https_enable=None)

	List the contents of a bucket, or return an object from a bucket. Set
return_bin to True in order to retrieve an object wholesale. Otherwise,
Salt will attempt to parse an XML response.

CLI Example to list buckets:

salt myminion s3.get

CLI Example to list the contents of a bucket:

salt myminion s3.get mybucket

CLI Example to return the binary contents of an object:

salt myminion s3.get mybucket myfile.png return_bin=True

CLI Example to save the binary contents of an object to a local file:

salt myminion s3.get mybucket myfile.png local_file=/tmp/myfile.png

It is also possible to perform an action on a bucket. Currently, S3
supports the following actions:

acl
cors
lifecycle
policy
location
logging
notification
tagging
versions
requestPayment
versioning
website

To perform an action on a bucket:

salt myminion s3.get mybucket myfile.png action=acl

	
salt.modules.s3.head(bucket, path='', key=None, keyid=None, service_url=None, verify_ssl=None, kms_keyid=None, location=None, role_arn=None, path_style=None, https_enable=None)

	Return the metadata for a bucket, or an object in a bucket.

CLI Examples:

salt myminion s3.head mybucket
salt myminion s3.head mybucket myfile.png

	
salt.modules.s3.put(bucket, path=None, return_bin=False, action=None, local_file=None, key=None, keyid=None, service_url=None, verify_ssl=None, kms_keyid=None, location=None, role_arn=None, path_style=None, https_enable=None)

	Create a new bucket, or upload an object to a bucket.

CLI Example to create a bucket:

salt myminion s3.put mybucket

CLI Example to upload an object to a bucket:

salt myminion s3.put mybucket remotepath local_file=/path/to/file

salt.modules.s6

s6 service module

This module is compatible with the service states,
so it can be used to maintain services using the provider argument:

myservice:
 service:
 - running
 - provider: s6

Note that the enabled argument is not available with this provider.

	codeauthor:

	Marek Skrobacki <skrobul@skrobul.com>

	
salt.modules.s6.available(name)

	Returns True if the specified service is available, otherwise returns
False.

CLI Example:

salt '*' s6.available foo

	
salt.modules.s6.full_restart(name)

	Calls s6.restart() function

CLI Example:

salt '*' s6.full_restart <service name>

	
salt.modules.s6.get_all()

	Return a list of all available services

CLI Example:

salt '*' s6.get_all

	
salt.modules.s6.missing(name)

	The inverse of s6.available.
Returns True if the specified service is not available, otherwise returns
False.

CLI Example:

salt '*' s6.missing foo

	
salt.modules.s6.reload_(name)

	Send a HUP to service via s6

CLI Example:

salt '*' s6.reload <service name>

	
salt.modules.s6.restart(name)

	Restart service via s6. This will stop/start service

CLI Example:

salt '*' s6.restart <service name>

	
salt.modules.s6.start(name)

	Starts service via s6

CLI Example:

salt '*' s6.start <service name>

	
salt.modules.s6.status(name, sig=None)

	Return the status for a service via s6, return pid if running

CLI Example:

salt '*' s6.status <service name>

	
salt.modules.s6.stop(name)

	Stops service via s6

CLI Example:

salt '*' s6.stop <service name>

	
salt.modules.s6.term(name)

	Send a TERM to service via s6

CLI Example:

salt '*' s6.term <service name>

salt.modules.salt_proxy

Salt proxy module

New in version 2015.8.3.

Module to deploy and manage salt-proxy processes
on a minion.

	
salt.modules.salt_proxy.configure_proxy(proxyname, start=True)

	Create the salt proxy file and start the proxy process
if required

	Parameters:

	
	proxyname -- Name to be used for this proxy (should match entries in pillar)

	start -- Boolean indicating if the process should be started
default = True

CLI Example:

salt deviceminion salt_proxy.configure_proxy p8000

	
salt.modules.salt_proxy.is_running(proxyname)

	Check if the salt-proxy process associated
with this proxy (name) is running.

Returns True if the process is running
False otherwise

	Parameters:

	proxyname -- String name of the proxy (p8000 for example)

CLI Example:

salt deviceminion salt_proxy.is_running p8000

salt.modules.salt_version

Access Salt's elemental release code-names.

New in version 3000.

Salt's feature release schedule is based on the Periodic Table, as described
in the Version Numbers documentation.

When a feature was added (or removed) in a specific release, it can be
difficult to build out future-proof functionality that is dependent on
a naming scheme that moves.

For example, a state syntax needs to change to support an option that will be
removed in the future, but there are many Minion versions in use across an
infrastructure. It would be handy to use some Jinja syntax to check for these
instances to perform one state syntax over another.

A simple example might be something like the following:

{# a boolean check #}
{% set option_deprecated = salt['salt_version.less_than']("Sodium") %}

{% if option_deprecated %}
 <use old syntax>
{% else %}
 <use new syntax>
{% endif %}

	
salt.modules.salt_version.equal(name)

	Returns a boolean (True) if the minion's current version
code name matches the named version.

	name
	The release code name to check the version against.

CLI Example:

salt '*' salt_version.equal 'Oxygen'

	
salt.modules.salt_version.get_release_number(name)

	Returns the release number of a given release code name in a
MAJOR.PATCH format (for Salt versions < 3000) or MAJOR for newer Salt versions.

If the release name has not been given an assigned release number, the
function returns a string. If the release cannot be found, it returns
None.

	name
	The release code name for which to find a release number.

CLI Example:

salt '*' salt_version.get_release_number 'Oxygen'

	
salt.modules.salt_version.greater_than(name)

	Returns a boolean (True) if the minion's current
version code name is greater than the named version.

	name
	The release code name to check the version against.

CLI Example:

salt '*' salt_version.greater_than 'Oxygen'

	
salt.modules.salt_version.less_than(name)

	Returns a boolean (True) if the minion's current
version code name is less than the named version.

	name
	The release code name to check the version against.

CLI Example:

salt '*' salt_version.less_than 'Oxygen'

salt.modules.saltcheck

A module for testing the logic of states and highstates on salt minions

	codeauthor:

	William Cannon <william.cannon@gmail.com>

	maturity:

	new

Saltcheck provides unittest like functionality requiring only the knowledge of
salt module execution and yaml. Saltcheck uses salt modules to return data, then
runs an assertion against that return. This allows for testing with all the
features included in salt modules.

In order to run state and highstate saltcheck tests, a sub-folder in the state directory
must be created and named saltcheck-tests. Tests for a state should be created in files
ending in *.tst and placed in the saltcheck-tests folder. tst files are run
through the salt rendering system, enabling tests to be written in yaml (or renderer of choice),
and include jinja, as well as the usual grain and pillar information. Like states, multiple tests can
be specified in a tst file. Multiple tst files can be created in the saltcheck-tests
folder, and should be named the same as the associated state. The id of a test works in the
same manner as in salt state files and should be unique and descriptive.

New in version 3000: The saltcheck-tests folder can be customized using the saltcheck_test_location minion
configuration setting. This setting is a relative path from the formula's salt:// path
to the test files.

Usage

Example Default file system layout:

/srv/salt/apache/
 init.sls
 config.sls
 saltcheck-tests/
 init.tst
 config.tst
 deployment_validation.tst

Alternative example file system layout with custom saltcheck_test_location:

Minion configuration:

saltcheck_test_location: tests/integration/saltcheck

Filesystem layout:

/srv/salt/apache/
 init.sls
 config.sls
 tests/integration/saltcheck/
 init.tst
 config.tst
 deployment_validation.tst

Tests can be run for each state by name, for all apache/saltcheck/*.tst
files, or for all states assigned to the minion in top.sls. Tests may also be
created with no associated state. These tests will be run through the use of
saltcheck.run_state_tests, but will not be automatically run by
saltcheck.run_highstate_tests.

salt '*' saltcheck.run_state_tests apache,apache.config
salt '*' saltcheck.run_state_tests apache check_all=True
salt '*' saltcheck.run_highstate_tests
salt '*' saltcheck.run_state_tests apache.deployment_validation

Saltcheck Keywords

	module_and_function:
	(str) This is the salt module which will be run locally,
the same as salt-call --local <module>. The saltcheck.state_apply module name is
special as it bypasses the local option in order to resolve state names when run in
a master/minion environment.

	args:
	(list) Optional arguments passed to the salt module

	kwargs:
	(dict) Optional keyword arguments to be passed to the salt module

	assertion:
	(str) One of the supported assertions and required except for saltcheck.state_apply
Tests which fail the assertion and expected_return, cause saltcheck to exit which a non-zero exit code.

	expected_return:
	(str) Required except by assertEmpty, assertNotEmpty, assertTrue,
assertFalse. The return of module_and_function is compared to this value in the assertion.

	assertion_section:
	(str) Optional keyword used to parse the module_and_function return. If a salt module
returns a dictionary as a result, the assertion_section value is used to lookup a specific value
in that return for the assertion comparison.

	assertion_section_delimiter:
	(str) Optional delimiter to use when splitting a nested structure.
Defaults to ':'

	print_result:
	(bool) Optional keyword to show results in the assertEqual, assertNotEqual,
assertIn, and assertNotIn output. Defaults to True.

	output_details:
	(bool) Optional keyword to display module_and_function, args, assertion_section,
and assertion results text in the output. If print_result is False, assertion results will be hidden.
This is a per test setting, but can be set globally for all tests by adding saltcheck_output_details: True
in the minion configuration file.
Defaults to False

	pillar_data:
	(dict) Optional keyword for passing in pillar data. Intended for use in potential test
setup or teardown with the saltcheck.state_apply function.

	skip:
	(bool) Optional keyword to skip running the individual test

New in version 3000: Multiple assertions can be run against the output of a single module_and_function call. The assertion,
expected_return, assertion_section, and assertion_section_delimiter keys can be placed in a list under an
assertions key. See the multiple assertions example below.

Sample Cases/Examples

Basic Example

echo_test_hello:
 module_and_function: test.echo
 args:
 - "hello"
 kwargs:
 assertion: assertEqual
 expected_return: 'hello'

Example with jinja

{% for package in ["apache2", "openssh"] %}
{# or another example #}
{# for package in salt['pillar.get']("packages") #}
test_{{ package }}_latest:
 module_and_function: pkg.upgrade_available
 args:
 - {{ package }}
 assertion: assertFalse
{% endfor %}

Example with setup state including pillar

setup_test_environment:
 module_and_function: saltcheck.state_apply
 args:
 - common
 pillar_data:
 data: value

verify_vim:
 module_and_function: pkg.version
 args:
 - vim
 assertion: assertNotEmpty

Example with jinja

{% for package in ["apache2", "openssh"] %}
{# or another example #}
{# for package in salt['pillar.get']("packages") #}
test_{{ package }}_latest:
 module_and_function: pkg.upgrade_available
 args:
 - {{ package }}
 assertion: assertFalse
{% endfor %}

Example with setup state including pillar

setup_test_environment:
 module_and_function: saltcheck.state_apply
 args:
 - common
 pillar-data:
 data: value

verify_vim:
 module_and_function: pkg.version
 args:
 - vim
 assertion: assertNotEmpty

Example with skip

package_latest:
 module_and_function: pkg.upgrade_available
 args:
 - apache2
 assertion: assertFalse
 skip: True

Example with assertion_section

validate_shell:
 module_and_function: user.info
 args:
 - root
 assertion: assertEqual
 expected_return: /bin/bash
 assertion_section: shell

Example with a nested assertion_section

validate_smb_signing:
 module_and_function: lgpo.get
 args:
 - 'Machine'
 kwargs:
 return_full_policy_names: True
 assertion: assertEqual
 expected_return: Enabled
 assertion_section: 'Computer Configuration|Microsoft network client: Digitally sign communications (always)'
 assertion_section_delimiter: '|'

Example suppressing print results

validate_env_nameNode:
 module_and_function: hadoop.dfs
 args:
 - text
 - /oozie/common/env.properties
 expected_return: nameNode = hdfs://nameservice2
 assertion: assertNotIn
 print_result: False

Example with multiple assertions and output_details

multiple_validations:
 module_and_function: network.netstat
 assertions:
 - assertion: assertEqual
 assertion_section: "0:program"
 expected_return: "systemd-resolve"
 - assertion: assertEqual
 assertion_section: "0:proto"
 expected_return: "udp"
 output_details: True

Supported assertions

	assertEqual

	assertNotEqual

	assertTrue

	assertFalse

	assertIn

	assertNotIn

	assertGreater

	assertGreaterEqual

	assertLess

	assertLessEqual

	assertEmpty

	assertNotEmpty

Warning

The saltcheck.state_apply function is an alias for
state.apply. If using the
ACL system saltcheck.* might provide more capability
than intended if only saltcheck.run_state_tests and
saltcheck.run_highstate_tests are needed.

	
class salt.modules.saltcheck.SaltCheck(saltenv='base')

	This class validates and runs the saltchecks

	
run_test(test_dict)

	Run a single saltcheck test

	
class salt.modules.saltcheck.StateTestLoader(saltenv='base')

	Class loads in test files for a state
e.g. state_dir/saltcheck-tests/[1.tst, 2.tst, 3.tst]

	
add_test_files_for_sls(sls_name, check_all=False)

	Detects states used, caches needed files, and adds to test list

	
load_test_suite()

	Load tests either from one file, or a set of files

	
salt.modules.saltcheck.parallel_scheck(data)

	triggers salt-call in parallel

	
salt.modules.saltcheck.report_highstate_tests(saltenv=None)

	Report on tests for states assigned to the minion through highstate.
Quits with the exit code for the number of missing tests.

CLI Example:

salt '*' saltcheck.report_highstate_tests

New in version 3000.

	
salt.modules.saltcheck.run_highstate_tests(saltenv=None, only_fails=False, junit=False)

	Execute all tests for states assigned to the minion through highstate and return results

	Parameters:

	
	saltenv (str [https://docs.python.org/3/library/stdtypes.html#str]) -- optional saltenv. Defaults to base

	only_fails (bool [https://docs.python.org/3/library/functions.html#bool]) -- boolean to only print failure results

	junit (bool [https://docs.python.org/3/library/functions.html#bool]) -- boolean to print results in junit format
.. versionadded:: 3007.0

CLI Example:

salt '*' saltcheck.run_highstate_tests

	
salt.modules.saltcheck.run_state_tests(state, saltenv=None, check_all=False, only_fails=False, junit=False)

	Execute tests for a salt state and return results
Nested states will also be tested

	Parameters:

	
	state (str [https://docs.python.org/3/library/stdtypes.html#str]) -- state name for which to run associated .tst test files

	saltenv (str [https://docs.python.org/3/library/stdtypes.html#str]) -- optional saltenv. Defaults to base

	check_all (bool [https://docs.python.org/3/library/functions.html#bool]) -- boolean to run all tests in state/saltcheck-tests directory

	only_fails (bool [https://docs.python.org/3/library/functions.html#bool]) -- boolean to only print failure results

	junit (bool [https://docs.python.org/3/library/functions.html#bool]) -- boolean to print results in junit format
.. versionadded:: 3007.0

CLI Example:

salt '*' saltcheck.run_state_tests postfix,common

Tests will be run in parallel by adding "saltcheck_parallel: True" in minion config.
When enabled, saltcheck will use up to the number of cores detected. This can be limited
by setting the "saltcheck_processes" value to an integer to set the maximum number
of parallel processes.

	
salt.modules.saltcheck.run_state_tests_ssh(state, saltenv=None, check_all=False, only_fails=False, junit=False)

	This function is an alias of run_state_tests.

Execute tests for a salt state and return results
Nested states will also be tested

	param str state:

	state name for which to run associated .tst test files

	param str saltenv:

	optional saltenv. Defaults to base

	param bool check_all:

	boolean to run all tests in state/saltcheck-tests directory

	param bool only_fails:

	boolean to only print failure results

	param bool junit:

	boolean to print results in junit format
.. versionadded:: 3007.0

CLI Example:

salt '*' saltcheck.run_state_tests postfix,common

Tests will be run in parallel by adding "saltcheck_parallel: True" in minion config.
When enabled, saltcheck will use up to the number of cores detected. This can be limited
by setting the "saltcheck_processes" value to an integer to set the maximum number
of parallel processes.

	
salt.modules.saltcheck.run_test(**kwargs)

	Execute one saltcheck test and return result

	Parameters:

	test (keyword arg) --

CLI Example:

salt '*' saltcheck.run_test
 test='{"module_and_function": "test.echo",
 "assertion": "assertEqual",
 "expected_return": "This works!",
 "args":["This works!"] }'

	
salt.modules.saltcheck.state_apply(state_name, **kwargs)

	Runs state.apply with given options to set up test data.
Intended to be used for optional test setup or teardown

Reference the state.apply module documentation for arguments and usage options

CLI Example:

salt '*' saltcheck.state_apply postfix

salt.modules.saltcloudmod

Control a salt cloud system

	
salt.modules.saltcloudmod.create(name, profile)

	Create the named vm

CLI Example:

salt <minion-id> saltcloud.create webserver rackspace_centos_512

salt.modules.saltutil

The Saltutil module is used to manage the state of the salt minion itself. It
is used to manage minion modules as well as automate updates to the salt
minion.

	depends:

	
	esky Python module for update functionality

	
salt.modules.saltutil.clear_cache()

	Forcibly removes all caches on a minion.

New in version 2014.7.0.

WARNING: The safest way to clear a minion cache is by first stopping
the minion and then deleting the cache files before restarting it.

CLI Example:

salt '*' saltutil.clear_cache

	
salt.modules.saltutil.clear_job_cache(hours=24)

	Forcibly removes job cache folders and files on a minion.

New in version 2018.3.0.

WARNING: The safest way to clear a minion cache is by first stopping
the minion and then deleting the cache files before restarting it.

CLI Example:

salt '*' saltutil.clear_job_cache hours=12

	
salt.modules.saltutil.cmd(tgt, fun, arg=(), timeout=None, tgt_type='glob', ret='', kwarg=None, ssh=False, **kwargs)

	
Changed in version 2017.7.0: The expr_form argument has been renamed to tgt_type, earlier
releases must use expr_form.

Assuming this minion is a master, execute a salt command

CLI Example:

salt '*' saltutil.cmd

	
salt.modules.saltutil.cmd_iter(tgt, fun, arg=(), timeout=None, tgt_type='glob', ret='', kwarg=None, ssh=False, **kwargs)

	
Changed in version 2017.7.0: The expr_form argument has been renamed to tgt_type, earlier
releases must use expr_form.

Assuming this minion is a master, execute a salt command

CLI Example:

salt '*' saltutil.cmd_iter

	
salt.modules.saltutil.find_cached_job(jid)

	Return the data for a specific cached job id. Note this only works if
cache_jobs has previously been set to True on the minion.

CLI Example:

salt '*' saltutil.find_cached_job <job id>

	
salt.modules.saltutil.find_job(jid)

	Return the data for a specific job id that is currently running.

	jid
	The job id to search for and return data.

CLI Example:

salt '*' saltutil.find_job <job id>

Note that the find_job function only returns job information when the job is still running. If
the job is currently running, the output looks something like this:

salt my-minion saltutil.find_job 20160503150049487736
my-minion:

 arg:
 - 30
 fun:
 test.sleep
 jid:
 20160503150049487736
 pid:
 9601
 ret:
 tgt:
 my-minion
 tgt_type:
 glob
 user:
 root

If the job has already completed, the job cannot be found and therefore the function returns
an empty dictionary, which looks like this on the CLI:

salt my-minion saltutil.find_job 20160503150049487736
my-minion:

salt.modules.saltutil.is_running(fun)

	If the named function is running return the data associated with it/them.
The argument can be a glob

CLI Example:

salt '*' saltutil.is_running state.highstate

	
salt.modules.saltutil.kill_all_jobs()

	Sends a kill signal (SIGKILL 9) to all currently running jobs

CLI Example:

salt '*' saltutil.kill_all_jobs

	
salt.modules.saltutil.kill_job(jid)

	Sends a kill signal (SIGKILL 9) to the named salt job's process

CLI Example:

salt '*' saltutil.kill_job <job id>

	
salt.modules.saltutil.list_extmods()

	
New in version 2017.7.0.

List Salt modules which have been synced externally

CLI Examples:

salt '*' saltutil.list_extmods

	
salt.modules.saltutil.mmodule(saltenv, fun, *args, **kwargs)

	Loads minion modules from an environment so that they can be used in pillars
for that environment

CLI Example:

salt '*' saltutil.mmodule base test.ping

	
salt.modules.saltutil.pillar_refresh(wait=False, timeout=30, clean_cache=True)

	This function is an alias of refresh_pillar.

Signal the minion to refresh the in-memory pillar data. See In-Memory Pillar Data vs. On-Demand Pillar Data.

	param wait:

	Wait for pillar refresh to complete, defaults to False.

	type wait:

	bool, optional

	param timeout:

	How long to wait in seconds, only used when wait is True, defaults to 30.

	type timeout:

	int, optional

	param clean_cache:

	Clean the pillar cache, only used when pillar_cache is True. Defaults to True

	type clean_cache:

	bool, optional
.. versionadded:: 3005

	return:

	Boolean status, True when the pillar_refresh event was fired successfully.

CLI Example:

salt '*' saltutil.refresh_pillar
salt '*' saltutil.refresh_pillar wait=True timeout=60

	
salt.modules.saltutil.refresh_beacons()

	Signal the minion to refresh the beacons.

CLI Example:

salt '*' saltutil.refresh_beacons

	
salt.modules.saltutil.refresh_grains(**kwargs)

	
New in version 2016.3.6,2016.11.4,2017.7.0.

Refresh the minion's grains without syncing custom grains modules from
salt://_grains.

Note

The available execution modules will be reloaded as part of this
proceess, as grains can affect which modules are available.

	refresh_pillarTrue
	Set to False to keep pillar data from being refreshed.

	clean_pillar_cacheFalse
	Set to True to refresh pillar cache.

CLI Examples:

salt '*' saltutil.refresh_grains

	
salt.modules.saltutil.refresh_matchers()

	Signal the minion to refresh its matchers.

CLI Example:

salt '*' saltutil.refresh_matchers

	
salt.modules.saltutil.refresh_modules(**kwargs)

	Signal the minion to refresh the module and grain data

The default is to refresh module asynchronously. To block
until the module refresh is complete, set the 'async' flag
to False.

CLI Example:

salt '*' saltutil.refresh_modules

	
salt.modules.saltutil.refresh_pillar(wait=False, timeout=30, clean_cache=True)

	Signal the minion to refresh the in-memory pillar data. See In-Memory Pillar Data vs. On-Demand Pillar Data.

	Parameters:

	
	wait (bool [https://docs.python.org/3/library/functions.html#bool], optional) -- Wait for pillar refresh to complete, defaults to False.

	timeout (int [https://docs.python.org/3/library/functions.html#int], optional) -- How long to wait in seconds, only used when wait is True, defaults to 30.

	clean_cache (bool [https://docs.python.org/3/library/functions.html#bool], optional
.. versionadded:: 3005) -- Clean the pillar cache, only used when pillar_cache is True. Defaults to True

	Returns:

	Boolean status, True when the pillar_refresh event was fired successfully.

CLI Example:

salt '*' saltutil.refresh_pillar
salt '*' saltutil.refresh_pillar wait=True timeout=60

	
salt.modules.saltutil.regen_keys()

	Used to regenerate the minion keys.

CLI Example:

salt '*' saltutil.regen_keys

	
salt.modules.saltutil.revoke_auth(preserve_minion_cache=False)

	The minion sends a request to the master to revoke its own key.
Note that the minion session will be revoked and the minion may
not be able to return the result of this command back to the master.

If the 'preserve_minion_cache' flag is set to True, the master
cache for this minion will not be removed.

CLI Example:

salt '*' saltutil.revoke_auth

	
salt.modules.saltutil.runner(name, arg=None, kwarg=None, full_return=False, saltenv='base', jid=None, **kwargs)

	Execute a runner function. This function must be run on the master,
either by targeting a minion running on a master or by using
salt-call on a master.

New in version 2014.7.0.

	name
	The name of the function to run

	kwargs
	Any keyword arguments to pass to the runner function

CLI Example:

In this example, assume that master_minion is a minion running
on a master.

salt master_minion saltutil.runner jobs.list_jobs
salt master_minion saltutil.runner test.arg arg="['baz']" kwarg="{'foo': 'bar'}"

	
salt.modules.saltutil.running()

	Return the data on all running salt processes on the minion

CLI Example:

salt '*' saltutil.running

	
salt.modules.saltutil.signal_job(jid, sig)

	Sends a signal to the named salt job's process

CLI Example:

salt '*' saltutil.signal_job <job id> 15

	
salt.modules.saltutil.sync_all(saltenv=None, refresh=True, extmod_whitelist=None, extmod_blacklist=None, clean_pillar_cache=False)

	
Changed in version 3007.0: On masterless minions, master top modules are now synced as well.
When refresh is set to True, this module's cache containing
the environments from which extension modules are synced when
saltenv is not specified will be refreshed.

Changed in version 2015.8.11,2016.3.2: On masterless minions, pillar modules are now synced, and refreshed
when refresh is set to True.

Sync down all of the dynamic modules from the file server for a specific
environment. This function synchronizes custom modules, states, beacons,
grains, returners, output modules, renderers, and utils.

	refreshTrue
	Also refresh the execution modules and recompile pillar data available
to the minion. If this is a masterless minion, also refresh the environments
from which extension modules are synced after syncing master tops.
This refresh will be performed even if no new dynamic
modules are synced. Set to False to prevent this refresh.

Important

If this function is executed using a module.run state, the SLS file will not have access to
newly synced execution modules unless a refresh argument is
added to the state, like so:

load_my_custom_module:
 module.run:
 - name: saltutil.sync_all
 - refresh: True

See here for a more detailed explanation of
why this is necessary.

	extmod_whitelistNone
	dictionary of modules to sync based on type

	extmod_blacklistNone
	dictionary of modules to blacklist based on type

	clean_pillar_cacheFalse
	Set to True to refresh pillar cache.

CLI Examples:

salt '*' saltutil.sync_all
salt '*' saltutil.sync_all saltenv=dev
salt '*' saltutil.sync_all saltenv=base,dev
salt '*' saltutil.sync_all extmod_whitelist={'modules': ['custom_module']}

	
salt.modules.saltutil.sync_beacons(saltenv=None, refresh=True, extmod_whitelist=None, extmod_blacklist=None)

	
New in version 2015.5.1.

Sync beacons from salt://_beacons to the minion

	saltenv
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

If not passed, then all environments configured in the top files will be checked for beacons to sync. If no top files are
found, then the base environment will be synced.

	refreshTrue
	If True, refresh the available beacons on the minion. This refresh
will be performed even if no new beacons are synced. Set to False
to prevent this refresh.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Example:

salt '*' saltutil.sync_beacons
salt '*' saltutil.sync_beacons saltenv=dev
salt '*' saltutil.sync_beacons saltenv=base,dev

	
salt.modules.saltutil.sync_clouds(saltenv=None, refresh=True, extmod_whitelist=None, extmod_blacklist=None)

	
New in version 2017.7.0.

Sync cloud modules from salt://_cloud to the minion

	saltenvbase
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

	refreshTrue
	If True, refresh the available execution modules on the minion.
This refresh will be performed even if no new utility modules are
synced. Set to False to prevent this refresh.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Examples:

salt '*' saltutil.sync_clouds
salt '*' saltutil.sync_clouds saltenv=dev
salt '*' saltutil.sync_clouds saltenv=base,dev

	
salt.modules.saltutil.sync_engines(saltenv=None, refresh=False, extmod_whitelist=None, extmod_blacklist=None)

	
New in version 2016.3.0.

Sync engine modules from salt://_engines to the minion

	saltenv
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

If not passed, then all environments configured in the top files will be checked for engines to sync. If no top files are
found, then the base environment will be synced.

	refreshTrue
	If True, refresh the available execution modules on the minion.
This refresh will be performed even if no new engine modules are synced.
Set to False to prevent this refresh.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Examples:

salt '*' saltutil.sync_engines
salt '*' saltutil.sync_engines saltenv=base,dev

	
salt.modules.saltutil.sync_executors(saltenv=None, refresh=True, extmod_whitelist=None, extmod_blacklist=None)

	
New in version 3000.

Sync executors from salt://_executors to the minion

	saltenv
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

If not passed, then all environments configured in the top files will be checked for log handlers to sync. If no top files
are found, then the base environment will be synced.

	refreshTrue
	If True, refresh the available execution modules on the minion.
This refresh will be performed even if no new log handlers are synced.
Set to False to prevent this refresh.

	extmod_whitelistNone
	comma-seperated list of modules to sync

	extmod_blacklistNone
	comma-seperated list of modules to blacklist based on type

CLI Examples:

salt '*' saltutil.sync_executors
salt '*' saltutil.sync_executors saltenv=dev
salt '*' saltutil.sync_executors saltenv=base,dev

	
salt.modules.saltutil.sync_grains(saltenv=None, refresh=True, extmod_whitelist=None, extmod_blacklist=None, clean_pillar_cache=False)

	
New in version 0.10.0.

Sync grains modules from salt://_grains to the minion

	saltenv
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

If not passed, then all environments configured in the top files will be checked for grains modules to sync. If no top
files are found, then the base environment will be synced.

	refreshTrue
	If True, refresh the available execution modules and recompile
pillar data for the minion. This refresh will be performed even if no
new grains modules are synced. Set to False to prevent this
refresh.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

	clean_pillar_cacheFalse
	Set to True to refresh pillar cache.

CLI Examples:

salt '*' saltutil.sync_grains
salt '*' saltutil.sync_grains saltenv=dev
salt '*' saltutil.sync_grains saltenv=base,dev

	
salt.modules.saltutil.sync_log_handlers(saltenv=None, refresh=True, extmod_whitelist=None, extmod_blacklist=None)

	
New in version 2015.8.0.

Sync log handlers from salt://_log_handlers to the minion

	saltenv
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

If not passed, then all environments configured in the top files will be checked for log handlers to sync. If no top files
are found, then the base environment will be synced.

	refreshTrue
	If True, refresh the available execution modules on the minion.
This refresh will be performed even if no new log handlers are synced.
Set to False to prevent this refresh.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Examples:

salt '*' saltutil.sync_log_handlers
salt '*' saltutil.sync_log_handlers saltenv=dev
salt '*' saltutil.sync_log_handlers saltenv=base,dev

	
salt.modules.saltutil.sync_matchers(saltenv=None, refresh=False, extmod_whitelist=None, extmod_blacklist=None)

	
New in version 2019.2.0.

Sync engine modules from salt://_matchers to the minion

	saltenv
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

If not passed, then all environments configured in the top files will be checked for engines to sync. If no top files are
found, then the base environment will be synced.

	refreshTrue
	If True, refresh the available execution modules on the minion.
This refresh will be performed even if no new matcher modules are synced.
Set to False to prevent this refresh.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Examples:

salt '*' saltutil.sync_matchers
salt '*' saltutil.sync_matchers saltenv=base,dev

	
salt.modules.saltutil.sync_modules(saltenv=None, refresh=True, extmod_whitelist=None, extmod_blacklist=None)

	
New in version 0.10.0.

Sync execution modules from salt://_modules to the minion

	saltenv
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

If not passed, then all environments configured in the top files will be checked for execution modules to sync. If no top
files are found, then the base environment will be synced.

	refreshTrue
	If True, refresh the available execution modules on the minion.
This refresh will be performed even if no new execution modules are
synced. Set to False to prevent this refresh.

Important

If this function is executed using a module.run state, the SLS file will not have access to
newly synced execution modules unless a refresh argument is
added to the state, like so:

load_my_custom_module:
 module.run:
 - name: saltutil.sync_modules
 - refresh: True

See here for a more detailed explanation of
why this is necessary.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Example:

salt '*' saltutil.sync_modules
salt '*' saltutil.sync_modules saltenv=dev
salt '*' saltutil.sync_modules saltenv=base,dev

	
salt.modules.saltutil.sync_output(saltenv=None, refresh=True, extmod_whitelist=None, extmod_blacklist=None)

	Sync outputters from salt://_output to the minion

	saltenv
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

If not passed, then all environments configured in the top files will be checked for outputters to sync. If no top files
are found, then the base environment will be synced.

	refreshTrue
	If True, refresh the available execution modules on the minion.
This refresh will be performed even if no new outputters are synced.
Set to False to prevent this refresh.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Examples:

salt '*' saltutil.sync_output
salt '*' saltutil.sync_output saltenv=dev
salt '*' saltutil.sync_output saltenv=base,dev

	
salt.modules.saltutil.sync_outputters(saltenv=None, refresh=True, extmod_whitelist=None, extmod_blacklist=None)

	This function is an alias of sync_output.

Sync outputters from salt://_output to the minion

	saltenv
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

If not passed, then all environments configured in the top files will be checked for outputters to sync. If no top files
are found, then the base environment will be synced.

	refreshTrue
	If True, refresh the available execution modules on the minion.
This refresh will be performed even if no new outputters are synced.
Set to False to prevent this refresh.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Examples:

salt '*' saltutil.sync_output
salt '*' saltutil.sync_output saltenv=dev
salt '*' saltutil.sync_output saltenv=base,dev

	
salt.modules.saltutil.sync_pillar(saltenv=None, refresh=True, extmod_whitelist=None, extmod_blacklist=None, clean_pillar_cache=False)

	
New in version 2015.8.11,2016.3.2.

Sync pillar modules from the salt://_pillar directory on the Salt
fileserver. This function is environment-aware, pass the desired
environment to grab the contents of the _pillar directory from that
environment. The default environment, if none is specified, is base.

	refreshTrue
	Also refresh the execution modules available to the minion, and refresh
pillar data.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

	clean_pillar_cacheFalse
	Set to True to refresh pillar cache.

Note

This function will raise an error if executed on a traditional (i.e.
not masterless) minion

CLI Examples:

salt '*' saltutil.sync_pillar
salt '*' saltutil.sync_pillar saltenv=dev

	
salt.modules.saltutil.sync_proxymodules(saltenv=None, refresh=False, extmod_whitelist=None, extmod_blacklist=None)

	
New in version 2015.8.2.

Sync proxy modules from salt://_proxy to the minion

	saltenv
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

If not passed, then all environments configured in the top files will be checked for proxy modules to sync. If no top
files are found, then the base environment will be synced.

	refreshTrue
	If True, refresh the available execution modules on the minion.
This refresh will be performed even if no new proxy modules are synced.
Set to False to prevent this refresh.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Examples:

salt '*' saltutil.sync_proxymodules
salt '*' saltutil.sync_proxymodules saltenv=dev
salt '*' saltutil.sync_proxymodules saltenv=base,dev

	
salt.modules.saltutil.sync_renderers(saltenv=None, refresh=True, extmod_whitelist=None, extmod_blacklist=None)

	
New in version 0.10.0.

Sync renderers from salt://_renderers to the minion

	saltenv
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

If not passed, then all environments configured in the top files will be checked for renderers to sync. If no top files
are found, then the base environment will be synced.

	refreshTrue
	If True, refresh the available execution modules on the minion.
This refresh will be performed even if no new renderers are synced.
Set to False to prevent this refresh.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Examples:

salt '*' saltutil.sync_renderers
salt '*' saltutil.sync_renderers saltenv=dev
salt '*' saltutil.sync_renderers saltenv=base,dev

	
salt.modules.saltutil.sync_returners(saltenv=None, refresh=True, extmod_whitelist=None, extmod_blacklist=None)

	
New in version 0.10.0.

Sync returners from salt://_returners to the minion

	saltenv
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

If not passed, then all environments configured in the top files will be checked for returners to sync. If no top files
are found, then the base environment will be synced.

	refreshTrue
	If True, refresh the available execution modules on the minion.
This refresh will be performed even if no new returners are synced. Set
to False to prevent this refresh.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Examples:

salt '*' saltutil.sync_returners
salt '*' saltutil.sync_returners saltenv=dev

	
salt.modules.saltutil.sync_sdb(saltenv=None, extmod_whitelist=None, extmod_blacklist=None)

	
New in version 2015.5.8,2015.8.3.

Sync sdb modules from salt://_sdb to the minion

	saltenv
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

If not passed, then all environments configured in the top files will be checked for sdb modules to sync. If no top files
are found, then the base environment will be synced.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Example:

salt '*' saltutil.sync_sdb
salt '*' saltutil.sync_sdb saltenv=dev
salt '*' saltutil.sync_sdb saltenv=base,dev

	
salt.modules.saltutil.sync_serializers(saltenv=None, refresh=True, extmod_whitelist=None, extmod_blacklist=None)

	
New in version 2019.2.0.

Sync serializers from salt://_serializers to the minion

	saltenv
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

If not passed, then all environments configured in the top files will be checked for serializer modules to sync. If no top
files are found, then the base environment will be synced.

	refreshTrue
	If True, refresh the available execution modules on the minion.
This refresh will be performed even if no new serializer modules are
synced. Set to False to prevent this refresh.

	extmod_whitelistNone
	comma-seperated list of modules to sync

	extmod_blacklistNone
	comma-seperated list of modules to blacklist based on type

CLI Examples:

salt '*' saltutil.sync_serializers
salt '*' saltutil.sync_serializers saltenv=dev
salt '*' saltutil.sync_serializers saltenv=base,dev

	
salt.modules.saltutil.sync_states(saltenv=None, refresh=True, extmod_whitelist=None, extmod_blacklist=None)

	
New in version 0.10.0.

Sync state modules from salt://_states to the minion

	saltenv
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

If not passed, then all environments configured in the top files will be checked for state modules to sync. If no top
files are found, then the base environment will be synced.

	refreshTrue
	If True, refresh the available states on the minion. This refresh
will be performed even if no new state modules are synced. Set to
False to prevent this refresh.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Examples:

salt '*' saltutil.sync_states
salt '*' saltutil.sync_states saltenv=dev
salt '*' saltutil.sync_states saltenv=base,dev

	
salt.modules.saltutil.sync_thorium(saltenv=None, refresh=False, extmod_whitelist=None, extmod_blacklist=None)

	
New in version 2018.3.0.

Sync Thorium modules from salt://_thorium to the minion

	saltenv
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

If not passed, then all environments configured in the top files will be checked for engines to sync. If no top files are
found, then the base environment will be synced.

	refresh: True
	If True, refresh the available execution modules on the minion.
This refresh will be performed even if no new Thorium modules are synced.
Set to False to prevent this refresh.

	extmod_whitelist
	comma-separated list of modules to sync

	extmod_blacklist
	comma-separated list of modules to blacklist based on type

CLI Examples:

salt '*' saltutil.sync_thorium
salt '*' saltutil.sync_thorium saltenv=base,dev

	
salt.modules.saltutil.sync_tops(saltenv=None, refresh=True, extmod_whitelist=None, extmod_blacklist=None)

	
New in version 3007.0.

Sync master tops from salt://_tops to the minion.

	saltenv
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

If not passed, then all environments configured in the top files will be checked for master tops to sync. If no top files
are found, then the base environment will be synced.

	refreshTrue
	Refresh this module's cache containing the environments from which
extension modules are synced when saltenv is not specified.
This refresh will be performed even if no new master tops are synced.
Set to False to prevent this refresh.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

Note

This function will raise an error if executed on a traditional (i.e.
not masterless) minion

CLI Examples:

salt '*' saltutil.sync_tops
salt '*' saltutil.sync_tops saltenv=dev

	
salt.modules.saltutil.sync_utils(saltenv=None, refresh=True, extmod_whitelist=None, extmod_blacklist=None)

	
New in version 2014.7.0.

Sync utility modules from salt://_utils to the minion

	saltenv
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

If not passed, then all environments configured in the top files will be checked for utility modules to sync. If no top
files are found, then the base environment will be synced.

	refreshTrue
	If True, refresh the available execution modules on the minion.
This refresh will be performed even if no new utility modules are
synced. Set to False to prevent this refresh.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Examples:

salt '*' saltutil.sync_utils
salt '*' saltutil.sync_utils saltenv=dev
salt '*' saltutil.sync_utils saltenv=base,dev

	
salt.modules.saltutil.sync_wrapper(saltenv=None, refresh=True, extmod_whitelist=None, extmod_blacklist=None)

	
New in version 3007.0.

Sync salt-ssh wrapper modules from salt://_wrapper to the minion.

	saltenv
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

If not passed, then all environments configured in the top files will be checked for wrappers to sync. If no top files
are found, then the base environment will be synced.

	refreshTrue
	If True, refresh the available wrapper modules on the minion.
This refresh will be performed even if no wrappers are synced.
Set to False to prevent this refresh.

	extmod_whitelistNone
	comma-seperated list of modules to sync

	extmod_blacklistNone
	comma-seperated list of modules to blacklist based on type

Note

This function will raise an error if executed on a traditional (i.e.
not masterless) minion.

CLI Examples:

salt '*' saltutil.sync_wrapper
salt '*' saltutil.sync_wrapper saltenv=dev
salt '*' saltutil.sync_wrapper saltenv=base,dev

	
salt.modules.saltutil.term_all_jobs()

	Sends a termination signal (SIGTERM 15) to all currently running jobs

CLI Example:

salt '*' saltutil.term_all_jobs

	
salt.modules.saltutil.term_job(jid)

	Sends a termination signal (SIGTERM 15) to the named salt job's process

CLI Example:

salt '*' saltutil.term_job <job id>

	
salt.modules.saltutil.update(version=None)

	Update the salt minion from the URL defined in opts['update_url']
VMware, Inc provides the latest builds here:
update_url: https://repo.saltproject.io/windows/

Be aware that as of 2014-8-11 there's a bug in esky such that only the
latest version available in the update_url can be downloaded and installed.

This feature requires the minion to be running a bdist_esky build.

The version number is optional and will default to the most recent version
available at opts['update_url'].

Returns details about the transaction upon completion.

CLI Examples:

salt '*' saltutil.update
salt '*' saltutil.update 0.10.3

	
salt.modules.saltutil.wheel(name, *args, **kwargs)

	Execute a wheel module and function. This function must be run against a
minion that is local to the master.

New in version 2014.7.0.

	name
	The name of the function to run

	args
	Any positional arguments to pass to the wheel function. A common example
of this would be the match arg needed for key functions.

New in version 2015.8.11.

	kwargs
	Any keyword arguments to pass to the wheel function

CLI Example:

salt my-local-minion saltutil.wheel key.accept jerry
salt my-local-minion saltutil.wheel minions.connected

Note

Since this function must be run against a minion that is running locally
on the master in order to get accurate returns, if this function is run
against minions that are not local to the master, "empty" returns are
expected. The remote minion does not have access to wheel functions and
their return data.

salt.modules.schedule

Module for managing the Salt schedule on a minion

Requires that python-dateutil is installed on the minion.

New in version 2014.7.0.

	
salt.modules.schedule.add(name, **kwargs)

	Add a job to the schedule

CLI Example:

salt '*' schedule.add job1 function='test.ping' seconds=3600
If function have some arguments, use job_args
salt '*' schedule.add job2 function='cmd.run' job_args="['date >> /tmp/date.log']" seconds=60

Add job to Salt minion when the Salt minion is not running
salt '*' schedule.add job1 function='test.ping' seconds=3600 offline=True

	
salt.modules.schedule.build_schedule_item(name, **kwargs)

	Build a schedule job

CLI Example:

salt '*' schedule.build_schedule_item job1 function='test.ping' seconds=3600

	
salt.modules.schedule.copy(name, target, **kwargs)

	Copy scheduled job to another minion or minions.

CLI Example:

salt '*' schedule.copy jobname target

	
salt.modules.schedule.delete(name, **kwargs)

	Delete a job from the minion's schedule

CLI Example:

salt '*' schedule.delete job1

Delete job on Salt minion when the Salt minion is not running
salt '*' schedule.delete job1

	
salt.modules.schedule.disable(**kwargs)

	Disable all scheduled jobs on the minion

CLI Example:

salt '*' schedule.disable

	
salt.modules.schedule.disable_job(name, **kwargs)

	Disable a job in the minion's schedule

CLI Example:

salt '*' schedule.disable_job job1

	
salt.modules.schedule.enable(**kwargs)

	Enable all scheduled jobs on the minion

CLI Example:

salt '*' schedule.enable

	
salt.modules.schedule.enable_job(name, **kwargs)

	Enable a job in the minion's schedule

CLI Example:

salt '*' schedule.enable_job job1

	
salt.modules.schedule.is_enabled(name=None)

	List a Job only if its enabled

If job is not specified, indicate
if the scheduler is enabled or disabled.

New in version 2015.5.3.

CLI Example:

salt '*' schedule.is_enabled name=job_name
salt '*' schedule.is_enabled

	
salt.modules.schedule.job_status(name, time_fmt='%Y-%m-%dT%H:%M:%S')

	Show the information for a particular job.

CLI Example:

salt '*' schedule.job_status job_name

	
salt.modules.schedule.list_(show_all=False, show_disabled=True, where=None, return_yaml=True, offline=False)

	List the jobs currently scheduled on the minion

CLI Example:

salt '*' schedule.list

Show all jobs including hidden internal jobs
salt '*' schedule.list show_all=True

Hide disabled jobs from list of jobs
salt '*' schedule.list show_disabled=False

	
salt.modules.schedule.modify(name, **kwargs)

	Modify an existing job in the schedule

CLI Example:

salt '*' schedule.modify job1 function='test.ping' seconds=3600

Modify job on Salt minion when the Salt minion is not running
salt '*' schedule.modify job1 function='test.ping' seconds=3600 offline=True

	
salt.modules.schedule.move(name, target, **kwargs)

	Move scheduled job to another minion or minions.

CLI Example:

salt '*' schedule.move jobname target

	
salt.modules.schedule.postpone_job(name, current_time, new_time, **kwargs)

	Postpone a job in the minion's schedule

Current time and new time should be in date string format,
default value is %Y-%m-%dT%H:%M:%S.

New in version 2018.3.0.

CLI Example:

salt '*' schedule.postpone_job job current_time new_time

salt '*' schedule.postpone_job job current_time new_time time_fmt='%Y-%m-%dT%H:%M:%S'

	
salt.modules.schedule.purge(**kwargs)

	Purge all the jobs currently scheduled on the minion

CLI Example:

salt '*' schedule.purge

Purge jobs on Salt minion
salt '*' schedule.purge

	
salt.modules.schedule.reload_()

	Reload saved scheduled jobs on the minion

CLI Example:

salt '*' schedule.reload

	
salt.modules.schedule.run_job(name, force=False)

	Run a scheduled job on the minion immediately

CLI Example:

salt '*' schedule.run_job job1

salt '*' schedule.run_job job1 force=True
Force the job to run even if it is disabled.

	
salt.modules.schedule.save(**kwargs)

	Save all scheduled jobs on the minion

CLI Example:

salt '*' schedule.save

	
salt.modules.schedule.show_next_fire_time(name, **kwargs)

	Show the next fire time for scheduled job

New in version 2018.3.0.

CLI Example:

salt '*' schedule.show_next_fire_time job_name

	
salt.modules.schedule.skip_job(name, current_time, **kwargs)

	Skip a job in the minion's schedule at specified time.

Time to skip should be specified as date string format,
default value is %Y-%m-%dT%H:%M:%S.

New in version 2018.3.0.

CLI Example:

salt '*' schedule.skip_job job time

salt.modules.scp

SCP Module

New in version 2019.2.0.

Module to copy files via SCP [https://man.openbsd.org/scp]

	
salt.modules.scp_mod.get(remote_path, local_path='', recursive=False, preserve_times=False, **kwargs)

	Transfer files and directories from remote host to the localhost of the
Minion.

	remote_path
	Path to retrieve from remote host. Since this is evaluated by scp on the
remote host, shell wildcards and environment variables may be used.

	recursive: False
	Transfer files and directories recursively.

	preserve_times: False
	Preserve mtime and atime of transferred files and directories.

	hostname
	The hostname of the remote device.

	port: 22
	The port of the remote device.

	username
	The username required for SSH authentication on the device.

	password
	Used for password authentication. It is also used for private key
decryption if passphrase is not given.

	passphrase
	Used for decrypting private keys.

	pkey
	An optional private key to use for authentication.

	key_filename
	The filename, or list of filenames, of optional private key(s) and/or
certificates to try for authentication.

	timeout
	An optional timeout (in seconds) for the TCP connect.

	socket_timeout: 10
	The channel socket timeout in seconds.

	buff_size: 16384
	The size of the SCP send buffer.

	allow_agent: True
	Set to False to disable connecting to the SSH agent.

	look_for_keys: True
	Set to False to disable searching for discoverable private key
files in ~/.ssh/

	banner_timeout
	An optional timeout (in seconds) to wait for the SSH banner to be
presented.

	auth_timeout
	An optional timeout (in seconds) to wait for an authentication
response.

	auto_add_policy: False
	Automatically add the host to the known_hosts.

CLI Example:

salt '*' scp.get /var/tmp/file /tmp/file hostname=10.10.10.1 auto_add_policy=True

	
salt.modules.scp_mod.put(files, remote_path=None, recursive=False, preserve_times=False, saltenv='base', **kwargs)

	Transfer files and directories to remote host.

	files
	A single path or a list of paths to be transferred.

	remote_path
	The path on the remote device where to store the files.

	recursive: True
	Transfer files and directories recursively.

	preserve_times: False
	Preserve mtime and atime of transferred files and directories.

	hostname
	The hostname of the remote device.

	port: 22
	The port of the remote device.

	username
	The username required for SSH authentication on the device.

	password
	Used for password authentication. It is also used for private key
decryption if passphrase is not given.

	passphrase
	Used for decrypting private keys.

	pkey
	An optional private key to use for authentication.

	key_filename
	The filename, or list of filenames, of optional private key(s) and/or
certificates to try for authentication.

	timeout
	An optional timeout (in seconds) for the TCP connect.

	socket_timeout: 10
	The channel socket timeout in seconds.

	buff_size: 16384
	The size of the SCP send buffer.

	allow_agent: True
	Set to False to disable connecting to the SSH agent.

	look_for_keys: True
	Set to False to disable searching for discoverable private key
files in ~/.ssh/

	banner_timeout
	An optional timeout (in seconds) to wait for the SSH banner to be
presented.

	auth_timeout
	An optional timeout (in seconds) to wait for an authentication
response.

	auto_add_policy: False
	Automatically add the host to the known_hosts.

CLI Example:

salt '*' scp.put /path/to/file /var/tmp/file hostname=server1 auto_add_policy=True

salt.modules.scsi

SCSI administration module

	
salt.modules.scsi.ls_(get_size=True)

	List SCSI devices, with details

CLI Examples:

salt '*' scsi.ls
salt '*' scsi.ls get_size=False

	get_sizeTrue
	Get the size information for scsi devices. This option
should be set to False for older OS distributions (RHEL6 and older)
due to lack of support for the '-s' option in lsscsi.

New in version 2015.5.10.

	
salt.modules.scsi.rescan_all(host)

	List scsi devices

CLI Example:

salt '*' scsi.rescan_all 0

salt.modules.sdb

Module for Manipulating Data via the Salt DB API

	
salt.modules.sdb.delete(uri)

	Delete a value from a db, using a uri in the form of sdb://<profile>/<key>.
If the uri provided does not start with sdb:// or the value is not
successfully deleted, return False.

CLI Example:

salt '*' sdb.delete sdb://mymemcached/foo

	
salt.modules.sdb.get(uri, strict=False)

	Get a value from a db, using a uri in the form of sdb://<profile>/<key>. If
the uri provided is not valid, then it will be returned as-is, unless strict=True was passed.

CLI Example:

salt '*' sdb.get sdb://mymemcached/foo strict=True

	
salt.modules.sdb.get_or_set_hash(uri, length=8, chars='abcdefghijklmnopqrstuvwxyz0123456789!@#$%^&*(-_=+)')

	Perform a one-time generation of a hash and write it to sdb.
If that value has already been set return the value instead.

This is useful for generating passwords or keys that are specific to
multiple minions that need to be stored somewhere centrally.

State Example:

some_mysql_user:
 mysql_user:
 - present
 - host: localhost
 - password: '{{ salt["sdb.get_or_set_hash"]("sdb://mymemcached/some_user_pass") }}'

CLI Example:

salt '*' sdb.get_or_set_hash 'sdb://mymemcached/SECRET_KEY' 50

Warning

This function could return strings which may contain characters which are reserved
as directives by the YAML parser, such as strings beginning with %. To avoid
issues when using the output of this function in an SLS file containing YAML+Jinja,
surround the call with single quotes.

	
salt.modules.sdb.set_(uri, value)

	Set a value in a db, using a uri in the form of sdb://<profile>/<key>.
If the uri provided does not start with sdb:// or the value is not
successfully set, return False.

CLI Example:

salt '*' sdb.set sdb://mymemcached/foo bar

salt.modules.seed

Virtual machine image management tools

	
salt.modules.seed.apply_(path, id_=None, config=None, approve_key=True, install=True, prep_install=False, pub_key=None, priv_key=None, mount_point=None)

	Seed a location (disk image, directory, or block device) with the
minion config, approve the minion's key, and/or install salt-minion.

CLI Example:

salt 'minion' seed.apply path id [config=config_data] \
 [gen_key=(true|false)] [approve_key=(true|false)] \
 [install=(true|false)]

	path
	Full path to the directory, device, or disk image on the target
minion's file system.

	id
	Minion id with which to seed the path.

	config
	Minion configuration options. By default, the 'master' option is set to
the target host's 'master'.

	approve_key
	Request a pre-approval of the generated minion key. Requires
that the salt-master be configured to either auto-accept all keys or
expect a signing request from the target host. Default: true.

	install
	Install salt-minion, if absent. Default: true.

	prep_install
	Prepare the bootstrap script, but don't run it. Default: false

	
salt.modules.seed.mkconfig(config=None, tmp=None, id_=None, approve_key=True, pub_key=None, priv_key=None)

	Generate keys and config and put them in a tmp directory.

	pub_key
	absolute path or file content of an optional preseeded salt key

	priv_key
	absolute path or file content of an optional preseeded salt key

CLI Example:

salt 'minion' seed.mkconfig [config=config_data] [tmp=tmp_dir] \
 [id_=minion_id] [approve_key=(true|false)]

	
salt.modules.seed.prep_bootstrap(mpt)

	Update and get the random script to a random place

CLI Example:

salt '*' seed.prep_bootstrap /tmp

salt.modules.selinux

Execute calls on selinux

Note

This module requires the semanage, setsebool, and semodule
commands to be available on the minion. On RHEL-based distributions,
ensure that the policycoreutils and policycoreutils-python
packages are installed. If not on a Fedora or RHEL-based distribution,
consult the selinux documentation for your distribution to ensure that the
proper packages are installed.

	
salt.modules.selinux.fcontext_add_policy(name, filetype=None, sel_type=None, sel_user=None, sel_level=None)

	
New in version 2019.2.0.

Adds the SELinux policy for a given filespec and other optional parameters.

Returns the result of the call to semanage.

Note that you don't have to remove an entry before setting a new
one for a given filespec and filetype, as adding one with semanage
automatically overwrites a previously configured SELinux context.

	name
	filespec of the file or directory. Regex syntax is allowed.

	file_type
	The SELinux filetype specification. Use one of [a, f, d, c, b,
s, l, p]. See also man semanage-fcontext. Defaults to 'a'
(all files).

	sel_type
	SELinux context type. There are many.

	sel_user
	SELinux user. Use semanage login -l to determine which ones
are available to you.

	sel_level
	The MLS range of the SELinux context.

CLI Example:

salt '*' selinux.fcontext_add_policy my-policy

	
salt.modules.selinux.fcontext_apply_policy(name, recursive=False)

	
New in version 2017.7.0.

Applies SElinux policies to filespec using restorecon [-R]
filespec. Returns dict with changes if successful, the output of
the restorecon command otherwise.

	name
	filespec of the file or directory. Regex syntax is allowed.

	recursive
	Recursively apply SELinux policies.

CLI Example:

salt '*' selinux.fcontext_apply_policy my-policy

	
salt.modules.selinux.fcontext_delete_policy(name, filetype=None, sel_type=None, sel_user=None, sel_level=None)

	
New in version 2019.2.0.

Deletes the SELinux policy for a given filespec and other optional parameters.

Returns the result of the call to semanage.

Note that you don't have to remove an entry before setting a new
one for a given filespec and filetype, as adding one with semanage
automatically overwrites a previously configured SELinux context.

	name
	filespec of the file or directory. Regex syntax is allowed.

	file_type
	The SELinux filetype specification. Use one of [a, f, d, c, b,
s, l, p]. See also man semanage-fcontext. Defaults to 'a'
(all files).

	sel_type
	SELinux context type. There are many.

	sel_user
	SELinux user. Use semanage login -l to determine which ones
are available to you.

	sel_level
	The MLS range of the SELinux context.

CLI Example:

salt '*' selinux.fcontext_delete_policy my-policy

	
salt.modules.selinux.fcontext_get_policy(name, filetype=None, sel_type=None, sel_user=None, sel_level=None)

	
New in version 2017.7.0.

Returns the current entry in the SELinux policy list as a
dictionary. Returns None if no exact match was found.

Returned keys are:

	filespec (the name supplied and matched)

	filetype (the descriptive name of the filetype supplied)

	sel_user, sel_role, sel_type, sel_level (the selinux context)

For a more in-depth explanation of the selinux context, go to
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/chap-Security-Enhanced_Linux-SELinux_Contexts.html

	name
	filespec of the file or directory. Regex syntax is allowed.

	filetype
	The SELinux filetype specification. Use one of [a, f, d, c, b,
s, l, p]. See also man semanage-fcontext. Defaults to 'a'
(all files).

CLI Example:

salt '*' selinux.fcontext_get_policy my-policy

	
salt.modules.selinux.fcontext_policy_is_applied(name, recursive=False)

	
New in version 2017.7.0.

Returns an empty string if the SELinux policy for a given filespec
is applied, returns string with differences in policy and actual
situation otherwise.

	name
	filespec of the file or directory. Regex syntax is allowed.

CLI Example:

salt '*' selinux.fcontext_policy_is_applied my-policy

	
salt.modules.selinux.filetype_id_to_string(filetype='a')

	
New in version 2017.7.0.

Translates SELinux filetype single-letter representation to a more
human-readable version (which is also used in semanage fcontext
-l).

	
salt.modules.selinux.getconfig()

	Return the selinux mode from the config file

CLI Example:

salt '*' selinux.getconfig

	
salt.modules.selinux.getenforce()

	Return the mode selinux is running in

CLI Example:

salt '*' selinux.getenforce

	
salt.modules.selinux.getsebool(boolean)

	Return the information on a specific selinux boolean

CLI Example:

salt '*' selinux.getsebool virt_use_usb

	
salt.modules.selinux.getsemod(module)

	Return the information on a specific selinux module

CLI Example:

salt '*' selinux.getsemod mysql

New in version 2016.3.0.

	
salt.modules.selinux.install_semod(module_path)

	Install custom SELinux module from file

CLI Example:

salt '*' selinux.install_semod [salt://]path/to/module.pp

New in version 2016.11.6.

	
salt.modules.selinux.list_sebool()

	Return a structure listing all of the selinux booleans on the system and
what state they are in

CLI Example:

salt '*' selinux.list_sebool

	
salt.modules.selinux.list_semod()

	Return a structure listing all of the selinux modules on the system and
what state they are in

CLI Example:

salt '*' selinux.list_semod

New in version 2016.3.0.

	
salt.modules.selinux.port_add_policy(name, sel_type=None, protocol=None, port=None, sel_range=None)

	
New in version 2019.2.0.

Adds the SELinux policy for a given protocol and port.

Returns the result of the call to semanage.

	name
	The protocol and port spec. Can be formatted as (tcp|udp)/(port|port-range).

	sel_type
	The SELinux Type. Required.

	protocol
	The protocol for the port, tcp or udp. Required if name is not formatted.

	port
	The port or port range. Required if name is not formatted.

	sel_range
	The SELinux MLS/MCS Security Range.

CLI Example:

salt '*' selinux.port_add_policy tcp/8080 http_port_t
salt '*' selinux.port_add_policy foobar http_port_t protocol=tcp port=8091

	
salt.modules.selinux.port_delete_policy(name, protocol=None, port=None)

	
New in version 2019.2.0.

Deletes the SELinux policy for a given protocol and port.

Returns the result of the call to semanage.

	name
	The protocol and port spec. Can be formatted as (tcp|udp)/(port|port-range).

	protocol
	The protocol for the port, tcp or udp. Required if name is not formatted.

	port
	The port or port range. Required if name is not formatted.

CLI Example:

salt '*' selinux.port_delete_policy tcp/8080
salt '*' selinux.port_delete_policy foobar protocol=tcp port=8091

	
salt.modules.selinux.port_get_policy(name, sel_type=None, protocol=None, port=None)

	
New in version 2019.2.0.

Returns the current entry in the SELinux policy list as a
dictionary. Returns None if no exact match was found.

Returned keys are:

	sel_type (the selinux type)

	proto (the protocol)

	port (the port(s) and/or port range(s))

	name
	The protocol and port spec. Can be formatted as (tcp|udp)/(port|port-range).

	sel_type
	The SELinux Type.

	protocol
	The protocol for the port, tcp or udp. Required if name is not formatted.

	port
	The port or port range. Required if name is not formatted.

CLI Example:

salt '*' selinux.port_get_policy tcp/80
salt '*' selinux.port_get_policy foobar protocol=tcp port=80

	
salt.modules.selinux.port_modify_policy(name, sel_type=None, protocol=None, port=None, sel_range=None)

	
New in version 2019.2.0.

Modifies the SELinux policy for a given protocol and port.

Returns the result of the call to semanage.

	name
	The protocol and port spec. Can be formatted as (tcp|udp)/(port|port-range).

	sel_type
	The SELinux Type. Required.

	protocol
	The protocol for the port, tcp or udp. Required if name is not formatted.

	port
	The port or port range. Required if name is not formatted.

	sel_range
	The SELinux MLS/MCS Security Range.

CLI Example:

salt '*' selinux.port_modify_policy tcp/8080 http_port_t
salt '*' selinux.port_modify_policy foobar http_port_t protocol=tcp port=8091

	
salt.modules.selinux.remove_semod(module)

	Remove SELinux module

CLI Example:

salt '*' selinux.remove_semod module_name

New in version 2016.11.6.

	
salt.modules.selinux.selinux_fs_path()

	Return the location of the SELinux VFS directory

CLI Example:

salt '*' selinux.selinux_fs_path

	
salt.modules.selinux.setenforce(mode)

	Set the SELinux enforcing mode

CLI Example:

salt '*' selinux.setenforce enforcing

	
salt.modules.selinux.setsebool(boolean, value, persist=False)

	Set the value for a boolean

CLI Example:

salt '*' selinux.setsebool virt_use_usb off

	
salt.modules.selinux.setsebools(pairs, persist=False)

	Set the value of multiple booleans

CLI Example:

salt '*' selinux.setsebools '{virt_use_usb: on, squid_use_tproxy: off}'

	
salt.modules.selinux.setsemod(module, state)

	Enable or disable an SELinux module.

CLI Example:

salt '*' selinux.setsemod nagios Enabled

New in version 2016.3.0.

salt.modules.sensehat

Module for controlling the LED matrix or reading environment data on the SenseHat of a Raspberry Pi.

New in version 2017.7.0.

	maintainer:

	Benedikt Werner <1benediktwerner@gmail.com>, Joachim Werner <joe@suse.com>

	maturity:

	new

	depends:

	sense_hat Python module

The rotation of the Pi can be specified in a pillar.
This is useful if the Pi is used upside down or sideways to correct the orientation of the image being shown.

Example:

sensehat:
 rotation: 90

	
salt.modules.sensehat.clear(color=None)

	Sets the LED matrix to a single color or turns all LEDs off.

CLI Example:

salt 'raspberry' sensehat.clear
salt 'raspberry' sensehat.clear '[255, 0, 0]'

	
salt.modules.sensehat.get_humidity()

	Get the percentage of relative humidity from the humidity sensor.

	
salt.modules.sensehat.get_pixel(x, y)

	Returns the color of a single pixel on the LED matrix.

	x
	The x coordinate of the pixel. Ranges from 0 on the left to 7 on the right.

	y
	The y coordinate of the pixel. Ranges from 0 at the top to 7 at the bottom.

Note

Please read the note for get_pixels

	
salt.modules.sensehat.get_pixels()

	Returns a list of 64 smaller lists of [R, G, B] pixels representing the
the currently displayed image on the LED matrix.

Note

When using set_pixels the pixel values can sometimes change when
you read them again using get_pixels. This is because we specify each
pixel element as 8 bit numbers (0 to 255) but when they're passed into the
Linux frame buffer for the LED matrix the numbers are bit shifted down
to fit into RGB 565. 5 bits for red, 6 bits for green and 5 bits for blue.
The loss of binary precision when performing this conversion
(3 bits lost for red, 2 for green and 3 for blue) accounts for the
discrepancies you see.

The get_pixels method provides an accurate representation of how the
pixels end up in frame buffer memory after you have called set_pixels.

	
salt.modules.sensehat.get_pressure()

	Gets the current pressure in Millibars from the pressure sensor.

	
salt.modules.sensehat.get_temperature()

	Gets the temperature in degrees Celsius from the humidity sensor.
Equivalent to calling get_temperature_from_humidity.

If you get strange results try using get_temperature_from_pressure.

	
salt.modules.sensehat.get_temperature_from_humidity()

	Gets the temperature in degrees Celsius from the humidity sensor.

	
salt.modules.sensehat.get_temperature_from_pressure()

	Gets the temperature in degrees Celsius from the pressure sensor.

	
salt.modules.sensehat.low_light(low_light=True)

	Sets the LED matrix to low light mode. Useful in a dark environment.

CLI Example:

salt 'raspberry' sensehat.low_light
salt 'raspberry' sensehat.low_light False

	
salt.modules.sensehat.set_pixel(x, y, color)

	Sets a single pixel on the LED matrix to a specified color.

	x
	The x coordinate of the pixel. Ranges from 0 on the left to 7 on the right.

	y
	The y coordinate of the pixel. Ranges from 0 at the top to 7 at the bottom.

	color
	The new color of the pixel as a list of [R, G, B] values.

CLI Example:

salt 'raspberry' sensehat.set_pixel 0 0 '[255, 0, 0]'

	
salt.modules.sensehat.set_pixels(pixels)

	Sets the entire LED matrix based on a list of 64 pixel values

	pixels
	A list of 64 [R, G, B] color values.

	
salt.modules.sensehat.show_image(image)

	Displays an 8 x 8 image on the LED matrix.

	image
	The path to the image to display. The image must be 8 x 8 pixels in size.

CLI Example:

salt 'raspberry' sensehat.show_image /tmp/my_image.png

	
salt.modules.sensehat.show_letter(letter, text_color=None, back_color=None)

	Displays a single letter on the LED matrix.

	letter
	The letter to display

	text_color
	The color in which the letter is shown. Defaults to '[255, 255, 255]' (white).

	back_color
	The background color of the display. Defaults to '[0, 0, 0]' (black).

CLI Example:

salt 'raspberry' sensehat.show_letter O
salt 'raspberry' sensehat.show_letter X '[255, 0, 0]'
salt 'raspberry' sensehat.show_letter B '[0, 0, 255]' '[255, 255, 0]'

	
salt.modules.sensehat.show_message(message, msg_type=None, text_color=None, back_color=None, scroll_speed=0.1)

	Displays a message on the LED matrix.

	message
	The message to display

	msg_type
	The type of the message. Changes the appearance of the message.

Available types are:

error: red text
warning: orange text
success: green text
info: blue text

	scroll_speed
	The speed at which the message moves over the LED matrix.
This value represents the time paused for between shifting the text
to the left by one column of pixels. Defaults to '0.1'.

	text_color
	The color in which the message is shown. Defaults to '[255, 255, 255]' (white).

	back_color
	The background color of the display. Defaults to '[0, 0, 0]' (black).

CLI Example:

salt 'raspberry' sensehat.show_message 'Status ok'
salt 'raspberry' sensehat.show_message 'Something went wrong' error
salt 'raspberry' sensehat.show_message 'Red' text_color='[255, 0, 0]'
salt 'raspberry' sensehat.show_message 'Hello world' None '[0, 0, 255]' '[255, 255, 0]' 0.2

salt.modules.sensors

Read lm-sensors

New in version 2014.1.3.

	
salt.modules.sensors.sense(chip, fahrenheit=False)

	Gather lm-sensors data from a given chip

To determine the chip to query, use the 'sensors' command
and see the leading line in the block.

Example:

/usr/bin/sensors

coretemp-isa-0000
Adapter: ISA adapter
Physical id 0: +56.0°C (high = +87.0°C, crit = +105.0°C)
Core 0: +52.0°C (high = +87.0°C, crit = +105.0°C)
Core 1: +50.0°C (high = +87.0°C, crit = +105.0°C)
Core 2: +56.0°C (high = +87.0°C, crit = +105.0°C)
Core 3: +53.0°C (high = +87.0°C, crit = +105.0°C)

Given the above, the chip is 'coretemp-isa-0000'.

salt.modules.serverdensity_device

Wrapper around Server Density API

New in version 2014.7.0.

	
salt.modules.serverdensity_device.create(name, **params)

	Function to create device in Server Density. For more info, see the API
docs [https://apidocs.serverdensity.com/Inventory/Devices/Creating].

CLI Example:

salt '*' serverdensity_device.create lama
salt '*' serverdensity_device.create rich_lama group=lama_band installedRAM=32768

	
salt.modules.serverdensity_device.delete(device_id)

	Delete a device from Server Density. For more information, see the API
docs [https://apidocs.serverdensity.com/Inventory/Devices/Deleting].

CLI Example:

salt '*' serverdensity_device.delete 51f7eafcdba4bb235e000ae4

	
salt.modules.serverdensity_device.get_sd_auth(val, sd_auth_pillar_name='serverdensity')

	Returns requested Server Density authentication value from pillar.

CLI Example:

salt '*' serverdensity_device.get_sd_auth <val>

	
salt.modules.serverdensity_device.install_agent(agent_key, agent_version=1)

	Function downloads Server Density installation agent, and installs sd-agent
with agent_key. Optionally the agent_version would select the series to
use (defaults on the v1 one).

CLI Example:

salt '*' serverdensity_device.install_agent c2bbdd6689ff46282bdaa07555641498
salt '*' serverdensity_device.install_agent c2bbdd6689ff46282bdaa07555641498 2

	
salt.modules.serverdensity_device.ls(**params)

	List devices in Server Density

Results will be filtered by any params passed to this function. For more
information, see the API docs on listing [https://apidocs.serverdensity.com/Inventory/Devices/Listing] and searching [https://apidocs.serverdensity.com/Inventory/Devices/Searching].

CLI Example:

salt '*' serverdensity_device.ls
salt '*' serverdensity_device.ls name=lama
salt '*' serverdensity_device.ls name=lama group=lama_band installedRAM=32768

	
salt.modules.serverdensity_device.update(device_id, **params)

	Updates device information in Server Density. For more information see the
API docs [https://apidocs.serverdensity.com/Inventory/Devices/Updating].

CLI Example:

salt '*' serverdensity_device.update 51f7eafcdba4bb235e000ae4 name=lama group=lama_band
salt '*' serverdensity_device.update 51f7eafcdba4bb235e000ae4 name=better_lama group=rock_lamas swapSpace=512

salt.modules.servicenow

Module for execution of ServiceNow CI (configuration items)

New in version 2016.11.0.

	depends:

	servicenow_rest python module

	configuration:

	Configure this module by specifying the name of a configuration
profile in the minion config, minion pillar, or master config. The module
will use the 'servicenow' key by default, if defined.

For example:

servicenow:
 instance_name: ''
 username: ''
 password: ''

	
salt.modules.servicenow.delete_record(table, sys_id)

	Delete an existing record

	Parameters:

	
	table (str) -- The table name, e.g. sys_user

	sys_id (str) -- The unique ID of the record

CLI Example:

salt myminion servicenow.delete_record sys_computer 2134566

	
salt.modules.servicenow.non_structured_query(table, query=None, **kwargs)

	Run a non-structed (not a dict) query on a servicenow table.
See http://wiki.servicenow.com/index.php?title=Encoded_Query_Strings#gsc.tab=0
for help on constructing a non-structured query string.

	Parameters:

	
	table (str) -- The table name, e.g. sys_user

	query (str) -- The query to run (or use keyword arguments to filter data)

CLI Example:

salt myminion servicenow.non_structured_query sys_computer 'role=web'
salt myminion servicenow.non_structured_query sys_computer role=web type=computer

	
salt.modules.servicenow.set_change_request_state(change_id, state='approved')

	Set the approval state of a change request/record

	Parameters:

	
	change_id (str) -- The ID of the change request, e.g. CHG123545

	state (str) -- The target state, e.g. approved

CLI Example:

salt myminion servicenow.set_change_request_state CHG000123 declined
salt myminion servicenow.set_change_request_state CHG000123 approved

	
salt.modules.servicenow.update_record_field(table, sys_id, field, value)

	Update the value of a record's field in a servicenow table

	Parameters:

	
	table (str) -- The table name, e.g. sys_user

	sys_id (str) -- The unique ID of the record

	field (str) -- The new value

	value (str) -- The new value

CLI Example:

salt myminion servicenow.update_record_field sys_user 2348234 first_name jimmy

salt.modules.slack_notify

Module for sending messages to Slack

New in version 2015.5.0.

	configuration:

	This module can be used by either passing an api key and version
directly or by specifying both in a configuration profile in the salt
master/minion config.

For example:

slack:
 api_key: peWcBiMOS9HrZG15peWcBiMOS9HrZG15

	
salt.modules.slack_notify.call_hook(message, attachment=None, color='good', short=False, identifier=None, channel=None, username=None, icon_emoji=None)

	Send message to Slack incoming webhook.

	Parameters:

	
	message -- The topic of message.

	attachment -- The message to send to the Slack WebHook.

	color -- The color of border of left side

	short -- An optional flag indicating whether the value is short
enough to be displayed side-by-side with other values.

	identifier -- The identifier of WebHook.

	channel -- The channel to use instead of the WebHook default.

	username -- Username to use instead of WebHook default.

	icon_emoji -- Icon to use instead of WebHook default.

	Returns:

	Boolean if message was sent successfully.

CLI Example:

salt '*' slack.call_hook message='Hello, from SaltStack'

	
salt.modules.slack_notify.find_room(name, api_key=None)

	Find a room by name and return it.

	Parameters:

	
	name -- The room name.

	api_key -- The Slack admin api key.

	Returns:

	The room object.

CLI Example:

salt '*' slack.find_room name="random"

salt '*' slack.find_room name="random" api_key=peWcBiMOS9HrZG15peWcBiMOS9HrZG15

	
salt.modules.slack_notify.find_user(name, api_key=None)

	Find a user by name and return it.

	Parameters:

	
	name -- The user name.

	api_key -- The Slack admin api key.

	Returns:

	The user object.

CLI Example:

salt '*' slack.find_user name="ThomasHatch"

salt '*' slack.find_user name="ThomasHatch" api_key=peWcBiMOS9HrZG15peWcBiMOS9HrZG15

	
salt.modules.slack_notify.list_rooms(api_key=None)

	List all Slack rooms.

	Parameters:

	api_key -- The Slack admin api key.

	Returns:

	The room list.

CLI Example:

salt '*' slack.list_rooms

salt '*' slack.list_rooms api_key=peWcBiMOS9HrZG15peWcBiMOS9HrZG15

	
salt.modules.slack_notify.list_users(api_key=None)

	List all Slack users.

	Parameters:

	api_key -- The Slack admin api key.

	Returns:

	The user list.

CLI Example:

salt '*' slack.list_users

salt '*' slack.list_users api_key=peWcBiMOS9HrZG15peWcBiMOS9HrZG15

	
salt.modules.slack_notify.post_message(channel, message, from_name, api_key=None, icon=None, attachments=None, blocks=None)

	Send a message to a Slack channel.

Changed in version 3003: Added attachments and blocks kwargs

	Parameters:

	
	channel -- The channel name, either will work.

	message -- The message to send to the Slack channel.

	from_name -- Specify who the message is from.

	api_key -- The Slack api key, if not specified in the configuration.

	icon -- URL to an image to use as the icon for this message

	attachments -- Any attachments to be sent with the message.

	blocks -- Any blocks to be sent with the message.

	Returns:

	Boolean if message was sent successfully.

CLI Example:

salt '*' slack.post_message channel="Development Room" message="Build is done" from_name="Build Server"

salt.modules.slackware_service

The service module for Slackware

Important

If you feel that Salt should be using this module to manage services on a
minion, and it is using a different module (or gives an error similar to
'service.start' is not available), see here.

	
salt.modules.slackware_service.available(name)

	Returns True if the specified service is available, otherwise returns
False.

New in version 3002.

CLI Example:

salt '*' service.available sshd

	
salt.modules.slackware_service.disable(name, **kwargs)

	Disable the named service to start at boot

New in version 3002.

CLI Example:

salt '*' service.disable <service name>

	
salt.modules.slackware_service.disabled(name)

	Return True if the named service is enabled, false otherwise

New in version 3002.

CLI Example:

salt '*' service.disabled <service name>

	
salt.modules.slackware_service.enable(name, **kwargs)

	Enable the named service to start at boot

New in version 3002.

CLI Example:

salt '*' service.enable <service name>

	
salt.modules.slackware_service.enabled(name, **kwargs)

	Return True if the named service is enabled, false otherwise

New in version 3002.

CLI Example:

salt '*' service.enabled <service name>

	
salt.modules.slackware_service.force_reload(name)

	Force-reload the named service

New in version 3002.

CLI Example:

salt '*' service.force_reload <service name>

	
salt.modules.slackware_service.get_all()

	Return all available boot services

New in version 3002.

CLI Example:

salt '*' service.get_all

	
salt.modules.slackware_service.get_disabled()

	Return a set of services that are installed but disabled

New in version 3002.

CLI Example:

salt '*' service.get_disabled

	
salt.modules.slackware_service.get_enabled()

	Return a list of service that are enabled on boot

New in version 3002.

CLI Example:

salt '*' service.get_enabled

	
salt.modules.slackware_service.missing(name)

	The inverse of service.available.
Returns True if the specified service is not available, otherwise returns
False.

New in version 3002.

CLI Example:

salt '*' service.missing sshd

	
salt.modules.slackware_service.reload_(name)

	Reload the named service

New in version 3002.

CLI Example:

salt '*' service.reload <service name>

	
salt.modules.slackware_service.restart(name)

	Restart the named service

New in version 3002.

CLI Example:

salt '*' service.restart <service name>

	
salt.modules.slackware_service.start(name)

	Start the specified service

New in version 3002.

CLI Example:

salt '*' service.start <service name>

	
salt.modules.slackware_service.status(name, sig=None)

	Return the status for a service.
If the name contains globbing, a dict mapping service name to True/False
values is returned.

New in version 3002.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service to check

	sig (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Signature to use to find the service via ps

	Returns:

	True if running, False otherwise
dict: Maps service name to True if running, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.status <service name> [service signature]

	
salt.modules.slackware_service.stop(name)

	Stop the specified service

New in version 3002.

CLI Example:

salt '*' service.stop <service name>

salt.modules.slsutil

Utility functions for use with or in SLS files

	
salt.modules.slsutil.banner(width=72, commentchar='#', borderchar='#', blockstart=None, blockend=None, title=None, text=None, newline=False)

	Create a standardized comment block to include in a templated file.

A common technique in configuration management is to include a comment
block in managed files, warning users not to modify the file. This
function simplifies and standardizes those comment blocks.

	Parameters:

	
	width -- The width, in characters, of the banner. Default is 72.

	commentchar -- The character to be used in the starting position of
each line. This value should be set to a valid line comment character
for the syntax of the file in which the banner is being inserted.
Multiple character sequences, like '//' are supported.
If the file's syntax does not support line comments (such as XML),
use the blockstart and blockend options.

	borderchar -- The character to use in the top and bottom border of
the comment box. Must be a single character.

	blockstart -- The character sequence to use at the beginning of a
block comment. Should be used in conjunction with blockend

	blockend -- The character sequence to use at the end of a
block comment. Should be used in conjunction with blockstart

	title -- The first field of the comment block. This field appears
centered at the top of the box.

	text -- The second filed of the comment block. This field appears
left-justified at the bottom of the box.

	newline -- Boolean value to indicate whether the comment block should
end with a newline. Default is False.

Example 1 - the default banner:

{{ salt['slsutil.banner']() }}

##
#
THIS FILE IS MANAGED BY SALT - DO NOT EDIT
#
The contents of this file are managed by Salt. Any changes to this
file may be overwritten automatically and without warning.
##

Example 2 - a Javadoc-style banner:

{{ salt['slsutil.banner'](commentchar=' *', borderchar='*', blockstart='/**', blockend=' */') }}

/**

 * *
 * THIS FILE IS MANAGED BY SALT - DO NOT EDIT *
 * *
 * The contents of this file are managed by Salt. Any changes to this *
 * file may be overwritten automatically and without warning. *

 */

Example 3 - custom text:

{{ set copyright='This file may not be copied or distributed without permission of VMware, Inc.' }}
{{ salt['slsutil.banner'](title='Copyright 2019 VMware, Inc.', text=copyright, width=60) }}

##
#
Copyright 2019 VMware, Inc.
#
This file may not be copied or distributed without
permission of VMware, Inc.
##

	
salt.modules.slsutil.boolstr(value, true='true', false='false')

	Convert a boolean value into a string. This function is
intended to be used from within file templates to provide
an easy way to take boolean values stored in Pillars or
Grains, and write them out in the appropriate syntax for
a particular file template.

	Parameters:

	
	value -- The boolean value to be converted

	true -- The value to return if value is True

	false -- The value to return if value is False

In this example, a pillar named smtp:encrypted stores a boolean
value, but the template that uses that value needs yes or no
to be written, based on the boolean value.

Note: this is written on two lines for clarity. The same result
could be achieved in one line.

{% set encrypted = salt[pillar.get]('smtp:encrypted', false) %}
use_tls: {{ salt['slsutil.boolstr'](encrypted, 'yes', 'no') }}

Result (assuming the value is True):

use_tls: yes

	
salt.modules.slsutil.deserialize(serializer, stream_or_string, **mod_kwargs)

	Deserialize a Python object using one of the available
serializer modules.

CLI Example:

salt '*' slsutil.deserialize 'json' '{"foo": "Foo!"}'
salt '*' --no-parse=stream_or_string slsutil.deserialize 'json' \
 stream_or_string='{"foo": "Foo!"}'

Jinja Example:

{% set python_object = salt.slsutil.deserialize('json',
 '{"foo": "Foo!"}') %}

	
salt.modules.slsutil.dir_exists(path, saltenv='base')

	Return True if a directory exists in the state tree, False otherwise.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The fully qualified path to a directory in the state tree.

	saltenv (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The fileserver environment to search. Default: base

New in version 3004.

CLI Example:

salt '*' slsutil.dir_exists nginx/files

	
salt.modules.slsutil.file_exists(path, saltenv='base')

	Return True if a file exists in the state tree, False otherwise.

New in version 3004.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The fully qualified path to a file in the state tree.

	saltenv (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The fileserver environment to search. Default: base

CLI Example:

salt '*' slsutil.file_exists nginx/defaults.yaml

	
salt.modules.slsutil.findup(startpath, filenames, saltenv='base')

	Find the first path matching a filename or list of filenames in a specified
directory or the nearest ancestor directory. Returns the full path to the
first file found.

New in version 3004.

	Parameters:

	
	startpath (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The fileserver path from which to begin the search.
An empty string refers to the state tree root.

	filenames -- A filename or list of filenames to search for. Searching for
directory names is also supported.

	saltenv (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The fileserver environment to search. Default: base

Example: return the path to defaults.yaml, walking up the tree from the
state file currently being processed.

{{ salt["slsutil.findup"](tplfile, "defaults.yaml") }}

CLI Example:

salt '*' slsutil.findup formulas/shared/nginx map.jinja

	
salt.modules.slsutil.merge(obj_a, obj_b, strategy='smart', renderer='yaml', merge_lists=False)

	Merge a data structure into another by choosing a merge strategy

Strategies:

	aggregate

	list

	overwrite

	recurse

	smart

CLI Example:

salt '*' slsutil.merge '{foo: Foo}' '{bar: Bar}'

	
salt.modules.slsutil.merge_all(lst, strategy='smart', renderer='yaml', merge_lists=False)

	
New in version 2019.2.0.

Merge a list of objects into each other in order

	Parameters:

	
	lst (Iterable) -- List of objects to be merged.

	strategy (String) -- Merge strategy. See utils.dictupdate.

	renderer (String) -- Renderer type. Used to determine strategy when strategy is 'smart'.

	merge_lists (Bool) -- Defines whether to merge embedded object lists.

CLI Example:

$ salt-call --output=txt slsutil.merge_all '[{foo: Foo}, {foo: Bar}]'
local: {u'foo': u'Bar'}

	
salt.modules.slsutil.path_exists(path, saltenv='base')

	Return True if a path exists in the state tree, False otherwise. The path
could refer to a file or directory.

New in version 3004.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The fully qualified path to a file or directory in the state tree.

	saltenv (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The fileserver environment to search. Default: base

CLI Example:

salt '*' slsutil.path_exists nginx/defaults.yaml

	
salt.modules.slsutil.renderer(path=None, string=None, default_renderer='jinja|yaml', **kwargs)

	Parse a string or file through Salt's renderer system

Changed in version 2018.3.0: Add support for Salt fileserver URIs.

This is an open-ended function and can be used for a variety of tasks. It
makes use of Salt's "renderer pipes" system to run a string or file through
a pipe of any of the loaded renderer modules.

	Parameters:

	
	path -- The path to a file on Salt's fileserver (any URIs supported by
cp.get_url) or on the local file
system.

	string -- An inline string to be used as the file to send through the
renderer system. Note, not all renderer modules can work with strings;
the 'py' renderer requires a file, for example.

	default_renderer -- The renderer pipe to send the file through; this
is overridden by a "she-bang" at the top of the file.

	kwargs -- Keyword args to pass to Salt's compile_template() function.

Keep in mind the goal of each renderer when choosing a render-pipe; for
example, the Jinja renderer processes a text file and produces a string,
however the YAML renderer processes a text file and produces a data
structure.

One possible use is to allow writing "map files", as are commonly seen in
Salt formulas, but without tying the renderer of the map file to the
renderer used in the other sls files. In other words, a map file could use
the Python renderer and still be included and used by an sls file that uses
the default 'jinja|yaml' renderer.

For example, the two following map files produce identical results but one
is written using the normal 'jinja|yaml' and the other is using 'py':

#!jinja|yaml
{% set apache = salt.grains.filter_by({
 ...normal jinja map file here...
}, merge=salt.pillar.get('apache:lookup')) %}
{{ apache | yaml() }}

#!py
def run():
 apache = __salt__.grains.filter_by({
 ...normal map here but as a python dict...
 }, merge=__salt__.pillar.get('apache:lookup'))
 return apache

Regardless of which of the above map files is used, it can be accessed from
any other sls file by calling this function. The following is a usage
example in Jinja:

{% set apache = salt.slsutil.renderer('map.sls') %}

CLI Example:

salt '*' slsutil.renderer salt://path/to/file
salt '*' slsutil.renderer /path/to/file
salt '*' slsutil.renderer /path/to/file.jinja default_renderer='jinja'
salt '*' slsutil.renderer /path/to/file.sls default_renderer='jinja|yaml'
salt '*' slsutil.renderer string='Inline template! {{ saltenv }}'
salt '*' slsutil.renderer string='Hello, {{ name }}.' name='world'

	
salt.modules.slsutil.serialize(serializer, obj, **mod_kwargs)

	Serialize a Python object using one of the available
serializer modules.

CLI Example:

salt '*' --no-parse=obj slsutil.serialize 'json' obj="{'foo': 'Foo!'}

Jinja Example:

{% set json_string = salt.slsutil.serialize('json',
 {'foo': 'Foo!'}) %}

	
salt.modules.slsutil.update(dest, upd, recursive_update=True, merge_lists=False)

	Merge upd recursively into dest

If merge_lists=True, will aggregate list object types instead of
replacing. This behavior is only activated when recursive_update=True.

CLI Example:

salt '*' slsutil.update '{foo: Foo}' '{bar: Bar}'

salt.modules.smartos_imgadm

Module for running imgadm command on SmartOS

	
salt.modules.smartos_imgadm.avail(search=None, verbose=False)

	Return a list of available images

	searchstring
	search keyword

	verboseboolean (False)
	toggle verbose output

CLI Example:

salt '*' imgadm.avail [percona]
salt '*' imgadm.avail verbose=True

	
salt.modules.smartos_imgadm.delete(uuid)

	Remove an installed image

	uuidstring
	Specifies uuid to import

CLI Example:

salt '*' imgadm.delete e42f8c84-bbea-11e2-b920-078fab2aab1f

	
salt.modules.smartos_imgadm.docker_to_uuid(uuid)

	Get the image uuid from an imported docker image

New in version 2019.2.0.

	
salt.modules.smartos_imgadm.get(uuid)

	Return info on an installed image

	uuidstring
	uuid of image

CLI Example:

salt '*' imgadm.get e42f8c84-bbea-11e2-b920-078fab2aab1f
salt '*' imgadm.get plexinc/pms-docker:plexpass

	
salt.modules.smartos_imgadm.import_image(uuid, verbose=False)

	Import an image from the repository

	uuidstring
	uuid to import

	verboseboolean (False)
	toggle verbose output

CLI Example:

salt '*' imgadm.import e42f8c84-bbea-11e2-b920-078fab2aab1f [verbose=True]

	
salt.modules.smartos_imgadm.list_installed(verbose=False)

	Return a list of installed images

	verboseboolean (False)
	toggle verbose output

Changed in version 2019.2.0: Docker images are now also listed

CLI Example:

salt '*' imgadm.list
salt '*' imgadm.list docker=True
salt '*' imgadm.list verbose=True

	
salt.modules.smartos_imgadm.show(uuid)

	Show manifest of a given image

	uuidstring
	uuid of image

CLI Example:

salt '*' imgadm.show e42f8c84-bbea-11e2-b920-078fab2aab1f
salt '*' imgadm.show plexinc/pms-docker:plexpass

	
salt.modules.smartos_imgadm.source_add(source, source_type='imgapi')

	Add a new source

	sourcestring
	source url to add

	source_trypestring (imgapi)
	source type, either imgapi or docker

New in version 2019.2.0.

CLI Example:

salt '*' imgadm.source_add https://updates.joyent.com
salt '*' imgadm.source_add https://docker.io docker

	
salt.modules.smartos_imgadm.source_delete(source)

	Delete a source

	sourcestring
	source url to delete

New in version 2019.2.0.

CLI Example:

salt '*' imgadm.source_delete https://updates.joyent.com

	
salt.modules.smartos_imgadm.sources(verbose=False)

	Return a list of available sources

	verboseboolean (False)
	toggle verbose output

New in version 2019.2.0.

CLI Example:

salt '*' imgadm.sources

	
salt.modules.smartos_imgadm.update_installed(uuid='')

	Gather info on unknown image(s) (locally installed)

	uuidstring
	optional uuid of image

CLI Example:

salt '*' imgadm.update [uuid]

	
salt.modules.smartos_imgadm.vacuum(verbose=False)

	Remove unused images

	verboseboolean (False)
	toggle verbose output

CLI Example:

salt '*' imgadm.vacuum [verbose=True]

	
salt.modules.smartos_imgadm.version()

	Return imgadm version

CLI Example:

salt '*' imgadm.version

salt.modules.smartos_nictagadm

Module for running nictagadm command on SmartOS
:maintainer: Jorge Schrauwen <sjorge@blackdot.be>
:maturity: new
:depends: nictagadm binary, dladm binary
:platform: smartos

New in version 2016.11.0.

	
salt.modules.smartos_nictagadm.add(name, mac, mtu=1500)

	Add a new nictag

	namestring
	name of new nictag

	macstring
	mac of parent interface or 'etherstub' to create a ether stub

	mtuint
	MTU (ignored for etherstubs)

CLI Example:

salt '*' nictagadm.add storage0 etherstub
salt '*' nictagadm.add trunk0 'DE:AD:OO:OO:BE:EF' 9000

	
salt.modules.smartos_nictagadm.delete(name, force=False)

	Delete nictag

	namestring
	nictag to delete

	forceboolean
	force delete even if vms attached

CLI Example:

salt '*' nictagadm.exists admin

	
salt.modules.smartos_nictagadm.exists(*nictag, **kwargs)

	Check if nictags exists

	nictagstring
	one or more nictags to check

	verboseboolean
	return list of nictags

CLI Example:

salt '*' nictagadm.exists admin

	
salt.modules.smartos_nictagadm.list_nictags(include_etherstubs=True)

	List all nictags

	include_etherstubsboolean
	toggle include of etherstubs

CLI Example:

salt '*' nictagadm.list

	
salt.modules.smartos_nictagadm.update(name, mac=None, mtu=None)

	Update a nictag

	namestring
	name of nictag

	macstring
	optional new mac for nictag

	mtuint
	optional new MTU for nictag

CLI Example:

salt '*' nictagadm.update trunk mtu=9000

	
salt.modules.smartos_nictagadm.vms(nictag)

	List all vms connect to nictag

	nictagstring
	name of nictag

CLI Example:

salt '*' nictagadm.vms admin

salt.modules.smartos_virt

virst compatibility module for managing VMs on SmartOS

	
salt.modules.smartos_virt.get_macs(domain)

	Return a list off MAC addresses from the named VM

CLI Example:

salt '*' virt.get_macs <domain>

	
salt.modules.smartos_virt.init(**kwargs)

	Initialize a new VM

CLI Example:

salt '*' virt.init image_uuid='...' alias='...' [...]

	
salt.modules.smartos_virt.list_active_vms()

	Return a list of uuids for active virtual machine on the minion

CLI Example:

salt '*' virt.list_active_vms

	
salt.modules.smartos_virt.list_domains()

	Return a list of virtual machine names on the minion

CLI Example:

salt '*' virt.list_domains

	
salt.modules.smartos_virt.list_inactive_vms()

	Return a list of uuids for inactive virtual machine on the minion

CLI Example:

salt '*' virt.list_inactive_vms

	
salt.modules.smartos_virt.reboot(domain)

	Reboot a domain via ACPI request

CLI Example:

salt '*' virt.reboot <domain>

	
salt.modules.smartos_virt.setmem(domain, memory)

	Change the amount of memory allocated to VM.
<memory> is to be specified in MB.

Note for KVM : this would require a restart of the VM.

CLI Example:

salt '*' virt.setmem <domain> 512

	
salt.modules.smartos_virt.shutdown(domain)

	Send a soft shutdown signal to the named vm

CLI Example:

salt '*' virt.shutdown <domain>

	
salt.modules.smartos_virt.start(domain)

	Start a defined domain

CLI Example:

salt '*' virt.start <domain>

	
salt.modules.smartos_virt.stop(domain)

	Hard power down the virtual machine, this is equivalent to powering off the hardware.

CLI Example:

salt '*' virt.destroy <domain>

	
salt.modules.smartos_virt.vm_info(domain)

	Return a dict with information about the specified VM on this CN

CLI Example:

salt '*' virt.vm_info <domain>

	
salt.modules.smartos_virt.vm_virt_type(domain)

	Return VM virtualization type : OS or KVM

CLI Example:

salt '*' virt.vm_virt_type <domain>

salt.modules.smartos_vmadm

Module for running vmadm command on SmartOS

	
salt.modules.smartos_vmadm.create(from_file=None, **kwargs)

	Create a new vm

	from_filestring
	json file to create the vm from -- if present, all other options will be ignored

	kwargsstring|int|...
	options to set for the vm

CLI Example:

salt '*' vmadm.create from_file=/tmp/new_vm.json
salt '*' vmadm.create image_uuid='...' alias='...' nics='[{ "nic_tag": "admin", "ip": "198.51.100.123", ...}, {...}]' [...]

	
salt.modules.smartos_vmadm.create_snapshot(vm, name, key='uuid')

	Create snapshot of a vm

	vmstring
	vm to be targeted

	namestring
	
	snapshot name
	The snapname must be 64 characters or less
and must only contain alphanumeric characters and
characters in the set [-_.:%] to comply with ZFS restrictions.

	keystring [uuid|alias|hostname]
	value type of 'vm' parameter

CLI Example:

salt '*' vmadm.create_snapshot 186da9ab-7392-4f55-91a5-b8f1fe770543 baseline
salt '*' vmadm.create_snapshot nacl baseline key=alias

	
salt.modules.smartos_vmadm.delete(vm, key='uuid')

	Delete a vm

	vmstring
	vm to be deleted

	keystring [uuid|alias|hostname]
	value type of 'vm' parameter

CLI Example:

salt '*' vmadm.delete 186da9ab-7392-4f55-91a5-b8f1fe770543
salt '*' vmadm.delete nacl key=alias

	
salt.modules.smartos_vmadm.delete_snapshot(vm, name, key='uuid')

	Delete snapshot of a vm

	vmstring
	vm to be targeted

	namestring
	
	snapshot name
	The snapname must be 64 characters or less
and must only contain alphanumeric characters and
characters in the set [-_.:%] to comply with ZFS restrictions.

	keystring [uuid|alias|hostname]
	value type of 'vm' parameter

CLI Example:

salt '*' vmadm.delete_snapshot 186da9ab-7392-4f55-91a5-b8f1fe770543 baseline
salt '*' vmadm.delete_snapshot nacl baseline key=alias

	
salt.modules.smartos_vmadm.get(vm, key='uuid')

	Output the JSON object describing a VM

	vmstring
	vm to be targeted

	keystring [uuid|alias|hostname]
	value type of 'vm' parameter

CLI Example:

salt '*' vmadm.get 186da9ab-7392-4f55-91a5-b8f1fe770543
salt '*' vmadm.get nacl key=alias

	
salt.modules.smartos_vmadm.info(vm, info_type='all', key='uuid')

	Lookup info on running kvm

	vmstring
	vm to be targeted

	info_typestring [all|block|blockstats|chardev|cpus|kvm|pci|spice|version|vnc]
	info type to return

	keystring [uuid|alias|hostname]
	value type of 'vm' parameter

CLI Example:

salt '*' vmadm.info 186da9ab-7392-4f55-91a5-b8f1fe770543
salt '*' vmadm.info 186da9ab-7392-4f55-91a5-b8f1fe770543 vnc
salt '*' vmadm.info nacl key=alias
salt '*' vmadm.info nacl vnc key=alias

	
salt.modules.smartos_vmadm.list_vms(search=None, sort=None, order='uuid,type,ram,state,alias', keyed=True)

	Return a list of VMs

	searchstring
	vmadm filter property

	sortstring
	vmadm sort (-s) property

	orderstring
	vmadm order (-o) property -- Default: uuid,type,ram,state,alias

	keyedboolean
	
	specified if the output should be an array (False) or dict (True)
	For a dict the key is the first item from the order parameter.
Note: If key is not unique last vm wins.

CLI Example:

salt '*' vmadm.list
salt '*' vmadm.list order=alias,ram,cpu_cap sort=-ram,-cpu_cap
salt '*' vmadm.list search='type=KVM'

	
salt.modules.smartos_vmadm.lookup(search=None, order=None, one=False)

	Return a list of VMs using lookup

	searchstring
	vmadm filter property

	orderstring
	vmadm order (-o) property -- Default: uuid,type,ram,state,alias

	oneboolean
	return only one result (vmadm's -1)

CLI Example:

salt '*' vmadm.lookup search='state=running'
salt '*' vmadm.lookup search='state=running' order=uuid,alias,hostname
salt '*' vmadm.lookup search='alias=nacl' one=True

	
salt.modules.smartos_vmadm.reboot(vm, force=False, key='uuid')

	Reboot a vm

	vmstring
	vm to be rebooted

	forceboolean
	force reboot of vm if true

	keystring [uuid|alias|hostname]
	value type of 'vm' parameter

CLI Example:

salt '*' vmadm.reboot 186da9ab-7392-4f55-91a5-b8f1fe770543
salt '*' vmadm.reboot 186da9ab-7392-4f55-91a5-b8f1fe770543 True
salt '*' vmadm.reboot vm=nacl key=alias
salt '*' vmadm.reboot vm=nina.example.org key=hostname

	
salt.modules.smartos_vmadm.receive(uuid, source)

	Receive a vm from a directory

	uuidstring
	uuid of vm to be received

	sourcestring
	source directory

CLI Example:

salt '*' vmadm.receive 186da9ab-7392-4f55-91a5-b8f1fe770543 /opt/backups

	
salt.modules.smartos_vmadm.reprovision(vm, image, key='uuid')

	Reprovision a vm

	vmstring
	vm to be reprovisioned

	imagestring
	uuid of new image

	keystring [uuid|alias|hostname]
	value type of 'vm' parameter

CLI Example:

salt '*' vmadm.reprovision 186da9ab-7392-4f55-91a5-b8f1fe770543 c02a2044-c1bd-11e4-bd8c-dfc1db8b0182
salt '*' vmadm.reprovision nacl c02a2044-c1bd-11e4-bd8c-dfc1db8b0182 key=alias

	
salt.modules.smartos_vmadm.rollback_snapshot(vm, name, key='uuid')

	Rollback snapshot of a vm

	vmstring
	vm to be targeted

	namestring
	
	snapshot name
	The snapname must be 64 characters or less
and must only contain alphanumeric characters and
characters in the set [-_.:%] to comply with ZFS restrictions.

	keystring [uuid|alias|hostname]
	value type of 'vm' parameter

CLI Example:

salt '*' vmadm.rollback_snapshot 186da9ab-7392-4f55-91a5-b8f1fe770543 baseline
salt '*' vmadm.rollback_snapshot nacl baseline key=alias

	
salt.modules.smartos_vmadm.send(vm, target, key='uuid')

	Send a vm to a directory

	vmstring
	vm to be sent

	targetstring
	target directory

	keystring [uuid|alias|hostname]
	value type of 'vm' parameter

CLI Example:

salt '*' vmadm.send 186da9ab-7392-4f55-91a5-b8f1fe770543 /opt/backups
salt '*' vmadm.send vm=nacl target=/opt/backups key=alias

	
salt.modules.smartos_vmadm.start(vm, options=None, key='uuid')

	Start a vm

	vmstring
	vm to be started

	optionsstring
	optional additional options

	keystring [uuid|alias|hostname]
	value type of 'vm' parameter

CLI Example:

salt '*' vmadm.start 186da9ab-7392-4f55-91a5-b8f1fe770543
salt '*' vmadm.start 186da9ab-7392-4f55-91a5-b8f1fe770543 'order=c,once=d cdrom=/path/to/image.iso,ide'
salt '*' vmadm.start vm=nacl key=alias
salt '*' vmadm.start vm=nina.example.org key=hostname

	
salt.modules.smartos_vmadm.stop(vm, force=False, key='uuid')

	Stop a vm

	vmstring
	vm to be stopped

	forceboolean
	force stop of vm if true

	keystring [uuid|alias|hostname]
	value type of 'vm' parameter

CLI Example:

salt '*' vmadm.stop 186da9ab-7392-4f55-91a5-b8f1fe770543
salt '*' vmadm.stop 186da9ab-7392-4f55-91a5-b8f1fe770543 True
salt '*' vmadm.stop vm=nacl key=alias
salt '*' vmadm.stop vm=nina.example.org key=hostname

	
salt.modules.smartos_vmadm.sysrq(vm, action='nmi', key='uuid')

	Send non-maskable interrupt to vm or capture a screenshot

	vmstring
	vm to be targeted

	actionstring
	nmi or screenshot -- Default: nmi

	keystring [uuid|alias|hostname]
	value type of 'vm' parameter

CLI Example:

salt '*' vmadm.sysrq 186da9ab-7392-4f55-91a5-b8f1fe770543 nmi
salt '*' vmadm.sysrq 186da9ab-7392-4f55-91a5-b8f1fe770543 screenshot
salt '*' vmadm.sysrq nacl nmi key=alias

	
salt.modules.smartos_vmadm.update(vm, from_file=None, key='uuid', **kwargs)

	Update a new vm

	vmstring
	vm to be updated

	from_filestring
	json file to update the vm with -- if present, all other options will be ignored

	keystring [uuid|alias|hostname]
	value type of 'vm' parameter

	kwargsstring|int|...
	options to update for the vm

CLI Example:

salt '*' vmadm.update vm=186da9ab-7392-4f55-91a5-b8f1fe770543 from_file=/tmp/new_vm.json
salt '*' vmadm.update vm=nacl key=alias from_file=/tmp/new_vm.json
salt '*' vmadm.update vm=186da9ab-7392-4f55-91a5-b8f1fe770543 max_physical_memory=1024

salt.modules.smbios

Interface to SMBIOS/DMI

(Parsing through dmidecode)

External References

Desktop Management Interface (DMI) [http://www.dmtf.org/standards/dmi]

System Management BIOS [http://www.dmtf.org/standards/smbios]

DMIdecode [http://www.nongnu.org/dmidecode/]

	
salt.modules.smbios.get(string, clean=True)

	Get an individual DMI string from SMBIOS info

	string
	
	The string to fetch. DMIdecode supports:
	
	bios-vendor

	bios-version

	bios-release-date

	system-manufacturer

	system-product-name

	system-version

	system-serial-number

	system-uuid

	baseboard-manufacturer

	baseboard-product-name

	baseboard-version

	baseboard-serial-number

	baseboard-asset-tag

	chassis-manufacturer

	chassis-type

	chassis-version

	chassis-serial-number

	chassis-asset-tag

	processor-family

	processor-manufacturer

	processor-version

	processor-frequency

	clean
	
Don't return well-known false information

(invalid UUID's, serial 000000000's, etcetera)

Defaults to True

CLI Example:

salt '*' smbios.get system-uuid clean=False

	
salt.modules.smbios.records(rec_type=None, fields=None, clean=True)

	Return DMI records from SMBIOS

	type
	Return only records of type(s)
The SMBIOS specification defines the following DMI types:

	Type

	Information

	0

	BIOS

	1

	System

	2

	Baseboard

	3

	Chassis

	4

	Processor

	5

	Memory Controller

	6

	Memory Module

	7

	Cache

	8

	Port Connector

	9

	System Slots

	10

	On Board Devices

	11

	OEM Strings

	12

	System Configuration Options

	13

	BIOS Language

	14

	Group Associations

	15

	System Event Log

	16

	Physical Memory Array

	17

	Memory Device

	18

	32-bit Memory Error

	19

	Memory Array Mapped Address

	20

	Memory Device Mapped Address

	21

	Built-in Pointing Device

	22

	Portable Battery

	23

	System Reset

	24

	Hardware Security

	25

	System Power Controls

	26

	Voltage Probe

	27

	Cooling Device

	28

	Temperature Probe

	29

	Electrical Current Probe

	30

	Out-of-band Remote Access

	31

	Boot Integrity Services

	32

	System Boot

	33

	64-bit Memory Error

	34

	Management Device

	35

	Management Device Component

	36

	Management Device Threshold Data

	37

	Memory Channel

	38

	IPMI Device

	39

	Power Supply

	40

	Additional Information

	41

	Onboard Devices Extended Information

	42

	Management Controller Host Interface

	clean
	
Don't return well-known false information

(invalid UUID's, serial 000000000's, etcetera)

Defaults to True

CLI Example:

salt '*' smbios.records clean=False
salt '*' smbios.records 14
salt '*' smbios.records 4 core_count,thread_count,current_speed

salt.modules.smf_service

Service support for Solaris 10 and 11, should work with other systems
that use SMF also. (e.g. SmartOS)

Important

If you feel that Salt should be using this module to manage services on a
minion, and it is using a different module (or gives an error similar to
'service.start' is not available), see here.

	
salt.modules.smf_service.available(name)

	Returns True if the specified service is available, otherwise returns
False.

We look up the name with the svcs command to get back the FMRI
This allows users to use simpler service names

CLI Example:

salt '*' service.available net-snmp

	
salt.modules.smf_service.disable(name, **kwargs)

	Disable the named service to start at boot

CLI Example:

salt '*' service.disable <service name>

	
salt.modules.smf_service.disabled(name)

	Check to see if the named service is disabled to start on boot

CLI Example:

salt '*' service.disabled <service name>

	
salt.modules.smf_service.enable(name, **kwargs)

	Enable the named service to start at boot

CLI Example:

salt '*' service.enable <service name>

	
salt.modules.smf_service.enabled(name, **kwargs)

	Check to see if the named service is enabled to start on boot

CLI Example:

salt '*' service.enabled <service name>

	
salt.modules.smf_service.get_all()

	Return all installed services

CLI Example:

salt '*' service.get_all

	
salt.modules.smf_service.get_disabled()

	Return the disabled services

CLI Example:

salt '*' service.get_disabled

	
salt.modules.smf_service.get_enabled()

	Return the enabled services

CLI Example:

salt '*' service.get_enabled

	
salt.modules.smf_service.get_running()

	Return the running services

CLI Example:

salt '*' service.get_running

	
salt.modules.smf_service.get_stopped()

	Return the stopped services

CLI Example:

salt '*' service.get_stopped

	
salt.modules.smf_service.missing(name)

	The inverse of service.available.
Returns True if the specified service is not available, otherwise returns
False.

CLI Example:

salt '*' service.missing net-snmp

	
salt.modules.smf_service.reload_(name)

	Reload the named service

CLI Example:

salt '*' service.reload <service name>

	
salt.modules.smf_service.restart(name)

	Restart the named service

CLI Example:

salt '*' service.restart <service name>

	
salt.modules.smf_service.start(name)

	Start the specified service

CLI Example:

salt '*' service.start <service name>

	
salt.modules.smf_service.status(name, sig=None)

	Return the status for a service.
If the name contains globbing, a dict mapping service name to True/False
values is returned.

Changed in version 2018.3.0: The service name can now be a glob (e.g. salt*)

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service to check

	sig (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Not implemented

	Returns:

	True if running, False otherwise
dict: Maps service name to True if running, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.status <service name>

	
salt.modules.smf_service.stop(name)

	Stop the specified service

CLI Example:

salt '*' service.stop <service name>

salt.modules.smtp

Module for Sending Messages via SMTP

New in version 2014.7.0.

	depends:

	
	smtplib python module

	configuration:

	This module can be used by either passing a jid and password
directly to send_message, or by specifying the name of a configuration
profile in the minion config, minion pillar, or master config.

For example:

my-smtp-login:
 smtp.server: smtp.domain.com
 smtp.tls: True
 smtp.sender: admin@domain.com
 smtp.username: myuser
 smtp.password: verybadpass

The resourcename refers to the resource that is using this account. It is
user-definable, and optional. The following configurations are both valid:

my-smtp-login:
 smtp.server: smtp.domain.com
 smtp.tls: True
 smtp.sender: admin@domain.com
 smtp.username: myuser
 smtp.password: verybadpass

another-smtp-login:
 smtp.server: smtp.domain.com
 smtp.tls: True
 smtp.sender: admin@domain.com
 smtp.username: myuser
 smtp.password: verybadpass

	
salt.modules.smtp.send_msg(recipient, message, subject='Message from Salt', sender=None, server=None, use_ssl='True', username=None, password=None, profile=None, attachments=None)

	Send a message to an SMTP recipient. To send a message to multiple recipients, the recipients should be in a comma-seperated Python string. Designed for use in states.

CLI Examples:

salt '*' smtp.send_msg 'admin@example.com' 'This is a salt module test' profile='my-smtp-account'
salt '*' smtp.send_msg 'admin@example.com,admin2@example.com' 'This is a salt module test for multiple recipients' profile='my-smtp-account'
salt '*' smtp.send_msg 'admin@example.com' 'This is a salt module test' username='myuser' password='verybadpass' sender='admin@example.com' server='smtp.domain.com'
salt '*' smtp.send_msg 'admin@example.com' 'This is a salt module test' username='myuser' password='verybadpass' sender='admin@example.com' server='smtp.domain.com' attachments="['/var/log/messages']"

salt.modules.snapper

Module to manage filesystem snapshots with snapper

New in version 2016.11.0.

	codeauthor:

	Duncan Mac-Vicar P. <dmacvicar@suse.de>

	codeauthor:

	Pablo Suárez Hernández <psuarezhernandez@suse.de>

	depends:

	dbus Python module.

	depends:

	snapper http://snapper.io, available in most distros

	maturity:

	new

	platform:

	Linux

	
salt.modules.snapper.changed_files(config='root', num_pre=None, num_post=None)

	Returns the files changed between two snapshots

	config
	Configuration name.

	num_pre
	first snapshot ID to compare. Default is last snapshot

	num_post
	last snapshot ID to compare. Default is 0 (current state)

CLI Example:

salt '*' snapper.changed_files
salt '*' snapper.changed_files num_pre=19 num_post=20

	
salt.modules.snapper.create_baseline(tag='baseline', config='root')

	Creates a snapshot marked as baseline

	tag
	Tag name for the baseline

	config
	Configuration name.

CLI Example:

salt '*' snapper.create_baseline
salt '*' snapper.create_baseline my_custom_baseline

	
salt.modules.snapper.create_config(name=None, subvolume=None, fstype=None, template=None, extra_opts=None)

	Creates a new Snapper configuration

	name
	Name of the new Snapper configuration.

	subvolume
	Path to the related subvolume.

	fstype
	Filesystem type of the subvolume.

	template
	Configuration template to use. (Default: default)

	extra_opts
	Extra Snapper configuration opts dictionary. It will override the values provided
by the given template (if any).

CLI Example:

salt '*' snapper.create_config name=myconfig subvolume=/foo/bar/ fstype=btrfs
salt '*' snapper.create_config name=myconfig subvolume=/foo/bar/ fstype=btrfs template="default"
salt '*' snapper.create_config name=myconfig subvolume=/foo/bar/ fstype=btrfs extra_opts='{"NUMBER_CLEANUP": False}'

	
salt.modules.snapper.create_snapshot(config='root', snapshot_type='single', pre_number=None, description=None, cleanup_algorithm='number', userdata=None, **kwargs)

	Creates an snapshot

	config
	Configuration name.

	snapshot_type
	Specifies the type of the new snapshot. Possible values are
single, pre and post.

	pre_number
	For post snapshots the number of the pre snapshot must be
provided.

	description
	Description for the snapshot. If not given, the salt job will be used.

	cleanup_algorithm
	Set the cleanup algorithm for the snapshot.

	number
	Deletes old snapshots when a certain number of snapshots
is reached.

	timeline
	Deletes old snapshots but keeps a number of hourly,
daily, weekly, monthly and yearly snapshots.

	empty-pre-post
	Deletes pre/post snapshot pairs with empty diffs.

	userdata
	Set userdata for the snapshot (key-value pairs).

Returns the number of the created snapshot.

CLI Example:

salt '*' snapper.create_snapshot

	
salt.modules.snapper.delete_snapshot(snapshots_ids=None, config='root')

	Deletes an snapshot

	config
	Configuration name. (Default: root)

	snapshots_ids
	List of the snapshots IDs to be deleted.

CLI Example:

salt '*' snapper.delete_snapshot 54
salt '*' snapper.delete_snapshot config=root 54
salt '*' snapper.delete_snapshot config=root snapshots_ids=[54,55,56]

	
salt.modules.snapper.diff(config='root', filename=None, num_pre=None, num_post=None)

	Returns the differences between two snapshots

	config
	Configuration name.

	filename
	if not provided the showing differences between snapshots for
all "text" files

	num_pre
	first snapshot ID to compare. Default is last snapshot

	num_post
	last snapshot ID to compare. Default is 0 (current state)

CLI Example:

salt '*' snapper.diff
salt '*' snapper.diff filename=/var/log/snapper.log num_pre=19 num_post=20

	
salt.modules.snapper.diff_jid(jid, config='root')

	Returns the changes applied by a jid

	jid
	The job id to lookup

	config
	Configuration name.

CLI Example:

salt '*' snapper.diff_jid jid=20160607130930720112

	
salt.modules.snapper.get_config(name='root')

	Retrieves all values from a given configuration

CLI Example:

salt '*' snapper.get_config

	
salt.modules.snapper.get_snapshot(number=0, config='root')

	Get detailed information about a given snapshot

CLI Example:

salt '*' snapper.get_snapshot 1

	
salt.modules.snapper.list_configs()

	List all available configs

CLI Example:

salt '*' snapper.list_configs

	
salt.modules.snapper.list_snapshots(config='root')

	List available snapshots

CLI Example:

salt '*' snapper.list_snapshots config=myconfig

	
salt.modules.snapper.modify_snapshot(snapshot_id=None, description=None, userdata=None, cleanup=None, config='root')

	Modify attributes of an existing snapshot.

	config
	Configuration name. (Default: root)

	snapshot_id
	ID of the snapshot to be modified.

	cleanup
	Change the cleanup method of the snapshot. (str)

	description
	Change the description of the snapshot. (str)

	userdata
	Change the userdata dictionary of the snapshot. (dict)

CLI Example:

salt '*' snapper.modify_snapshot 54 description="my snapshot description"
salt '*' snapper.modify_snapshot 54 description="my snapshot description"
salt '*' snapper.modify_snapshot 54 userdata='{"foo": "bar"}'
salt '*' snapper.modify_snapshot snapshot_id=54 cleanup="number"

	
salt.modules.snapper.run(function, *args, **kwargs)

	Runs a function from an execution module creating pre and post snapshots
and associating the salt job id with those snapshots for easy undo and
cleanup.

	function
	Salt function to call.

	config
	Configuration name. (default: "root")

	description
	A description for the snapshots. (default: None)

	userdata
	Data to include in the snapshot metadata. (default: None)

	cleanup_algorithm
	Snapper cleanup algorithm. (default: "number")

	*args
	args for the function to call. (default: None)

	**kwargs
	kwargs for the function to call (default: None)

This would run append text to /etc/motd using the file.append
module, and will create two snapshots, pre and post with the associated
metadata. The jid will be available as salt_jid in the userdata of the
snapshot.

You can immediately see the changes

CLI Example:

salt '*' snapper.run file.append args='["/etc/motd", "some text"]'

	
salt.modules.snapper.set_config(name='root', **kwargs)

	Set configuration values

CLI Example:

salt '*' snapper.set_config SYNC_ACL=True

Keys are case insensitive as they will be always uppercased to snapper
convention. The above example is equivalent to:

salt '*' snapper.set_config sync_acl=True

	
salt.modules.snapper.status(config='root', num_pre=None, num_post=None)

	Returns a comparison between two snapshots

	config
	Configuration name.

	num_pre
	first snapshot ID to compare. Default is last snapshot

	num_post
	last snapshot ID to compare. Default is 0 (current state)

CLI Example:

salt '*' snapper.status
salt '*' snapper.status num_pre=19 num_post=20

	
salt.modules.snapper.status_to_string(dbus_status)

	Converts a numeric dbus snapper status into a string

CLI Example:

salt '*' snapper.status_to_string <dbus_status>

	
salt.modules.snapper.undo(config='root', files=None, num_pre=None, num_post=None)

	Undo all file changes that happened between num_pre and num_post, leaving
the files into the state of num_pre.

Warning

If one of the files has changes after num_post, they will be overwritten
The snapshots are used to determine the file list, but the current
version of the files will be overwritten by the versions in num_pre.

You to undo changes between num_pre and the current version of the
files use num_post=0.

CLI Example:

salt '*' snapper.undo

	
salt.modules.snapper.undo_jid(jid, config='root')

	Undo the changes applied by a salt job

	jid
	The job id to lookup

	config
	Configuration name.

CLI Example:

salt '*' snapper.undo_jid jid=20160607130930720112

salt.modules.solaris_fmadm

Module for running fmadm and fmdump on Solaris

	maintainer:

	Jorge Schrauwen <sjorge@blackdot.be>

	maturity:

	new

	platform:

	solaris,illumos

New in version 2016.3.0.

	
salt.modules.solaris_fmadm.acquit(fmri)

	Acquit resource or acquit case

	fmri: string
	fmri or uuid

CLI Example:

salt '*' fmadm.acquit fmri | uuid

	
salt.modules.solaris_fmadm.config()

	Display fault manager configuration

CLI Example:

salt '*' fmadm.config

	
salt.modules.solaris_fmadm.faulty()

	Display list of faulty resources

CLI Example:

salt '*' fmadm.faulty

	
salt.modules.solaris_fmadm.flush(fmri)

	Flush cached state for resource

	fmri: string
	fmri

CLI Example:

salt '*' fmadm.flush fmri

	
salt.modules.solaris_fmadm.healthy()

	Return whether fmadm is reporting faults

CLI Example:

salt '*' fmadm.healthy

	
salt.modules.solaris_fmadm.list_records(after=None, before=None)

	Display fault management logs

	afterstring
	filter events after time, see man fmdump for format

	beforestring
	filter events before time, see man fmdump for format

CLI Example:

salt '*' fmadm.list

	
salt.modules.solaris_fmadm.load(path)

	Load specified fault manager module

	path: string
	path of fault manager module

CLI Example:

salt '*' fmadm.load /module/path

	
salt.modules.solaris_fmadm.repaired(fmri)

	Notify fault manager that resource has been repaired

	fmri: string
	fmri

CLI Example:

salt '*' fmadm.repaired fmri

	
salt.modules.solaris_fmadm.replaced(fmri)

	Notify fault manager that resource has been replaced

	fmri: string
	fmri

CLI Example:

salt '*' fmadm.repaired fmri

	
salt.modules.solaris_fmadm.reset(module, serd=None)

	Reset module or sub-component

	module: string
	module to unload

	serdstring
	serd sub module

CLI Example:

salt '*' fmadm.reset software-response

	
salt.modules.solaris_fmadm.show(uuid)

	Display log details

	uuid: string
	uuid of fault

CLI Example:

salt '*' fmadm.show 11b4070f-4358-62fa-9e1e-998f485977e1

	
salt.modules.solaris_fmadm.unload(module)

	Unload specified fault manager module

	module: string
	module to unload

CLI Example:

salt '*' fmadm.unload software-response

salt.modules.solaris_group

Manage groups on Solaris

Important

If you feel that Salt should be using this module to manage groups on a
minion, and it is using a different module (or gives an error similar to
'group.info' is not available), see here.

	
salt.modules.solaris_group.add(name, gid=None, **kwargs)

	Add the specified group

CLI Example:

salt '*' group.add foo 3456

	
salt.modules.solaris_group.chgid(name, gid)

	Change the gid for a named group

CLI Example:

salt '*' group.chgid foo 4376

	
salt.modules.solaris_group.delete(name)

	Remove the named group

CLI Example:

salt '*' group.delete foo

	
salt.modules.solaris_group.getent(refresh=False)

	Return info on all groups

CLI Example:

salt '*' group.getent

	
salt.modules.solaris_group.info(name)

	Return information about a group

CLI Example:

salt '*' group.info foo

salt.modules.solaris_shadow

Manage the password database on Solaris systems

Important

If you feel that Salt should be using this module to manage passwords on a
minion, and it is using a different module (or gives an error similar to
'shadow.info' is not available), see here.

	
salt.modules.solaris_shadow.default_hash()

	Returns the default hash used for unset passwords

CLI Example:

salt '*' shadow.default_hash

	
salt.modules.solaris_shadow.del_password(name)

	
New in version 2015.8.8.

Delete the password from name user

CLI Example:

salt '*' shadow.del_password username

	
salt.modules.solaris_shadow.gen_password(password, crypt_salt=None, algorithm='sha512')

	
New in version 2015.8.8.

Generate hashed password

Note

When called this function is called directly via remote-execution,
the password argument may be displayed in the system's process list.
This may be a security risk on certain systems.

	password
	Plaintext password to be hashed.

	crypt_salt
	Crpytographic salt. If not given, a random 8-character salt will be
generated.

	algorithm
	The following hash algorithms are supported:

	md5

	blowfish (not in mainline glibc, only available in distros that add it)

	sha256

	sha512 (default)

CLI Example:

salt '*' shadow.gen_password 'I_am_password'
salt '*' shadow.gen_password 'I_am_password' crypt_salt='I_am_salt' algorithm=sha256

	
salt.modules.solaris_shadow.info(name)

	Return information for the specified user

CLI Example:

salt '*' shadow.info root

	
salt.modules.solaris_shadow.set_maxdays(name, maxdays)

	Set the maximum number of days during which a password is valid. See man
passwd.

CLI Example:

salt '*' shadow.set_maxdays username 90

	
salt.modules.solaris_shadow.set_mindays(name, mindays)

	Set the minimum number of days between password changes. See man passwd.

CLI Example:

salt '*' shadow.set_mindays username 7

	
salt.modules.solaris_shadow.set_password(name, password)

	Set the password for a named user. The password must be a properly defined
hash, the password hash can be generated with this command:
openssl passwd -1 <plaintext password>

CLI Example:

salt '*' shadow.set_password root 1UYCIxa628.9qXjpQCjM4a..

	
salt.modules.solaris_shadow.set_warndays(name, warndays)

	Set the number of days of warning before a password change is required.
See man passwd.

CLI Example:

salt '*' shadow.set_warndays username 7

salt.modules.solaris_system

Support for reboot, shutdown, etc

This module is assumes we are using solaris-like shutdown

New in version 2016.3.0.

	
salt.modules.solaris_system.halt()

	Halt a running system

CLI Example:

salt '*' system.halt

	
salt.modules.solaris_system.init(state)

	Change the system runlevel on sysV compatible systems

CLI Example:

	statestring
	Init state

salt '*' system.init 3

	
salt.modules.solaris_system.poweroff()

	Poweroff a running system

CLI Example:

salt '*' system.poweroff

	
salt.modules.solaris_system.reboot(delay=0, message=None)

	Reboot the system

	delayint
	Optional wait time in seconds before the system will be rebooted.

	messagestring
	Optional message to broadcast before rebooting.

CLI Example:

salt '*' system.reboot
salt '*' system.reboot 60 "=== system upgraded ==="

	
salt.modules.solaris_system.shutdown(delay=0, message=None)

	Shutdown a running system

	delayint
	Optional wait time in seconds before the system will be shutdown.

	messagestring
	Optional message to broadcast before rebooting.

CLI Example:

salt '*' system.shutdown
salt '*' system.shutdown 60 "=== disk replacement ==="

salt.modules.solaris_user

Manage users with the useradd command

Important

If you feel that Salt should be using this module to manage users on a
minion, and it is using a different module (or gives an error similar to
'user.info' is not available), see here.

	
salt.modules.solaris_user.add(name, uid=None, gid=None, groups=None, home=None, shell=None, unique=True, fullname='', roomnumber='', workphone='', homephone='', createhome=True, **kwargs)

	Add a user to the minion

CLI Example:

salt '*' user.add name <uid> <gid> <groups> <home> <shell>

	
salt.modules.solaris_user.chfullname(name, fullname)

	Change the user's Full Name

CLI Example:

salt '*' user.chfullname foo "Foo Bar"

	
salt.modules.solaris_user.chgid(name, gid)

	Change the default group of the user

CLI Example:

salt '*' user.chgid foo 4376

	
salt.modules.solaris_user.chgroups(name, groups, append=False)

	Change the groups to which a user belongs

	name
	Username to modify

	groups
	List of groups to set for the user. Can be passed as a comma-separated
list or a Python list.

	appendFalse
	Set to True to append these groups to the user's existing list of
groups. Otherwise, the specified groups will replace any existing
groups for the user.

CLI Example:

salt '*' user.chgroups foo wheel,root True

	
salt.modules.solaris_user.chhome(name, home, persist=False)

	Set a new home directory for an existing user

	name
	Username to modify

	home
	New home directory to set

	persistFalse
	Set to True to prevent configuration files in the new home
directory from being overwritten by the files from the skeleton
directory.

CLI Example:

salt '*' user.chhome foo /home/users/foo True

	
salt.modules.solaris_user.chhomephone(name, homephone)

	Change the user's Home Phone

CLI Example:

salt '*' user.chhomephone foo "7735551234"

	
salt.modules.solaris_user.chroomnumber(name, roomnumber)

	Change the user's Room Number

CLI Example:

salt '*' user.chroomnumber foo 123

	
salt.modules.solaris_user.chshell(name, shell)

	Change the default shell of the user

CLI Example:

salt '*' user.chshell foo /bin/zsh

	
salt.modules.solaris_user.chuid(name, uid)

	Change the uid for a named user

CLI Example:

salt '*' user.chuid foo 4376

	
salt.modules.solaris_user.chworkphone(name, workphone)

	Change the user's Work Phone

CLI Example:

salt '*' user.chworkphone foo "7735550123"

	
salt.modules.solaris_user.delete(name, remove=False, force=False)

	Remove a user from the minion

CLI Example:

salt '*' user.delete name remove=True force=True

	
salt.modules.solaris_user.getent(refresh=False)

	Return the list of all info for all users

CLI Example:

salt '*' user.getent

	
salt.modules.solaris_user.info(name)

	Return user information

CLI Example:

salt '*' user.info root

	
salt.modules.solaris_user.list_groups(name)

	Return a list of groups the named user belongs to

CLI Example:

salt '*' user.list_groups foo

	
salt.modules.solaris_user.list_users()

	Return a list of all users

CLI Example:

salt '*' user.list_users

	
salt.modules.solaris_user.rename(name, new_name)

	Change the username for a named user

CLI Example:

salt '*' user.rename name new_name

salt.modules.solarisipspkg

IPS pkg support for Solaris

Important

If you feel that Salt should be using this module to manage packages on a
minion, and it is using a different module (or gives an error similar to
'pkg.install' is not available), see here.

This module provides support for Solaris 11 new package management - IPS (Image Packaging System).
This is the default pkg module for Solaris 11 (and later).

If you want to use also other packaging module (e.g. pkgutil) together with IPS, you need to override the pkg provider
in sls for each package:

mypackage:
 pkg.installed:
 - provider: pkgutil

Or you can override it globally by setting the providers parameter in your Minion config file like this:

providers:
 pkg: pkgutil

Or you can override it globally by setting the providers parameter in your Minion config file like this:

providers:
 pkg: pkgutil

	
salt.modules.solarisipspkg.available_version(*names, **kwargs)

	This function is an alias of latest_version.

The available version of packages in the repository.
Accepts full or partial FMRI. Partial FMRI is returned if the full FMRI
could not be resolved.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

Please use pkg.latest_version as pkg.available_version is being deprecated.

Changed in version 2019.2.0: Support for multiple package names added.

CLI Example:

salt '*' pkg.latest_version bash
salt '*' pkg.latest_version pkg://solaris/entire
salt '*' pkg.latest_version postfix sendmail

	
salt.modules.solarisipspkg.get_fmri(name, **kwargs)

	Returns FMRI from partial name. Returns empty string ('') if not found.
In case of multiple match, the function returns list of all matched packages.

CLI Example:

salt '*' pkg.get_fmri bash

	
salt.modules.solarisipspkg.install(name=None, refresh=False, pkgs=None, version=None, test=False, **kwargs)

	Install the named package using the IPS pkg command.
Accepts full or partial FMRI.

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

Multiple Package Installation Options:

	pkgs
	A list of packages to install. Must be passed as a python list.

CLI Example:

salt '*' pkg.install vim
salt '*' pkg.install pkg://solaris/editor/vim
salt '*' pkg.install pkg://solaris/editor/vim refresh=True
salt '*' pkg.install pkgs='["foo", "bar"]'

	
salt.modules.solarisipspkg.is_installed(name, **kwargs)

	Returns True if the package is installed. Otherwise returns False.
Name can be full or partial FMRI.
In case of multiple match from partial FMRI name, it returns True.

CLI Example:

salt '*' pkg.is_installed bash

	
salt.modules.solarisipspkg.latest_version(*names, **kwargs)

	The available version of packages in the repository.
Accepts full or partial FMRI. Partial FMRI is returned if the full FMRI
could not be resolved.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

Please use pkg.latest_version as pkg.available_version is being deprecated.

Changed in version 2019.2.0: Support for multiple package names added.

CLI Example:

salt '*' pkg.latest_version bash
salt '*' pkg.latest_version pkg://solaris/entire
salt '*' pkg.latest_version postfix sendmail

	
salt.modules.solarisipspkg.list_pkgs(versions_as_list=False, **kwargs)

	List the currently installed packages as a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

	
salt.modules.solarisipspkg.list_upgrades(refresh=True, **kwargs)

	Lists all packages available for update.

When run in global zone, it reports only upgradable packages for the global
zone.

When run in non-global zone, it can report more upgradable packages than
pkg update -vn, because pkg update hides packages that require
newer version of pkg://solaris/entire (which means that they can be
upgraded only from the global zone). If pkg://solaris/entire is found
in the list of upgrades, then the global zone should be updated to get all
possible updates. Use refresh=True to refresh the package database.

	refreshTrue
	Runs a full package database refresh before listing. Set to False to
disable running the refresh.

Changed in version 2017.7.0.

In previous versions of Salt, refresh defaulted to False. This was
changed to default to True in the 2017.7.0 release to make the behavior
more consistent with the other package modules, which all default to True.

CLI Example:

salt '*' pkg.list_upgrades
salt '*' pkg.list_upgrades refresh=False

	
salt.modules.solarisipspkg.normalize_name(name, **kwargs)

	Internal function. Normalizes pkg name to full FMRI before running
pkg.install. In case of multiple matches or no match, it returns the name
without modifications.

CLI Example:

salt '*' pkg.normalize_name vim

	
salt.modules.solarisipspkg.purge(name, **kwargs)

	Remove specified package. Accepts full or partial FMRI.

Returns a list containing the removed packages.

CLI Example:

salt '*' pkg.purge <package name>

	
salt.modules.solarisipspkg.refresh_db(full=False, **kwargs)

	Updates the remote repos database.

full : False

Set to True to force a refresh of the pkg DB from all publishers,
regardless of the last refresh time.

CLI Example:

salt '*' pkg.refresh_db
salt '*' pkg.refresh_db full=True

	
salt.modules.solarisipspkg.remove(name=None, pkgs=None, **kwargs)

	Remove specified package. Accepts full or partial FMRI.
In case of multiple match, the command fails and won't modify the OS.

	name
	The name of the package to be deleted.

Multiple Package Options:

	pkgs
	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

Returns a list containing the removed packages.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove tcsh
salt '*' pkg.remove pkg://solaris/shell/tcsh
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.solarisipspkg.search(name, versions_as_list=False, **kwargs)

	Searches the repository for given pkg name.
The name can be full or partial FMRI. All matches are printed. Globs are
also supported.

CLI Example:

salt '*' pkg.search bash

	
salt.modules.solarisipspkg.upgrade(refresh=False, **kwargs)

	Upgrade all packages to the latest possible version.
When run in global zone, it updates also all non-global zones.
In non-global zones upgrade is limited by dependency constrains linked to
the version of pkg://solaris/entire.

Returns a dictionary containing the changes:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

When there is a failure, an explanation is also included in the error
message, based on the return code of the pkg update command.

CLI Example:

salt '*' pkg.upgrade

	
salt.modules.solarisipspkg.upgrade_available(name, **kwargs)

	Check if there is an upgrade available for a certain package
Accepts full or partial FMRI. Returns all matches found.

CLI Example:

salt '*' pkg.upgrade_available apache-22

	
salt.modules.solarisipspkg.version(*names, **kwargs)

	Common interface for obtaining the version of installed packages.
Accepts full or partial FMRI. If called using pkg_resource, full FMRI is required.
Partial FMRI is returned if the package is not installed.

CLI Example:

salt '*' pkg.version vim
salt '*' pkg.version foo bar baz
salt '*' pkg_resource.version pkg://solaris/entire

salt.modules.solarispkg

Package support for Solaris

Important

If you feel that Salt should be using this module to manage packages on a
minion, and it is using a different module (or gives an error similar to
'pkg.install' is not available), see here.

	
salt.modules.solarispkg.available_version(*names, **kwargs)

	This function is an alias of latest_version.

Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

NOTE: As package repositories are not presently supported for Solaris
pkgadd, this function will always return an empty string for a given
package.

	
salt.modules.solarispkg.install(name=None, sources=None, saltenv='base', **kwargs)

	Install the passed package. Can install packages from the following
sources:

	Locally (package already exists on the minion

	HTTP/HTTPS server

	FTP server

	Salt master

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Examples:

Installing a data stream pkg that already exists on the minion

salt '*' pkg.install sources='[{"<pkg name>": "/dir/on/minion/<pkg filename>"}]'
salt '*' pkg.install sources='[{"SMClgcc346": "/var/spool/pkg/gcc-3.4.6-sol10-sparc-local.pkg"}]'

Installing a data stream pkg that exists on the salt master

salt '*' pkg.install sources='[{"<pkg name>": "salt://pkgs/<pkg filename>"}]'
salt '*' pkg.install sources='[{"SMClgcc346": "salt://pkgs/gcc-3.4.6-sol10-sparc-local.pkg"}]'

CLI Example:

Installing a data stream pkg that exists on a HTTP server
salt '*' pkg.install sources='[{"<pkg name>": "http://packages.server.com/<pkg filename>"}]'
salt '*' pkg.install sources='[{"SMClgcc346": "http://packages.server.com/gcc-3.4.6-sol10-sparc-local.pkg"}]'

If working with solaris zones and you want to install a package only in the
global zone you can pass 'current_zone_only=True' to salt to have the
package only installed in the global zone. (Behind the scenes this is
passing '-G' to the pkgadd command.) Solaris default when installing a
package in the global zone is to install it in all zones. This overrides
that and installs the package only in the global.

CLI Example:

Installing a data stream package only in the global zone:
salt 'global_zone' pkg.install sources='[{"SMClgcc346": "/var/spool/pkg/gcc-3.4.6-sol10-sparc-local.pkg"}]' current_zone_only=True

By default salt automatically provides an adminfile, to automate package
installation, with these options set:

email=
instance=quit
partial=nocheck
runlevel=nocheck
idepend=nocheck
rdepend=nocheck
space=nocheck
setuid=nocheck
conflict=nocheck
action=nocheck
basedir=default

You can override any of these options in two ways. First you can optionally
pass any of the options as a kwarg to the module/state to override the
default value or you can optionally pass the 'admin_source' option
providing your own adminfile to the minions.

Note: You can find all of the possible options to provide to the adminfile
by reading the admin man page:

man -s 4 admin

CLI Example:

Overriding the 'instance' adminfile option when calling the module directly
salt '*' pkg.install sources='[{"<pkg name>": "salt://pkgs/<pkg filename>"}]' instance="overwrite"

SLS Example:

Overriding the 'instance' adminfile option when used in a state

SMClgcc346:
 pkg.installed:
 - sources:
 - SMClgcc346: salt://srv/salt/pkgs/gcc-3.4.6-sol10-sparc-local.pkg
 - instance: overwrite

Note

The ID declaration is ignored, as the package name is read from the
sources parameter.

CLI Example:

Providing your own adminfile when calling the module directly

salt '*' pkg.install sources='[{"<pkg name>": "salt://pkgs/<pkg filename>"}]' admin_source='salt://pkgs/<adminfile filename>'

Providing your own adminfile when using states

<pkg name>:
 pkg.installed:
 - sources:
 - <pkg name>: salt://pkgs/<pkg filename>
 - admin_source: salt://pkgs/<adminfile filename>

Note

The ID declaration is ignored, as the package name is read from the
sources parameter.

	
salt.modules.solarispkg.latest_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

NOTE: As package repositories are not presently supported for Solaris
pkgadd, this function will always return an empty string for a given
package.

	
salt.modules.solarispkg.list_pkgs(versions_as_list=False, **kwargs)

	List the packages currently installed as a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

	
salt.modules.solarispkg.purge(name=None, pkgs=None, **kwargs)

	Package purges are not supported, this function is identical to
remove().

	name
	The name of the package to be deleted

Multiple Package Options:

	pkgs
	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

	
salt.modules.solarispkg.remove(name=None, pkgs=None, saltenv='base', **kwargs)

	Remove packages with pkgrm

	name
	The name of the package to be deleted

By default salt automatically provides an adminfile, to automate package
removal, with these options set:

email=
instance=quit
partial=nocheck
runlevel=nocheck
idepend=nocheck
rdepend=nocheck
space=nocheck
setuid=nocheck
conflict=nocheck
action=nocheck
basedir=default

You can override any of these options in two ways. First you can optionally
pass any of the options as a kwarg to the module/state to override the
default value or you can optionally pass the 'admin_source' option
providing your own adminfile to the minions.

Note: You can find all of the possible options to provide to the adminfile
by reading the admin man page:

man -s 4 admin

Multiple Package Options:

	pkgs
	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove SUNWgit
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.solarispkg.upgrade_available(name, **kwargs)

	Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pkg.upgrade_available <package name>

	
salt.modules.solarispkg.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

salt.modules.solr

Apache Solr Salt Module

Author: Jed Glazner
Version: 0.2.1
Modified: 12/09/2011

This module uses HTTP requests to talk to the apache solr request handlers
to gather information and report errors. Because of this the minion doesn't
necessarily need to reside on the actual slave. However if you want to
use the signal function the minion must reside on the physical solr host.

This module supports multi-core and standard setups. Certain methods are
master/slave specific. Make sure you set the solr.type. If you have
questions or want a feature request please ask.

Coming Features in 0.3

	Add command for checking for replication failures on slaves

	Improve match_index_versions since it's pointless on busy solr masters

	Add additional local fs checks for backups to make sure they succeeded

Override these in the minion config

	solr.cores
	A list of core names e.g. ['core1','core2'].
An empty list indicates non-multicore setup.

	solr.baseurl
	The root level URL to access solr via HTTP

	solr.request_timeout
	The number of seconds before timing out an HTTP/HTTPS/FTP request. If
nothing is specified then the python global timeout setting is used.

	solr.type
	Possible values are 'master' or 'slave'

	solr.backup_path
	The path to store your backups. If you are using cores and you can specify
to append the core name to the path in the backup method.

	solr.num_backups
	For versions of solr >= 3.5. Indicates the number of backups to keep. This
option is ignored if your version is less.

	solr.init_script
	The full path to your init script with start/stop options

	solr.dih.options
	A list of options to pass to the DIH.

Required Options for DIH

	cleanFalse
	Clear the index before importing

	commitTrue
	Commit the documents to the index upon completion

	optimizeTrue
	Optimize the index after commit is complete

	verboseTrue
	Get verbose output

	
salt.modules.solr.abort_import(handler, host=None, core_name=None, verbose=False)

	MASTER ONLY
Aborts an existing import command to the specified handler.
This command can only be run if the minion is configured with
solr.type=master

	handlerstr
	The name of the data import handler.

	hoststr (None)
	The solr host to query. __opts__['host'] is default.

	corestr (None)
	The core the handler belongs to.

	verboseboolean (False)
	Run the command with verbose output.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.abort_import dataimport None music {'clean':True}

	
salt.modules.solr.backup(host=None, core_name=None, append_core_to_path=False)

	Tell solr make a backup. This method can be mis-leading since it uses the
backup API. If an error happens during the backup you are not notified.
The status: 'OK' in the response simply means that solr received the
request successfully.

	hoststr (None)
	The solr host to query. __opts__['host'] is default.

	core_namestr (None)
	The name of the solr core if using cores. Leave this blank if you are
not using cores or if you want to check all cores.

	append_core_to_pathboolean (False)
	If True add the name of the core to the backup path. Assumes that
minion backup path is not None.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.backup music

	
salt.modules.solr.core_status(host=None, core_name=None)

	MULTI-CORE HOSTS ONLY
Get the status for a given core or all cores if no core is specified

	hoststr (None)
	The solr host to query. __opts__['host'] is default.

	core_namestr
	The name of the core to reload

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.core_status None music

	
salt.modules.solr.delta_import(handler, host=None, core_name=None, options=None, extra=None)

	Submits an import command to the specified handler using specified options.
This command can only be run if the minion is configured with
solr.type=master

	handlerstr
	The name of the data import handler.

	hoststr (None)
	The solr host to query. __opts__['host'] is default.

	corestr (None)
	The core the handler belongs to.

	optionsdict (__opts__)
	A list of options such as clean, optimize commit, verbose, and
pause_replication. leave blank to use __opts__ defaults. options will
be merged with __opts__

	extradict ([])
	Extra name value pairs to pass to the handler. e.g. ["name=value"]

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.delta_import dataimport None music {'clean':True}

	
salt.modules.solr.full_import(handler, host=None, core_name=None, options=None, extra=None)

	MASTER ONLY
Submits an import command to the specified handler using specified options.
This command can only be run if the minion is configured with
solr.type=master

	handlerstr
	The name of the data import handler.

	hoststr (None)
	The solr host to query. __opts__['host'] is default.

	corestr (None)
	The core the handler belongs to.

	optionsdict (__opts__)
	A list of options such as clean, optimize commit, verbose, and
pause_replication. leave blank to use __opts__ defaults. options will
be merged with __opts__

	extradict ([])
	Extra name value pairs to pass to the handler. e.g. ["name=value"]

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.full_import dataimport None music {'clean':True}

	
salt.modules.solr.import_status(handler, host=None, core_name=None, verbose=False)

	Submits an import command to the specified handler using specified options.
This command can only be run if the minion is configured with
solr.type: 'master'

	handlerstr
	The name of the data import handler.

	hoststr (None)
	The solr host to query. __opts__['host'] is default.

	corestr (None)
	The core the handler belongs to.

	verboseboolean (False)
	Specifies verbose output

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.import_status dataimport None music False

	
salt.modules.solr.is_replication_enabled(host=None, core_name=None)

	SLAVE CALL
Check for errors, and determine if a slave is replicating or not.

	hoststr (None)
	The solr host to query. __opts__['host'] is default.

	core_namestr (None)
	The name of the solr core if using cores. Leave this blank if you are
not using cores or if you want to check all cores.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.is_replication_enabled music

	
salt.modules.solr.lucene_version(core_name=None)

	Gets the lucene version that solr is using. If you are running a multi-core
setup you should specify a core name since all the cores run under the same
servlet container, they will all have the same version.

	core_namestr (None)
	The name of the solr core if using cores. Leave this blank if you are
not using cores or if you want to check all cores.

Return: dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.lucene_version

	
salt.modules.solr.match_index_versions(host=None, core_name=None)

	SLAVE CALL
Verifies that the master and the slave versions are in sync by
comparing the index version. If you are constantly pushing updates
the index the master and slave versions will seldom match. A solution
to this is pause indexing every so often to allow the slave to replicate
and then call this method before allowing indexing to resume.

	hoststr (None)
	The solr host to query. __opts__['host'] is default.

	core_namestr (None)
	The name of the solr core if using cores. Leave this blank if you are
not using cores or if you want to check all cores.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.match_index_versions music

	
salt.modules.solr.optimize(host=None, core_name=None)

	Search queries fast, but it is a very expensive operation. The ideal
process is to run this with a master/slave configuration. Then you
can optimize the master, and push the optimized index to the slaves.
If you are running a single solr instance, or if you are going to run
this on a slave be aware than search performance will be horrible
while this command is being run. Additionally it can take a LONG time
to run and your HTTP request may timeout. If that happens adjust your
timeout settings.

	hoststr (None)
	The solr host to query. __opts__['host'] is default.

	core_namestr (None)
	The name of the solr core if using cores. Leave this blank if you are
not using cores or if you want to check all cores.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.optimize music

	
salt.modules.solr.ping(host=None, core_name=None)

	Does a health check on solr, makes sure solr can talk to the indexes.

	hoststr (None)
	The solr host to query. __opts__['host'] is default.

	core_namestr (None)
	The name of the solr core if using cores. Leave this blank if you are
not using cores or if you want to check all cores.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.ping music

	
salt.modules.solr.reload_core(host=None, core_name=None)

	MULTI-CORE HOSTS ONLY
Load a new core from the same configuration as an existing registered core.
While the "new" core is initializing, the "old" one will continue to accept
requests. Once it has finished, all new request will go to the "new" core,
and the "old" core will be unloaded.

	hoststr (None)
	The solr host to query. __opts__['host'] is default.

	core_namestr
	The name of the core to reload

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.reload_core None music

Return data is in the following format:

{'success':bool, 'data':dict, 'errors':list, 'warnings':list}

	
salt.modules.solr.reload_import_config(handler, host=None, core_name=None, verbose=False)

	MASTER ONLY
re-loads the handler config XML file.
This command can only be run if the minion is a 'master' type

	handlerstr
	The name of the data import handler.

	hoststr (None)
	The solr host to query. __opts__['host'] is default.

	corestr (None)
	The core the handler belongs to.

	verboseboolean (False)
	Run the command with verbose output.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.reload_import_config dataimport None music {'clean':True}

	
salt.modules.solr.replication_details(host=None, core_name=None)

	Get the full replication details.

	hoststr (None)
	The solr host to query. __opts__['host'] is default.

	core_namestr (None)
	The name of the solr core if using cores. Leave this blank if you are
not using cores or if you want to check all cores.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.replication_details music

	
salt.modules.solr.set_is_polling(polling, host=None, core_name=None)

	SLAVE CALL
Prevent the slaves from polling the master for updates.

	pollingboolean
	True will enable polling. False will disable it.

	hoststr (None)
	The solr host to query. __opts__['host'] is default.

	core_namestr (None)
	The name of the solr core if using cores. Leave this blank if you are
not using cores or if you want to check all cores.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.set_is_polling False

	
salt.modules.solr.set_replication_enabled(status, host=None, core_name=None)

	MASTER ONLY
Sets the master to ignore poll requests from the slaves. Useful when you
don't want the slaves replicating during indexing or when clearing the
index.

	statusboolean
	Sets the replication status to the specified state.

	hoststr (None)
	The solr host to query. __opts__['host'] is default.

	core_namestr (None)
	The name of the solr core if using cores. Leave this blank if you are
not using cores or if you want to set the status on all cores.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.set_replication_enabled false, None, music

	
salt.modules.solr.signal(signal=None)

	Signals Apache Solr to start, stop, or restart. Obviously this is only
going to work if the minion resides on the solr host. Additionally Solr
doesn't ship with an init script so one must be created.

	signalstr (None)
	The command to pass to the apache solr init valid values are 'start',
'stop', and 'restart'

CLI Example:

salt '*' solr.signal restart

	
salt.modules.solr.version(core_name=None)

	Gets the solr version for the core specified. You should specify a core
here as all the cores will run under the same servlet container and so will
all have the same version.

	core_namestr (None)
	The name of the solr core if using cores. Leave this blank if you are
not using cores or if you want to check all cores.

Return : dict<str,obj>:

{'success':boolean, 'data':dict, 'errors':list, 'warnings':list}

CLI Example:

salt '*' solr.version

salt.modules.solrcloud

Module for solrcloud configuration

New in version 2017.7.0.

For now, module is limited to http-exposed API. It doesn't implement config upload via Solr zkCli

	
salt.modules.solrcloud.BOOL_PROPS_LIST = ['transient', 'loadOnStartup']

	Collections options type definition
Reference: https://cwiki.apache.org/confluence/display/solr/Collections+API#CollectionsAPI-api1

	
salt.modules.solrcloud.DICT_OPTIONS_LIST = ['properties']

	Collection unmodifiable options
Reference: https://cwiki.apache.org/confluence/display/solr/Collections+API#CollectionsAPI-modifycoll

	
salt.modules.solrcloud.alias_exists(alias_name, **kwargs)

	Check alias existence

Additional parameters (kwargs) may be passed, they will be proxied to http.query

CLI Example:

salt '*' solrcloud.alias_exists my_alias

	
salt.modules.solrcloud.alias_get_collections(alias_name, **kwargs)

	Get collection list for an alias

Additional parameters (kwargs) may be passed, they will be proxied to http.query

CLI Example:

salt '*' solrcloud.alias_get my_alias

	
salt.modules.solrcloud.alias_set_collections(alias_name, collections=None, **kwargs)

	Define an alias

Additional parameters (kwargs) may be passed, they will be proxied to http.query

CLI Example:

salt '*' solrcloud.alias_set my_alias collections=[collection1, colletion2]

	
salt.modules.solrcloud.cluster_status(**kwargs)

	Get cluster status

Additional parameters (kwargs) may be passed, they will be proxied to http.query

CLI Example:

salt '*' solrcloud.cluster_status

	
salt.modules.solrcloud.collection_backup(collection_name, location, backup_name=None, **kwargs)

	Create a backup for a collection.

Additional parameters (kwargs) may be passed, they will be proxied to http.query

CLI Example:

salt '*' solrcloud.core_backup collection_name /mnt/nfs_backup

	
salt.modules.solrcloud.collection_backup_all(location, backup_name=None, **kwargs)

	Create a backup for all collection present on the server.

Additional parameters (kwargs) may be passed, they will be proxied to http.query

CLI Example:

salt '*' solrcloud.core_backup /mnt/nfs_backup

	
salt.modules.solrcloud.collection_check_options(options)

	Check collections options

CLI Example:

salt '*' solrcloud.collection_check_options '{"replicationFactor":4}'

	
salt.modules.solrcloud.collection_create(collection_name, options=None, **kwargs)

	Create a collection,

Additional parameters (kwargs) may be passed, they will be proxied to http.query

CLI Example:

salt '*' solrcloud.collection_create collection_name

Collection creation options may be passed using the "options" parameter.
Do not include option "name" since it already specified by the mandatory parameter "collection_name"

salt '*' solrcloud.collection_create collection_name options={"replicationFactor":2, "numShards":3}

Cores options may be passed using the "properties" key in options.
Do not include property "name"

salt '*' solrcloud.collection_create collection_name options={"replicationFactor":2, "numShards":3, "properties":{"dataDir":"/srv/solr/hugePartitionSollection"}}

	
salt.modules.solrcloud.collection_creation_options()

	Get collection option list that can only be defined at creation

CLI Example:

salt '*' solrcloud.collection_creation_options

	
salt.modules.solrcloud.collection_exists(collection_name, **kwargs)

	Check if a collection exists

Additional parameters (kwargs) may be passed, they will be proxied to http.query

CLI Example:

salt '*' solrcloud.collection_exists collection_name

	
salt.modules.solrcloud.collection_get_options(collection_name, **kwargs)

	Get collection options

Additional parameters (kwargs) may be passed, they will be proxied to http.query

CLI Example:

salt '*' solrcloud.collection_get_options collection_name

	
salt.modules.solrcloud.collection_list(**kwargs)

	List all collections

Additional parameters (kwargs) may be passed, they will be proxied to http.query

CLI Example:

salt '*' solrcloud.collection_list

	
salt.modules.solrcloud.collection_reload(collection, **kwargs)

	Check if a collection exists

Additional parameters (kwargs) may be passed, they will be proxied to http.query

CLI Example:

salt '*' solrcloud.collection_reload collection_name

	
salt.modules.solrcloud.collection_set_options(collection_name, options, **kwargs)

	Change collection options

Additional parameters (kwargs) may be passed, they will be proxied to http.query

Note that not every parameter can be changed after collection creation

CLI Example:

salt '*' solrcloud.collection_set_options collection_name options={"replicationFactor":4}

	
salt.modules.solrcloud.log = <SaltLoggingClass salt.modules.solrcloud (GARBAGE)>

	Core properties type definition.
Reference: https://cwiki.apache.org/confluence/display/solr/Defining+core.properties

salt.modules.splunk

Module for interop with the Splunk API

New in version 2016.3.0.

	depends:

	
	splunk-sdk python module

	configuration:

	Configure this module by specifying the name of a configuration
profile in the minion config, minion pillar, or master config. The module
will use the 'splunk' key by default, if defined.

For example:

splunk:
 username: alice
 password: abc123
 host: example.splunkcloud.com
 port: 8080

	
salt.modules.splunk.create_user(email, profile='splunk', **kwargs)

	create a splunk user by name/email

CLI Example:

salt myminion splunk.create_user user@example.com roles=['user'] realname="Test User" name=testuser

	
salt.modules.splunk.delete_user(email, profile='splunk')

	Delete a splunk user by email

CLI Example:

salt myminion splunk_user.delete 'user@example.com'

	
salt.modules.splunk.get_user(email, profile='splunk', **kwargs)

	Get a splunk user by name/email

CLI Example:

salt myminion splunk.get_user 'user@example.com' user_details=false
salt myminion splunk.get_user 'user@example.com' user_details=true

	
salt.modules.splunk.list_users(profile='splunk')

	List all users in the splunk DB

CLI Example:

salt myminion splunk.list_users

	
salt.modules.splunk.update_user(email, profile='splunk', **kwargs)

	Create a splunk user by email

CLI Example:

salt myminion splunk.update_user example@domain.com roles=['user'] realname="Test User"

salt.modules.splunk_search

Module for interop with the Splunk API

New in version 2015.5.0.

	depends:

	
	splunk-sdk python module

	configuration:

	Configure this module by specifying the name of a configuration
profile in the minion config, minion pillar, or master config. The module
will use the 'splunk' key by default, if defined.

For example:

splunk:
 username: alice
 password: abc123
 host: example.splunkcloud.com
 port: 8080

	
salt.modules.splunk_search.create(name, profile='splunk', **kwargs)

	Create a splunk search

CLI Example:

splunk_search.create 'my search name' search='error msg'

	
salt.modules.splunk_search.delete(name, profile='splunk')

	Delete a splunk search

CLI Example:

splunk_search.delete 'my search name'

	
salt.modules.splunk_search.get(name, profile='splunk')

	Get a splunk search

CLI Example:

splunk_search.get 'my search name'

	
salt.modules.splunk_search.list_(profile='splunk')

	List splunk searches (names only)

CLI Example:

splunk_search.list

	
salt.modules.splunk_search.list_all(prefix=None, app=None, owner=None, description_contains=None, name_not_contains=None, profile='splunk')

	Get all splunk search details. Produces results that can be used to create
an sls file.

if app or owner are specified, results will be limited to matching saved
searches.

if description_contains is specified, results will be limited to those
where "description_contains in description" is true if name_not_contains is
specified, results will be limited to those where "name_not_contains not in
name" is true.

If prefix parameter is given, alarm names in the output will be prepended
with the prefix; alarms that have the prefix will be skipped. This can be
used to convert existing alarms to be managed by salt, as follows:

CLI Example:

	
	Make a "backup" of all existing searches
	$ salt-call splunk_search.list_all --out=txt | sed "s/local: //" > legacy_searches.sls

	
	Get all searches with new prefixed names
	$ salt-call splunk_search.list_all "prefix=**MANAGED BY SALT** " --out=txt | sed "s/local: //" > managed_searches.sls

	
	Insert the managed searches into splunk
	$ salt-call state.sls managed_searches.sls

	Manually verify that the new searches look right

	Delete the original searches
$ sed s/present/absent/ legacy_searches.sls > remove_legacy_searches.sls
$ salt-call state.sls remove_legacy_searches.sls

	Get all searches again, verify no changes
$ salt-call splunk_search.list_all --out=txt | sed "s/local: //" > final_searches.sls
$ diff final_searches.sls managed_searches.sls

	
salt.modules.splunk_search.update(name, profile='splunk', **kwargs)

	Update a splunk search

CLI Example:

splunk_search.update 'my search name' sharing=app

salt.modules.sqlite3

Support for SQLite3

	
salt.modules.sqlite3.fetch(db=None, sql=None)

	Retrieve data from an sqlite3 db (returns all rows, be careful!)

CLI Example:

salt '*' sqlite3.fetch /root/test.db 'SELECT * FROM test;'

	
salt.modules.sqlite3.indexes(db=None)

	Show all indices in the database, for people with poor spelling skills

CLI Example:

salt '*' sqlite3.indexes /root/test.db

	
salt.modules.sqlite3.indices(db=None)

	Show all indices in the database

CLI Example:

salt '*' sqlite3.indices /root/test.db

	
salt.modules.sqlite3.modify(db=None, sql=None)

	Issue an SQL query to sqlite3 (with no return data), usually used
to modify the database in some way (insert, delete, create, etc)

CLI Example:

salt '*' sqlite3.modify /root/test.db 'CREATE TABLE test(id INT, testdata TEXT);'

	
salt.modules.sqlite3.sqlite_version()

	Return version of sqlite

CLI Example:

salt '*' sqlite3.sqlite_version

	
salt.modules.sqlite3.tables(db=None)

	Show all tables in the database

CLI Example:

salt '*' sqlite3.tables /root/test.db

	
salt.modules.sqlite3.version()

	Return version of pysqlite

CLI Example:

salt '*' sqlite3.version

salt.modules.ssh

Manage client ssh components

Note

This module requires the use of MD5 hashing. Certain security audits may
not permit the use of MD5. For those cases, this module should be disabled
or removed.

	
salt.modules.ssh.auth_keys(user=None, config='.ssh/authorized_keys', fingerprint_hash_type=None)

	Return the authorized keys for users

CLI Example:

salt '*' ssh.auth_keys
salt '*' ssh.auth_keys root
salt '*' ssh.auth_keys user=root
salt '*' ssh.auth_keys user="[user1, user2]"

	
salt.modules.ssh.check_key(user, key, enc, comment, options, config='.ssh/authorized_keys', cache_keys=None, fingerprint_hash_type=None)

	Check to see if a key needs updating, returns "update", "add" or "exists"

CLI Example:

salt '*' ssh.check_key <user> <key> <enc> <comment> <options>

	
salt.modules.ssh.check_key_file(user, source, config='.ssh/authorized_keys', saltenv='base', fingerprint_hash_type=None)

	Check a keyfile from a source destination against the local keys and
return the keys to change

CLI Example:

salt '*' ssh.check_key_file root salt://ssh/keyfile

	
salt.modules.ssh.check_known_host(user=None, hostname=None, key=None, fingerprint=None, config=None, port=None, fingerprint_hash_type=None)

	Check the record in known_hosts file, either by its value or by fingerprint
(it's enough to set up either key or fingerprint, you don't need to set up
both).

If provided key or fingerprint doesn't match with stored value, return
"update", if no value is found for a given host, return "add", otherwise
return "exists".

If neither key, nor fingerprint is defined, then additional validation is
not performed.

CLI Example:

salt '*' ssh.check_known_host <user> <hostname> key='AAAA...FAaQ=='

	
salt.modules.ssh.get_known_host_entries(user, hostname, config=None, port=None, fingerprint_hash_type=None)

	
New in version 2018.3.0.

Return information about known host entries from the configfile, if any.
If there are no entries for a matching hostname, return None.

CLI Example:

salt '*' ssh.get_known_host_entries <user> <hostname>

	
salt.modules.ssh.hash_known_hosts(user=None, config=None)

	Hash all the hostnames in the known hosts file.

New in version 2014.7.0.

	user
	hash known hosts of this user

	config
	path to known hosts file: can be absolute or relative to user's home
directory

CLI Example:

salt '*' ssh.hash_known_hosts

	
salt.modules.ssh.host_keys(keydir=None, private=True, certs=True)

	Return the minion's host keys

CLI Example:

salt '*' ssh.host_keys
salt '*' ssh.host_keys keydir=/etc/ssh
salt '*' ssh.host_keys keydir=/etc/ssh private=False
salt '*' ssh.host_keys keydir=/etc/ssh certs=False

	
salt.modules.ssh.key_is_encrypted(key)

	
New in version 2015.8.7.

Function to determine whether or not a private key is encrypted with a
passphrase.

Checks key for a Proc-Type header with ENCRYPTED in the value. If
found, returns True, otherwise returns False.

CLI Example:

salt '*' ssh.key_is_encrypted /root/id_rsa

	
salt.modules.ssh.recv_known_host_entries(hostname, enc=None, port=None, hash_known_hosts=True, timeout=5, fingerprint_hash_type=None)

	
New in version 2018.3.0.

Retrieve information about host public keys from remote server

	hostname
	The name of the remote host (e.g. "github.com")

	enc
	Defines what type of key is being used, can be ed25519, ecdsa,
ssh-rsa, ssh-dss or any other type as of openssh server version 8.7.

	port
	Optional parameter, denoting the port of the remote host on which an
SSH daemon is running. By default the port 22 is used.

	hash_known_hostsTrue
	Hash all hostnames and addresses in the known hosts file.

	timeoutint
	Set the timeout for connection attempts. If timeout seconds have
elapsed since a connection was initiated to a host or since the last
time anything was read from that host, then the connection is closed
and the host in question considered unavailable. Default is 5 seconds.

	fingerprint_hash_type
	The fingerprint hash type that the public key fingerprints were
originally hashed with. This defaults to sha256 if not specified.

New in version 2016.11.4.

Changed in version 2017.7.0: default changed from md5 to sha256

CLI Example:

salt '*' ssh.recv_known_host_entries <hostname> enc=<enc> port=<port>

	
salt.modules.ssh.rm_auth_key(user, key, config='.ssh/authorized_keys', fingerprint_hash_type=None)

	Remove an authorized key from the specified user's authorized key file

CLI Example:

salt '*' ssh.rm_auth_key <user> <key>

	
salt.modules.ssh.rm_auth_key_from_file(user, source, config='.ssh/authorized_keys', saltenv='base', fingerprint_hash_type=None)

	Remove an authorized key from the specified user's authorized key file,
using a file as source

CLI Example:

salt '*' ssh.rm_auth_key_from_file <user> salt://ssh_keys/<user>.id_rsa.pub

	
salt.modules.ssh.rm_known_host(user=None, hostname=None, config=None, port=None)

	Remove all keys belonging to hostname from a known_hosts file.

CLI Example:

salt '*' ssh.rm_known_host <user> <hostname>

	
salt.modules.ssh.set_auth_key(user, key, enc='ssh-rsa', comment='', options=None, config='.ssh/authorized_keys', cache_keys=None, fingerprint_hash_type=None)

	Add a key to the authorized_keys file. The "key" parameter must only be the
string of text that is the encoded key. If the key begins with "ssh-rsa"
or ends with user@host, remove those from the key before passing it to this
function.

CLI Example:

salt '*' ssh.set_auth_key <user> '<key>' enc='dsa'

	
salt.modules.ssh.set_auth_key_from_file(user, source, config='.ssh/authorized_keys', saltenv='base', fingerprint_hash_type=None)

	Add a key to the authorized_keys file, using a file as the source.

CLI Example:

salt '*' ssh.set_auth_key_from_file <user> salt://ssh_keys/<user>.id_rsa.pub

	
salt.modules.ssh.set_known_host(user=None, hostname=None, fingerprint=None, key=None, port=None, enc=None, config=None, hash_known_hosts=True, timeout=5, fingerprint_hash_type=None)

	Download SSH public key from remote host "hostname", optionally validate
its fingerprint against "fingerprint" variable and save the record in the
known_hosts file.

If such a record does already exists in there, do nothing.

	user
	The user who owns the ssh authorized keys file to modify

	hostname
	The name of the remote host (e.g. "github.com")

	fingerprint
	The fingerprint of the key which must be present in the known_hosts
file (optional if key specified)

	key
	The public key which must be presented in the known_hosts file
(optional if fingerprint specified)

	port
	optional parameter, denoting the port of the remote host, which will be
used in case, if the public key will be requested from it. By default
the port 22 is used.

	enc
	Defines what type of key is being used, can be ed25519, ecdsa,
ssh-rsa, ssh-dss or any other type as of openssh server version 8.7.

	config
	The location of the authorized keys file relative to the user's home
directory, defaults to ".ssh/known_hosts". If no user is specified,
defaults to "/etc/ssh/ssh_known_hosts". If present, must be an
absolute path when a user is not specified.

	hash_known_hostsTrue
	Hash all hostnames and addresses in the known hosts file.

	timeoutint
	Set the timeout for connection attempts. If timeout seconds have
elapsed since a connection was initiated to a host or since the last
time anything was read from that host, then the connection is closed
and the host in question considered unavailable. Default is 5 seconds.

New in version 2016.3.0.

	fingerprint_hash_type
	The public key fingerprint hash type that the public key fingerprint
was originally hashed with. This defaults to sha256 if not specified.

New in version 2016.11.4.

Changed in version 2017.7.0: default changed from md5 to sha256

CLI Example:

salt '*' ssh.set_known_host <user> fingerprint='xx:xx:..:xx' enc='ssh-rsa' config='.ssh/known_hosts'

	
salt.modules.ssh.user_keys(user=None, pubfile=None, prvfile=None)

	Return the user's ssh keys on the minion

New in version 2014.7.0.

CLI Example:

salt '*' ssh.user_keys
salt '*' ssh.user_keys user=user1
salt '*' ssh.user_keys user=user1 pubfile=/home/user1/.ssh/id_rsa.pub prvfile=/home/user1/.ssh/id_rsa
salt '*' ssh.user_keys user=user1 prvfile=False
salt '*' ssh.user_keys user="['user1','user2'] pubfile=id_rsa.pub prvfile=id_rsa

As you can see you can tell Salt not to read from the user's private (or
public) key file by setting the file path to False. This can be useful
to prevent Salt from publishing private data via Salt Mine or others.

salt.modules.ssh_pkg

Service support for the REST example

	
salt.modules.ssh_pkg.install(name=None, refresh=False, fromrepo=None, pkgs=None, sources=None, **kwargs)

	

	
salt.modules.ssh_pkg.list_pkgs(versions_as_list=False, **kwargs)

	

	
salt.modules.ssh_pkg.remove(name=None, pkgs=None, **kwargs)

	

salt.modules.ssh_service

Provide the service module for the proxy-minion SSH sample
.. versionadded:: 2015.8.2

	
salt.modules.ssh_service.enabled(name, sig=None)

	Only the 'redbull' service is 'enabled' in the test

	
salt.modules.ssh_service.get_all()

	Return a list of all available services

CLI Example:

salt '*' service.get_all

	
salt.modules.ssh_service.list_()

	Return a list of all available services.

CLI Example:

salt '*' service.list

	
salt.modules.ssh_service.restart(name, sig=None)

	Restart the specified service with rest_sample

CLI Example:

salt '*' service.restart <service name>

	
salt.modules.ssh_service.running(name, sig=None)

	Return whether this service is running.

	
salt.modules.ssh_service.start(name, sig=None)

	Start the specified service on the ssh_sample

CLI Example:

salt '*' service.start <service name>

	
salt.modules.ssh_service.status(name, sig=None)

	Return the status for a service via ssh_sample.
If the name contains globbing, a dict mapping service name to True/False
values is returned.

Changed in version 2018.3.0: The service name can now be a glob (e.g. salt*)

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service to check

	sig (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Not implemented

	Returns:

	True if running, False otherwise
dict: Maps service name to True if running, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.status <service name>

	
salt.modules.ssh_service.stop(name, sig=None)

	Stop the specified service on the rest_sample

CLI Example:

salt '*' service.stop <service name>

salt.modules.state

Control the state system on the minion.

State Caching

When a highstate is called, the minion automatically caches a copy of the last
high data. If you then run a highstate with cache=True it will use that cached
highdata and won't hit the fileserver except for salt:// links in the
states themselves.

	
salt.modules.state.apply_(mods=None, **kwargs)

	
New in version 2015.5.0.

This function will call state.highstate or state.sls based on the arguments passed to this function.
It exists as a more intuitive way of applying states.

APPLYING ALL STATES CONFIGURED IN TOP.SLS (A.K.A. HIGHSTATE)

To apply all configured states, simply run state.apply with no SLS
targets, like so:

salt '*' state.apply

The following additional arguments are also accepted when applying all
states configured in top.sls:

	test
	Run states in test-only (dry-run) mode

	mock
	The mock option allows for the state run to execute without actually
calling any states. This then returns a mocked return which will show
the requisite ordering as well as fully validate the state run.

New in version 2015.8.4.

	pillar
	Custom Pillar values, passed as a dictionary of key-value pairs

salt '*' state.apply stuff pillar='{"foo": "bar"}'

Note

Values passed this way will override Pillar values set via
pillar_roots or an external Pillar source.

	exclude
	Exclude specific states from execution. Accepts a list of sls names, a
comma-separated string of sls names, or a list of dictionaries
containing sls or id keys. Glob-patterns may be used to match
multiple states.

salt '*' state.apply exclude=bar,baz
salt '*' state.apply exclude=foo*
salt '*' state.apply exclude="[{'id': 'id_to_exclude'}, {'sls': 'sls_to_exclude'}]"

	queueFalse
	Instead of failing immediately when another state run is in progress,
a value of True will queue the new state run to begin running once
the other has finished.

This option starts a new thread for each queued state run, so use this
option sparingly.

Changed in version 3006.0: This parameter can also be set via the state_queue configuration
option. Additionally, it can now be set to an integer representing
the maximum queue size which can be attained before the state runs
will fail to be queued. This can prevent runaway conditions where
new threads are started until system performance is hampered.

	localconfig
	Optionally, instead of using the minion config, load minion opts from
the file specified by this argument, and then merge them with the
options from the minion config. This functionality allows for specific
states to be run with their own custom minion configuration, including
different pillars, file_roots, etc.

salt '*' state.apply localconfig=/path/to/minion.yml

	state_events
	The state_events option sends progress events as each function in
a state run completes execution.

New in version 3006.0.

APPLYING INDIVIDUAL SLS FILES (A.K.A. STATE.SLS)

To apply individual SLS files, pass them as a comma-separated list:

Run the states configured in salt://stuff.sls (or salt://stuff/init.sls)
salt '*' state.apply stuff

Run the states configured in salt://stuff.sls (or salt://stuff/init.sls)
and salt://pkgs.sls (or salt://pkgs/init.sls).
salt '*' state.apply stuff,pkgs

Run the states configured in a more deeply nested directory such as salt://my/organized/stuff.sls (or salt://my/organized/stuff/init.sls)
salt '*' state.apply my.organized.stuff

The following additional arguments are also accepted when applying
individual SLS files:

	test
	Run states in test-only (dry-run) mode

	mock
	The mock option allows for the state run to execute without actually
calling any states. This then returns a mocked return which will show
the requisite ordering as well as fully validate the state run.

New in version 2015.8.4.

	pillar
	Custom Pillar values, passed as a dictionary of key-value pairs

salt '*' state.apply stuff pillar='{"foo": "bar"}'

Note

Values passed this way will override Pillar values set via
pillar_roots or an external Pillar source.

	queueFalse
	Instead of failing immediately when another state run is in progress,
a value of True will queue the new state run to begin running once
the other has finished.

This option starts a new thread for each queued state run, so use this
option sparingly.

Changed in version 3006.0: This parameter can also be set via the state_queue configuration
option. Additionally, it can now be set to an integer representing
the maximum queue size which can be attained before the state runs
will fail to be queued. This can prevent runaway conditions where
new threads are started until system performance is hampered.

	concurrentFalse
	Execute state runs concurrently instead of serially

Warning

This flag is potentially dangerous. It is designed for use when
multiple state runs can safely be run at the same time. Do not
use this flag for performance optimization.

	saltenv
	Specify a salt fileserver environment to be used when applying states

Changed in version 0.17.0: Argument name changed from env to saltenv

Changed in version 2014.7.0: If no saltenv is specified, the minion config will be checked for an
environment parameter and if found, it will be used. If none is
found, base will be used. In prior releases, the minion config
was not checked and base would always be assumed when the
saltenv was not explicitly set.

	pillarenv
	Specify a Pillar environment to be used when applying states. This
can also be set in the minion config file using the
pillarenv option. When neither the
pillarenv minion config option nor this CLI argument is
used, all Pillar environments will be merged together.

	localconfig
	Optionally, instead of using the minion config, load minion opts from
the file specified by this argument, and then merge them with the
options from the minion config. This functionality allows for specific
states to be run with their own custom minion configuration, including
different pillars, file_roots, etc.

salt '*' state.apply stuff localconfig=/path/to/minion.yml

	sync_mods
	If specified, the desired custom module types will be synced prior to
running the SLS files:

salt '*' state.apply stuff sync_mods=states,modules
salt '*' state.apply stuff sync_mods=all

Note

This option is ignored when no SLS files are specified, as a
highstate automatically syncs all custom
module types.

New in version 2017.7.8,2018.3.3,2019.2.0.

	state_events
	The state_events option sends progress events as each function in
a state run completes execution.

New in version 3006.0.

	
salt.modules.state.check_request(name=None)

	
New in version 2015.5.0.

Return the state request information, if any

CLI Example:

salt '*' state.check_request

	
salt.modules.state.clear_cache()

	Clear out cached state files, forcing even cache runs to refresh the cache
on the next state execution.

Remember that the state cache is completely disabled by default, this
execution only applies if cache=True is used in states

CLI Example:

salt '*' state.clear_cache

	
salt.modules.state.clear_request(name=None)

	
New in version 2015.5.0.

Clear out the state execution request without executing it

CLI Example:

salt '*' state.clear_request

	
salt.modules.state.disable(states)

	Disable state runs.

CLI Example:

salt '*' state.disable highstate

salt '*' state.disable highstate,test.succeed_without_changes

Note

To disable a state file from running provide the same name that would
be passed in a state.sls call.

salt '*' state.disable bind.config

	
salt.modules.state.enable(states)

	Enable state function or sls run

CLI Example:

salt '*' state.enable highstate

salt '*' state.enable test.succeed_without_changes

Note

To enable a state file from running provide the same name that would
be passed in a state.sls call.

salt '*' state.disable bind.config

	
salt.modules.state.event(tagmatch='*', count=-1, quiet=False, sock_dir=None, pretty=False, node='minion')

	Watch Salt's event bus and block until the given tag is matched

New in version 2016.3.0.

Changed in version 2019.2.0: tagmatch can now be either a glob or regular expression.

This is useful for utilizing Salt's event bus from shell scripts or for
taking simple actions directly from the CLI.

Enable debug logging to see ignored events.

	Parameters:

	
	tagmatch -- the event is written to stdout for each tag that matches
this glob or regular expression.

	count -- this number is decremented for each event that matches the
tagmatch parameter; pass -1 to listen forever.

	quiet -- do not print to stdout; just block

	sock_dir -- path to the Salt master's event socket file.

	pretty -- Output the JSON all on a single line if False (useful
for shell tools); pretty-print the JSON output if True.

	node -- Watch the minion-side or master-side event bus.

CLI Example:

salt-call --local state.event pretty=True

	
salt.modules.state.get_pauses(jid=None)

	Get a report on all of the currently paused state runs and pause
run settings.
Optionally send in a jid if you only desire to see a single pause
data set.

	
salt.modules.state.high(data, test=None, queue=None, **kwargs)

	Execute the compound calls stored in a single set of high data

This function is mostly intended for testing the state system and is not
likely to be needed in everyday usage.

CLI Example:

salt '*' state.high '{"vim": {"pkg": ["installed"]}}'

	
salt.modules.state.highstate(test=None, queue=None, state_events=None, **kwargs)

	Retrieve the state data from the salt master for this minion and execute it

	test
	Run states in test-only (dry-run) mode

	pillar
	Custom Pillar values, passed as a dictionary of key-value pairs

salt '*' state.highstate stuff pillar='{"foo": "bar"}'

Note

Values passed this way will override Pillar values set via
pillar_roots or an external Pillar source.

Changed in version 2016.3.0: GPG-encrypted CLI Pillar data is now supported via the GPG
renderer. See here for details.

	pillar_enc
	Specify which renderer to use to decrypt encrypted data located within
the pillar value. Currently, only gpg is supported.

New in version 2016.3.0.

	exclude
	Exclude specific states from execution. Accepts a list of sls names, a
comma-separated string of sls names, or a list of dictionaries
containing sls or id keys. Glob-patterns may be used to match
multiple states.

salt '*' state.highstate exclude=bar,baz
salt '*' state.highstate exclude=foo*
salt '*' state.highstate exclude="[{'id': 'id_to_exclude'}, {'sls': 'sls_to_exclude'}]"

	saltenv
	Specify a salt fileserver environment to be used when applying states

Changed in version 0.17.0: Argument name changed from env to saltenv.

Changed in version 2014.7.0: If no saltenv is specified, the minion config will be checked for a
saltenv parameter and if found, it will be used. If none is
found, base will be used. In prior releases, the minion config
was not checked and base would always be assumed when the
saltenv was not explicitly set.

	pillarenv
	Specify a Pillar environment to be used when applying states. This
can also be set in the minion config file using the
pillarenv option. When neither the
pillarenv minion config option nor this CLI argument is
used, all Pillar environments will be merged together.

	queueFalse
	Instead of failing immediately when another state run is in progress,
a value of True will queue the new state run to begin running once
the other has finished.

This option starts a new thread for each queued state run, so use this
option sparingly.

Changed in version 3006.0: This parameter can also be set via the state_queue configuration
option. Additionally, it can now be set to an integer representing
the maximum queue size which can be attained before the state runs
will fail to be queued. This can prevent runaway conditions where
new threads are started until system performance is hampered.

	concurrentFalse
	Execute state runs concurrently instead of serially

Warning

This flag is potentially dangerous. It is designed for use when
multiple state runs can safely be run at the same time. Do not
use this flag for performance optimization.

	localconfig
	Optionally, instead of using the minion config, load minion opts from
the file specified by this argument, and then merge them with the
options from the minion config. This functionality allows for specific
states to be run with their own custom minion configuration, including
different pillars, file_roots, etc.

	mock
	The mock option allows for the state run to execute without actually
calling any states. This then returns a mocked return which will show
the requisite ordering as well as fully validate the state run.

New in version 2015.8.4.

	state_events
	The state_events option sends progress events as each function in
a state run completes execution.

New in version 3006.0.

CLI Examples:

salt '*' state.highstate

salt '*' state.highstate whitelist=sls1_to_run,sls2_to_run
salt '*' state.highstate exclude=sls_to_exclude
salt '*' state.highstate exclude="[{'id': 'id_to_exclude'}, {'sls': 'sls_to_exclude'}]"

salt '*' state.highstate pillar="{foo: 'Foo!', bar: 'Bar!'}"

	
salt.modules.state.id_exists(ids, mods, test=None, queue=None, **kwargs)

	Tests for the existence of a specific ID or list of IDs within the
specified SLS file(s). Similar to state.sls_exists, returns True or False. The default
environment is base``, use saltenv to specify a different environment.

New in version 2019.2.0.

	saltenv
	Specify a salt fileserver environment from which to look for the SLS files
specified in the mods argument

CLI Example:

salt '*' state.id_exists create_myfile,update_template filestate saltenv=dev

	
salt.modules.state.list_disabled()

	List the states which are currently disabled

CLI Example:

salt '*' state.list_disabled

	
salt.modules.state.low(data, queue=None, **kwargs)

	Execute a single low data call

This function is mostly intended for testing the state system and is not
likely to be needed in everyday usage.

CLI Example:

salt '*' state.low '{"state": "pkg", "fun": "installed", "name": "vi"}'

	
salt.modules.state.orchestrate(mods, saltenv='base', test=None, exclude=None, pillar=None, pillarenv=None)

	
New in version 2016.11.0.

Execute the orchestrate runner from a masterless minion.

See also

More Orchestrate documentation

	Full Orchestrate Tutorial

	Docs for the salt state module salt.states.saltmod

CLI Examples:

salt-call --local state.orchestrate webserver
salt-call --local state.orchestrate webserver saltenv=dev test=True
salt-call --local state.orchestrate webserver saltenv=dev pillarenv=aws

	
salt.modules.state.pause(jid, state_id=None, duration=None)

	Set up a state id pause, this instructs a running state to pause at a given
state id. This needs to pass in the jid of the running state and can
optionally pass in a duration in seconds. If a state_id is not passed then
the jid referenced will be paused at the beginning of the next state run.

The given state id is the id got a given state execution, so given a state
that looks like this:

vim:
 pkg.installed: []

The state_id to pass to pause is vim

CLI Examples:

salt '*' state.pause 20171130110407769519
salt '*' state.pause 20171130110407769519 vim
salt '*' state.pause 20171130110407769519 vim 20

	
salt.modules.state.pkg(pkg_path, pkg_sum, hash_type, test=None, **kwargs)

	Execute a packaged state run, the packaged state run will exist in a
tarball available locally. This packaged state
can be generated using salt-ssh.

CLI Example:

salt '*' state.pkg /tmp/salt_state.tgz 760a9353810e36f6d81416366fc426dc md5

	
salt.modules.state.request(mods=None, **kwargs)

	
New in version 2015.5.0.

Request that the local admin execute a state run via
salt-call state.run_request.
All arguments match those of state.apply.

CLI Example:

salt '*' state.request
salt '*' state.request stuff
salt '*' state.request stuff,pkgs

	
salt.modules.state.resume(jid, state_id=None)

	Remove a pause from a jid, allowing it to continue. If the state_id is
not specified then the a general pause will be resumed.

The given state_id is the id got a given state execution, so given a state
that looks like this:

vim:
 pkg.installed: []

The state_id to pass to rm_pause is vim

CLI Examples:

salt '*' state.resume 20171130110407769519
salt '*' state.resume 20171130110407769519 vim

	
salt.modules.state.run_request(name='default', **kwargs)

	
New in version 2015.5.0.

Execute the pending state request

CLI Example:

salt '*' state.run_request

	
salt.modules.state.running(concurrent=False)

	Return a list of strings that contain state return data if a state function
is already running. This function is used to prevent multiple state calls
from being run at the same time.

CLI Example:

salt '*' state.running

	
salt.modules.state.show_highstate(queue=None, **kwargs)

	Retrieve the highstate data from the salt master and display it

Custom Pillar data can be passed with the pillar kwarg.

CLI Example:

salt '*' state.show_highstate

	
salt.modules.state.show_low_sls(mods, test=None, queue=None, **kwargs)

	Display the low data from a specific sls. The default environment is
base, use saltenv to specify a different environment.

	saltenv
	Specify a salt fileserver environment to be used when applying states

	pillar
	Custom Pillar values, passed as a dictionary of key-value pairs

salt '*' state.show_low_sls stuff pillar='{"foo": "bar"}'

Note

Values passed this way will override Pillar values set via
pillar_roots or an external Pillar source.

	pillarenv
	Specify a Pillar environment to be used when applying states. This
can also be set in the minion config file using the
pillarenv option. When neither the
pillarenv minion config option nor this CLI argument is
used, all Pillar environments will be merged together.

CLI Example:

salt '*' state.show_low_sls foo
salt '*' state.show_low_sls foo saltenv=dev

	
salt.modules.state.show_lowstate(queue=None, **kwargs)

	List out the low data that will be applied to this minion

CLI Example:

salt '*' state.show_lowstate

	
salt.modules.state.show_sls(mods, test=None, queue=None, **kwargs)

	Display the state data from a specific sls or list of sls files on the
master. The default environment is base, use saltenv to specify a
different environment.

This function does not support topfiles. For top.sls please use
show_top instead.

Custom Pillar data can be passed with the pillar kwarg.

	saltenv
	Specify a salt fileserver environment to be used when applying states

	pillarenv
	Specify a Pillar environment to be used when applying states. This
can also be set in the minion config file using the
pillarenv option. When neither the
pillarenv minion config option nor this CLI argument is
used, all Pillar environments will be merged together.

CLI Example:

salt '*' state.show_sls core,edit.vim saltenv=dev

	
salt.modules.state.show_state_usage(queue=None, **kwargs)

	Retrieve the highstate data from the salt master to analyse used and unused states

Custom Pillar data can be passed with the pillar kwarg.

CLI Example:

salt '*' state.show_state_usage

	
salt.modules.state.show_states(queue=None, **kwargs)

	Returns the list of states that will be applied on highstate.

CLI Example:

salt '*' state.show_states

New in version 2019.2.0.

	
salt.modules.state.show_top(queue=None, **kwargs)

	Return the top data that the minion will use for a highstate

CLI Example:

salt '*' state.show_top

	
salt.modules.state.single(fun, name, test=None, queue=None, **kwargs)

	Execute a single state function with the named kwargs, returns False if
insufficient data is sent to the command

By default, the values of the kwargs will be parsed as YAML. So, you can
specify lists values, or lists of single entry key-value maps, as you
would in a YAML salt file. Alternatively, JSON format of keyword values
is also supported.

CLI Example:

salt '*' state.single pkg.installed name=vim

	
salt.modules.state.sls(mods, test=None, exclude=None, queue=None, sync_mods=None, state_events=None, **kwargs)

	Execute the states in one or more SLS files

	test
	Run states in test-only (dry-run) mode

	pillar
	Custom Pillar values, passed as a dictionary of key-value pairs

salt '*' state.sls stuff pillar='{"foo": "bar"}'

Note

Values passed this way will override existing Pillar values set via
pillar_roots or an external Pillar source. Pillar values that
are not included in the kwarg will not be overwritten.

Changed in version 2016.3.0: GPG-encrypted CLI Pillar data is now supported via the GPG
renderer. See here for details.

	pillar_enc
	Specify which renderer to use to decrypt encrypted data located within
the pillar value. Currently, only gpg is supported.

New in version 2016.3.0.

	exclude
	Exclude specific states from execution. Accepts a list of sls names, a
comma-separated string of sls names, or a list of dictionaries
containing sls or id keys. Glob-patterns may be used to match
multiple states.

salt '*' state.sls foo,bar,baz exclude=bar,baz
salt '*' state.sls foo,bar,baz exclude=ba*
salt '*' state.sls foo,bar,baz exclude="[{'id': 'id_to_exclude'}, {'sls': 'sls_to_exclude'}]"

	queueFalse
	Instead of failing immediately when another state run is in progress,
a value of True will queue the new state run to begin running once
the other has finished.

This option starts a new thread for each queued state run, so use this
option sparingly.

Changed in version 3006.0: This parameter can also be set via the state_queue configuration
option. Additionally, it can now be set to an integer representing
the maximum queue size which can be attained before the state runs
will fail to be queued. This can prevent runaway conditions where
new threads are started until system performance is hampered.

	concurrentFalse
	Execute state runs concurrently instead of serially

Warning

This flag is potentially dangerous. It is designed for use when
multiple state runs can safely be run at the same time. Do not
use this flag for performance optimization.

	saltenv
	Specify a salt fileserver environment to be used when applying states

Changed in version 0.17.0: Argument name changed from env to saltenv.

Changed in version 2014.7.0: If no saltenv is specified, the minion config will be checked for an
environment parameter and if found, it will be used. If none is
found, base will be used. In prior releases, the minion config
was not checked and base would always be assumed when the
saltenv was not explicitly set.

	pillarenv
	Specify a Pillar environment to be used when applying states. This
can also be set in the minion config file using the
pillarenv option. When neither the
pillarenv minion config option nor this CLI argument is
used, all Pillar environments will be merged together.

	localconfig
	Optionally, instead of using the minion config, load minion opts from
the file specified by this argument, and then merge them with the
options from the minion config. This functionality allows for specific
states to be run with their own custom minion configuration, including
different pillars, file_roots, etc.

	mock
	The mock option allows for the state run to execute without actually
calling any states. This then returns a mocked return which will show
the requisite ordering as well as fully validate the state run.

New in version 2015.8.4.

	sync_mods
	If specified, the desired custom module types will be synced prior to
running the SLS files:

salt '*' state.sls stuff sync_mods=states,modules
salt '*' state.sls stuff sync_mods=all

New in version 2017.7.8,2018.3.3,2019.2.0.

	state_events
	The state_events option sends progress events as each function in
a state run completes execution.

New in version 3006.0.

CLI Example:

Run the states configured in salt://example.sls (or salt://example/init.sls)
salt '*' state.apply example

Run the states configured in salt://core.sls (or salt://core/init.sls)
and salt://edit/vim.sls (or salt://edit/vim/init.sls)
salt '*' state.sls core,edit.vim

Run the states configured in a more deeply nested directory such as salt://my/nested/state.sls (or salt://my/nested/state/init.sls)
salt '*' state.sls my.nested.state

salt '*' state.sls core exclude="[{'id': 'id_to_exclude'}, {'sls': 'sls_to_exclude'}]"
salt '*' state.sls myslsfile pillar="{foo: 'Foo!', bar: 'Bar!'}"

	
salt.modules.state.sls_exists(mods, test=None, queue=None, **kwargs)

	Tests for the existence the of a specific SLS or list of SLS files on the
master. Similar to state.show_sls,
rather than returning state details, returns True or False. The default
environment is base, use saltenv to specify a different environment.

New in version 2019.2.0.

	saltenv
	Specify a salt fileserver environment from which to look for the SLS files
specified in the mods argument

CLI Example:

salt '*' state.sls_exists core,edit.vim saltenv=dev

	
salt.modules.state.sls_id(id_, mods, test=None, queue=None, state_events=None, **kwargs)

	Call a single ID from the named module(s) and handle all requisites

The state ID comes before the module ID(s) on the command line.

	id
	ID to call

	mods
	Comma-delimited list of modules to search for given id and its requisites

New in version 2014.7.0.

	saltenvbase
	Specify a salt fileserver environment to be used when applying states

	pillarenv
	Specify a Pillar environment to be used when applying states. This
can also be set in the minion config file using the
pillarenv option. When neither the
pillarenv minion config option nor this CLI argument is
used, all Pillar environments will be merged together.

	pillar
	Custom Pillar values, passed as a dictionary of key-value pairs

salt '*' state.sls_id my_state my_module pillar='{"foo": "bar"}'

Note

Values passed this way will override existing Pillar values set via
pillar_roots or an external Pillar source. Pillar values that
are not included in the kwarg will not be overwritten.

New in version 2018.3.0.

CLI Example:

salt '*' state.sls_id my_state my_module

salt '*' state.sls_id my_state my_module,a_common_module

	
salt.modules.state.soft_kill(jid, state_id=None)

	Set up a state run to die before executing the given state id,
this instructs a running state to safely exit at a given
state id. This needs to pass in the jid of the running state.
If a state_id is not passed then the jid referenced will be safely exited
at the beginning of the next state run.

The given state id is the id got a given state execution, so given a state
that looks like this:

vim:
 pkg.installed: []

The state_id to pass to soft_kill is vim

CLI Examples:

salt '*' state.soft_kill 20171130110407769519
salt '*' state.soft_kill 20171130110407769519 vim

	
salt.modules.state.template(tem, queue=None, **kwargs)

	Execute the information stored in a template file on the minion.

This function does not ask a master for a SLS file to render but
instead directly processes the file at the provided path on the minion.

CLI Example:

salt '*' state.template '<Path to template on the minion>'

	
salt.modules.state.template_str(tem, queue=None, **kwargs)

	Execute the information stored in a string from an sls template

CLI Example:

salt '*' state.template_str '<Template String>'

	
salt.modules.state.test(*args, **kwargs)

	
New in version 3001.

Alias for state.apply with the kwarg test forced to True.

This is a nicety to avoid the need to type out test=True and the possibility of
a typo causing changes you do not intend.

	
salt.modules.state.top(topfn, test=None, queue=None, **kwargs)

	Execute a specific top file instead of the default. This is useful to apply
configurations from a different environment (for example, dev or prod), without
modifying the default top file.

	queueFalse
	Instead of failing immediately when another state run is in progress,
a value of True will queue the new state run to begin running once
the other has finished.

This option starts a new thread for each queued state run, so use this
option sparingly.

Changed in version 3006.0: This parameter can also be set via the state_queue configuration
option. Additionally, it can now be set to an integer representing
the maximum queue size which can be attained before the state runs
will fail to be queued. This can prevent runaway conditions where
new threads are started until system performance is hampered.

	saltenv
	Specify a salt fileserver environment to be used when applying states

	pillarenv
	Specify a Pillar environment to be used when applying states. This
can also be set in the minion config file using the
pillarenv option. When neither the
pillarenv minion config option nor this CLI argument is
used, all Pillar environments will be merged together.

New in version 2017.7.0.

CLI Example:

salt '*' state.top reverse_top.sls
salt '*' state.top prod_top.sls exclude=sls_to_exclude
salt '*' state.top dev_top.sls exclude="[{'id': 'id_to_exclude'}, {'sls': 'sls_to_exclude'}]"

salt.modules.status

Module for returning various status data about a minion.
These data can be useful for compiling into stats later.

	
salt.modules.status.all_status()

	Return a composite of all status data and info for this minion.
Warning: There is a LOT here!

CLI Example:

salt '*' status.all_status

	
salt.modules.status.cpuinfo()

	
Changed in version 2016.3.2: Return the CPU info for this minion

Changed in version 2016.11.4: Added support for AIX

Changed in version 2018.3.0: Added support for NetBSD and OpenBSD

CLI Example:

salt '*' status.cpuinfo

	
salt.modules.status.cpustats()

	Return the CPU stats for this minion

Changed in version 2016.11.4: Added support for AIX

Changed in version 2018.3.0: Added support for OpenBSD

CLI Example:

salt '*' status.cpustats

	
salt.modules.status.custom()

	Return a custom composite of status data and info for this minion,
based on the minion config file. An example config like might be:

status.cpustats.custom: ['cpu', 'ctxt', 'btime', 'processes']

Where status refers to status.py, cpustats is the function
where we get our data, and custom is this function It is followed
by a list of keys that we want returned.

This function is meant to replace all_status(), which returns
anything and everything, which we probably don't want.

By default, nothing is returned. Warning: Depending on what you
include, there can be a LOT here!

CLI Example:

salt '*' status.custom

	
salt.modules.status.diskstats()

	
Changed in version 2016.3.2: Return the disk stats for this minion

Changed in version 2016.11.4: Added support for AIX

CLI Example:

salt '*' status.diskstats

	
salt.modules.status.diskusage(*args)

	Return the disk usage for this minion

Usage:

salt '*' status.diskusage [paths and/or filesystem types]

CLI Example:

salt '*' status.diskusage # usage for all filesystems
salt '*' status.diskusage / /tmp # usage for / and /tmp
salt '*' status.diskusage ext? # usage for ext[234] filesystems
salt '*' status.diskusage / ext? # usage for / and all ext filesystems

	
salt.modules.status.loadavg()

	Return the load averages for this minion

Changed in version 2016.11.4: Added support for AIX

CLI Example:

salt '*' status.loadavg

:raises CommandExecutionError: If the system cannot report loadaverages to Python

	
salt.modules.status.master(master=None, connected=True)

	
New in version 2014.7.0.

Return the connection status with master. Fire an event if the
connection to master is not as expected. This function is meant to be
run via a scheduled job from the minion. If master_ip is an FQDN/Hostname,
it must be resolvable to a valid IPv4 address.

Changed in version 2016.11.4: Added support for AIX

CLI Example:

salt '*' status.master

	
salt.modules.status.meminfo()

	Return the memory info for this minion

Changed in version 2016.11.4: Added support for AIX

Changed in version 2018.3.0: Added support for OpenBSD

CLI Example:

salt '*' status.meminfo

	
salt.modules.status.netdev()

	
Changed in version 2016.3.2: Return the network device stats for this minion

Changed in version 2016.11.4: Added support for AIX

CLI Example:

salt '*' status.netdev

	
salt.modules.status.netstats()

	Return the network stats for this minion

Changed in version 2016.11.4: Added support for AIX

Changed in version 2018.3.0: Added support for OpenBSD

CLI Example:

salt '*' status.netstats

	
salt.modules.status.nproc()

	Return the number of processing units available on this system

Changed in version 2016.11.4: Added support for AIX

Changed in version 2018.3.0: Added support for Darwin, FreeBSD and OpenBSD

CLI Example:

salt '*' status.nproc

	
salt.modules.status.pid(sig)

	Return the PID or an empty string if the process is running or not.
Pass a signature to use to find the process via ps. Note you can pass
a Python-compatible regular expression to return all pids of
processes matching the regexp.

Changed in version 2016.11.4: Added support for AIX

CLI Example:

salt '*' status.pid <sig>

	
salt.modules.status.ping_master(master)

	
New in version 2016.3.0.

Sends ping request to the given master. Fires '__master_failback' event on success.
Returns bool result.

CLI Example:

salt '*' status.ping_master localhost

	
salt.modules.status.procs()

	Return the process data

Changed in version 2016.11.4: Added support for AIX

CLI Example:

salt '*' status.procs

	
salt.modules.status.proxy_reconnect(proxy_name, opts=None)

	Forces proxy minion reconnection when not alive.

	proxy_name
	The virtual name of the proxy module.

	opts: None
	Opts dictionary. Not intended for CLI usage.

CLI Example:

salt '*' status.proxy_reconnect rest_sample

	
salt.modules.status.time_(format='%A, %d. %B %Y %I:%M%p')

	
New in version 2016.3.0.

Return the current time on the minion,
formatted based on the format parameter.

Default date format: Monday, 27. July 2015 07:55AM

CLI Example:

salt '*' status.time

salt '*' status.time '%s'

	
salt.modules.status.uptime()

	Return the uptime for this system.

Changed in version 2015.8.9: The uptime function was changed to return a dictionary of easy-to-read
key/value pairs containing uptime information, instead of the output
from a cmd.run call.

Changed in version 2016.11.0: Support for OpenBSD, FreeBSD, NetBSD, MacOS, and Solaris

Changed in version 2016.11.4: Added support for AIX

CLI Example:

salt '*' status.uptime

	
salt.modules.status.version()

	Return the system version for this minion

Changed in version 2016.11.4: Added support for AIX

Changed in version 2018.3.0: Added support for OpenBSD

CLI Example:

salt '*' status.version

	
salt.modules.status.vmstats()

	
Changed in version 2016.3.2: Return the virtual memory stats for this minion

Changed in version 2016.11.4: Added support for AIX

CLI Example:

salt '*' status.vmstats

	
salt.modules.status.w()

	Return a list of logged in users for this minion, using the w command

CLI Example:

salt '*' status.w

salt.modules.statuspage

StatusPage

Handle requests for the StatusPage [https://www.statuspage.io/] API [http://doers.statuspage.io/api/v1/].

In the minion configuration file, the following block is required:

statuspage:
 api_key: <API_KEY>
 page_id: <PAGE_ID>

New in version 2017.7.0.

	
salt.modules.statuspage.create(endpoint='incidents', api_url=None, page_id=None, api_key=None, api_version=None, **kwargs)

	Insert a new entry under a specific endpoint.

	endpoint: incidents
	Insert under this specific endpoint.

	page_id
	Page ID. Can also be specified in the config file.

	api_key
	API key. Can also be specified in the config file.

	api_version: 1
	API version. Can also be specified in the config file.

	api_url
	Custom API URL in case the user has a StatusPage service running in a custom environment.

CLI Example:

salt 'minion' statuspage.create endpoint='components' name='my component' group_id='993vgplshj12'

Example output:

minion:

 comment:
 out:

 created_at:
 2017-01-05T19:35:27.135Z
 description:
 None
 group_id:
 993vgplshj12
 id:
 mjkmtt5lhdgc
 name:
 my component
 page_id:
 ksdhgfyiuhaa
 position:
 7
 status:
 operational
 updated_at:
 2017-01-05T19:35:27.135Z
 result:
 True

	
salt.modules.statuspage.delete(endpoint='incidents', id=None, api_url=None, page_id=None, api_key=None, api_version=None)

	Remove an entry from an endpoint.

	endpoint: incidents
	Request a specific endpoint.

	page_id
	Page ID. Can also be specified in the config file.

	api_key
	API key. Can also be specified in the config file.

	api_version: 1
	API version. Can also be specified in the config file.

	api_url
	Custom API URL in case the user has a StatusPage service running in a custom environment.

CLI Example:

salt 'minion' statuspage.delete endpoint='components' id='ftgks51sfs2d'

Example output:

minion:

 comment:
 out:
 None
 result:
 True

	
salt.modules.statuspage.retrieve(endpoint='incidents', api_url=None, page_id=None, api_key=None, api_version=None)

	Retrieve a specific endpoint from the Statuspage API.

	endpoint: incidents
	Request a specific endpoint.

	page_id
	Page ID. Can also be specified in the config file.

	api_key
	API key. Can also be specified in the config file.

	api_version: 1
	API version. Can also be specified in the config file.

	api_url
	Custom API URL in case the user has a StatusPage service running in a custom environment.

CLI Example:

salt 'minion' statuspage.retrieve components

Example output:

minion:

 comment:
 out:
 |_

 backfilled:
 False
 created_at:
 2015-01-26T20:25:02.702Z
 id:
 kh2qwjbheqdc36
 impact:
 major
 impact_override:
 None
 incident_updates:
 |_

 affected_components:
 None
 body:
 We are currently investigating this issue.
 created_at:
 2015-01-26T20:25:02.849Z
 display_at:
 2015-01-26T20:25:02.849Z
 id:
 zvx7xz2z5skr
 incident_id:
 kh2qwjbheqdc36
 status:
 investigating
 twitter_updated_at:
 None
 updated_at:
 2015-01-26T20:25:02.849Z
 wants_twitter_update:
 False
 monitoring_at:
 None
 name:
 just testing some stuff
 page_id:
 ksdhgfyiuhaa
 postmortem_body:
 None
 postmortem_body_last_updated_at:
 None
 postmortem_ignored:
 False
 postmortem_notified_subscribers:
 False
 postmortem_notified_twitter:
 False
 postmortem_published_at:
 None
 resolved_at:
 None
 scheduled_auto_completed:
 False
 scheduled_auto_in_progress:
 False
 scheduled_for:
 None
 scheduled_remind_prior:
 False
 scheduled_reminded_at:
 None
 scheduled_until:
 None
 shortlink:
 http://stspg.io/voY
 status:
 investigating
 updated_at:
 2015-01-26T20:25:13.379Z
 result:
 True

	
salt.modules.statuspage.update(endpoint='incidents', id=None, api_url=None, page_id=None, api_key=None, api_version=None, **kwargs)

	Update attribute(s) of a specific endpoint.

	id
	The unique ID of the endpoint entry.

	endpoint: incidents
	Endpoint name.

	page_id
	Page ID. Can also be specified in the config file.

	api_key
	API key. Can also be specified in the config file.

	api_version: 1
	API version. Can also be specified in the config file.

	api_url
	Custom API URL in case the user has a StatusPage service running in a custom environment.

CLI Example:

salt 'minion' statuspage.update id=dz959yz2nd4l status=resolved

Example output:

minion:

 comment:
 out:

 created_at:
 2017-01-03T15:25:30.718Z
 description:
 None
 group_id:
 993vgplshj12
 id:
 dz959yz2nd4l
 name:
 Management Portal
 page_id:
 xzwjjdw87vpf
 position:
 11
 status:
 resolved
 updated_at:
 2017-01-05T15:34:27.676Z
 result:
 True

salt.modules.supervisord

Provide the service module for system supervisord or supervisord in a
virtualenv

	
salt.modules.supervisord.add(name, user=None, conf_file=None, bin_env=None)

	Activates any updates in config for process/group.

	user
	user to run supervisorctl as

	conf_file
	path to supervisord config file

	bin_env
	path to supervisorctl bin or path to virtualenv with supervisor
installed

CLI Example:

salt '*' supervisord.add <name>

	
salt.modules.supervisord.custom(command, user=None, conf_file=None, bin_env=None)

	Run any custom supervisord command

	user
	user to run supervisorctl as

	conf_file
	path to supervisord config file

	bin_env
	path to supervisorctl bin or path to virtualenv with supervisor
installed

CLI Example:

salt '*' supervisord.custom "mstop '*gunicorn*'"

	
salt.modules.supervisord.options(name, conf_file=None)

	
New in version 2014.1.0.

Read the config file and return the config options for a given process

	name
	Name of the configured process

	conf_file
	path to supervisord config file

CLI Example:

salt '*' supervisord.options foo

	
salt.modules.supervisord.remove(name, user=None, conf_file=None, bin_env=None)

	Removes process/group from active config

	user
	user to run supervisorctl as

	conf_file
	path to supervisord config file

	bin_env
	path to supervisorctl bin or path to virtualenv with supervisor
installed

CLI Example:

salt '*' supervisord.remove <name>

	
salt.modules.supervisord.reread(user=None, conf_file=None, bin_env=None)

	Reload the daemon's configuration files

	user
	user to run supervisorctl as

	conf_file
	path to supervisord config file

	bin_env
	path to supervisorctl bin or path to virtualenv with supervisor
installed

CLI Example:

salt '*' supervisord.reread

	
salt.modules.supervisord.restart(name='all', user=None, conf_file=None, bin_env=None)

	Restart the named service.
Process group names should not include a trailing asterisk.

	user
	user to run supervisorctl as

	conf_file
	path to supervisord config file

	bin_env
	path to supervisorctl bin or path to virtualenv with supervisor
installed

CLI Example:

salt '*' supervisord.restart <service>
salt '*' supervisord.restart <group>:

	
salt.modules.supervisord.start(name='all', user=None, conf_file=None, bin_env=None)

	Start the named service.
Process group names should not include a trailing asterisk.

	user
	user to run supervisorctl as

	conf_file
	path to supervisord config file

	bin_env
	path to supervisorctl bin or path to virtualenv with supervisor
installed

CLI Example:

salt '*' supervisord.start <service>
salt '*' supervisord.start <group>:

	
salt.modules.supervisord.status(name=None, user=None, conf_file=None, bin_env=None)

	List programs and its state

	user
	user to run supervisorctl as

	conf_file
	path to supervisord config file

	bin_env
	path to supervisorctl bin or path to virtualenv with supervisor
installed

CLI Example:

salt '*' supervisord.status

	
salt.modules.supervisord.status_bool(name, expected_state=None, user=None, conf_file=None, bin_env=None)

	Check for status of a specific supervisord process and return boolean result.

	name
	name of the process to check

	expected_state
	search for a specific process state. If set to None - any process state will match.

	user
	user to run supervisorctl as

	conf_file
	path to supervisord config file

	bin_env
	path to supervisorctl bin or path to virtualenv with supervisor
installed

CLI Example:

salt '*' supervisord.status_bool nginx expected_state='RUNNING'

	
salt.modules.supervisord.status_raw(name=None, user=None, conf_file=None, bin_env=None)

	Display the raw output of status

	user
	user to run supervisorctl as

	conf_file
	path to supervisord config file

	bin_env
	path to supervisorctl bin or path to virtualenv with supervisor
installed

CLI Example:

salt '*' supervisord.status_raw

	
salt.modules.supervisord.stop(name='all', user=None, conf_file=None, bin_env=None)

	Stop the named service.
Process group names should not include a trailing asterisk.

	user
	user to run supervisorctl as

	conf_file
	path to supervisord config file

	bin_env
	path to supervisorctl bin or path to virtualenv with supervisor
installed

CLI Example:

salt '*' supervisord.stop <service>
salt '*' supervisord.stop <group>:

	
salt.modules.supervisord.update(user=None, conf_file=None, bin_env=None, name=None)

	Reload config and add/remove/update as necessary

	user
	user to run supervisorctl as

	conf_file
	path to supervisord config file

	bin_env
	path to supervisorctl bin or path to virtualenv with supervisor
installed

	name
	name of the process group to update. if none then update any
process group that has changes

CLI Example:

salt '*' supervisord.update

salt.modules.suse_apache

Warning

This module will be removed from Salt in version 3009 in favor of
the apache Salt Extension [https://github.com/salt-extensions/saltext-apache].

Support for Apache

Please note: The functions in here are SUSE-specific. Placing them in this
separate file will allow them to load only on SUSE systems, while still
loading under the apache namespace.

	
salt.modules.suse_apache.a2dismod(mod)

	Runs a2dismod for the given mod.

CLI Example:

salt '*' apache.a2dismod vhost_alias

	
salt.modules.suse_apache.a2enmod(mod)

	Runs a2enmod for the given mod.

CLI Example:

salt '*' apache.a2enmod vhost_alias

	
salt.modules.suse_apache.check_mod_enabled(mod)

	Checks to see if the specific apache mod is enabled.

This will only be functional on operating systems that support
a2enmod -l to list the enabled mods.

CLI Example:

salt '*' apache.check_mod_enabled status

salt.modules.suse_ip

The networking module for SUSE based distros

New in version 3005.

	
salt.modules.suse_ip.apply_network_settings(**settings)

	Apply global network configuration.

	:paramparam settings:
	The network settings to apply

	Returns:

	The result of service.reload for network service

CLI Example:

salt '*' ip.apply_network_settings

	
salt.modules.suse_ip.build_interface(iface, iface_type, enabled, **settings)

	Build an interface script for a network interface.

	:paramparam iface:
	The name of the interface to build the configuration for

	:paramparam iface_type:
	
	The type of the interface. The following types are possible:
	
	eth

	bond

	alias

	clone

	ipsec

	dialup

	bridge

	slave

	vlan

	ipip

	ib

	:paramparam enabled:
	Build the interface enabled or disabled

	:paramparam settings:
	The settings for the interface

	Returns:

	A dictionary of file/content

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' ip.build_interface eth0 eth <settings>

	
salt.modules.suse_ip.build_network_settings(**settings)

	Build the global network script.

	:paramparam settings:
	The network settings

	Returns:

	A dictionary of file/content

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' ip.build_network_settings <settings>

	
salt.modules.suse_ip.build_routes(iface, **settings)

	Build a route script for a network interface.

	:paramparam iface:
	The name of the interface to build the routes for

	:paramparam settings:
	The settings for the routes

	Returns:

	A dictionary of file/content

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' ip.build_routes eth0 <settings>

	
salt.modules.suse_ip.down(iface, iface_type=None)

	Shutdown a network interface

	:paramparam iface:
	The name of the interface to shutdown

	:paramparam iface_type:
	The type of the interface
If slave is specified, no any action is performing
Default is None

	Returns:

	The result of ifdown command or None if slave
iface_type was specified

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' ip.down eth0

	
salt.modules.suse_ip.get_interface(iface)

	Return the contents of an interface script

	:paramparam iface:
	The name of the interface to get settings for

	Returns:

	A dictionary of file/content

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' ip.get_interface eth0

	
salt.modules.suse_ip.get_network_settings()

	Return the contents of the global network script.

	:paramparam iface:
	The name of the interface to start up

	:paramparam iface_type:
	The type of the interface
If slave is specified, no any action is performing
Default is None

	Returns:

	A dictionary of file/content

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' ip.get_network_settings

	
salt.modules.suse_ip.get_routes(iface)

	Return the contents of the interface routes script.

	:paramparam iface:
	The name of the interface to get the routes for

	Returns:

	A dictionary of file/content

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' ip.get_routes eth0

	
salt.modules.suse_ip.up(iface, iface_type=None)

	Start up a network interface

	:paramparam iface:
	The name of the interface to start up

	:paramparam iface_type:
	The type of the interface
If slave is specified, no any action is performing
Default is None

	Returns:

	The result of ifup command or None if slave
iface_type was specified

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' ip.up eth0

salt.modules.svn

Subversion SCM

	
salt.modules.svn.add(cwd, targets, user=None, username=None, password=None, *opts)

	Add files to be tracked by the Subversion working-copy checkout

	cwd
	The path to the Subversion repository

	targetsNone
	files and directories to pass to the command as arguments

	userNone
	Run svn as a user other than what the minion runs as

	usernameNone
	Connect to the Subversion server as another user

	passwordNone
	Connect to the Subversion server with this password

New in version 0.17.0.

CLI Example:

salt '*' svn.add /path/to/repo /path/to/new/file

	
salt.modules.svn.checkout(cwd, remote, target=None, user=None, username=None, password=None, *opts)

	Download a working copy of the remote Subversion repository
directory or file

	cwd
	The path to the Subversion repository

	remoteNone
	URL to checkout

	targetNone
	The name to give the file or directory working copy
Default: svn uses the remote basename

	userNone
	Run svn as a user other than what the minion runs as

	usernameNone
	Connect to the Subversion server as another user

	passwordNone
	Connect to the Subversion server with this password

New in version 0.17.0.

CLI Example:

salt '*' svn.checkout /path/to/repo svn://remote/repo

	
salt.modules.svn.commit(cwd, targets=None, msg=None, user=None, username=None, password=None, *opts)

	Commit the current directory, files, or directories to
the remote Subversion repository

	cwd
	The path to the Subversion repository

	targetsNone
	files and directories to pass to the command as arguments
Default: svn uses '.'

	msgNone
	Message to attach to the commit log

	userNone
	Run svn as a user other than what the minion runs as

	usernameNone
	Connect to the Subversion server as another user

	passwordNone
	Connect to the Subversion server with this password

New in version 0.17.0.

CLI Example:

salt '*' svn.commit /path/to/repo

	
salt.modules.svn.diff(cwd, targets=None, user=None, username=None, password=None, *opts)

	Return the diff of the current directory, files, or directories from
the remote Subversion repository

	cwd
	The path to the Subversion repository

	targetsNone
	files and directories to pass to the command as arguments
Default: svn uses '.'

	userNone
	Run svn as a user other than what the minion runs as

	usernameNone
	Connect to the Subversion server as another user

	passwordNone
	Connect to the Subversion server with this password

New in version 0.17.0.

CLI Example:

salt '*' svn.diff /path/to/repo

	
salt.modules.svn.export(cwd, remote, target=None, user=None, username=None, password=None, revision='HEAD', *opts)

	Create an unversioned copy of a tree.

	cwd
	The path to the Subversion repository

	remoteNone
	URL and path to file or directory checkout

	targetNone
	The name to give the file or directory working copy
Default: svn uses the remote basename

	userNone
	Run svn as a user other than what the minion runs as

	usernameNone
	Connect to the Subversion server as another user

	passwordNone
	Connect to the Subversion server with this password

New in version 0.17.0.

CLI Example:

salt '*' svn.export /path/to/repo svn://remote/repo

	
salt.modules.svn.info(cwd, targets=None, user=None, username=None, password=None, fmt='str')

	Display the Subversion information from the checkout.

	cwd
	The path to the Subversion repository

	targetsNone
	files, directories, and URLs to pass to the command as arguments
svn uses '.' by default

	userNone
	Run svn as a user other than what the minion runs as

	usernameNone
	Connect to the Subversion server as another user

	passwordNone
	Connect to the Subversion server with this password

New in version 0.17.0.

	fmtstr
	How to fmt the output from info.
(str, xml, list, dict)

CLI Example:

salt '*' svn.info /path/to/svn/repo

	
salt.modules.svn.remove(cwd, targets, msg=None, user=None, username=None, password=None, *opts)

	Remove files and directories from the Subversion repository

	cwd
	The path to the Subversion repository

	targetsNone
	files, directories, and URLs to pass to the command as arguments

	msgNone
	Message to attach to the commit log

	userNone
	Run svn as a user other than what the minion runs as

	usernameNone
	Connect to the Subversion server as another user

	passwordNone
	Connect to the Subversion server with this password

New in version 0.17.0.

CLI Example:

salt '*' svn.remove /path/to/repo /path/to/repo/remove

	
salt.modules.svn.status(cwd, targets=None, user=None, username=None, password=None, *opts)

	Display the status of the current directory, files, or
directories in the Subversion repository

	cwd
	The path to the Subversion repository

	targetsNone
	files, directories, and URLs to pass to the command as arguments
Default: svn uses '.'

	userNone
	Run svn as a user other than what the minion runs as

	usernameNone
	Connect to the Subversion server as another user

	passwordNone
	Connect to the Subversion server with this password

New in version 0.17.0.

CLI Example:

salt '*' svn.status /path/to/repo

	
salt.modules.svn.switch(cwd, remote, target=None, user=None, username=None, password=None, *opts)

	
New in version 2014.1.0.

Switch a working copy of a remote Subversion repository
directory

	cwd
	The path to the Subversion repository

	remoteNone
	URL to switch

	targetNone
	The name to give the file or directory working copy
Default: svn uses the remote basename

	userNone
	Run svn as a user other than what the minion runs as

	usernameNone
	Connect to the Subversion server as another user

	passwordNone
	Connect to the Subversion server with this password

CLI Example:

salt '*' svn.switch /path/to/repo svn://remote/repo

	
salt.modules.svn.update(cwd, targets=None, user=None, username=None, password=None, *opts)

	Update the current directory, files, or directories from
the remote Subversion repository

	cwd
	The path to the Subversion repository

	targetsNone
	files and directories to pass to the command as arguments
Default: svn uses '.'

	userNone
	Run svn as a user other than what the minion runs as

	passwordNone
	Connect to the Subversion server with this password

New in version 0.17.0.

	usernameNone
	Connect to the Subversion server as another user

CLI Example:

salt '*' svn.update /path/to/repo

salt.modules.swarm

Docker Swarm Module using Docker's Python SDK

	codeauthor:

	Tyler Jones <jonestyler806@gmail.com>

New in version 2018.3.0.

The Docker Swarm Module is used to manage and create Docker Swarms.

Dependencies

	Docker installed on the host

	Docker python sdk >= 2.5.1

Docker Python SDK

pip install -U docker

More information: https://docker-py.readthedocs.io/en/stable/

	
salt.modules.swarm.joinswarm(remote_addr=<class 'int'>, listen_addr=<class 'int'>, token=<class 'str'>)

	Join a Swarm Worker to the cluster

	remote_addr
	The manager node you want to connect to for the swarm

	listen_addr
	Listen address used for inter-manager communication if the node gets promoted to manager,
as well as determining the networking interface used for the VXLAN Tunnel Endpoint (VTEP)

	token
	Either the manager join token or the worker join token.
You can get the worker or manager token via salt '*' swarm.swarm_tokens

CLI Example:

salt '*' swarm.joinswarm remote_addr=192.168.50.10 listen_addr='0.0.0.0' token='SWMTKN-1-64tux2g0701r84ofq93zppcih0pe081akq45owe9ts61f30x4t-06trjugdu7x2z47j938s54il'

	
salt.modules.swarm.leave_swarm(force=<class 'bool'>)

	Force the minion to leave the swarm

	force
	Will force the minion/worker/manager to leave the swarm

CLI Example:

salt '*' swarm.leave_swarm force=False

	
salt.modules.swarm.node_ls(server=<class 'str'>)

	Displays Information about Swarm Nodes with passing in the server

	server
	The minion/server name

CLI Example:

salt '*' swarm.node_ls server=minion1

	
salt.modules.swarm.remove_node(node_id=<class 'str'>, force=<class 'bool'>)

	Remove a node from a swarm and the target needs to be a swarm manager

	node_id
	The node id from the return of swarm.node_ls

	force
	Forcefully remove the node/minion from the service

CLI Example:

salt '*' swarm.remove_node node_id=z4gjbe9rwmqahc2a91snvolm5 force=false

	
salt.modules.swarm.remove_service(service=<class 'str'>)

	Remove Swarm Service

	service
	The name of the service

CLI Example:

salt '*' swarm.remove_service service=Test_Service

	
salt.modules.swarm.service_create(image=<class 'str'>, name=<class 'str'>, command=<class 'str'>, hostname=<class 'str'>, replicas=<class 'int'>, target_port=<class 'int'>, published_port=<class 'int'>)

	Create Docker Swarm Service Create

	image
	The docker image

	name
	Is the service name

	command
	The docker command to run in the container at launch

	hostname
	The hostname of the containers

	replicas
	How many replicas you want running in the swarm

	target_port
	The target port on the container

	published_port
	port that's published on the host/os

CLI Example:

salt '*' swarm.service_create image=httpd name=Test_Service command=None hostname=salthttpd replicas=6 target_port=80 published_port=80

	
salt.modules.swarm.swarm_init(advertise_addr=<class 'str'>, listen_addr=<class 'int'>, force_new_cluster=<class 'bool'>)

	Initialize Docker on Minion as a Swarm Manager

	advertise_addr
	The ip of the manager

	listen_addr
	Listen address used for inter-manager communication,
as well as determining the networking interface used
for the VXLAN Tunnel Endpoint (VTEP).
This can either be an address/port combination in
the form 192.168.1.1:4567,
or an interface followed by a port number,
like eth0:4567

	force_new_cluster
	Force a new cluster if True is passed

CLI Example:

salt '*' swarm.swarm_init advertise_addr='192.168.50.10' listen_addr='0.0.0.0' force_new_cluster=False

	
salt.modules.swarm.swarm_service_info(service_name=<class 'str'>)

	Swarm Service Information

	service_name
	The name of the service that you want information on about the service

CLI Example:

salt '*' swarm.swarm_service_info service_name=Test_Service

	
salt.modules.swarm.swarm_tokens()

	Get the Docker Swarm Manager or Worker join tokens

CLI Example:

salt '*' swarm.swarm_tokens

	
salt.modules.swarm.update_node(availability=<class 'str'>, node_name=<class 'str'>, role=<class 'str'>, node_id=<class 'str'>, version=<class 'int'>)

	Updates docker swarm nodes/needs to target a manager node/minion

	availability
	Drain or Active

	node_name
	minion/node

	role
	role of manager or worker

	node_id
	The Id and that can be obtained via swarm.node_ls

	version
	Is obtained by swarm.node_ls

CLI Example:

salt '*' swarm.update_node availability=drain node_name=minion2 role=worker node_id=3k9x7t8m4pel9c0nqr3iajnzp version=19

salt.modules.swift

Module for handling OpenStack Swift calls
Author: Anthony Stanton <anthony.stanton@gmail.com>

Inspired by the S3 and Nova modules

	depends:

	
	swiftclient Python module

	configuration:

	This module is not usable until the user, tenant, auth URL, and password or auth_key
are specified either in a pillar or in the minion's config file.
For example:

keystone.user: admin
keystone.tenant: admin
keystone.auth_url: 'http://127.0.0.1:5000/v2.0/'
keystone.password: verybadpass
or
keystone.auth_key: 203802934809284k2j34lkj2l3kj43k

If configuration for multiple OpenStack accounts is required, they can be
set up as different configuration profiles:
For example:

openstack1:
 keystone.user: admin
 keystone.tenant: admin
 keystone.auth_url: 'http://127.0.0.1:5000/v2.0/'
 keystone.password: verybadpass
 # or
 keystone.auth_key: 203802934809284k2j34lkj2l3kj43k

openstack2:
 keystone.user: admin
 keystone.tenant: admin
 keystone.auth_url: 'http://127.0.0.2:5000/v2.0/'
 keystone.password: verybadpass
 # or
 keystone.auth_key: 303802934809284k2j34lkj2l3kj43k

With this configuration in place, any of the swift functions can make use of
a configuration profile by declaring it explicitly.
For example:

salt '*' swift.get mycontainer myfile /tmp/file profile=openstack1

NOTE: For Rackspace cloud files setting keystone.auth_version = 1 is recommended.

	
salt.modules.swift.delete(cont, path=None, profile=None)

	Delete a container, or delete an object from a container.

CLI Example to delete a container:

salt myminion swift.delete mycontainer

CLI Example to delete an object from a container:

salt myminion swift.delete mycontainer remoteobject

	
salt.modules.swift.get(cont=None, path=None, local_file=None, return_bin=False, profile=None)

	List the contents of a container, or return an object from a container. Set
return_bin to True in order to retrieve an object wholesale. Otherwise,
Salt will attempt to parse an XML response.

CLI Example to list containers:

salt myminion swift.get

CLI Example to list the contents of a container:

salt myminion swift.get mycontainer

CLI Example to return the binary contents of an object:

salt myminion swift.get mycontainer myfile.png return_bin=True

CLI Example to save the binary contents of an object to a local file:

salt myminion swift.get mycontainer myfile.png local_file=/tmp/myfile.png

	
salt.modules.swift.head()

	

	
salt.modules.swift.put(cont, path=None, local_file=None, profile=None)

	Create a new container, or upload an object to a container.

CLI Example to create a container:

salt myminion swift.put mycontainer

CLI Example to upload an object to a container:

salt myminion swift.put mycontainer remotepath local_file=/path/to/file

salt.modules.sysbench

The 'sysbench' module is used to analyze the
performance of the minions, right from the master!
It measures various system parameters such as
CPU, Memory, File I/O, Threads and Mutex.

	
salt.modules.sysbench.cpu()

	Tests for the CPU performance of minions.

CLI Examples:

salt '*' sysbench.cpu

	
salt.modules.sysbench.fileio()

	This tests for the file read and write operations
Various modes of operations are

	sequential write

	sequential rewrite

	sequential read

	random read

	random write

	random read and write

The test works with 32 files with each file being 1Gb in size
The test consumes a lot of time. Be patient!

CLI Examples:

salt '*' sysbench.fileio

	
salt.modules.sysbench.memory()

	This tests the memory for read and write operations.

CLI Examples:

salt '*' sysbench.memory

	
salt.modules.sysbench.mutex()

	Tests the implementation of mutex

CLI Examples:

salt '*' sysbench.mutex

	
salt.modules.sysbench.ping()

	

	
salt.modules.sysbench.threads()

	This tests the performance of the processor's scheduler

CLI Example:

salt '*' sysbench.threads

salt.modules.sysfs

Module for interfacing with SysFS

See also

https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt

New in version 2016.3.0.

	
salt.modules.sysfs.attr(key, value=None)

	Access/write a SysFS attribute.
If the attribute is a symlink, its destination is returned

	Returns:

	value or bool

CLI Example:

salt '*' sysfs.attr block/sda/queue/logical_block_size

	
salt.modules.sysfs.interfaces(root)

	Generate a dictionary with all available interfaces relative to root.
Symlinks are not followed.

CLI Example:

salt '*' sysfs.interfaces block/bcache0/bcache

	Output example:
	{
 "r": [
 "state",
 "partial_stripes_expensive",
 "writeback_rate_debug",
 "stripe_size",
 "dirty_data",
 "stats_total/cache_hits",
 "stats_total/cache_bypass_misses",
 "stats_total/bypassed",
 "stats_total/cache_readaheads",
 "stats_total/cache_hit_ratio",
 "stats_total/cache_miss_collisions",
 "stats_total/cache_misses",
 "stats_total/cache_bypass_hits",
],
 "rw": [
 "writeback_rate",
 "writeback_rate_update_seconds",
 "cache_mode",
 "writeback_delay",
 "label",
 "writeback_running",
 "writeback_metadata",
 "running",
 "writeback_rate_p_term_inverse",
 "sequential_cutoff",
 "writeback_percent",
 "writeback_rate_d_term",
 "readahead"
],
 "w": [
 "stop",
 "clear_stats",
 "attach",
 "detach"
]
}

Note

	'r' interfaces are read-only

	'w' interfaces are write-only (e.g. actions)

	'rw' are interfaces that can both be read or written

	
salt.modules.sysfs.read(key, root='')

	Read from SysFS

	Parameters:

	key -- file or path in SysFS; if key is a list then root will be prefixed on each key

	Returns:

	the full (tree of) SysFS attributes under key

CLI Example:

salt '*' sysfs.read class/net/em1/statistics

	
salt.modules.sysfs.target(key, full=True)

	Return the basename of a SysFS key path

	Parameters:

	
	key -- the location to resolve within SysFS

	full -- full path instead of basename

	Returns:

	fullpath or basename of path

CLI Example:

salt '*' sysfs.read class/ttyS0

	
salt.modules.sysfs.write(key, value)

	Write a SysFS attribute/action

CLI Example:

salt '*' sysfs.write devices/system/cpu/cpu0/cpufreq/scaling_governor 'performance'

salt.modules.syslog_ng

Module for getting information about syslog-ng

	maintainer:

	Tibor Benke <btibi@sch.bme.hu>

	maturity:

	new

	depends:

	cmd

	platform:

	all

This module is capable of managing syslog-ng instances which were installed
via a package manager or from source. Users can use a directory as a parameter
in the case of most functions, which contains the syslog-ng and syslog-ng-ctl
binaries.

Syslog-ng can be installed via a package manager or from source. In the
latter case, the syslog-ng and syslog-ng-ctl binaries are not available
from the PATH, so users should set location of the sbin directory with
syslog_ng.set_binary_path.

Similarly, users can specify the location of the configuration file with
syslog_ng.set_config_file, then
the module will use it. If it is not set, syslog-ng uses the default
configuration file.

	
class salt.modules.syslog_ng.Argument(value='')

	A TypedParameterValue has one or more Arguments. For example this can be
the value of key_file.

Does not need examples.

	
build()

	

	
class salt.modules.syslog_ng.Buildable(iterable, join_body_on='', append_extra_newline=True)

	Base class of most classes, which have a build method.

It contains a common build function.

Does not need examples.

	
build()

	Builds the textual representation of the whole configuration object
with its children.

	
build_body()

	Builds the body of a syslog-ng configuration object.

	
build_header()

	Builds the header of a syslog-ng configuration object.

	
build_tail()

	Builds the tail of a syslog-ng configuration object.

	
class salt.modules.syslog_ng.GivenStatement(value, add_newline=True)

	
	This statement returns a string without modification. It can be used to
	use existing configuration snippets.

Does not need examples.

	
build()

	Builds the textual representation of the whole configuration object
with its children.

	
class salt.modules.syslog_ng.NamedStatement(type, id='', options=None)

	It represents a configuration statement, which has a name, e.g. a source.

Does not need examples.

	
class salt.modules.syslog_ng.Option(type='', params=None)

	A Statement class contains Option instances.

An instance of Option can represent a file(), tcp(), udp(), etc. option.

Does not need examples.

	
add_parameter(param)

	

	
build()

	Builds the textual representation of the whole configuration object
with its children.

	
class salt.modules.syslog_ng.Parameter(iterable=None, join_body_on='')

	An Option has one or more Parameter instances.

Does not need examples.

	
class salt.modules.syslog_ng.ParameterValue(iterable=None, join_body_on='')

	A TypedParameter can have one or more values.

Does not need examples.

	
class salt.modules.syslog_ng.SimpleParameter(value='')

	A Parameter is a SimpleParameter, if it's just a simple type, like a
string.

For example:

destination d_file {
 file(
 '/var/log/messages'
);
};

/var/log/messages is a SimpleParameter.

Does not need examples.

	
build()

	Builds the textual representation of the whole configuration object
with its children.

	
class salt.modules.syslog_ng.SimpleParameterValue(value='')

	A ParameterValuem which holds a simple type, like a string or a number.

For example in ip(127.0.0.1) 127.0.0.1 is a SimpleParameterValue.

Does not need examples.

	
build()

	Builds the textual representation of the whole configuration object
with its children.

	
class salt.modules.syslog_ng.Statement(type, id='', options=None, has_name=True)

	It represents a syslog-ng configuration statement, e.g. source, destination,
filter.

Does not need examples.

	
add_child(option)

	

	
build_header()

	Builds the header of a syslog-ng configuration object.

	
build_tail()

	Builds the tail of a syslog-ng configuration object.

	
exception salt.modules.syslog_ng.SyslogNgError

	

	
class salt.modules.syslog_ng.TypedParameter(type='', values=None)

	A Parameter, which has a type:

destination d_tcp {
 tcp(
 ip(127.0.0.1)
);
};

ip(127.0.0.1) is a TypedParameter.

Does not need examples.

	
add_value(value)

	

	
build()

	Builds the textual representation of the whole configuration object
with its children.

	
class salt.modules.syslog_ng.TypedParameterValue(type='', arguments=None)

	We have to go deeper...

A TypedParameter can have a 'parameter', which also have a type. For example
key_file and cert_file:

source demo_tls_source {
 tcp(
 ip(0.0.0.0)
 port(1999)
 tls(
 key_file('/opt/syslog-ng/etc/syslog-ng/key.d/syslog-ng.key')
 cert_file('/opt/syslog-ng/etc/syslog-ng/cert.d/syslog-ng.cert')
)
);
};

Does not need examples.

	
add_argument(arg)

	

	
build()

	Builds the textual representation of the whole configuration object
with its children.

	
class salt.modules.syslog_ng.UnnamedStatement(type, options=None)

	It represents a configuration statement, which doesn't have a name, e.g. a
log path.

Does not need examples.

	
salt.modules.syslog_ng.config(name, config, write=True)

	Builds syslog-ng configuration. This function is intended to be used from
the state module, users should not use it directly!

name : the id of the Salt document or it is the format of <statement name>.id
config : the parsed YAML code
write : if True, it writes the config into the configuration file,
otherwise just returns it

CLI Example:

salt '*' syslog_ng.config name='s_local' config="[{'tcp':[{'ip':'127.0.0.1'},{'port':1233}]}]"

	
salt.modules.syslog_ng.config_test(syslog_ng_sbin_dir=None, cfgfile=None)

	Runs syntax check against cfgfile. If syslog_ng_sbin_dir is specified, it
is added to the PATH during the test.

CLI Example:

salt '*' syslog_ng.config_test
salt '*' syslog_ng.config_test /home/user/install/syslog-ng/sbin
salt '*' syslog_ng.config_test /home/user/install/syslog-ng/sbin /etc/syslog-ng/syslog-ng.conf

	
salt.modules.syslog_ng.get_config_file()

	Returns the configuration directory, which contains syslog-ng.conf.

CLI Example:

salt '*' syslog_ng.get_config_file

	
salt.modules.syslog_ng.modules(syslog_ng_sbin_dir=None)

	Returns the available modules. If syslog_ng_sbin_dir is specified, it
is added to the PATH during the execution of the command syslog-ng.

CLI Example:

salt '*' syslog_ng.modules
salt '*' syslog_ng.modules /home/user/install/syslog-ng/sbin

	
salt.modules.syslog_ng.reload_(name)

	Reloads syslog-ng. This function is intended to be used from states.

If syslog_ng.set_config_file, is called before, this function
will use the set binary path.

CLI Example:

salt '*' syslog_ng.reload

	
salt.modules.syslog_ng.set_binary_path(name)

	Sets the path, where the syslog-ng binary can be found. This function is
intended to be used from states.

If syslog-ng is installed via a package manager, users don't need to use
this function.

CLI Example:

salt '*' syslog_ng.set_binary_path name=/usr/sbin

	
salt.modules.syslog_ng.set_config_file(name)

	Sets the configuration's name. This function is intended to be used from
states.

CLI Example:

salt '*' syslog_ng.set_config_file name=/etc/syslog-ng

	
salt.modules.syslog_ng.set_parameters(version=None, binary_path=None, config_file=None, *args, **kwargs)

	Sets variables.

CLI Example:

salt '*' syslog_ng.set_parameters version='3.6'
salt '*' syslog_ng.set_parameters binary_path=/home/user/install/syslog-ng/sbin config_file=/home/user/install/syslog-ng/etc/syslog-ng.conf

	
salt.modules.syslog_ng.start(name=None, user=None, group=None, chroot=None, caps=None, no_caps=False, pidfile=None, enable_core=False, fd_limit=None, verbose=False, debug=False, trace=False, yydebug=False, persist_file=None, control=None, worker_threads=None)

	Ensures, that syslog-ng is started via the given parameters. This function
is intended to be used from the state module.

Users shouldn't use this function, if the service module is available on
their system. If syslog_ng.set_config_file, is called before, this function
will use the set binary path.

CLI Example:

salt '*' syslog_ng.start

	
salt.modules.syslog_ng.stats(syslog_ng_sbin_dir=None)

	Returns statistics from the running syslog-ng instance. If
syslog_ng_sbin_dir is specified, it is added to the PATH during the
execution of the command syslog-ng-ctl.

CLI Example:

salt '*' syslog_ng.stats
salt '*' syslog_ng.stats /home/user/install/syslog-ng/sbin

	
salt.modules.syslog_ng.stop(name=None)

	Kills syslog-ng. This function is intended to be used from the state module.

Users shouldn't use this function, if the service module is available on
their system. If syslog_ng.set_config_file is called before, this function
will use the set binary path.

CLI Example:

salt '*' syslog_ng.stop

	
salt.modules.syslog_ng.version(syslog_ng_sbin_dir=None)

	Returns the version of the installed syslog-ng. If syslog_ng_sbin_dir is
specified, it is added to the PATH during the execution of the command
syslog-ng.

CLI Example:

salt '*' syslog_ng.version
salt '*' syslog_ng.version /home/user/install/syslog-ng/sbin

	
salt.modules.syslog_ng.write_config(config, newlines=2)

	Writes the given parameter config into the config file. This function is
intended to be used from states.

If syslog_ng.set_config_file, is called before, this function
will use the set config file.

CLI Example:

salt '*' syslog_ng.write_config config='# comment'

	
salt.modules.syslog_ng.write_version(name)

	Removes the previous configuration file, then creates a new one and writes
the name line. This function is intended to be used from states.

If syslog_ng.set_config_file, is called before, this function
will use the set config file.

CLI Example:

salt '*' syslog_ng.write_version name="3.6"

salt.modules.sysmod

The sys module provides information about the available functions on the minion

	
salt.modules.sysmod.argspec(module='')

	Return the argument specification of functions in Salt execution
modules.

CLI Example:

salt '*' sys.argspec pkg.install
salt '*' sys.argspec sys
salt '*' sys.argspec

Module names can be specified as globs.

New in version 2015.5.0.

salt '*' sys.argspec 'pkg.*'

	
salt.modules.sysmod.doc(*args)

	Return the docstrings for all modules. Optionally, specify a module or a
function to narrow the selection.

The strings are aggregated into a single document on the master for easy
reading.

Multiple modules/functions can be specified.

CLI Example:

salt '*' sys.doc
salt '*' sys.doc sys
salt '*' sys.doc sys.doc
salt '*' sys.doc network.traceroute user.info

Modules can be specified as globs.

New in version 2015.5.0.

salt '*' sys.doc 'sys.*'
salt '*' sys.doc 'sys.list_*'

	
salt.modules.sysmod.list_functions(*args, **kwargs)

	List the functions for all modules. Optionally, specify a module or modules
from which to list.

CLI Example:

salt '*' sys.list_functions
salt '*' sys.list_functions sys
salt '*' sys.list_functions sys user

New in version 0.12.0.

salt '*' sys.list_functions 'module.specific_function'

Function names can be specified as globs.

New in version 2015.5.0.

salt '*' sys.list_functions 'sys.list_*'

	
salt.modules.sysmod.list_modules(*args)

	List the modules loaded on the minion

New in version 2015.5.0.

CLI Example:

salt '*' sys.list_modules

Module names can be specified as globs.

salt '*' sys.list_modules 's*'

	
salt.modules.sysmod.list_renderers(*args)

	List the renderers loaded on the minion

New in version 2015.5.0.

CLI Example:

salt '*' sys.list_renderers

Render names can be specified as globs.

salt '*' sys.list_renderers 'yaml*'

	
salt.modules.sysmod.list_returner_functions(*args, **kwargs)

	List the functions for all returner modules. Optionally, specify a returner
module or modules from which to list.

New in version 2014.7.0.

CLI Example:

salt '*' sys.list_returner_functions
salt '*' sys.list_returner_functions mysql
salt '*' sys.list_returner_functions mysql etcd

Returner names can be specified as globs.

New in version 2015.5.0.

salt '*' sys.list_returner_functions 'sqlite3.get_*'

	
salt.modules.sysmod.list_returners(*args)

	List the returners loaded on the minion

New in version 2014.7.0.

CLI Example:

salt '*' sys.list_returners

Returner names can be specified as globs.

New in version 2015.5.0.

salt '*' sys.list_returners 's*'

	
salt.modules.sysmod.list_runner_functions(*args, **kwargs)

	List the functions for all runner modules. Optionally, specify a runner
module or modules from which to list.

New in version 2014.7.0.

CLI Example:

salt '*' sys.list_runner_functions
salt '*' sys.list_runner_functions state
salt '*' sys.list_runner_functions state virt

Runner function names can be specified as globs.

New in version 2015.5.0.

salt '*' sys.list_runner_functions 'state.*' 'virt.*'

	
salt.modules.sysmod.list_runners(*args)

	List the runners loaded on the minion

New in version 2014.7.0.

CLI Example:

salt '*' sys.list_runners

Runner names can be specified as globs.

New in version 2015.5.0.

salt '*' sys.list_runners 'm*'

	
salt.modules.sysmod.list_state_functions(*args, **kwargs)

	List the functions for all state modules. Optionally, specify a state
module or modules from which to list.

New in version 2014.7.0.

CLI Example:

salt '*' sys.list_state_functions
salt '*' sys.list_state_functions file
salt '*' sys.list_state_functions pkg user

State function names can be specified as globs.

New in version 2015.5.0.

salt '*' sys.list_state_functions 'file.*'
salt '*' sys.list_state_functions 'file.s*'

New in version 2016.9.0.

salt '*' sys.list_state_functions 'module.specific_function'

	
salt.modules.sysmod.list_state_modules(*args)

	List the modules loaded on the minion

New in version 2014.7.0.

CLI Example:

salt '*' sys.list_state_modules

State module names can be specified as globs.

New in version 2015.5.0.

salt '*' sys.list_state_modules 'mysql_*'

	
salt.modules.sysmod.reload_modules()

	Tell the minion to reload the execution modules

CLI Example:

salt '*' sys.reload_modules

	
salt.modules.sysmod.renderer_doc(*args)

	Return the docstrings for all renderers. Optionally, specify a renderer or a
function to narrow the selection.

The strings are aggregated into a single document on the master for easy
reading.

Multiple renderers can be specified.

New in version 2015.5.0.

CLI Example:

salt '*' sys.renderer_doc
salt '*' sys.renderer_doc cheetah
salt '*' sys.renderer_doc jinja json

Renderer names can be specified as globs.

salt '*' sys.renderer_doc 'c*' 'j*'

	
salt.modules.sysmod.returner_argspec(module='')

	Return the argument specification of functions in Salt returner
modules.

New in version 2015.5.0.

CLI Example:

salt '*' sys.returner_argspec xmpp
salt '*' sys.returner_argspec xmpp smtp
salt '*' sys.returner_argspec

Returner names can be specified as globs.

salt '*' sys.returner_argspec 'sqlite3.*'

	
salt.modules.sysmod.returner_doc(*args)

	Return the docstrings for all returners. Optionally, specify a returner or a
function to narrow the selection.

The strings are aggregated into a single document on the master for easy
reading.

Multiple returners/functions can be specified.

New in version 2014.7.0.

CLI Example:

salt '*' sys.returner_doc
salt '*' sys.returner_doc sqlite3
salt '*' sys.returner_doc sqlite3.get_fun
salt '*' sys.returner_doc sqlite3.get_fun etcd.get_fun

Returner names can be specified as globs.

New in version 2015.5.0.

salt '*' sys.returner_doc 'sqlite3.get_*'

	
salt.modules.sysmod.runner_argspec(module='')

	Return the argument specification of functions in Salt runner
modules.

New in version 2015.5.0.

CLI Example:

salt '*' sys.runner_argspec state
salt '*' sys.runner_argspec http
salt '*' sys.runner_argspec

Runner names can be specified as globs.

salt '*' sys.runner_argspec 'winrepo.*'

	
salt.modules.sysmod.runner_doc(*args)

	Return the docstrings for all runners. Optionally, specify a runner or a
function to narrow the selection.

The strings are aggregated into a single document on the master for easy
reading.

Multiple runners/functions can be specified.

New in version 2014.7.0.

CLI Example:

salt '*' sys.runner_doc
salt '*' sys.runner_doc cache
salt '*' sys.runner_doc cache.grains
salt '*' sys.runner_doc cache.grains mine.get

Runner names can be specified as globs.

New in version 2015.5.0.

salt '*' sys.runner_doc 'cache.clear_*'

	
salt.modules.sysmod.state_argspec(module='')

	Return the argument specification of functions in Salt state
modules.

New in version 2015.5.0.

CLI Example:

salt '*' sys.state_argspec pkg.installed
salt '*' sys.state_argspec file
salt '*' sys.state_argspec

State names can be specified as globs.

salt '*' sys.state_argspec 'pkg.*'

	
salt.modules.sysmod.state_doc(*args)

	Return the docstrings for all states. Optionally, specify a state or a
function to narrow the selection.

The strings are aggregated into a single document on the master for easy
reading.

Multiple states/functions can be specified.

New in version 2014.7.0.

CLI Example:

salt '*' sys.state_doc
salt '*' sys.state_doc service
salt '*' sys.state_doc service.running
salt '*' sys.state_doc service.running ipables.append

State names can be specified as globs.

New in version 2015.5.0.

salt '*' sys.state_doc 'service.*' 'iptables.*'

	
salt.modules.sysmod.state_schema(module='')

	Return a JSON Schema for the given state function(s)

New in version 2016.3.0.

CLI Example:

salt '*' sys.state_schema
salt '*' sys.state_schema pkg.installed

salt.modules.sysrc

sysrc module for FreeBSD

	
salt.modules.sysrc.get(**kwargs)

	Return system rc configuration variables

CLI Example:

salt '*' sysrc.get includeDefaults=True

	
salt.modules.sysrc.remove(name, **kwargs)

	Remove system rc configuration variables

CLI Example:

salt '*' sysrc.remove name=sshd_enable

	
salt.modules.sysrc.set_(name, value, **kwargs)

	Set system rc configuration variables

CLI Example:

salt '*' sysrc.set name=sshd_flags value="-p 2222"

salt.modules.system

Support for reboot, shutdown, etc on POSIX-like systems.

Note

If a wrapper such as molly-guard to intercept interactive shutdown
commands is configured, calling system.halt,
system.poweroff,
system.reboot, and
system.shutdown with salt-call will
hang indefinitely while the wrapper script waits for user input. Calling them
with salt will work as expected.

	
salt.modules.system.get_computer_desc()

	Get PRETTY_HOSTNAME value stored in /etc/machine-info
If this file doesn't exist or the variable doesn't exist
return False.

	Returns:

	Value of PRETTY_HOSTNAME in /etc/machine-info.
If file/variable does not exist False.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' system.get_computer_desc

	
salt.modules.system.get_computer_name()

	Get hostname.

CLI Example:

salt '*' network.get_hostname

	
salt.modules.system.get_reboot_required_witnessed()

	
Note

This only applies to Minions running on NI Linux RT

Determine if at any time during the current boot session the salt minion
witnessed an event indicating that a reboot is required.

	Returns:

	True if the a reboot request was witnessed, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.get_reboot_required_witnessed

	
salt.modules.system.get_system_date(utc_offset=None)

	Get the system date

	Parameters:

	utc_offset (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The UTC offset in 4 digit (+0600) format with an
optional sign (+/-). Will default to None which will use the local
timezone. To set the time based off of UTC use +0000. Note: If
being passed through the command line will need to be quoted twice to
allow negative offsets (e.g. "'+0000'").

	Returns:

	Returns the system date.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' system.get_system_date

	
salt.modules.system.get_system_date_time(utc_offset=None)

	Get the system date/time.

	Parameters:

	utc_offset (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The UTC offset in 4 digit (+0600) format with an
optional sign (+/-). Will default to None which will use the local
timezone. To set the time based off of UTC use +0000. Note: If
being passed through the command line will need to be quoted twice to
allow negative offsets (e.g. "'+0000'").

	Returns:

	Returns the system time in YYYY-MM-DD hh:mm:ss format.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' system.get_system_date_time "'-0500'"

	
salt.modules.system.get_system_time(utc_offset=None)

	Get the system time.

	Parameters:

	utc_offset (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The UTC offset in 4 digit (e.g. +0600) format with an
optional sign (+/-). Will default to None which will use the local
timezone. To set the time based off of UTC use +0000. Note: If
being passed through the command line will need to be quoted twice to
allow negative offsets (e.g. "'+0000'").

	Returns:

	Returns the system time in HH:MM:SS AM/PM format.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' system.get_system_time

	
salt.modules.system.halt()

	Halt a running system

CLI Example:

salt '*' system.halt

	
salt.modules.system.has_settable_hwclock()

	Returns True if the system has a hardware clock capable of being
set from software.

CLI Example:

salt '*' system.has_settable_hwclock

	
salt.modules.system.init(runlevel)

	Change the system runlevel on sysV compatible systems

CLI Example:

salt '*' system.init 3

	
salt.modules.system.poweroff()

	Poweroff a running system

CLI Example:

salt '*' system.poweroff

	
salt.modules.system.reboot(at_time=None)

	Reboot the system

	at_time
	The wait time in minutes before the system will be rebooted.

CLI Example:

salt '*' system.reboot

	
salt.modules.system.set_computer_desc(desc)

	Set PRETTY_HOSTNAME value stored in /etc/machine-info
This will create the file if it does not exist. If
it is unable to create or modify this file, False is returned.

	Parameters:

	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The computer description

	Returns:

	False on failure. True if successful.

CLI Example:

salt '*' system.set_computer_desc "Michael's laptop"

	
salt.modules.system.set_computer_name(hostname)

	Modify hostname.

CLI Example:

salt '*' system.set_computer_name master.saltstack.com

	
salt.modules.system.set_reboot_required_witnessed()

	
Note

This only applies to Minions running on NI Linux RT

This function is used to remember that an event indicating that a reboot is
required was witnessed. This function writes to a temporary filesystem so
the event gets cleared upon reboot.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.set_reboot_required_witnessed

	
salt.modules.system.set_system_date(newdate, utc_offset=None)

	Set the system date. Use <mm-dd-yy> format for the date.

	Parameters:

	newdate (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The date to set. Can be any of the following formats:

	YYYY-MM-DD

	MM-DD-YYYY

	MM-DD-YY

	MM/DD/YYYY

	MM/DD/YY

	YYYY/MM/DD

CLI Example:

salt '*' system.set_system_date '03-28-13'

	
salt.modules.system.set_system_date_time(years=None, months=None, days=None, hours=None, minutes=None, seconds=None, utc_offset=None)

	Set the system date and time. Each argument is an element of the date, but
not required. If an element is not passed, the current system value for
that element will be used. For example, if the year is not passed, the
current system year will be used. (Used by
system.set_system_date and
system.set_system_time)

Updates hardware clock, if present, in addition to software
(kernel) clock.

	Parameters:

	
	years (int [https://docs.python.org/3/library/functions.html#int]) -- Years digit, e.g.: 2015

	months (int [https://docs.python.org/3/library/functions.html#int]) -- Months digit: 1-12

	days (int [https://docs.python.org/3/library/functions.html#int]) -- Days digit: 1-31

	hours (int [https://docs.python.org/3/library/functions.html#int]) -- Hours digit: 0-23

	minutes (int [https://docs.python.org/3/library/functions.html#int]) -- Minutes digit: 0-59

	seconds (int [https://docs.python.org/3/library/functions.html#int]) -- Seconds digit: 0-59

	utc_offset (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The UTC offset in 4 digit (+0600) format with an
optional sign (+/-). Will default to None which will use the local
timezone. To set the time based off of UTC use +0000. Note: If
being passed through the command line will need to be quoted twice to
allow negative offsets (e.g. "'+0000'").

	Returns:

	True if successful. Otherwise False.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.set_system_date_time 2015 5 12 11 37 53 "'-0500'"

	
salt.modules.system.set_system_time(newtime, utc_offset=None)

	Set the system time.

	Parameters:

	
	newtime (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The time to set. Can be any of the following formats.

	HH:MM:SS AM/PM

	HH:MM AM/PM

	HH:MM:SS (24 hour)

	HH:MM (24 hour)

Note that the Salt command line parser parses the date/time
before we obtain the argument (preventing us from doing UTC)
Therefore the argument must be passed in as a string.
Meaning the text might have to be quoted twice on the command line.

	utc_offset (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The UTC offset in 4 digit (+0600) format with an
optional sign (+/-). Will default to None which will use the local
timezone. To set the time based off of UTC use +0000. Note: If
being passed through the command line will need to be quoted twice to
allow negative offsets (e.g. "'+0000'")

	Returns:

	Returns True if successful. Otherwise False.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.set_system_time "'11:20'"

	
salt.modules.system.shutdown(at_time=None)

	Shutdown a running system

	at_time
	The wait time in minutes before the system will be shutdown.

CLI Example:

salt '*' system.shutdown 5

salt.modules.system_profiler

System Profiler Module

Interface with macOS's command-line System Profiler utility to get
information about package receipts and installed applications.

New in version 2015.5.0.

	
salt.modules.system_profiler.applications()

	Return the results of a call to
system_profiler -xml -detail full SPApplicationsDataType
as a dictionary. Top-level keys of the dictionary
are the names of each set of install receipts, since
there can be multiple receipts with the same name.
Contents of each key are a list of dictionaries.

Note that this can take a long time depending on how many
applications are installed on the target Mac.

CLI Example:

salt '*' systemprofiler.applications

	
salt.modules.system_profiler.receipts()

	Return the results of a call to
system_profiler -xml -detail full SPInstallHistoryDataType
as a dictionary. Top-level keys of the dictionary
are the names of each set of install receipts, since
there can be multiple receipts with the same name.
Contents of each key are a list of dictionaries.

CLI Example:

salt '*' systemprofiler.receipts

salt.modules.systemd_service

Provides the service module for systemd

New in version 0.10.0.

Important

If you feel that Salt should be using this module to manage services on a
minion, and it is using a different module (or gives an error similar to
'service.start' is not available), see here.

Important

This is an implementation of virtual 'service' module. As such, you must
call it under the name 'service' and NOT 'systemd'. You can see that also
in the examples below.

	
salt.modules.systemd_service.available(name)

	
New in version 0.10.4.

Check that the given service is available taking into account template
units.

CLI Example:

salt '*' service.available sshd

	
salt.modules.systemd_service.disable(name, no_block=False, root=None, **kwargs)

	
Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands run by this function from the salt-minion daemon's
control group. This is done to avoid a race condition in cases where
the salt-minion service is restarted while a service is being
modified. If desired, usage of systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by
setting a config option called
systemd.scope, with a value of False (no quotes).

Disable the named service to not start when the system boots

	no_blockFalse
	Set to True to start the service using --no-block.

New in version 2017.7.0.

	root
	Enable/disable/mask unit files in the specified root directory

CLI Example:

salt '*' service.disable <service name>

	
salt.modules.systemd_service.disabled(name, root=None)

	Return if the named service is disabled from starting on boot

	root
	Enable/disable/mask unit files in the specified root directory

CLI Example:

salt '*' service.disabled <service name>

	
salt.modules.systemd_service.enable(name, no_block=False, unmask=False, unmask_runtime=False, root=None, **kwargs)

	
Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands run by this function from the salt-minion daemon's
control group. This is done to avoid a race condition in cases where
the salt-minion service is restarted while a service is being
modified. If desired, usage of systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by
setting a config option called
systemd.scope, with a value of False (no quotes).

Enable the named service to start when the system boots

	no_blockFalse
	Set to True to start the service using --no-block.

New in version 2017.7.0.

	unmaskFalse
	Set to True to remove an indefinite mask before attempting to
enable the service.

New in version 2017.7.0: In previous releases, Salt would simply unmask a service before
enabling. This behavior is no longer the default.

	unmask_runtimeFalse
	Set to True to remove a runtime mask before attempting to enable
the service.

New in version 2017.7.0: In previous releases, Salt would simply unmask a service before
enabling. This behavior is no longer the default.

	root
	Enable/disable/mask unit files in the specified root directory

CLI Example:

salt '*' service.enable <service name>

	
salt.modules.systemd_service.enabled(name, root=None, **kwargs)

	Return if the named service is enabled to start on boot

	root
	Enable/disable/mask unit files in the specified root directory

CLI Example:

salt '*' service.enabled <service name>

	
salt.modules.systemd_service.execs(root=None)

	
New in version 2014.7.0.

Return a list of all files specified as ExecStart for all services.

	root
	Enable/disable/mask unit files in the specified root directory

CLI Example:

salt '*' service.execs

	
salt.modules.systemd_service.firstboot(locale=None, locale_message=None, keymap=None, timezone=None, hostname=None, machine_id=None, root=None)

	
New in version 3001.

Call systemd-firstboot to configure basic settings of the system

	locale
	Set primary locale (LANG=)

	locale_message
	Set message locale (LC_MESSAGES=)

	keymap
	Set keymap

	timezone
	Set timezone

	hostname
	Set host name

	machine_id
	Set machine ID

	root
	Operate on an alternative filesystem root

CLI Example:

salt '*' service.firstboot keymap=jp locale=en_US.UTF-8

	
salt.modules.systemd_service.force_reload(name, no_block=True, unmask=False, unmask_runtime=False)

	
Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands run by this function from the salt-minion daemon's
control group. This is done to avoid a race condition in cases where
the salt-minion service is restarted while a service is being
modified. If desired, usage of systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by
setting a config option called
systemd.scope, with a value of False (no quotes).

New in version 0.12.0.

Force-reload the specified service with systemd

	no_blockFalse
	Set to True to start the service using --no-block.

New in version 2017.7.0.

	unmaskFalse
	Set to True to remove an indefinite mask before attempting to
force-reload the service.

New in version 2017.7.0: In previous releases, Salt would simply unmask a service before
force-reloading. This behavior is no longer the default.

	unmask_runtimeFalse
	Set to True to remove a runtime mask before attempting to
force-reload the service.

New in version 2017.7.0: In previous releases, Salt would simply unmask a service before
force-reloading. This behavior is no longer the default.

CLI Example:

salt '*' service.force_reload <service name>

	
salt.modules.systemd_service.get_all(root=None)

	Return a list of all available services

	root
	Enable/disable/mask unit files in the specified root directory

CLI Example:

salt '*' service.get_all

	
salt.modules.systemd_service.get_disabled(root=None)

	Return a list of all disabled services

	root
	Enable/disable/mask unit files in the specified root directory

CLI Example:

salt '*' service.get_disabled

	
salt.modules.systemd_service.get_enabled(root=None)

	Return a list of all enabled services

	root
	Enable/disable/mask unit files in the specified root directory

CLI Example:

salt '*' service.get_enabled

	
salt.modules.systemd_service.get_running()

	Return a list of all running services, so far as systemd is concerned

CLI Example:

salt '*' service.get_running

	
salt.modules.systemd_service.get_static(root=None)

	
New in version 2015.8.5.

Return a list of all static services

	root
	Enable/disable/mask unit files in the specified root directory

CLI Example:

salt '*' service.get_static

	
salt.modules.systemd_service.mask(name, runtime=False, root=None)

	
New in version 2015.5.0.

Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands run by this function from the salt-minion daemon's
control group. This is done to avoid a race condition in cases where
the salt-minion service is restarted while a service is being
modified. If desired, usage of systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by
setting a config option called
systemd.scope, with a value of False (no quotes).

Mask the specified service with systemd

	runtimeFalse
	Set to True to mask this service only until the next reboot

New in version 2015.8.5.

	root
	Enable/disable/mask unit files in the specified root directory

CLI Example:

salt '*' service.mask foo
salt '*' service.mask foo runtime=True

	
salt.modules.systemd_service.masked(name, runtime=False, root=None)

	
New in version 2015.8.0.

Changed in version 2015.8.5: The return data for this function has changed. If the service is
masked, the return value will now be the output of the systemctl
is-enabled command (so that a persistent mask can be distinguished
from a runtime mask). If the service is not masked, then False will
be returned.

Changed in version 2017.7.0: This function now returns a boolean telling the user whether a mask
specified by the new runtime argument is set. If runtime is
False, this function will return True if an indefinite mask is
set for the named service (otherwise False will be returned). If
runtime is False, this function will return True if a
runtime mask is set, otherwise False.

Check whether or not a service is masked

	runtimeFalse
	Set to True to check for a runtime mask

New in version 2017.7.0: In previous versions, this function would simply return the output
of systemctl is-enabled when the service was found to be
masked. However, since it is possible to both have both indefinite
and runtime masks on a service simultaneously, this function now
only checks for runtime masks if this argument is set to True.
Otherwise, it will check for an indefinite mask.

	root
	Enable/disable/mask unit files in the specified root directory

CLI Examples:

salt '*' service.masked foo
salt '*' service.masked foo runtime=True

	
salt.modules.systemd_service.missing(name)

	
New in version 2014.1.0.

The inverse of service.available. Returns True if the specified
service is not available, otherwise returns False.

CLI Example:

salt '*' service.missing sshd

	
salt.modules.systemd_service.offline()

	
New in version 3004.

Check if systemd is working in offline mode, where is not possible
to talk with PID 1.

CLI Example:

salt '*' service.offline

	
salt.modules.systemd_service.reload_(name, no_block=False, unmask=False, unmask_runtime=False)

	
Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands run by this function from the salt-minion daemon's
control group. This is done to avoid a race condition in cases where
the salt-minion service is restarted while a service is being
modified. If desired, usage of systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by
setting a config option called
systemd.scope, with a value of False (no quotes).

Reload the specified service with systemd

	no_blockFalse
	Set to True to reload the service using --no-block.

New in version 2017.7.0.

	unmaskFalse
	Set to True to remove an indefinite mask before attempting to
reload the service.

New in version 2017.7.0: In previous releases, Salt would simply unmask a service before
reloading. This behavior is no longer the default.

	unmask_runtimeFalse
	Set to True to remove a runtime mask before attempting to reload
the service.

New in version 2017.7.0: In previous releases, Salt would simply unmask a service before
reloading. This behavior is no longer the default.

CLI Example:

salt '*' service.reload <service name>

	
salt.modules.systemd_service.restart(name, no_block=False, unmask=False, unmask_runtime=False)

	
Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands run by this function from the salt-minion daemon's
control group. This is done to avoid a race condition in cases where
the salt-minion service is restarted while a service is being
modified. If desired, usage of systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by
setting a config option called
systemd.scope, with a value of False (no quotes).

Restart the specified service with systemd

	no_blockFalse
	Set to True to start the service using --no-block.

New in version 2017.7.0.

	unmaskFalse
	Set to True to remove an indefinite mask before attempting to
restart the service.

New in version 2017.7.0: In previous releases, Salt would simply unmask a service before
restarting. This behavior is no longer the default.

	unmask_runtimeFalse
	Set to True to remove a runtime mask before attempting to restart
the service.

New in version 2017.7.0: In previous releases, Salt would simply unmask a service before
restarting. This behavior is no longer the default.

CLI Example:

salt '*' service.restart <service name>

	
salt.modules.systemd_service.show(name, root=None)

	
New in version 2014.7.0.

Show properties of one or more units/jobs or the manager

	root
	Enable/disable/mask unit files in the specified root directory

CLI Example:

salt '*' service.show <service name>

	
salt.modules.systemd_service.start(name, no_block=False, unmask=False, unmask_runtime=False)

	
Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands run by this function from the salt-minion daemon's
control group. This is done to avoid a race condition in cases where
the salt-minion service is restarted while a service is being
modified. If desired, usage of systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by
setting a config option called
systemd.scope, with a value of False (no quotes).

Start the specified service with systemd

	no_blockFalse
	Set to True to start the service using --no-block.

New in version 2017.7.0.

	unmaskFalse
	Set to True to remove an indefinite mask before attempting to start
the service.

New in version 2017.7.0: In previous releases, Salt would simply unmask a service before
starting. This behavior is no longer the default.

	unmask_runtimeFalse
	Set to True to remove a runtime mask before attempting to start the
service.

New in version 2017.7.0: In previous releases, Salt would simply unmask a service before
starting. This behavior is no longer the default.

CLI Example:

salt '*' service.start <service name>

	
salt.modules.systemd_service.status(name, sig=None)

	Return the status for a service via systemd.
If the name contains globbing, a dict mapping service name to True/False
values is returned.

Changed in version 2018.3.0: The service name can now be a glob (e.g. salt*)

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service to check

	sig (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Not implemented

	Returns:

	True if running, False otherwise
dict: Maps service name to True if running, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.status <service name> [service signature]

	
salt.modules.systemd_service.stop(name, no_block=False)

	
Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands run by this function from the salt-minion daemon's
control group. This is done to avoid a race condition in cases where
the salt-minion service is restarted while a service is being
modified. If desired, usage of systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by
setting a config option called
systemd.scope, with a value of False (no quotes).

Stop the specified service with systemd

	no_blockFalse
	Set to True to start the service using --no-block.

New in version 2017.7.0.

CLI Example:

salt '*' service.stop <service name>

	
salt.modules.systemd_service.systemctl_reload()

	
New in version 0.15.0.

Reloads systemctl, an action needed whenever unit files are updated.

CLI Example:

salt '*' service.systemctl_reload

	
salt.modules.systemd_service.unmask_(name, runtime=False, root=None)

	
New in version 2015.5.0.

Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands run by this function from the salt-minion daemon's
control group. This is done to avoid a race condition in cases where
the salt-minion service is restarted while a service is being
modified. If desired, usage of systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by
setting a config option called
systemd.scope, with a value of False (no quotes).

Unmask the specified service with systemd

	runtimeFalse
	Set to True to unmask this service only until the next reboot

New in version 2017.7.0: In previous versions, this function would remove whichever mask was
identified by running systemctl is-enabled on the service.
However, since it is possible to both have both indefinite and
runtime masks on a service simultaneously, this function now
removes a runtime mask only when this argument is set to True,
and otherwise removes an indefinite mask.

	root
	Enable/disable/mask unit files in the specified root directory

CLI Example:

salt '*' service.unmask foo
salt '*' service.unmask foo runtime=True

salt.modules.telegram

Module for sending messages via Telegram.

	configuration:

	In order to send a message via the Telegram, certain
configuration is required in /etc/salt/minion on the relevant minions or
in the pillar. Some sample configs might look like:

telegram.chat_id: '123456789'
telegram.token: '00000000:xxxxxxxxxxxxxxxxxxxxxxxx'

	
salt.modules.telegram.post_message(message, chat_id=None, token=None)

	Send a message to a Telegram chat.

	Parameters:

	
	message -- The message to send to the Telegram chat.

	chat_id -- (optional) The Telegram chat id.

	token -- (optional) The Telegram API token.

	Returns:

	Boolean if message was sent successfully.

CLI Example:

salt '*' telegram.post_message message="Hello Telegram!"

salt.modules.telemetry

Connection module for Telemetry

New in version 2016.3.0.

https://github.com/mongolab/mongolab-telemetry-api-docs/blob/master/alerts.md

	configuration:

	This module accepts explicit telemetry credentials or
can also read api key credentials from a pillar. More Information available
here [https://github.com/mongolab/mongolab-telemetry-api-docs/blob/master/alerts.md].

In the minion's config file:

telemetry.telemetry_api_keys:
 - abc123 # Key 1
 - efg321 # Backup Key 1
telemetry_api_base_url: https://telemetry-api.mongolab.com/v0

	depends:

	requests

	
salt.modules.telemetry.create_alarm(deployment_id, metric_name, data, api_key=None, profile='telemetry')

	create an telemetry alarms.

data is a dict of alert configuration data.

Returns (bool success, str message) tuple.

CLI Example:

salt myminion telemetry.create_alarm rs-ds033197 {} profile=telemetry

	
salt.modules.telemetry.delete_alarms(deployment_id, alert_id=None, metric_name=None, api_key=None, profile='telemetry')

	
	delete an alert specified by alert_id or if not specified blows away all the alerts
	in the current deployment.

Returns (bool success, str message) tuple.

CLI Example:

salt myminion telemetry.delete_alarms rs-ds033197 profile=telemetry

	
salt.modules.telemetry.get_alarms(deployment_id, profile='telemetry')

	get all the alarms set up against the current deployment

Returns dictionary of alarm information

CLI Example:

salt myminion telemetry.get_alarms rs-ds033197 profile=telemetry

	
salt.modules.telemetry.get_alert_config(deployment_id, metric_name=None, api_key=None, profile='telemetry')

	Get all alert definitions associated with a given deployment or if metric_name
is specified, obtain the specific alert config

Returns dictionary or list of dictionaries.

CLI Example:

salt myminion telemetry.get_alert_config rs-ds033197 currentConnections profile=telemetry
salt myminion telemetry.get_alert_config rs-ds033197 profile=telemetry

	
salt.modules.telemetry.get_notification_channel_id(notify_channel, profile='telemetry')

	Given an email address, creates a notification-channels
if one is not found and also returns the corresponding
notification channel id.

	notify_channel
	Email escalation policy

	profile
	A dict of telemetry config information.

CLI Example:

salt myminion telemetry.get_notification_channel_id userx@company.com profile=telemetry

	
salt.modules.telemetry.update_alarm(deployment_id, metric_name, data, api_key=None, profile='telemetry')

	update an telemetry alarms. data is a dict of alert configuration data.

Returns (bool success, str message) tuple.

CLI Example:

salt myminion telemetry.update_alarm rs-ds033197 {} profile=telemetry

salt.modules.temp

Simple module for creating temporary directories and files

This is a thin wrapper around Pythons tempfile module

New in version 2015.8.0.

	
salt.modules.temp.dir(suffix='', prefix='tmp', parent=None)

	Create a temporary directory

CLI Example:

salt '*' temp.dir
salt '*' temp.dir prefix='mytemp-' parent='/var/run/'

	
salt.modules.temp.file(suffix='', prefix='tmp', parent=None)

	Create a temporary file

CLI Example:

salt '*' temp.file
salt '*' temp.file prefix='mytemp-' parent='/var/run/'

salt.modules.test

Module for running arbitrary tests

	
salt.modules.test.arg(*args, **kwargs)

	Print out the data passed into the function *args and kwargs, this
is used to both test the publication data and CLI argument passing, but
also to display the information available within the publication data.

	Returns:

	{"args": args, "kwargs": kwargs}

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' test.arg 1 "two" 3.1 txt="hello" wow='{a: 1, b: "hello"}'

	
salt.modules.test.arg_clean(*args, **kwargs)

	Like test.arg but cleans kwargs of the __pub* items

CLI Example:

salt '*' test.arg_clean 1 "two" 3.1 txt="hello" wow='{a: 1, b: "hello"}'

	
salt.modules.test.arg_repr(*args, **kwargs)

	Print out the data passed into the function *args and kwargs, this
is used to both test the publication data and CLI argument passing, but
also to display the information available within the publication data.

	Returns:

	{"args": repr(args), "kwargs": repr(kwargs)}

CLI Example:

salt '*' test.arg_repr 1 "two" 3.1 txt="hello" wow='{a: 1, b: "hello"}'

	
salt.modules.test.arg_type(*args, **kwargs)

	Print out the types of the args and kwargs. This is used to test the types
of the args and kwargs passed down to the Minion

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' test.arg_type 1 'int'

	
salt.modules.test.assertion(assertion)

	Assert the given argument

CLI Example:

salt '*' test.assertion False

	
salt.modules.test.attr_call()

	Call grains.items via the attribute

CLI Example:

salt '*' test.attr_call

	
salt.modules.test.collatz(start)

	Execute the collatz conjecture from the passed starting number,
returns the sequence and the time it took to compute. Used for
performance tests.

CLI Example:

salt '*' test.collatz 3

	
salt.modules.test.conf_test()

	Return the value for test.foo in the minion configuration file, or return
the default value

CLI Example:

salt '*' test.conf_test

	
salt.modules.test.cross_test(func, args=None)

	Execute a minion function via the __salt__ object in the test
module, used to verify that the Minion functions can be called
via the __salt__ module.

CLI Example:

salt '*' test.cross_test file.gid_to_group 0

	
salt.modules.test.deprecation_warning()

	Return True, but also produce two DeprecationWarnings. One by date, the
other by the codename - release Oganesson, which should correspond to Salt
3108.

CLI Example:

salt * test.deprecation_warning

	
salt.modules.test.echo(text)

	Return a string - used for testing the connection

CLI Example:

salt '*' test.echo 'foo bar baz quo qux'

	
salt.modules.test.exception(message='Test Exception')

	Raise an exception

Optionally provide an error message or output the full stack.

CLI Example:

salt '*' test.exception 'Oh noes!'

	
salt.modules.test.false_()

	Always return False

CLI Example:

salt '*' test.false

	
salt.modules.test.fib(num)

	Return the num-th Fibonacci number, and the time it took to compute in
seconds. Used for performance tests.

This function is designed to have terrible performance.

CLI Example:

salt '*' test.fib 3

	
salt.modules.test.get_opts()

	Return the configuration options passed to this minion

CLI Example:

salt '*' test.get_opts

	
salt.modules.test.kwarg(**kwargs)

	Print out the data passed into the function **kwargs, this is used to
both test the publication data and CLI kwarg passing, but also to display
the information available within the publication data.

CLI Example:

salt '*' test.kwarg num=1 txt="two" env='{a: 1, b: "hello"}'

	
salt.modules.test.missing_func()

	

	
salt.modules.test.module_report()

	Return a dict containing all of the execution modules with a report on
the overall availability via different references

CLI Example:

salt '*' test.module_report

	
salt.modules.test.not_loaded()

	List the modules that were not loaded by the salt loader system

CLI Example:

salt '*' test.not_loaded

	
salt.modules.test.opts_pkg()

	Return an opts package with the grains and opts for this Minion.
This is primarily used to create the options used for Master side
state compiling routines

CLI Example:

salt '*' test.opts_pkg

	
salt.modules.test.outputter(data)

	Test the outputter, pass in data to return

CLI Example:

salt '*' test.outputter foobar

	
salt.modules.test.ping()

	Used to make sure the minion is up and responding. Not an ICMP ping.

Returns True.

CLI Example:

salt '*' test.ping

	
salt.modules.test.provider(module)

	Pass in a function name to discover what provider is being used

CLI Example:

salt '*' test.provider service

	
salt.modules.test.providers()

	Return a dict of the provider names and the files that provided them

CLI Example:

salt '*' test.providers

	
salt.modules.test.raise_exception(name, *args, **kwargs)

	Raise an exception. Built-in exceptions and those in
salt.exceptions
can be raised by this test function. If no matching exception is found,
then no exception will be raised and this function will return False.

This function is designed to test Salt's exception and return code
handling.

CLI Example:

salt '*' test.raise_exception TypeError "An integer is required"
salt '*' test.raise_exception salt.exceptions.CommandExecutionError "Something went wrong"

	
salt.modules.test.rand_sleep(max=60)

	Sleep for a random number of seconds, used to test long-running commands
and minions returning at differing intervals

CLI Example:

salt '*' test.rand_sleep 60

	
salt.modules.test.rand_str(size=9999999999, hash_type=None)

	This function has been renamed to
test.random_hash. This function will stay to
ensure backwards compatibility, but please switch to using the preferred name
test.random_hash.

	
salt.modules.test.random_hash(size=9999999999, hash_type=None)

	
New in version 2015.5.2.

Changed in version 2018.3.0: Function has been renamed from test.rand_str to
test.random_hash

Generates a random number between 1 and size, then returns a hash of
that number. If no hash_type is passed, the hash_type specified by the
Minion's hash_type config option is used.

CLI Example:

salt '*' test.random_hash
salt '*' test.random_hash hash_type=sha512

	
salt.modules.test.retcode(code=42)

	Test that the returncode system is functioning correctly

CLI Example:

salt '*' test.retcode 42

	
salt.modules.test.sleep(length)

	Instruct the minion to initiate a process that will sleep for a given
period of time.

CLI Example:

salt '*' test.sleep 20

	
salt.modules.test.stack()

	Return the current stack trace

CLI Example:

salt '*' test.stack

	
salt.modules.test.true_()

	Always return True

CLI Example:

salt '*' test.true

	
salt.modules.test.try_(module, return_try_exception=False, **kwargs)

	Try to run a module command. On an exception return None.
If return_try_exception is set to True, return the exception.
This can be helpful in templates where running a module might fail as expected.

Jinja Example:

{% for i in range(0,230) %}
 {{ salt['test.try'](module='ipmi.get_users', bmc_host='172.2.2.'+i)|yaml(False) }}
{% endfor %}

	
salt.modules.test.tty(*args, **kwargs)

	Deprecated! Moved to cmd.tty

CLI Example:

salt '*' test.tty tty0 'This is a test'
salt '*' test.tty pts3 'This is a test'

	
salt.modules.test.version()

	Return the version of salt on the minion

CLI Example:

salt '*' test.version

	
salt.modules.test.versions()

	This function is an alias of versions_report.

Returns versions of components used by salt

CLI Example:

salt '*' test.versions_report

	
salt.modules.test.versions_information()

	Report the versions of dependent and system software

CLI Example:

salt '*' test.versions_information

	
salt.modules.test.versions_report()

	Returns versions of components used by salt

CLI Example:

salt '*' test.versions_report

salt.modules.test_virtual

Module for testing that a __virtual__ function returning False will not be
available via the Salt Loader.

	
salt.modules.test_virtual.ping()

	

salt.modules.testinframod

This module exposes the functionality of the TestInfra library
for use with SaltStack in order to verify the state of your minions.
In order to allow for the addition of new resource types in TestInfra this
module dynamically generates wrappers for the various resources by iterating
over the values in the __all__ variable exposed by the testinfra.modules
namespace.

	
exception salt.modules.testinframod.InvalidArgumentError

	

	
salt.modules.testinframod.camel_to_snake_case(camel_input)

	Converts camelCase (or CamelCase) to snake_case.
From https://codereview.stackexchange.com/questions/185966/functions-to-convert-camelcase-strings-to-snake-case

	Parameters:

	camel_input (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The camelcase or CamelCase string to convert to snake_case

:return str

	
salt.modules.testinframod.snake_to_camel_case(snake_input, uppercamel=False)

	Converts snake_case to camelCase (or CamelCase if uppercamel is True).
Inspired by https://codereview.stackexchange.com/questions/85311/transform-snake-case-to-camelcase

	Parameters:

	
	snake_input (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The input snake_case string to convert to camelCase

	uppercamel (bool [https://docs.python.org/3/library/functions.html#bool]) -- Whether or not to convert to CamelCase instead

:return str

salt.modules.textfsm_mod

TextFSM

New in version 2018.3.0.

Execution module that processes plain text and extracts data
using TextFSM templates. The output is presented in JSON serializable
data, and can be easily re-used in other modules, or directly
inside the renderer (Jinja, Mako, Genshi, etc.).

	depends:

	
	textfsm Python library

Note

Install textfsm library: pip install textfsm.

	
salt.modules.textfsm_mod.extract(template_path, raw_text=None, raw_text_file=None, saltenv='base')

	Extracts the data entities from the unstructured
raw text sent as input and returns the data
mapping, processing using the TextFSM template.

	template_path
	The path to the TextFSM template.
This can be specified using the absolute path
to the file, or using one of the following URL schemes:

	salt://, to fetch the template from the Salt fileserver.

	http:// or https://

	ftp://

	s3://

	swift://

	raw_text: None
	The unstructured text to be parsed.

	raw_text_file: None
	Text file to read, having the raw text to be parsed using the TextFSM template.
Supports the same URL schemes as the template_path argument.

	saltenv: base
	Salt fileserver environment from which to retrieve the file.
Ignored if template_path is not a salt:// URL.

CLI Example:

salt '*' textfsm.extract salt://textfsm/juniper_version_template raw_text_file=s3://junos_ver.txt
salt '*' textfsm.extract http://some-server/textfsm/juniper_version_template raw_text='Hostname: router.abc ... snip ...'

Jinja template example:

{%- set raw_text = 'Hostname: router.abc ... snip ...' -%}
{%- set textfsm_extract = salt.textfsm.extract('https://some-server/textfsm/juniper_version_template', raw_text) -%}

Raw text example:

Hostname: router.abc
Model: mx960
JUNOS Base OS boot [9.1S3.5]
JUNOS Base OS Software Suite [9.1S3.5]
JUNOS Kernel Software Suite [9.1S3.5]
JUNOS Crypto Software Suite [9.1S3.5]
JUNOS Packet Forwarding Engine Support (M/T Common) [9.1S3.5]
JUNOS Packet Forwarding Engine Support (MX Common) [9.1S3.5]
JUNOS Online Documentation [9.1S3.5]
JUNOS Routing Software Suite [9.1S3.5]

TextFSM Example:

Value Chassis (\S+)
Value Required Model (\S+)
Value Boot (.*)
Value Base (.*)
Value Kernel (.*)
Value Crypto (.*)
Value Documentation (.*)
Value Routing (.*)

Start
Support multiple chassis systems.
 ^\S+:$$ -> Continue.Record
 ^${Chassis}:$$
 ^Model: ${Model}
 ^JUNOS Base OS boot \[${Boot}\]
 ^JUNOS Software Release \[${Base}\]
 ^JUNOS Base OS Software Suite \[${Base}\]
 ^JUNOS Kernel Software Suite \[${Kernel}\]
 ^JUNOS Crypto Software Suite \[${Crypto}\]
 ^JUNOS Online Documentation \[${Documentation}\]
 ^JUNOS Routing Software Suite \[${Routing}\]

Output example:

{
 "comment": "",
 "result": true,
 "out": [
 {
 "kernel": "9.1S3.5",
 "documentation": "9.1S3.5",
 "boot": "9.1S3.5",
 "crypto": "9.1S3.5",
 "chassis": "",
 "routing": "9.1S3.5",
 "base": "9.1S3.5",
 "model": "mx960"
 }
]
}

	
salt.modules.textfsm_mod.index(command, platform=None, platform_grain_name=None, platform_column_name=None, output=None, output_file=None, textfsm_path=None, index_file=None, saltenv='base', include_empty=False, include_pat=None, exclude_pat=None)

	Dynamically identify the template required to extract the
information from the unstructured raw text.

The output has the same structure as the extract execution
function, the difference being that index is capable
to identify what template to use, based on the platform
details and the command.

	command
	The command executed on the device, to get the output.

	platform
	The platform name, as defined in the TextFSM index file.

Note

For ease of use, it is recommended to define the TextFSM
indexfile with values that can be matches using the grains.

	platform_grain_name
	The name of the grain used to identify the platform name
in the TextFSM index file.

Note

This option can be also specified in the minion configuration
file or pillar as textfsm_platform_grain.

Note

This option is ignored when platform is specified.

	platform_column_name: Platform
	The column name used to identify the platform,
exactly as specified in the TextFSM index file.
Default: Platform.

Note

This is field is case sensitive, make sure
to assign the correct value to this option,
exactly as defined in the index file.

Note

This option can be also specified in the minion configuration
file or pillar as textfsm_platform_column_name.

	output
	The raw output from the device, to be parsed
and extract the structured data.

	output_file
	The path to a file that contains the raw output from the device,
used to extract the structured data.
This option supports the usual Salt-specific schemes: file://,
salt://, http://, https://, ftp://, s3://, swift://.

	textfsm_path
	The path where the TextFSM templates can be found. This can be either
absolute path on the server, either specified using the following URL
schemes: file://, salt://, http://, https://, ftp://,
s3://, swift://.

Note

This needs to be a directory with a flat structure, having an
index file (whose name can be specified using the index_file option)
and a number of TextFSM templates.

Note

This option can be also specified in the minion configuration
file or pillar as textfsm_path.

	index_file: index
	The name of the TextFSM index file, under the textfsm_path. Default: index.

Note

This option can be also specified in the minion configuration
file or pillar as textfsm_index_file.

	saltenv: base
	Salt fileserver environment from which to retrieve the file.
Ignored if textfsm_path is not a salt:// URL.

	include_empty: False
	Include empty files under the textfsm_path.

	include_pat
	Glob or regex to narrow down the files cached from the given path.
If matching with a regex, the regex must be prefixed with E@,
otherwise the expression will be interpreted as a glob.

	exclude_pat
	Glob or regex to exclude certain files from being cached from the given path.
If matching with a regex, the regex must be prefixed with E@,
otherwise the expression will be interpreted as a glob.

Note

If used with include_pat, files matching this pattern will be
excluded from the subset of files defined by include_pat.

CLI Example:

salt '*' textfsm.index 'sh ver' platform=Juniper output_file=salt://textfsm/juniper_version_example textfsm_path=salt://textfsm/
salt '*' textfsm.index 'sh ver' output_file=salt://textfsm/juniper_version_example textfsm_path=ftp://textfsm/ platform_column_name=Vendor
salt '*' textfsm.index 'sh ver' output_file=salt://textfsm/juniper_version_example textfsm_path=https://some-server/textfsm/ platform_column_name=Vendor platform_grain_name=vendor

TextFSM index file example:

salt://textfsm/index

Template, Hostname, Vendor, Command
juniper_version_template, .*, Juniper, sh[[ow]] ve[[rsion]]

The usage can be simplified,
by defining (some of) the following options: textfsm_platform_grain,
textfsm_path, textfsm_platform_column_name, or textfsm_index_file,
in the (proxy) minion configuration file or pillar.

Configuration example:

textfsm_platform_grain: vendor
textfsm_path: salt://textfsm/
textfsm_platform_column_name: Vendor

And the CLI usage becomes as simple as:

salt '*' textfsm.index 'sh ver' output_file=salt://textfsm/juniper_version_example

Usgae inside a Jinja template:

{%- set command = 'sh ver' -%}
{%- set output = salt.net.cli(command) -%}
{%- set textfsm_extract = salt.textfsm.index(command, output=output) -%}

salt.modules.timezone

Module for managing timezone on POSIX-like systems.

	
salt.modules.timezone.get_hwclock()

	Get current hardware clock setting (UTC or localtime)

CLI Example:

salt '*' timezone.get_hwclock

	
salt.modules.timezone.get_offset()

	Get current numeric timezone offset from UTC (i.e. -0700)

CLI Example:

salt '*' timezone.get_offset

	
salt.modules.timezone.get_zone()

	Get current timezone (i.e. America/Denver)

Changed in version 2016.11.4.

Note

On AIX operating systems, Posix values can also be returned
'CST6CDT,M3.2.0/2:00:00,M11.1.0/2:00:00'

CLI Example:

salt '*' timezone.get_zone

	
salt.modules.timezone.get_zonecode()

	Get current timezone (i.e. PST, MDT, etc)

CLI Example:

salt '*' timezone.get_zonecode

	
salt.modules.timezone.set_hwclock(clock)

	Sets the hardware clock to be either UTC or localtime

CLI Example:

salt '*' timezone.set_hwclock UTC

	
salt.modules.timezone.set_zone(timezone)

	Unlinks, then symlinks /etc/localtime to the set timezone.

The timezone is crucial to several system processes, each of which SHOULD
be restarted (for instance, whatever you system uses as its cron and
syslog daemons). This will not be automagically done and must be done
manually!

CLI Example:

salt '*' timezone.set_zone 'America/Denver'

Changed in version 2016.11.4.

Note

On AIX operating systems, Posix values are also allowed, see below

salt '*' timezone.set_zone 'CST6CDT,M3.2.0/2:00:00,M11.1.0/2:00:00'

	
salt.modules.timezone.zone_compare(timezone)

	Compares the given timezone name with the system timezone name.
Checks the hash sum between the given timezone, and the one set in
/etc/localtime. Returns True if names and hash sums match, and False if not.
Mostly useful for running state checks.

Changed in version 2016.3.0.

Note

On Solaris-like operating systems only a string comparison is done.

Changed in version 2016.11.4.

Note

On AIX operating systems only a string comparison is done.

CLI Example:

salt '*' timezone.zone_compare 'America/Denver'

salt.modules.tls

A salt module for SSL/TLS. Can create a Certificate Authority (CA)
or use Self-Signed certificates.

	depends:

	PyOpenSSL Python module (0.10 or later, 0.14 or later for X509
extension support)

	configuration:

	Add the following values in /etc/salt/minion for the CA module
to function properly:

ca.cert_base_path: '/etc/pki'

CLI Example #1:
Creating a CA, a server request and its signed certificate:

salt-call tls.create_ca my_little \
days=5 \
CN='My Little CA' \
C=US \
ST=Utah \
L=Salt Lake City \
O=Saltstack \
emailAddress=pleasedontemail@example.com

Created Private Key: "/etc/pki/my_little/my_little_ca_cert.key"
Created CA "my_little_ca": "/etc/pki/my_little_ca/my_little_ca_cert.crt"

salt-call tls.create_csr my_little CN=www.example.com
Created Private Key: "/etc/pki/my_little/certs/www.example.com.key
Created CSR for "www.example.com": "/etc/pki/my_little/certs/www.example.com.csr"

salt-call tls.create_ca_signed_cert my_little CN=www.example.com
Created Certificate for "www.example.com": /etc/pki/my_little/certs/www.example.com.crt"

CLI Example #2:
Creating a client request and its signed certificate

salt-call tls.create_csr my_little CN=DBReplica_No.1 cert_type=client
Created Private Key: "/etc/pki/my_little/certs//DBReplica_No.1.key"
Created CSR for "DBReplica_No.1": "/etc/pki/my_little/certs/DBReplica_No.1.csr"

salt-call tls.create_ca_signed_cert my_little CN=DBReplica_No.1
Created Certificate for "DBReplica_No.1": "/etc/pki/my_little/certs/DBReplica_No.1.crt"

CLI Example #3:
Creating both a server and client req + cert for the same CN

salt-call tls.create_csr my_little CN=MasterDBReplica_No.2 \
 cert_type=client
Created Private Key: "/etc/pki/my_little/certs/MasterDBReplica_No.2.key"
Created CSR for "DBReplica_No.1": "/etc/pki/my_little/certs/MasterDBReplica_No.2.csr"

salt-call tls.create_ca_signed_cert my_little CN=MasterDBReplica_No.2
Created Certificate for "DBReplica_No.1": "/etc/pki/my_little/certs/DBReplica_No.1.crt"

salt-call tls.create_csr my_little CN=MasterDBReplica_No.2 \
 cert_type=server
Certificate "MasterDBReplica_No.2" already exists

(doh!)

salt-call tls.create_csr my_little CN=MasterDBReplica_No.2 \
 cert_type=server type_ext=True
Created Private Key: "/etc/pki/my_little/certs/DBReplica_No.1_client.key"
Created CSR for "DBReplica_No.1": "/etc/pki/my_little/certs/DBReplica_No.1_client.csr"

salt-call tls.create_ca_signed_cert my_little CN=MasterDBReplica_No.2
Certificate "MasterDBReplica_No.2" already exists

(DOH!)

salt-call tls.create_ca_signed_cert my_little CN=MasterDBReplica_No.2 \
 cert_type=server type_ext=True
Created Certificate for "MasterDBReplica_No.2": "/etc/pki/my_little/certs/MasterDBReplica_No.2_server.crt"

CLI Example #4:
Create a server req + cert with non-CN filename for the cert

salt-call tls.create_csr my_little CN=www.anothersometh.ing \
 cert_type=server type_ext=True
Created Private Key: "/etc/pki/my_little/certs/www.anothersometh.ing_server.key"
Created CSR for "DBReplica_No.1": "/etc/pki/my_little/certs/www.anothersometh.ing_server.csr"

salt-call tls_create_ca_signed_cert my_little CN=www.anothersometh.ing \
 cert_type=server cert_filename="something_completely_different"
Created Certificate for "www.anothersometh.ing": /etc/pki/my_little/certs/something_completely_different.crt

	
salt.modules.tls.ca_exists(ca_name, cacert_path=None, ca_filename=None)

	Verify whether a Certificate Authority (CA) already exists

	ca_name
	name of the CA

	cacert_path
	absolute path to ca certificates root directory

	ca_filename
	alternative filename for the CA

New in version 2015.5.3.

CLI Example:

salt '*' tls.ca_exists test_ca /etc/certs

	
salt.modules.tls.cert_base_path(cacert_path=None)

	Return the base path for certs from CLI or from options

	cacert_path
	absolute path to ca certificates root directory

CLI Example:

salt '*' tls.cert_base_path

	
salt.modules.tls.cert_info(cert, digest='sha256')

	Return information for a particular certificate

	cert
	path to the certifiate PEM file or string

Changed in version 2018.3.4.

	digest
	what digest to use for fingerprinting

CLI Example:

salt '*' tls.cert_info /dir/for/certs/cert.pem

	
salt.modules.tls.create_ca(ca_name, bits=2048, days=365, CN='localhost', C='US', ST='Utah', L='Salt Lake City', O='SaltStack', OU=None, emailAddress=None, fixmode=False, cacert_path=None, ca_filename=None, digest='sha256', onlyif=None, unless=None, replace=False)

	Create a Certificate Authority (CA)

	ca_name
	name of the CA

	bits
	number of RSA key bits, default is 2048

	days
	number of days the CA will be valid, default is 365

	CN
	common name in the request, default is "localhost"

	C
	country, default is "US"

	ST
	state, default is "Utah"

	L
	locality, default is "Centerville", the city where SaltStack originated

	O
	organization, default is "SaltStack"

	OU
	organizational unit, default is None

	emailAddress
	email address for the CA owner, default is None

	cacert_path
	absolute path to ca certificates root directory

	ca_filename
	alternative filename for the CA

New in version 2015.5.3.

	digest
	The message digest algorithm. Must be a string describing a digest
algorithm supported by OpenSSL (by EVP_get_digestbyname, specifically).
For example, "md5" or "sha1". Default: 'sha256'

	replace
	Replace this certificate even if it exists

New in version 2015.5.1.

Writes out a CA certificate based upon defined config values. If the file
already exists, the function just returns assuming the CA certificate
already exists.

If the following values were set:

ca.cert_base_path='/etc/pki'
ca_name='koji'

the resulting CA, and corresponding key, would be written in the following
location with appropriate permissions:

/etc/pki/koji/koji_ca_cert.crt
/etc/pki/koji/koji_ca_cert.key

CLI Example:

salt '*' tls.create_ca test_ca

	
salt.modules.tls.create_ca_signed_cert(ca_name, CN, days=365, cacert_path=None, ca_filename=None, cert_path=None, cert_filename=None, digest='sha256', cert_type=None, type_ext=False, replace=False)

	Create a Certificate (CERT) signed by a named Certificate Authority (CA)

If the certificate file already exists, the function just returns assuming
the CERT already exists.

The CN must match an existing CSR generated by create_csr. If it
does not, this method does nothing.

	ca_name
	name of the CA

	CN
	common name matching the certificate signing request

	days
	number of days certificate is valid, default is 365 (1 year)

	cacert_path
	absolute path to ca certificates root directory

	ca_filename
	alternative filename for the CA

New in version 2015.5.3.

	cert_path
	full path to the certificates directory

	cert_filename
	alternative filename for the certificate, useful when using special
characters in the CN. If this option is set it will override
the certificate filename output effects of cert_type.
type_ext will be completely overridden.

New in version 2015.5.3.

	digest
	The message digest algorithm. Must be a string describing a digest
algorithm supported by OpenSSL (by EVP_get_digestbyname, specifically).
For example, "md5" or "sha1". Default: 'sha256'

	replace
	Replace this certificate even if it exists

New in version 2015.5.1.

	cert_type
	string. Either 'server' or 'client' (see create_csr() for details).

If create_csr(type_ext=True) this function must be called with the
same cert_type so it can find the CSR file.

Note

create_csr() defaults to cert_type='server'; therefore, if it was also
called with type_ext, cert_type becomes a required argument for
create_ca_signed_cert()

	type_ext
	bool. If set True, use cert_type as an extension to the CN when
formatting the filename.

e.g.: some_subject_CN_server.crt or some_subject_CN_client.crt

This facilitates the context where both types are required for the same
subject

If cert_filename is not None, setting type_ext has no
effect

If the following values were set:

ca.cert_base_path='/etc/pki'
ca_name='koji'
CN='test.egavas.org'

the resulting signed certificate would be written in the following
location:

/etc/pki/koji/certs/test.egavas.org.crt

CLI Example:

salt '*' tls.create_ca_signed_cert test localhost

	
salt.modules.tls.create_csr(ca_name, bits=2048, CN='localhost', C='US', ST='Utah', L='Salt Lake City', O='SaltStack', OU=None, emailAddress=None, subjectAltName=None, cacert_path=None, ca_filename=None, csr_path=None, csr_filename=None, digest='sha256', type_ext=False, cert_type='server', replace=False)

	Create a Certificate Signing Request (CSR) for a
particular Certificate Authority (CA)

	ca_name
	name of the CA

	bits
	number of RSA key bits, default is 2048

	CN
	common name in the request, default is "localhost"

	C
	country, default is "US"

	ST
	state, default is "Utah"

	L
	locality, default is "Centerville", the city where SaltStack originated

	O
	organization, default is "SaltStack"
NOTE: Must the same as CA certificate or an error will be raised

	OU
	organizational unit, default is None

	emailAddress
	email address for the request, default is None

	subjectAltName
	valid subjectAltNames in full form, e.g. to add DNS entry you would call
this function with this value:

	examples: ['DNS:somednsname.com',
	'DNS:1.2.3.4',
'IP:1.2.3.4',
'IP:2001:4801:7821:77:be76:4eff:fe11:e51',
'email:me@i.like.pie.com']

Note

some libraries do not properly query IP: prefixes, instead looking
for the given req. source with a DNS: prefix. To be thorough, you
may want to include both DNS: and IP: entries if you are using
subjectAltNames for destinations for your TLS connections.
e.g.:
requests to https://1.2.3.4 will fail from python's
requests library w/out the second entry in the above list

New in version 2015.8.0.

	cert_type
	Specify the general certificate type. Can be either server or
client. Indicates the set of common extensions added to the CSR.

server: {
 'basicConstraints': 'CA:FALSE',
 'extendedKeyUsage': 'serverAuth',
 'keyUsage': 'digitalSignature, keyEncipherment'
}

client: {
 'basicConstraints': 'CA:FALSE',
 'extendedKeyUsage': 'clientAuth',
 'keyUsage': 'nonRepudiation, digitalSignature, keyEncipherment'
}

	type_ext
	boolean. Whether or not to extend the filename with CN_[cert_type]
This can be useful if a server and client certificate are needed for
the same CN. Defaults to False to avoid introducing an unexpected file
naming pattern

The files normally named some_subject_CN.csr and some_subject_CN.key
will then be saved

	replace
	Replace this signing request even if it exists

New in version 2015.5.1.

Writes out a Certificate Signing Request (CSR) If the file already
exists, the function just returns assuming the CSR already exists.

If the following values were set:

ca.cert_base_path='/etc/pki'
ca_name='koji'
CN='test.egavas.org'

the resulting CSR, and corresponding key, would be written in the
following location with appropriate permissions:

/etc/pki/koji/certs/test.egavas.org.csr
/etc/pki/koji/certs/test.egavas.org.key

CLI Example:

salt '*' tls.create_csr test

	
salt.modules.tls.create_empty_crl(ca_name, cacert_path=None, ca_filename=None, crl_file=None, digest='sha256')

	Create an empty Certificate Revocation List.

New in version 2015.8.0.

	ca_name
	name of the CA

	cacert_path
	absolute path to ca certificates root directory

	ca_filename
	alternative filename for the CA

New in version 2015.5.3.

	crl_file
	full path to the CRL file

	digest
	The message digest algorithm. Must be a string describing a digest
algorithm supported by OpenSSL (by EVP_get_digestbyname, specifically).
For example, "md5" or "sha1". Default: 'sha256'

CLI Example:

salt '*' tls.create_empty_crl ca_name='koji' ca_filename='ca' crl_file='/etc/openvpn/team1/crl.pem'

	
salt.modules.tls.create_pkcs12(ca_name, CN, passphrase='', cacert_path=None, replace=False)

	Create a PKCS#12 browser certificate for a particular Certificate (CN)

	ca_name
	name of the CA

	CN
	common name matching the certificate signing request

	passphrase
	used to unlock the PKCS#12 certificate when loaded into the browser

	cacert_path
	absolute path to ca certificates root directory

	replace
	Replace this certificate even if it exists

New in version 2015.5.1.

If the following values were set:

ca.cert_base_path='/etc/pki'
ca_name='koji'
CN='test.egavas.org'

the resulting signed certificate would be written in the
following location:

/etc/pki/koji/certs/test.egavas.org.p12

CLI Example:

salt '*' tls.create_pkcs12 test localhost

	
salt.modules.tls.create_self_signed_cert(tls_dir='tls', bits=2048, days=365, CN='localhost', C='US', ST='Utah', L='Salt Lake City', O='SaltStack', OU=None, emailAddress=None, cacert_path=None, cert_filename=None, digest='sha256', replace=False)

	Create a Self-Signed Certificate (CERT)

	tls_dir
	location appended to the ca.cert_base_path, default is 'tls'

	bits
	number of RSA key bits, default is 2048

	CN
	common name in the request, default is "localhost"

	C
	country, default is "US"

	ST
	state, default is "Utah"

	L
	locality, default is "Centerville", the city where SaltStack originated

	O
	organization, default is "SaltStack"
NOTE: Must the same as CA certificate or an error will be raised

	OU
	organizational unit, default is None

	emailAddress
	email address for the request, default is None

	cacert_path
	absolute path to ca certificates root directory

	digest
	The message digest algorithm. Must be a string describing a digest
algorithm supported by OpenSSL (by EVP_get_digestbyname, specifically).
For example, "md5" or "sha1". Default: 'sha256'

	replace
	Replace this certificate even if it exists

New in version 2015.5.1.

Writes out a Self-Signed Certificate (CERT). If the file already
exists, the function just returns.

If the following values were set:

ca.cert_base_path='/etc/pki'
tls_dir='koji'
CN='test.egavas.org'

the resulting CERT, and corresponding key, would be written in the
following location with appropriate permissions:

/etc/pki/koji/certs/test.egavas.org.crt
/etc/pki/koji/certs/test.egavas.org.key

CLI Example:

salt '*' tls.create_self_signed_cert

Passing options from the command line:

salt 'minion' tls.create_self_signed_cert CN='test.mysite.org'

	
salt.modules.tls.get_ca(ca_name, as_text=False, cacert_path=None)

	Get the certificate path or content

	ca_name
	name of the CA

	as_text
	if true, return the certificate content instead of the path

	cacert_path
	absolute path to ca certificates root directory

CLI Example:

salt '*' tls.get_ca test_ca as_text=False cacert_path=/etc/certs

	
salt.modules.tls.get_ca_signed_cert(ca_name, CN='localhost', as_text=False, cacert_path=None, cert_filename=None)

	Get the certificate path or content

	ca_name
	name of the CA

	CN
	common name of the certificate

	as_text
	if true, return the certificate content instead of the path

	cacert_path
	absolute path to certificates root directory

	cert_filename
	alternative filename for the certificate, useful when using special characters in the CN

New in version 2015.5.3.

CLI Example:

salt '*' tls.get_ca_signed_cert test_ca CN=localhost as_text=False cacert_path=/etc/certs

	
salt.modules.tls.get_ca_signed_key(ca_name, CN='localhost', as_text=False, cacert_path=None, key_filename=None)

	Get the certificate path or content

	ca_name
	name of the CA

	CN
	common name of the certificate

	as_text
	if true, return the certificate content instead of the path

	cacert_path
	absolute path to certificates root directory

	key_filename
	alternative filename for the key, useful when using special characters

New in version 2015.5.3.

in the CN

CLI Example:

salt '*' tls.get_ca_signed_key test_ca CN=localhost as_text=False cacert_path=/etc/certs

	
salt.modules.tls.get_expiration_date(cert, date_format='%Y-%m-%d')

	
New in version 2019.2.0.

Get a certificate's expiration date

	cert
	Full path to the certificate

	date_format
	By default this will return the expiration date in YYYY-MM-DD format,
use this to specify a different strftime format string. Note that the
expiration time will be in UTC.

CLI Examples:

salt '*' tls.get_expiration_date /path/to/foo.crt
salt '*' tls.get_expiration_date /path/to/foo.crt date_format='%d/%m/%Y'

	
salt.modules.tls.get_extensions(cert_type)

	Fetch X509 and CSR extension definitions from tls:extensions:
(common|server|client) or set them to standard defaults.

New in version 2015.8.0.

	cert_type:
	The type of certificate such as server or client.

CLI Example:

salt '*' tls.get_extensions client

	
salt.modules.tls.maybe_fix_ssl_version(ca_name, cacert_path=None, ca_filename=None)

	Check that the X509 version is correct
(was incorrectly set in previous salt versions).
This will fix the version if needed.

	ca_name
	ca authority name

	cacert_path
	absolute path to ca certificates root directory

	ca_filename
	alternative filename for the CA

New in version 2015.5.3.

CLI Example:

salt '*' tls.maybe_fix_ssl_version test_ca /etc/certs

	
salt.modules.tls.revoke_cert(ca_name, CN, cacert_path=None, ca_filename=None, cert_path=None, cert_filename=None, crl_file=None, digest='sha256')

	Revoke a certificate.

New in version 2015.8.0.

	ca_name
	Name of the CA.

	CN
	Common name matching the certificate signing request.

	cacert_path
	Absolute path to ca certificates root directory.

	ca_filename
	Alternative filename for the CA.

	cert_path
	Path to the cert file.

	cert_filename
	Alternative filename for the certificate, useful when using special
characters in the CN.

	crl_file
	Full path to the CRL file.

	digest
	The message digest algorithm. Must be a string describing a digest
algorithm supported by OpenSSL (by EVP_get_digestbyname, specifically).
For example, "md5" or "sha1". Default: 'sha256'

CLI Example:

salt '*' tls.revoke_cert ca_name='koji' ca_filename='ca' crl_file='/etc/openvpn/team1/crl.pem'

	
salt.modules.tls.set_ca_path(cacert_path)

	If wanted, store the aforementioned cacert_path in context
to be used as the basepath for further operations

CLI Example:

salt '*' tls.set_ca_path /etc/certs

	
salt.modules.tls.validate(cert, ca_name, crl_file)

	
New in version 3000.

Validate a certificate against a given CA/CRL.

	cert
	path to the certifiate PEM file or string

	ca_name
	name of the CA

	crl_file
	full path to the CRL file

salt.modules.tomcat

Support for Tomcat

This module uses the manager webapp to manage Apache tomcat webapps.
If the manager webapp is not configured some of the functions won't work.

	configuration:

	
	Java bin path should be in default path

	If ipv6 is enabled make sure you permit manager access to ipv6 interface
"0:0:0:0:0:0:0:1"

	If you are using tomcat.tar.gz it has to be installed or symlinked under
/opt, preferably using name tomcat

	"tomcat.signal start/stop" works but it does not use the startup scripts

The following grains/pillar should be set:

tomcat-manager:
 user: <username>
 passwd: <password>

or the old format:

tomcat-manager.user: <username>
tomcat-manager.passwd: <password>

Also configure a user in the conf/tomcat-users.xml file:

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
 <role rolename="manager-script"/>
 <user username="tomcat" password="tomcat" roles="manager-script"/>
</tomcat-users>

Note

	More information about tomcat manager:
http://tomcat.apache.org/tomcat-7.0-doc/manager-howto.html

	if you use only this module for deployments you've might want to strict
access to the manager only from localhost for more info:
http://tomcat.apache.org/tomcat-7.0-doc/manager-howto.html#Configuring_Manager_Application_Access

	Tested on:

	JVM Vendor:
	Sun Microsystems Inc.

	JVM Version:
	1.6.0_43-b01

	OS Architecture:
	amd64

	OS Name:
	Linux

	OS Version:
	2.6.32-358.el6.x86_64

	Tomcat Version:
	Apache Tomcat/7.0.37

	
salt.modules.tomcat.deploy_war(war, context, force='no', url='http://localhost:8080/manager', saltenv='base', timeout=180, temp_war_location=None, version=True)

	Deploy a WAR file

	war
	absolute path to WAR file (should be accessible by the user running
tomcat) or a path supported by the salt.modules.cp.get_file function

	context
	the context path to deploy

	forceFalse
	set True to deploy the webapp even one is deployed in the context

	urlhttp://localhost:8080/manager
	the URL of the server manager webapp

	saltenvbase
	the environment for WAR file in used by salt.modules.cp.get_url
function

	timeout180
	timeout for HTTP request

	temp_war_locationNone
	use another location to temporarily copy to war file
by default the system's temp directory is used

	version''
	Specify the war version. If this argument is provided, it overrides
the version encoded in the war file name, if one is present.

Examples:

salt '*' tomcat.deploy_war salt://salt-2015.8.6.war version=2015.08.r6

New in version 2015.8.6.

CLI Examples:

cp module

salt '*' tomcat.deploy_war salt://application.war /api
salt '*' tomcat.deploy_war salt://application.war /api no
salt '*' tomcat.deploy_war salt://application.war /api yes http://localhost:8080/manager

minion local file system

salt '*' tomcat.deploy_war /tmp/application.war /api
salt '*' tomcat.deploy_war /tmp/application.war /api no
salt '*' tomcat.deploy_war /tmp/application.war /api yes http://localhost:8080/manager

	
salt.modules.tomcat.extract_war_version(war)

	Extract the version from the war file name. There does not seem to be a
standard for encoding the version into the war file name [https://tomcat.apache.org/tomcat-6.0-doc/deployer-howto.html]

Examples:

/path/salt-2015.8.6.war -> 2015.8.6
/path/V6R2013xD5.war -> None

	
salt.modules.tomcat.fullversion()

	Return all server information from catalina.sh version

CLI Example:

salt '*' tomcat.fullversion

	
salt.modules.tomcat.leaks(url='http://localhost:8080/manager', timeout=180)

	Find memory leaks in tomcat

	urlhttp://localhost:8080/manager
	the URL of the server manager webapp

	timeout180
	timeout for HTTP request

CLI Examples:

salt '*' tomcat.leaks

	
salt.modules.tomcat.ls(url='http://localhost:8080/manager', timeout=180)

	list all the deployed webapps

	urlhttp://localhost:8080/manager
	the URL of the server manager webapp

	timeout180
	timeout for HTTP request

CLI Examples:

salt '*' tomcat.ls
salt '*' tomcat.ls http://localhost:8080/manager

	
salt.modules.tomcat.passwd(passwd, user='', alg='sha1', realm=None)

	This function replaces the $CATALINA_HOME/bin/digest.sh script
convert a clear-text password to the $CATALINA_BASE/conf/tomcat-users.xml
format

CLI Examples:

salt '*' tomcat.passwd secret
salt '*' tomcat.passwd secret tomcat sha1
salt '*' tomcat.passwd secret tomcat sha1 'Protected Realm'

	
salt.modules.tomcat.reload_(app, url='http://localhost:8080/manager', timeout=180)

	Reload the webapp

	app
	the webapp context path

	urlhttp://localhost:8080/manager
	the URL of the server manager webapp

	timeout180
	timeout for HTTP request

CLI Examples:

salt '*' tomcat.reload /jenkins
salt '*' tomcat.reload /jenkins http://localhost:8080/manager

	
salt.modules.tomcat.serverinfo(url='http://localhost:8080/manager', timeout=180)

	return details about the server

	urlhttp://localhost:8080/manager
	the URL of the server manager webapp

	timeout180
	timeout for HTTP request

CLI Examples:

salt '*' tomcat.serverinfo
salt '*' tomcat.serverinfo http://localhost:8080/manager

	
salt.modules.tomcat.sessions(app, url='http://localhost:8080/manager', timeout=180)

	return the status of the webapp sessions

	app
	the webapp context path

	urlhttp://localhost:8080/manager
	the URL of the server manager webapp

	timeout180
	timeout for HTTP request

CLI Examples:

salt '*' tomcat.sessions /jenkins
salt '*' tomcat.sessions /jenkins http://localhost:8080/manager

	
salt.modules.tomcat.signal(signal=None)

	Signals catalina to start, stop, securestart, forcestop.

CLI Example:

salt '*' tomcat.signal start

	
salt.modules.tomcat.start(app, url='http://localhost:8080/manager', timeout=180)

	Start the webapp

	app
	the webapp context path

	urlhttp://localhost:8080/manager
	the URL of the server manager webapp

	timeout
	timeout for HTTP request

CLI Examples:

salt '*' tomcat.start /jenkins
salt '*' tomcat.start /jenkins http://localhost:8080/manager

	
salt.modules.tomcat.status(url='http://localhost:8080/manager', timeout=180)

	Used to test if the tomcat manager is up

	urlhttp://localhost:8080/manager
	the URL of the server manager webapp

	timeout180
	timeout for HTTP request

CLI Examples:

salt '*' tomcat.status
salt '*' tomcat.status http://localhost:8080/manager

	
salt.modules.tomcat.status_webapp(app, url='http://localhost:8080/manager', timeout=180)

	return the status of the webapp (stopped | running | missing)

	app
	the webapp context path

	urlhttp://localhost:8080/manager
	the URL of the server manager webapp

	timeout180
	timeout for HTTP request

CLI Examples:

salt '*' tomcat.status_webapp /jenkins
salt '*' tomcat.status_webapp /jenkins http://localhost:8080/manager

	
salt.modules.tomcat.stop(app, url='http://localhost:8080/manager', timeout=180)

	Stop the webapp

	app
	the webapp context path

	urlhttp://localhost:8080/manager
	the URL of the server manager webapp

	timeout180
	timeout for HTTP request

CLI Examples:

salt '*' tomcat.stop /jenkins
salt '*' tomcat.stop /jenkins http://localhost:8080/manager

	
salt.modules.tomcat.undeploy(app, url='http://localhost:8080/manager', timeout=180)

	Undeploy a webapp

	app
	the webapp context path

	urlhttp://localhost:8080/manager
	the URL of the server manager webapp

	timeout180
	timeout for HTTP request

CLI Examples:

salt '*' tomcat.undeploy /jenkins
salt '*' tomcat.undeploy /jenkins http://localhost:8080/manager

	
salt.modules.tomcat.version()

	Return server version from catalina.sh version

CLI Example:

salt '*' tomcat.version

salt.modules.trafficserver

Apache Traffic Server execution module.

New in version 2015.8.0.

traffic_ctl is used to execute individual Traffic Server commands and to
script multiple commands in a shell.

	
salt.modules.trafficserver.alarms()

	List all alarm events that have not been acknowledged (cleared).

salt '*' trafficserver.alarms

	
salt.modules.trafficserver.bounce_cluster()

	Bounce all Traffic Server nodes in the cluster. Bouncing Traffic Server
shuts down and immediately restarts Traffic Server, node-by-node.

salt '*' trafficserver.bounce_cluster

	
salt.modules.trafficserver.bounce_local(drain=False)

	Bounce Traffic Server on the local node. Bouncing Traffic Server shuts down
and immediately restarts the Traffic Server node.

	drain
	This option modifies the restart behavior such that traffic_server
is not shut down until the number of active client connections
drops to the number given by the
proxy.config.restart.active_client_threshold configuration
variable.

salt '*' trafficserver.bounce_local
salt '*' trafficserver.bounce_local drain=True

	
salt.modules.trafficserver.clear_alarms(alarm)

	Clear (acknowledge) an alarm event. The arguments are “all” for all current
alarms, a specific alarm number (e.g. ‘‘1’‘), or an alarm string identifier
(e.g. ‘’MGMT_ALARM_PROXY_CONFIG_ERROR’‘).

salt '*' trafficserver.clear_alarms [all | #event | name]

	
salt.modules.trafficserver.clear_cluster()

	Clears accumulated statistics on all nodes in the cluster.

salt '*' trafficserver.clear_cluster

	
salt.modules.trafficserver.clear_node()

	Clears accumulated statistics on the local node.

salt '*' trafficserver.clear_node

	
salt.modules.trafficserver.match_config(regex)

	Display the current values of all configuration variables whose
names match the given regular expression.

New in version 2016.11.0.

salt '*' trafficserver.match_config regex

	
salt.modules.trafficserver.match_metric(regex)

	Display the current values of all metrics whose names match the
given regular expression.

New in version 2016.11.0.

salt '*' trafficserver.match_metric regex

	
salt.modules.trafficserver.offline(path)

	Mark a cache storage device as offline. The storage is identified by a path
which must match exactly a path specified in storage.config. This removes
the storage from the cache and redirects requests that would have used this
storage to other storage. This has exactly the same effect as a disk
failure for that storage. This does not persist across restarts of the
traffic_server process.

salt '*' trafficserver.offline /path/to/cache

	
salt.modules.trafficserver.read_config(*args)

	Read Traffic Server configuration variable definitions.

New in version 2016.11.0.

salt '*' trafficserver.read_config proxy.config.http.keep_alive_post_out

	
salt.modules.trafficserver.read_metric(*args)

	Read Traffic Server one or more metrics.

New in version 2016.11.0.

salt '*' trafficserver.read_metric proxy.process.http.tcp_hit_count_stat

	
salt.modules.trafficserver.refresh()

	Initiate a Traffic Server configuration file reread. Use this command to
update the running configuration after any configuration file modification.

The timestamp of the last reconfiguration event (in seconds since epoch) is
published in the proxy.node.config.reconfigure_time metric.

salt '*' trafficserver.refresh

	
salt.modules.trafficserver.restart_cluster()

	Restart the traffic_manager process and the traffic_server process on all
the nodes in a cluster.

salt '*' trafficserver.restart_cluster

	
salt.modules.trafficserver.restart_local(drain=False)

	Restart the traffic_manager and traffic_server processes on the local node.

	drain
	This option modifies the restart behavior such that
traffic_server is not shut down until the number of
active client connections drops to the number given by the
proxy.config.restart.active_client_threshold configuration
variable.

salt '*' trafficserver.restart_local
salt '*' trafficserver.restart_local drain=True

	
salt.modules.trafficserver.set_config(variable, value)

	Set the value of a Traffic Server configuration variable.

	variable
	Name of a Traffic Server configuration variable.

	value
	The new value to set.

New in version 2016.11.0.

salt '*' trafficserver.set_config proxy.config.http.keep_alive_post_out 0

	
salt.modules.trafficserver.shutdown()

	Shut down Traffic Server on the local node.

salt '*' trafficserver.shutdown

	
salt.modules.trafficserver.startup()

	Start Traffic Server on the local node.

salt '*' trafficserver.start

	
salt.modules.trafficserver.status()

	Show the current proxy server status, indicating if we’re running or not.

salt '*' trafficserver.status

	
salt.modules.trafficserver.zero_cluster()

	Reset performance statistics to zero across the cluster.

salt '*' trafficserver.zero_cluster

	
salt.modules.trafficserver.zero_node()

	Reset performance statistics to zero on the local node.

salt '*' trafficserver.zero_cluster

salt.modules.transactional_update module

Transactional update

New in version 3004.

A transactional system, like MicroOS [https://microos.opensuse.org/], can present some challenges
when the user decided to manage it via Salt.

MicroOS provides a read-only rootfs and a tool,
transactional-update, that takes care of the management of the
system (updating, upgrading, installation or reboot, among others) in
an atomic way.

Atomicity is the main feature of MicroOS, and to guarantee this
property, this model leverages snapper, zypper, btrfs and
overlayfs to create snapshots that will be updated independently
of the currently running system, and that are activated after the
reboot. This implies, for example, that some changes made on the
system are not visible until the next reboot, as those changes are
living in a different snapshot of the file system.

This model presents a lot of problems with the traditional Salt model,
where the inspections (like 'is this package installed?') are executed
in order to determine if a subsequent action is required (like
'install this package').

Lets consider this use case, to see how it works on a traditional
system, and in a transactional system:

	Check if apache is installed

	If it is not installed, install it

	Check that a vhost is configured for apache

	Make sure that apache2.service is enabled

	If the configuration changes, restart apache2.service

In the traditional system everything will work as expected. The
system can see if the package is present or not, install it if it
isn't, and a re-check will shows that is already present. The same
will happen to the configuration file in /etc/apache2, that will
be available as soon the package gets installed. Salt can inspect the
current form of this file, and add the missing bits if required. Salt
can annotate that a change is present, and restart the service.

In a transactional system we will have multiple issues. The first one
is that Salt can only see the content of the snapshot where the system
booted from. Later snapshots may contain different content, including
the presence of apache. If Salt decides to install apache
calling zypper, it will fail, as this will try to write into the
read-only rootfs. Even if Salt would call transactional-update pkg
install, the package would only be present in the new transaction
(snapshot), and will not be found in the currently running system when
later Salt tries to validate the presence of the package in the
current one.

Any change in /etc alone will have also problems, as the changes
will be alive in a different overlay, only visible after the reboot.
And, finally, the service can only be enabled and restarted if the
service file is already present in the current /etc.

General strategy

transactional-update is the reference tool used for the
administration of transactional systems. Newer versions of this tool
support the execution of random commands in the new transaction, the
continuation of a transaction, the automatic detection of changes in
new transactions and the merge of /etc overlays.

Continue a transaction

One prerequisite already present is the support for branching from a
different snapshot than the current one in snapper.

With this feature we can represent in transactional-update the
action of creating a transaction snapshot based on one that is planned
to be the active one after the reboot. This feature removes a lot of
user complains (like, for example, losing changes that are stored in a
transaction not yet activated), but also provide a more simple model
to work with.

So, for example, if the user have this scenario:

 +-----+ *=====* +--V--+
--| T.1 |--| T.2 |--| T.3 |
 +-----+ *=====* +--A--+

where T.2 is the current active one, and T.3 is an snapshot generated
from T.2 with a new package (apache2), and is marked to be the
active after the reboot.

Previously, if the user (that is still on T.2) created a new
transaction, maybe for adding a new package (tomcat, for example),
the new T.4 will be based on the content of T.2 again, and not T.3, so
the new T.4 will have lost the changes of T.3 (i.e. apache2 will not
be present in T.4).

With the --continue parameter, transactional-update will
create T.4 based on T.3, and nothing will be lost.

Command execution inside a new transaction

With transactional-update run we will create a new transaction
based on the current one (T.2), where we can send interactive commands
that can modify the new transaction, and as commented, with
transactional-update --continue run, we will create a new
transaction based on the last created (T.3)

The run command can execute any application inside the new
transaction namespace. This module uses this feature to execute the
different Salt execution modules, via call(). Or even the full
salt-thin or salt-call via sls(), apply(),
single() or highstate.

transactional-update will drop empty snapshots

The option --drop-if-no-change is used to detect whether there is
any change in the file system on the read-only subvolume of the new
transaction will be added. If a change is present, the new
transaction will remain, if not it will be discarded.

For example:

transactional-update --continue --drop-if-no-change run zypper in apache2

If we are in the scenario described before, apache2 is already
present in T.3. In this case a new transaction, T.4, will be created
based on T.3, zypper will detect that the package is already
present and no change will be produced on T.4. At the end of the
execution, transactional-update will validate that T.3 and T.4 are
equivalent and T.4 will be discarded.

If the command is:

transactional-update --continue --drop-if-no-change run zypper in tomcat

the new T.4 will be indeed different from T.3, and will remain after
the transaction is closed.

With this feature, every time that we call any function of this
execution module, we will minimize the amount of transaction, while
maintaining the idempotence so some operations.

Report for pending transaction

A change in the system will create a new transaction, that needs to be
activated via a reboot. With pending_transaction() we can check
if a reboot is needed. We can execute the reboot using the
reboot() function, that will follow the plan established by the
functions of the rebootmgr execution module.

/etc overlay merge when no new transaction is created

In a transactional model, /etc is an overlay file system. Changes
done during the update are only present in the new transaction, and so
will only be available after the reboot. Or worse, if the transaction
gets dropped, because there is no change in the rootfs, the
changes in /etc will be dropped too!. This is designed like that
in order to make the configuration files for the new package available
only when new package is also available to the user. So, after the
reboot.

This makes sense for the case when, for example, apache2 is not
present in the current transaction, but we installed it. The new
snapshot contains the apache2 service, and the configuration files
in /etc will be accessible only after the reboot.

But this model presents an issue. If we use transactional-update
--continue --drop-if-no-change run <command>, where <command>
does not make any change in the read-only subvolume, but only in
/etc (which is also read-write in the running system), the new
overlay with the changes in /etc will be dropped together with the
transaction.

To fix this, transactional-update will detect that when no change
has been made on the read-only subvolume, but done in the overlay, the
transaction will be dropped and the changes in the overlay will be
merged back into /etc overlay of the current transaction.

Using the execution module

With this module we can create states that leverage Salt into this
kind of systems:

Install apache (low-level API)
salt-call transactional_update.pkg_install apache2

We can call any execution module
salt-call transactional_update.call pkg.install apache2

Or via a state
salt-call transactional_update.single pkg.installed name=apache2

We can also execute a zypper directly
salt-call transactional_update run "zypper in apache2" snapshot="continue"

We can reuse SLS states
salt-call transactional_update.apply install_and_configure_apache

Or apply the full highstate
salt-call transactional_update.highstate

Is there any change done in the system?
salt-call transactional_update pending_transaction

If so, reboot via rebootmgr
salt-call transactional_update reboot

We can enable the service
salt-call service.enable apache2

If apache2 is available, this will work too
salt-call service.restart apache2

Fixing some expectations

This module alone is an improvement over the current state, but is
easy to see some limitations and problems:

Is not a fully transparent approach

The user needs to know if the system is transactional or not, as not
everything can be expressed inside a transaction (for example,
restarting a service inside transaction is not allowed).

Two step for service restart

In the apache2 example from the beginning we can observe the
biggest drawback. If the package apache2 is missing, the new
module will create a new transaction, will execute pkg.install
inside the transaction (creating the salt-thin, moving it inside and
delegating the execution to transactional-update CLI as part of the
full state). Inside the transaction we can do too the required
changes in /etc for adding the new vhost, and we can enable the
service via systemctl inside the same transaction.

At this point we will not merge the /etc overlay into the current
one, and we expect from the user call the reboot function inside
this module, in order to activate the new transaction and start the
apache2 service.

In the case that the package is already there, but the configuration
for the vhost is required, the new transaction will be dropped and
the /etc overlay will be visible in the live system. Then from
outside the transaction, via a different call to Salt, we can command
a restart of the apache2 service.

We can see that in both cases we break the user expectation, where a
change on the configuration will trigger automatically the restart of
the associated service. In a transactional scenario we need two
different steps: or a reboot, or a restart from outside of the
transaction.

	maintainer:

	Alberto Planas <aplanas@suse.com>

	maturity:

	new

	depends:

	None

	platform:

	Linux

	
salt.modules.transactional_update.apply_(mods=None, **kwargs)

	Apply an state inside a transaction.

This function will call transactional_update.highstate or
transactional_update.sls based on the arguments passed to this
function. It exists as a more intuitive way of applying states.

For a formal description of the possible parameters accepted in
this function, check state.apply_ documentation.

	activate_transaction
	If at the end of the transaction there is a pending activation
(i.e there is a new snapshot in the system), a new reboot will
be scheduled (default False)

CLI Example:

salt microos transactional_update.apply
salt microos transactional_update.apply stuff
salt microos transactional_update.apply stuff pillar='{"foo": "bar"}'
salt microos transactional_update.apply stuff activate_transaction=True

	
salt.modules.transactional_update.bootloader(self_update=False, snapshot=None)

	Reinstall the bootloader

Same as grub.cfg, but will also rewrite the bootloader itself.

	self_update
	Check for newer transactional-update versions.

	snapshot
	Use the given snapshot or, if no number is given, the current
default snapshot as a base for the next snapshot. Use
"continue" to indicate the last snapshot done.

CLI Example:

salt microos transactional_update bootloader snapshot="continue"

	
salt.modules.transactional_update.call(function, *args, **kwargs)

	Executes a Salt function inside a transaction.

The chroot does not need to have Salt installed, but Python is
required.

	function
	Salt execution module function

	activate_transaction
	If at the end of the transaction there is a pending activation
(i.e there is a new snapshot in the system), a new reboot will
be scheduled (default False)

CLI Example:

salt microos transactional_update.call test.ping
salt microos transactional_update.call ssh.set_auth_key user key=mykey
salt microos transactional_update.call pkg.install emacs activate_transaction=True

	
salt.modules.transactional_update.cleanup(self_update=False)

	Run both cleanup-snapshots and cleanup-overlays.

Identical to calling both cleanup-snapshots and cleanup-overlays.

	self_update
	Check for newer transactional-update versions.

CLI Example:

salt microos transactional_update cleanup

	
salt.modules.transactional_update.cleanup_overlays(self_update=False)

	Remove unused overlay layers.

Removes all unreferenced (and thus unused) /etc overlay
directories in /var/lib/overlay.

	self_update
	Check for newer transactional-update versions.

CLI Example:

salt microos transactional_update cleanup_overlays

	
salt.modules.transactional_update.cleanup_snapshots(self_update=False)

	Mark unused snapshots for snapper removal.

If the current root filesystem is identical to the active root
filesystem (means after a reboot, before transactional-update
creates a new snapshot with updates), all old snapshots without a
cleanup algorithm get a cleanup algorithm set. This is to make
sure, that old snapshots will be deleted by snapper. See the
section about cleanup algorithms in snapper(8).

	self_update
	Check for newer transactional-update versions.

CLI Example:

salt microos transactional_update cleanup_snapshots

	
salt.modules.transactional_update.dup(self_update=False, snapshot=None)

	Call 'zypper dup'

If new updates are available, a new snapshot is created and zypper
dup --no-allow-vendor-change is used to update the
snapshot. Afterwards, the snapshot is activated and will be used
as the new root filesystem during next boot.

	self_update
	Check for newer transactional-update versions.

	snapshot
	Use the given snapshot or, if no number is given, the current
default snapshot as a base for the next snapshot. Use
"continue" to indicate the last snapshot done.

CLI Example:

salt microos transactional_update dup snapshot="continue"

	
salt.modules.transactional_update.grub_cfg(self_update=False, snapshot=None)

	Regenerate grub.cfg

grub2-mkconfig(8) is called to create a new /boot/grub2/grub.cfg
configuration file for the bootloader.

	self_update
	Check for newer transactional-update versions.

	snapshot
	Use the given snapshot or, if no number is given, the current
default snapshot as a base for the next snapshot. Use
"continue" to indicate the last snapshot done.

CLI Example:

salt microos transactional_update grub_cfg snapshot="continue"

	
salt.modules.transactional_update.highstate(activate_transaction=False, queue=False, **kwargs)

	Retrieve the state data from the salt master for this minion and
execute it inside a transaction.

For a formal description of the possible parameters accepted in
this function, check state.highstate documentation.

	activate_transaction
	If at the end of the transaction there is a pending activation
(i.e there is a new snapshot in the system), a new reboot will
be scheduled (Default: False).

	queue
	Instead of failing immediately when another state run is in progress,
queue the new state run to begin running once the other has finished.

This option starts a new thread for each queued state run, so use this
option sparingly (Default: False).

CLI Example:

salt microos transactional_update.highstate
salt microos transactional_update.highstate pillar='{"foo": "bar"}'
salt microos transactional_update.highstate activate_transaction=True

	
salt.modules.transactional_update.in_transaction()

	Check if Salt is executing while in a transaction

CLI Example:

salt microos transactional_update in_transaction

	
salt.modules.transactional_update.initrd(self_update=False, snapshot=None)

	Regenerate initrd

A new initrd is created in a snapshot.

	self_update
	Check for newer transactional-update versions.

	snapshot
	Use the given snapshot or, if no number is given, the current
default snapshot as a base for the next snapshot. Use
"continue" to indicate the last snapshot done.

CLI Example:

salt microos transactional_update initrd snapshot="continue"

	
salt.modules.transactional_update.kdump(self_update=False, snapshot=None)

	Regenerate kdump initrd

A new initrd for kdump is created in a snapshot.

	self_update
	Check for newer transactional-update versions.

	snapshot
	Use the given snapshot or, if no number is given, the current
default snapshot as a base for the next snapshot. Use
"continue" to indicate the last snapshot done.

CLI Example:

salt microos transactional_update kdump snapshot="continue"

	
salt.modules.transactional_update.migration(self_update=False, snapshot=None)

	Updates systems registered via SCC / SMT

On systems which are registered against the SUSE Customer Center
(SCC) or SMT, a migration to a new version of the installed
products can be made with this option.

	self_update
	Check for newer transactional-update versions.

	snapshot
	Use the given snapshot or, if no number is given, the current
default snapshot as a base for the next snapshot. Use
"continue" to indicate the last snapshot done.

CLI Example:

salt microos transactional_update migration snapshot="continue"

	
salt.modules.transactional_update.patch(self_update=False, snapshot=None)

	Call 'zypper patch'

If new updates are available, a new snapshot is created and zypper
patch is used to update the snapshot. Afterwards, the snapshot is
activated and will be used as the new root filesystem during next
boot.

	self_update
	Check for newer transactional-update versions.

	snapshot
	Use the given snapshot or, if no number is given, the current
default snapshot as a base for the next snapshot. Use
"continue" to indicate the last snapshot done.

CLI Example:

salt microos transactional_update patch snapshot="continue"

	
salt.modules.transactional_update.pending_transaction()

	Check if there is a pending transaction

CLI Example:

salt microos transactional_update pending_transaction

	
salt.modules.transactional_update.pkg_install(pkg=None, pkgs=None, args=None, self_update=False, snapshot=None)

	Install individual packages

Installs additional software. See the install description in the
"Package Management Commands" section of zypper's man page for all
available arguments.

	pkg
	Package name to install

	pkgs
	List of packages names to install

	args
	String or list of extra parameters for zypper

	self_update
	Check for newer transactional-update versions.

	snapshot
	Use the given snapshot or, if no number is given, the current
default snapshot as a base for the next snapshot. Use
"continue" to indicate the last snapshot done.

CLI Example:

salt microos transactional_update pkg_install pkg=emacs snapshot="continue"

	
salt.modules.transactional_update.pkg_remove(pkg=None, pkgs=None, args=None, self_update=False, snapshot=None)

	Remove individual packages

Removes installed software. See the remove description in the
"Package Management Commands" section of zypper's man page for all
available arguments.

	pkg
	Package name to install

	pkgs
	List of packages names to install

	args
	String or list of extra parameters for zypper

	self_update
	Check for newer transactional-update versions.

	snapshot
	Use the given snapshot or, if no number is given, the current
default snapshot as a base for the next snapshot. Use
"continue" to indicate the last snapshot done.

CLI Example:

salt microos transactional_update pkg_remove pkg=vim snapshot="continue"

	
salt.modules.transactional_update.pkg_update(pkg=None, pkgs=None, args=None, self_update=False, snapshot=None)

	Updates individual packages

Update selected software. See the update description in the
"Update Management Commands" section of zypper's man page for all
available arguments.

	pkg
	Package name to install

	pkgs
	List of packages names to install

	args
	String or list of extra parameters for zypper

	self_update
	Check for newer transactional-update versions.

	snapshot
	Use the given snapshot or, if no number is given, the current
default snapshot as a base for the next snapshot. Use
"continue" to indicate the last snapshot done.

CLI Example:

salt microos transactional_update pkg_update pkg=emacs snapshot="continue"

	
salt.modules.transactional_update.reboot(self_update=False)

	Reboot after update

Trigger a reboot after updating the system.

Several different reboot methods are supported, configurable via
the REBOOT_METHOD configuration option in
transactional-update.conf(5). By default rebootmgrd(8) will be
used to reboot the system according to the configured policies if
the service is running, otherwise systemctl reboot will be called.

	self_update
	Check for newer transactional-update versions.

CLI Example:

salt microos transactional_update reboot

	
salt.modules.transactional_update.rollback(snapshot=None)

	Set the current, given or last working snapshot as default snapshot

Sets the default root file system. On a read-only system the root
file system is set directly using btrfs. On read-write systems
snapper(8) rollback is called.

If no snapshot number is given, the current root file system is
set as the new default root file system. Otherwise number can
either be a snapshot number (as displayed by snapper list) or the
word last. last will try to reset to the latest working snapshot.

	snapshot
	Use the given snapshot or, if no number is given, the current
default snapshot as a base for the next snapshot. Use
"last" to indicate the last working snapshot done.

CLI Example:

salt microos transactional_update rollback

	
salt.modules.transactional_update.run(command, self_update=False, snapshot=None)

	Run a command in a new snapshot

Execute the command inside a new snapshot. By default this snapshot
will remain, but if --drop-if-no-change is set, the new snapshot
will be dropped if there is no change in the file system.

	command
	Command with parameters that will be executed (as string or
array)

	self_update
	Check for newer transactional-update versions.

	snapshot
	Use the given snapshot or, if no number is given, the current
default snapshot as a base for the next snapshot. Use
"continue" to indicate the last snapshot done.

CLI Example:

salt microos transactional_update run "mkdir /tmp/dir" snapshot="continue"

	
salt.modules.transactional_update.single(fun, name, activate_transaction=False, queue=False, **kwargs)

	Execute a single state function with the named kwargs, returns
False if insufficient data is sent to the command

By default, the values of the kwargs will be parsed as YAML. So,
you can specify lists values, or lists of single entry key-value
maps, as you would in a YAML salt file. Alternatively, JSON format
of keyword values is also supported.

	activate_transaction
	If at the end of the transaction there is a pending activation
(i.e there is a new snapshot in the system), a new reboot will
be scheduled (Default: False).

	queue
	Instead of failing immediately when another state run is in progress,
queue the new state run to begin running once the other has finished.

This option starts a new thread for each queued state run, so use this
option sparingly (Default: False).

CLI Example:

salt microos transactional_update.single pkg.installed name=emacs
salt microos transactional_update.single pkg.installed name=emacs activate_transaction=True

	
salt.modules.transactional_update.sls(mods, activate_transaction=False, queue=False, **kwargs)

	Execute the states in one or more SLS files inside a transaction.

	saltenv
	Specify a salt fileserver environment to be used when applying
states

	mods
	List of states to execute

	test
	Run states in test-only (dry-run) mode

	exclude
	Exclude specific states from execution. Accepts a list of sls
names, a comma-separated string of sls names, or a list of
dictionaries containing sls or id keys. Glob-patterns
may be used to match multiple states.

	activate_transaction
	If at the end of the transaction there is a pending activation
(i.e there is a new snapshot in the system), a new reboot will
be scheduled (Default: False).

	queue
	Instead of failing immediately when another state run is in progress,
queue the new state run to begin running once the other has finished.

This option starts a new thread for each queued state run, so use this
option sparingly (Default: False).

For a formal description of the possible parameters accepted in
this function, check state.sls documentation.

CLI Example:

salt microos transactional_update.sls stuff pillar='{"foo": "bar"}'
salt microos transactional_update.sls stuff activate_transaction=True

	
salt.modules.transactional_update.transactional()

	Check if the system is a transactional system

CLI Example:

salt microos transactional_update transactional

	
salt.modules.transactional_update.up(self_update=False, snapshot=None)

	Call 'zypper up'

If new updates are available, a new snapshot is created and zypper
up is used to update the snapshot. Afterwards, the snapshot is
activated and will be used as the new root filesystem during next
boot.

	self_update
	Check for newer transactional-update versions.

	snapshot
	Use the given snapshot or, if no number is given, the current
default snapshot as a base for the next snapshot. Use
"continue" to indicate the last snapshot done.

CLI Example:

salt microos transactional_update up snapshot="continue"

salt.modules.travisci

Commands for working with travisci.

	depends:

	pyOpenSSL >= 16.0.0

	
salt.modules.travisci.verify_webhook(signature, body)

	Verify the webhook signature from travisci

	signature
	The signature header from the webhook header

	body
	The full payload body from the webhook post

Note

The body needs to be the urlencoded version of the body.

CLI Example:

salt '*' travisci.verify_webhook 'M6NucCX5722bxisQs7e...' 'payload=%7B%22id%22%3A183791261%2C%22repository...'

salt.modules.tuned

Interface to Red Hat tuned-adm module

	maintainer:

	Syed Ali <alicsyed@gmail.com>

	maturity:

	new

	depends:

	tuned-adm

	platform:

	Linux

	
salt.modules.tuned.active()

	Return current active profile in stdout key if retcode is 0, otherwise raw result

CLI Example:

salt '*' tuned.active

	
salt.modules.tuned.list_()

	List the profiles available

CLI Example:

salt '*' tuned.list

	
salt.modules.tuned.off()

	Turn off all profiles

CLI Example:

salt '*' tuned.off

	
salt.modules.tuned.profile(profile_name)

	Activate specified profile

CLI Example:

salt '*' tuned.profile virtual-guest

salt.modules.twilio_notify

Module for notifications via Twilio

New in version 2014.7.0.

	depends:

	
	twilio python module

	configuration:

	Configure this module by specifying the name of a configuration
profile in the minion config, minion pillar, or master config (with pillar_opts set to True).

For example:

my-twilio-account:
 twilio.account_sid: AC32a3c83990934481addd5ce1659f04d2
 twilio.auth_token: mytoken

	
salt.modules.twilio_notify.send_sms(profile, body, to, from_)

	Send an sms

CLI Example:

twilio.send_sms my-twilio-account 'Test sms' '+18019999999' '+18011111111'

salt.modules.udev

Manage and query udev info

New in version 2015.8.0.

	
salt.modules.udev.env(dev)

	Return all environment variables udev has for dev

CLI Example:

salt '*' udev.env /dev/sda
salt '*' udev.env /sys/class/net/eth0

	
salt.modules.udev.exportdb()

	Return all the udev database

CLI Example:

salt '*' udev.exportdb

	
salt.modules.udev.info(dev)

	Extract all info delivered by udevadm

CLI Example:

salt '*' udev.info /dev/sda
salt '*' udev.info /sys/class/net/eth0

	
salt.modules.udev.links(dev)

	Return all udev-created device symlinks

CLI Example:

salt '*' udev.links /dev/sda
salt '*' udev.links /sys/class/net/eth0

	
salt.modules.udev.name(dev)

	Return the actual dev name(s?) according to udev for dev

CLI Example:

salt '*' udev.dev /dev/sda
salt '*' udev.dev /sys/class/net/eth0

	
salt.modules.udev.path(dev)

	Return the physical device path(s?) according to udev for dev

CLI Example:

salt '*' udev.path /dev/sda
salt '*' udev.path /sys/class/net/eth0

salt.modules.upstart_service

Module for the management of upstart systems. The Upstart system only supports
service starting, stopping and restarting.

Important

If you feel that Salt should be using this module to manage services on a
minion, and it is using a different module (or gives an error similar to
'service.start' is not available), see here.

Currently (as of Ubuntu 12.04) there is no tool available to disable
Upstart services (like update-rc.d). This[1] is the recommended way to
disable an Upstart service. So we assume that all Upstart services
that have not been disabled in this manner are enabled.

But this is broken because we do not check to see that the dependent
services are enabled. Otherwise we would have to do something like
parse the output of "initctl show-config" to determine if all service
dependencies are enabled to start on boot. For example, see the "start
on" condition for the lightdm service below[2]. And this would be too
hard. So we wait until the upstart developers have solved this
problem. :) This is to say that an Upstart service that is enabled may
not really be enabled.

Also, when an Upstart service is enabled, should the dependent
services be enabled too? Probably not. But there should be a notice
about this, at least.

[1] http://upstart.ubuntu.com/cookbook/#disabling-a-job-from-automatically-starting

[2] example upstart configuration file:

lightdm
emits login-session-start
emits desktop-session-start
emits desktop-shutdown
start on ((((filesystem and runlevel [!06]) and started dbus) and (drm-device-added card0 PRIMARY_DEVICE_FOR_DISPLAY=1 or stopped udev-fallback-graphics)) or runlevel PREVLEVEL=S)
stop on runlevel [016]

Warning

This module should not be used on Red Hat systems. For these,
the rh_service module should be
used, as it supports the hybrid upstart/sysvinit system used in
RHEL/CentOS 6.

	
salt.modules.upstart_service.available(name)

	Returns True if the specified service is available, otherwise returns
False.

CLI Example:

salt '*' service.available sshd

	
salt.modules.upstart_service.disable(name, **kwargs)

	Disable the named service from starting on boot

CLI Example:

salt '*' service.disable <service name>

	
salt.modules.upstart_service.disabled(name)

	Check to see if the named service is disabled to start on boot

CLI Example:

salt '*' service.disabled <service name>

	
salt.modules.upstart_service.enable(name, **kwargs)

	Enable the named service to start at boot

CLI Example:

salt '*' service.enable <service name>

	
salt.modules.upstart_service.enabled(name, **kwargs)

	Check to see if the named service is enabled to start on boot

CLI Example:

salt '*' service.enabled <service name>

	
salt.modules.upstart_service.force_reload(name)

	Force-reload the named service

CLI Example:

salt '*' service.force_reload <service name>

	
salt.modules.upstart_service.full_restart(name)

	Do a full restart (stop/start) of the named service

CLI Example:

salt '*' service.full_restart <service name>

	
salt.modules.upstart_service.get_all()

	Return all installed services

CLI Example:

salt '*' service.get_all

	
salt.modules.upstart_service.get_disabled()

	Return the disabled services

CLI Example:

salt '*' service.get_disabled

	
salt.modules.upstart_service.get_enabled()

	Return the enabled services

CLI Example:

salt '*' service.get_enabled

	
salt.modules.upstart_service.missing(name)

	The inverse of service.available.
Returns True if the specified service is not available, otherwise returns
False.

CLI Example:

salt '*' service.missing sshd

	
salt.modules.upstart_service.reload_(name)

	Reload the named service

CLI Example:

salt '*' service.reload <service name>

	
salt.modules.upstart_service.restart(name)

	Restart the named service

CLI Example:

salt '*' service.restart <service name>

	
salt.modules.upstart_service.start(name)

	Start the specified service

CLI Example:

salt '*' service.start <service name>

	
salt.modules.upstart_service.status(name, sig=None)

	Return the status for a service.
If the name contains globbing, a dict mapping service name to True/False
values is returned.

Changed in version 2018.3.0: The service name can now be a glob (e.g. salt*)

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service to check

	sig (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Signature to use to find the service via ps

	Returns:

	True if running, False otherwise
dict: Maps service name to True if running, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.status <service name> [service signature]

	
salt.modules.upstart_service.stop(name)

	Stop the specified service

CLI Example:

salt '*' service.stop <service name>

salt.modules.uptime

Wrapper around uptime API

	
salt.modules.uptime.check_exists(name)

	Check if a given URL is in being monitored by uptime

CLI Example:

salt '*' uptime.check_exists http://example.org

	
salt.modules.uptime.checks_list()

	List URL checked by uptime

CLI Example:

salt '*' uptime.checks_list

	
salt.modules.uptime.create(name, **params)

	Create a check on a given URL.

Additional parameters can be used and are passed to API (for
example interval, maxTime, etc). See the documentation
https://github.com/fzaninotto/uptime for a full list of the
parameters.

CLI Example:

salt '*' uptime.create http://example.org

	
salt.modules.uptime.delete(name)

	Delete a check on a given URL

CLI Example:

salt '*' uptime.delete http://example.org

salt.modules.useradd

Manage users with the useradd command

Important

If you feel that Salt should be using this module to manage users on a
minion, and it is using a different module (or gives an error similar to
'user.info' is not available), see here.

	
salt.modules.useradd.add(name, uid=None, gid=None, groups=None, home=None, shell=None, unique=True, system=False, fullname='', roomnumber='', workphone='', homephone='', other='', createhome=True, loginclass=None, nologinit=False, root=None, usergroup=None, local=False)

	Add a user to the minion

	name
	Username LOGIN to add

	uid
	User ID of the new account

	gid
	Name or ID of the primary group of the new account

	groups
	List of supplementary groups of the new account

	home
	Home directory of the new account

	shell
	Login shell of the new account

	unique
	If not True, the user account can have a non-unique UID

	system
	Create a system account

	fullname
	GECOS field for the full name

	roomnumber
	GECOS field for the room number

	workphone
	GECOS field for the work phone

	homephone
	GECOS field for the home phone

	other
	GECOS field for other information

	createhome
	Create the user's home directory

	loginclass
	Login class for the new account (OpenBSD)

	nologinit
	Do not add the user to the lastlog and faillog databases

	root
	Directory to chroot into

	usergroup
	Create and add the user to a new primary group of the same name

	local (Only on systems with luseradd available)
	Specifically add the user locally rather than possibly through remote providers (e.g. LDAP)

New in version 3007.0.

CLI Example:

salt '*' user.add name <uid> <gid> <groups> <home> <shell>

	
salt.modules.useradd.chfullname(name, fullname, root=None)

	Change the user's Full Name

	name
	User to modify

	fullname
	GECOS field for the full name

	root
	Directory to chroot into

CLI Example:

salt '*' user.chfullname foo "Foo Bar"

	
salt.modules.useradd.chgid(name, gid, root=None)

	Change the default group of the user

	name
	User to modify

	gid
	Force use GID as new primary group

	root
	Directory to chroot into

CLI Example:

salt '*' user.chgid foo 4376

	
salt.modules.useradd.chgroups(name, groups, append=False, root=None)

	Change the groups to which this user belongs

	name
	User to modify

	groups
	Groups to set for the user

	appendFalse
	If True, append the specified group(s). Otherwise, this function
will replace the user's groups with the specified group(s).

	root
	Directory to chroot into

CLI Examples:

salt '*' user.chgroups foo wheel,root
salt '*' user.chgroups foo wheel,root append=True

	
salt.modules.useradd.chhome(name, home, persist=False, root=None)

	Change the home directory of the user, pass True for persist to move files
to the new home directory if the old home directory exist.

	name
	User to modify

	home
	New home directory for the user account

	persist
	Move contents of the home directory to the new location

	root
	Directory to chroot into

CLI Example:

salt '*' user.chhome foo /home/users/foo True

	
salt.modules.useradd.chhomephone(name, homephone, root=None)

	Change the user's Home Phone

	name
	User to modify

	homephone
	GECOS field for the home phone

	root
	Directory to chroot into

CLI Example:

salt '*' user.chhomephone foo 7735551234

	
salt.modules.useradd.chloginclass(name, loginclass, root=None)

	Change the default login class of the user

	name
	User to modify

	loginclass
	Login class for the new account

	root
	Directory to chroot into

Note

This function only applies to OpenBSD systems.

CLI Example:

salt '*' user.chloginclass foo staff

	
salt.modules.useradd.chother(name, other, root=None)

	Change the user's other GECOS attribute

	name
	User to modify

	other
	GECOS field for other information

	root
	Directory to chroot into

CLI Example:

salt '*' user.chother foobar

	
salt.modules.useradd.chroomnumber(name, roomnumber, root=None)

	Change the user's Room Number

CLI Example:

salt '*' user.chroomnumber foo 123

	
salt.modules.useradd.chshell(name, shell, root=None)

	Change the default shell of the user

	name
	User to modify

	shell
	New login shell for the user account

	root
	Directory to chroot into

CLI Example:

salt '*' user.chshell foo /bin/zsh

	
salt.modules.useradd.chuid(name, uid, root=None)

	Change the uid for a named user

	name
	User to modify

	uid
	New UID for the user account

	root
	Directory to chroot into

CLI Example:

salt '*' user.chuid foo 4376

	
salt.modules.useradd.chworkphone(name, workphone, root=None)

	Change the user's Work Phone

	name
	User to modify

	workphone
	GECOS field for the work phone

	root
	Directory to chroot into

CLI Example:

salt '*' user.chworkphone foo 7735550123

	
salt.modules.useradd.delete(name, remove=False, force=False, root=None, local=False)

	Remove a user from the minion

	name
	Username to delete

	remove
	Remove home directory and mail spool

	force
	Force some actions that would fail otherwise

	root
	Directory to chroot into

	local (Only on systems with luserdel available):
	Ensure the user account is removed locally ignoring global
account management (default is False).

New in version 3007.0.

CLI Example:

salt '*' user.delete name remove=True force=True

	
salt.modules.useradd.get_loginclass(name)

	Get the login class of the user

	name
	User to get the information

Note

This function only applies to OpenBSD systems.

CLI Example:

salt '*' user.get_loginclass foo

	
salt.modules.useradd.getent(refresh=False, root=None)

	Return the list of all info for all users

	refresh
	Force a refresh of user information

	root
	Directory to chroot into

CLI Example:

salt '*' user.getent

	
salt.modules.useradd.info(name, root=None)

	Return user information

	name
	User to get the information

	root
	Directory to chroot into

CLI Example:

salt '*' user.info root

	
salt.modules.useradd.list_groups(name)

	Return a list of groups the named user belongs to

	name
	User to get the information

CLI Example:

salt '*' user.list_groups foo

	
salt.modules.useradd.list_users(root=None)

	Return a list of all users

	root
	Directory to chroot into

CLI Example:

salt '*' user.list_users

	
salt.modules.useradd.primary_group(name)

	Return the primary group of the named user

New in version 2016.3.0.

	name
	User to get the information

CLI Example:

salt '*' user.primary_group saltadmin

	
salt.modules.useradd.rename(name, new_name, root=None)

	Change the username for a named user

	name
	User to modify

	new_name
	New value of the login name

	root
	Directory to chroot into

CLI Example:

salt '*' user.rename name new_name

salt.modules.uwsgi

uWSGI stats server https://uwsgi-docs.readthedocs.io/en/latest/StatsServer.html

	maintainer:

	Peter Baumgartner <pete@lincolnloop.com>

	maturity:

	new

	platform:

	all

	
salt.modules.uwsgi.stats(socket)

	Return the data from uwsgi --connect-and-read as a dictionary.

	socket
	The socket the uWSGI stats server is listening on

CLI Example:

salt '*' uwsgi.stats /var/run/mystatsserver.sock

salt '*' uwsgi.stats 127.0.0.1:5050

salt.modules.vagrant

Work with virtual machines managed by Vagrant.

New in version 2018.3.0.

Mapping between a Salt node id and the Vagrant machine name
(and the path to the Vagrantfile where it is defined)
is stored in a Salt sdb database on the Vagrant host (minion) machine.
In order to use this module, sdb must be configured. An SQLite
database is the recommended storage method. The URI used for
the sdb lookup is "sdb://vagrant_sdb_data".

	requirements:
	
	the VM host machine must have salt-minion, Vagrant and a vm provider installed.

	the VM host must have a valid definition for sdb://vagrant_sdb_data

Configuration example:

file /etc/salt/minion.d/vagrant_sdb.conf
vagrant_sdb_data:
 driver: sqlite3
 database: /var/cache/salt/vagrant.sqlite
 table: sdb
 create_table: True

	
salt.modules.vagrant.destroy(name)

	Destroy and delete a virtual machine. (vagrant destroy -f)

This also removes the salt_id name defined by vagrant.init.

CLI Example:

salt <host> vagrant.destroy <salt_id>

	
salt.modules.vagrant.get_machine_id(machine, cwd)

	returns the salt_id name of the Vagrant VM

	Parameters:

	
	machine -- the Vagrant machine name

	cwd -- the path to Vagrantfile

	Returns:

	salt_id name

	
salt.modules.vagrant.get_ssh_config(name, network_mask='', get_private_key=False)

	Retrieve hints of how you might connect to a Vagrant VM.

	Parameters:

	
	name -- the salt_id of the machine

	network_mask -- a CIDR mask to search for the VM's address

	get_private_key -- (default: False) return the key used for ssh login

	Returns:

	a dict of ssh login information for the VM

CLI Example:

salt <host> vagrant.get_ssh_config <salt_id>
salt my_laptop vagrant.get_ssh_config quail1 network_mask=10.0.0.0/8 get_private_key=True

The returned dictionary contains:

	key_filename: the name of the private key file on the VM host computer

	ssh_username: the username to be used to log in to the VM

	ssh_host: the IP address used to log in to the VM. (This will usually be 127.0.0.1)

	ssh_port: the TCP port used to log in to the VM. (This will often be 2222)

	[ip_address:] (if network_mask is defined. see below)

	[private_key:] (if get_private_key is True) the private key for ssh_username

About network_mask:

Vagrant usually uses a redirected TCP port on its host computer to log in to a VM using ssh.
This redirected port and its IP address are "ssh_port" and "ssh_host". The ssh_host is
usually the localhost (127.0.0.1).
This makes it impossible for a third machine (such as a salt-cloud master) to contact the VM
unless the VM has another network interface defined. You will usually want a bridged network
defined by having a config.vm.network "public_network" statement in your Vagrantfile.

The IP address of the bridged adapter will typically be assigned by DHCP and unknown to you,
but you should be able to determine what IP network the address will be chosen from.
If you enter a CIDR network mask, Salt will attempt to find the VM's address for you.
The host machine will send an "ip link show" or "ifconfig" command to the VM
(using ssh to ssh_host:ssh_port) and return the IP address of the first interface it
can find which matches your mask.

	
salt.modules.vagrant.get_vm_info(name)

	get the information for a VM.

	Parameters:

	name -- salt_id name

	Returns:

	dictionary of {'machine': x, 'cwd': y, ...}.

	
salt.modules.vagrant.init(name, cwd=None, machine='', runas=None, start=False, vagrant_provider='', vm=None)

	Initialize a new Vagrant VM.

This inputs all the information needed to start a Vagrant VM. These settings are stored in
a Salt sdb database on the Vagrant host minion and used to start, control, and query the
guest VMs. The salt_id assigned here is the key field for that database and must be unique.

	Parameters:

	
	name -- The salt_id name you will use to control this VM

	cwd -- The path to the directory where the Vagrantfile is located

	machine -- The machine name in the Vagrantfile. If blank, the primary machine will be used.

	runas -- The username on the host who owns the Vagrant work files.

	start -- (default: False) Start the virtual machine now.

	vagrant_provider -- The name of a Vagrant VM provider (if not the default).

	vm -- Optionally, all the above information may be supplied in this dictionary.

	Returns:

	A string indicating success, or False.

CLI Example:

salt <host> vagrant.init <salt_id> /path/to/Vagrantfile
salt my_laptop vagrant.init x1 /projects/bevy_master machine=quail1

	
salt.modules.vagrant.list_active_vms(cwd=None)

	Return a list of machine names for active virtual machine on the host,
which are defined in the Vagrantfile at the indicated path.

CLI Example:

salt '*' vagrant.list_active_vms cwd=/projects/project_1

	
salt.modules.vagrant.list_domains()

	Return a list of the salt_id names of all available Vagrant VMs on
this host without regard to the path where they are defined.

CLI Example:

salt '*' vagrant.list_domains --log-level=info

The log shows information about all known Vagrant environments
on this machine. This data is cached and may not be completely
up-to-date.

	
salt.modules.vagrant.list_inactive_vms(cwd=None)

	Return a list of machine names for inactive virtual machine on the host,
which are defined in the Vagrantfile at the indicated path.

CLI Example:

salt '*' virt.list_inactive_vms cwd=/projects/project_1

	
salt.modules.vagrant.pause(name)

	Pause (vagrant suspend) the named VM.

CLI Example:

salt <host> vagrant.pause <salt_id>

	
salt.modules.vagrant.reboot(name, provision=False)

	Reboot a VM. (vagrant reload)

CLI Example:

salt <host> vagrant.reboot <salt_id> provision=True

	Parameters:

	
	name -- The salt_id name you will use to control this VM

	provision -- (False) also re-run the Vagrant provisioning scripts.

	
salt.modules.vagrant.shutdown(name)

	Send a soft shutdown (vagrant halt) signal to the named vm.

This does the same thing as vagrant.stop. Other-VM control
modules use "stop" and "shutdown" to differentiate between
hard and soft shutdowns.

CLI Example:

salt <host> vagrant.shutdown <salt_id>

	
salt.modules.vagrant.start(name)

	Start (vagrant up) a virtual machine defined by salt_id name.
The machine must have been previously defined using "vagrant.init".

CLI Example:

salt <host> vagrant.start <salt_id>

	
salt.modules.vagrant.stop(name)

	Hard shutdown the virtual machine. (vagrant halt)

CLI Example:

salt <host> vagrant.stop <salt_id>

	
salt.modules.vagrant.version()

	Return the version of Vagrant on the minion

CLI Example:

salt '*' vagrant.version

	
salt.modules.vagrant.vm_state(name='', cwd=None)

	Return list of information for all the vms indicating their state.

If you pass a VM name in as an argument then it will return info
for just the named VM, otherwise it will return all VMs defined by
the Vagrantfile in the cwd directory.

CLI Example:

salt '*' vagrant.vm_state <name> cwd=/projects/project_1

returns a list of dictionaries with machine name, state, provider,
and salt_id name.

datum = {'machine': _, # Vagrant machine name,
 'state': _, # string indicating machine state, like 'running'
 'provider': _, # the Vagrant VM provider
 'name': _} # salt_id name

Known bug: if there are multiple machines in your Vagrantfile, and you request
the status of the primary machine, which you defined by leaving the machine
parameter blank, then you may receive the status of all of them.
Please specify the actual machine name for each VM if there are more than one.

salt.modules.varnish

Support for Varnish

New in version 2014.7.0.

Note

These functions are designed to work with all implementations of Varnish
from 3.x onwards

	
salt.modules.varnish.ban(ban_expression)

	Add ban to the varnish cache

CLI Example:

salt '*' varnish.ban ban_expression

	
salt.modules.varnish.ban_list()

	List varnish cache current bans

CLI Example:

salt '*' varnish.ban_list

	
salt.modules.varnish.param_set(param, value)

	Set a param in varnish cache

CLI Example:

salt '*' varnish.param_set param value

	
salt.modules.varnish.param_show(param=None)

	Show params of varnish cache

CLI Example:

salt '*' varnish.param_show param

	
salt.modules.varnish.purge()

	Purge the varnish cache

CLI Example:

salt '*' varnish.purge

	
salt.modules.varnish.version()

	Return server version from varnishd -V

CLI Example:

salt '*' varnish.version

salt.modules.vault

Warning

This module will be removed from Salt in version 3009 in favor of
the vault Salt Extension [https://github.com/salt-extensions/saltext-vault].

Functions to interact with Hashicorp Vault.

	maintainer:

	SaltStack

	maturity:

	new

	platform:

	all

	note:

	If you see the following error, you'll need to upgrade requests to at least 2.4.2

<timestamp> [salt.pillar][CRITICAL][14337] Pillar render error: Failed to load ext_pillar vault: {'error': "request() got an unexpected keyword argument 'json'"}

Configuration

In addition to the module configuration, it is required for the Salt master
to be configured to allow peer runs in order to use the Vault integration.

Changed in version 3007.0: The vault configuration structure has changed significantly to account
for many new features. If found, the old structure will be automatically
translated to the new one.

Please update your peer_run configuration to take full advantage of the
updated modules. The old endpoint (vault.generate_token) will continue
to work, but result in unnecessary roundtrips once your minions have been
updated.

To allow minions to pull configuration and credentials from the Salt master,
add this segment to the master configuration file:

peer_run:
 .*:
 - vault.get_config # always
 - vault.generate_new_token # relevant when `token` == `issue:type`
 - vault.generate_secret_id # relevant when `approle` == `issue:type`

Minimally required configuration:

vault:
 auth:
 token: abcdefg-hijklmnop-qrstuvw
 server:
 url: https://vault.example.com:8200

A sensible example configuration, e.g. in /etc/salt/master.d/vault.conf:

vault:
 auth:
 method: approle
 role_id: e5a7b66e-5d08-da9c-7075-71984634b882
 secret_id: 841771dc-11c9-bbc7-bcac-6a3945a69cd9
 cache:
 backend: file
 issue:
 token:
 role_name: salt_minion
 params:
 explicit_max_ttl: 30
 num_uses: 10
 policies:
 assign:
 - salt_minion
 - salt_role_{pillar[roles]}
 server:
 url: https://vault.example.com:8200

The above configuration requires the following policies for the master:

Issue tokens
path "auth/token/create" {
 capabilities = ["create", "read", "update"]
}

Issue tokens with token roles
path "auth/token/create/*" {
 capabilities = ["create", "read", "update"]
}

A sensible example configuration that issues AppRoles to minions
from a separate authentication endpoint (notice differing mounts):

vault:
 auth:
 method: approle
 mount: approle # <-- mount the salt master authenticates at
 role_id: e5a7b66e-5d08-da9c-7075-71984634b882
 secret_id: 841771dc-11c9-bbc7-bcac-6a3945a69cd9
 cache:
 backend: file
 issue:
 type: approle
 approle:
 mount: salt-minions # <-- mount the salt master manages
 metadata:
 entity:
 minion-id: '{minion}'
 role: '{pillar[role]}'
 server:
 url: https://vault.example.com:8200
ext_pillar:
 - vault: path=salt/minions/{minion}
 - vault: path=salt/roles/{pillar[role]}

The above configuration requires the following policies for the master:

List existing AppRoles
path "auth/salt-minions/role" {
 capabilities = ["list"]
}

Manage AppRoles
path "auth/salt-minions/role/*" {
 capabilities = ["read", "create", "update", "delete"]
}

Lookup mount accessor
path "sys/auth/salt-minions" {
 capabilities = ["read", "sudo"]
}

Lookup entities by alias name (role-id) and alias mount accessor
path "identity/lookup/entity" {
 capabilities = ["create", "update"]
 allowed_parameters = {
 "alias_name" = []
 "alias_mount_accessor" = ["auth_approle_0a1b2c3d"]
 }
}

Manage entities with name prefix salt_minion_
path "identity/entity/name/salt_minion_*" {
 capabilities = ["read", "create", "update", "delete"]
}

Create entity aliases – you can restrict the mount_accessor
This might allow privilege escalation in case the salt master
is compromised and the attacker knows the entity ID of an
entity with relevant policies attached - although you might
have other problems at that point.
path "identity/entity-alias" {
 capabilities = ["create", "update"]
 allowed_parameters = {
 "id" = []
 "canonical_id" = []
 "mount_accessor" = ["auth_approle_0a1b2c3d"]
 "name" = []
 }
}

This enables you to write templated ACL policies like:

path "salt/data/minions/{{identity.entity.metadata.minion-id}}" {
 capabilities = ["read"]
}

path "salt/data/roles/{{identity.entity.metadata.role}}" {
 capabilities = ["read"]
}

Note

AppRole policies and entity metadata are generally not updated
automatically. After a change, you will need to synchronize
them by running vault.sync_approles
or vault.sync_entities respectively.

All possible master configuration options with defaults:

vault:
 auth:
 approle_mount: approle
 approle_name: salt-master
 method: token
 role_id: <required if auth:method == approle>
 secret_id: null
 token: <required if auth:method == token>
 token_lifecycle:
 minimum_ttl: 10
 renew_increment: null
 cache:
 backend: session
 config: 3600
 kv_metadata: connection
 secret: ttl
 issue:
 allow_minion_override_params: false
 type: token
 approle:
 mount: salt-minions
 params:
 bind_secret_id: true
 secret_id_num_uses: 1
 secret_id_ttl: 60
 token_explicit_max_ttl: 60
 token_num_uses: 10
 secret_id_bound_cidrs: null
 token_ttl: null
 token_max_ttl: null
 token_no_default_policy: false
 token_period: null
 token_bound_cidrs: null
 token:
 role_name: null
 params:
 explicit_max_ttl: null
 num_uses: 1
 ttl: null
 period: null
 no_default_policy: false
 renewable: true
 wrap: 30s
 keys: []
 metadata:
 entity:
 minion-id: '{minion}'
 secret:
 saltstack-jid: '{jid}'
 saltstack-minion: '{minion}'
 saltstack-user: '{user}'
 policies:
 assign:
 - saltstack/minions
 - saltstack/{minion}
 cache_time: 60
 refresh_pillar: null
 server:
 url: <required, e. g. https://vault.example.com:8200>
 namespace: null
 verify: null

auth

Contains authentication information for the local machine.

	approle_mount
	
New in version 3007.0.

The name of the AppRole authentication mount point. Defaults to approle.

	approle_name
	
New in version 3007.0.

The name of the AppRole. Defaults to salt-master.

Note

Only relevant when a locally configured role_id/secret_id uses
response wrapping.

	method
	Currently only token and approle auth types are supported.
Defaults to token.

AppRole is the preferred way to authenticate with Vault as it provides
some advanced options to control the authentication process.
Please see the Vault documentation [https://www.vaultproject.io/docs/auth/approle.html]
for more information.

	role_id
	The role ID of the AppRole. Required if auth:method == approle.

Changed in version 3007.0: In addition to a plain string, this can also be specified as a
dictionary that includes wrap_info, i.e. the return payload
of a wrapping request.

	secret_id
	The secret ID of the AppRole.
Only required if the configured AppRole requires it.

Changed in version 3007.0: In addition to a plain string, this can also be specified as a
dictionary that includes wrap_info, i.e. the return payload
of a wrapping request.

	token
	Token to authenticate to Vault with. Required if auth:method == token.

The token must be able to create tokens with the policies that should be
assigned to minions.
You can still use the token auth via a OS environment variable via this
config example:

vault:
 auth:
 method: token
 token: sdb://osenv/VAULT_TOKEN
 server:
 url: https://vault.service.domain:8200

osenv:
 driver: env

And then export the VAULT_TOKEN variable in your OS:

export VAULT_TOKEN=11111111-1111-1111-1111-1111111111111

Changed in version 3007.0: In addition to a plain string, this can also be specified as a
dictionary that includes wrap_info, i.e. the return payload
of a wrapping request.

	token_lifecycle
	Token renewal settings.

Note

This setting can be specified inside a minion's configuration as well
and will override the master's default for the minion.

Token lifecycle settings have significancy for any authentication method,
not just token.

minimum_ttl specifies the time (in seconds or as a time string like 24h)
an in-use token should be valid for. If the current validity period is less
than this and the token is renewable, a renewal will be attempted. If it is
not renewable or a renewal does not extend the ttl beyond the specified minimum,
a new token will be generated.

Note

Since leases like database credentials are tied to a token, setting this to
a much higher value than the default can be necessary, depending on your
specific use case and configuration.

renew_increment specifies the amount of time the token's validity should
be requested to be renewed for when renewing a token. When unset, will extend
the token's validity by its default ttl.
Set this to false to disable token renewals.

Note

The Vault server is allowed to disregard this request.

cache

Configures token/lease and metadata cache (for KV secrets) on all hosts
as well as configuration cache on minions that receive issued credentials.

	backend
	
Changed in version 3007.0: This used to be found in auth:token_backend.

The cache backend in use. Defaults to session, which will store the
Vault configuration in memory only for that specific Salt run.
disk/file/localfs will force using the localfs driver, regardless
of configured minion data cache.
Setting this to anything else will use the default configured cache for
minion data (cache), by default the local filesystem
as well.

	clear_attempt_revocation
	
New in version 3007.0.

When flushing still valid cached tokens and leases, attempt to have them
revoked after a (short) delay. Defaults to 60.
Set this to false to disable revocation (not recommended).

	clear_on_unauthorized
	
New in version 3007.0.

When encountering an Unauthorized response with an otherwise valid token,
flush the cache and request new credentials. Defaults to true.
If your policies are relatively stable, disabling this will prevent
a lot of unnecessary overhead, with the tradeoff that once they change,
you might have to clear the cache manually or wait for the token to expire.

	config
	
New in version 3007.0.

The time in seconds to cache queried configuration from the master.
Defaults to 3600 (one hour). Set this to null to disable
cache expiration. Changed server configuration on the master will
still be recognized, but changes in auth and cache will need
a manual update using vault.update_config or cache clearance
using vault.clear_cache.

Note

Expiring the configuration will also clear cached authentication
credentials and leases.

	expire_events
	
New in version 3007.0.

Fire an event when the session cache containing leases is cleared
(vault/cache/<scope>/clear) or cached leases have expired
(vault/lease/<cache_key>/expire).
A reactor can be employed to ensure fresh leases are issued.
Defaults to false.

	kv_metadata
	
New in version 3007.0.

The time in seconds to cache KV metadata used to determine if a path
is using version 1/2 for. Defaults to connection, which will clear
the metadata cache once a new configuration is requested from the
master. Setting this to null will keep the information
indefinitely until the cache is cleared manually using
vault.clear_cache with connection=false.

	secret
	
New in version 3007.0.

The time in seconds to cache tokens/secret IDs for. Defaults to ttl,
which caches the secret for as long as it is valid, unless a new configuration
is requested from the master.

issue

Configures authentication data issued by the master to minions.

	type
	
New in version 3007.0.

The type of authentication to issue to minions. Can be token or approle.
Defaults to token.

To be able to issue AppRoles to minions, the master needs to be able to
create new AppRoles on the configured auth mount (see policy example above).
It is strongly encouraged to create a separate mount dedicated to minions.

	approle
	
New in version 3007.0.

Configuration regarding issued AppRoles.

mount specifies the name of the auth mount the master manages.
Defaults to salt-minions. This mount should be exclusively dedicated
to the Salt master.

params configures the AppRole the master creates for minions. See the
Vault AppRole API docs [https://www.vaultproject.io/api-docs/auth/approle#create-update-approle]
for details. If you update these params, you can update the minion AppRoles
manually using the vault runner: salt-run vault.sync_approles, but they
will be updated automatically during a request by a minion as well.

	token
	
New in version 3007.0.

Configuration regarding issued tokens.

role_name specifies the role name for minion tokens created. Optional.

Changed in version 3007.0: This used to be found in role_name.

If omitted, minion tokens will be created without any role, thus being able
to inherit any master token policy (including token creation capabilities).

Example configuration:
https://www.nomadproject.io/docs/vault-integration/index.html#vault-token-role-configuration

params configures the tokens the master issues to minions.

Changed in version 3007.0: This used to be found in auth:ttl and auth:uses.
The possible parameters were synchronized with the Vault nomenclature:

	ttl previously was mapped to explicit_max_ttl on Vault, not ttl.
For the same behavior as before, you will need to set explicit_max_ttl now.

	uses is now called num_uses.

See the Vault token API docs [https://developer.hashicorp.com/vault/api-docs/auth/token#create-token]
for details. To make full use of multi-use tokens, you should configure a cache
that survives a single session (e.g. disk).

Note

If unset, the master issues single-use tokens to minions, which can be quite expensive.

	allow_minion_override_params
	
Changed in version 3007.0: This used to be found in auth:allow_minion_override.

Whether to allow minions to request to override parameters for issuing credentials.
See issue_params below.

	wrap
	
New in version 3007.0.

The time a minion has to unwrap a wrapped secret issued by the master.
Set this to false to disable wrapping, otherwise a time string like 30s
can be used. Defaults to 30s.

keys

List of keys to use to unseal vault server with the vault.unseal runner.

metadata

New in version 3007.0.

Configures metadata for the issued entities/secrets. Values have to be strings
and can be templated with the following variables:

	{jid} Salt job ID that issued the secret.

	{minion} The minion ID the secret was issued for.

	{user} The user the Salt daemon issuing the secret was running as.

	{pillar[<var>]} A minion pillar value that does not depend on Vault.

	{grains[<var>]} A minion grain value.

Note

Values have to be strings, hence templated variables that resolve to lists
will be concatenated to a lexicographically sorted comma-separated list
(Python list.sort()).

	entity
	Configures the metadata associated with the minion entity inside Vault.
Entities are only created when issuing AppRoles to minions.

	secret
	Configures the metadata associated with issued tokens/secret IDs. They
are logged in plaintext to the Vault audit log.

policies

Changed in version 3007.0: This used to specify the list of policies associated with a minion token only.
The equivalent is found in assign.

	assign
	List of policies that are assigned to issued minion authentication data,
either token or AppRole.

They can be static strings or string templates with

	{minion} The minion ID.

	{pillar[<var>]} A minion pillar value.

	{grains[<var>]} A minion grain value.

For pillar and grain values, lists are expanded, so salt_role_{pillar[roles]}
with [a, b] results in salt_role_a and salt_role_b to be issued.

Defaults to [saltstack/minions, saltstack/{minion}].

New in version 3006.0: Policies can be templated with pillar values as well: salt_role_{pillar[roles]}.
Make sure to only reference pillars that are not sourced from Vault since the latter
ones might be unavailable during policy rendering. If you use the Vault
integration in one of your pillar sls files, all values from that file
will be absent during policy rendering, even the ones that do not depend on Vault.

Important

See Is Targeting using Grain Data Secure? for important security information. In short,
everything except grains[id] is minion-controlled.

Note

List members which do not have simple string representations,
such as dictionaries or objects, do not work and will
throw an exception. Strings and numbers are examples of
types which work well.

	cache_time
	
New in version 3007.0.

Number of seconds compiled templated policies are cached on the master.
This is important when using pillar values in templates, since compiling
the pillar is an expensive operation.

Note

Only effective when issuing tokens to minions. Token policies
need to be compiled every time a token is requested, while AppRole-associated
policies are written to Vault configuration the first time authentication data
is requested (they can be refreshed on demand by running
salt-run vault.sync_approles).

They will also be refreshed in case other issuance parameters are changed
(such as uses/ttl), either on the master or the minion
(if allow_minion_override_params is True).

	refresh_pillar
	
New in version 3007.0.

Whether to refresh the minion pillar when compiling templated policies
that contain pillar variables.
Only effective when issuing tokens to minions (see note on cache_time above).

	null (default) only compiles the pillar when no cached pillar is found.

	false never compiles the pillar. This means templated policies that
contain pillar values are skipped if no cached pillar is found.

	true always compiles the pillar. This can cause additional strain
on the master since the compilation is costly.

Note

Hardcoded to True when issuing AppRoles.

Using cached pillar data only (refresh_pillar=False) might cause the policies
to be out of sync. If there is no cached pillar data available for the minion,
pillar templates will fail to render at all.

If you use pillar values for templating policies and do not disable
refreshing pillar data, make sure the relevant values are not sourced
from Vault (ext_pillar, sdb) or from a pillar sls file that uses the vault
execution/sdb module. Although this will often work when cached pillar data is
available, if the master needs to compile the pillar data during policy rendering,
all Vault modules will be broken to prevent an infinite loop.

server

Changed in version 3007.0: The values found in here were found in the vault root namespace previously.

Configures Vault server details.

	url
	URL of your Vault installation. Required.

	verify
	Configures certificate verification behavior when issuing requests to the
Vault server. If unset, requests will use the CA certificates bundled with certifi.

For details, please see the requests documentation [https://requests.readthedocs.io/en/master/user/advanced/#ssl-cert-verification].

New in version 2018.3.0.

Changed in version 3007.0: Minions again respect the master configuration value, which was changed
implicitly in v3001. If this value is set in the minion configuration
as well, it will take precedence.

In addition, this value can now be set to a PEM-encoded CA certificate
to use as the sole trust anchor for certificate chain verification.

	namespace
	Optional Vault namespace. Used with Vault Enterprise.

For details please see:
https://www.vaultproject.io/docs/enterprise/namespaces

New in version 3004.

Minion configuration (optional):

config_location

Where to get the connection details for calling vault. By default,
vault will try to determine if it needs to request the connection
details from the master or from the local config. This optional option
will force vault to use the connection details from the master or the
local config. Can only be either master or local.

New in version 3006.0.

issue_params

Request overrides for token/AppRole issuance. This needs to be allowed
on the master by setting issue:allow_minion_override_params to true.
See the master configuration issue:token:params or issue:approle:params
for reference.

Changed in version 3007.0: For token issuance, this used to be found in auth:ttl and auth:uses.
Mind that the parameter names have been synchronized with Vault, see notes
above (TLDR: ttl => explicit_max_ttl, uses => num_uses.

Note

auth:token_lifecycle and server:verify can be set on the minion as well.

	
salt.modules.vault.clear_cache(connection=True, session=False)

	
New in version 3007.0.

Delete Vault caches. Will ensure the current token and associated leases
are revoked by default.

The cache is organized in a hierarchy: /vault/connection/session/leases.
(italics mark data that is only cached when receiving configuration from a master)

connection contains KV metadata (by default), configuration and (AppRole) auth credentials.
session contains the currently active token.
leases contains leases issued to the currently active token like database credentials.

CLI Example:

salt '*' vault.clear_cache
salt '*' vault.clear_cache session=True

	connection
	Only clear the cached data scoped to a connection. This includes
configuration, auth credentials, the currently active auth token
as well as leases and KV metadata (by default). Defaults to true.
Set this to false to clear all Vault caches.

	session
	Only clear the cached data scoped to a session. This only includes
leases and the currently active auth token, but not configuration
or (AppRole) auth credentials. Defaults to false.
Setting this to true will keep the connection cache, regardless
of connection.

	
salt.modules.vault.clear_token_cache()

	
Changed in version 3001.

Changed in version 3007.0: This is now an alias for vault.clear_cache with connection=True.

Delete minion Vault token cache.

CLI Example:

salt '*' vault.clear_token_cache

	
salt.modules.vault.delete_secret(path, *args)

	Delete secret at <path>. The vault policy used must allow this.
If <path> is on KV v2, the secret will be soft-deleted.

CLI Example:

salt '*' vault.delete_secret "secret/my/secret"
salt '*' vault.delete_secret "secret/my/secret" 1 2 3

Required policy:

path "<mount>/<secret>" {
 capabilities = ["delete"]
}

or KV v2
path "<mount>/data/<secret>" {
 capabilities = ["delete"]
}

KV v2 versions
path "<mount>/delete/<secret>" {
 capabilities = ["update"]
}

	path
	The path to the secret, including mount.

New in version 3007.0: For KV v2, you can specify versions to soft-delete as supplemental
positional arguments.

	
salt.modules.vault.destroy_secret(path, *args)

	
New in version 3001.

Destroy specified secret versions <path>. The vault policy
used must allow this. Only supported on Vault KV version 2.

CLI Example:

salt '*' vault.destroy_secret "secret/my/secret" 1 2

Required policy:

path "<mount>/destroy/<secret>" {
 capabilities = ["update"]
}

	path
	The path to the secret, including mount.

You can specify versions to destroy as supplemental positional arguments.
At least one is required.

	
salt.modules.vault.get_server_config()

	
New in version 3007.0.

Return the server connection configuration that's currently in use by Salt.
Contains url, verify and namespace.

CLI Example:

salt '*' vault.get_server_config

	
salt.modules.vault.list_secrets(path, default=<Constant.NOT_SET>, keys_only=False)

	List secret keys at <path>. The vault policy used must allow this.
The path should end with a trailing slash.

Changed in version 3001: The default argument has been added. When the path or path/key
combination is not found, an exception will be raised, unless a default
is provided.

CLI Example:

salt '*' vault.list_secrets "secret/my/"

Required policy:

path "<mount>/<path>" {
 capabilities = ["list"]
}

or KV v2
path "<mount>/metadata/<path>" {
 capabilities = ["list"]
}

	path
	The path to the secret, including mount.

	default
	
New in version 3001.

When the path is not found, an exception will be raised, unless a default
is provided here.

	keys_only
	
New in version 3007.0.

This function used to return a dictionary like {"keys": ["some/", "some/key"]}.
Setting this to True will only return the list of keys.
For backwards-compatibility reasons, this defaults to False.

	
salt.modules.vault.patch_secret(path, **kwargs)

	Patch secret dataset at <path>. Fields are specified as arbitrary keyword arguments.

Note

This works even for older Vault versions, KV v1 and with missing
patch capability, but will use more than one request to simulate
the functionality by issuing a read and update request.

For proper, single-request patching, requires versions of KV v2 that
support the patch capability and the patch capability to be available
for the path.

Note

This uses JSON Merge Patch format internally.
Keys set to null (JSON/YAML)/None (Python) will be deleted.

CLI Example:

salt '*' vault.patch_secret "secret/my/secret" password="baz"

Required policy:

Proper patching
path "<mount>/data/<secret>" {
 capabilities = ["patch"]
}

OR (!), for older KV v2 setups:

path "<mount>/data/<secret>" {
 capabilities = ["read", "update"]
}

OR (!), for KV v1 setups:

path "<mount>/<secret>" {
 capabilities = ["read", "update"]
}

	path
	The path to the secret, including mount.

	
salt.modules.vault.policies_list()

	
New in version 3007.0.

List all ACL policies.

CLI Example:

salt '*' vault.policies_list

Required policy:

path "sys/policy" {
 capabilities = ["read"]
}

	
salt.modules.vault.policy_delete(policy)

	
New in version 3007.0.

Delete an ACL policy. Returns False if the policy did not exist.

CLI Example:

salt '*' vault.policy_delete salt_minion

Required policy:

path "sys/policy/<policy>" {
 capabilities = ["delete"]
}

	policy
	The name of the policy to delete.

	
salt.modules.vault.policy_fetch(policy)

	
New in version 3007.0.

Fetch the rules associated with an ACL policy. Returns None if the policy
does not exist.

CLI Example:

salt '*' vault.policy_fetch salt_minion

Required policy:

path "sys/policy/<policy>" {
 capabilities = ["read"]
}

	policy
	The name of the policy to fetch.

	
salt.modules.vault.policy_write(policy, rules)

	
New in version 3007.0.

Create or update an ACL policy.

CLI Example:

salt '*' vault.policy_write salt_minion 'path "secret/foo" {...}'

Required policy:

path "sys/policy/<policy>" {
 capabilities = ["create", "update"]
}

	policy
	The name of the policy to create/update.

	rules
	Rules to write, formatted as in-line HCL.

	
salt.modules.vault.query(method, endpoint, payload=None)

	
New in version 3007.0.

Issue arbitrary queries against the Vault API.

CLI Example:

salt '*' vault.query GET auth/token/lookup-self

Required policy: Depends on the query.

You can ask the vault CLI to output the necessary policy:

vault read -output-policy auth/token/lookup-self

	method
	HTTP method to use.

	endpoint
	Vault API endpoint to issue the request against. Do not include /v1/.

	payload
	Optional dictionary to use as JSON payload.

	
salt.modules.vault.read_secret(path, key=None, metadata=False, default=<Constant.NOT_SET>)

	Return the value of <key> at <path> in vault, or entire secret.

Changed in version 3001: The default argument has been added. When the path or path/key
combination is not found, an exception will be raised, unless a default
is provided.

CLI Example:

salt '*' vault.read_secret salt/kv/secret

Required policy:

path "<mount>/<secret>" {
 capabilities = ["read"]
}

or KV v2
path "<mount>/data/<secret>" {
 capabilities = ["read"]
}

	path
	The path to the secret, including mount.

	key
	The data field at <path> to read. If unspecified, returns the
whole dataset.

	metadata
	
New in version 3001.

If using KV v2 backend, display full results, including metadata.
Defaults to False.

	default
	
New in version 3001.

When the path or path/key combination is not found, an exception will
be raised, unless a default is provided here.

	
salt.modules.vault.update_config(keep_session=False)

	
New in version 3007.0.

Attempt to update the cached configuration without clearing the
currently active Vault session.

CLI Example:

salt '*' vault.update_config

	keep_session
	Only update configuration that can be updated without
creating a new login session.
If this is false, still tries to keep the active session,
but might clear it if the server configuration has changed
significantly.
Defaults to False.

	
salt.modules.vault.write_raw(path, raw)

	Set raw data at <path>. The vault policy used must allow this.

CLI Example:

salt '*' vault.write_raw "secret/my/secret" '{"user":"foo","password": "bar"}'

Required policy: see write_secret

	path
	The path to the secret, including mount.

	raw
	Secret data to write to <path>. Has to be a mapping.

	
salt.modules.vault.write_secret(path, **kwargs)

	Set secret dataset at <path>. The vault policy used must allow this.
Fields are specified as arbitrary keyword arguments.

CLI Example:

salt '*' vault.write_secret "secret/my/secret" user="foo" password="bar"

Required policy:

path "<mount>/<secret>" {
 capabilities = ["create", "update"]
}

or KV v2
path "<mount>/data/<secret>" {
 capabilities = ["create", "update"]
}

	path
	The path to the secret, including mount.

salt.modules.vbox_guest

VirtualBox Guest Additions installer

	
salt.modules.vbox_guest.additions_install(**kwargs)

	Install VirtualBox Guest Additions. Uses the CD, connected by VirtualBox.

To connect VirtualBox Guest Additions via VirtualBox graphical interface
press 'Host+D' ('Host' is usually 'Right Ctrl').

See https://www.virtualbox.org/manual/ch04.html#idp52733088 for more details.

CLI Example:

salt '*' vbox_guest.additions_install
salt '*' vbox_guest.additions_install reboot=True
salt '*' vbox_guest.additions_install upgrade_os=True

	Parameters:

	
	reboot (bool [https://docs.python.org/3/library/functions.html#bool]) -- reboot computer to complete installation

	upgrade_os (bool [https://docs.python.org/3/library/functions.html#bool]) -- upgrade OS (to ensure the latests version of kernel and developer tools are installed)

	Returns:

	version of VirtualBox Guest Additions or string with error

	
salt.modules.vbox_guest.additions_mount()

	Mount VirtualBox Guest Additions CD to the temp directory.

To connect VirtualBox Guest Additions via VirtualBox graphical interface
press 'Host+D' ('Host' is usually 'Right Ctrl').

CLI Example:

salt '*' vbox_guest.additions_mount

	Returns:

	True or OSError exception

	
salt.modules.vbox_guest.additions_remove(**kwargs)

	Remove VirtualBox Guest Additions.

Firstly it tries to uninstall itself by executing
'/opt/VBoxGuestAdditions-VERSION/uninstall.run uninstall'.
It uses the CD, connected by VirtualBox if it failes.

CLI Example:

salt '*' vbox_guest.additions_remove
salt '*' vbox_guest.additions_remove force=True

	Parameters:

	force (bool [https://docs.python.org/3/library/functions.html#bool]) -- force VirtualBox Guest Additions removing

	Returns:

	True if VirtualBox Guest Additions were removed successfully else False

	
salt.modules.vbox_guest.additions_umount(mount_point)

	Unmount VirtualBox Guest Additions CD from the temp directory.

CLI Example:

salt '*' vbox_guest.additions_umount

	Parameters:

	mount_point -- directory VirtualBox Guest Additions is mounted to

	Returns:

	True or an string with error

	
salt.modules.vbox_guest.additions_version()

	Check VirtualBox Guest Additions version.

CLI Example:

salt '*' vbox_guest.additions_version

	Returns:

	version of VirtualBox Guest Additions or False if they are not installed

	
salt.modules.vbox_guest.grant_access_to_shared_folders_to(name, users=None)

	Grant access to auto-mounted shared folders to the users.

User is specified by its name. To grant access for several users use argument users.
Access will be denied to the users not listed in users argument.

See https://www.virtualbox.org/manual/ch04.html#sf_mount_auto for more details.

CLI Example:

salt '*' vbox_guest.grant_access_to_shared_folders_to fred
salt '*' vbox_guest.grant_access_to_shared_folders_to users ['fred', 'roman']

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- name of the user to grant access to auto-mounted shared folders to

	users (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) -- list of names of users to grant access to auto-mounted shared folders to (if specified, name will not be taken into account)

	Returns:

	list of users who have access to auto-mounted shared folders

	
salt.modules.vbox_guest.list_shared_folders_users()

	List users who have access to auto-mounted shared folders.

See https://www.virtualbox.org/manual/ch04.html#sf_mount_auto for more details.

CLI Example:

salt '*' vbox_guest.list_shared_folders_users

	Returns:

	list of users who have access to auto-mounted shared folders

salt.modules.vboxmanage

Support for VirtualBox using the VBoxManage command

New in version 2016.3.0.

If the vboxdrv kernel module is not loaded, this module can automatically
load it by configuring autoload_vboxdrv in /etc/salt/minion:

autoload_vboxdrv: True

The default for this setting is False.

	depends:

	virtualbox

	
salt.modules.vboxmanage.clonemedium(medium, uuid_in=None, file_in=None, uuid_out=None, file_out=None, mformat=None, variant=None, existing=False, **kwargs)

	Clone a new VM from an existing VM

CLI Example:

salt 'hypervisor' vboxmanage.clonemedium <name> <new_name>

	
salt.modules.vboxmanage.clonevm(name=None, uuid=None, new_name=None, snapshot_uuid=None, snapshot_name=None, mode='machine', options=None, basefolder=None, new_uuid=None, register=False, groups=None, **kwargs)

	Clone a new VM from an existing VM

CLI Example:

salt 'hypervisor' vboxmanage.clonevm <name> <new_name>

	
salt.modules.vboxmanage.create(name, groups=None, ostype=None, register=True, basefolder=None, new_uuid=None, **kwargs)

	Create a new VM

CLI Example:

salt 'hypervisor' vboxmanage.create <name>

	
salt.modules.vboxmanage.destroy(name)

	Unregister and destroy a VM

CLI Example:

salt '*' vboxmanage.destroy my_vm

	
salt.modules.vboxmanage.list_items(item, details=False, group_by='UUID')

	Return a list of a specific type of item. The following items are available:

vms
runningvms
ostypes
hostdvds
hostfloppies
intnets
bridgedifs
hostonlyifs
natnets
dhcpservers
hostinfo
hostcpuids
hddbackends
hdds
dvds
floppies
usbhost
usbfilters
systemproperties
extpacks
groups
webcams
screenshotformats

CLI Example:

salt 'hypervisor' vboxmanage.items <item>
salt 'hypervisor' vboxmanage.items <item> details=True
salt 'hypervisor' vboxmanage.items <item> details=True group_by=Name

Some items do not display well, or at all, unless details is set to
True. By default, items are grouped by the UUID field, but not all
items contain that field. In those cases, another field must be specified.

	
salt.modules.vboxmanage.list_nodes()

	Return a list of registered VMs

CLI Example:

salt '*' vboxmanage.list_nodes

	
salt.modules.vboxmanage.list_nodes_full()

	Return a list of registered VMs, with detailed information

CLI Example:

salt '*' vboxmanage.list_nodes_full

	
salt.modules.vboxmanage.list_nodes_min()

	Return a list of registered VMs, with minimal information

CLI Example:

salt '*' vboxmanage.list_nodes_min

	
salt.modules.vboxmanage.list_ostypes()

	List the available OS Types

CLI Example:

salt '*' vboxmanage.list_ostypes

	
salt.modules.vboxmanage.register(filename)

	Register a VM

CLI Example:

salt '*' vboxmanage.register my_vm_filename

	
salt.modules.vboxmanage.start(name)

	Start a VM

CLI Example:

salt '*' vboxmanage.start my_vm

	
salt.modules.vboxmanage.stop(name)

	Stop a VM

CLI Example:

salt '*' vboxmanage.stop my_vm

	
salt.modules.vboxmanage.unregister(name, delete=False)

	Unregister a VM

CLI Example:

salt '*' vboxmanage.unregister my_vm_filename

	
salt.modules.vboxmanage.vboxcmd()

	Return the location of the VBoxManage command

CLI Example:

salt '*' vboxmanage.vboxcmd

salt.modules.vcenter

Module used to access the vcenter proxy connection methods

Warning

This module will be deprecated in a future release of Salt. VMware strongly
recommends using the
VMware Salt extensions [https://docs.saltproject.io/salt/extensions/salt-ext-modules-vmware/en/latest/all.html]
instead of the vCenter module. Because the Salt extensions are newer and
actively supported by VMware, they are more compatible with current versions
of ESXi and they work well with the latest features in the VMware product
line.

	
salt.modules.vcenter.get_details()

	

salt.modules.victorops

Support for VictorOps

New in version 2015.8.0.

Requires an api_key in /etc/salt/minion:

victorops:
 api_key: '280d4699-a817-4719-ba6f-ca56e573e44f'

	
salt.modules.victorops.create_event(message_type=None, routing_key='everybody', **kwargs)

	Create an event in VictorOps. Designed for use in states.

The following parameters are required:

	Parameters:

	message_type -- One of the following values: INFO, WARNING, ACKNOWLEDGEMENT, CRITICAL, RECOVERY.

The following parameters are optional:

	Parameters:

	
	routing_key -- The key for where messages should be routed. By default, sent to
'everyone' route.

	entity_id -- The name of alerting entity. If not provided, a random name will be assigned.

	timestamp -- Timestamp of the alert in seconds since epoch. Defaults to the
time the alert is received at VictorOps.

:param timestamp_fmt The date format for the timestamp parameter.

	Parameters:

	
	state_start_time -- The time this entity entered its current state
(seconds since epoch). Defaults to the time alert is received.

	state_start_time_fmt -- The date format for the timestamp parameter.

	state_message -- Any additional status information from the alert item.

	entity_is_host -- Used within VictorOps to select the appropriate
display format for the incident.

	entity_display_name -- Used within VictorOps to display a human-readable name for the entity.

	ack_message -- A user entered comment for the acknowledgment.

	ack_author -- The user that acknowledged the incident.

	Returns:

	A dictionary with result, entity_id, and message if result was failure.

CLI Example:

salt myminion victorops.create_event message_type='CRITICAL' routing_key='everyone' entity_id='hostname/diskspace'

salt myminion victorops.create_event message_type='ACKNOWLEDGEMENT' routing_key='everyone' entity_id='hostname/diskspace' ack_message='Acknowledged' ack_author='username'

salt myminion victorops.create_event message_type='RECOVERY' routing_key='everyone' entity_id='hostname/diskspace'

	The following parameters are required:
	message_type

salt.modules.virt

Work with virtual machines managed by libvirt

	depends:

	
	libvirt Python module

	libvirt client

	qemu-img

	grep

Connection

The connection to the virtualization host can be either setup in the minion configuration,
pillar data or overridden for each individual call.

By default, the libvirt connection URL will be guessed: the first available libvirt
hypervisor driver will be used. This can be overridden like this:

virt:
 connection:
 uri: lxc:///

If the connection requires an authentication like for ESXi, this can be defined in the
minion pillar data like this:

virt:
 connection:
 uri: esx://10.1.1.101/?no_verify=1&auto_answer=1
 auth:
 username: user
 password: secret

Connecting with SSH protocol

Libvirt can connect to remote hosts using SSH using one of the ssh, libssh and
libssh2 transports. Note that libssh2 is likely to fail as it doesn't read the
known_hosts file. Libvirt may also have been built without libssh or libssh2
support.

To use the SSH transport, on the minion setup an SSH agent with a key authorized on
the remote libvirt machine.

Per call connection setup

New in version 2019.2.0.

All the calls requiring the libvirt connection configuration as mentioned above can
override this configuration using connection, username and password parameters.

This means that the following will list the domains on the local LXC libvirt driver,
whatever the virt:connection is.

salt 'hypervisor' virt.list_domains connection=lxc:///

The calls not using the libvirt connection setup are:

	seed_non_shared_migrate

	virt_type

	is_*hyper

	all migration functions

	libvirt ESX URI format [http://libvirt.org/drvesx.html#uriformat]

	libvirt URI format [http://libvirt.org/uri.html#URI_config]

	libvirt authentication configuration [http://libvirt.org/auth.html#Auth_client_config]

Units

Units specification

New in version 3002.

The string should contain a number optionally followed
by a unit. The number may have a decimal fraction. If
the unit is not given then MiB are set by default.
Units can optionally be given in IEC style (such as MiB),
although the standard single letter style (such as M) is
more convenient.

Valid units include:

	Standard

	IEC

	Standard

	IEC

	

	Unit

	Unit

	Name

	Name

	Factor

	B

	
	Bytes

	
	1

	K

	KiB

	Kilobytes

	Kibibytes

	2**10

	M

	MiB

	Megabytes

	Mebibytes

	2**20

	G

	GiB

	Gigabytes

	Gibibytes

	2**30

	T

	TiB

	Terabytes

	Tebibytes

	2**40

	P

	PiB

	Petabytes

	Pebibytes

	2**50

	E

	EiB

	Exabytes

	Exbibytes

	2**60

	Z

	ZiB

	Zettabytes

	Zebibytes

	2**70

	Y

	YiB

	Yottabytes

	Yobibytes

	2**80

Additional decimal based units:

	Unit

	Factor

	KB

	10**3

	MB

	10**6

	GB

	10**9

	TB

	10**12

	PB

	10**15

	EB

	10**18

	ZB

	10**21

	YB

	10**24

	
salt.modules.virt.all_capabilities(**kwargs)

	Return the host and domain capabilities in a single call.

New in version 3001.

	Parameters:

	
	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

CLI Example:

salt '*' virt.all_capabilities

	
salt.modules.virt.capabilities(**kwargs)

	Return the hypervisor connection capabilities.

	Parameters:

	
	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.capabilities

	
salt.modules.virt.cpu_baseline(full=False, migratable=False, out='libvirt', **kwargs)

	Return the optimal 'custom' CPU baseline config for VM's on this minion

New in version 2016.3.0.

	Parameters:

	
	full -- Return all CPU features rather than the ones on top of the closest CPU model

	migratable -- Exclude CPU features that are unmigratable (libvirt 2.13+)

	out -- 'libvirt' (default) for usable libvirt XML definition, 'salt' for nice dict

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.cpu_baseline

	
salt.modules.virt.create_xml_path(path, **kwargs)

	Start a transient domain based on the XML-file path passed to the function

	Parameters:

	
	path -- path to a file containing the libvirt XML definition of the domain

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.create_xml_path <path to XML file on the node>

	
salt.modules.virt.create_xml_str(xml, **kwargs)

	Start a transient domain based on the XML passed to the function

	Parameters:

	
	xml -- libvirt XML definition of the domain

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.create_xml_str <XML in string format>

	
salt.modules.virt.ctrl_alt_del(vm_, **kwargs)

	Sends CTRL+ALT+DEL to a VM

	Parameters:

	
	vm -- domain name

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.ctrl_alt_del <domain>

	
salt.modules.virt.define_vol_xml_path(path, pool=None, **kwargs)

	Define a volume based on the XML-file path passed to the function

	Parameters:

	
	path -- path to a file containing the libvirt XML definition of the volume

	pool -- storage pool name to define the volume in.
If defined, this parameter will override the configuration setting.

New in version 3001.

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.define_vol_xml_path <path to XML file on the node>

	
salt.modules.virt.define_vol_xml_str(xml, pool=None, **kwargs)

	Define a volume based on the XML passed to the function

	Parameters:

	
	xml -- libvirt XML definition of the storage volume

	pool -- storage pool name to define the volume in.
If defined, this parameter will override the configuration setting.

New in version 3001.

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.define_vol_xml_str <XML in string format>

The storage pool where the disk image will be defined is default
unless changed with the pool parameter or a configuration like this:

virt:
 storagepool: mine

	
salt.modules.virt.define_xml_path(path, **kwargs)

	Define a persistent domain based on the XML-file path passed to the function

	Parameters:

	
	path -- path to a file containing the libvirt XML definition of the domain

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.define_xml_path <path to XML file on the node>

	
salt.modules.virt.define_xml_str(xml, **kwargs)

	Define a persistent domain based on the XML passed to the function

	Parameters:

	
	xml -- libvirt XML definition of the domain

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.define_xml_str <XML in string format>

	
salt.modules.virt.delete_snapshots(name, *names, **kwargs)

	Delete one or more snapshots of the given VM.

	Parameters:

	
	name -- domain name

	names -- names of the snapshots to remove

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

New in version 2016.3.0.

CLI Example:

salt '*' virt.delete_snapshots <domain> all=True
salt '*' virt.delete_snapshots <domain> <snapshot>
salt '*' virt.delete_snapshots <domain> <snapshot1> <snapshot2> ...

	
salt.modules.virt.domain_capabilities(emulator=None, arch=None, machine=None, domain=None, **kwargs)

	Return the domain capabilities given an emulator, architecture, machine or virtualization type.

New in version 2019.2.0.

	Parameters:

	
	emulator -- return the capabilities for the given emulator binary

	arch -- return the capabilities for the given CPU architecture

	machine -- return the capabilities for the given emulated machine type

	domain -- return the capabilities for the given virtualization type.

	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

The list of the possible emulator, arch, machine and domain can be found in
the host capabilities output.

If none of the parameters is provided, the libvirt default one is returned.

CLI Example:

salt '*' virt.domain_capabilities arch='x86_64' domain='kvm'

	
salt.modules.virt.freecpu(**kwargs)

	Return an int representing the number of unallocated cpus on this
hypervisor

	Parameters:

	
	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.freecpu

	
salt.modules.virt.freemem(**kwargs)

	Return an int representing the amount of memory (in MB) that has not
been given to virtual machines on this node

	Parameters:

	
	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.freemem

	
salt.modules.virt.full_info(**kwargs)

	Return the node_info, vm_info and freemem

	Parameters:

	
	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.full_info

	
salt.modules.virt.get_disks(vm_, **kwargs)

	Return the disks of a named vm

	Parameters:

	
	vm -- name of the domain

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.get_disks <domain>

	
salt.modules.virt.get_graphics(vm_, **kwargs)

	Returns the information on vnc for a given vm

	Parameters:

	
	vm -- name of the domain

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.get_graphics <domain>

	
salt.modules.virt.get_hypervisor()

	Returns the name of the hypervisor running on this node or None.

Detected hypervisors:

	kvm

	xen

	bhyve

CLI Example:

salt '*' virt.get_hypervisor

New in version 2019.2.0: the function and the kvm, xen and bhyve hypervisors support

	
salt.modules.virt.get_loader(vm_, **kwargs)

	Returns the information on the loader for a given vm

	Parameters:

	
	vm -- name of the domain

	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

CLI Example:

salt '*' virt.get_loader <domain>

New in version 2019.2.0.

	
salt.modules.virt.get_macs(vm_, **kwargs)

	Return a list off MAC addresses from the named vm

	Parameters:

	
	vm -- name of the domain

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.get_macs <domain>

	
salt.modules.virt.get_nics(vm_, **kwargs)

	Return info about the network interfaces of a named vm

	Parameters:

	
	vm -- name of the domain

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.get_nics <domain>

	
salt.modules.virt.get_profiles(hypervisor=None, **kwargs)

	Return the virt profiles for hypervisor.

Currently there are profiles for:

	nic

	disk

	Parameters:

	
	hypervisor -- override the default machine type.

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.get_profiles
salt '*' virt.get_profiles hypervisor=vmware

	
salt.modules.virt.get_xml(vm_, **kwargs)

	Returns the XML for a given vm

	Parameters:

	
	vm -- domain name

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.get_xml <domain>

	
salt.modules.virt.init(name, cpu, mem, nic='default', interfaces=None, hypervisor=None, start=True, disk='default', disks=None, saltenv='base', seed=True, install=True, pub_key=None, priv_key=None, seed_cmd='seed.apply', graphics=None, os_type=None, arch=None, boot=None, boot_dev=None, numatune=None, hypervisor_features=None, clock=None, serials=None, consoles=None, stop_on_reboot=False, host_devices=None, **kwargs)

	Initialize a new vm

	Parameters:

	
	name -- name of the virtual machine to create

	cpu -- Number of virtual CPUs to assign to the virtual machine or a dictionary with detailed information to configure
cpu model and topology, numa node tuning, cpu tuning and iothreads allocation. The structure of the dictionary is
documented in cpu parameters definition.

cpu:
 placement: static
 cpuset: 0-11
 current: 5
 maximum: 12
 vcpus:
 0:
 enabled: True
 hotpluggable: False
 order: 1
 1:
 enabled: False
 hotpluggable: True
 match: minimum
 mode: custom
 check: full
 vendor: Intel
 model:
 name: core2duo
 fallback: allow
 vendor_id: GenuineIntel
 topology:
 sockets: 1
 cores: 12
 threads: 1
 cache:
 level: 3
 mode: emulate
 features:
 lahf: optional
 pcid: require
 numa:
 0:
 cpus: 0-3
 memory: 1g
 discard: True
 distances:
 0: 10 # sibling id : value
 1: 21
 2: 31
 3: 41
 1:
 cpus: 4-6
 memory: 1g
 memAccess: shared
 distances:
 0: 21
 1: 10
 2: 21
 3: 31
 tuning:
 vcpupin:
 0: 1-4,^2 # vcpuid : cpuset
 1: 0,1
 2: 2,3
 3: 0,4
 emulatorpin: 1-3
 iothreadpin:
 1: 5,6 # iothread id: cpuset
 2: 7,8
 shares: 2048
 period: 1000000
 quota: -1
 global_period: 1000000
 global_quota: -1
 emulator_period: 1000000
 emulator_quota: -1
 iothread_period: 1000000
 iothread_quota: -1
 vcpusched:
 - scheduler: fifo
 priority: 1
 vcpus: 0,3-5
 - scheduler: rr
 priority: 3
 iothreadsched:
 - scheduler: idle
 - scheduler: batch
 iothreads: 2,3
 emulatorsched:
 - scheduler: batch
 cachetune:
 0-3: # vcpus set
 0: # cache id
 level: 3
 type: both
 size: 4
 1:
 level: 3
 type: both
 size: 6
 monitor:
 1: 3
 0-3: 3
 4-5:
 monitor:
 4: 3 # vcpus: level
 5: 3
 memorytune:
 0-3: # vcpus set
 0: 60 # node id: bandwidth
 4-5:
 0: 60
 iothreads: 4

New in version 3003.

	mem -- Amount of memory to allocate to the virtual machine in MiB. Since 3002, a dictionary can be used to
contain detailed configuration which support memory allocation or tuning. Supported parameters are boot,
current, max, slots, hard_limit, soft_limit, swap_hard_limit, min_guarantee,
hugepages , nosharepages, locked, source, access, allocation and discard. The structure
of the dictionary is documented in Memory parameter definition. Both decimal and binary base are supported. Detail unit
specification is documented in Units specification. Please note that the value for slots must be an integer.

{
 'boot': 1g,
 'current': 1g,
 'max': 1g,
 'slots': 10,
 'hard_limit': '1024',
 'soft_limit': '512m',
 'swap_hard_limit': '1g',
 'min_guarantee': '512mib',
 'hugepages': [{'nodeset': '0-3,^2', 'size': '1g'}, {'nodeset': '2', 'size': '2m'}],
 'nosharepages': True,
 'locked': True,
 'source': 'file',
 'access': 'shared',
 'allocation': 'immediate',
 'discard': True
}

Changed in version 3002.

	nic -- NIC profile to use (Default: 'default').
The profile interfaces can be customized / extended with the interfaces parameter.
If set to None, no profile will be used.

	interfaces -- List of dictionaries providing details on the network interfaces to create.
These data are merged with the ones from the nic profile. The structure of
each dictionary is documented in Network Interfaces Definitions.

New in version 2019.2.0.

	hypervisor -- the virtual machine type. By default the value will be computed according
to the virtual host capabilities.

	start -- True to start the virtual machine after having defined it (Default: True)

	disk -- Disk profile to use (Default: 'default'). If set to None, no profile will be used.

	disks -- List of dictionaries providing details on the disk devices to create.
These data are merged with the ones from the disk profile. The structure of
each dictionary is documented in Disks Definitions.

New in version 2019.2.0.

	saltenv -- Fileserver environment (Default: 'base').
See cp module for more details

	seed -- True to seed the disk image. Only used when the image parameter is provided.
(Default: True)

	install -- install salt minion if absent (Default: True)

	pub_key -- public key to seed with (Default: None)

	priv_key -- public key to seed with (Default: None)

	seed_cmd -- Salt command to execute to seed the image. (Default: 'seed.apply')

	graphics -- Dictionary providing details on the graphics device to create. (Default: None)
See Graphics Definition for more details on the possible values.

New in version 2019.2.0.

	os_type -- type of virtualization as found in the //os/type element of the libvirt definition.
The default value is taken from the host capabilities, with a preference for hvm.

New in version 2019.2.0.

	arch -- architecture of the virtual machine. The default value is taken from the host capabilities,
but x86_64 is prefed over i686.

New in version 2019.2.0.

	config -- minion configuration to use when seeding.
See seed module for more details

	boot_dev -- String of space-separated devices to boot from (Default: 'hd')

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

	stop_on_reboot -- If set to True the guest will stop instead of rebooting.
This is specially useful when creating a virtual machine with an installation cdrom or
an autoinstallation needing a special first boot configuration.
Defaults to False

New in version 3003.

	boot -- Specifies kernel, initial ramdisk and kernel command line parameters for the virtual machine.
This is an optional parameter, all of the keys are optional within the dictionary. The structure of
the dictionary is documented in Boot parameters definition. If a remote path is provided to kernel or initrd,
salt will handle the downloading of the specified remote file and modify the XML accordingly.
To boot VM with UEFI, specify loader and nvram path or specify 'efi': True if your libvirtd version
is >= 5.2.0 and QEMU >= 3.0.0.

New in version 3000.

{
 'kernel': '/root/f8-i386-vmlinuz',
 'initrd': '/root/f8-i386-initrd',
 'cmdline': 'console=ttyS0 ks=http://example.com/f8-i386/os/',
 'loader': '/usr/share/OVMF/OVMF_CODE.fd',
 'nvram': '/usr/share/OVMF/OVMF_VARS.ms.fd'
}

	boot_dev -- Space separated list of devices to boot from sorted by decreasing priority.
Values can be hd, fd, cdrom or network.

By default, the value will "hd".

	numatune -- The optional numatune element provides details of how to tune the performance of a NUMA host via controlling NUMA
policy for domain process. The optional memory element specifies how to allocate memory for the domain process
on a NUMA host. memnode elements can specify memory allocation policies per each guest NUMA node. The definition
used in the dictionary can be found at cpu parameters definition.

New in version 3003.

{
 'memory': {'mode': 'strict', 'nodeset': '0-11'},
 'memnodes': {0: {'mode': 'strict', 'nodeset': 1}, 1: {'mode': 'preferred', 'nodeset': 2}}
}

	hypervisor_features -- Enable or disable hypervisor-specific features on the virtual machine.

New in version 3003.

hypervisor_features:
 kvm-hint-dedicated: True

	clock -- Configure the guest clock.
The value is a dictionary with the following keys:

	adjustment
	time adjustment in seconds or reset

	utc
	set to False to use the host local time as the guest clock. Defaults to True.

	timezone
	synchronize the guest to the correspding timezone

	timers
	a dictionary associating the timer name with its configuration.
This configuration is a dictionary with the properties track, tickpolicy,
catchup, frequency, mode, present, slew, threshold and limit.
See libvirt time keeping documentation [https://libvirt.org/formatdomain.html#time-keeping] for the possible values.

New in version 3003.

Set the clock to local time using an offset in seconds
.. code-block:: yaml

	clock:
	adjustment: 3600
utc: False

Set the clock to a specific time zone:

clock:
 timezone: CEST

Tweak guest timers:

clock:
 timers:
 tsc:
 frequency: 3504000000
 mode: native
 rtc:
 track: wall
 tickpolicy: catchup
 slew: 4636
 threshold: 123
 limit: 2342
 hpet:
 present: False

	serials -- Dictionary providing details on the serials connection to create. (Default: None)
See Serials and Consoles Definitions for more details on the possible values.

New in version 3003.

	consoles -- Dictionary providing details on the consoles device to create. (Default: None)
See Serials and Consoles Definitions for more details on the possible values.

New in version 3003.

	host_devices -- List of host devices to passthrough to the guest.
The value is a list of device names as provided by the node_devices() function.
(Default: None)

New in version 3003.

cpu parameters definition

The cpu parameters dictionary can contain the following properties:

	cpuset
	a comma-separated list of physical CPU numbers that domain process and virtual CPUs can be pinned to by default.
eg. 1-4,^3 cpuset 3 is excluded.

	current
	the number of virtual cpus available at startup

	placement
	indicate the CPU placement mode for domain process. the value can be either static or auto

	vcpus
	specify the state of individual vcpu. Possible attribute for each individual vcpu include: id, enabled,
hotpluggable and order. Valid ids are from 0 to the maximum vCPU count minus 1. enabled takes
boolean values which controls the state of the vcpu. hotpluggable take boolean value which controls whether
given vCPU can be hotplugged and hotunplugged. order takes an integer value which specifies the order to add
the online vCPUs.

	match
	The cpu attribute match attribute specifies how strictly the virtual CPU provided to the guest matches the CPU
requirements, possible values are minimum, exact or strict.

	check
	Optional cpu attribute check attribute can be used to request a specific way of checking whether the virtual
CPU matches the specification, possible values are none, partial and full.

	mode
	Optional cpu attribute mode attribute may be used to make it easier to configure a guest CPU to be as close
to host CPU as possible, possible values are custom, host-model and host-passthrough.

	model
	specifies CPU model requested by the guest. An optional fallback attribute can be used to forbid libvirt falls
back to the closest model supported by the hypervisor, possible values are allow or forbid. vendor_id
attribute can be used to set the vendor id seen by the guest, the length must be exactly 12 characters long.

	vendor
	specifies CPU vendor requested by the guest.

	topology
	specifies requested topology of virtual CPU provided to the guest. Four possible attributes , sockets, dies,
cores, and threads, accept non-zero positive integer values. They refer to the number of CPU sockets per
NUMA node, number of dies per socket, number of cores per die, and number of threads per core, respectively.

	features
	A dictionary contains a set of cpu features to fine-tune features provided by the selected CPU model. Use cpu
feature name as the key and the policy as the value. policy Attribute takes force, require,
optional, disable or forbid.

	cache
	describes the virtual CPU cache. Optional attribute level takes an integer value which describes cache level
mode attribute supported three possible values: emulate, passthrough, disable

	numa
	specify the guest numa topology. cell element specifies a NUMA cell or a NUMA node, cpus specifies the
CPU or range of CPUs that are part of the node, memory specifies the size of the node memory. All cells
should have id attribute in case referring to some cell is necessary in the code. optional attribute
memAccess control whether the memory is to be mapped as shared or private, discard attribute which
fine tunes the discard feature for given numa node, possible values are True or False. distances
element define the distance between NUMA cells and sibling sub-element is used to specify the distance value
between sibling NUMA cells.

	vcpupin
	The optional vcpupin element specifies which of host's physical CPUs the domain vCPU will be pinned to.

	emulatorpin
	The optional emulatorpin element specifies which of host physical CPUs the "emulator", a subset of a domain not
including vCPU or iothreads will be pinned to.

	iothreadpin
	The optional iothreadpin element specifies which of host physical CPUs the IOThreads will be pinned to.

	shares
	The optional shares element specifies the proportional weighted share for the domain.

	period
	The optional period element specifies the enforcement interval (unit: microseconds).

	quota
	The optional quota element specifies the maximum allowed bandwidth (unit: microseconds).

	global_period
	The optional global_period element specifies the enforcement CFS scheduler interval (unit: microseconds) for the
whole domain in contrast with period which enforces the interval per vCPU.

	global_quota
	The optional global_quota element specifies the maximum allowed bandwidth (unit: microseconds) within a period
for the whole domain.

	emulator_period
	The optional emulator_period element specifies the enforcement interval (unit: microseconds).

	emulator_quota
	The optional emulator_quota element specifies the maximum allowed bandwidth (unit: microseconds) for domain's
emulator threads (those excluding vCPUs).

	iothread_period
	The optional iothread_period element specifies the enforcement interval (unit: microseconds) for IOThreads.

	iothread_quota
	The optional iothread_quota element specifies the maximum allowed bandwidth (unit: microseconds) for IOThreads.

	vcpusched
	specify the scheduler type for vCPUs.
The value is a list of dictionaries with the scheduler key (values batch, idle, fifo, rr)
and the optional priority and vcpus keys. The priority value usually is a positive integer and the
vcpus value is a cpu set like 1-4,^3,6 or simply the vcpu id.

	iothreadsched
	specify the scheduler type for IO threads.
The value is a list of dictionaries with the scheduler key (values batch, idle, fifo, rr)
and the optional priority and vcpus keys. The priority value usually is a positive integer and the
vcpus value is a cpu set like 1-4,^3,6 or simply the vcpu id.

	emulatorsched
	specify the scheduler type (values batch, idle, fifo, rr) for particular the emulator.
The value is a dictionary with the scheduler key (values batch, idle, fifo, rr)
and the optional priority and vcpus keys. The priority value usually is a positive integer.

	cachetune
	Optional cachetune element can control allocations for CPU caches using the resctrl on the host.

	monitor
	The optional element monitor creates the cache monitor(s) for current cache allocation.

	memorytune
	Optional memorytune element can control allocations for memory bandwidth using the resctrl on the host.

	iothreads
	Number of threads for supported disk devices to perform I/O requests. iothread id will be numbered from 1 to
the provided number (Default: None).

Boot parameters definition

The boot parameters dictionary can contains the following properties:

	kernel
	The URL or path to the kernel to run the virtual machine with.

	initrd
	The URL or path to the initrd file to run the virtual machine with.

	cmdline
	The parameters to pass to the kernel provided in the kernel property.

	loader
	The path to the UEFI binary loader to use.

New in version 3001.

	nvram
	The path to the UEFI data template. The file will be copied when creating the virtual machine.

New in version 3001.

	efi
	A boolean value.

New in version 3001.

Memory parameter definition

Memory parameter can contain the following properties:

	boot
	The maximum allocation of memory for the guest at boot time

	current
	The actual allocation of memory for the guest

	max
	The run time maximum memory allocation of the guest

	slots
	specifies the number of slots available for adding memory to the guest

	hard_limit
	the maximum memory the guest can use

	soft_limit
	memory limit to enforce during memory contention

	swap_hard_limit
	the maximum memory plus swap the guest can use

	min_guarantee
	the guaranteed minimum memory allocation for the guest

	hugepages
	memory allocated using hugepages instead of the normal native page size. It takes a list of
dictionaries with nodeset and size keys.
For example "hugepages": [{"nodeset": "1-4,^3", "size": "2m"}, {"nodeset": "3", "size": "1g"}].

	nosharepages
	boolean value to instruct hypervisor to disable shared pages (memory merge, KSM) for this domain

	locked
	boolean value that allows memory pages belonging to the domain will be locked in host's memory and the host will
not be allowed to swap them out, which might be required for some workloads such as real-time.

	source
	possible values are file which utilizes file memorybacking, anonymous by default and memfd backing.
(QEMU/KVM only)

	access
	specify if the memory is to be shared or private. This can be overridden per numa node by memAccess.

	allocation
	specify when to allocate the memory by supplying either immediate or ondemand.

	discard
	boolean value to ensure the memory content is discarded just before guest shuts down (or when DIMM module is
unplugged). Please note that this is just an optimization and is not guaranteed to work in all cases
(e.g. when hypervisor crashes). (QEMU/KVM only)

Network Interfaces Definitions

Network interfaces dictionaries can contain the following properties:

	name
	Name of the network interface. This is only used as a key to merge with the profile data

	type
	Network type. One of 'bridge', 'network'

	source
	The network source, typically the bridge or network name

	mac
	The desired mac address, computed if None (Default: None).

	model
	The network card model (Default: depends on the hypervisor)

Disks Definitions

Disk dictionaries can contain the following properties:

	name
	Name of the disk. This is mostly used in the name of the disk image and as a key to merge
with the profile data.

	format
	Format of the disk image, like 'qcow2', 'raw', 'vmdk'.
(Default: depends on the hypervisor)

	size
	Disk size in MiB

	pool
	Path to the folder or name of the pool where disks should be created.
(Default: depends on hypervisor and the virt:storagepool configuration)

Changed in version 3001.

If the value contains no '/', it is considered a pool name where to create a volume.
Using volumes will be mandatory for some pools types like rdb, iscsi, etc.

	model
	One of the disk busses allowed by libvirt (Default: depends on hypervisor)

See the libvirt disk element [https://libvirt.org/formatdomain.html#elementsDisks] documentation for the allowed bus types.

	image
	Path to the image to use for the disk. If no image is provided, an empty disk will be created
(Default: None)

Note that some pool types do not support uploading an image. This list can evolve with libvirt
versions.

	overlay_image
	True to create a QCOW2 disk image with image as backing file. If False
the file pointed to by the image property will simply be copied. (Default: False)

Changed in version 3001.

This property is only valid on path-based disks, not on volumes. To create a volume with a
backing store, set the backing_store_path and backing_store_format properties.

	backing_store_path
	Path to the backing store image to use. This can also be the name of a volume to use as
backing store within the same pool.

New in version 3001.

	backing_store_format
	Image format of the disk or volume to use as backing store. This property is mandatory when
using backing_store_path to avoid problems [https://libvirt.org/kbase/backing_chains.html#troubleshooting]

New in version 3001.

	source_file
	Absolute path to the disk image to use. Not to be confused with image parameter. This
parameter is useful to use disk images that are created outside of this module. Can also
be None for devices that have no associated image like cdroms.

Changed in version 3001.

For volume disks, this can be the name of a volume already existing in the storage pool.

	device
	Type of device of the disk. Can be one of 'disk', 'cdrom', 'floppy' or 'lun'.
(Default: 'disk')

	hostname_property
	When using ZFS volumes, setting this value to a ZFS property ID will make Salt store the name of the
virtual machine inside this property. (Default: None)

	sparse_volume
	Boolean to specify whether to use a thin provisioned ZFS volume.

Example profile for a bhyve VM with two ZFS disks. The first is
cloned from the specified image. The second disk is a thin
provisioned volume.

virt:
 disk:
 two_zvols:
 - system:
 image: zroot/bhyve/CentOS-7-x86_64-v1@v1.0.5
 hostname_property: virt:hostname
 pool: zroot/bhyve/guests
 - data:
 pool: tank/disks
 size: 20G
 hostname_property: virt:hostname
 sparse_volume: True

	io
	I/O control policy. String value amongst native, threads and io_uring.
(Default: native)

New in version 3003.

	iothread_id
	I/O thread id to assign the disk to.
(Default: none assigned)

New in version 3003.

Graphics Definition

The graphics dictionary can have the following properties:

	type
	Graphics type. The possible values are none, 'spice', 'vnc' and other values
allowed as a libvirt graphics type (Default: None)

See the libvirt graphics element [https://libvirt.org/formatdomain.html#elementsGraphics] documentation for more details on the possible types.

	port
	Port to export the graphics on for vnc, spice and rdp types.

	tls_port
	Port to export the graphics over a secured connection for spice type.

	listen
	Dictionary defining on what address to listen on for vnc, spice and rdp.
It has a type property with address and None as possible values, and an
address property holding the IP or hostname to listen on.

By default, not setting the listen part of the dictionary will default to
listen on all addresses.

Serials and Consoles Definitions

Serial dictionaries can contain the following properties:

	type
	Type of the serial connection, like 'tcp', 'pty', 'file', 'udp', 'dev',
'pipe', 'unix'.

	path
	Path to the source device. Can be a log file, a host character device to pass through,
a unix socket, a named pipe path.

	host
	The serial UDP or TCP host name.
(Default: 23023)

	port
	The serial UDP or TCP port number.
(Default: 23023)

	protocol
	Name of the TCP connection protocol.
(Default: telnet)

	tls
	Boolean value indicating whether to use hypervisor TLS certificates environment for TCP devices.

	target_port
	The guest device port number starting from 0

	target_type
	The guest device type. Common values are serial, virtio or usb-serial, but more are documented in
the libvirt documentation [https://libvirt.org/formatdomain.html#consoles-serial-parallel-channel-devices].

CLI Example

salt 'hypervisor' virt.init vm_name 4 512 salt://path/to/image.raw
salt 'hypervisor' virt.init vm_name 4 512 /var/lib/libvirt/images/img.raw
salt 'hypervisor' virt.init vm_name 4 512 nic=profile disk=profile

The disk images will be created in an image folder within the directory
defined by the virt:images option. Its default value is
/srv/salt-images/ but this can changed with such a configuration:

virt:
 images: /data/my/vm/images/

	
salt.modules.virt.is_hyper()

	Returns a bool whether or not this node is a hypervisor of any kind

CLI Example:

salt '*' virt.is_hyper

	
salt.modules.virt.list_active_vms(**kwargs)

	Return a list of names for active virtual machine on the minion

	Parameters:

	
	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.list_active_vms

	
salt.modules.virt.list_domains(**kwargs)

	Return a list of available domains.

	Parameters:

	
	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.list_domains

	
salt.modules.virt.list_inactive_vms(**kwargs)

	Return a list of names for inactive virtual machine on the minion

	Parameters:

	
	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.list_inactive_vms

	
salt.modules.virt.list_networks(**kwargs)

	List all virtual networks.

	Parameters:

	
	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.list_networks

	
salt.modules.virt.list_pools(**kwargs)

	List all storage pools.

	Parameters:

	
	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.list_pools

	
salt.modules.virt.list_snapshots(domain=None, **kwargs)

	List available snapshots for certain vm or for all.

	Parameters:

	
	domain -- domain name

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

New in version 2016.3.0.

CLI Example:

salt '*' virt.list_snapshots
salt '*' virt.list_snapshots <domain>

	
salt.modules.virt.migrate(vm_, target, **kwargs)

	Shared storage migration

	Parameters:

	
	vm -- domain name

	target -- target libvirt URI or host name

	kwargs --
	live: Use live migration. Default value is True.

	
	persistent: Leave the domain persistent on destination host.
	Default value is True.

	
	undefinesource: Undefine the domain on the source host.
	Default value is True.

	
	offline: If set to True it will migrate the domain definition
	without starting the domain on destination and without
stopping it on source host. Default value is False.

	max_bandwidth: The maximum bandwidth (in MiB/s) that will be used.

	
	max_downtime: Set maximum tolerable downtime for live-migration.
	The value represents a number of milliseconds the guest
is allowed to be down at the end of live migration.

	
	parallel_connections: Specify a number of parallel network connections
	to be used to send memory pages to the destination host.

	compressed: Activate compression.

	
	comp_methods: A comma-separated list of compression methods. Supported
	methods are "mt" and "xbzrle" and can be used in any
combination. QEMU defaults to "xbzrle".

	
	comp_mt_level: Set compression level. Values are in range from 0 to 9,
	where 1 is maximum speed and 9 is maximum compression.

	comp_mt_threads: Set number of compress threads on source host.

	comp_mt_dthreads: Set number of decompress threads on target host.

	comp_xbzrle_cache: Set the size of page cache for xbzrle compression in bytes.

	
	copy_storage: Migrate non-shared storage. It must be one of the following
	values: all (full disk copy) or incremental (Incremental copy)

	postcopy: Enable the use of post-copy migration.

	postcopy_bandwidth: The maximum bandwidth allowed in post-copy phase. (MiB/s)

	username: Username to connect with target host

	password: Password to connect with target host

New in version 3002.

CLI Example:

salt '*' virt.migrate <domain> <target hypervisor URI>
salt src virt.migrate guest qemu+ssh://dst/system
salt src virt.migrate guest qemu+tls://dst/system
salt src virt.migrate guest qemu+tcp://dst/system

A tunnel data migration can be performed by setting this in the
configuration:

virt:
 tunnel: True

For more details on tunnelled data migrations, report to
https://libvirt.org/migration.html#transporttunnel

	
salt.modules.virt.migrate_start_postcopy(vm_)

	Starts post-copy migration. This function has to be called
while live migration is in progress and it has been initiated
with the postcopy=True option.

CLI Example:

salt '*' virt.migrate_start_postcopy <domain>

	
salt.modules.virt.nesthash(value=None)

	create default dict that allows arbitrary level of nesting

	
salt.modules.virt.network_define(name, bridge, forward, ipv4_config=None, ipv6_config=None, vport=None, tag=None, autostart=True, start=True, mtu=None, domain=None, nat=None, interfaces=None, addresses=None, physical_function=None, dns=None, **kwargs)

	Create libvirt network.

	Parameters:

	
	name -- Network name.

	bridge -- Bridge name.

	forward -- Forward mode (bridge, router, nat).

Changed in version 3003: a None value creates an isolated network with no forwarding at all

	vport -- Virtualport type.
The value can also be a dictionary with type and parameters keys.
The parameters value is a dictionary of virtual port parameters.

- vport:
 type: openvswitch
 parameters:
 interfaceid: 09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f

Changed in version 3003: possible dictionary value

	tag -- Vlan tag.
The value can also be a dictionary with the tags and optional trunk keys.
trunk is a boolean value indicating whether to use VLAN trunking.
tags is a list of dictionaries with keys id and nativeMode.
The nativeMode value can be one of tagged or untagged.

- tag:
 trunk: True
 tags:
 - id: 42
 nativeMode: untagged
 - id: 47

Changed in version 3003: possible dictionary value

	autostart -- Network autostart (default True).

	start -- Network start (default True).

	ipv4_config (dict [https://docs.python.org/3/library/stdtypes.html#dict] or None) -- IP v4 configuration.
Dictionary describing the IP v4 setup like IP range and
a possible DHCP configuration. The structure is documented
in net-define-ip.

New in version 3000.

	ipv6_config (dict [https://docs.python.org/3/library/stdtypes.html#dict] or None) -- IP v6 configuration.
Dictionary describing the IP v6 setup like IP range and
a possible DHCP configuration. The structure is documented
in net-define-ip.

New in version 3000.

	connection -- libvirt connection URI, overriding defaults.

	username -- username to connect with, overriding defaults.

	password -- password to connect with, overriding defaults.

	mtu -- size of the Maximum Transmission Unit (MTU) of the network.
(default None)

New in version 3003.

	domain -- DNS domain name of the DHCP server.
The value is a dictionary with a mandatory name property and an optional localOnly boolean one.
(default None)

- domain:
 name: lab.acme.org
 localOnly: True

New in version 3003.

	nat -- addresses and ports to route in NAT forward mode.
The value is a dictionary with optional keys address and port.
Both values are a dictionary with start and end values.
(default None)

- forward: nat
- nat:
 address:
 start: 1.2.3.4
 end: 1.2.3.10
 port:
 start: 500
 end: 1000

New in version 3003.

	interfaces -- whitespace separated list of network interfaces devices that can be used for this network.
(default None)

- forward: passthrough
- interfaces: "eth10 eth11 eth12"

New in version 3003.

	addresses -- whitespace separated list of addresses of PCI devices that can be used for this network in hostdev forward mode.
(default None)

- forward: hostdev
- interfaces: "0000:04:00.1 0000:e3:01.2"

New in version 3003.

	physical_function -- device name of the physical interface to use in hostdev forward mode.
(default None)

- forward: hostdev
- physical_function: "eth0"

New in version 3003.

	dns -- virtual network DNS configuration.
The value is a dictionary described in net-define-dns.
(default None)

- dns:
 forwarders:
 - domain: example.com
 addr: 192.168.1.1
 - addr: 8.8.8.8
 - domain: www.example.com
 txt:
 example.com: "v=spf1 a -all"
 _http.tcp.example.com: "name=value,paper=A4"
 hosts:
 192.168.1.2:
 - mirror.acme.lab
 - test.acme.lab
 srvs:
 - name: ldap
 protocol: tcp
 domain: ldapserver.example.com
 target: .
 port: 389
 priority: 1
 weight: 10

New in version 3003.

IP configuration definition

Both the IPv4 and IPv6 configuration dictionaries can contain the following properties:

	cidr
	CIDR notation for the network. For example '192.168.124.0/24'

	dhcp_ranges
	A list of dictionaries with 'start' and 'end' properties.

	hosts
	A list of dictionaries with ip property and optional name, mac and id properties.

New in version 3003.

	bootp
	A dictionary with a file property and an optional server one.

New in version 3003.

	tftp
	The path to the TFTP root directory to serve.

New in version 3003.

DNS configuration definition

The DNS configuration dictionary contains the following optional properties:

	forwarders
	List of alternate DNS forwarders to use.
Each item is a dictionary with the optional domain and addr keys.
If both are provided, the requests to the domain are forwarded to the server at the addr.
If only domain is provided the requests matching this domain will be resolved locally.
If only addr is provided all requests will be forwarded to this DNS server.

	txt:
	Dictionary of TXT fields to set.

	hosts:
	Dictionary of host DNS entries.
The key is the IP of the host, and the value is a list of hostnames for it.

	srvs:
	List of SRV DNS entries.
Each entry is a dictionary with the mandatory name and protocol keys.
Entries can also have target, port, priority, domain and weight optional properties.

CLI Example:

salt '*' virt.network_define network main bridge openvswitch

New in version 2019.2.0.

	
salt.modules.virt.network_get_xml(name, **kwargs)

	Return the XML definition of a virtual network

	Parameters:

	
	name -- libvirt network name

	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

New in version 3000.

CLI Example:

salt '*' virt.network_get_xml default

	
salt.modules.virt.network_info(name=None, **kwargs)

	Return information on a virtual network provided its name.

	Parameters:

	
	name -- virtual network name

	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

If no name is provided, return the infos for all defined virtual networks.

New in version 2019.2.0.

CLI Example:

salt '*' virt.network_info default

	
salt.modules.virt.network_set_autostart(name, state='on', **kwargs)

	Set the autostart flag on a virtual network so that the network
will start with the host system on reboot.

	Parameters:

	
	name -- virtual network name

	state -- 'on' to auto start the network, anything else to mark the
virtual network not to be started when the host boots

	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt "*" virt.network_set_autostart <pool> <on | off>

	
salt.modules.virt.network_start(name, **kwargs)

	Start a defined virtual network.

	Parameters:

	
	name -- virtual network name

	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.network_start default

	
salt.modules.virt.network_stop(name, **kwargs)

	Stop a defined virtual network.

	Parameters:

	
	name -- virtual network name

	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.network_stop default

	
salt.modules.virt.network_undefine(name, **kwargs)

	Remove a defined virtual network. This does not stop the virtual network.

	Parameters:

	
	name -- virtual network name

	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.network_undefine default

	
salt.modules.virt.network_update(name, bridge, forward, ipv4_config=None, ipv6_config=None, vport=None, tag=None, mtu=None, domain=None, nat=None, interfaces=None, addresses=None, physical_function=None, dns=None, test=False, **kwargs)

	Update a virtual network if needed.

	Parameters:

	
	name -- Network name.

	bridge -- Bridge name.

	forward -- Forward mode (bridge, router, nat).
A None value creates an isolated network with no forwarding at all.

	vport -- Virtualport type.
The value can also be a dictionary with type and parameters keys.
The parameters value is a dictionary of virtual port parameters.

- vport:
 type: openvswitch
 parameters:
 interfaceid: 09b11c53-8b5c-4eeb-8f00-d84eaa0aaa4f

	tag -- Vlan tag.
The value can also be a dictionary with the tags and optional trunk keys.
trunk is a boolean value indicating whether to use VLAN trunking.
tags is a list of dictionaries with keys id and nativeMode.
The nativeMode value can be one of tagged or untagged.

- tag:
 trunk: True
 tags:
 - id: 42
 nativeMode: untagged
 - id: 47

	ipv4_config (dict [https://docs.python.org/3/library/stdtypes.html#dict] or None) -- IP v4 configuration.
Dictionary describing the IP v4 setup like IP range and
a possible DHCP configuration. The structure is documented
in net-define-ip.

	ipv6_config (dict [https://docs.python.org/3/library/stdtypes.html#dict] or None) -- IP v6 configuration.
Dictionary describing the IP v6 setup like IP range and
a possible DHCP configuration. The structure is documented
in net-define-ip.

	connection -- libvirt connection URI, overriding defaults.

	username -- username to connect with, overriding defaults.

	password -- password to connect with, overriding defaults.

	mtu -- size of the Maximum Transmission Unit (MTU) of the network.
(default None)

	domain -- DNS domain name of the DHCP server.
The value is a dictionary with a mandatory name property and an optional localOnly boolean one.
(default None)

- domain:
 name: lab.acme.org
 localOnly: True

	nat -- addresses and ports to route in NAT forward mode.
The value is a dictionary with optional keys address and port.
Both values are a dictionary with start and end values.
(default None)

- forward: nat
- nat:
 address:
 start: 1.2.3.4
 end: 1.2.3.10
 port:
 start: 500
 end: 1000

	interfaces -- whitespace separated list of network interfaces devices that can be used for this network.
(default None)

- forward: passthrough
- interfaces: "eth10 eth11 eth12"

	addresses -- whitespace separated list of addresses of PCI devices that can be used for this network in hostdev forward mode.
(default None)

- forward: hostdev
- interfaces: "0000:04:00.1 0000:e3:01.2"

	physical_function -- device name of the physical interface to use in hostdev forward mode.
(default None)

- forward: hostdev
- physical_function: "eth0"

	dns -- virtual network DNS configuration.
The value is a dictionary described in net-define-dns.
(default None)

- dns:
 forwarders:
 - domain: example.com
 addr: 192.168.1.1
 - addr: 8.8.8.8
 - domain: www.example.com
 txt:
 example.com: "v=spf1 a -all"
 _http.tcp.example.com: "name=value,paper=A4"
 hosts:
 192.168.1.2:
 - mirror.acme.lab
 - test.acme.lab
 srvs:
 - name: ldap
 protocol: tcp
 domain: ldapserver.example.com
 target: .
 port: 389
 priority: 1
 weight: 10

New in version 3003.

	
salt.modules.virt.node_devices(**kwargs)

	List the host available devices.

	Parameters:

	
	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

New in version 3003.

	
salt.modules.virt.node_info(**kwargs)

	Return a dict with information about this node

	Parameters:

	
	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.node_info

	
salt.modules.virt.pause(vm_, **kwargs)

	Pause the named vm

	Parameters:

	
	vm -- domain name

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.pause <domain>

	
salt.modules.virt.pool_build(name, **kwargs)

	Build a defined libvirt storage pool.

	Parameters:

	
	name -- libvirt storage pool name

	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.pool_build default

	
salt.modules.virt.pool_capabilities(**kwargs)

	Return the hypervisor connection storage pool capabilities.

The returned data are either directly extracted from libvirt or computed.
In the latter case some pool types could be listed as supported while they
are not. To distinguish between the two cases, check the value of the computed property.

	Parameters:

	
	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

New in version 3000.

CLI Example:

salt '*' virt.pool_capabilities

	
salt.modules.virt.pool_define(name, ptype, target=None, permissions=None, source_devices=None, source_dir=None, source_initiator=None, source_adapter=None, source_hosts=None, source_auth=None, source_name=None, source_format=None, transient=False, start=True, **kwargs)

	Create libvirt pool.

	Parameters:

	
	name -- Pool name

	ptype -- Pool type. See libvirt documentation [https://libvirt.org/storage.html] for the
possible values.

	target -- Pool full path target

	permissions -- Permissions to set on the target folder. This is mostly used for filesystem-based
pool types. See Permissions definition for more details on this structure.

	source_devices -- List of source devices for pools backed by physical devices. (Default: None)

Each item in the list is a dictionary with path and optionally part_separator
keys. The path is the qualified name for iSCSI devices.

Report to this libvirt page [https://libvirt.org/formatstorage.html#StoragePool]
for more information on the use of part_separator

	source_dir -- Path to the source directory for pools of type dir, netfs or gluster.
(Default: None)

	source_initiator -- Initiator IQN for libiscsi-direct pool types. (Default: None)

New in version 3000.

	source_adapter -- SCSI source definition. The value is a dictionary with type, name, parent,
managed, parent_wwnn, parent_wwpn, parent_fabric_wwn, wwnn, wwpn
and parent_address keys.

The parent_address value is a dictionary with unique_id and address keys.
The address represents a PCI address and is itself a dictionary with domain, bus,
slot and function properties.
Report to this libvirt page [https://libvirt.org/formatstorage.html#StoragePool]
for the meaning and possible values of these properties.

	source_hosts -- List of source for pools backed by storage from remote servers. Each item is the hostname
optionally followed by the port separated by a colon. (Default: None)

	source_auth -- Source authentication details. (Default: None)

The value is a dictionary with type, username and secret keys. The type
can be one of ceph for Ceph RBD or chap for iSCSI sources.

The secret value links to a libvirt secret object. It is a dictionary with
type and value keys. The type value can be either uuid or usage.

Examples:

source_auth={
 'type': 'ceph',
 'username': 'admin',
 'secret': {
 'type': 'uuid',
 'value': '2ec115d7-3a88-3ceb-bc12-0ac909a6fd87'
 }
}

source_auth={
 'type': 'chap',
 'username': 'myname',
 'secret': {
 'type': 'usage',
 'value': 'mycluster_myname'
 }
}

Since 3000, instead the source authentication can only contain username
and password properties. In this case the libvirt secret will be defined and used.
For Ceph authentications a base64 encoded key is expected.

	source_name -- Identifier of name-based sources.

	source_format -- String representing the source format. The possible values are depending on the
source type. See libvirt documentation [https://libvirt.org/storage.html] for
the possible values.

	start -- Pool start (default True)

	transient -- When True, the pool will be automatically undefined after being stopped.
Note that a transient pool will force start to True. (Default: False)

	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

Permissions definition

The permissions are described by a dictionary containing the following keys:

	mode
	The octal representation of the permissions. (Default: 0711)

	owner
	the numeric user ID of the owner. (Default: from the parent folder)

	group
	the numeric ID of the group. (Default: from the parent folder)

	label
	the SELinux label. (Default: None)

CLI Example:

Local folder pool:

salt '*' virt.pool_define somepool dir target=/srv/mypool permissions="{'mode': '0744' 'ower': 107, 'group': 107 }"

CIFS backed pool:

salt '*' virt.pool_define myshare netfs source_format=cifs source_dir=samba_share source_hosts="['example.com']" target=/mnt/cifs

New in version 2019.2.0.

	
salt.modules.virt.pool_delete(name, **kwargs)

	Delete the resources of a defined libvirt storage pool.

	Parameters:

	
	name -- libvirt storage pool name

	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.pool_delete default

	
salt.modules.virt.pool_get_xml(name, **kwargs)

	Return the XML definition of a virtual storage pool

	Parameters:

	
	name -- libvirt storage pool name

	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

New in version 3000.

CLI Example:

salt '*' virt.pool_get_xml default

	
salt.modules.virt.pool_info(name=None, **kwargs)

	Return information on a storage pool provided its name.

	Parameters:

	
	name -- libvirt storage pool name

	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

If no name is provided, return the infos for all defined storage pools.

New in version 2019.2.0.

CLI Example:

salt '*' virt.pool_info default

	
salt.modules.virt.pool_list_volumes(name, **kwargs)

	List the volumes contained in a defined libvirt storage pool.

	Parameters:

	
	name -- libvirt storage pool name

	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt "*" virt.pool_list_volumes <pool>

	
salt.modules.virt.pool_refresh(name, **kwargs)

	Refresh a defined libvirt storage pool.

	Parameters:

	
	name -- libvirt storage pool name

	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.pool_refresh default

	
salt.modules.virt.pool_set_autostart(name, state='on', **kwargs)

	Set the autostart flag on a libvirt storage pool so that the storage pool
will start with the host system on reboot.

	Parameters:

	
	name -- libvirt storage pool name

	state -- 'on' to auto start the pool, anything else to mark the
pool not to be started when the host boots

	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt "*" virt.pool_set_autostart <pool> <on | off>

	
salt.modules.virt.pool_start(name, **kwargs)

	Start a defined libvirt storage pool.

	Parameters:

	
	name -- libvirt storage pool name

	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.pool_start default

	
salt.modules.virt.pool_stop(name, **kwargs)

	Stop a defined libvirt storage pool.

	Parameters:

	
	name -- libvirt storage pool name

	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.pool_stop default

	
salt.modules.virt.pool_undefine(name, **kwargs)

	Remove a defined libvirt storage pool. The pool needs to be stopped before calling.

	Parameters:

	
	name -- libvirt storage pool name

	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.pool_undefine default

	
salt.modules.virt.pool_update(name, ptype, target=None, permissions=None, source_devices=None, source_dir=None, source_initiator=None, source_adapter=None, source_hosts=None, source_auth=None, source_name=None, source_format=None, test=False, **kwargs)

	Update a libvirt storage pool if needed.
If called with test=True, this is also reporting whether an update would be performed.

	Parameters:

	
	name -- Pool name

	ptype -- Pool type. See libvirt documentation [https://libvirt.org/storage.html] for the
possible values.

	target -- Pool full path target

	permissions -- Permissions to set on the target folder. This is mostly used for filesystem-based
pool types. See Permissions definition for more details on this structure.

	source_devices -- List of source devices for pools backed by physical devices. (Default: None)

Each item in the list is a dictionary with path and optionally part_separator
keys. The path is the qualified name for iSCSI devices.

Report to this libvirt page [https://libvirt.org/formatstorage.html#StoragePool]
for more information on the use of part_separator

	source_dir -- Path to the source directory for pools of type dir, netfs or gluster.
(Default: None)

	source_initiator -- Initiator IQN for libiscsi-direct pool types. (Default: None)

New in version 3000.

	source_adapter -- SCSI source definition. The value is a dictionary with type, name, parent,
managed, parent_wwnn, parent_wwpn, parent_fabric_wwn, wwnn, wwpn
and parent_address keys.

The parent_address value is a dictionary with unique_id and address keys.
The address represents a PCI address and is itself a dictionary with domain, bus,
slot and function properties.
Report to this libvirt page [https://libvirt.org/formatstorage.html#StoragePool]
for the meaning and possible values of these properties.

	source_hosts -- List of source for pools backed by storage from remote servers. Each item is the hostname
optionally followed by the port separated by a colon. (Default: None)

	source_auth -- Source authentication details. (Default: None)

The value is a dictionary with type, username and secret keys. The type
can be one of ceph for Ceph RBD or chap for iSCSI sources.

The secret value links to a libvirt secret object. It is a dictionary with
type and value keys. The type value can be either uuid or usage.

Examples:

source_auth={
 'type': 'ceph',
 'username': 'admin',
 'secret': {
 'type': 'uuid',
 'uuid': '2ec115d7-3a88-3ceb-bc12-0ac909a6fd87'
 }
}

source_auth={
 'type': 'chap',
 'username': 'myname',
 'secret': {
 'type': 'usage',
 'uuid': 'mycluster_myname'
 }
}

Since 3000, instead the source authentication can only contain username
and password properties. In this case the libvirt secret will be defined and used.
For Ceph authentications a base64 encoded key is expected.

	source_name -- Identifier of name-based sources.

	source_format -- String representing the source format. The possible values are depending on the
source type. See libvirt documentation [https://libvirt.org/storage.html] for
the possible values.

	test -- run in dry-run mode if set to True

	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

Example:

Local folder pool:

salt '*' virt.pool_update somepool dir target=/srv/mypool permissions="{'mode': '0744' 'ower': 107, 'group': 107 }"

CIFS backed pool:

salt '*' virt.pool_update myshare netfs source_format=cifs source_dir=samba_share source_hosts="['example.com']" target=/mnt/cifs

New in version 3000.

	
salt.modules.virt.purge(vm_, dirs=False, removables=False, **kwargs)

	Recursively destroy and delete a persistent virtual machine, pass True for
dir's to also delete the directories containing the virtual machine disk
images - USE WITH EXTREME CAUTION!

	Parameters:

	
	vm -- domain name

	dirs -- pass True to remove containing directories

	removables -- pass True to remove removable devices

New in version 2019.2.0.

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.purge <domain>

	
salt.modules.virt.reboot(name, **kwargs)

	Reboot a domain via ACPI request

	Parameters:

	
	vm -- domain name

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.reboot <domain>

	
salt.modules.virt.reset(vm_, **kwargs)

	Reset a VM by emulating the reset button on a physical machine

	Parameters:

	
	vm -- domain name

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.reset <domain>

	
salt.modules.virt.resume(vm_, **kwargs)

	Resume the named vm

	Parameters:

	
	vm -- domain name

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.resume <domain>

	
salt.modules.virt.revert_snapshot(name, vm_snapshot=None, cleanup=False, **kwargs)

	Revert snapshot to the previous from current (if available) or to the specific.

	Parameters:

	
	name -- domain name

	vm_snapshot -- name of the snapshot to revert

	cleanup -- Remove all newer than reverted snapshots. Values: True or False (default False).

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

New in version 2016.3.0.

CLI Example:

salt '*' virt.revert <domain>
salt '*' virt.revert <domain> <snapshot>

	
salt.modules.virt.seed_non_shared_migrate(disks, force=False)

	Non shared migration requires that the disks be present on the migration
destination, pass the disks information via this function, to the
migration destination before executing the migration.

	Parameters:

	
	disks -- the list of disk data as provided by virt.get_disks

	force -- skip checking the compatibility of source and target disk
images if True. (default: False)

CLI Example:

salt '*' virt.seed_non_shared_migrate <disks>

	
salt.modules.virt.set_autostart(vm_, state='on', **kwargs)

	Set the autostart flag on a VM so that the VM will start with the host
system on reboot.

	Parameters:

	
	vm -- domain name

	state -- 'on' to auto start the VM, 'off' to mark the VM not to be
started when the host boots

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt "*" virt.set_autostart <domain> <on | off>

	
salt.modules.virt.setmem(vm_, memory, config=False, **kwargs)

	Changes the amount of memory allocated to VM. The VM must be shutdown
for this to work.

	Parameters:

	
	vm -- name of the domain

	memory -- memory amount to set in MB

	config -- if True then libvirt will be asked to modify the config as well

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.setmem <domain> <size>
salt '*' virt.setmem my_domain 768

	
salt.modules.virt.setvcpus(vm_, vcpus, config=False, **kwargs)

	Changes the amount of vcpus allocated to VM. The VM must be shutdown
for this to work.

If config is True then we ask libvirt to modify the config as well

	Parameters:

	
	vm -- name of the domain

	vcpus -- integer representing the number of CPUs to be assigned

	config -- if True then libvirt will be asked to modify the config as well

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.setvcpus <domain> <amount>
salt '*' virt.setvcpus my_domain 4

	
salt.modules.virt.shutdown(vm_, **kwargs)

	Send a soft shutdown signal to the named vm

	Parameters:

	
	vm -- domain name

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.shutdown <domain>

	
salt.modules.virt.snapshot(domain, name=None, suffix=None, **kwargs)

	Create a snapshot of a VM.

	Parameters:

	
	domain -- domain name

	name -- Name of the snapshot. If the name is omitted, then will be used original domain
name with ISO 8601 time as a suffix.

	suffix -- Add suffix for the new name. Useful in states, where such snapshots
can be distinguished from manually created.

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

New in version 2016.3.0.

CLI Example:

salt '*' virt.snapshot <domain>

	
salt.modules.virt.start(name, **kwargs)

	Start a defined domain

	Parameters:

	
	vm -- domain name

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.start <domain>

	
salt.modules.virt.stop(name, **kwargs)

	Hard power down the virtual machine, this is equivalent to pulling the power.

	Parameters:

	
	vm -- domain name

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.stop <domain>

	
salt.modules.virt.undefine(vm_, **kwargs)

	Remove a defined vm, this does not purge the virtual machine image, and
this only works if the vm is powered down

	Parameters:

	
	vm -- domain name

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.undefine <domain>

	
salt.modules.virt.update(name, cpu=0, mem=0, disk_profile=None, disks=None, nic_profile=None, interfaces=None, graphics=None, live=True, boot=None, numatune=None, test=False, boot_dev=None, hypervisor_features=None, clock=None, serials=None, consoles=None, stop_on_reboot=False, host_devices=None, autostart=False, **kwargs)

	Update the definition of an existing domain.

	Parameters:

	
	name -- Name of the domain to update

	cpu -- Number of virtual CPUs to assign to the virtual machine or a dictionary with detailed information to configure
cpu model and topology, numa node tuning, cpu tuning and iothreads allocation. The structure of the dictionary is
documented in cpu parameters definition.

To update any cpu parameters specify the new values to the corresponding tag. To remove any element or attribute,
specify None object. Please note that None object is mapped to null in yaml, use null in sls file
instead.

	mem -- Amount of memory to allocate to the virtual machine in MiB. Since 3002, a dictionary can be used to
contain detailed configuration which support memory allocation or tuning. Supported parameters are boot,
current, max, slots, hard_limit, soft_limit, swap_hard_limit, min_guarantee,
hugepages , nosharepages, locked, source, access, allocation and discard. The structure
of the dictionary is documented in Memory parameter definition. Both decimal and binary base are supported. Detail unit
specification is documented in Units specification. Please note that the value for slots must be an integer.

To remove any parameters, pass a None object, for instance: 'soft_limit': None. Please note that None
is mapped to null in sls file, pass null in sls file instead.

- mem:
 hard_limit: null
 soft_limit: null

Changed in version 3002.

	disk_profile -- disk profile to use

	disks -- Disk definitions as documented in the init() function.
If neither the profile nor this parameter are defined, the disk devices
will not be changed. However to clear disks set this parameter to empty list.

	nic_profile -- network interfaces profile to use

	interfaces -- Network interface definitions as documented in the init() function.
If neither the profile nor this parameter are defined, the interface devices
will not be changed. However to clear network interfaces set this parameter
to empty list.

	graphics -- The new graphics definition as defined in Graphics Definition. If not set,
the graphics will not be changed. To remove a graphics device, set this parameter
to {'type': 'none'}.

	live -- False to avoid trying to live update the definition. In such a case, the
new definition is applied at the next start of the virtual machine. If True,
not all aspects of the definition can be live updated, but as much as possible
will be attempted. (Default: True)

	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

	boot -- Specifies kernel, initial ramdisk and kernel command line parameters for the virtual machine.
This is an optional parameter, all of the keys are optional within the dictionary.

Refer to Boot parameters definition for the complete boot parameter description.

To update any boot parameters, specify the new path for each. To remove any boot parameters, pass None object,
for instance: 'kernel': None. To switch back to BIOS boot, specify ('loader': None and 'nvram': None)
or 'efi': False. Please note that None is mapped to null in sls file, pass null in sls file instead.

SLS file Example:

- boot:
 loader: null
 nvram: null

New in version 3000.

	boot_dev -- Space separated list of devices to boot from sorted by decreasing priority.
Values can be hd, fd, cdrom or network.

By default, the value will "hd".

New in version 3002.

	numatune -- The optional numatune element provides details of how to tune the performance of a NUMA host via controlling NUMA
policy for domain process. The optional memory element specifies how to allocate memory for the domain process
on a NUMA host. memnode elements can specify memory allocation policies per each guest NUMA node. The definition
used in the dictionary can be found at cpu parameters definition.

To update any numatune parameters, specify the new value. To remove any numatune parameters, pass a None object,
for instance: 'numatune': None. Please note that None is mapped to null in sls file, pass null in
sls file instead.

New in version 3003.

	serials -- Dictionary providing details on the serials connection to create. (Default: None)
See Serials and Consoles Definitions for more details on the possible values.

New in version 3003.

	consoles -- Dictionary providing details on the consoles device to create. (Default: None)
See Serials and Consoles Definitions for more details on the possible values.

New in version 3003.

	stop_on_reboot -- If set to True the guest will stop instead of rebooting.
This is specially useful when creating a virtual machine with an installation cdrom or
an autoinstallation needing a special first boot configuration.
Defaults to False

New in version 3003.

	test -- run in dry-run mode if set to True

New in version 3001.

	hypervisor_features -- Enable or disable hypervisor-specific features on the virtual machine.

New in version 3003.

hypervisor_features:
 kvm-hint-dedicated: True

	clock -- Configure the guest clock.
The value is a dictionary with the following keys:

	adjustment
	time adjustment in seconds or reset

	utc
	set to False to use the host local time as the guest clock. Defaults to True.

	timezone
	synchronize the guest to the correspding timezone

	timers
	a dictionary associating the timer name with its configuration.
This configuration is a dictionary with the properties track, tickpolicy,
catchup, frequency, mode, present, slew, threshold and limit.
See libvirt time keeping documentation [https://libvirt.org/formatdomain.html#time-keeping] for the possible values.

New in version 3003.

Set the clock to local time using an offset in seconds
.. code-block:: yaml

	clock:
	adjustment: 3600
utc: False

Set the clock to a specific time zone:

clock:
 timezone: CEST

Tweak guest timers:

clock:
 timers:
 tsc:
 frequency: 3504000000
 mode: native
 rtc:
 track: wall
 tickpolicy: catchup
 slew: 4636
 threshold: 123
 limit: 2342
 hpet:
 present: False

	host_devices -- List of host devices to passthrough to the guest.
The value is a list of device names as provided by the node_devices() function.
(Default: None)

New in version 3003.

	autostart -- If set to True the host will start the guest after boot.
(Default: False)

	Returns:

	Returns a dictionary indicating the status of what has been done. It is structured in
the following way:

{
 'definition': True,
 'cpu': True,
 'mem': True,
 'disks': {'attached': [list of actually attached disks],
 'detached': [list of actually detached disks]},
 'nics': {'attached': [list of actually attached nics],
 'detached': [list of actually detached nics]},
 'errors': ['error messages for failures']
}

New in version 2019.2.0.

CLI Example:

salt '*' virt.update domain cpu=2 mem=1024

	
salt.modules.virt.virt_type()

	Returns the virtual machine type as a string

CLI Example:

salt '*' virt.virt_type

	
salt.modules.virt.vm_cputime(vm_=None, **kwargs)

	Return cputime used by the vms on this hyper in a
list of dicts:

	Parameters:

	
	vm -- domain name

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

[
 'your-vm': {
 'cputime' <int>
 'cputime_percent' <int>
 },
 ...
]

If you pass a VM name in as an argument then it will return info
for just the named VM, otherwise it will return all VMs.

CLI Example:

salt '*' virt.vm_cputime

	
salt.modules.virt.vm_diskstats(vm_=None, **kwargs)

	Return disk usage counters used by the vms on this hyper in a
list of dicts:

	Parameters:

	
	vm -- domain name

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

[
 'your-vm': {
 'rd_req' : 0,
 'rd_bytes' : 0,
 'wr_req' : 0,
 'wr_bytes' : 0,
 'errs' : 0
 },
 ...
]

If you pass a VM name in as an argument then it will return info
for just the named VM, otherwise it will return all VMs.

CLI Example:

salt '*' virt.vm_blockstats

	
salt.modules.virt.vm_info(vm_=None, **kwargs)

	Return detailed information about the vms on this hyper in a
list of dicts:

	Parameters:

	
	vm -- name of the domain

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

[
 'your-vm': {
 'cpu': <int>,
 'maxMem': <int>,
 'mem': <int>,
 'state': '<state>',
 'cputime' <int>
 },
 ...
]

If you pass a VM name in as an argument then it will return info
for just the named VM, otherwise it will return all VMs.

CLI Example:

salt '*' virt.vm_info

	
salt.modules.virt.vm_netstats(vm_=None, **kwargs)

	Return combined network counters used by the vms on this hyper in a
list of dicts:

	Parameters:

	
	vm -- domain name

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

[
 'your-vm': {
 'rx_bytes' : 0,
 'rx_packets' : 0,
 'rx_errs' : 0,
 'rx_drop' : 0,
 'tx_bytes' : 0,
 'tx_packets' : 0,
 'tx_errs' : 0,
 'tx_drop' : 0
 },
 ...
]

If you pass a VM name in as an argument then it will return info
for just the named VM, otherwise it will return all VMs.

CLI Example:

salt '*' virt.vm_netstats

	
salt.modules.virt.vm_state(vm_=None, **kwargs)

	Return list of all the vms and their state.

If you pass a VM name in as an argument then it will return info
for just the named VM, otherwise it will return all VMs.

	Parameters:

	
	vm -- name of the domain

	connection -- libvirt connection URI, overriding defaults

New in version 2019.2.0.

	username -- username to connect with, overriding defaults

New in version 2019.2.0.

	password -- password to connect with, overriding defaults

New in version 2019.2.0.

CLI Example:

salt '*' virt.vm_state <domain>

	
salt.modules.virt.volume_define(pool, name, size, allocation=0, format=None, type=None, permissions=None, backing_store=None, nocow=False, **kwargs)

	Create libvirt volume.

	Parameters:

	
	pool -- name of the pool to create the volume in

	name -- name of the volume to define

	size -- capacity of the volume to define in MiB

	allocation -- allocated size of the volume in MiB. Defaults to 0.

	format -- volume format. The allowed values are depending on the pool type.
Check the virt.pool_capabilities output for the possible values and the default.

	type -- type of the volume. One of file, block, dir, network, netdiri, ploop or None.
By default, the type is guessed by libvirt from the pool type.

	permissions -- Permissions to set on the target folder. This is mostly used for filesystem-based
pool types. See Permissions definition for more details on this structure.

	backing_store -- dictionary describing a backing file for the volume. It must contain a path
property pointing to the base volume and a format property defining the format
of the base volume.

The base volume format will not be guessed for security reasons and is thus mandatory.

	nocow -- disable COW for the volume.

	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

CLI Example:

Volume on ESX:

salt '*' virt.volume_define "[local-storage]" myvm/myvm.vmdk vmdk 8192

QCow2 volume with backing file:

salt '*' virt.volume_define default myvm.qcow2 qcow2 8192 permissions="{'mode': '0775', 'owner': '123', 'group': '345'"}" backing_store="{'path': '/path/to/base.img', 'format': 'raw'}" nocow=True

New in version 3001.

	
salt.modules.virt.volume_delete(pool, volume, **kwargs)

	Delete a libvirt managed volume.

	Parameters:

	
	pool -- libvirt storage pool name

	volume -- name of the volume to delete

	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

New in version 3000.

CLI Example:

salt "*" virt.volume_delete <pool> <volume>

	
salt.modules.virt.volume_infos(pool=None, volume=None, **kwargs)

	Provide details on a storage volume. If no volume name is provided, the infos
all the volumes contained in the pool are provided. If no pool is provided,
the infos of the volumes of all pools are output.

	Parameters:

	
	pool -- libvirt storage pool name (default: None)

	volume -- name of the volume to get infos from (default: None)

	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

New in version 3000.

CLI Example:

salt "*" virt.volume_infos <pool> <volume>

	
salt.modules.virt.volume_upload(pool, volume, file, offset=0, length=0, sparse=False, **kwargs)

	Create libvirt volume.

	Parameters:

	
	pool -- name of the pool to create the volume in

	name -- name of the volume to define

	file -- the file to upload to the volume

	offset -- where to start writing the data in the volume

	length -- amount of bytes to transfer to the volume

	sparse -- set to True to preserve data sparsiness.

	connection -- libvirt connection URI, overriding defaults

	username -- username to connect with, overriding defaults

	password -- password to connect with, overriding defaults

CLI Example:

salt '*' virt.volume_upload default myvm.qcow2 /path/to/disk.qcow2

New in version 3001.

salt.modules.virtualenv

Create virtualenv environments.

New in version 0.17.0.

	
salt.modules.virtualenv_mod.create(path, venv_bin=None, system_site_packages=False, distribute=False, clear=False, python=None, extra_search_dir=None, never_download=None, prompt=None, pip=False, symlinks=None, upgrade=None, user=None, use_vt=False, saltenv='base', **kwargs)

	Create a virtualenv

	path
	The path to the virtualenv to be created

	venv_bin
	The name (and optionally path) of the virtualenv command. This can also
be set globally in the minion config file as virtualenv.venv_bin.
Defaults to virtualenv.

	system_site_packagesFalse
	Passthrough argument given to virtualenv or pyvenv

	distributeFalse
	Passthrough argument given to virtualenv

	pipFalse
	Install pip after creating a virtual environment. Implies
distribute=True

	clearFalse
	Passthrough argument given to virtualenv or pyvenv

	pythonNone (default)
	Passthrough argument given to virtualenv

	extra_search_dirNone (default)
	Passthrough argument given to virtualenv

	never_downloadNone (default)
	Passthrough argument given to virtualenv if True

	promptNone (default)
	Passthrough argument given to virtualenv if not None

	symlinksNone
	Passthrough argument given to pyvenv if True

	upgradeNone
	Passthrough argument given to pyvenv if True

	userNone
	Set ownership for the virtualenv

Note

On Windows you must also pass a password parameter. Additionally,
the user must have permissions to the location where the virtual
environment is being created

	runasNone
	Set ownership for the virtualenv

Deprecated since version 2014.1.0: user should be used instead

	use_vtFalse
	Use VT terminal emulation (see output while installing)

New in version 2015.5.0.

	saltenv'base'
	Specify a different environment. The default environment is base.

New in version 2014.1.0.

Note

The runas argument is deprecated as of 2014.1.0. user should be
used instead.

CLI Example:

 salt '*' virtualenv.create /path/to/new/virtualenv

Example of using --always-copy environment variable (in case your fs doesn't support symlinks).
This will copy files into the virtualenv instead of symlinking them.

.. code-block:: yaml

 - env:
 - VIRTUALENV_ALWAYS_COPY: 1

	
salt.modules.virtualenv_mod.get_distribution_path(venv, distribution)

	Return the path to a distribution installed inside a virtualenv

New in version 2016.3.0.

	venv
	Path to the virtualenv.

	distribution
	Name of the distribution. Note, all non-alphanumeric characters
will be converted to dashes.

CLI Example:

salt '*' virtualenv.get_distribution_path /path/to/my/venv my_distribution

	
salt.modules.virtualenv_mod.get_resource_content(venv, package=None, resource=None)

	Return the content of a package resource installed inside a virtualenv

New in version 2015.5.0.

	venv
	Path to the virtualenv

	package
	Name of the package in which the resource resides

New in version 2016.3.0.

	resource
	Name of the resource of which the content is to be returned

New in version 2016.3.0.

CLI Example:

salt '*' virtualenv.get_resource_content /path/to/my/venv my_package my/resource.xml

	
salt.modules.virtualenv_mod.get_resource_path(venv, package=None, resource=None)

	Return the path to a package resource installed inside a virtualenv

New in version 2015.5.0.

	venv
	Path to the virtualenv

	package
	Name of the package in which the resource resides

New in version 2016.3.0.

	resource
	Name of the resource of which the path is to be returned

New in version 2016.3.0.

CLI Example:

salt '*' virtualenv.get_resource_path /path/to/my/venv my_package my/resource.xml

	
salt.modules.virtualenv_mod.get_site_packages(venv)

	Return the path to the site-packages directory of a virtualenv

	venv
	Path to the virtualenv.

CLI Example:

salt '*' virtualenv.get_site_packages /path/to/my/venv

	
salt.modules.virtualenv_mod.virtualenv_ver(venv_bin, user=None, **kwargs)

	return virtualenv version if exists

salt.modules.vmctl

Manage vms running on the OpenBSD VMM hypervisor using vmctl(8).

New in version 2019.2.0.

	codeauthor:

	Jasper Lievisse Adriaanse <jasper@openbsd.org>

Note

This module requires the vmd service to be running on the OpenBSD
target machine.

	
salt.modules.vmctl.create_disk(name, size)

	Create a VMM disk with the specified name and size.

	size:
	Size in megabytes, or use a specifier such as M, G, T.

CLI Example:

salt '*' vmctl.create_disk /path/to/disk.img size=10G

	
salt.modules.vmctl.load(path)

	Load additional configuration from the specified file.

	path
	Path to the configuration file.

CLI Example:

salt '*' vmctl.load path=/etc/vm.switches.conf

	
salt.modules.vmctl.reload()

	Remove all stopped VMs and reload configuration from the default configuration file.

CLI Example:

salt '*' vmctl.reload

	
salt.modules.vmctl.reset(all=False, vms=False, switches=False)

	Reset the running state of VMM or a subsystem.

	all:
	Reset the running state.

	switches:
	Reset the configured switches.

	vms:
	Reset and terminate all VMs.

CLI Example:

salt '*' vmctl.reset all=True

	
salt.modules.vmctl.start(name=None, id=None, bootpath=None, disk=None, disks=None, local_iface=False, memory=None, nics=0, switch=None)

	Starts a VM defined by the specified parameters.
When both a name and id are provided, the id is ignored.

	name:
	Name of the defined VM.

	id:
	VM id.

	bootpath:
	Path to a kernel or BIOS image to load.

	disk:
	Path to a single disk to use.

	disks:
	List of multiple disks to use.

	local_iface:
	Whether to add a local network interface. See "LOCAL INTERFACES"
in the vmctl(8) manual page for more information.

	memory:
	Memory size of the VM specified in megabytes.

	switch:
	Add a network interface that is attached to the specified
virtual switch on the host.

CLI Example:

salt '*' vmctl.start 2 # start VM with id 2
salt '*' vmctl.start name=web1 bootpath='/bsd.rd' nics=2 memory=512M disk='/disk.img'

	
salt.modules.vmctl.status(name=None, id=None)

	List VMs running on the host, or only the VM specified by id. When
both a name and id are provided, the id is ignored.

	name:
	Name of the defined VM.

	id:
	VM id.

CLI Example:

salt '*' vmctl.status # to list all VMs
salt '*' vmctl.status name=web1 # to get a single VM

	
salt.modules.vmctl.stop(name=None, id=None)

	Stop (terminate) the VM identified by the given id or name.
When both a name and id are provided, the id is ignored.

	name:
	Name of the defined VM.

	id:
	VM id.

CLI Example:

salt '*' vmctl.stop name=alpine

salt.modules.vsphere

Manage VMware vCenter servers and ESXi hosts.

New in version 2015.8.4.

	codeauthor:

	Alexandru Bleotu <alexandru.bleotu@morganstaley.com>

Dependencies

	pyVmomi Python Module

	ESXCLI

pyVmomi

PyVmomi can be installed via pip:

pip install pyVmomi

Note

Version 6.0 of pyVmomi has some problems with SSL error handling on certain
versions of Python. If using version 6.0 of pyVmomi, Python 2.7.9,
or newer must be present. This is due to an upstream dependency
in pyVmomi 6.0 that is not supported in Python versions 2.7 to 2.7.8. If the
version of Python is not in the supported range, you will need to install an
earlier version of pyVmomi. See Issue #29537 [https://github.com/saltstack/salt/issues/29537] for more information.

Based on the note above, to install an earlier version of pyVmomi than the
version currently listed in PyPi, run the following:

pip install pyVmomi==5.5.0.2014.1.1

The 5.5.0.2014.1.1 is a known stable version that this original vSphere Execution
Module was developed against.

vSphere Automation SDK

vSphere Automation SDK can be installed via pip:

pip install --upgrade pip setuptools
pip install --upgrade git+https://github.com/vmware/vsphere-automation-sdk-python.git

Note

The SDK also requires OpenSSL 1.0.1+ if you want to connect to vSphere 6.5+ in order to support
TLS1.1 & 1.2.

In order to use the tagging functions in this module, vSphere Automation SDK is necessary to
install.

The module is currently in version 1.0.3
(as of 8/26/2019)

ESXCLI

Currently, about a third of the functions used in the vSphere Execution Module require
the ESXCLI package be installed on the machine running the Proxy Minion process.

The ESXCLI package is also referred to as the VMware vSphere CLI, or vCLI. VMware
provides vCLI package installation instructions for vSphere 5.5 [http://pubs.vmware.com/vsphere-55/index.jsp#com.vmware.vcli.getstart.doc/cli_install.4.2.html] and
vSphere 6.0 [http://pubs.vmware.com/vsphere-60/index.jsp#com.vmware.vcli.getstart.doc/cli_install.4.2.html].

Once all of the required dependencies are in place and the vCLI package is
installed, you can check to see if you can connect to your ESXi host or vCenter
server by running the following command:

esxcli -s <host-location> -u <username> -p <password> system syslog config get

If the connection was successful, ESXCLI was successfully installed on your system.
You should see output related to the ESXi host's syslog configuration.

Note

Be aware that some functionality in this execution module may depend on the
type of license attached to a vCenter Server or ESXi host(s).

For example, certain services are only available to manipulate service state
or policies with a VMware vSphere Enterprise or Enterprise Plus license, while
others are available with a Standard license. The ntpd service is restricted
to an Enterprise Plus license, while ssh is available via the Standard
license.

Please see the vSphere Comparison [https://www.vmware.com/products/vsphere/compare] page for more information.

About

This execution module was designed to be able to handle connections both to a
vCenter Server, as well as to an ESXi host. It utilizes the pyVmomi Python
library and the ESXCLI package to run remote execution functions against either
the defined vCenter server or the ESXi host.

Whether or not the function runs against a vCenter Server or an ESXi host depends
entirely upon the arguments passed into the function. Each function requires a
host location, username, and password. If the credentials provided
apply to a vCenter Server, then the function will be run against the vCenter
Server. For example, when listing hosts using vCenter credentials, you'll get a
list of hosts associated with that vCenter Server:

salt my-minion vsphere.list_hosts <vcenter-ip> <vcenter-user> <vcenter-password>
my-minion:
- esxi-1.example.com
- esxi-2.example.com

However, some functions should be used against ESXi hosts, not vCenter Servers.
Functionality such as getting a host's coredump network configuration should be
performed against a host and not a vCenter server. If the authentication
information you're using is against a vCenter server and not an ESXi host, you
can provide the host name that is associated with the vCenter server in the
command, as a list, using the host_names or esxi_host kwarg. For
example:

salt my-minion vsphere.get_coredump_network_config <vcenter-ip> <vcenter-user> <vcenter-password> esxi_hosts='[esxi-1.example.com, esxi-2.example.com]'
my-minion:

 esxi-1.example.com:

 Coredump Config:

 enabled:
 False
 esxi-2.example.com:

 Coredump Config:

 enabled:
 True
 host_vnic:
 vmk0
 ip:
 coredump-location.example.com
 port:
 6500

You can also use these functions against an ESXi host directly by establishing a
connection to an ESXi host using the host's location, username, and password. If ESXi
connection credentials are used instead of vCenter credentials, the host_names and
esxi_hosts arguments are not needed.

salt my-minion vsphere.get_coredump_network_config esxi-1.example.com root <host-password>
local:

 10.4.28.150:

 Coredump Config:

 enabled:
 True
 host_vnic:
 vmk0
 ip:
 coredump-location.example.com
 port:
 6500

	
salt.modules.vsphere.add_capacity_to_diskgroup(cache_disk_id, capacity_disk_ids, safety_checks=True, service_instance=None)

	Adds capacity disks to the disk group with the specified cache disk.

	cache_disk_id
	The canonical name of the cache disk.

	capacity_disk_ids
	A list containing canonical names of the capacity disks to add.

	safety_checks
	Specify whether to perform safety check or to skip the checks and try
performing the required task. Default value is True.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter/ESXi host.
Default is None.

CLI Example:

salt '*' vsphere.add_capacity_to_diskgroup
 cache_disk_id='naa.000000000000001'
 capacity_disk_ids='[naa.000000000000002, naa.000000000000003]'

	
salt.modules.vsphere.add_host_to_dvs(host, username, password, vmknic_name, vmnic_name, dvs_name, target_portgroup_name, uplink_portgroup_name, protocol=None, port=None, host_names=None, verify_ssl=True)

	Adds an ESXi host to a vSphere Distributed Virtual Switch and migrates
the desired adapters to the DVS from the standard switch.

	host
	The location of the vCenter server.

	username
	The username used to login to the vCenter server.

	password
	The password used to login to the vCenter server.

	vmknic_name
	The name of the virtual NIC to migrate.

	vmnic_name
	The name of the physical NIC to migrate.

	dvs_name
	The name of the Distributed Virtual Switch.

	target_portgroup_name
	The name of the distributed portgroup in which to migrate the
virtual NIC.

	uplink_portgroup_name
	The name of the uplink portgroup in which to migrate the
physical NIC.

	protocol
	Optionally set to alternate protocol if the vCenter server or ESX/ESXi host is not
using the default protocol. Default protocol is https.

	port
	Optionally set to alternate port if the vCenter server or ESX/ESXi host is not
using the default port. Default port is 443.

	host_names:
	An array of VMware host names to migrate

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

salt some_host vsphere.add_host_to_dvs host='vsphere.corp.com'
 username='administrator@vsphere.corp.com' password='vsphere_password'
 vmknic_name='vmk0' vmnic_name='vnmic0' dvs_name='DSwitch'
 target_portgroup_name='DPortGroup' uplink_portgroup_name='DSwitch1-DVUplinks-181'
 protocol='https' port='443', host_names="['esxi1.corp.com','esxi2.corp.com','esxi3.corp.com']"

Return Example:

somehost:

 esxi1.corp.com:

 dvs:
 DSwitch
 portgroup:
 DPortGroup
 status:
 True
 uplink:
 DSwitch-DVUplinks-181
 vmknic:
 vmk0
 vmnic:
 vmnic0
 esxi2.corp.com:

 dvs:
 DSwitch
 portgroup:
 DPortGroup
 status:
 True
 uplink:
 DSwitch-DVUplinks-181
 vmknic:
 vmk0
 vmnic:
 vmnic0
 esxi3.corp.com:

 dvs:
 DSwitch
 portgroup:
 DPortGroup
 status:
 True
 uplink:
 DSwitch-DVUplinks-181
 vmknic:
 vmk0
 vmnic:
 vmnic0
 message:
 success:
 True

This was very difficult to figure out. VMware's PyVmomi documentation at

https://github.com/vmware/pyvmomi/blob/master/docs/vim/DistributedVirtualSwitch.rst
(which is a copy of the official documentation here:
https://www.vmware.com/support/developer/converter-sdk/conv60_apireference/vim.DistributedVirtualSwitch.html)

says to create the DVS, create distributed portgroups, and then add the
host to the DVS specifying which physical NIC to use as the port backing.
However, if the physical NIC is in use as the only link from the host
to vSphere, this will fail with an unhelpful "busy" error.

There is, however, a Powershell PowerCLI cmdlet called Add-VDSwitchPhysicalNetworkAdapter
that does what we want. I used Onyx (https://labs.vmware.com/flings/onyx)
to sniff the SOAP stream from Powershell to our vSphere server and got
this snippet out:

<UpdateNetworkConfig xmlns="urn:vim25">
 <_this type="HostNetworkSystem">networkSystem-187</_this>
 <config>
 <vswitch>
 <changeOperation>edit</changeOperation>
 <name>vSwitch0</name>
 <spec>
 <numPorts>7812</numPorts>
 </spec>
 </vswitch>
 <proxySwitch>
 <changeOperation>edit</changeOperation>
 <uuid>73 a4 05 50 b0 d2 7e b9-38 80 5d 24 65 8f da 70</uuid>
 <spec>
 <backing xsi:type="DistributedVirtualSwitchHostMemberPnicBacking">
 <pnicSpec><pnicDevice>vmnic0</pnicDevice></pnicSpec>
 </backing>
 </spec>
 </proxySwitch>
 <portgroup>
 <changeOperation>remove</changeOperation>
 <spec>
 <name>Management Network</name><vlanId>-1</vlanId><vswitchName /><policy />
 </spec>
 </portgroup>
 <vnic>
 <changeOperation>edit</changeOperation>
 <device>vmk0</device>
 <portgroup />
 <spec>
 <distributedVirtualPort>
 <switchUuid>73 a4 05 50 b0 d2 7e b9-38 80 5d 24 65 8f da 70</switchUuid>
 <portgroupKey>dvportgroup-191</portgroupKey>
 </distributedVirtualPort>
 </spec>
 </vnic>
 </config>
 <changeMode>modify</changeMode>
</UpdateNetworkConfig>

The SOAP API maps closely to PyVmomi, so from there it was (relatively)
easy to figure out what Python to write.

	
salt.modules.vsphere.add_license(key, description, safety_checks=True, service_instance=None)

	Adds a license to the vCenter or ESXi host

	key
	License key.

	description
	License description added in as a label.

	safety_checks
	Specify whether to perform safety check or to skip the checks and try
performing the required task

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter/ESXi host.
Default is None.

CLI Example:

salt '*' vsphere.add_license key=<license_key> desc='License desc'

	
salt.modules.vsphere.assign_default_storage_policy_to_datastore(policy, datastore, service_instance=None)

	Assigns a storage policy as the default policy to a datastore.

	policy
	Name of the policy to assign.

	datastore
	Name of the datastore to assign.
The datastore needs to be visible to the VMware entity the proxy
points to.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter.
Default is None.

CLI Example:

salt '*' vsphere.assign_storage_policy_to_datastore
 policy='policy name' datastore=ds1

	
salt.modules.vsphere.assign_license(license_key, license_name, entity, entity_display_name, safety_checks=True, service_instance=None)

	Assigns a license to an entity

	license_key
	Key of the license to assign
See _get_entity docstrings for format.

	license_name
	Display name of license

	entity
	Dictionary representation of an entity

	entity_display_name
	Entity name used in logging

	safety_checks
	Specify whether to perform safety check or to skip the checks and try
performing the required task. Default is False.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter/ESXi host.
Default is None.

CLI Example:

salt '*' vsphere.assign_license license_key=AAAAA-11111-AAAAA-11111-AAAAA
 license_name=test entity={type:cluster,datacenter:dc,cluster:cl}

	
salt.modules.vsphere.attach_tag(object_id, tag_id, managed_obj='ClusterComputeResource', server=None, username=None, password=None, service_instance=None, verify_ssl=None, ca_bundle=None)

	Attach an existing tag to an input object.

The tag needs to meet the cardinality (CategoryModel.cardinality) and
associability (CategoryModel.associable_types) criteria in order to be
eligible for attachment. If the tag is already attached to the object,
then this method is a no-op and an error will not be thrown. To invoke
this method, you need the attach tag privilege on the tag and the read
privilege on the object.

CLI Example:

salt vm_minion vsphere.attach_tag domain-c2283 urn:vmomi:InventoryServiceTag:b55ecc77-f4a5-49f8-ab52-38865467cfbe:GLOBAL

	Parameters:

	
	object_id (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The identifier of the input object.

	tag_id (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The identifier of the tag object.

	managed_obj (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Classes that contain methods for creating and deleting resources
typically contain a class attribute specifying the resource type
for the resources being created and deleted.

	server (basestring) -- Target DNS or IP of vCenter center.

	username (basestring) -- Username associated with the vCenter center.

	password (basestring) -- Password associated with the vCenter center.

	verify_ssl (boolean) -- Verify the SSL certificate. Default: True

	ca_bundle (basestring) -- Path to the ca bundle to use when verifying SSL certificates.

	Returns:

	The list of all tag identifiers that correspond to the
tags attached to the given object.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of tags

	Raise:

	Unauthorized
if you do not have the privilege to read the object.

	Raise:

	Unauthenticated
if the user can not be authenticated.

	
salt.modules.vsphere.compare_vm_configs(new_config, current_config)

	Compares virtual machine current and new configuration, the current is the
one which is deployed now, and the new is the target config. Returns the
differences between the objects in a dictionary, the keys are the
configuration parameter keys and the values are differences objects: either
list or recursive difference

	new_config:
	New config dictionary with every available parameter

	current_config
	Currently deployed configuration

	
salt.modules.vsphere.configure_host_cache(enabled, datastore=None, swap_size_MiB=None, service_instance=None)

	Configures the host cache on the selected host.

	enabled
	Boolean flag specifying whether the host cache is enabled.

	datastore
	Name of the datastore that contains the host cache. Must be set if
enabled is true.

	swap_size_MiB
	Swap size in Mibibytes. Needs to be set if enabled is true. Must be
smaller than the datastore size.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter/ESXi host.
Default is None.

CLI Example:

salt '*' vsphere.configure_host_cache enabled=False

salt '*' vsphere.configure_host_cache enabled=True datastore=ds1
 swap_size_MiB=1024

	
salt.modules.vsphere.coredump_network_enable(host, username, password, enabled, protocol=None, port=None, esxi_hosts=None, credstore=None)

	Enable or disable ESXi core dump collection. Returns True if coredump is enabled
and returns False if core dump is not enabled. If there was an error, the error
will be the value printed in the Error key dictionary for the given host.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	enabled
	Python True or False to enable or disable coredumps.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	esxi_hosts
	If host is a vCenter host, then use esxi_hosts to execute this function
on a list of one or more ESXi machines.

	credstore
	Optionally set to path to the credential store file.

CLI Example:

Used for ESXi host connection information
salt '*' vsphere.coredump_network_enable my.esxi.host root bad-password True

Used for connecting to a vCenter Server
salt '*' vsphere.coredump_network_enable my.vcenter.location root bad-password True esxi_hosts='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.create_cluster(cluster_dict, datacenter=None, cluster=None, service_instance=None)

	Creates a cluster.

Note: cluster_dict['name'] will be overridden by the cluster param value

	config_dict
	Dictionary with the config values of the new cluster.

	datacenter
	Name of datacenter containing the cluster.
Ignored if already contained by proxy details.
Default value is None.

	cluster
	Name of cluster.
Ignored if already contained by proxy details.
Default value is None.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter.
Default is None.

CLI Example:

esxdatacenter proxy
salt '*' vsphere.create_cluster cluster_dict=$cluster_dict cluster=cl1

esxcluster proxy
salt '*' vsphere.create_cluster cluster_dict=$cluster_dict

	
salt.modules.vsphere.create_datacenter(datacenter_name, service_instance=None)

	Creates a datacenter.

Supported proxies: esxdatacenter

	datacenter_name
	The datacenter name

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter.
Default is None.

CLI Example:

salt '*' vsphere.create_datacenter dc1

	
salt.modules.vsphere.create_diskgroup(cache_disk_id, capacity_disk_ids, safety_checks=True, service_instance=None)

	Creates disk group on an ESXi host with the specified cache and
capacity disks.

	cache_disk_id
	The canonical name of the disk to be used as a cache. The disk must be
ssd.

	capacity_disk_ids
	A list containing canonical names of the capacity disks. Must contain at
least one id. Default is True.

	safety_checks
	Specify whether to perform safety check or to skip the checks and try
performing the required task. Default value is True.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter/ESXi host.
Default is None.

CLI Example:

salt '*' vsphere.create_diskgroup cache_disk_id='naa.000000000000001'
 capacity_disk_ids='[naa.000000000000002, naa.000000000000003]'

	
salt.modules.vsphere.create_dvportgroup(portgroup_dict, portgroup_name, dvs, service_instance=None)

	Creates a distributed virtual portgroup.

Note: The portgroup_name param will override any name already set
in portgroup_dict.

	portgroup_dict
	Dictionary with the config values the portgroup should be created with
(example in salt.states.dvs).

	portgroup_name
	Name of the portgroup to be created.

	dvs
	Name of the DVS that will contain the portgroup.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter.
Default is None.

CLI Example:

salt '*' vsphere.create_dvportgroup portgroup_dict=<dict>
 portgroup_name=pg1 dvs=dvs1

	
salt.modules.vsphere.create_dvs(dvs_dict, dvs_name, service_instance=None)

	Creates a distributed virtual switch (DVS).

Note: The dvs_name param will override any name set in dvs_dict.

	dvs_dict
	Dict representation of the new DVS (example in salt.states.dvs)

	dvs_name
	Name of the DVS to be created.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter.
Default is None.

CLI Example:

salt '*' vsphere.create_dvs dvs dict=$dvs_dict dvs_name=dvs_name

	
salt.modules.vsphere.create_storage_policy(policy_name, policy_dict, service_instance=None)

	Creates a storage policy.

Supported capability types: scalar, set, range.

	policy_name
	Name of the policy to create.
The value of the argument will override any existing name in
policy_dict.

	policy_dict
	Dictionary containing the changes to apply to the policy.
(example in salt.states.pbm)

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter.
Default is None.

CLI Example:

salt '*' vsphere.create_storage_policy policy_name='policy name'
 policy_dict="$policy_dict"

	
salt.modules.vsphere.create_tag(name, description, category_id, server=None, username=None, password=None, service_instance=None, verify_ssl=None, ca_bundle=None)

	Create a tag under a category with given description.

CLI Example:

salt vm_minion vsphere.create_tag

	Parameters:

	
	server (basestring) -- Target DNS or IP of vCenter client.

	username (basestring) -- Username associated with the vCenter client.

	password (basestring) -- Password associated with the vCenter client.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name of tag category to create (ex. Machine, OS, Availability, etc.)

	description (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Given description of tag category.

	category_id (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Value of category_id representative of the category created previously.

	verify_ssl (boolean) -- Verify the SSL certificate. Default: True

	ca_bundle (basestring) -- Path to the ca bundle to use when verifying SSL certificates.

	Returns:

	The identifier of the created tag.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raise:

	AlreadyExists
if the name provided in the create_spec is the name of an already
existing tag in the input category.

	Raise:

	InvalidArgument
if any of the input information in the create_spec is invalid.

	Raise:

	NotFound
if the category for in the given create_spec does not exist in
the system.

	Raise:

	Unauthorized
if you do not have the privilege to create tag.

	
salt.modules.vsphere.create_tag_category(name, description, cardinality, server=None, username=None, password=None, service_instance=None, verify_ssl=None, ca_bundle=None)

	Create a category with given cardinality.

CLI Example:

salt vm_minion vsphere.create_tag_category

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Name of tag category to create (ex. Machine, OS, Availability, etc.)

	description (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Given description of tag category.

	cardinality (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The associated cardinality (SINGLE, MULTIPLE) of the category.

	server (basestring) -- Target DNS or IP of vCenter center.

	username (basestring) -- Username associated with the vCenter center.

	password (basestring) -- Password associated with the vCenter center.

	verify_ssl (boolean) -- Verify the SSL certificate. Default: True

	ca_bundle (basestring) -- Path to the ca bundle to use when verifying SSL certificates.

	Returns:

	Identifier of the created category.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raise:

	AlreadyExists
if the name` provided in the create_spec is the name of an already
existing category.

	Raise:

	InvalidArgument
if any of the information in the create_spec is invalid.

	Raise:

	Unauthorized
if you do not have the privilege to create a category.

	
salt.modules.vsphere.create_vm(vm_name, cpu, memory, image, version, datacenter, datastore, placement, interfaces, disks, scsi_devices, serial_ports=None, ide_controllers=None, sata_controllers=None, cd_drives=None, advanced_configs=None, service_instance=None)

	Creates a virtual machine container.

CLI Example:

salt vm_minion vsphere.create_vm vm_name=vmname cpu='{count: 2, nested: True}' ...

	vm_name
	Name of the virtual machine

	cpu
	Properties of CPUs for freshly created machines

	memory
	Memory size for freshly created machines

	image
	Virtual machine guest OS version identifier
VirtualMachineGuestOsIdentifier

	version
	Virtual machine container hardware version

	datacenter
	Datacenter where the virtual machine will be deployed (mandatory)

	datastore
	Datastore where the virtual machine files will be placed

	placement
	Resource pool or cluster or host or folder where the virtual machine
will be deployed

	devices
	interfaces

interfaces:
 adapter: 'Network adapter 1'
 name: vlan100
 switch_type: distributed or standard
 adapter_type: vmxnet3 or vmxnet, vmxnet2, vmxnet3, e1000, e1000e
 mac: '00:11:22:33:44:55'
 connectable:
 allow_guest_control: True
 connected: True
 start_connected: True

disks

disks:
 adapter: 'Hard disk 1'
 size: 16
 unit: GB
 address: '0:0'
 controller: 'SCSI controller 0'
 thin_provision: False
 eagerly_scrub: False
 datastore: 'myshare'
 filename: 'vm/mydisk.vmdk'

scsi_devices

scsi_devices:
 controller: 'SCSI controller 0'
 type: paravirtual
 bus_sharing: no_sharing

serial_ports

serial_ports:
 adapter: 'Serial port 1'
 type: network
 backing:
 uri: 'telnet://something:port'
 direction: <client|server>
 filename: 'service_uri'
 connectable:
 allow_guest_control: True
 connected: True
 start_connected: True
 yield: False

cd_drives

cd_drives:
 adapter: 'CD/DVD drive 0'
 controller: 'IDE 0'
 device_type: datastore_iso_file
 datastore_iso_file:
 path: path_to_iso
 connectable:
 allow_guest_control: True
 connected: True
 start_connected: True

	advanced_config
	Advanced config parameters to be set for the virtual machine

	
salt.modules.vsphere.create_vmfs_datastore(datastore_name, disk_id, vmfs_major_version, safety_checks=True, service_instance=None)

	Creates a ESXi host disk group with the specified cache and capacity disks.

	datastore_name
	The name of the datastore to be created.

	disk_id
	The disk id (canonical name) on which the datastore is created.

	vmfs_major_version
	The VMFS major version.

	safety_checks
	Specify whether to perform safety check or to skip the checks and try
performing the required task. Default is True.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter/ESXi host.
Default is None.

CLI Example:

salt '*' vsphere.create_vmfs_datastore datastore_name=ds1 disk_id=
 vmfs_major_version=5

	
salt.modules.vsphere.delete_advanced_configs(vm_name, datacenter, advanced_configs, service_instance=None)

	Removes extra config parameters from a virtual machine

	vm_name
	Virtual machine name

	datacenter
	Datacenter name where the virtual machine is available

	advanced_configs
	List of advanced config values to be removed

	service_instance
	vCenter service instance for connection and configuration

	
salt.modules.vsphere.delete_tag(tag_id, server=None, username=None, password=None, service_instance=None, verify_ssl=None, ca_bundle=None)

	Delete a tag.

CLI Example:

salt vm_minion vsphere.delete_tag

	Parameters:

	
	tag_id (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The identifier of tag to be deleted.
The parameter must be an identifier for the resource type:
com.vmware.cis.tagging.Tag.

	server (basestring) -- Target DNS or IP of vCenter center.

	username (basestring) -- Username associated with the vCenter center.

	password (basestring) -- Password associated with the vCenter center.

	verify_ssl (boolean) -- Verify the SSL certificate. Default: True

	ca_bundle (basestring) -- Path to the ca bundle to use when verifying SSL certificates.

	Raise:

	AlreadyExists
if the name provided in the create_spec is the name of an already
existing category.

	Raise:

	InvalidArgument
if any of the information in the create_spec is invalid.

	Raise:

	Unauthorized
if you do not have the privilege to create a category.

	
salt.modules.vsphere.delete_tag_category(category_id, server=None, username=None, password=None, service_instance=None, verify_ssl=None, ca_bundle=None)

	Delete a category.

CLI Example:

salt vm_minion vsphere.delete_tag_category

	Parameters:

	
	category_id (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The identifier of category to be deleted.
The parameter must be an identifier for the resource type:
com.vmware.cis.tagging.Category.

	server (basestring) -- Target DNS or IP of vCenter center.

	username (basestring) -- Username associated with the vCenter center.

	password (basestring) -- Password associated with the vCenter center.

	verify_ssl (boolean) -- Verify the SSL certificate. Default: True

	ca_bundle (basestring) -- Path to the ca bundle to use when verifying SSL certificates.

	Raise:

	NotFound
if the tag for the given tag_id does not exist in the system.

	Raise:

	Unauthorized
if you do not have the privilege to delete the tag.

	Raise:

	Unauthenticated
if the user can not be authenticated.

	
salt.modules.vsphere.delete_vm(name, datacenter, placement=None, power_off=False, service_instance=None)

	Deletes a virtual machine defined by name and placement

	name
	Name of the virtual machine

	datacenter
	Datacenter of the virtual machine

	placement
	Placement information of the virtual machine

	service_instance
	vCenter service instance for connection and configuration

CLI Example:

salt '*' vsphere.delete_vm name=my_vm datacenter=my_datacenter

	
salt.modules.vsphere.disconnect(service_instance)

	Disconnects from a vCenter or ESXi host

Note

Should be used by state functions, not invoked directly.

	service_instance
	Service instance (vim.ServiceInstance)

CLI Example:

See note above.

	
salt.modules.vsphere.enable_firewall_ruleset(host, username, password, ruleset_enable, ruleset_name, protocol=None, port=None, esxi_hosts=None, credstore=None)

	Enable or disable an ESXi firewall rule set.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	ruleset_enable
	True to enable the ruleset, false to disable.

	ruleset_name
	Name of ruleset to target.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	esxi_hosts
	If host is a vCenter host, then use esxi_hosts to execute this function
on a list of one or more ESXi machines.

	credstore
	Optionally set to path to the credential store file.

	Returns:

	A standard cmd.run_all dictionary, per host.

CLI Example:

Used for ESXi host connection information
salt '*' vsphere.enable_firewall_ruleset my.esxi.host root bad-password True 'syslog'

Used for connecting to a vCenter Server
salt '*' vsphere.enable_firewall_ruleset my.vcenter.location root bad-password True 'syslog' esxi_hosts='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.erase_disk_partitions(disk_id=None, scsi_address=None, service_instance=None)

	Erases the partitions on a disk.
The disk can be specified either by the canonical name, or by the
scsi_address.

	disk_id
	Canonical name of the disk.
Either disk_id or scsi_address needs to be specified
(disk_id supersedes scsi_address.

	scsi_address
	Scsi address of the disk.
disk_id or scsi_address needs to be specified
(disk_id supersedes scsi_address.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter/ESXi host.
Default is None.

CLI Example:

salt '*' vsphere.erase_disk_partitions scsi_address='vmhaba0:C0:T0:L0'

salt '*' vsphere.erase_disk_partitions disk_id='naa.000000000000001'

	
salt.modules.vsphere.esxcli_cmd(cmd_str, host=None, username=None, password=None, protocol=None, port=None, esxi_hosts=None, credstore=None)

	Run an ESXCLI command directly on the host or list of hosts.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	cmd_str
	The ESXCLI command to run. Note: This should not include the -s, -u,
-p, -h, --protocol, or --portnumber arguments that are
frequently passed when using a bare ESXCLI command from the command line.
Those arguments are handled by this function via the other args and kwargs.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	esxi_hosts
	If host is a vCenter host, then use esxi_hosts to execute this function
on a list of one or more ESXi machines.

	credstore
	Optionally set to path to the credential store file.

CLI Example:

Used for ESXi host connection information
salt '*' vsphere.esxcli_cmd my.esxi.host root bad-password 'system coredump network get'

Used for connecting to a vCenter Server
salt '*' vsphere.esxcli_cmd my.vcenter.location root bad-password 'system coredump network get' esxi_hosts='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.get_advanced_configs(vm_name, datacenter, service_instance=None)

	Returns extra config parameters from a virtual machine advanced config list

	vm_name
	Virtual machine name

	datacenter
	Datacenter name where the virtual machine is available

	service_instance
	vCenter service instance for connection and configuration

	
salt.modules.vsphere.get_coredump_network_config(host, username, password, protocol=None, port=None, esxi_hosts=None, credstore=None)

	Retrieve information on ESXi or vCenter network dump collection and
format it into a dictionary.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	esxi_hosts
	If host is a vCenter host, then use esxi_hosts to execute this function
on a list of one or more ESXi machines.

	credstore
	Optionally set to path to the credential store file.

	Returns:

	A dictionary with the network configuration, or, if getting
the network config failed, a an error message retrieved from the
standard cmd.run_all dictionary, per host.

CLI Example:

Used for ESXi host connection information
salt '*' vsphere.get_coredump_network_config my.esxi.host root bad-password

Used for connecting to a vCenter Server
salt '*' vsphere.get_coredump_network_config my.vcenter.location root bad-password esxi_hosts='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.get_firewall_status(host, username, password, protocol=None, port=None, esxi_hosts=None, credstore=None)

	Show status of all firewall rule sets.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	esxi_hosts
	If host is a vCenter host, then use esxi_hosts to execute this function
on a list of one or more ESXi machines.

	credstore
	Optionally set to path to the credential store file.

	Returns:

	Nested dictionary with two toplevel keys rulesets and success
success will be True or False depending on query success
rulesets will list the rulesets and their statuses if success
was true, per host.

CLI Example:

Used for ESXi host connection information
salt '*' vsphere.get_firewall_status my.esxi.host root bad-password

Used for connecting to a vCenter Server
salt '*' vsphere.get_firewall_status my.vcenter.location root bad-password esxi_hosts='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.get_host_cache(service_instance=None)

	Returns the host cache configuration on the proxy host.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter/ESXi host.
Default is None.

CLI Example:

salt '*' vsphere.get_host_cache

	
salt.modules.vsphere.get_host_datetime(host, username, password, protocol=None, port=None, host_names=None, verify_ssl=True)

	Get the date/time information for a given host or list of host_names.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	host_names
	List of ESXi host names. When the host, username, and password credentials
are provided for a vCenter Server, the host_names argument is required to tell
vCenter the hosts for which to get date/time information.

If host_names is not provided, the date/time information will be retrieved for the
host location instead. This is useful for when service instance connection
information is used for a single ESXi host.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

Used for single ESXi host connection information
salt '*' vsphere.get_host_datetime my.esxi.host root bad-password

Used for connecting to a vCenter Server
salt '*' vsphere.get_host_datetime my.vcenter.location root bad-password host_names='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.get_ntp_config(host, username, password, protocol=None, port=None, host_names=None, verify_ssl=True)

	Get the NTP configuration information for a given host or list of host_names.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	host_names
	List of ESXi host names. When the host, username, and password credentials
are provided for a vCenter Server, the host_names argument is required to tell
vCenter the hosts for which to get ntp configuration information.

If host_names is not provided, the NTP configuration will be retrieved for the
host location instead. This is useful for when service instance connection
information is used for a single ESXi host.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

Used for single ESXi host connection information
salt '*' vsphere.get_ntp_config my.esxi.host root bad-password

Used for connecting to a vCenter Server
salt '*' vsphere.get_ntp_config my.vcenter.location root bad-password host_names='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.get_proxy_type()

	Returns the proxy type retrieved either from the pillar of from the proxy
minion's config. Returns <undefined> otherwise.

CLI Example:

salt '*' vsphere.get_proxy_type

	
salt.modules.vsphere.get_service_instance_via_proxy(service_instance=None)

	Returns a service instance to the proxied endpoint (vCenter/ESXi host).

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter.
Default is None.

Note

Should be used by state functions not invoked directly.

CLI Example:

See note above

	
salt.modules.vsphere.get_service_policy(host, username, password, service_name, protocol=None, port=None, host_names=None, verify_ssl=True)

	Get the service name's policy for a given host or list of hosts.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	service_name
	
	The name of the service for which to retrieve the policy. Supported service names are:
	
	DCUI

	TSM

	SSH

	lbtd

	lsassd

	lwiod

	netlogond

	ntpd

	sfcbd-watchdog

	snmpd

	vprobed

	vpxa

	xorg

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	host_names
	List of ESXi host names. When the host, username, and password credentials
are provided for a vCenter Server, the host_names argument is required to tell
vCenter the hosts for which to get service policy information.

If host_names is not provided, the service policy information will be retrieved
for the host location instead. This is useful for when service instance
connection information is used for a single ESXi host.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

Used for single ESXi host connection information
salt '*' vsphere.get_service_policy my.esxi.host root bad-password 'ssh'

Used for connecting to a vCenter Server
salt '*' vsphere.get_service_policy my.vcenter.location root bad-password 'ntpd' host_names='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.get_service_running(host, username, password, service_name, protocol=None, port=None, host_names=None, verify_ssl=True)

	Get the service name's running state for a given host or list of hosts.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	service_name
	
	The name of the service for which to retrieve the policy. Supported service names are:
	
	DCUI

	TSM

	SSH

	lbtd

	lsassd

	lwiod

	netlogond

	ntpd

	sfcbd-watchdog

	snmpd

	vprobed

	vpxa

	xorg

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	host_names
	List of ESXi host names. When the host, username, and password credentials
are provided for a vCenter Server, the host_names argument is required to tell
vCenter the hosts for which to get the service's running state.

If host_names is not provided, the service's running state will be retrieved
for the host location instead. This is useful for when service instance
connection information is used for a single ESXi host.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

Used for single ESXi host connection information
salt '*' vsphere.get_service_running my.esxi.host root bad-password 'ssh'

Used for connecting to a vCenter Server
salt '*' vsphere.get_service_running my.vcenter.location root bad-password 'ntpd' host_names='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.get_ssh_key(host, username, password, protocol=None, port=None, certificate_verify=None)

	Retrieve the authorized_keys entry for root.
This function only works for ESXi, not vCenter.

	Parameters:

	
	host -- The location of the ESXi Host

	username -- Username to connect as

	password -- Password for the ESXi web endpoint

	protocol -- defaults to https, can be http if ssl is disabled on ESXi

	port -- defaults to 443 for https

	certificate_verify -- If true require that the SSL connection present
a valid certificate. Default: True

	Returns:

	True if upload is successful

CLI Example:

salt '*' vsphere.get_ssh_key my.esxi.host root bad-password certificate_verify=True

	
salt.modules.vsphere.get_syslog_config(host, username, password, protocol=None, port=None, esxi_hosts=None, credstore=None)

	Retrieve the syslog configuration.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	esxi_hosts
	If host is a vCenter host, then use esxi_hosts to execute this function
on a list of one or more ESXi machines.

	credstore
	Optionally set to path to the credential store file.

	Returns:

	Dictionary with keys and values corresponding to the
syslog configuration, per host.

CLI Example:

Used for ESXi host connection information
salt '*' vsphere.get_syslog_config my.esxi.host root bad-password

Used for connecting to a vCenter Server
salt '*' vsphere.get_syslog_config my.vcenter.location root bad-password esxi_hosts='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.get_vm(name, datacenter=None, vm_properties=None, traversal_spec=None, parent_ref=None, service_instance=None)

	Returns vm object properties.

	name
	Name of the virtual machine.

	datacenter
	Datacenter name

	vm_properties
	List of vm properties.

	traversal_spec
	Traversal Spec object(s) for searching.

	parent_ref
	Container Reference object for searching under a given object.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter.
Default is None.

	
salt.modules.vsphere.get_vm_config(name, datacenter=None, objects=True, service_instance=None)

	Queries and converts the virtual machine properties to the available format
from the schema. If the objects attribute is True the config objects will
have extra properties, like 'object' which will include the
vim.vm.device.VirtualDevice, this is necessary for deletion and update
actions.

	name
	Name of the virtual machine

	datacenter
	Datacenter's name where the virtual machine is available

	objects
	Indicates whether to return the vmware object properties
(eg. object, key) or just the properties which can be set

	service_instance
	vCenter service instance for connection and configuration

	
salt.modules.vsphere.get_vm_config_file(name, datacenter, placement, datastore, service_instance=None)

	Queries the virtual machine config file and returns
vim.host.DatastoreBrowser.SearchResults object on success None on failure

	name
	Name of the virtual machine

	datacenter
	Datacenter name

	datastore
	Datastore where the virtual machine files are stored

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter.
Default is None.

	
salt.modules.vsphere.get_vmotion_enabled(host, username, password, protocol=None, port=None, host_names=None, verify_ssl=True)

	Get the VMotion enabled status for a given host or a list of host_names. Returns True
if VMotion is enabled, False if it is not enabled.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	host_names
	List of ESXi host names. When the host, username, and password credentials
are provided for a vCenter Server, the host_names argument is required to
tell vCenter which hosts to check if VMotion is enabled.

If host_names is not provided, the VMotion status will be retrieved for the
host location instead. This is useful for when service instance
connection information is used for a single ESXi host.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

Used for single ESXi host connection information
salt '*' vsphere.get_vmotion_enabled my.esxi.host root bad-password

Used for connecting to a vCenter Server
salt '*' vsphere.get_vmotion_enabled my.vcenter.location root bad-password host_names='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.get_vsan_eligible_disks(host, username, password, protocol=None, port=None, host_names=None, verify_ssl=True)

	Returns a list of VSAN-eligible disks for a given host or list of host_names.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	host_names
	List of ESXi host names. When the host, username, and password credentials
are provided for a vCenter Server, the host_names argument is required to
tell vCenter which hosts to check if any VSAN-eligible disks are available.

If host_names is not provided, the VSAN-eligible disks will be retrieved
for the host location instead. This is useful for when service instance
connection information is used for a single ESXi host.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

Used for single ESXi host connection information
salt '*' vsphere.get_vsan_eligible_disks my.esxi.host root bad-password

Used for connecting to a vCenter Server
salt '*' vsphere.get_vsan_eligible_disks my.vcenter.location root bad-password host_names='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.get_vsan_enabled(host, username, password, protocol=None, port=None, host_names=None, verify_ssl=True)

	Get the VSAN enabled status for a given host or a list of host_names. Returns True
if VSAN is enabled, False if it is not enabled, and None if a VSAN Host Config
is unset, per host.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	host_names
	List of ESXi host names. When the host, username, and password credentials
are provided for a vCenter Server, the host_names argument is required to
tell vCenter which hosts to check if VSAN enabled.

If host_names is not provided, the VSAN status will be retrieved for the
host location instead. This is useful for when service instance
connection information is used for a single ESXi host.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

Used for single ESXi host connection information
salt '*' vsphere.get_vsan_enabled my.esxi.host root bad-password

Used for connecting to a vCenter Server
salt '*' vsphere.get_vsan_enabled my.vcenter.location root bad-password host_names='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.list_assigned_licenses(entity, entity_display_name, license_keys=None, service_instance=None)

	Lists the licenses assigned to an entity

	entity
	Dictionary representation of an entity.
See _get_entity docstrings for format.

	entity_display_name
	Entity name used in logging

	license_keys:
	List of license keys to be retrieved. Default is None.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter/ESXi host.
Default is None.

CLI Example:

salt '*' vsphere.list_assigned_licenses
 entity={type:cluster,datacenter:dc,cluster:cl}
 entiy_display_name=cl

	
salt.modules.vsphere.list_attached_tags(object_id, managed_obj='ClusterComputeResource', server=None, username=None, password=None, service_instance=None, verify_ssl=None, ca_bundle=None)

	List existing tags a user has access to.

CLI Example:

salt vm_minion vsphere.list_attached_tags domain-c2283

	Parameters:

	
	object_id (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The identifier of the input object.

	managed_obj (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Classes that contain methods for creating and deleting resources
typically contain a class attribute specifying the resource type
for the resources being created and deleted.

	server (basestring) -- Target DNS or IP of vCenter center.

	username (basestring) -- Username associated with the vCenter center.

	password (basestring) -- Password associated with the vCenter center.

	verify_ssl (boolean) -- Verify the SSL certificate. Default: True

	ca_bundle (basestring) -- Path to the ca bundle to use when verifying SSL certificates.

	Returns:

	The list of all tag identifiers that correspond to the
tags attached to the given object.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of tags

	Raise:

	Unauthorized
if you do not have the privilege to read the object.

	Raise:

	Unauthenticated
if the user can not be authenticated.

	
salt.modules.vsphere.list_capability_definitions(service_instance=None)

	Returns a list of the metadata of all capabilities in the vCenter.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter.
Default is None.

CLI Example:

salt '*' vsphere.list_capabilities

	
salt.modules.vsphere.list_cluster(datacenter=None, cluster=None, service_instance=None)

	Returns a dict representation of an ESX cluster.

	datacenter
	Name of datacenter containing the cluster.
Ignored if already contained by proxy details.
Default value is None.

	cluster
	Name of cluster.
Ignored if already contained by proxy details.
Default value is None.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter.
Default is None.

CLI Example:

vcenter proxy
salt '*' vsphere.list_cluster datacenter=dc1 cluster=cl1

esxdatacenter proxy
salt '*' vsphere.list_cluster cluster=cl1

esxcluster proxy
salt '*' vsphere.list_cluster

	
salt.modules.vsphere.list_clusters(host, username, password, protocol=None, port=None, verify_ssl=True)

	Returns a list of clusters for the specified host.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

salt '*' vsphere.list_clusters 1.2.3.4 root bad-password

	
salt.modules.vsphere.list_datacenters(host, username, password, protocol=None, port=None, verify_ssl=True)

	Returns a list of datacenters for the specified host.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

salt '*' vsphere.list_datacenters 1.2.3.4 root bad-password

	
salt.modules.vsphere.list_datacenters_via_proxy(datacenter_names=None, service_instance=None)

	Returns a list of dict representations of VMware datacenters.
Connection is done via the proxy details.

Supported proxies: esxdatacenter

	datacenter_names
	List of datacenter names.
Default is None.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter.
Default is None.

CLI Example:

salt '*' vsphere.list_datacenters_via_proxy

salt '*' vsphere.list_datacenters_via_proxy dc1

salt '*' vsphere.list_datacenters_via_proxy dc1,dc2

salt '*' vsphere.list_datacenters_via_proxy datacenter_names=[dc1, dc2]

	
salt.modules.vsphere.list_datastore_clusters(host, username, password, protocol=None, port=None, verify_ssl=True)

	Returns a list of datastore clusters for the specified host.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

salt '*' vsphere.list_datastore_clusters 1.2.3.4 root bad-password

	
salt.modules.vsphere.list_datastores(host, username, password, protocol=None, port=None, verify_ssl=True)

	Returns a list of datastores for the specified host.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

salt '*' vsphere.list_datastores 1.2.3.4 root bad-password

	
salt.modules.vsphere.list_datastores_via_proxy(datastore_names=None, backing_disk_ids=None, backing_disk_scsi_addresses=None, service_instance=None)

	Returns a list of dict representations of the datastores visible to the
proxy object. The list of datastores can be filtered by datastore names,
backing disk ids (canonical names) or backing disk scsi addresses.

Supported proxy types: esxi, esxcluster, esxdatacenter

	datastore_names
	List of the names of datastores to filter on

	backing_disk_ids
	List of canonical names of the backing disks of the datastores to filer.
Default is None.

	backing_disk_scsi_addresses
	List of scsi addresses of the backing disks of the datastores to filter.
Default is None.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter/ESXi host.
Default is None.

CLI Example:

salt '*' vsphere.list_datastores_via_proxy

salt '*' vsphere.list_datastores_via_proxy datastore_names=[ds1, ds2]

	
salt.modules.vsphere.list_default_storage_policy_of_datastore(datastore, service_instance=None)

	Returns a list of datastores assign the storage policies.

	datastore
	Name of the datastore to assign.
The datastore needs to be visible to the VMware entity the proxy
points to.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter.
Default is None.

CLI Example:

salt '*' vsphere.list_default_storage_policy_of_datastore datastore=ds1

	
salt.modules.vsphere.list_default_vsan_policy(service_instance=None)

	Returns the default vsan storage policy.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter.
Default is None.

CLI Example:

salt '*' vsphere.list_default_vsan_policy

	
salt.modules.vsphere.list_disk_partitions(disk_id=None, scsi_address=None, service_instance=None)

	Lists the partitions on a disk.
The disk can be specified either by the canonical name, or by the
scsi_address.

	disk_id
	Canonical name of the disk.
Either disk_id or scsi_address needs to be specified
(disk_id supersedes scsi_address.

	scsi_address`
	Scsi address of the disk.
disk_id or scsi_address needs to be specified
(disk_id supersedes scsi_address.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter/ESXi host.
Default is None.

CLI Example:

salt '*' vsphere.list_disk_partitions scsi_address='vmhaba0:C0:T0:L0'

salt '*' vsphere.list_disk_partitions disk_id='naa.000000000000001'

	
salt.modules.vsphere.list_diskgroups(cache_disk_ids=None, service_instance=None)

	Returns a list of disk group dict representation on an ESXi host.
The list of disk groups can be filtered by the cache disks
canonical names. If no filtering is applied, all disk groups are returned.

	cache_disk_ids:
	List of cache disk canonical names of the disk groups to be retrieved.
Default is None.

	use_proxy_details
	Specify whether to use the proxy minion's details instead of the
arguments

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter/ESXi host.
Default is None.

CLI Example:

salt '*' vsphere.list_diskgroups

salt '*' vsphere.list_diskgroups cache_disk_ids='[naa.000000000000001]'

	
salt.modules.vsphere.list_disks(disk_ids=None, scsi_addresses=None, service_instance=None)

	Returns a list of dict representations of the disks in an ESXi host.
The list of disks can be filtered by disk canonical names or
scsi addresses.

	disk_ids:
	List of disk canonical names to be retrieved. Default is None.

	scsi_addresses
	List of scsi addresses of disks to be retrieved. Default is None

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter/ESXi host.
Default is None.

CLI Example:

salt '*' vsphere.list_disks

salt '*' vsphere.list_disks disk_ids='[naa.00, naa.001]'

salt '*' vsphere.list_disks
 scsi_addresses='[vmhba0:C0:T0:L0, vmhba1:C0:T0:L0]'

	
salt.modules.vsphere.list_dvportgroups(dvs=None, portgroup_names=None, service_instance=None)

	Returns a list of distributed virtual switch portgroups.
The list can be filtered by the portgroup names or by the DVS.

	dvs
	Name of the DVS containing the portgroups.
Default value is None.

	portgroup_names
	List of portgroup names to look for. If None, all portgroups are
returned.
Default value is None

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter.
Default is None.

CLI Example:

salt '*' vsphere.list_dvportgroups

salt '*' vsphere.list_dvportgroups dvs=dvs1

salt '*' vsphere.list_dvportgroups portgroup_names=[pg1]

salt '*' vsphere.list_dvportgroups dvs=dvs1 portgroup_names=[pg1]

	
salt.modules.vsphere.list_dvs(host, username, password, protocol=None, port=None, verify_ssl=True)

	Returns a list of distributed virtual switches for the specified host.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

salt '*' vsphere.list_dvs 1.2.3.4 root bad-password

	
salt.modules.vsphere.list_dvss(datacenter=None, dvs_names=None, service_instance=None)

	Returns a list of distributed virtual switches (DVSs).
The list can be filtered by the datacenter or DVS names.

	datacenter
	The datacenter to look for DVSs in.
Default value is None.

	dvs_names
	List of DVS names to look for. If None, all DVSs are returned.
Default value is None.

CLI Example:

salt '*' vsphere.list_dvss

salt '*' vsphere.list_dvss dvs_names=[dvs1,dvs2]

	
salt.modules.vsphere.list_folders(host, username, password, protocol=None, port=None, verify_ssl=True)

	Returns a list of folders for the specified host.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

salt '*' vsphere.list_folders 1.2.3.4 root bad-password

	
salt.modules.vsphere.list_hosts(host, username, password, protocol=None, port=None, verify_ssl=True)

	Returns a list of hosts for the specified VMware environment.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

salt '*' vsphere.list_hosts 1.2.3.4 root bad-password

	
salt.modules.vsphere.list_hosts_via_proxy(hostnames=None, datacenter=None, cluster=None, service_instance=None)

	Returns a list of hosts for the specified VMware environment. The list
of hosts can be filtered by datacenter name and/or cluster name

	hostnames
	Hostnames to filter on.

	datacenter_name
	Name of datacenter. Only hosts in this datacenter will be retrieved.
Default is None.

	cluster_name
	Name of cluster. Only hosts in this cluster will be retrieved. If a
datacenter is not specified the first cluster with this name will be
considerred. Default is None.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter/ESXi host.
Default is None.

CLI Example:

salt '*' vsphere.list_hosts_via_proxy

salt '*' vsphere.list_hosts_via_proxy hostnames=[esxi1.example.com]

salt '*' vsphere.list_hosts_via_proxy datacenter=dc1 cluster=cluster1

	
salt.modules.vsphere.list_licenses(service_instance=None)

	Lists all licenses on a vCenter.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter/ESXi host.
Default is None.

CLI Example:

salt '*' vsphere.list_licenses

	
salt.modules.vsphere.list_networks(host, username, password, protocol=None, port=None, verify_ssl=True)

	Returns a list of networks for the specified host.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

salt '*' vsphere.list_networks 1.2.3.4 root bad-password

	
salt.modules.vsphere.list_non_ssds(host, username, password, protocol=None, port=None, host_names=None, verify_ssl=True)

	Returns a list of Non-SSD disks for the given host or list of host_names.

Note

In the pyVmomi StorageSystem, ScsiDisks may, or may not have an ssd attribute.
This attribute indicates if the ScsiDisk is SSD backed. As this option is optional,
if a relevant disk in the StorageSystem does not have ssd = true, it will end
up in the non_ssds list here.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	host_names
	List of ESXi host names. When the host, username, and password credentials
are provided for a vCenter Server, the host_names argument is required to
tell vCenter the hosts for which to retrieve Non-SSD disks.

If host_names is not provided, Non-SSD disks will be retrieved for the
host location instead. This is useful for when service instance
connection information is used for a single ESXi host.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

Used for single ESXi host connection information
salt '*' vsphere.list_non_ssds my.esxi.host root bad-password

Used for connecting to a vCenter Server
salt '*' vsphere.list_non_ssds my.vcenter.location root bad-password host_names='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.list_resourcepools(host, username, password, protocol=None, port=None, verify_ssl=True)

	Returns a list of resource pools for the specified host.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

salt '*' vsphere.list_resourcepools 1.2.3.4 root bad-password

	
salt.modules.vsphere.list_ssds(host, username, password, protocol=None, port=None, host_names=None, verify_ssl=True)

	Returns a list of SSDs for the given host or list of host_names.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	host_names
	List of ESXi host names. When the host, username, and password credentials
are provided for a vCenter Server, the host_names argument is required to
tell vCenter the hosts for which to retrieve SSDs.

If host_names is not provided, SSDs will be retrieved for the
host location instead. This is useful for when service instance
connection information is used for a single ESXi host.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

Used for single ESXi host connection information
salt '*' vsphere.list_ssds my.esxi.host root bad-password

Used for connecting to a vCenter Server
salt '*' vsphere.list_ssds my.vcenter.location root bad-password host_names='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.list_storage_policies(policy_names=None, service_instance=None)

	Returns a list of storage policies.

	policy_names
	Names of policies to list. If None, all policies are listed.
Default is None.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter.
Default is None.

CLI Example:

salt '*' vsphere.list_storage_policies

salt '*' vsphere.list_storage_policies policy_names=[policy_name]

	
salt.modules.vsphere.list_tag_categories(server=None, username=None, password=None, service_instance=None, verify_ssl=None, ca_bundle=None)

	List existing categories a user has access to.

CLI Example:

salt vm_minion vsphere.list_tag_categories

	Parameters:

	
	server (basestring) -- Target DNS or IP of vCenter center.

	username (basestring) -- Username associated with the vCenter center.

	password (basestring) -- Password associated with the vCenter center.

	verify_ssl (boolean) -- Verify the SSL certificate. Default: True

	ca_bundle (basestring) -- Path to the ca bundle to use when verifying SSL certificates.

	Returns:

	Value(s) of category_id.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]

	
salt.modules.vsphere.list_tags(server=None, username=None, password=None, service_instance=None, verify_ssl=None, ca_bundle=None)

	List existing tags a user has access to.

CLI Example:

salt vm_minion vsphere.list_tags

	Parameters:

	
	server (basestring) -- Target DNS or IP of vCenter center.

	username (basestring) -- Username associated with the vCenter center.

	password (basestring) -- Password associated with the vCenter center.

	verify_ssl (boolean) -- Verify the SSL certificate. Default: True

	ca_bundle (basestring) -- Path to the ca bundle to use when verifying SSL certificates.

	Returns:

	Value(s) of tag_id.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]

	
salt.modules.vsphere.list_uplink_dvportgroup(dvs, service_instance=None)

	Returns the uplink portgroup of a distributed virtual switch.

	dvs
	Name of the DVS containing the portgroup.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter.
Default is None.

CLI Example:

salt '*' vsphere.list_uplink_dvportgroup dvs=dvs_name

	
salt.modules.vsphere.list_vapps(host, username, password, protocol=None, port=None, verify_ssl=True)

	Returns a list of vApps for the specified host.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

List vapps from all minions
salt '*' vsphere.list_vapps 1.2.3.4 root bad-password

	
salt.modules.vsphere.list_vms(host, username, password, protocol=None, port=None, verify_ssl=True)

	Returns a list of VMs for the specified host.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

salt '*' vsphere.list_vms 1.2.3.4 root bad-password

	
salt.modules.vsphere.power_off_vm(name, datacenter=None, service_instance=None)

	Powers off a virtual machine specified by its name.

	name
	Name of the virtual machine

	datacenter
	Datacenter of the virtual machine

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter.
Default is None.

CLI Example:

salt '*' vsphere.power_off_vm name=my_vm

	
salt.modules.vsphere.power_on_vm(name, datacenter=None, service_instance=None)

	Powers on a virtual machine specified by its name.

	name
	Name of the virtual machine

	datacenter
	Datacenter of the virtual machine

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter.
Default is None.

CLI Example:

salt '*' vsphere.power_on_vm name=my_vm

	
salt.modules.vsphere.register_vm(name, datacenter, placement, vmx_path, service_instance=None)

	Registers a virtual machine to the inventory with the given vmx file.
Returns comments and change list

	name
	Name of the virtual machine

	datacenter
	Datacenter of the virtual machine

	placement
	Placement dictionary of the virtual machine, host or cluster

	vmx_path:
	Full path to the vmx file, datastore name should be included

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter.
Default is None.

	
salt.modules.vsphere.remove_capacity_from_diskgroup(cache_disk_id, capacity_disk_ids, data_evacuation=True, safety_checks=True, service_instance=None)

	Remove capacity disks from the disk group with the specified cache disk.

	cache_disk_id
	The canonical name of the cache disk.

	capacity_disk_ids
	A list containing canonical names of the capacity disks to add.

	data_evacuation
	Specifies whether to gracefully evacuate the data on the capacity disks
before removing them from the disk group. Default value is True.

	safety_checks
	Specify whether to perform safety check or to skip the checks and try
performing the required task. Default value is True.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter/ESXi host.
Default is None.

CLI Example:

salt '*' vsphere.remove_capacity_from_diskgroup
 cache_disk_id='naa.000000000000001'
 capacity_disk_ids='[naa.000000000000002, naa.000000000000003]'

	
salt.modules.vsphere.remove_datastore(datastore, service_instance=None)

	Removes a datastore. If multiple datastores an error is raised.

	datastore
	Datastore name

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter/ESXi host.
Default is None.

CLI Example:

salt '*' vsphere.remove_datastore ds_name

	
salt.modules.vsphere.remove_diskgroup(cache_disk_id, data_accessibility=True, service_instance=None)

	Remove the diskgroup with the specified cache disk.

	cache_disk_id
	The canonical name of the cache disk.

	data_accessibility
	Specifies whether to ensure data accessibility. Default value is True.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter/ESXi host.
Default is None.

CLI Example:

salt '*' vsphere.remove_diskgroup cache_disk_id='naa.000000000000001'

	
salt.modules.vsphere.remove_dvportgroup(portgroup, dvs, service_instance=None)

	Removes a distributed virtual portgroup.

	portgroup
	Name of the portgroup to be removed.

	dvs
	Name of the DVS containing the portgroups.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter.
Default is None.

CLI Example:

salt '*' vsphere.remove_dvportgroup portgroup=pg1 dvs=dvs1

	
salt.modules.vsphere.rename_datastore(datastore_name, new_datastore_name, service_instance=None)

	Renames a datastore. The datastore needs to be visible to the proxy.

	datastore_name
	Current datastore name.

	new_datastore_name
	New datastore name.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter/ESXi host.
Default is None.

CLI Example:

salt '*' vsphere.rename_datastore old_name new_name

	
salt.modules.vsphere.reset_syslog_config(host, username, password, protocol=None, port=None, syslog_config=None, esxi_hosts=None, credstore=None)

	Reset the syslog service to its default settings.

Valid syslog_config values are logdir, loghost, logdir-unique,
default-rotate, default-size, default-timeout,
or all for all of these.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	syslog_config
	List of parameters to reset, provided as a comma-delimited string, or 'all' to
reset all syslog configuration parameters. Required.

	esxi_hosts
	If host is a vCenter host, then use esxi_hosts to execute this function
on a list of one or more ESXi machines.

	credstore
	Optionally set to path to the credential store file.

	Returns:

	Dictionary with a top-level key of 'success' which indicates
if all the parameters were reset, and individual keys
for each parameter indicating which succeeded or failed, per host.

Note

syslog_config can be passed as a quoted, comma-separated string. See CLI Example for details.

CLI Example:

Used for ESXi host connection information
salt '*' vsphere.reset_syslog_config my.esxi.host root bad-password syslog_config='logdir,loghost'

Used for connecting to a vCenter Server
salt '*' vsphere.reset_syslog_config my.vcenter.location root bad-password syslog_config='logdir,loghost' esxi_hosts='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.service_restart(host, username, password, service_name, protocol=None, port=None, host_names=None, verify_ssl=True)

	Restart the named service for the given host or list of hosts.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	service_name
	
	The name of the service for which to set the policy. Supported service names are:
	
	DCUI

	TSM

	SSH

	lbtd

	lsassd

	lwiod

	netlogond

	ntpd

	sfcbd-watchdog

	snmpd

	vprobed

	vpxa

	xorg

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	host_names
	List of ESXi host names. When the host, username, and password credentials
are provided for a vCenter Server, the host_names argument is required to tell
vCenter the hosts for which to restart the service.

If host_names is not provided, the service will be restarted for the host
location instead. This is useful for when service instance connection information
is used for a single ESXi host.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

Used for single ESXi host connection information
salt '*' vsphere.service_restart my.esxi.host root bad-password 'ntpd'

Used for connecting to a vCenter Server
salt '*' vsphere.service_restart my.vcenter.location root bad-password 'ntpd' host_names='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.service_start(host, username, password, service_name, protocol=None, port=None, host_names=None, verify_ssl=True)

	Start the named service for the given host or list of hosts.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	service_name
	
	The name of the service for which to set the policy. Supported service names are:
	
	DCUI

	TSM

	SSH

	lbtd

	lsassd

	lwiod

	netlogond

	ntpd

	sfcbd-watchdog

	snmpd

	vprobed

	vpxa

	xorg

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	host_names
	List of ESXi host names. When the host, username, and password credentials
are provided for a vCenter Server, the host_names argument is required to tell
vCenter the hosts for which to start the service.

If host_names is not provided, the service will be started for the host
location instead. This is useful for when service instance connection information
is used for a single ESXi host.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

Used for single ESXi host connection information
salt '*' vsphere.service_start my.esxi.host root bad-password 'ntpd'

Used for connecting to a vCenter Server
salt '*' vsphere.service_start my.vcenter.location root bad-password 'ntpd' host_names='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.service_stop(host, username, password, service_name, protocol=None, port=None, host_names=None, verify_ssl=True)

	Stop the named service for the given host or list of hosts.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	service_name
	
	The name of the service for which to set the policy. Supported service names are:
	
	DCUI

	TSM

	SSH

	lbtd

	lsassd

	lwiod

	netlogond

	ntpd

	sfcbd-watchdog

	snmpd

	vprobed

	vpxa

	xorg

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	host_names
	List of ESXi host names. When the host, username, and password credentials
are provided for a vCenter Server, the host_names argument is required to tell
vCenter the hosts for which to stop the service.

If host_names is not provided, the service will be stopped for the host
location instead. This is useful for when service instance connection information
is used for a single ESXi host.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

Used for single ESXi host connection information
salt '*' vsphere.service_stop my.esxi.host root bad-password 'ssh'

Used for connecting to a vCenter Server
salt '*' vsphere.service_stop my.vcenter.location root bad-password 'ssh' host_names='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.set_advanced_configs(vm_name, datacenter, advanced_configs, service_instance=None)

	Appends extra config parameters to a virtual machine advanced config list

	vm_name
	Virtual machine name

	datacenter
	Datacenter name where the virtual machine is available

	advanced_configs
	Dictionary with advanced parameter key value pairs

	service_instance
	vCenter service instance for connection and configuration

	
salt.modules.vsphere.set_coredump_network_config(host, username, password, dump_ip, protocol=None, port=None, host_vnic='vmk0', dump_port=6500, esxi_hosts=None, credstore=None)

	Set the network parameters for a network coredump collection.
Note that ESXi requires that the dumps first be enabled (see
coredump_network_enable) before these parameters may be set.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	dump_ip
	IP address of host that will accept the dump.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	esxi_hosts
	If host is a vCenter host, then use esxi_hosts to execute this function
on a list of one or more ESXi machines.

	host_vnic
	Host VNic port through which to communicate. Defaults to vmk0.

	dump_port
	TCP port to use for the dump, defaults to 6500.

	credstore
	Optionally set to path to the credential store file.

	Returns:

	A standard cmd.run_all dictionary with a success key added, per host.
success will be True if the set succeeded, False otherwise.

CLI Example:

Used for ESXi host connection information
salt '*' vsphere.set_coredump_network_config my.esxi.host root bad-password 'dump_ip.host.com'

Used for connecting to a vCenter Server
salt '*' vsphere.set_coredump_network_config my.vcenter.location root bad-password 'dump_ip.host.com' esxi_hosts='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.set_ntp_config(host, username, password, ntp_servers, protocol=None, port=None, host_names=None, verify_ssl=True)

	Set NTP configuration for a given host of list of host_names.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	ntp_servers
	A list of servers that should be added to and configured for the specified
host's NTP configuration.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	host_names
	List of ESXi host names. When the host, username, and password credentials
are provided for a vCenter Server, the host_names argument is required to tell
vCenter which hosts to configure ntp servers.

If host_names is not provided, the NTP servers will be configured for the
host location instead. This is useful for when service instance connection
information is used for a single ESXi host.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

Used for single ESXi host connection information
salt '*' vsphere.ntp_configure my.esxi.host root bad-password '[192.174.1.100, 192.174.1.200]'

Used for connecting to a vCenter Server
salt '*' vsphere.ntp_configure my.vcenter.location root bad-password '[192.174.1.100, 192.174.1.200]' host_names='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.set_service_policy(host, username, password, service_name, service_policy, protocol=None, port=None, host_names=None, verify_ssl=True)

	Set the service name's policy for a given host or list of hosts.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	service_name
	
	The name of the service for which to set the policy. Supported service names are:
	
	DCUI

	TSM

	SSH

	lbtd

	lsassd

	lwiod

	netlogond

	ntpd

	sfcbd-watchdog

	snmpd

	vprobed

	vpxa

	xorg

	service_policy
	The policy to set for the service. For example, 'automatic'.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	host_names
	List of ESXi host names. When the host, username, and password credentials
are provided for a vCenter Server, the host_names argument is required to tell
vCenter the hosts for which to set the service policy.

If host_names is not provided, the service policy information will be retrieved
for the host location instead. This is useful for when service instance
connection information is used for a single ESXi host.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

Used for single ESXi host connection information
salt '*' vsphere.set_service_policy my.esxi.host root bad-password 'ntpd' 'automatic'

Used for connecting to a vCenter Server
salt '*' vsphere.set_service_policy my.vcenter.location root bad-password 'ntpd' 'automatic' host_names='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.set_syslog_config(host, username, password, syslog_config, config_value, protocol=None, port=None, firewall=True, reset_service=True, esxi_hosts=None, credstore=None)

	Set the specified syslog configuration parameter. By default, this function will
reset the syslog service after the configuration is set.

	host
	ESXi or vCenter host to connect to.

	username
	User to connect as, usually root.

	password
	Password to connect with.

	syslog_config
	Name of parameter to set (corresponds to the command line switch for
esxcli without the double dashes (--))

Valid syslog_config values are logdir, loghost, default-rotate`,
``default-size, default-timeout, and logdir-unique.

	config_value
	Value for the above parameter. For loghost, URLs or IP addresses to
use for logging. Multiple log servers can be specified by listing them,
comma-separated, but without spaces before or after commas.

(reference: https://blogs.vmware.com/vsphere/2012/04/configuring-multiple-syslog-servers-for-esxi-5.html)

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	firewall
	Enable the firewall rule set for syslog. Defaults to True.

	reset_service
	After a successful parameter set, reset the service. Defaults to True.

	esxi_hosts
	If host is a vCenter host, then use esxi_hosts to execute this function
on a list of one or more ESXi machines.

	credstore
	Optionally set to path to the credential store file.

	Returns:

	Dictionary with a top-level key of 'success' which indicates
if all the parameters were reset, and individual keys
for each parameter indicating which succeeded or failed, per host.

CLI Example:

Used for ESXi host connection information
salt '*' vsphere.set_syslog_config my.esxi.host root bad-password loghost ssl://localhost:5432,tcp://10.1.0.1:1514

Used for connecting to a vCenter Server
salt '*' vsphere.set_syslog_config my.vcenter.location root bad-password loghost ssl://localhost:5432,tcp://10.1.0.1:1514 esxi_hosts='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.syslog_service_reload(host, username, password, protocol=None, port=None, esxi_hosts=None, credstore=None)

	Reload the syslog service so it will pick up any changes.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	esxi_hosts
	If host is a vCenter host, then use esxi_hosts to execute this function
on a list of one or more ESXi machines.

	credstore
	Optionally set to path to the credential store file.

	Returns:

	A standard cmd.run_all dictionary. This dictionary will at least
have a retcode key. If retcode is 0 the command was successful.

CLI Example:

Used for ESXi host connection information
salt '*' vsphere.syslog_service_reload my.esxi.host root bad-password

Used for connecting to a vCenter Server
salt '*' vsphere.syslog_service_reload my.vcenter.location root bad-password esxi_hosts='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.system_info(host, username, password, protocol=None, port=None, verify_ssl=True)

	Return system information about a VMware environment.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

salt '*' vsphere.system_info 1.2.3.4 root bad-password

	
salt.modules.vsphere.test_vcenter_connection(service_instance=None)

	Checks if a connection is to a vCenter

CLI Example:

salt '*' vsphere.test_vcenter_connection

	
salt.modules.vsphere.unregister_vm(name, datacenter, placement=None, power_off=False, service_instance=None)

	Unregisters a virtual machine defined by name and placement

	name
	Name of the virtual machine

	datacenter
	Datacenter of the virtual machine

	placement
	Placement information of the virtual machine

	service_instance
	vCenter service instance for connection and configuration

CLI Example:

salt '*' vsphere.unregister_vm name=my_vm datacenter=my_datacenter

	
salt.modules.vsphere.update_cluster(cluster_dict, datacenter=None, cluster=None, service_instance=None)

	Updates a cluster.

	config_dict
	Dictionary with the config values of the new cluster.

	datacenter
	Name of datacenter containing the cluster.
Ignored if already contained by proxy details.
Default value is None.

	cluster
	Name of cluster.
Ignored if already contained by proxy details.
Default value is None.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter.
Default is None.

CLI Example:

esxdatacenter proxy
salt '*' vsphere.update_cluster cluster_dict=$cluster_dict cluster=cl1

esxcluster proxy
salt '*' vsphere.update_cluster cluster_dict=$cluster_dict

	
salt.modules.vsphere.update_dvportgroup(portgroup_dict, portgroup, dvs, service_instance=True)

	Updates a distributed virtual portgroup.

	portgroup_dict
	Dictionary with the values the portgroup should be update with
(example in salt.states.dvs).

	portgroup
	Name of the portgroup to be updated.

	dvs
	Name of the DVS containing the portgroups.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter.
Default is None.

CLI Example:

salt '*' vsphere.update_dvportgroup portgroup_dict=<dict>
 portgroup=pg1

salt '*' vsphere.update_dvportgroup portgroup_dict=<dict>
 portgroup=pg1 dvs=dvs1

	
salt.modules.vsphere.update_dvs(dvs_dict, dvs, service_instance=None)

	Updates a distributed virtual switch (DVS).

	Note: Updating the product info, capability, uplinks of a DVS is not
	supported so the corresponding entries in dvs_dict will be
ignored.

	dvs_dict
	Dictionary with the values the DVS should be update with
(example in salt.states.dvs)

	dvs
	Name of the DVS to be updated.

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter.
Default is None.

CLI Example:

salt '*' vsphere.update_dvs dvs_dict=$dvs_dict dvs=dvs1

	
salt.modules.vsphere.update_host_datetime(host, username, password, protocol=None, port=None, host_names=None, verify_ssl=True)

	Update the date/time on the given host or list of host_names. This function should be
used with caution since network delays and execution delays can result in time skews.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	host_names
	List of ESXi host names. When the host, username, and password credentials
are provided for a vCenter Server, the host_names argument is required to
tell vCenter which hosts should update their date/time.

If host_names is not provided, the date/time will be updated for the host
location instead. This is useful for when service instance connection
information is used for a single ESXi host.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

Used for single ESXi host connection information
salt '*' vsphere.update_date_time my.esxi.host root bad-password

Used for connecting to a vCenter Server
salt '*' vsphere.update_date_time my.vcenter.location root bad-password host_names='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.update_host_password(host, username, password, new_password, protocol=None, port=None, verify_ssl=True)

	Update the password for a given host.

Note

Currently only works with connections to ESXi hosts. Does not work with vCenter servers.

	host
	The location of the ESXi host.

	username
	The username used to login to the ESXi host, such as root.

	password
	The password used to login to the ESXi host.

	new_password
	The new password that will be updated for the provided username on the ESXi host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

salt '*' vsphere.update_host_password my.esxi.host root original-bad-password new-bad-password

	
salt.modules.vsphere.update_storage_policy(policy, policy_dict, service_instance=None)

	Updates a storage policy.

Supported capability types: scalar, set, range.

	policy
	Name of the policy to update.

	policy_dict
	Dictionary containing the changes to apply to the policy.
(example in salt.states.pbm)

	service_instance
	Service instance (vim.ServiceInstance) of the vCenter.
Default is None.

CLI Example:

salt '*' vsphere.update_storage_policy policy='policy name'
 policy_dict="$policy_dict"

	
salt.modules.vsphere.update_vm(vm_name, cpu=None, memory=None, image=None, version=None, interfaces=None, disks=None, scsi_devices=None, serial_ports=None, datacenter=None, datastore=None, cd_dvd_drives=None, sata_controllers=None, advanced_configs=None, service_instance=None)

	Updates the configuration of the virtual machine if the config differs

	vm_name
	Virtual Machine name to be updated

	cpu
	CPU configuration options

	memory
	Memory configuration options

	version
	Virtual machine container hardware version

	image
	Virtual machine guest OS version identifier
VirtualMachineGuestOsIdentifier

	interfaces
	Network interfaces configuration options

	disks
	Disks configuration options

	scsi_devices
	SCSI devices configuration options

	serial_ports
	Serial ports configuration options

	datacenter
	Datacenter where the virtual machine is available

	datastore
	Datastore where the virtual machine config files are available

	cd_dvd_drives
	CD/DVD drives configuration options

	advanced_config
	Advanced config parameters to be set for the virtual machine

	service_instance
	vCenter service instance for connection and configuration

	
salt.modules.vsphere.upload_ssh_key(host, username, password, ssh_key=None, ssh_key_file=None, protocol=None, port=None, certificate_verify=None)

	Upload an ssh key for root to an ESXi host via http PUT.
This function only works for ESXi, not vCenter.
Only one ssh key can be uploaded for root. Uploading a second key will
replace any existing key.

	Parameters:

	
	host -- The location of the ESXi Host

	username -- Username to connect as

	password -- Password for the ESXi web endpoint

	ssh_key -- Public SSH key, will be added to authorized_keys on ESXi

	ssh_key_file -- File containing the SSH key. Use 'ssh_key' or
ssh_key_file, but not both.

	protocol -- defaults to https, can be http if ssl is disabled on ESXi

	port -- defaults to 443 for https

	certificate_verify -- If true require that the SSL connection present
a valid certificate. Default: True

	Returns:

	Dictionary with a 'status' key, True if upload is successful.
If upload is unsuccessful, 'status' key will be False and
an 'Error' key will have an informative message.

CLI Example:

salt '*' vsphere.upload_ssh_key my.esxi.host root bad-password ssh_key_file='/etc/salt/my_keys/my_key.pub'

	
salt.modules.vsphere.vmotion_disable(host, username, password, protocol=None, port=None, host_names=None, verify_ssl=True)

	Disable vMotion for a given host or list of host_names.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	host_names
	List of ESXi host names. When the host, username, and password credentials
are provided for a vCenter Server, the host_names argument is required to
tell vCenter which hosts should disable VMotion.

If host_names is not provided, VMotion will be disabled for the host
location instead. This is useful for when service instance connection
information is used for a single ESXi host.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

Used for single ESXi host connection information
salt '*' vsphere.vmotion_disable my.esxi.host root bad-password

Used for connecting to a vCenter Server
salt '*' vsphere.vmotion_disable my.vcenter.location root bad-password host_names='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.vmotion_enable(host, username, password, protocol=None, port=None, host_names=None, device='vmk0', verify_ssl=True)

	Enable vMotion for a given host or list of host_names.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	host_names
	List of ESXi host names. When the host, username, and password credentials
are provided for a vCenter Server, the host_names argument is required to
tell vCenter which hosts should enable VMotion.

If host_names is not provided, VMotion will be enabled for the host
location instead. This is useful for when service instance connection
information is used for a single ESXi host.

	device
	The device that uniquely identifies the VirtualNic that will be used for
VMotion for each host. Defaults to vmk0.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

Used for single ESXi host connection information
salt '*' vsphere.vmotion_enable my.esxi.host root bad-password

Used for connecting to a vCenter Server
salt '*' vsphere.vmotion_enable my.vcenter.location root bad-password host_names='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.vsan_add_disks(host, username, password, protocol=None, port=None, host_names=None, verify_ssl=True)

	Add any VSAN-eligible disks to the VSAN System for the given host or list of host_names.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	host_names
	List of ESXi host names. When the host, username, and password credentials
are provided for a vCenter Server, the host_names argument is required to
tell vCenter which hosts need to add any VSAN-eligible disks to the host's
VSAN system.

If host_names is not provided, VSAN-eligible disks will be added to the hosts's
VSAN system for the host location instead. This is useful for when service
instance connection information is used for a single ESXi host.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

Used for single ESXi host connection information
salt '*' vsphere.vsan_add_disks my.esxi.host root bad-password

Used for connecting to a vCenter Server
salt '*' vsphere.vsan_add_disks my.vcenter.location root bad-password host_names='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.vsan_disable(host, username, password, protocol=None, port=None, host_names=None, verify_ssl=True)

	Disable VSAN for a given host or list of host_names.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	host_names
	List of ESXi host names. When the host, username, and password credentials
are provided for a vCenter Server, the host_names argument is required to
tell vCenter which hosts should disable VSAN.

If host_names is not provided, VSAN will be disabled for the host
location instead. This is useful for when service instance connection
information is used for a single ESXi host.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

Used for single ESXi host connection information
salt '*' vsphere.vsan_disable my.esxi.host root bad-password

Used for connecting to a vCenter Server
salt '*' vsphere.vsan_disable my.vcenter.location root bad-password host_names='[esxi-1.host.com, esxi-2.host.com]'

	
salt.modules.vsphere.vsan_enable(host, username, password, protocol=None, port=None, host_names=None, verify_ssl=True)

	Enable VSAN for a given host or list of host_names.

	host
	The location of the host.

	username
	The username used to login to the host, such as root.

	password
	The password used to login to the host.

	protocol
	Optionally set to alternate protocol if the host is not using the default
protocol. Default protocol is https.

	port
	Optionally set to alternate port if the host is not using the default
port. Default port is 443.

	host_names
	List of ESXi host names. When the host, username, and password credentials
are provided for a vCenter Server, the host_names argument is required to
tell vCenter which hosts should enable VSAN.

If host_names is not provided, VSAN will be enabled for the host
location instead. This is useful for when service instance connection
information is used for a single ESXi host.

	verify_ssl
	Verify the SSL certificate. Default: True

CLI Example:

Used for single ESXi host connection information
salt '*' vsphere.vsan_enable my.esxi.host root bad-password

Used for connecting to a vCenter Server
salt '*' vsphere.vsan_enable my.vcenter.location root bad-password host_names='[esxi-1.host.com, esxi-2.host.com]'

salt.modules.webutil

Support for htpasswd command. Requires the apache2-utils package for Debian-based distros.

New in version 2014.1.0.

The functions here will load inside the webutil module. This allows other
functions that don't use htpasswd to use the webutil module name.

	
salt.modules.webutil.useradd(pwfile, user, password, opts='', runas=None)

	Add a user to htpasswd file using the htpasswd command. If the htpasswd
file does not exist, it will be created.

	pwfile
	Path to htpasswd file

	user
	User name

	password
	User password

	opts
	Valid options that can be passed are:

	n Don't update file; display results on stdout.

	m Force MD5 encryption of the password (default).

	d Force CRYPT encryption of the password.

	p Do not encrypt the password (plaintext).

	s Force SHA encryption of the password.

	runas
	The system user to run htpasswd command with

CLI Examples:

salt '*' webutil.useradd /etc/httpd/htpasswd larry badpassword
salt '*' webutil.useradd /etc/httpd/htpasswd larry badpass opts=ns

	
salt.modules.webutil.userdel(pwfile, user, runas=None, all_results=False)

	Delete a user from the specified htpasswd file.

	pwfile
	Path to htpasswd file

	user
	User name

	runas
	The system user to run htpasswd command with

	all_results
	Return stdout, stderr, and retcode, not just stdout

CLI Examples:

salt '*' webutil.userdel /etc/httpd/htpasswd larry

	
salt.modules.webutil.verify(pwfile, user, password, opts='', runas=None)

	Return True if the htpasswd file exists, the user has an entry, and their
password matches.

	pwfile
	Fully qualified path to htpasswd file

	user
	User name

	password
	User password

	opts
	Valid options that can be passed are:

	m Force MD5 encryption of the password (default).

	d Force CRYPT encryption of the password.

	p Do not encrypt the password (plaintext).

	s Force SHA encryption of the password.

	runas
	The system user to run htpasswd command with

CLI Examples:

salt '*' webutil.verify /etc/httpd/htpasswd larry maybepassword
salt '*' webutil.verify /etc/httpd/htpasswd larry maybepassword opts=ns

salt.modules.win_appx

Manage provisioned apps

New in version 3007.0.

Provisioned apps are part of the image and are installed for every user the
first time the user logs on. Provisioned apps are also updated and sometimes
reinstalled when the system is updated.

Apps removed with this module will remove the app for all users and deprovision
the app. Deprovisioned apps will neither be installed for new users nor will
they be upgraded.

An app removed with this module can only be re-provisioned on the machine, but
it can't be re-installed for all users. Also, once a package has been
deprovisioned, the only way to reinstall it is to download the package. This is
difficult. The steps are outlined below:

	
	Obtain the Microsoft Store URL for the app:
	
	Open the page for the app in the Microsoft Store

	Click the share button and copy the URL

	
	Look up the packages on https://store.rg-adguard.net/:
	
	Ensure URL (link) is selected in the first dropdown

	Paste the URL in the search field

	Ensure Retail is selected in the 2nd dropdown

	Click the checkmark button

This should return a list of URLs for the package and all dependencies for all
architectures. Download the package and all dependencies for your system
architecture. These will usually have one of the following file extensions:

	.appx

	.appxbundle

	.msix

	.msixbundle

Dependencies will need to be installed first.

Not all packages can be found this way, but it seems like most of them can.

Use the appx.install function to provision the new app.

	
salt.modules.win_appx.install(package)

	This function uses dism to provision a package. This means that it will
be made a part of the online image and added to new users on the system. If
a package has dependencies, those must be installed first.

If a package installed using this function has been deprovisioned
previously, the registry entry marking it as deprovisioned will be removed.

Note

There is no appx.present state. Instead, use the
dism.provisioned_package_installed state.

	Parameters:

	package (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The full path to the package to install. Can be one of the
following:

	.appx or .appxbundle

	.msix or .msixbundle

	.ppkg

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt "*" appx.install "C:\Temp\Microsoft.ZuneMusic.msixbundle"

	
salt.modules.win_appx.list_(query=None, field='Name', include_store=False, frameworks=False, bundles=True)

	Get a list of Microsoft Store packages installed on the system.

	Parameters:

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The query string to use to filter packages to be listed. The string
can match multiple packages. None will return all packages. Here
are some example strings:

	teams - Returns Microsoft Teams

	zune - Returns Windows Media Player and ZuneVideo

	zuneMusic - Only returns Windows Media Player

	xbox - Returns all xbox packages, there are 5 by default

	* - Returns everything but the Microsoft Store, unless
include_store=True

	field (str [https://docs.python.org/3/library/stdtypes.html#str]) -- This function returns a list of packages on the system. It can
display a short name or a full name. If None is passed, a
dictionary will be returned with some common fields. The default is
Name. Valid options are any fields returned by the powershell
command Get-AppxPackage. Here are some useful fields:

	Name

	Version

	PackageFullName

	PackageFamilyName

	include_store (bool [https://docs.python.org/3/library/functions.html#bool]) -- Include the Microsoft Store in the results. Default is False

	frameworks (bool [https://docs.python.org/3/library/functions.html#bool]) -- Include frameworks in the results. Default is False

	bundles (bool [https://docs.python.org/3/library/functions.html#bool]) -- If True, this will return application bundles only. If
False, this will return individual packages only, even if they
are part of a bundle.

	Returns:

	A list of packages ordered by the string passed in field
list: A list of dictionaries of package information if field is None

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises:

	CommandExecutionError -- If an error is encountered retrieving packages

CLI Example:

List installed apps that contain the word "candy"
salt '*' appx.list *candy*

Return more information about the package
salt '*' appx.list *candy* field=None

List all installed apps, including the Microsoft Store
salt '*' appx.list include_store=True

List all installed apps, including frameworks
salt '*' appx.list frameworks=True

List all installed apps that are bundles
salt '*' appx.list bundles=True

	
salt.modules.win_appx.list_deprovisioned(query=None)

	When an app is deprovisioned, a registry key is created that will keep it
from being reinstalled during a major system update. This function returns a
list of keys for apps that have been deprovisioned.

	Parameters:

	query (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The query string to use to filter packages to be listed. The string
can match multiple packages. None will return all packages. Here
are some example strings:

	teams - Returns Microsoft Teams

	zune - Returns Windows Media Player and ZuneVideo

	zuneMusic - Only returns Windows Media Player

	xbox - Returns all xbox packages, there are 5 by default

	* - Returns everything but the Microsoft Store, unless
include_store=True

	Returns:

	A list of packages matching the query criteria

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt "*" appx.list_deprovisioned *zune*

	
salt.modules.win_appx.remove(query=None, include_store=False, frameworks=False, deprovision_only=False)

	Removes Microsoft Store packages from the system. If the package is part of
a bundle, the entire bundle will be removed.

This function removes the package for all users on the system. It also
deprovisions the package so that it isn't re-installed by later system
updates. To only deprovision a package and not remove it for all users, set
deprovision_only=True.

	Parameters:

	
	query (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The query string to use to select the packages to be removed. If the
string matches multiple packages, they will all be removed. Here are
some example strings:

	teams - Remove Microsoft Teams

	zune - Remove Windows Media Player and ZuneVideo

	zuneMusic - Only remove Windows Media Player

	xbox - Remove all xbox packages, there are 5 by default

	* - Remove everything but the Microsoft Store, unless
include_store=True

Note

Use the appx.list function to make sure your query is
returning what you expect. Then use the same query to remove
those packages

	include_store (bool [https://docs.python.org/3/library/functions.html#bool]) -- Include the Microsoft Store in the results of the query to be
removed. Use this with caution. It is difficult to reinstall the
Microsoft Store once it has been removed with this function. Default
is False

	frameworks (bool [https://docs.python.org/3/library/functions.html#bool]) -- Include frameworks in the results of the query to be removed.
Default is False

	deprovision_only (bool [https://docs.python.org/3/library/functions.html#bool]) -- Only deprovision the package. The package will be removed from the
current user and added to the list of deprovisioned packages. The
package will not be re-installed in future system updates. New users
of the system will not have the package installed. However, the
package will still be installed for existing users. Default is
False

	Returns:

	True if successful, None if no packages found

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	CommandExecutionError -- On errors encountered removing the package

CLI Example:

salt "*" appx.remove *candy*

salt.modules.win_auditpol

A salt module for modifying the audit policies on the machine

Though this module does not set group policy for auditing, it displays how all
auditing configuration is applied on the machine, either set directly or via
local or domain group policy.

New in version 2018.3.4.

New in version 2019.2.1.

This module allows you to view and modify the audit settings as they are applied
on the machine. The audit settings are broken down into nine categories:

	Account Logon

	Account Management

	Detailed Tracking

	DS Access

	Logon/Logoff

	Object Access

	Policy Change

	Privilege Use

	System

The get_settings function will return the subcategories for all nine of
the above categories in one dictionary along with their auditing status.

To modify a setting you only need to specify the subcategory name and the value
you wish to set. Valid settings are:

	No Auditing

	Success

	Failure

	Success and Failure

CLI Example:

Get current state of all audit settings
salt * auditpol.get_settings

Get the current state of all audit settings in the "Account Logon"
category
salt * auditpol.get_settings category="Account Logon"

Get current state of the "Credential Validation" setting
salt * auditpol.get_setting name="Credential Validation"

Set the state of the "Credential Validation" setting to Success and
Failure
salt * auditpol.set_setting name="Credential Validation" value="Success and Failure"

Set the state of the "Credential Validation" setting to No Auditing
salt * auditpol.set_setting name="Credential Validation" value="No Auditing"

	
salt.modules.win_auditpol.get_setting(name)

	Get the current configuration for the named audit setting

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the setting to retrieve

	Returns:

	The current configuration for the named setting

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises:

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] -- On invalid setting name

	CommandExecutionError -- If an error is encountered retrieving the settings

CLI Example:

Get current state of the "Credential Validation" setting
salt * auditpol.get_setting "Credential Validation"

	
salt.modules.win_auditpol.get_settings(category='All')

	Get the current configuration for all audit settings specified in the
category

	Parameters:

	category (str [https://docs.python.org/3/library/stdtypes.html#str]) -- One of the nine categories to return. Can also be All to return
the settings for all categories. Valid options are:

	Account Logon

	Account Management

	Detailed Tracking

	DS Access

	Logon/Logoff

	Object Access

	Policy Change

	Privilege Use

	System

	All

Default value is All

	Returns:

	
	A dictionary containing all subcategories for the specified
	category along with their current configuration

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises:

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] -- On invalid category

	CommandExecutionError -- If an error is encountered retrieving the settings

CLI Example:

Get current state of all audit settings
salt * auditipol.get_settings

Get the current state of all audit settings in the "Account Logon"
category
salt * auditpol.get_settings "Account Logon"

	
salt.modules.win_auditpol.set_setting(name, value)

	Set the configuration for the named audit setting

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the setting to configure

	value (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The configuration for the named value. Valid options are:

	No Auditing

	Success

	Failure

	Success and Failure

	Returns:

	True if successful

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] -- On invalid name or value

	CommandExecutionError -- If an error is encountered modifying the setting

CLI Example:

Set the state of the "Credential Validation" setting to Success and
Failure
salt * auditpol.set_setting "Credential Validation" "Success and Failure"

Set the state of the "Credential Validation" setting to No Auditing
salt * auditpol.set_setting "Credential Validation" "No Auditing"

salt.modules.win_autoruns

Module for listing programs that automatically run on startup
(very alpha...not tested on anything but my Win 7x64)

	
salt.modules.win_autoruns.list_()

	Get a list of automatically running programs

CLI Example:

salt '*' autoruns.list

salt.modules.win_certutil

This module allows you to install certificates into the windows certificate
manager.

salt '*' certutil.add_store salt://cert.cer "TrustedPublisher"

	
salt.modules.win_certutil.add_store(source, store, retcode=False, saltenv='base')

	Add the cert to the given Certificate Store

	source (str):
	The source certificate file. This is either the path to a local file or
a file from the file server in the form of salt://path/to/file

	store (str):
	The certificate store to add the certificate to

	retcode (bool):
	If True, return the retcode instead of stdout. Default is False

	saltenv (str):
	The salt environment to use. This is ignored if the path is local

CLI Example:

salt '*' certutil.add_store salt://cert.cer TrustedPublisher
salt '*' certutil.add_store C:\path\to\local.cer TrustedPublisher

	
salt.modules.win_certutil.del_store(source, store, retcode=False, saltenv='base')

	Delete the cert from the given Certificate Store

	source (str):
	The source certificate file. This is either the path to a local file or
a file from the file server in the form of salt://path/to/file

	store (str):
	The certificate store to delete the certificate from

	retcode (bool):
	If True, return the retcode instead of stdout. Default is False

	saltenv (str):
	The salt environment to use. This is ignored if the path is local

CLI Example:

salt '*' certutil.del_store salt://cert.cer TrustedPublisher
salt '*' certutil.del_store C:\path\to\local.cer TrustedPublisher

	
salt.modules.win_certutil.get_cert_serial(cert_file, saltenv='base')

	Get the serial number of a certificate file

	cert_file (str):
	The certificate file to find the serial for. Can be a local file or a
a file on the file server (salt://)

	Returns:

	The serial number of the certificate if found, otherwise None

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' certutil.get_cert_serial <certificate name>

	
salt.modules.win_certutil.get_stored_cert_serials(store)

	Get all of the certificate serials in the specified store

	store (str):
	The store to get all the certificate serials from

	Returns:

	A list of serial numbers found, or an empty list if none found

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' certutil.get_stored_cert_serials <store>

salt.modules.win_dacl

Manage DACLs on Windows

	depends:

	
	winreg Python module

	
salt.modules.win_dacl.add_ace(path, objectType, user, permission, acetype, propagation)

	add an ace to an object

path: path to the object (i.e. c:\temp\file, HKEY_LOCAL_MACHINE\SOFTWARE\KEY, etc)
user: user to add
permission: permissions for the user
acetype: either allow/deny for each user/permission (ALLOW, DENY)
propagation: how the ACE applies to children for Registry Keys and Directories(KEY, KEY&SUBKEYS, SUBKEYS)

CLI Example:

allow domain\fakeuser full control on HKLM\\SOFTWARE\\somekey, propagate to this key and subkeys
 salt 'myminion' win_dacl.add_ace 'HKEY_LOCAL_MACHINE\\SOFTWARE\\somekey' 'Registry' 'domain\fakeuser' 'FULLCONTROL' 'ALLOW' 'KEY&SUBKEYS'

	
salt.modules.win_dacl.check_ace(path, objectType, user, permission=None, acetype=None, propagation=None, exactPermissionMatch=False)

	Checks a path to verify the ACE (access control entry) specified exists

	Parameters:

	
	path -- path to the file/reg key

	objectType -- The type of object (FILE, DIRECTORY, REGISTRY)

	user -- user that the ACL is for

	permission -- permission to test for (READ, FULLCONTROL, etc)

	acetype -- the type of ACE (ALLOW or DENY)

	propagation -- the propagation type of the ACE (FILES, FOLDERS, KEY, KEY&SUBKEYS, SUBKEYS, etc)

	exactPermissionMatch -- the ACL must match exactly, IE if READ is specified, the user must have READ exactly and not FULLCONTROL (which also has the READ permission obviously)

Returns (dict): 'Exists' true if the ACE exists, false if it does not

CLI Example:

salt 'minion-id' win_dacl.check_ace c: emp directory <username> fullcontrol

	
salt.modules.win_dacl.check_inheritance(path, objectType, user=None)

	Check a specified path to verify if inheritance is enabled

	Parameters:

	
	path -- path of the registry key or file system object to check

	objectType -- The type of object (FILE, DIRECTORY, REGISTRY)

	user -- if provided, will consider only the ACEs for that user

Returns (bool): 'Inheritance' of True/False

CLI Example:

salt 'minion-id' win_dacl.check_inheritance c: emp directory <username>

	
class salt.modules.win_dacl.daclConstants

	DACL constants used throughout the module

	
getAceTypeBit(t)

	returns the acetype bit of a text value

	
getAceTypeText(t)

	returns the textual representation of a acetype bit

	
getObjectTypeBit(t)

	returns the bit value of the string object type

	
getPermissionBit(t, m)

	returns a permission bit of the string permission value for the specified object type

	
getPermissionText(t, m)

	returns the permission textual representation of a specified permission bit/object type

	
getPropagationBit(t, p)

	returns the propagation bit of a text value

	
getPropagationText(t, p)

	returns the textual representation of a propagation bit

	
getSecurityHkey(s)

	returns the necessary string value for an HKEY for the win32security module

	
processPath(path, objectType)

	
	processes a path/object type combo and returns:
	registry types with the correct HKEY text representation
files/directories with environment variables expanded

	
salt.modules.win_dacl.disable_inheritance(path, objectType, copy=True)

	Disable inheritance on an object

	Parameters:

	
	path -- The path to the object

	objectType -- The type of object (FILE, DIRECTORY, REGISTRY)

	copy -- True will copy the Inherited ACEs to the DACL before disabling inheritance

Returns (dict): A dictionary containing the results

CLI Example:

salt 'minion-id' win_dacl.disable_inheritance c: emp directory

	
salt.modules.win_dacl.enable_inheritance(path, objectType, clear=False)

	enable/disable inheritance on an object

	Parameters:

	
	path -- The path to the object

	objectType -- The type of object (FILE, DIRECTORY, REGISTRY)

	clear -- True will remove non-Inherited ACEs from the ACL

Returns (dict): A dictionary containing the results

CLI Example:

salt 'minion-id' win_dacl.enable_inheritance c: emp directory

	
salt.modules.win_dacl.get(path, objectType, user=None)

	Get the ACL of an object. Will filter by user if one is provided.

	Parameters:

	
	path -- The path to the object

	objectType -- The type of object (FILE, DIRECTORY, REGISTRY)

	user -- A user name to filter by

Returns (dict): A dictionary containing the ACL

CLI Example:

salt 'minion-id' win_dacl.get c: emp directory

	
salt.modules.win_dacl.rm_ace(path, objectType, user, permission=None, acetype=None, propagation=None)

	remove an ace to an object

path: path to the object (i.e. c:\temp\file, HKEY_LOCAL_MACHINE\SOFTWARE\KEY, etc)
user: user to remove
permission: permissions for the user
acetypes: either allow/deny for each user/permission (ALLOW, DENY)
propagation: how the ACE applies to children for Registry Keys and Directories(KEY, KEY&SUBKEYS, SUBKEYS)

If any of the optional parameters are omitted (or set to None) they act as wildcards.

CLI Example:

remove allow domain\fakeuser full control on HKLM\\SOFTWARE\\somekey propagated to this key and subkeys
 salt 'myminion' win_dacl.rm_ace 'Registry' 'HKEY_LOCAL_MACHINE\\SOFTWARE\\somekey' 'domain\fakeuser' 'FULLCONTROL' 'ALLOW' 'KEY&SUBKEYS'

salt.modules.win_disk

Module for gathering disk information on Windows

	depends:

	
	win32api Python module

	
salt.modules.win_disk.usage()

	Return usage information for volumes mounted on this minion

CLI Example:

salt '*' disk.usage

salt.modules.win_dism

Install features/packages for Windows using DISM, which is useful for minions
not running server versions of Windows. Some functions are only available on
Windows 10.

	
salt.modules.win_dism.add_capability(capability, source=None, limit_access=False, image=None, restart=False)

	Install a capability

	Parameters:

	
	capability (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The capability to install

	source (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The optional source of the capability. Default
is set by group policy and can be Windows Update.

	limit_access (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) -- Prevent DISM from contacting Windows
Update for the source package

	image (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The path to the root directory of an offline
Windows image. If None is passed, the running operating system is
targeted. Default is None.

	restart (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) -- Reboot the machine if required by the install

	Raises:

	
	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] -- For all versions of Windows that are not Windows 10

	and later. Server editions of Windows use ServerManager instead. --

	Returns:

	A dictionary containing the results of the command

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' dism.add_capability Tools.Graphics.DirectX~~~~0.0.1.0

	
salt.modules.win_dism.add_feature(feature, package=None, source=None, limit_access=False, enable_parent=False, image=None, restart=False)

	Install a feature using DISM

	Parameters:

	
	feature (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The feature to install

	package (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The parent package for the feature. You do not
have to specify the package if it is the Windows Foundation Package.
Otherwise, use package to specify the parent package of the feature

	source (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The optional source of the capability. Default
is set by group policy and can be Windows Update

	limit_access (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) -- Prevent DISM from contacting Windows
Update for the source package

	enable_parent (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) -- True will enable all parent features of
the specified feature

	image (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The path to the root directory of an offline
Windows image. If None is passed, the running operating system is
targeted. Default is None.

	restart (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) -- Reboot the machine if required by the install

	Returns:

	A dictionary containing the results of the command

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' dism.add_feature NetFx3

	
salt.modules.win_dism.add_package(package, ignore_check=False, prevent_pending=False, image=None, restart=False)

	Install a package using DISM

	Parameters:

	
	package (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The package to install. Can be a .cab file, a .msu file, or a folder

Note

An .msu package is supported only when the target image is
offline, either mounted or applied.

	ignore_check (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) -- Skip installation of the package if the applicability checks fail

	prevent_pending (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) -- Skip the installation of the package if there are pending online
actions

	image (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The path to the root directory of an offline Windows image. If
None is passed, the running operating system is targeted.
Default is None.

	restart (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) -- Reboot the machine if required by the install

	Returns:

	A dictionary containing the results of the command

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' dism.add_package C:\Packages\package.cab

	
salt.modules.win_dism.add_provisioned_package(package, image=None, restart=False)

	Provision a package using DISM. A provisioned package will install for new
users on the system. It will also be reinstalled on each user if the system
is updated.

New in version 3007.0.

	Parameters:

	
	package (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The package to install. Can be one of the following:

	.appx or .appxbundle

	.msix or .msixbundle

	.ppkg

	image (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The path to the root directory of an offline Windows image. If
None is passed, the running operating system is targeted.
Default is None.

	restart (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) -- Reboot the machine if required by the installation. Default is
False

	Returns:

	A dictionary containing the results of the command

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' dism.add_provisioned_package C:\Packages\package.appx
salt '*' dism.add_provisioned_package C:\Packages\package.appxbundle
salt '*' dism.add_provisioned_package C:\Packages\package.msix
salt '*' dism.add_provisioned_package C:\Packages\package.msixbundle
salt '*' dism.add_provisioned_package C:\Packages\package.ppkg

	
salt.modules.win_dism.available_capabilities(image=None)

	List the capabilities available on the system

	Parameters:

	image (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The path to the root directory of an offline
Windows image. If None is passed, the running operating system is
targeted. Default is None.

	Raises:

	
	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] -- For all versions of Windows that are not Windows 10

	and later. Server editions of Windows use ServerManager instead. --

	Returns:

	A list of available capabilities

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' dism.installed_capabilities

	
salt.modules.win_dism.available_features(image=None)

	List the features available on the system

	Parameters:

	image (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The path to the root directory of an offline
Windows image. If None is passed, the running operating system is
targeted. Default is None.

	Returns:

	A list of available features

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' dism.available_features

	
salt.modules.win_dism.get_capabilities(image=None)

	List all capabilities on the system

	Parameters:

	image (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The path to the root directory of an offline
Windows image. If None is passed, the running operating system is
targeted. Default is None.

	Raises:

	
	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] -- For all versions of Windows that are not Windows 10

	and later. Server editions of Windows use ServerManager instead. --

	Returns:

	A list of capabilities

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' dism.get_capabilities

	
salt.modules.win_dism.get_features(package=None, image=None)

	List features on the system or in a package

	Parameters:

	
	package (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The full path to the package. Can be either a
.cab file or a folder. Should point to the original source of the
package, not to where the file is installed. You cannot use this
command to get package information for .msu files

This can also be the name of a package as listed in
dism.installed_packages

	image (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The path to the root directory of an offline
Windows image. If None is passed, the running operating system is
targeted. Default is None.

	Returns:

	A list of features

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

Return all features on the system
salt '*' dism.get_features

Return all features in package.cab
salt '*' dism.get_features C:\packages\package.cab

Return all features in the calc package
salt '*' dism.get_features Microsoft.Windows.Calc.Demo~6595b6144ccf1df~x86~en~1.0.0.0

	
salt.modules.win_dism.get_kb_package_name(kb, image=None)

	Get the actual package name on the system based on the KB name

New in version 3006.0.

	Parameters:

	
	kb (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the KB to remove. Can also be just the KB number

	image (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The path to the root directory of an offline
Windows image. If None is passed, the running operating system is
targeted. Default is None.

	Returns:

	The name of the package found on the system
None: If the package is not installed on the system

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

Get the package name for KB1231231
salt '*' dism.get_kb_package_name KB1231231

Get the package name for KB1231231 using just the number
salt '*' dism.get_kb_package_name 1231231

	
salt.modules.win_dism.installed_capabilities(image=None)

	List the capabilities installed on the system

	Parameters:

	image (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The path to the root directory of an offline
Windows image. If None is passed, the running operating system is
targeted. Default is None.

	Raises:

	
	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] -- For all versions of Windows that are not Windows 10

	and later. Server editions of Windows use ServerManager instead. --

	Returns:

	A list of installed capabilities

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' dism.installed_capabilities

	
salt.modules.win_dism.installed_features(image=None)

	List the features installed on the system

	Parameters:

	image (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The path to the root directory of an offline
Windows image. If None is passed, the running operating system is
targeted. Default is None.

	Returns:

	A list of installed features

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' dism.installed_features

	
salt.modules.win_dism.installed_packages(image=None)

	List the packages installed on the system

	Parameters:

	image (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The path to the root directory of an offline
Windows image. If None is passed, the running operating system is
targeted. Default is None.

	Returns:

	A list of installed packages

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' dism.installed_packages

	
salt.modules.win_dism.package_info(package, image=None)

	Display information about a package

	Parameters:

	
	package (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The full path to the package. Can be either a .cab file
or a folder. Should point to the original source of the package, not
to where the file is installed. You cannot use this command to get
package information for .msu files

	image (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The path to the root directory of an offline
Windows image. If None is passed, the running operating system is
targeted. Default is None.

	Returns:

	A dictionary containing the results of the command

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' dism.package_info C:\packages\package.cab

	
salt.modules.win_dism.provisioned_packages(image=None)

	List the packages installed on the system

New in version 3007.0.

	Parameters:

	image (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The path to the root directory of an offline
Windows image. If None is passed, the running operating system is
targeted. Default is None.

	Returns:

	A list of installed packages

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' dism.installed_packages

	
salt.modules.win_dism.remove_capability(capability, image=None, restart=False)

	Uninstall a capability

	Parameters:

	
	capability (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The capability to be removed

	image (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The path to the root directory of an offline
Windows image. If None is passed, the running operating system is
targeted. Default is None.

	restart (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) -- Reboot the machine if required by the install

	Raises:

	
	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] -- For all versions of Windows that are not Windows 10

	and later. Server editions of Windows use ServerManager instead. --

	Returns:

	A dictionary containing the results of the command

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' dism.remove_capability Tools.Graphics.DirectX~~~~0.0.1.0

	
salt.modules.win_dism.remove_feature(feature, remove_payload=False, image=None, restart=False)

	Disables the feature.

	Parameters:

	
	feature (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The feature to uninstall

	remove_payload (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) -- Remove the feature's payload. Must
supply source when enabling in the future.

	image (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The path to the root directory of an offline
Windows image. If None is passed, the running operating system is
targeted. Default is None.

	restart (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) -- Reboot the machine if required by the install

	Returns:

	A dictionary containing the results of the command

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' dism.remove_feature NetFx3

	
salt.modules.win_dism.remove_kb(kb, image=None, restart=False)

	Remove a package by passing a KB number. This searches the installed
packages to get the full package name of the KB. It then calls the
dism.remove_package function to remove the package.

New in version 3006.0.

	Parameters:

	
	kb (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the KB to remove. Can also be just the KB number

	image (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The path to the root directory of an offline
Windows image. If None is passed, the running operating system is
targeted. Default is None.

	restart (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) -- Reboot the machine if required by the
uninstall

	Returns:

	A dictionary containing the results of the command

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

Remove the KB5007575 just passing the number
salt '*' dism.remove_kb 5007575

Remove the KB5007575 just passing the full name
salt '*' dism.remove_kb KB5007575

	
salt.modules.win_dism.remove_package(package, image=None, restart=False)

	Uninstall a package

	Parameters:

	
	package (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The full path to the package. Can be either a .cab file
or a folder. Should point to the original source of the package, not
to where the file is installed. This can also be the name of a
package as listed in dism.installed_packages

	image (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The path to the root directory of an offline
Windows image. If None is passed, the running operating system is
targeted. Default is None.

	restart (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) -- Reboot the machine if required by the
uninstall

	Returns:

	A dictionary containing the results of the command

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

Remove the Calc Package
salt '*' dism.remove_package Microsoft.Windows.Calc.Demo~6595b6144ccf1df~x86~en~1.0.0.0

Remove the package.cab (does not remove C:\packages\package.cab)
salt '*' dism.remove_package C:\packages\package.cab

salt.modules.win_dns_client

Module for configuring DNS Client on Windows systems

	
salt.modules.win_dns_client.add_dns(ip, interface='Local Area Connection', index=1)

	Add the DNS server to the network interface
(index starts from 1)

Note: if the interface DNS is configured by DHCP, all the DNS servers will
be removed from the interface and the requested DNS will be the only one

CLI Example:

salt '*' win_dns_client.add_dns <ip> <interface> <index>

	
salt.modules.win_dns_client.dns_dhcp(interface='Local Area Connection')

	Configure the interface to get its DNS servers from the DHCP server

CLI Example:

salt '*' win_dns_client.dns_dhcp <interface>

	
salt.modules.win_dns_client.get_dns_config(interface='Local Area Connection')

	Get the type of DNS configuration (dhcp / static).

	Parameters:

	
	interface (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the network interface. This is the

	device (Description in the Network Connection Details for the) --

	Returns:

	True if DNS is configured, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_dns_client.get_dns_config 'Local Area Connection'

	
salt.modules.win_dns_client.get_dns_servers(interface='Local Area Connection')

	Return a list of the configured DNS servers of the specified interface

	Parameters:

	
	interface (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the network interface. This is the name as

	Connections (it appears in the Control Panel under Network) --

	Returns:

	A list of dns servers

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' win_dns_client.get_dns_servers 'Local Area Connection'

	
salt.modules.win_dns_client.rm_dns(ip, interface='Local Area Connection')

	Remove the DNS server from the network interface

CLI Example:

salt '*' win_dns_client.rm_dns <ip> <interface>

salt.modules.win_dsc

Module for working with Windows PowerShell DSC (Desired State Configuration)

This module is Alpha

This module applies DSC Configurations in the form of PowerShell scripts or
MOF (Managed Object Format) schema files.

Use the psget module to manage PowerShell resources.

The idea is to leverage Salt to push DSC configuration scripts or MOF files to
the Minion.

	depends:

	
	PowerShell 5.0

	
salt.modules.win_dsc.apply_config(path, source=None, salt_env='base')

	Run an compiled DSC configuration (a folder containing a .mof file). The
folder can be cached from the salt master using the source option.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Local path to the directory that contains the .mof
configuration file to apply. Required.

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Path to the directory that contains the .mof file on the
file_roots. The source directory will be copied to the path
directory and then executed. If the path and source directories
differ, the source directory will be applied. If source is not
passed, the config located at path will be applied. Optional.

	salt_env (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The salt environment to use when copying your source.
Default is 'base'

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

To apply a config that already exists on the system

salt '*' dsc.apply_config C:\\DSC\\WebSiteConfiguration

To cache a configuration from the master and apply it:

salt '*' dsc.apply_config C:\\DSC\\WebSiteConfiguration salt://dsc/configs/WebSiteConfiguration

	
salt.modules.win_dsc.compile_config(path, source=None, config_name=None, config_data=None, config_data_source=None, script_parameters=None, salt_env='base')

	Compile a config from a PowerShell script (.ps1)

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Path (local) to the script that will create the .mof
configuration file. If no source is passed, the file must exist
locally. Required.

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Path to the script on file_roots to cache at the
location specified by path. The source file will be cached
locally and then executed. If source is not passed, the config
script located at path will be compiled. Optional.

	config_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the Configuration within the script to
apply. If the script contains multiple configurations within the
file a config_name must be specified. If the config_name is
not specified, the name of the file will be used as the
config_name to run. Optional.

	config_data (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Configuration data in the form of a hash table that
will be passed to the ConfigurationData parameter when the
config_name is compiled. This can be the path to a .psd1
file containing the proper hash table or the PowerShell code to
create the hash table.

New in version 2017.7.0.

	config_data_source (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the .psd1 file on
file_roots to cache at the location specified by
config_data. If this is specified, config_data must be a
local path instead of a hash table.

New in version 2017.7.0.

	script_parameters (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Any additional parameters expected by the
configuration script. These must be defined in the script itself.

New in version 2017.7.0.

	salt_env (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The salt environment to use when copying the source.
Default is 'base'

	Returns:

	A dictionary containing the results of the compilation

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

To compile a config from a script that already exists on the system:

salt '*' dsc.compile_config C:\\DSC\\WebsiteConfig.ps1

To cache a config script to the system from the master and compile it:

salt '*' dsc.compile_config C:\\DSC\\WebsiteConfig.ps1 salt://dsc/configs/WebsiteConfig.ps1

	
salt.modules.win_dsc.get_config()

	Get the current DSC Configuration

	Returns:

	A dictionary representing the DSC Configuration on the machine

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises:

	CommandExecutionError -- On failure

CLI Example:

salt '*' dsc.get_config

	
salt.modules.win_dsc.get_config_status()

	Get the status of the current DSC Configuration

	Returns:

	
	A dictionary representing the status of the current DSC
	Configuration on the machine

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' dsc.get_config_status

	
salt.modules.win_dsc.get_lcm_config()

	Get the current Local Configuration Manager settings

	Returns:

	
	A dictionary representing the Local Configuration Manager settings
	on the machine

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' dsc.get_lcm_config

	
salt.modules.win_dsc.remove_config(reset=False)

	Remove the current DSC Configuration. Removes current, pending, and previous
dsc configurations.

New in version 2017.7.5.

	Parameters:

	reset (bool [https://docs.python.org/3/library/functions.html#bool]) -- Attempts to reset the DSC configuration by removing the following
from C:\Windows\System32\Configuration:

	File: DSCStatusHistory.mof

	File: DSCEngineCache.mof

	Dir: ConfigurationStatus

Default is False

Warning

remove_config may fail to reset the DSC environment if any
of the files in the ConfigurationStatus directory are in
use. If you wait a few minutes and run again, it may complete
successfully.

	Returns:

	True if successful

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	CommandExecutionError -- On failure

CLI Example:

salt '*' dsc.remove_config True

	
salt.modules.win_dsc.restore_config()

	Reapplies the previous configuration.

New in version 2017.7.5.

Note

The current configuration will be come the previous configuration. If
run a second time back-to-back it is like toggling between two configs.

	Returns:

	True if successfully restored

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	CommandExecutionError -- On failure

CLI Example:

salt '*' dsc.restore_config

	
salt.modules.win_dsc.run_config(path, source=None, config_name=None, config_data=None, config_data_source=None, script_parameters=None, salt_env='base')

	Compile a DSC Configuration in the form of a PowerShell script (.ps1) and
apply it. The PowerShell script can be cached from the master using the
source option. If there is more than one config within the PowerShell
script, the desired configuration can be applied by passing the name in the
config option.

This command would be the equivalent of running dsc.compile_config
followed by dsc.apply_config.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The local path to the PowerShell script that contains the
DSC Configuration. Required.

	source (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the script on file_roots to cache at the
location specified by path. The source file will be cached
locally and then executed. If source is not passed, the config
script located at path will be compiled. Optional.

	config_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the Configuration within the script to
apply. If the script contains multiple configurations within the
file a config_name must be specified. If the config_name is
not specified, the name of the file will be used as the
config_name to run. Optional.

	config_data (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Configuration data in the form of a hash table that
will be passed to the ConfigurationData parameter when the
config_name is compiled. This can be the path to a .psd1
file containing the proper hash table or the PowerShell code to
create the hash table.

New in version 2017.7.0.

	config_data_source (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the .psd1 file on
file_roots to cache at the location specified by
config_data. If this is specified, config_data must be a
local path instead of a hash table.

New in version 2017.7.0.

	script_parameters (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Any additional parameters expected by the
configuration script. These must be defined in the script itself.
Note that these are passed to the script (the outermost scope), and
not to the dsc configuration inside the script (the inner scope).

New in version 2017.7.0.

	salt_env (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The salt environment to use when copying the source.
Default is 'base'

	Returns:

	True if successfully compiled and applied, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

To compile a config from a script that already exists on the system:

salt '*' dsc.run_config C:\\DSC\\WebsiteConfig.ps1

To cache a config script to the system from the master and compile it:

salt '*' dsc.run_config C:\\DSC\\WebsiteConfig.ps1 salt://dsc/configs/WebsiteConfig.ps1

To cache a config script to the system from the master and compile it, passing in script_parameters:

salt '*' dsc.run_config path=C:\\DSC\\WebsiteConfig.ps1 source=salt://dsc/configs/WebsiteConfig.ps1 script_parameters="-hostname 'my-computer' -ip '192.168.1.10' -DnsArray '192.168.1.3','192.168.1.4','1.1.1.1'"

	
salt.modules.win_dsc.set_lcm_config(config_mode=None, config_mode_freq=None, refresh_freq=None, reboot_if_needed=None, action_after_reboot=None, refresh_mode=None, certificate_id=None, configuration_id=None, allow_module_overwrite=None, debug_mode=False, status_retention_days=None)

	For detailed descriptions of the parameters see:
https://msdn.microsoft.com/en-us/PowerShell/DSC/metaConfig

	config_mode (str): How the LCM applies the configuration. Valid values
	are:

	ApplyOnly

	ApplyAndMonitor

	ApplyAndAutoCorrect

	config_mode_freq (int): How often, in minutes, the current configuration
	is checked and applied. Ignored if config_mode is set to ApplyOnly.
Default is 15.

refresh_mode (str): How the LCM gets configurations. Valid values are:

	Disabled

	Push

	Pull

	refresh_freq (int): How often, in minutes, the LCM checks for updated
	configurations. (pull mode only) Default is 30.

	reboot_if_needed (bool): Reboot the machine if needed after a
	configuration is applied. Default is False.

	action_after_reboot (str): Action to take after reboot. Valid values
	are:

	ContinueConfiguration

	StopConfiguration

	certificate_id (guid): A GUID that specifies a certificate used to
	access the configuration: (pull mode)

	configuration_id (guid): A GUID that identifies the config file to get
	from a pull server. (pull mode)

	allow_module_overwrite (bool): New configs are allowed to overwrite old
	ones on the target node.

debug_mode (str): Sets the debug level. Valid values are:

	None

	ForceModuleImport

	All

	status_retention_days (int): Number of days to keep status of the
	current config.

Note

Either config_mode_freq or refresh_freq needs to be a
multiple of the other. See documentation on MSDN for more details.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' dsc.set_lcm_config ApplyOnly

	
salt.modules.win_dsc.test_config()

	Tests the current applied DSC Configuration

	Returns:

	True if successfully applied, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' dsc.test_config

salt.modules.win_event

A module for working with the Windows Event log system.
.. versionadded:: 3006.0

	
salt.modules.win_event.add(log_name, event_id, event_category=0, event_type=None, event_strings=None, event_data=None, event_sid=None)

	Adds an event to the application event log.

	Parameters:

	
	log_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the application or source

	event_id (int [https://docs.python.org/3/library/functions.html#int]) -- The event ID

	event_category (int [https://docs.python.org/3/library/functions.html#int]) -- The event category

	event_type (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The event category. Must be one of:

	Success

	Error

	Warning

	Information

	AuditSuccess

	AuditFailure

	event_strings (list [https://docs.python.org/3/library/stdtypes.html#list]) -- A list of strings

	event_data (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) -- Event data. Strings will be converted to bytes

	event_sid (sid) -- The SID for the event

	Raises:

	
	CommandExecutionError -- event_id is not an integer

	CommandExecutionError -- event_category is not an integer

	CommandExecutionError -- event_type is not one of the valid event types

	CommandExecutionError -- event_strings is not a list or string

CLI Example:

A simple Application event log warning entry
salt '*' win_event.add Application 1234 12 Warning

A more complex System event log information entry
salt '*' win_event.add System 1234 12 Information "['Event string data 1', 'Event string data 2']" "Some event data"

Log to the System Event log with the source "Service Control Manager"
salt '*' win_event.add "Service Control Manager" 1234 12 Warning "['Event string data 1', 'Event string data 2']" "Some event data"

Log to the PowerShell event log with the source "PowerShell (PowerShell)"
salt-call --local win_event.add "PowerShell" 6969 12 Warning

	
salt.modules.win_event.clear(log_name, backup=None)

	Clears the specified event log.

Note

A clear log event will be added to the log after it is cleared.

	Parameters:

	
	log_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the log to clear

	backup (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Path to backup file

CLI Example:

salt "*" win_event.clear Application

	
salt.modules.win_event.count(log_name)

	Gets the number of events in the specified.

	Parameters:

	log_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the log

	Returns:

	The number of events the log contains

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

CLI Example:

salt "*" win_event.count Application

	
salt.modules.win_event.get(log_name)

	Get events from the specified log. Get a list of available logs using the
win_event.get_log_names
function.

Warning

Running this command on a log with thousands of events, such as the
Applications log, can take a long time.

	Parameters:

	log_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the log to retrieve.

	Returns
	tuple: A tuple of events as dictionaries

CLI Example:

salt '*' win_event.get Application

	
salt.modules.win_event.get_filtered(log_name, all_requirements=True, **kwargs)

	Will find events that match the fields and values specified in the kwargs.
Kwargs can be any item in the return for the event.

Warning

Running this command on a log with thousands of events, such as the
Applications log, can take a long time.

	Parameters:

	
	log_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the log to retrieve

	all_requirements (bool [https://docs.python.org/3/library/functions.html#bool]) -- True matches all requirements. False
matches any requirement. Default is True

Kwargs:

eventID (int): The event ID number

	eventType (int): The event type number. Valid options and their
	corresponding meaning are:

	0 : Success

	1 : Error

	2 : Warning

	4 : Information

	8 : Audit Success

	10 : Audit Failure

year (int): The year

month (int): The month

day (int): The day of the month

hour (int): The hour

minute (int): The minute

second (int): The second

eventCategory (int): The event category number

sid (sid): The SID of the user that created the event

sourceName (str): The name of the event source

	Returns:

	A tuple of dicts of each filtered event

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

CLI Example:

Return all events from the Security log with an ID of 1100
salt "*" win_event.get_filtered Security eventID=1100

Return all events from the System log with an Error (1) event type
salt "*" win_event.get_filtered System eventType=1

Return all events from System log with an Error (1) type, source is Service Control Manager, and data is netprofm
salt "*" win_event.get_filtered System eventType=1 sourceName="Service Control Manager" data="netprofm"

Return events from the System log that match any of the kwargs below
salt "*" win_event.get_filtered System eventType=1 sourceName="Service Control Manager" data="netprofm" all_requirements=False

	
salt.modules.win_event.get_log_names()

	Get a list of event logs available on the system

	Returns:

	A list of event logs available on the system

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt "*" win_event.get_log_names

	
salt.modules.win_event.query(log_name, query_text=None, records=20, latest=True, raw=False)

	Query a log for a specific event_id. Return the top number of records
specified. Use the
win_event.get_log_names
to see a list of available logs on the system.

Note

You can use the Windows Event Viewer to create the XPath query for the
query_text parameter. Click on Filter Current Log, configure the
filter, then click on the XML tab. Copy the text between the two
<Select> tags. This will be the contents of the query_text
parameter. You will have to convert some codes. For example, >
becomes >, < becomes <. Additionally, you'll need to
put spaces between comparison operators. For example: this >= that.

	Parameters:

	
	log_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the log to query

	query_text (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The filter to apply to the log

	records (int [https://docs.python.org/3/library/functions.html#int]) -- The number of records to return

	latest (bool [https://docs.python.org/3/library/functions.html#bool]) -- True will return the newest events. False will
return the oldest events. Default is True

	raw (bool [https://docs.python.org/3/library/functions.html#bool]) -- True will return the raw xml results. False will
return the xml converted to a dictionary. Default is False

	Returns:

	A list of dict objects that contain information about the event

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

Return the 20 most recent events from the Application log with an event ID of 22
salt '*' win_event.query Application "*[System[(EventID=22)]]"

Return the 20 most recent events from the Application log with an event ID of 22
Return raw xml
salt '*' win_event.query Application "*[System[(EventID=22)]]" raw=True

Return the 20 oldest events from the Application log with an event ID of 22
salt '*' win_event.query Application "*[System[(EventID=22)]]" latest=False

Return the 20 most recent Critical (1) events from the Application log in the last 12 hours
salt '*" win_event.query Application "*[System[(Level=1) and TimeCreated[timediff(@SystemTime) <= 43200000]]]"

Return the 5 most recent Error (2) events from the application log
salt '*" win_event.query Application "*[System[(Level=2)]]" records=5

Return the 20 most recent Warning (3) events from the Windows PowerShell log where the Event Source is PowerShell
salt '*" win_event.query "Windows PowerShell" "*[System[Provider[@Name='PowerShell'] and (Level=3)]]"

Return the 20 most recent Information (0 or 4) events from the Microsoft-Windows-PowerShell/Operational on 2022-08-24 with an Event ID of 4103
salt '*" win_event.query "Microsoft-Windows-PowerShell/Operational" "*[System[(Level=4 or Level=0) and (EventID=4103) and TimeCreated[@SystemTime >= '2022-08-24T06:00:00.000Z']]]"

Return the 20 most recent Information (0 or 4) events from the Microsoft-Windows-PowerShell/Operational within the last hour
salt '*" win_event.query "Microsoft-Windows-PowerShell/Operational" "*[System[(Level=4 or Level=0) and TimeCreated[timediff(@SystemTime) <= 3600000]]]"

salt.modules.win_file

Manage information about files on the minion, set/read user, group
data, modify the ACL of files/directories

	depends:

	
	win32api

	win32file

	win32con

	salt.utils.win_dacl

	
salt.modules.win_file.check_perms(path, ret=None, owner=None, grant_perms=None, deny_perms=None, inheritance=True, reset=False)

	Check owner and permissions for the passed directory. This function checks
the permissions and sets them, returning the changes made. Used by the file
state to populate the return dict

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The full path to the directory.

	ret (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- A dictionary to append changes to and return. If not passed, will
create a new dictionary to return.

	owner (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The owner to set for the directory.

	grant_perms (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- A dictionary containing the user/group and the basic permissions to
check/grant, ie: {'user': {'perms': 'basic_permission'}}.
Default is None.

	deny_perms (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- A dictionary containing the user/group and permissions to
check/deny. Default is None.

	inheritance (bool [https://docs.python.org/3/library/functions.html#bool]) -- True will check if inheritance is enabled and enable it. ``False
will check if inheritance is disabled and disable it. Default is
True.

	reset (bool [https://docs.python.org/3/library/functions.html#bool]) -- True will show what permissions will be removed by resetting the
DACL. False will do nothing. Default is False.

	Returns:

	A dictionary of changes that have been made

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

To see changes to ``C:\Temp`` if the 'Users' group is given 'read & execute' permissions.
salt '*' file.check_perms C:\Temp\ {} Administrators "{'Users': {'perms': 'read_execute'}}"

Locally using salt call
salt-call file.check_perms C:\Temp\ {} Administrators "{'Users': {'perms': 'read_execute', 'applies_to': 'this_folder_only'}}"

Specify advanced attributes with a list
salt '*' file.check_perms C:\Temp\ {} Administrators "{'jsnuffy': {'perms': ['read_attributes', 'read_ea'], 'applies_to': 'files_only'}}"

	
salt.modules.win_file.chgrp(path, group)

	Change the group of a file

Under Windows, this will do nothing.

While a file in Windows does have a 'primary group', this rarely used
attribute generally has no bearing on permissions unless intentionally
configured and is only used to support Unix compatibility features (e.g.
Services For Unix, NFS services).

Salt, therefore, remaps this function to do nothing while still being
compatible with Unix behavior. When managing Windows systems,
this function is superfluous and will generate an info level log entry if
used directly.

If you do actually want to set the 'primary group' of a file, use file
.chpgrp.

To set group permissions use file.set_perms

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the file or directory

	group (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The group (unused)

	Returns:

	None

CLI Example:

salt '*' file.chgrp c:\temp\test.txt administrators

	
salt.modules.win_file.chown(path, user, group=None, pgroup=None, follow_symlinks=True)

	Chown a file, pass the file the desired user and group

Under Windows, the group parameter will be ignored.

This is because while files in Windows do have a 'primary group'
property, this is rarely used. It generally has no bearing on
permissions unless intentionally configured and is most commonly used to
provide Unix compatibility (e.g. Services For Unix, NFS services).

If you do want to change the 'primary group' property and understand the
implications, pass the Windows only parameter, pgroup, instead.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the file or directory

	user (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the user to own the file

	group (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The group (not used)

	pgroup (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The primary group to assign

	follow_symlinks (bool [https://docs.python.org/3/library/functions.html#bool]) -- If the object specified by path is a symlink, get attributes of
the linked file instead of the symlink itself. Default is True

	Returns:

	True if successful, otherwise error

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' file.chown c:\temp\test.txt myusername
salt '*' file.chown c:\temp\test.txt myusername pgroup=Administrators
salt '*' file.chown c:\temp\test.txt myusername "pgroup='None'"

	
salt.modules.win_file.chpgrp(path, group)

	Change the group of a file

Under Windows, this will set the rarely used primary group of a file.
This generally has no bearing on permissions unless intentionally
configured and is most commonly used to provide Unix compatibility (e.g.
Services For Unix, NFS services).

Ensure you know what you are doing before using this function.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the file or directory

	pgroup (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The primary group to assign

	Returns:

	True if successful, otherwise error

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' file.chpgrp c:\temp\test.txt Administrators
salt '*' file.chpgrp c:\temp\test.txt "'None'"

	
salt.modules.win_file.get_attributes(path)

	Return a dictionary object with the Windows
file attributes for a file.

	Parameters:

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the file or directory

	Returns:

	A dictionary of file attributes

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' file.get_attributes c:\temp\a.txt

	
salt.modules.win_file.get_gid(path, follow_symlinks=True)

	Return the id of the group that owns a given file

Under Windows, this will return the uid of the file.

While a file in Windows does have a 'primary group', this rarely used
attribute generally has no bearing on permissions unless intentionally
configured and is only used to support Unix compatibility features (e.g.
Services For Unix, NFS services).

Salt, therefore, remaps this function to provide functionality that
somewhat resembles Unix behavior for API compatibility reasons. When
managing Windows systems, this function is superfluous and will generate
an info level log entry if used directly.

If you do actually want to access the 'primary group' of a file, use
file.get_pgid.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the file or directory

	follow_symlinks (bool [https://docs.python.org/3/library/functions.html#bool]) -- If the object specified by path is a symlink, get attributes of
the linked file instead of the symlink itself. Default is True

	Returns:

	The gid of the owner

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' file.get_gid c:\temp\test.txt

	
salt.modules.win_file.get_group(path, follow_symlinks=True)

	Return the group that owns a given file

Under Windows, this will return the user (owner) of the file.

While a file in Windows does have a 'primary group', this rarely used
attribute generally has no bearing on permissions unless intentionally
configured and is only used to support Unix compatibility features (e.g.
Services For Unix, NFS services).

Salt, therefore, remaps this function to provide functionality that
somewhat resembles Unix behavior for API compatibility reasons. When
managing Windows systems, this function is superfluous and will generate
an info level log entry if used directly.

If you do actually want to access the 'primary group' of a file, use
file.get_pgroup.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the file or directory

	follow_symlinks (bool [https://docs.python.org/3/library/functions.html#bool]) -- If the object specified by path is a symlink, get attributes of
the linked file instead of the symlink itself. Default is True

	Returns:

	The name of the owner

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' file.get_group c:\temp\test.txt

	
salt.modules.win_file.get_mode(path)

	Return the mode of a file

Right now we're just returning None because Windows' doesn't have a mode
like Linux

	Parameters:

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the file or directory

	Returns:

	None

CLI Example:

salt '*' file.get_mode /etc/passwd

	
salt.modules.win_file.get_pgid(path, follow_symlinks=True)

	Return the id of the primary group that owns a given file (Windows only)

This function will return the rarely used primary group of a file. This
generally has no bearing on permissions unless intentionally configured
and is most commonly used to provide Unix compatibility (e.g. Services
For Unix, NFS services).

Ensure you know what you are doing before using this function.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the file or directory

	follow_symlinks (bool [https://docs.python.org/3/library/functions.html#bool]) -- If the object specified by path is a symlink, get attributes of
the linked file instead of the symlink itself. Default is True

	Returns:

	The gid of the primary group

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' file.get_pgid c:\temp\test.txt

	
salt.modules.win_file.get_pgroup(path, follow_symlinks=True)

	Return the name of the primary group that owns a given file (Windows only)

This function will return the rarely used primary group of a file. This
generally has no bearing on permissions unless intentionally configured
and is most commonly used to provide Unix compatibility (e.g. Services
For Unix, NFS services).

Ensure you know what you are doing before using this function.

The return value may be 'None', e.g. if the user is not on a domain. This is
a valid group - do not confuse this with the Salt/Python value of None which
means no value was returned. To be certain, use the get_pgid function
which will return the SID, including for the system 'None' group.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the file or directory

	follow_symlinks (bool [https://docs.python.org/3/library/functions.html#bool]) -- If the object specified by path is a symlink, get attributes of
the linked file instead of the symlink itself. Default is True

	Returns:

	The name of the primary group

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' file.get_pgroup c:\temp\test.txt

	
salt.modules.win_file.get_uid(path, follow_symlinks=True)

	Return the id of the user that owns a given file

Symlinks are followed by default to mimic Unix behavior. Specify
follow_symlinks=False to turn off this behavior.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the file or directory

	follow_symlinks (bool [https://docs.python.org/3/library/functions.html#bool]) -- If the object specified by path is a symlink, get attributes of
the linked file instead of the symlink itself. Default is True

	Returns:

	The uid of the owner

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' file.get_uid c:\temp\test.txt
salt '*' file.get_uid c:\temp\test.txt follow_symlinks=False

	
salt.modules.win_file.get_user(path, follow_symlinks=True)

	Return the user that owns a given file

Symlinks are followed by default to mimic Unix behavior. Specify
follow_symlinks=False to turn off this behavior.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the file or directory

	follow_symlinks (bool [https://docs.python.org/3/library/functions.html#bool]) -- If the object specified by path is a symlink, get attributes of
the linked file instead of the symlink itself. Default is True

	Returns:

	The name of the owner

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' file.get_user c:\temp\test.txt
salt '*' file.get_user c:\temp\test.txt follow_symlinks=False

	
salt.modules.win_file.gid_to_group(gid)

	Convert the group id to the group name on this system

Under Windows, because groups are just another ACL entity, this function
behaves the same as uid_to_user.

For maintaining Windows systems, this function is superfluous and only
exists for API compatibility with Unix. Use the uid_to_user function
instead; an info level log entry will be generated if this function is used
directly.

	Parameters:

	gid (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The gid of the group

	Returns:

	The name of the group

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' file.gid_to_group S-1-5-21-626487655-2533044672-482107328-1010

	
salt.modules.win_file.group_to_gid(group)

	Convert the group to the gid on this system

Under Windows, because groups are just another ACL entity, this function
behaves the same as user_to_uid, except if None is given, '' is returned.

For maintaining Windows systems, this function is superfluous and only
exists for API compatibility with Unix. Use the user_to_uid function
instead; an info level log entry will be generated if this function is used
directly.

	Parameters:

	group (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the group

	Returns:

	The gid of the group

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' file.group_to_gid administrators

	
salt.modules.win_file.is_link(path)

	Check if the path is a symlink

This is only supported on Windows Vista or later.

Inline with Unix behavior, this function will raise an error if the path
is not a symlink, however, the error raised will be a SaltInvocationError,
not an OSError.

	Parameters:

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to a file or directory

	Returns:

	True if path is a symlink, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' file.is_link /path/to/link

	
salt.modules.win_file.lchown(path, user, group=None, pgroup=None)

	Chown a file, pass the file the desired user and group without following any
symlinks.

Under Windows, the group parameter will be ignored.

This is because while files in Windows do have a 'primary group'
property, this is rarely used. It generally has no bearing on
permissions unless intentionally configured and is most commonly used to
provide Unix compatibility (e.g. Services For Unix, NFS services).

If you do want to change the 'primary group' property and understand the
implications, pass the Windows only parameter, pgroup, instead.

To set the primary group to 'None', it must be specified in quotes.
Otherwise Salt will interpret it as the Python value of None and no primary
group changes will occur. See the example below.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the file or directory

	user (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the user to own the file

	group (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The group (not used)

	pgroup (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The primary group to assign

	Returns:

	True if successful, otherwise error

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' file.lchown c:\temp\test.txt myusername
salt '*' file.lchown c:\temp\test.txt myusername pgroup=Administrators
salt '*' file.lchown c:\temp\test.txt myusername "pgroup='None'"

	
salt.modules.win_file.makedirs_(path, owner=None, grant_perms=None, deny_perms=None, inheritance=True, reset=False)

	Ensure that the parent directory containing this path is available.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The full path to the directory.

Note

The path must end with a trailing slash otherwise the
directory(s) will be created up to the parent directory. For
example if path is C:\temp\test, then it would be treated
as C:\temp\ but if the path ends with a trailing slash
like C:\temp\test\, then it would be treated as
C:\temp\test\.

	owner (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The owner of the directory. If not passed, it will be the account
that created the directory, likely SYSTEM.

	grant_perms (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- A dictionary containing the user/group and the basic permissions to
grant, ie: {'user': {'perms': 'basic_permission'}}. You can also
set the applies_to setting here. The default is
this_folder_subfolders_files. Specify another applies_to
setting like this:

{'user': {'perms': 'full_control', 'applies_to': 'this_folder'}}

To set advanced permissions use a list for the perms parameter, ie:

{'user': {'perms': ['read_attributes', 'read_ea'], 'applies_to': 'this_folder'}}

	deny_perms (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- A dictionary containing the user/group and permissions to deny along
with the applies_to setting. Use the same format used for the
grant_perms parameter. Remember, deny permissions supersede
grant permissions.

	inheritance (bool [https://docs.python.org/3/library/functions.html#bool]) -- If True the object will inherit permissions from the parent, if
False, inheritance will be disabled. Inheritance setting will not
apply to parent directories if they must be created.

	reset (bool [https://docs.python.org/3/library/functions.html#bool]) -- If True the existing DACL will be cleared and replaced with the
settings defined in this function. If False, new entries will be
appended to the existing DACL. Default is False.

New in version 2018.3.0.

	Returns:

	True if successful

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	CommandExecutionError -- If unsuccessful

CLI Example:

To grant the 'Users' group 'read & execute' permissions.
salt '*' file.makedirs C:\Temp\ Administrators "{'Users': {'perms': 'read_execute'}}"

Locally using salt call
salt-call file.makedirs C:\Temp\ Administrators "{'Users': {'perms': 'read_execute', 'applies_to': 'this_folder_only'}}"

Specify advanced attributes with a list
salt '*' file.makedirs C:\Temp\ Administrators "{'jsnuffy': {'perms': ['read_attributes', 'read_ea'], 'applies_to': 'this_folder_only'}}"

	
salt.modules.win_file.makedirs_perms(path, owner=None, grant_perms=None, deny_perms=None, inheritance=True, reset=True)

	Set owner and permissions for each directory created.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The full path to the directory.

	owner (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The owner of the directory. If not passed, it will be the account
that created the directory, likely SYSTEM.

	grant_perms (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- A dictionary containing the user/group and the basic permissions to
grant, ie: {'user': {'perms': 'basic_permission'}}. You can also
set the applies_to setting here. The default is
this_folder_subfolders_files. Specify another applies_to
setting like this:

{'user': {'perms': 'full_control', 'applies_to': 'this_folder'}}

To set advanced permissions use a list for the perms parameter, ie:

{'user': {'perms': ['read_attributes', 'read_ea'], 'applies_to': 'this_folder'}}

	deny_perms (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- A dictionary containing the user/group and permissions to deny along
with the applies_to setting. Use the same format used for the
grant_perms parameter. Remember, deny permissions supersede
grant permissions.

	inheritance (bool [https://docs.python.org/3/library/functions.html#bool]) -- If True the object will inherit permissions from the parent, if
False, inheritance will be disabled. Inheritance setting will
not apply to parent directories if they must be created

	reset (bool [https://docs.python.org/3/library/functions.html#bool]) -- If True the existing DACL will be cleared and replaced with the
settings defined in this function. If False, new entries will be
appended to the existing DACL. Default is False.

New in version 2018.3.0.

	Returns:

	True if successful, otherwise raises an error

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

To grant the 'Users' group 'read & execute' permissions.
salt '*' file.makedirs_perms C:\Temp\ Administrators "{'Users': {'perms': 'read_execute'}}"

Locally using salt call
salt-call file.makedirs_perms C:\Temp\ Administrators "{'Users': {'perms': 'read_execute', 'applies_to': 'this_folder_only'}}"

Specify advanced attributes with a list
salt '*' file.makedirs_perms C:\Temp\ Administrators "{'jsnuffy': {'perms': ['read_attributes', 'read_ea'], 'applies_to': 'this_folder_files'}}"

	
salt.modules.win_file.mkdir(path, owner=None, grant_perms=None, deny_perms=None, inheritance=True, reset=False)

	Ensure that the directory is available and permissions are set.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The full path to the directory.

	owner (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The owner of the directory. If not passed, it will be the account
that created the directory, likely SYSTEM

	grant_perms (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- A dictionary containing the user/group and the basic permissions to
grant, ie: {'user': {'perms': 'basic_permission'}}. You can also
set the applies_to setting here. The default is
this_folder_subfolders_files. Specify another applies_to
setting like this:

{'user': {'perms': 'full_control', 'applies_to': 'this_folder'}}

To set advanced permissions use a list for the perms parameter,
ie:

{'user': {'perms': ['read_attributes', 'read_ea'], 'applies_to': 'this_folder'}}

	deny_perms (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- A dictionary containing the user/group and permissions to deny along
with the applies_to setting. Use the same format used for the
grant_perms parameter. Remember, deny permissions supersede
grant permissions.

	inheritance (bool [https://docs.python.org/3/library/functions.html#bool]) -- If True the object will inherit permissions from the parent, if
False, inheritance will be disabled. Inheritance setting will
not apply to parent directories if they must be created.

	reset (bool [https://docs.python.org/3/library/functions.html#bool]) -- If True the existing DACL will be cleared and replaced with the
settings defined in this function. If False, new entries will be
appended to the existing DACL. Default is False.

New in version 2018.3.0.

	Returns:

	True if successful

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	CommandExecutionError -- If unsuccessful

CLI Example:

To grant the 'Users' group 'read & execute' permissions.
salt '*' file.mkdir C:\Temp\ Administrators "{'Users': {'perms': 'read_execute'}}"

Locally using salt call
salt-call file.mkdir C:\Temp\ Administrators "{'Users': {'perms': 'read_execute', 'applies_to': 'this_folder_only'}}"

Specify advanced attributes with a list
salt '*' file.mkdir C:\Temp\ Administrators "{'jsnuffy': {'perms': ['read_attributes', 'read_ea'], 'applies_to': 'this_folder_only'}}"

	
salt.modules.win_file.remove(path, force=False)

	Remove the named file or directory

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the file or directory to remove.

	force (bool [https://docs.python.org/3/library/functions.html#bool]) -- Remove even if marked Read-Only. Default is False

	Returns:

	True if successful, False if unsuccessful

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' file.remove C:\Temp

	
salt.modules.win_file.set_attributes(path, archive=None, hidden=None, normal=None, notIndexed=None, readonly=None, system=None, temporary=None)

	Set file attributes for a file. Note that the normal attribute
means that all others are false. So setting it will clear all others.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the file or directory

	archive (bool [https://docs.python.org/3/library/functions.html#bool]) -- Sets the archive attribute. Default is None

	hidden (bool [https://docs.python.org/3/library/functions.html#bool]) -- Sets the hidden attribute. Default is None

	normal (bool [https://docs.python.org/3/library/functions.html#bool]) -- Resets the file attributes. Cannot be used in conjunction with any
other attribute. Default is None

	notIndexed (bool [https://docs.python.org/3/library/functions.html#bool]) -- Sets the indexed attribute. Default is None

	readonly (bool [https://docs.python.org/3/library/functions.html#bool]) -- Sets the readonly attribute. Default is None

	system (bool [https://docs.python.org/3/library/functions.html#bool]) -- Sets the system attribute. Default is None

	temporary (bool [https://docs.python.org/3/library/functions.html#bool]) -- Sets the temporary attribute. Default is None

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' file.set_attributes c:\temp\a.txt normal=True
salt '*' file.set_attributes c:\temp\a.txt readonly=True hidden=True

	
salt.modules.win_file.set_mode(path, mode)

	Set the mode of a file

This just calls get_mode, which returns None because we don't use mode on
Windows

	Parameters:

	
	path -- The path to the file or directory

	mode -- The mode (not used)

	Returns:

	None

CLI Example:

salt '*' file.set_mode /etc/passwd 0644

	
salt.modules.win_file.set_perms(path, grant_perms=None, deny_perms=None, inheritance=True, reset=False)

	Set permissions for the given path

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The full path to the directory.

	grant_perms (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- A dictionary containing the user/group and the basic permissions to
grant, ie: {'user': {'perms': 'basic_permission'}}. You can also
set the applies_to setting here for directories. The default for
applies_to is this_folder_subfolders_files. Specify another
applies_to setting like this:

{'user': {'perms': 'full_control', 'applies_to': 'this_folder'}}

To set advanced permissions use a list for the perms parameter,
ie:

{'user': {'perms': ['read_attributes', 'read_ea'], 'applies_to': 'this_folder'}}

To see a list of available attributes and applies to settings see
the documentation for salt.utils.win_dacl.

A value of None will make no changes to the grant portion of
the DACL. Default is None.

	deny_perms (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- A dictionary containing the user/group and permissions to deny along
with the applies_to setting. Use the same format used for the
grant_perms parameter. Remember, deny permissions supersede
grant permissions.

A value of None will make no changes to the deny portion of
the DACL. Default is None.

	inheritance (bool [https://docs.python.org/3/library/functions.html#bool]) -- If True the object will inherit permissions from the parent, if
False, inheritance will be disabled. Inheritance setting will
not apply to parent directories if they must be created. Default is
False.

	reset (bool [https://docs.python.org/3/library/functions.html#bool]) -- If True the existing DCL will be cleared and replaced with the
settings defined in this function. If False, new entries will be
appended to the existing DACL. Default is False.

New in version 2018.3.0.

	Returns:

	True if successful

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	CommandExecutionError -- If unsuccessful

CLI Example:

To grant the 'Users' group 'read & execute' permissions.
salt '*' file.set_perms C:\Temp\ "{'Users': {'perms': 'read_execute'}}"

Locally using salt call
salt-call file.set_perms C:\Temp\ "{'Users': {'perms': 'read_execute', 'applies_to': 'this_folder_only'}}"

Specify advanced attributes with a list
salt '*' file.set_perms C:\Temp\ "{'jsnuffy': {'perms': ['read_attributes', 'read_ea'], 'applies_to': 'this_folder_only'}}"

	
salt.modules.win_file.stats(path, hash_type='sha256', follow_symlinks=True)

	Return a dict containing the stats about a given file

Under Windows, gid will equal uid and group will equal user.

While a file in Windows does have a 'primary group', this rarely used
attribute generally has no bearing on permissions unless intentionally
configured and is only used to support Unix compatibility features (e.g.
Services For Unix, NFS services).

Salt, therefore, remaps these properties to keep some kind of
compatibility with Unix behavior. If the 'primary group' is required, it
can be accessed in the pgroup and pgid properties.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the file or directory

	hash_type (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The type of hash to return

	follow_symlinks (bool [https://docs.python.org/3/library/functions.html#bool]) -- If the object specified by path is a symlink, get attributes of
the linked file instead of the symlink itself. Default is True

	Returns:

	A dictionary of file/directory stats

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' file.stats /etc/passwd

	
salt.modules.win_file.symlink(src, link, force=False, atomic=False, follow_symlinks=True)

	Create a symbolic link to a file

This is only supported with Windows Vista or later and must be executed by
a user with the SeCreateSymbolicLink privilege.

The behavior of this function matches the Unix equivalent, with one
exception - invalid symlinks cannot be created. The source path must exist.
If it doesn't, an error will be raised.

	Parameters:

	
	src (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to a file or directory

	link (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the link. Must be an absolute path

	force (bool [https://docs.python.org/3/library/functions.html#bool]) -- Overwrite an existing symlink with the same name
.. versionadded:: 3005

	atomic (bool [https://docs.python.org/3/library/functions.html#bool]) -- Use atomic file operations to create the symlink
.. versionadded:: 3006.0

	follow_symlinks (bool [https://docs.python.org/3/library/functions.html#bool]) -- If set to False, use os.path.lexists() for existence checks
instead of os.path.exists().
.. versionadded:: 3007.0

	Returns:

	True if successful, otherwise raises CommandExecutionError

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' file.symlink /path/to/file /path/to/link

	
salt.modules.win_file.uid_to_user(uid)

	Convert a uid to a user name

	Parameters:

	uid (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user id to lookup

	Returns:

	The name of the user

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' file.uid_to_user S-1-5-21-626487655-2533044672-482107328-1010

	
salt.modules.win_file.user_to_uid(user)

	Convert user name to a uid

	Parameters:

	user (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user to lookup

	Returns:

	The user id of the user

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' file.user_to_uid myusername

	
salt.modules.win_file.version(path)

	
New in version 3005.

Get the version of a file.

Note

Not all files have version information. The following are common file
types that contain version information:

	.exe

	.dll

	.sys

	Parameters:

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the file.

	Returns:

	
	The version of the file if the file contains it. Otherwise, an
	empty string will be returned.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises:

	
	CommandExecutionError -- If the file does not exist

	CommandExecutionError -- If the path is not a file

CLI Example:

salt * file.version C:\Windows\notepad.exe

	
salt.modules.win_file.version_details(path)

	
New in version 3005.

Get file details for a file. Similar to what's in the details tab on the
file properties.

Note

Not all files have version information. The following are common file
types that contain version information:

	.exe

	.dll

	.sys

	Parameters:

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the file.

	Returns:

	
	A dictionary containing details about the file related to version.
	An empty dictionary if the file contains no version information.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises:

	
	CommandExecutionError -- If the file does not exist

	CommandExecutionError -- If the path is not a file

CLI Example:

salt * file.version_details C:\Windows\notepad.exe

salt.modules.win_firewall

Module for configuring Windows Firewall using netsh

	
salt.modules.win_firewall.add_rule(name, localport, protocol='tcp', action='allow', dir='in', remoteip='any')

	
New in version 2015.5.0.

Add a new inbound or outbound rule to the firewall policy

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the rule. Must be unique and cannot be "all".
Required.

	localport (int [https://docs.python.org/3/library/functions.html#int]) -- The port the rule applies to. Must be a number between
0 and 65535. Can be a range. Can specify multiple ports separated by
commas. Required.

	protocol (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The protocol. Can be any of the following:

	A number between 0 and 255

	icmpv4

	icmpv6

	tcp

	udp

	any

	action (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The action the rule performs. Can be any of the
following:

	allow

	block

	bypass

	dir (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The direction. Can be in or out.

	remoteip (Optional [str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The remote IP. Can be any of the following:

	any

	localsubnet

	dns

	dhcp

	wins

	defaultgateway

	Any valid IPv4 address (192.168.0.12)

	Any valid IPv6 address (2002:9b3b:1a31:4:208:74ff:fe39:6c43)

	Any valid subnet (192.168.1.0/24)

	Any valid range of IP addresses (192.168.0.1-192.168.0.12)

	A list of valid IP addresses

Can be combinations of the above separated by commas.

	Returns:

	True if successful

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	CommandExecutionError -- If the command fails

CLI Example:

salt '*' firewall.add_rule 'test' '8080' 'tcp'
salt '*' firewall.add_rule 'test' '1' 'icmpv4'
salt '*' firewall.add_rule 'test_remote_ip' '8000' 'tcp' 'allow' 'in' '192.168.0.1'

	
salt.modules.win_firewall.delete_rule(name=None, localport=None, protocol=None, dir=None, remoteip=None)

	
New in version 2015.8.0.

Delete an existing firewall rule identified by name and optionally by ports,
protocols, direction, and remote IP.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the rule to delete. If the name all is used
you must specify additional parameters.

	localport (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The port of the rule. If protocol is not
specified, protocol will be set to tcp

	protocol (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The protocol of the rule. Default is tcp
when localport is specified

	dir (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The direction of the rule.

	remoteip (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The remote IP of the rule.

	Returns:

	True if successful

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	CommandExecutionError -- If the command fails

CLI Example:

Delete incoming tcp port 8080 in the rule named 'test'
salt '*' firewall.delete_rule 'test' '8080' 'tcp' 'in'

Delete the incoming tcp port 8000 from 192.168.0.1 in the rule named
'test_remote_ip'
salt '*' firewall.delete_rule 'test_remote_ip' '8000' 'tcp' 'in' '192.168.0.1'

Delete all rules for local port 80:
salt '*' firewall.delete_rule all 80 tcp

Delete a rule called 'allow80':
salt '*' firewall.delete_rule allow80

	
salt.modules.win_firewall.disable(profile='allprofiles')

	Disable firewall profile

	Parameters:

	profile (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The name of the profile to disable. Default is
allprofiles. Valid options are:

	allprofiles

	domainprofile

	privateprofile

	publicprofile

	Returns:

	True if successful

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	CommandExecutionError -- If the command fails

CLI Example:

salt '*' firewall.disable

	
salt.modules.win_firewall.enable(profile='allprofiles')

	
New in version 2015.5.0.

Enable firewall profile

	Parameters:

	profile (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The name of the profile to enable. Default is
allprofiles. Valid options are:

	allprofiles

	domainprofile

	privateprofile

	publicprofile

	Returns:

	True if successful

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	CommandExecutionError -- If the command fails

CLI Example:

salt '*' firewall.enable

	
salt.modules.win_firewall.get_all_profiles(store='local')

	Gets all properties for all profiles in the specified store

New in version 2018.3.4.

New in version 2019.2.0.

	Parameters:

	store (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The store to use. This is either the local firewall policy or the
policy defined by local group policy. Valid options are:

	lgpo

	local

Default is local

	Returns:

	A dictionary containing the specified settings for each profile

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

Get all firewall settings for all profiles
salt * firewall.get_all_settings

Get all firewall settings for all profiles as defined by local group
policy

salt * firewall.get_all_settings lgpo

	
salt.modules.win_firewall.get_all_settings(domain, store='local')

	Gets all the properties for the specified profile in the specified store

New in version 2018.3.4.

New in version 2019.2.0.

	Parameters:

	
	profile (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The firewall profile to query. Valid options are:

	domain

	public

	private

	store (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The store to use. This is either the local firewall policy or the
policy defined by local group policy. Valid options are:

	lgpo

	local

Default is local

	Returns:

	A dictionary containing the specified settings

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

Get all firewall settings for connections on the domain profile
salt * win_firewall.get_all_settings domain

Get all firewall settings for connections on the domain profile as
defined by local group policy
salt * win_firewall.get_all_settings domain lgpo

	
salt.modules.win_firewall.get_config()

	Get the status of all the firewall profiles

	Returns:

	A dictionary of all profiles on the system

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises:

	CommandExecutionError -- If the command fails

CLI Example:

salt '*' firewall.get_config

	
salt.modules.win_firewall.get_rule(name='all')

	
New in version 2015.5.0.

Display all matching rules as specified by name

	Parameters:

	name (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The full name of the rule. all will return all
rules. Default is all

	Returns:

	A dictionary of all rules or rules that match the name exactly

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises:

	CommandExecutionError -- If the command fails

CLI Example:

salt '*' firewall.get_rule 'MyAppPort'

	
salt.modules.win_firewall.get_settings(profile, section, store='local')

	Get the firewall property from the specified profile in the specified store
as returned by netsh advfirewall.

New in version 2018.3.4.

New in version 2019.2.0.

	Parameters:

	
	profile (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The firewall profile to query. Valid options are:

	domain

	public

	private

	section (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The property to query within the selected profile. Valid options
are:

	firewallpolicy : inbound/outbound behavior

	logging : firewall logging settings

	settings : firewall properties

	state : firewalls state (on | off)

	store (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The store to use. This is either the local firewall policy or the
policy defined by local group policy. Valid options are:

	lgpo

	local

Default is local

	Returns:

	A dictionary containing the properties for the specified profile

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises:

	
	CommandExecutionError -- If an error occurs

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] -- If the parameters are incorrect

CLI Example:

Get the inbound/outbound firewall settings for connections on the
local domain profile
salt * win_firewall.get_settings domain firewallpolicy

Get the inbound/outbound firewall settings for connections on the
domain profile as defined by local group policy
salt * win_firewall.get_settings domain firewallpolicy lgpo

	
salt.modules.win_firewall.rule_exists(name)

	
New in version 2016.11.6.

Checks if a firewall rule exists in the firewall policy

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the rule

	Returns:

	True if exists, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

Is there a rule named RemoteDesktop
salt '*' firewall.rule_exists RemoteDesktop

	
salt.modules.win_firewall.set_firewall_settings(profile, inbound=None, outbound=None, store='local')

	Set the firewall inbound/outbound settings for the specified profile and
store

New in version 2018.3.4.

New in version 2019.2.0.

	Parameters:

	
	profile (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The firewall profile to query. Valid options are:

	domain

	public

	private

	inbound (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The inbound setting. If None is passed, the setting will remain
unchanged. Valid values are:

	blockinbound

	blockinboundalways

	allowinbound

	notconfigured

Default is None

	outbound (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The outbound setting. If None is passed, the setting will remain
unchanged. Valid values are:

	allowoutbound

	blockoutbound

	notconfigured

Default is None

	store (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The store to use. This is either the local firewall policy or the
policy defined by local group policy. Valid options are:

	lgpo

	local

Default is local

	Returns:

	True if successful

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	
	CommandExecutionError -- If an error occurs

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] -- If the parameters are incorrect

CLI Example:

Set the inbound setting for the domain profile to block inbound
connections
salt * firewall.set_firewall_settings domain='domain' inbound='blockinbound'

Set the outbound setting for the domain profile to allow outbound
connections
salt * firewall.set_firewall_settings domain='domain' outbound='allowoutbound'

Set inbound/outbound settings for the domain profile in the group
policy to block inbound and allow outbound
salt * firewall.set_firewall_settings domain='domain' inbound='blockinbound' outbound='allowoutbound' store='lgpo'

	
salt.modules.win_firewall.set_logging_settings(profile, setting, value, store='local')

	Configure logging settings for the Windows firewall.

New in version 2018.3.4.

New in version 2019.2.0.

	Parameters:

	
	profile (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The firewall profile to configure. Valid options are:

	domain

	public

	private

	setting (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The logging setting to configure. Valid options are:

	allowedconnections

	droppedconnections

	filename

	maxfilesize

	value (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The value to apply to the setting. Valid values are dependent upon
the setting being configured. Valid options are:

allowedconnections:

	enable

	disable

	notconfigured

droppedconnections:

	enable

	disable

	notconfigured

filename:

	Full path and name of the firewall log file

	notconfigured

maxfilesize:

	1 - 32767

	notconfigured

Note

notconfigured can only be used when using the lgpo store

	store (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The store to use. This is either the local firewall policy or the
policy defined by local group policy. Valid options are:

	lgpo

	local

Default is local

	Returns:

	True if successful

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	
	CommandExecutionError -- If an error occurs

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] -- If the parameters are incorrect

CLI Example:

Log allowed connections and set that in local group policy
salt * firewall.set_logging_settings domain allowedconnections enable lgpo

Don't log dropped connections
salt * firewall.set_logging_settings profile=private setting=droppedconnections value=disable

Set the location of the log file
salt * firewall.set_logging_settings domain filename C:\windows\logs\firewall.log

You can also use environment variables
salt * firewall.set_logging_settings domain filename %systemroot%\system32\LogFiles\Firewall\pfirewall.log

Set the max file size of the log to 2048 Kb
salt * firewall.set_logging_settings domain maxfilesize 2048

	
salt.modules.win_firewall.set_settings(profile, setting, value, store='local')

	Configure firewall settings.

New in version 2018.3.4.

New in version 2019.2.0.

	Parameters:

	
	profile (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The firewall profile to configure. Valid options are:

	domain

	public

	private

	setting (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The firewall setting to configure. Valid options are:

	localfirewallrules

	localconsecrules

	inboundusernotification

	remotemanagement

	unicastresponsetomulticast

	value (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The value to apply to the setting. Valid options are

	enable

	disable

	notconfigured

Note

notconfigured can only be used when using the lgpo store

	store (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The store to use. This is either the local firewall policy or the
policy defined by local group policy. Valid options are:

	lgpo

	local

Default is local

	Returns:

	True if successful

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	
	CommandExecutionError -- If an error occurs

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] -- If the parameters are incorrect

CLI Example:

Merge local rules with those distributed through group policy
salt * firewall.set_settings domain localfirewallrules enable

Allow remote management of Windows Firewall
salt * firewall.set_settings domain remotemanagement enable

	
salt.modules.win_firewall.set_state(profile, state, store='local')

	Configure the firewall state.

New in version 2018.3.4.

New in version 2019.2.0.

	Parameters:

	
	profile (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The firewall profile to configure. Valid options are:

	domain

	public

	private

	state (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The firewall state. Valid options are:

	on

	off

	notconfigured

Note

notconfigured can only be used when using the lgpo store

	store (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The store to use. This is either the local firewall policy or the
policy defined by local group policy. Valid options are:

	lgpo

	local

Default is local

	Returns:

	True if successful

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	
	CommandExecutionError -- If an error occurs

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] -- If the parameters are incorrect

CLI Example:

Turn the firewall off when the domain profile is active
salt * firewall.set_state domain off

Turn the firewall on when the public profile is active and set that in
the local group policy
salt * firewall.set_state public on lgpo

salt.modules.win_groupadd

Manage groups on Windows

Important

If you feel that Salt should be using this module to manage groups on a
minion, and it is using a different module (or gives an error similar to
'group.info' is not available), see here.

	
salt.modules.win_groupadd.add(name, **kwargs)

	Add the specified group

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the group to add

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' group.add foo

	
salt.modules.win_groupadd.adduser(name, username, **kwargs)

	Add a user to a group

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the group to modify

	username (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the user to add to the group

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' group.adduser foo username

	
salt.modules.win_groupadd.delete(name, **kwargs)

	Remove the named group

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the group to remove

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' group.delete foo

	
salt.modules.win_groupadd.deluser(name, username, **kwargs)

	Remove a user from a group

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the group to modify

	username (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the user to remove from the group

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' group.deluser foo username

	
salt.modules.win_groupadd.getent(refresh=False)

	Return info on all groups

	Parameters:

	refresh (bool [https://docs.python.org/3/library/functions.html#bool]) -- Refresh the info for all groups in __context__. If False only
the groups in __context__ will be returned. If True the
__context__ will be refreshed with current data and returned.
Default is False

	Returns:

	A list of groups and their information

CLI Example:

salt '*' group.getent

	
salt.modules.win_groupadd.info(name)

	Return information about a group

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the group for which to get information

	Returns:

	A dictionary of information about the group

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' group.info foo

	
salt.modules.win_groupadd.list_groups(refresh=False)

	Return a list of groups

	Parameters:

	refresh (bool [https://docs.python.org/3/library/functions.html#bool]) -- Refresh the info for all groups in __context__. If False only
the groups in __context__ will be returned. If True, the
__context__ will be refreshed with current data and returned.
Default is False

	Returns:

	A list of groups on the machine

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' group.list_groups

	
salt.modules.win_groupadd.members(name, members_list, **kwargs)

	Ensure a group contains only the members in the list

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the group to modify

	members_list (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A single user or a comma separated list of users. The group will
contain only the users specified in this list.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' group.members foo 'user1,user2,user3'

salt.modules.win_iis

Microsoft IIS site management via WebAdministration powershell module

	maintainer:

	Shane Lee <slee@saltstack.com>, Robert Booth <rbooth@saltstack.com>

	platform:

	Windows

	depends:

	PowerShell

	depends:

	WebAdministration module (PowerShell) (IIS)

New in version 2016.3.0.

	
salt.modules.win_iis.create_app(name, site, sourcepath, apppool=None)

	Create an IIS application.

Note

This function only validates against the application name, and will
return True even if the application already exists with a different
configuration. It will not modify the configuration of an existing
application.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IIS application.

	site (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IIS site name.

	sourcepath (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The physical path.

	apppool (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the IIS application pool.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_iis.create_app name='app0' site='site0' sourcepath='C:\site0' apppool='site0'

	
salt.modules.win_iis.create_apppool(name)

	Create an IIS application pool.

Note

This function only validates against the application pool name, and will
return True even if the application pool already exists with a different
configuration. It will not modify the configuration of an existing
application pool.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the IIS application pool.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_iis.create_apppool name='MyTestPool'

	
salt.modules.win_iis.create_backup(name)

	Backup an IIS Configuration on the System.

New in version 2017.7.0.

Note

Backups are stored in the $env:Windir\System32\inetsrv\backup
folder.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name to give the backup

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_iis.create_backup good_config_20170209

	
salt.modules.win_iis.create_binding(site, hostheader='', ipaddress='*', port=80, protocol='http', sslflags=None)

	Create an IIS Web Binding.

Note

This function only validates against the binding
ipaddress:port:hostheader combination, and will return True even if the
binding already exists with a different configuration. It will not
modify the configuration of an existing binding.

	Parameters:

	
	site (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IIS site name.

	hostheader (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The host header of the binding. Usually a hostname.

	ipaddress (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IP address of the binding.

	port (int [https://docs.python.org/3/library/functions.html#int]) -- The TCP port of the binding.

	protocol (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The application protocol of the binding.

	sslflags (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The flags representing certificate type and storage of
the binding.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_iis.create_binding site='site0' hostheader='example.com' ipaddress='*' port='80'

	
salt.modules.win_iis.create_cert_binding(name, site, hostheader='', ipaddress='*', port=443, sslflags=0)

	Assign a certificate to an IIS Web Binding.

New in version 2016.11.0.

Note

The web binding that the certificate is being assigned to must already
exist.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The thumbprint of the certificate.

	site (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IIS site name.

	hostheader (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The host header of the binding.

	ipaddress (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IP address of the binding.

	port (int [https://docs.python.org/3/library/functions.html#int]) -- The TCP port of the binding.

	sslflags (int [https://docs.python.org/3/library/functions.html#int]) -- Flags representing certificate type and certificate storage of the binding.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_iis.create_cert_binding name='AAA000' site='site0' hostheader='example.com' ipaddress='*' port='443'

	
salt.modules.win_iis.create_site(name, sourcepath, apppool='', hostheader='', ipaddress='*', port=80, protocol='http')

	Create a basic website in IIS.

Note

This function only validates against the site name, and will return True
even if the site already exists with a different configuration. It will
not modify the configuration of an existing site.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IIS site name.

	sourcepath (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The physical path of the IIS site.

	apppool (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the IIS application pool.

	hostheader (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The host header of the binding. Usually the hostname
or website name, ie: www.contoso.com

	ipaddress (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IP address of the binding.

	port (int [https://docs.python.org/3/library/functions.html#int]) -- The TCP port of the binding.

	protocol (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The application protocol of the binding. (http, https,
etc.)

	Returns:

	True if successful, otherwise False.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

Note

If an application pool is specified, and that application pool does not
already exist, it will be created.

CLI Example:

salt '*' win_iis.create_site name='My Test Site' sourcepath='c:\stage' apppool='TestPool'

	
salt.modules.win_iis.create_vdir(name, site, sourcepath, app='/')

	Create an IIS virtual directory.

Note

This function only validates against the virtual directory name, and
will return True even if the virtual directory already exists with a
different configuration. It will not modify the configuration of an
existing virtual directory.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The virtual directory name.

	site (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IIS site name.

	sourcepath (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The physical path.

	app (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IIS application.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_iis.create_vdir name='vd0' site='site0' sourcepath='C:\inetpub\vdirs\vd0'

	
salt.modules.win_iis.get_container_setting(name, container, settings)

	Get the value of the setting for the IIS container.

New in version 2016.11.0.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the IIS container.

	container (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The type of IIS container. The container types are:
AppPools, Sites, SslBindings

	settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- A dictionary of the setting names and their values.

	Returns:

	A dictionary of the provided settings and their values.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' win_iis.get_container_setting name='MyTestPool' container='AppPools'
 settings="['processModel.identityType']"

	
salt.modules.win_iis.get_webapp_settings(name, site, settings)

	
New in version 2017.7.0.

Get the value of the setting for the IIS web application.

Note

Params are case sensitive

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the IIS web application.

	site (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The site name contains the web application.
Example: Default Web Site

	settings (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A dictionary of the setting names and their values.
Available settings: physicalPath, applicationPool, userName, password

	Returns:

	A dictionary of the provided settings and their values.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' win_iis.get_webapp_settings name='app0' site='Default Web Site'
 settings="['physicalPath','applicationPool']"

	
salt.modules.win_iis.get_webconfiguration_settings(name, settings)

	Get the webconfiguration settings for the IIS PSPath.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The PSPath of the IIS webconfiguration settings.

	settings (list [https://docs.python.org/3/library/stdtypes.html#list]) -- A list of dictionaries containing setting name and filter.

	Returns:

	A list of dictionaries containing setting name, filter and value.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' win_iis.get_webconfiguration_settings name='IIS:\' settings="[{'name': 'enabled', 'filter': 'system.webServer/security/authentication/anonymousAuthentication'}]"

	
salt.modules.win_iis.list_apppools()

	List all configured IIS application pools.

	Returns:

	A dictionary of IIS application pools and their details.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' win_iis.list_apppools

	
salt.modules.win_iis.list_apps(site)

	Get all configured IIS applications for the specified site.

	Parameters:

	site (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IIS site name.

Returns: A dictionary of the application names and properties.

CLI Example:

salt '*' win_iis.list_apps site

	
salt.modules.win_iis.list_backups()

	List the IIS Configuration Backups on the System.

New in version 2017.7.0.

Note

Backups are made when a configuration is edited. Manual backups are
stored in the $env:Windir\System32\inetsrv\backup folder.

	Returns:

	A dictionary of IIS Configurations backed up on the system.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' win_iis.list_backups

	
salt.modules.win_iis.list_bindings(site)

	Get all configured IIS bindings for the specified site.

	Parameters:

	site (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name if the IIS Site

	Returns:

	A dictionary of the binding names and properties.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' win_iis.list_bindings site

	
salt.modules.win_iis.list_cert_bindings(site)

	List certificate bindings for an IIS site.

New in version 2016.11.0.

	Parameters:

	site (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IIS site name.

	Returns:

	A dictionary of the binding names and properties.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' win_iis.list_bindings site

	
salt.modules.win_iis.list_sites()

	List all the currently deployed websites.

	Returns:

	A dictionary of the IIS sites and their properties.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' win_iis.list_sites

	
salt.modules.win_iis.list_vdirs(site, app='/')

	Get all configured IIS virtual directories for the specified site, or for
the combination of site and application.

	Parameters:

	
	site (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IIS site name.

	app (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IIS application.

	Returns:

	A dictionary of the virtual directory names and properties.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' win_iis.list_vdirs site

	
salt.modules.win_iis.list_worker_processes(apppool)

	Returns a list of worker processes that correspond to the passed
application pool.

New in version 2017.7.0.

	Parameters:

	apppool (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The application pool to query

	Returns:

	A dictionary of worker processes with their process IDs

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' win_iis.list_worker_processes 'My App Pool'

	
salt.modules.win_iis.modify_binding(site, binding, hostheader=None, ipaddress=None, port=None, sslflags=None)

	Modify an IIS Web Binding. Use site and binding to target the
binding.

New in version 2017.7.0.

	Parameters:

	
	site (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IIS site name.

	binding (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The binding to edit. This is a combination of the
IP address, port, and hostheader. It is in the following format:
ipaddress:port:hostheader. For example, *:80: or
*:80:salt.com

	hostheader (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The host header of the binding. Usually the hostname.

	ipaddress (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IP address of the binding.

	port (int [https://docs.python.org/3/library/functions.html#int]) -- The TCP port of the binding.

	sslflags (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The flags representing certificate type and storage of
the binding.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

The following will seat the host header of binding *:80: for site0
to example.com

salt '*' win_iis.modify_binding site='site0' binding='*:80:' hostheader='example.com'

	
salt.modules.win_iis.modify_site(name, sourcepath=None, apppool=None)

	Modify a basic website in IIS.

New in version 2017.7.0.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IIS site name.

	sourcepath (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The physical path of the IIS site.

	apppool (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the IIS application pool.

	Returns:

	True if successful, otherwise False.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

Note

If an application pool is specified, and that application pool does not
already exist, it will be created.

CLI Example:

salt '*' win_iis.modify_site name='My Test Site' sourcepath='c:\new_path' apppool='NewTestPool'

	
salt.modules.win_iis.remove_app(name, site)

	Remove an IIS application.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The application name.

	site (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IIS site name.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_iis.remove_app name='app0' site='site0'

	
salt.modules.win_iis.remove_apppool(name)

	Remove an IIS application pool.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the IIS application pool.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_iis.remove_apppool name='MyTestPool'

	
salt.modules.win_iis.remove_backup(name)

	Remove an IIS Configuration backup from the System.

New in version 2017.7.0.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the backup to remove

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_iis.remove_backup backup_20170209

	
salt.modules.win_iis.remove_binding(site, hostheader='', ipaddress='*', port=80)

	Remove an IIS binding.

	Parameters:

	
	site (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IIS site name.

	hostheader (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The host header of the binding.

	ipaddress (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IP address of the binding.

	port (int [https://docs.python.org/3/library/functions.html#int]) -- The TCP port of the binding.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_iis.remove_binding site='site0' hostheader='example.com' ipaddress='*' port='80'

	
salt.modules.win_iis.remove_cert_binding(name, site, hostheader='', ipaddress='*', port=443)

	Remove a certificate from an IIS Web Binding.

New in version 2016.11.0.

Note

This function only removes the certificate from the web binding. It does
not remove the web binding itself.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The thumbprint of the certificate.

	site (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IIS site name.

	hostheader (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The host header of the binding.

	ipaddress (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IP address of the binding.

	port (int [https://docs.python.org/3/library/functions.html#int]) -- The TCP port of the binding.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_iis.remove_cert_binding name='AAA000' site='site0' hostheader='example.com' ipaddress='*' port='443'

	
salt.modules.win_iis.remove_site(name)

	Delete a website from IIS.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IIS site name.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

Note

This will not remove the application pool used by the site.

CLI Example:

salt '*' win_iis.remove_site name='My Test Site'

	
salt.modules.win_iis.remove_vdir(name, site, app='/')

	Remove an IIS virtual directory.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The virtual directory name.

	site (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IIS site name.

	app (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IIS application.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_iis.remove_vdir name='vdir0' site='site0'

	
salt.modules.win_iis.restart_apppool(name)

	Restart an IIS application pool.

New in version 2016.11.0.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the IIS application pool.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_iis.restart_apppool name='MyTestPool'

	
salt.modules.win_iis.restart_site(name)

	Restart a Web Site in IIS.

New in version 2017.7.0.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the website to restart.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_iis.restart_site name='My Test Site'

	
salt.modules.win_iis.set_container_setting(name, container, settings)

	Set the value of the setting for an IIS container.

New in version 2016.11.0.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the IIS container.

	container (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The type of IIS container. The container types are:
AppPools, Sites, SslBindings

	settings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- A dictionary of the setting names and their values.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_iis.set_container_setting name='MyTestPool' container='AppPools'
 settings="{'managedPipeLineMode': 'Integrated'}"

	
salt.modules.win_iis.set_webapp_settings(name, site, settings)

	
New in version 2017.7.0.

Configure an IIS application.

Note

This function only configures an existing app. Params are case
sensitive.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IIS application.

	site (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The IIS site name.

	settings (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A dictionary of the setting names and their values.
- physicalPath: The physical path of the webapp.
- applicationPool: The application pool for the webapp.
- userName: "connectAs" user
- password: "connectAs" password for user

	Returns:

	A boolean representing whether all changes succeeded.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_iis.set_webapp_settings name='app0' site='site0' settings="{'physicalPath': 'C:\site0', 'apppool': 'site0'}"

	
salt.modules.win_iis.set_webconfiguration_settings(name, settings)

	Set the value of the setting for an IIS container.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The PSPath of the IIS webconfiguration settings.

	settings (list [https://docs.python.org/3/library/stdtypes.html#list]) -- A list of dictionaries containing setting name, filter and value.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_iis.set_webconfiguration_settings name='IIS:\' settings="[{'name': 'enabled', 'filter': 'system.webServer/security/authentication/anonymousAuthentication', 'value': False}]"

	
salt.modules.win_iis.start_apppool(name)

	Start an IIS application pool.

New in version 2017.7.0.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the App Pool to start.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_iis.start_apppool name='MyTestPool'

	
salt.modules.win_iis.start_site(name)

	Start a Web Site in IIS.

New in version 2017.7.0.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the website to start.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_iis.start_site name='My Test Site'

	
salt.modules.win_iis.stop_apppool(name)

	Stop an IIS application pool.

New in version 2017.7.0.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the App Pool to stop.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_iis.stop_apppool name='MyTestPool'

	
salt.modules.win_iis.stop_site(name)

	Stop a Web Site in IIS.

New in version 2017.7.0.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the website to stop.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_iis.stop_site name='My Test Site'

salt.modules.win_ip

The networking module for Windows based systems

	
salt.modules.win_ip.disable(iface)

	Disable an interface

CLI Example:

salt -G 'os_family:Windows' ip.disable 'Local Area Connection #2'

	
salt.modules.win_ip.enable(iface)

	Enable an interface

CLI Example:

salt -G 'os_family:Windows' ip.enable 'Local Area Connection #2'

	
salt.modules.win_ip.get_all_interfaces()

	Return configs for all interfaces

CLI Example:

salt -G 'os_family:Windows' ip.get_all_interfaces

	
salt.modules.win_ip.get_default_gateway()

	Set DNS source to DHCP on Windows

CLI Example:

salt -G 'os_family:Windows' ip.get_default_gateway

	
salt.modules.win_ip.get_interface(iface)

	Return the configuration of a network interface

CLI Example:

salt -G 'os_family:Windows' ip.get_interface 'Local Area Connection'

	
salt.modules.win_ip.get_subnet_length(mask)

	Convenience function to convert the netmask to the CIDR subnet length

CLI Example:

salt -G 'os_family:Windows' ip.get_subnet_length 255.255.255.0

	
salt.modules.win_ip.is_disabled(iface)

	Returns True if interface is disabled, otherwise False

CLI Example:

salt -G 'os_family:Windows' ip.is_disabled 'Local Area Connection #2'

	
salt.modules.win_ip.is_enabled(iface)

	Returns True if interface is enabled, otherwise False

CLI Example:

salt -G 'os_family:Windows' ip.is_enabled 'Local Area Connection #2'

	
salt.modules.win_ip.raw_interface_configs()

	Return raw configs for all interfaces

CLI Example:

salt -G 'os_family:Windows' ip.raw_interface_configs

	
salt.modules.win_ip.set_dhcp_all(iface)

	Set both IP Address and DNS to DHCP

CLI Example:

salt -G 'os_family:Windows' ip.set_dhcp_all 'Local Area Connection'

	
salt.modules.win_ip.set_dhcp_dns(iface)

	Set DNS source to DHCP on Windows

CLI Example:

salt -G 'os_family:Windows' ip.set_dhcp_dns 'Local Area Connection'

	
salt.modules.win_ip.set_dhcp_ip(iface)

	Set Windows NIC to get IP from DHCP

CLI Example:

salt -G 'os_family:Windows' ip.set_dhcp_ip 'Local Area Connection'

	
salt.modules.win_ip.set_static_dns(iface, *addrs)

	Set static DNS configuration on a Windows NIC

	Parameters:

	
	iface (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the interface to set

	addrs -- One or more DNS servers to be added. To clear the list of DNS
servers pass an empty list ([]). If undefined or None no
changes will be made.

	Returns:

	A dictionary containing the new DNS settings

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt -G 'os_family:Windows' ip.set_static_dns 'Local Area Connection' '192.168.1.1'
salt -G 'os_family:Windows' ip.set_static_dns 'Local Area Connection' '192.168.1.252' '192.168.1.253'

	
salt.modules.win_ip.set_static_ip(iface, addr, gateway=None, append=False)

	Set static IP configuration on a Windows NIC

	iface
	The name of the interface to manage

	addr
	IP address with subnet length (ex. 10.1.2.3/24). The
ip.get_subnet_length
function can be used to calculate the subnet length from a netmask.

	gatewayNone
	If specified, the default gateway will be set to this value.

	appendFalse
	If True, this IP address will be added to the interface. Default is
False, which overrides any existing configuration for the interface
and sets addr as the only address on the interface.

CLI Example:

salt -G 'os_family:Windows' ip.set_static_ip 'Local Area Connection' 10.1.2.3/24 gateway=10.1.2.1
salt -G 'os_family:Windows' ip.set_static_ip 'Local Area Connection' 10.1.2.4/24 append=True

salt.modules.win_lgpo

Manage Local Policy on Windows

This module allows configuring local group policy (i.e. gpedit.msc) on a
Windows machine.

New in version 2016.11.0.

Warning

Local Group Policy will always be superseded by Domain Group policy. If
policies are configured with Local Group Policy that are also configured
with Domain Group policy, the Domain Group policy will take precedence.

Administrative Templates

Administrative template policies are dynamically read from ADMX/ADML files on
the server.

Windows Settings

Policies contained in the "Windows Settings" section of the gpedit.msc GUI
are statically defined in this module. Each policy is configured for the section
(Machine/User) in the module's _policy_info class. The _policy_info class
contains a "policies" dict on how the module will configure the policy, where
the policy resides in the GUI (for display purposes), data validation data, data
transformation data, etc.

Current known limitations

	At this time, start/shutdown scripts policies are displayed, but are not
configurable.

	Not all "Security Settings" policies exist in the _policy_info class

	depends:

	
	pywin32 Python module

	lxml

	uuid

	struct

	salt.utils.win_reg

	
salt.modules.win_lgpo.clear_policy_cache()

	Clears the policy definitions and resource stored in __context__. They
will be rebuilt the next time a policy is applied.

CLI Example:

salt '*' lgpo.clear_policy_cache

	
salt.modules.win_lgpo.get(policy_class=None, return_full_policy_names=True, hierarchical_return=False, adml_language='en-US', return_not_configured=False)

	Get a policy value

	Parameters:

	
	policy_class (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Some policies are both user and computer, by default all policies
will be pulled, but this can be used to retrieve only a specific
policy class User/USER/user = retrieve user policies
Machine/MACHINE/machine/Computer/COMPUTER/computer = retrieve
machine/computer policies

	return_full_policy_names (bool [https://docs.python.org/3/library/functions.html#bool]) -- True/False to return the policy name as it is seen in the
gpedit.msc GUI or to only return the policy key/id.

	hierarchical_return (bool [https://docs.python.org/3/library/functions.html#bool]) -- True/False to return the policy data in the hierarchy as seen in the
gpedit.msc GUI. The default of False will return data split only
into User/Computer configuration sections

	adml_language (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The ADML language to use for processing display/descriptive names
and enumeration values of ADMX template data, defaults to en-US

	return_not_configured (bool [https://docs.python.org/3/library/functions.html#bool]) -- Include Administrative Template policies that are 'Not Configured'
in the return data

	Returns:

	A dictionary containing the policy values for the specified class

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' lgpo.get machine return_full_policy_names=True

	
salt.modules.win_lgpo.get_policy(policy_name, policy_class, adml_language='en-US', return_value_only=True, return_full_policy_names=True, hierarchical_return=False)

	Get the current settings for a single policy on the machine

	Parameters:

	
	policy_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the policy to retrieve. Can be the any of the names
or alieses returned by lgpo.get_policy_info

	policy_class (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The policy class. Must be one of machine or user

	adml_language (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The language code for the adml file to use for localization. The
default is en-US

	return_value_only (bool [https://docs.python.org/3/library/functions.html#bool]) -- True will return only the value for the policy, without the
name of the policy. return_full_policy_names and
hierarchical_return will be ignored. Default is True

	return_full_policy_names (bool [https://docs.python.org/3/library/functions.html#bool]) -- Returns the full policy name regardless of what was passed in
policy_name

Note

This setting applies to sub-elements of the policy if they
exist. The value passed in policy_name will always be used
as the policy name when this setting is False

	hierarchical_return (bool [https://docs.python.org/3/library/functions.html#bool]) -- Returns a hierarchical view of the policy showing its parents

	Returns:

	A dictionary containing the policy settings

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

Using the policy id
salt * lgpo.get_policy LockoutDuration machine
salt * lgpo.get_policy AutoUpdateCfg machine

Using the full name
salt * lgpo.get_policy "Account lockout duration" machine
salt * lgpo.get_policy "Configure Automatic Updates" machine

Using full path and name
salt * lgpo.get_policy "Windows Components\Windows Update\Configure Automatic Updates" machine

	
salt.modules.win_lgpo.get_policy_info(policy_name, policy_class, adml_language='en-US')

	Returns information about a specified policy

	Parameters:

	
	policy_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the policy to lookup

	policy_class (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The class of policy, i.e. machine, user, both

	adml_language (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The ADML language to use for Administrative Template data lookup

	Returns:

	Information about the specified policy

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' lgpo.get_policy_info 'Maximum password age' machine

You can use lgpo.get_policy_info to get all the possible names that
could be used in a state file or from the command line (along with elements
that need to be set/etc). The key is to match the text you see in the
gpedit.msc gui exactly, including quotes around words or phrases. The
"full path" style is really only needed when there are multiple policies
that use the same base name. For example, Access data sources across
domains exists in ~10 different paths. If you put that through
get_policy_info you'll get back a message that it is used for multiple
policies and you need to be more specific.

CLI Example:

salt-call --local lgpo.get_policy_info ShellRemoveOrderPrints_2 machine

local:

 message:
 policy_aliases:
 - Turn off the "Order Prints" picture task
 - ShellRemoveOrderPrints_2
 - System\Internet Communication Management\Internet Communication settings\Turn off the "Order Prints" picture task
 policy_class:
 machine
 policy_elements:
 policy_found:
 True
 policy_name:
 ShellRemoveOrderPrints_2
 rights_assignment:
 False

Escaping can get tricky in cmd/Powershell. The following is an example of
escaping in Powershell using backquotes:

PS>salt-call --local lgpo.get_policy_info "Turn off the `\`"Order Prints`\`" picture task" machine

local:

 message:
 policy_aliases:
 - Turn off the "Order Prints" picture task
 - ShellRemoveOrderPrints_2
 - System\Internet Communication Management\Internet Communication settings\Turn off the "Order Prints" picture task
 policy_class:
 machine
 policy_elements:
 policy_found:
 True
 policy_name:
 Turn off the "Order Prints" picture task
 rights_assignment:
 False

This function can then be used to get the options available for specifying
Group Policy Objects to be used in state files. Based on the above any of
these should be usable:

internet_communications_settings:
 lgpo.set:
 - computer_policy:
 Turn off the "Order Prints" picture task: Enabled

internet_communications_settings:
 lgpo.set:
 - computer_policy:
 ShellRemoveOrderPrints_2: Enabled

When using the full path, it might be a good idea to use single quotes
around the path:

internet_communications_settings:
 lgpo.set:
 - computer_policy:
 'System\Internet Communication Management\Internet Communication settings\Turn off the "Order Prints" picture task': 'Enabled'

If you struggle to find the policy from get_policy_info using the name
as you see in gpedit.msc, the names such as "ShellRemoveOrderPrints_2"
come from the .admx files. If you know nothing about .admx/.adml
relationships (ADML holds what you see in the GUI, ADMX holds the more
technical details), then this may be a little bit too much info, but here is
an example with the above policy using Powershell:

PS>Get-ChildItem -Path C:\Windows\PolicyDefinitions -Recurse -Filter *.adml | Select-String "Order Prints"

C:\windows\PolicyDefinitions\en-US\ICM.adml:152: <string id="ShellRemoveOrderPrints">Turn off the "Order Prints" picture task</string>
C:\windows\PolicyDefinitions\en-US\ICM.adml:153: <string id="ShellRemoveOrderPrints_Help">This policy setting specifies whether the "Order Prints Online" task is available from Picture Tasks in Windows folders.
C:\windows\PolicyDefinitions\en-US\ICM.adml:155:The Order Prints Online Wizard is used to download a list of providers and allow users to order prints online.
C:\windows\PolicyDefinitions\en-US\ICM.adml:157:If you enable this policy setting, the task "Order Prints Online" is removed from Picture Tasks in File Explorer folders.

From this grep, we can see id "ShellRemoveOrderPrints" is the ID of the
string used to describe this policy, then we search for it in the ADMX:

PS>Get-ChildItem -Path C:\Windows\PolicyDefinitions -Recurse -Filter *.admx | Select-String "ShellRemoveOrderPrints"

C:\windows\PolicyDefinitions\ICM.admx:661: <policy name="ShellRemoveOrderPrints_1" class="User" displayName="$(string.ShellRemoveOrderPrints)" explainText="$(string.ShellRemoveOrderPrints_Help)" key="Software\Microsoft\Windows\CurrentVersion\Policies\Explorer" valueName="NoOnlinePrintsWizard">
C:\windows\PolicyDefinitions\ICM.admx:671: <policy name="ShellRemoveOrderPrints_2" class="Machine" displayName="$(string.ShellRemoveOrderPrints)" explainText="$(string.ShellRemoveOrderPrints_Help)" key="Software\Microsoft\Windows\CurrentVersion\Policies\Explorer" valueName="NoOnlinePrintsWizard">

Now we have two to pick from. And if you notice the class="Machine" and
class="User" (which details if it is a computer policy or user policy
respectively) the ShellRemoveOrderPrints_2 is the "short name" we could
use to pass through get_policy_info to see what the module itself is
expecting.

	
salt.modules.win_lgpo.set_(computer_policy=None, user_policy=None, cumulative_rights_assignments=True, adml_language='en-US')

	Set a local server policy.

	Parameters:

	
	computer_policy (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- A dictionary of "policyname: value" pairs of computer policies to
set. 'value' should be how it is displayed in the gpedit GUI, i.e.
if a setting can be 'Enabled'/'Disabled', then that should be passed

Administrative Template data may require dicts within dicts, to
specify each element of the Administrative Template policy.
Administrative Templates policies are always cumulative.

Policy names can be specified in a number of ways based on the type
of policy:

Windows Settings Policies:

These policies can be specified using the GUI display name
or the key name from the _policy_info class in this module.
The GUI display name is also contained in the _policy_info
class in this module.

Administrative Template Policies:

These can be specified using the policy name as displayed in
the GUI (case sensitive). Some policies have the same name,
but a different location (for example, "Access data sources
across domains"). These can be differentiated by the "path"
in the GUI (for example, "Windows ComponentsInternet
ExplorerInternet Control PanelSecurity PageInternet
ZoneAccess data sources across domains").

Additionally, policies can be specified using the "name" and
"id" attributes from the ADMX files.

For Administrative Templates that have policy elements, each
element can be specified using the text string as seen in
the GUI or using the ID attribute from the ADMX file. Due to
the way some of the GUI text is laid out, some policy
element names could include descriptive text that appears
lbefore the policy element in the GUI.

Use the get_policy_info function for the policy name to view
the element ID/names that the module will accept.

	user_policy (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- The same setup as the computer_policy, except with data to configure
the local user policy.

	cumulative_rights_assignments (bool [https://docs.python.org/3/library/functions.html#bool]) -- Determine how user rights assignment policies are configured.

If True, user right assignment specifications are simply added to
the existing policy

If False, only the users specified will get the right (any existing
will have the right revoked)

	adml_language (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The language files to use for looking up Administrative Template
policy data (i.e. how the policy is displayed in the GUI). Defaults
to 'en-US' (U.S. English).

	Returns:

	True is successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' lgpo.set computer_policy="{'LockoutDuration': 2, 'RestrictAnonymous': 'Enabled', 'AuditProcessTracking': 'Succes, Failure'}"

	
salt.modules.win_lgpo.set_computer_policy(name, setting, cumulative_rights_assignments=True, adml_language='en-US')

	Set a single computer policy

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the policy to configure

	setting (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The setting to configure the named policy with

	cumulative_rights_assignments (bool [https://docs.python.org/3/library/functions.html#bool]) -- Determine how user rights
assignment policies are configured. If True, user right assignment
specifications are simply added to the existing policy. If False,
only the users specified will get the right (any existing will have
the right revoked)

	adml_language (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The language files to use for looking up
Administrative Template policy data (i.e. how the policy is
displayed in the GUI). Defaults to 'en-US' (U.S. English).

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' lgpo.set_computer_policy LockoutDuration 1440

	
salt.modules.win_lgpo.set_user_policy(name, setting, adml_language='en-US')

	Set a single user policy

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the policy to configure

	setting (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The setting to configure the named policy with

	adml_language (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The language files to use for looking up Administrative Template
policy data (i.e. how the policy is displayed in the GUI). Defaults
to 'en-US' (U.S. English).

	Returns:

	True if successful, Otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' lgpo.set_user_policy "Control Panel\Display\Disable the Display Control Panel" Enabled

salt.modules.win_lgpo_reg

LGPO - Registry.pol

New in version 3006.0.

A module for working with registry based policies in Windows Local Group Policy
(LGPO). This module contains functions for working with the Registry.pol
file. The Registry.pol file is the source of truth for registry settings
and LGPO.

Group Policy is refreshed every 90 seconds by default. During that refresh the
contents of the Registry.pol file are applied to the Registry. If the
setting is changed outside of Group Policy to something other than what is
contained in the Registry.pol file, it will be changed back during the next
refresh.

In the Group Policy Editor (gpedit.msc) these policies can be set to three
states:

	Not Configured

	Enabled

	Disabled

A policy that is "Not Configured" does not have an entry in the Registry.pol
file. A Group Policy refresh will not make any changes to key/value pairs in the
registry that are not specified in the Registry.pol file.

An "Enabled" policy will have an entry in the Registry.pol files that
contains its key path, value name, value type, value size, and value data. When
Group Policy is refreshed, existing values will be overwritten with those
contained in the Registry.pol file.

A "Disabled" policy will have an entry in the Registry.pol file with the key
path and the value name, but the value name will be prepended with **del..
When Group Policy is refreshed the key/value will be deleted from the registry.
If the key contains no values, it will also be deleted.

Working with LGPO Reg

The easiest way to figure out the values needed for this module is to set the
policy using the Group Policy Editor (gpedit.msc) and then run the
lgpo_reg.read_reg_pol function. This function will display a dictionary of
all registry-based policies in the Registry.pol file. From its return you
can get the key, v_name, v_type, and v_data required to "enable"
that policy. Use those values to set/disable/delete policies using this module.
The same values can also be used to create states for setting these policies.

Note

Not all policies in the Group Policy Editor (gpedit.msc) that write to
the registry make that change in the Registry.pol file. Those policies
could still be enforced via the Registry.pol file... theoretically. But
you will have to find the values needed to set them with this module using a
different method.

	
salt.modules.win_lgpo_reg.delete_value(key, v_name, policy_class='Machine')

	Delete a key/value pair from the Registry.pol file. This bypasses the
admx/adml style policies. This is the equivalent of setting the policy to
Not Configured.

	Parameters:

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The registry key path

	v_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The registry value name within the key

	policy_class (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The registry class to write to. Can be one of the
following:

	Computer

	Machine

	User

Default is Machine

	Raises:

	
	SaltInvocationError -- Invalid policy_class

	CommandExecutionError -- On failure

	Returns:

	True if successful, otherwise False
None: Key/value not present

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

Delete all values under a key
salt '*' lgpo_reg.delete_value "SOFTWARE\MyKey" "MyValue"

	
salt.modules.win_lgpo_reg.disable_value(key, v_name, policy_class='machine')

	Mark a registry value for deletion in the registry.pol file. This bypasses
the admx/adml style policies. This is the equivalent of setting the policy
to Disabled in the Group Policy editor (gpedit.msc)

	Parameters:

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The registry key path

	v_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The registry value name within the key

	policy_class (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The registry class to write to. Can be one of the
following:

	Computer

	Machine

	User

Default is Machine

	Raises:

	
	SaltInvocationError -- Invalid policy_class

	CommandExecutionError -- On failure

	Returns:

	True if successful, otherwise False
None: If already disabled

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

Delete a value
salt '*' lgpo_reg.delete_value "SOFTWARE\MyKey" "MyValue"

	
salt.modules.win_lgpo_reg.get_key(key, policy_class='Machine')

	Get all the values set in a key in the Registry.pol file.

	Parameters:

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The registry key where the values reside

	policy_class (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The registry class to read from. Can be one of the
following:

	Raises:

	SaltInvocationError -- Invalid policy class

	Returns:

	A dictionary containing the value data and the value type

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

Get all values from a key
salt '*' lgpo_reg.get_key "SOFTWARE\MyKey"

	
salt.modules.win_lgpo_reg.get_value(key, v_name, policy_class='Machine')

	Get the value of a single value pair as set in the Registry.pol
file.

	Parameters:

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The registry key where the value name resides

	v_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The value name to retrieve

	policy_class (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The registry class to read from. Can be one of the
following:

	Raises:

	SaltInvocationError -- Invalid policy class

	Returns:

	A dictionary containing the value data and the value type found

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

Get a value
salt '*' lgpo_reg.get_value "SOFTWARE\MyKey" "MyValue"

	
salt.modules.win_lgpo_reg.read_reg_pol(policy_class='Machine')

	Read the contents of the Registry.pol file. Display the contents as a
human-readable dictionary.

	Parameters:

	policy_class (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The registry class to retrieve. Can be one of the
following:

	Computer

	Machine

	User

Default is Machine

	Raises:

	SaltInvocationError -- Invalid policy class

	Returns:

	A dictionary representing the contents of the Registry.pol file

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

Read the machine Registry.pol
salt '*' lgpo_reg.read_reg_pol

	
salt.modules.win_lgpo_reg.set_value(key, v_name, v_data, v_type='REG_DWORD', policy_class='Machine')

	Add a key/value pair to the registry.pol file. This bypasses the admx/adml
style policies. This is the equivalent of setting a policy to Enabled

	Parameters:

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The registry key path

	v_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The registry value name within the key

	v_data (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The registry value

	v_type (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The registry value type. Must be one of the following:

	REG_BINARY

	REG_DWORD

	REG_EXPAND_SZ

	REG_MULTI_SZ

	REG_QWORD

	REG_SZ

Default is REG_DWORD

	policy_class (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The registry class to write to. Can be one of the
following:

	Computer

	Machine

	User

Default is Machine

	Raises:

	
	SaltInvocationError -- Invalid policy_class

	SaltInvocationError -- Invalid v_type

	SaltInvocationError -- v_data doesn't match v_type

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

Set REG_DWORD value (default)
salt '*' lgpo_reg.set_value "SOFTWARE\MyKey" "MyValue" 1

Set REG_SZ value
salt '*' lgpo_reg.set_value "SOFTWARE\MyKey" "MyValue" "string value" "REG_SZ"

	
salt.modules.win_lgpo_reg.write_reg_pol(data, policy_class='Machine')

	Write data to the Registry.pol file. The data is a dictionary that is then
converted to the appropriate bytes format expected by Registry.pol

	Parameters:

	
	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- A dictionary containing Registry.pol data

	policy_class (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The registry class to write to. Can be one of the
following:

	Computer

	Machine

	User

Default is Machine

	Raises:

	
	SaltInvocationError -- Invalid policy class

	CommandExecutionError -- On failure

	Returns:

	True if successful

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

Write to Machine Registry.pol
salt '*' lgpo_reg.write_reg_pol "{'SOFTWARE\MyKey': {'MyValue': 'data': 1, 'type': 'REG_DWORD'}}"

salt.modules.win_license

This module allows you to manage windows licensing via slmgr.vbs

salt '*' license.install XXXXX-XXXXX-XXXXX-XXXXX-XXXXX

	
salt.modules.win_license.activate()

	Attempt to activate the current machine via Windows Activation

CLI Example:

salt '*' license.activate

	
salt.modules.win_license.info()

	Return information about the license, if the license is not
correctly activated this will return None.

CLI Example:

salt '*' license.info

	
salt.modules.win_license.install(product_key)

	Install the given product key

CLI Example:

salt '*' license.install XXXXX-XXXXX-XXXXX-XXXXX-XXXXX

	
salt.modules.win_license.installed(product_key)

	Check to see if the product key is already installed.

	Note: This is not 100% accurate as we can only see the last
	5 digits of the license.

CLI Example:

salt '*' license.installed XXXXX-XXXXX-XXXXX-XXXXX-XXXXX

	
salt.modules.win_license.licensed()

	Return true if the current machine is licensed correctly

CLI Example:

salt '*' license.licensed

	
salt.modules.win_license.uninstall()

	Uninstall the current product key

CLI Example:

salt '*' license.uninstall

salt.modules.win_network

Module for gathering and managing network information

	
salt.modules.win_network.connect(host, port=None, **kwargs)

	Test connectivity to a host using a particular
port from the minion.

New in version 2016.3.0.

CLI Example:

salt '*' network.connect archlinux.org 80

salt '*' network.connect archlinux.org 80 timeout=3

salt '*' network.connect archlinux.org 80 timeout=3 family=ipv4

salt '*' network.connect google-public-dns-a.google.com port=53 proto=udp timeout=3

	
salt.modules.win_network.dig(host)

	Performs a DNS lookup with dig

Note: dig must be installed on the Windows minion

CLI Example:

salt '*' network.dig archlinux.org

	
salt.modules.win_network.get_route(ip)

	Return routing information for given destination ip

New in version 2016.11.5.

CLI Example:

salt '*' network.get_route 10.10.10.10

	
salt.modules.win_network.hw_addr(iface)

	Return the hardware address (a.k.a. MAC address) for a given interface

CLI Example:

salt '*' network.hw_addr 'Wireless Connection #1'

	
salt.modules.win_network.hwaddr(iface)

	This function is an alias of hw_addr.

Return the hardware address (a.k.a. MAC address) for a given interface

CLI Example:

salt '*' network.hw_addr 'Wireless Connection #1'

	
salt.modules.win_network.in_subnet(cidr)

	Returns True if host is within specified subnet, otherwise False

CLI Example:

salt '*' network.in_subnet 10.0.0.0/16

	
salt.modules.win_network.interfaces()

	Return a dictionary of information about all the interfaces on the minion

CLI Example:

salt '*' network.interfaces

	
salt.modules.win_network.interfaces_names()

	Return a list of all the interfaces names

CLI Example:

salt '*' network.interfaces_names

	
salt.modules.win_network.ip_addrs(interface=None, include_loopback=False, cidr=None, type=None)

	Returns a list of IPv4 addresses assigned to the host.

	interface
	Only IP addresses from that interface will be returned.

	include_loopbackFalse
	Include loopback 127.0.0.1 IPv4 address.

	cidr
	
Describes subnet using CIDR notation and only IPv4 addresses that belong
to this subnet will be returned.

Changed in version 2019.2.0.

	type
	If option set to 'public' then only public addresses will be returned.
Ditto for 'private'.

Changed in version 2019.2.0.

CLI Example:

salt '*' network.ip_addrs
salt '*' network.ip_addrs cidr=10.0.0.0/8
salt '*' network.ip_addrs cidr=192.168.0.0/16 type=private

	
salt.modules.win_network.ip_addrs6(interface=None, include_loopback=False, cidr=None)

	Returns a list of IPv6 addresses assigned to the host.

	interface
	Only IP addresses from that interface will be returned.

	include_loopbackFalse
	Include loopback ::1 IPv6 address.

	cidr
	Describes subnet using CIDR notation and only IPv6 addresses that belong
to this subnet will be returned.

Changed in version 2019.2.0.

CLI Example:

salt '*' network.ip_addrs6
salt '*' network.ip_addrs6 cidr=2000::/3

	
salt.modules.win_network.ipaddrs(interface=None, include_loopback=False, cidr=None, type=None)

	This function is an alias of ip_addrs.

Returns a list of IPv4 addresses assigned to the host.

	interface
	Only IP addresses from that interface will be returned.

	include_loopbackFalse
	Include loopback 127.0.0.1 IPv4 address.

	cidr
	
Describes subnet using CIDR notation and only IPv4 addresses that belong
to this subnet will be returned.

Changed in version 2019.2.0.

	type
	If option set to 'public' then only public addresses will be returned.
Ditto for 'private'.

Changed in version 2019.2.0.

CLI Example:

salt '*' network.ip_addrs
salt '*' network.ip_addrs cidr=10.0.0.0/8
salt '*' network.ip_addrs cidr=192.168.0.0/16 type=private

	
salt.modules.win_network.ipaddrs6(interface=None, include_loopback=False, cidr=None)

	This function is an alias of ip_addrs6.

Returns a list of IPv6 addresses assigned to the host.

	interface
	Only IP addresses from that interface will be returned.

	include_loopbackFalse
	Include loopback ::1 IPv6 address.

	cidr
	Describes subnet using CIDR notation and only IPv6 addresses that belong
to this subnet will be returned.

Changed in version 2019.2.0.

CLI Example:

salt '*' network.ip_addrs6
salt '*' network.ip_addrs6 cidr=2000::/3

	
salt.modules.win_network.is_private(ip_addr)

	Check if the given IP address is a private address

New in version 2019.2.0.

CLI Example:

salt '*' network.is_private 10.0.0.3

	
salt.modules.win_network.netstat()

	Return information on open ports and states

CLI Example:

salt '*' network.netstat

	
salt.modules.win_network.nslookup(host)

	Query DNS for information about a domain or ip address

CLI Example:

salt '*' network.nslookup archlinux.org

	
salt.modules.win_network.ping(host, timeout=False, return_boolean=False)

	Performs a ping to a host

CLI Example:

salt '*' network.ping archlinux.org

New in version 2016.11.0.

Return a True or False instead of ping output.

salt '*' network.ping archlinux.org return_boolean=True

Set the time to wait for a response in seconds.

salt '*' network.ping archlinux.org timeout=3

	
salt.modules.win_network.subnets()

	Returns a list of subnets to which the host belongs

CLI Example:

salt '*' network.subnets

	
salt.modules.win_network.traceroute(host)

	Performs a traceroute to a 3rd party host

CLI Example:

salt '*' network.traceroute archlinux.org

salt.modules.win_ntp

Management of NTP servers on Windows

New in version 2014.1.0.

	
salt.modules.win_ntp.get_servers()

	Get list of configured NTP servers

CLI Example:

salt '*' ntp.get_servers

	
salt.modules.win_ntp.set_servers(*servers)

	Set Windows to use a list of NTP servers

CLI Example:

salt '*' ntp.set_servers 'pool.ntp.org' 'us.pool.ntp.org'

salt.modules.win_path

Manage the Windows System PATH

Note that not all Windows applications will rehash the PATH environment variable,
Only the ones that listen to the WM_SETTINGCHANGE message.

	
salt.modules.win_path.add(path, index=None, **kwargs)

	Add the directory to the SYSTEM path in the index location. Returns
True if successful, otherwise False.

	path
	Directory to add to path

	index
	Optionally specify an index at which to insert the directory

	rehashTrue
	If the registry was updated, and this value is set to True, sends a
WM_SETTINGCHANGE broadcast to refresh the environment variables. Set
this to False to skip this broadcast.

CLI Examples:

Will add to the beginning of the path
salt '*' win_path.add 'c:\python27' 0

Will add to the end of the path
salt '*' win_path.add 'c:\python27' index='-1'

	
salt.modules.win_path.exists(path)

	Check if the directory is configured in the SYSTEM path
Case-insensitive and ignores trailing backslash

	Returns:

	boolean True if path exists, False if not

CLI Example:

salt '*' win_path.exists 'c:\python27'
salt '*' win_path.exists 'c:\python27\'
salt '*' win_path.exists 'C:\pyThon27'

	
salt.modules.win_path.get_path()

	Returns a list of items in the SYSTEM path

CLI Example:

salt '*' win_path.get_path

	
salt.modules.win_path.rehash()

	Send a WM_SETTINGCHANGE Broadcast to Windows to refresh the Environment
variables for new processes.

Note

This will only affect new processes that aren't launched by services. To
apply changes to the path to services, the host must be restarted. The
salt-minion, if running as a service, will not see changes to the
environment until the system is restarted. See
MSDN Documentation [https://support.microsoft.com/en-us/help/821761/changes-that-you-make-to-environment-variables-do-not-affect-services]

CLI Example:

salt '*' win_path.rehash

	
salt.modules.win_path.remove(path, **kwargs)

	Remove the directory from the SYSTEM path

	Returns:

	boolean True if successful, False if unsuccessful

	rehashTrue
	If the registry was updated, and this value is set to True, sends a
WM_SETTINGCHANGE broadcast to refresh the environment variables. Set
this to False to skip this broadcast.

CLI Example:

Will remove C:\Python27 from the path
salt '*' win_path.remove 'c:\\python27'

salt.modules.win_pkg

A module to manage software on Windows

Important

If you feel that Salt should be using this module to manage packages on a
minion, and it is using a different module (or gives an error similar to
'pkg.install' is not available), see here.

The following functions require the existence of a windows repository metadata DB, typically created by running
pkg.refresh_db:

	pkg.get_repo_data

	pkg.install

	pkg.latest_version

	pkg.list_available

	pkg.list_pkgs

	pkg.list_upgrades

	pkg.remove

If a metadata DB does not already exist and one of these functions is run, then
one will be created from the repo SLS files that are present.

As the creation of this metadata can take some time, the
winrepo_cache_expire_min minion config option can be used to
suppress refreshes when the metadata is less than a given number of seconds
old.

Note

Version numbers can be version number string, latest and Not
Found, where Not Found means this module was not able to determine
the version of the software installed, it can also be used as the version
number in sls definitions file in these cases. Versions numbers are sorted
in order of 0, Not Found, order version numbers, ..., latest.

	
salt.modules.win_pkg.compare_versions(ver1='', oper='==', ver2='')

	Compare software package versions. Made public for use with Jinja

	Parameters:

	
	ver1 (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A software version to compare

	oper (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The operand to use to compare

	ver2 (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A software version to compare

	Returns:

	True if the comparison is valid, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' pkg.compare_versions 1.2 >= 1.3

	
salt.modules.win_pkg.genrepo(**kwargs)

	Generate package metadata db based on files within the winrepo_source_dir

Kwargs:

saltenv (str): Salt environment. Default: base

	verbose (bool):
	Return verbose data structure which includes 'success_list', a list
of all sls files and the package names contained within.
Default False.

	failhard (bool):
	If True, an error will be raised if any repo SLS files failed
to process. If False, no error will be raised, and a dictionary
containing the full results will be returned.

Note

	Hidden directories (directories beginning with '.', such as
'.git') will be ignored.

	Returns:

	A dictionary of the results of the command

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt-run pkg.genrepo
salt -G 'os:windows' pkg.genrepo verbose=true failhard=false
salt -G 'os:windows' pkg.genrepo saltenv=base

	
salt.modules.win_pkg.get_package_info(name, saltenv='base')

	Get information about the package as found in the winrepo database

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the package

	saltenv (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The salt environment to use. Default is "base"

	Returns:

	A dictionary of package info, empty if package not available

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' pkg.get_package_info chrome

	
salt.modules.win_pkg.get_repo_data(saltenv='base')

	Returns the existing package metadata db. Will create it, if it does not
exist, however will not refresh it.

	Parameters:

	saltenv (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Salt environment. Default base

	Returns:

	A dict containing contents of metadata db.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' pkg.get_repo_data

	
salt.modules.win_pkg.install(name=None, refresh=False, pkgs=None, **kwargs)

	Install the passed package(s) on the system using winrepo

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of a single package, or a comma-separated list of packages
to install. (no spaces after the commas)

	refresh (bool [https://docs.python.org/3/library/functions.html#bool]) -- Boolean value representing whether or not to refresh the winrepo db.
Default False.

	pkgs (list [https://docs.python.org/3/library/stdtypes.html#list]) -- A list of packages to install from a software repository. All
packages listed under pkgs will be installed via a single
command.

You can specify a version by passing the item as a dict:

CLI Example:

will install the latest version of foo and bar
salt '*' pkg.install pkgs='["foo", "bar"]'

will install the latest version of foo and version 1.2.3 of bar
salt '*' pkg.install pkgs='["foo", {"bar": "1.2.3"}]'

Kwargs:

	version (str):
	The specific version to install. If omitted, the latest version will
be installed. Recommend for use when installing a single package.

If passed with a list of packages in the pkgs parameter, the
version will be ignored.

CLI Example:

Version is ignored
salt '*' pkg.install pkgs="['foo', 'bar']" version=1.2.3

If passed with a comma separated list in the name parameter, the
version will apply to all packages in the list.

CLI Example:

Version 1.2.3 will apply to packages foo and bar
salt '*' pkg.install foo,bar version=1.2.3

	extra_install_flags (str):
	Additional install flags that will be appended to the
install_flags defined in the software definition file. Only
applies when single package is passed.

	saltenv (str):
	Salt environment. Default 'base'

	report_reboot_exit_codes (bool):
	If the installer exits with a recognized exit code indicating that
a reboot is required, the module function

win_system.set_reboot_required_witnessed

will be called, preserving the knowledge of this event for the
remainder of the current boot session. For the time being, 3010 is
the only recognized exit code. The value of this param defaults to
True.

New in version 2016.11.0.

	Returns:

	Return a dict containing the new package names and versions. If
the package is already installed, an empty dict is returned.

If the package is installed by pkg.install:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

The following example will refresh the winrepo and install a single
package, 7zip.

CLI Example:

salt '*' pkg.install 7zip refresh=True

CLI Example:

salt '*' pkg.install 7zip
salt '*' pkg.install 7zip,filezilla
salt '*' pkg.install pkgs='["7zip","filezilla"]'

WinRepo Definition File Examples:

The following example demonstrates the use of cache_file. This would be
used if you have multiple installers in the same directory that use the
same install.ini file and you don't want to download the additional
installers.

ntp:
 4.2.8:
 installer: 'salt://win/repo/ntp/ntp-4.2.8-win32-setup.exe'
 full_name: Meinberg NTP Windows Client
 locale: en_US
 reboot: False
 cache_file: 'salt://win/repo/ntp/install.ini'
 install_flags: '/USEFILE=C:\salt\var\cache\salt\minion\files\base\win\repo\ntp\install.ini'
 uninstaller: 'NTP/uninst.exe'

The following example demonstrates the use of cache_dir. It assumes a
file named install.ini resides in the same directory as the installer.

ntp:
 4.2.8:
 installer: 'salt://win/repo/ntp/ntp-4.2.8-win32-setup.exe'
 full_name: Meinberg NTP Windows Client
 locale: en_US
 reboot: False
 cache_dir: True
 install_flags: '/USEFILE=C:\salt\var\cache\salt\minion\files\base\win\repo\ntp\install.ini'
 uninstaller: 'NTP/uninst.exe'

	
salt.modules.win_pkg.latest_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

Note

Since this is looking for the latest version available, a refresh_db
will be triggered by default. This can take some time. To avoid this set
refresh to False.

	Parameters:

	names (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A single or multiple names to lookup

	Kwargs:
	saltenv (str): Salt environment. Default base
refresh (bool): Refresh package metadata. Default True

	Returns:

	A dictionary of packages with the latest version available

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	
salt.modules.win_pkg.list_available(*names, **kwargs)

	Return a list of available versions of the specified package.

	Parameters:

	names (str [https://docs.python.org/3/library/stdtypes.html#str]) -- One or more package names

Kwargs:

saltenv (str): The salt environment to use. Default base.

refresh (bool): Refresh package metadata. Default False.

	return_dict_always (bool):
	Default False dict when a single package name is queried.

	Returns:

	The package name with its available versions

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

{'<package name>': ['<version>', '<version>',]}

CLI Example:

salt '*' pkg.list_available <package name> return_dict_always=True
salt '*' pkg.list_available <package name01> <package name02>

	
salt.modules.win_pkg.list_pkgs(versions_as_list=False, include_components=True, include_updates=True, **kwargs)

	List the packages currently installed.

Note

To view installed software as displayed in the Add/Remove Programs, set
include_components and include_updates to False.

	Parameters:

	
	versions_as_list (bool [https://docs.python.org/3/library/functions.html#bool]) -- Returns the versions as a list

	include_components (bool [https://docs.python.org/3/library/functions.html#bool]) -- Include sub components of installed software. Default is True

	include_updates (bool [https://docs.python.org/3/library/functions.html#bool]) -- Include software updates and Windows updates. Default is True

Kwargs:

	saltenv (str):
	The salt environment to use. Default base

	refresh (bool):
	Refresh package metadata. Default False

	Returns:

	A dictionary of installed software with versions installed

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs
salt '*' pkg.list_pkgs versions_as_list=True

	
salt.modules.win_pkg.list_upgrades(refresh=True, **kwargs)

	List all available package upgrades on this system

	Parameters:

	refresh (bool [https://docs.python.org/3/library/functions.html#bool]) -- Refresh package metadata. Default True

	Kwargs:
	saltenv (str): Salt environment. Default base

	Returns:

	A dictionary of packages with available upgrades

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' pkg.list_upgrades

	
salt.modules.win_pkg.normalize_name(name)

	Nothing to do on Windows. We need this function so that Salt doesn't go
through every module looking for pkg.normalize_name.

New in version 3006.0.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the package

	Returns:

	The name of the package

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' pkg.normalize_name git

	
salt.modules.win_pkg.purge(name=None, pkgs=None, **kwargs)

	Package purges are not supported on Windows, this function is identical to
remove().

Note

At some point in the future, pkg.purge may direct the installer to
remove all configs and settings for software packages that support that
option.

New in version 0.16.0.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the package to be deleted.

	version (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The version of the package to be deleted. If this option is
used in combination with the pkgs option below, then this
version will be applied to all targeted packages.

	pkgs (list [https://docs.python.org/3/library/stdtypes.html#list]) -- A list of packages to delete. Must be passed as a python
list. The name parameter will be ignored if this option is
passed.

	Kwargs:
	saltenv (str): Salt environment. Default base
refresh (bool): Refresh package metadata. Default False

	Returns:

	A dict containing the changes.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

	
salt.modules.win_pkg.refresh_db(**kwargs)

	Generates the local software metadata database (winrepo.p) on the minion.
The database is stored in a serialized format located by default at the
following location:

C:\ProgramData\Salt Project\Salt\var\cache\salt\minion\files\base\win\repo-ng\winrepo.p

This module performs the following steps to generate the software metadata
database:

	Fetch the package definition files (.sls) from winrepo_source_dir
(default salt://win/repo-ng) and cache them in
<cachedir>files<saltenv><winrepo_source_dir>
(default: C:\ProgramData\Salt Project\Salt\var\cache\salt\minion\files\base\win\repo-ng)

	Call pkg.genrepo to parse the
package definition files and generate the repository metadata database
file (winrepo.p)

	Return the report received from
pkg.genrepo

The default winrepo directory on the master is /srv/salt/win/repo-ng. All
files that end with .sls in this and all subdirectories will be used to
generate the repository metadata database (winrepo.p).

Note

	Hidden directories (directories beginning with '.', such as
'.git') will be ignored.

Note

There is no need to call pkg.refresh_db every time you work with the
pkg module. Automatic refresh will occur based on the following minion
configuration settings:

	winrepo_cache_expire_min

	winrepo_cache_expire_max

However, if the package definition files have changed, as would be the
case if you are developing a new package definition, this function
should be called to ensure the minion has the latest information about
packages available to it.

Warning

Directories and files fetched from <winrepo_source_dir>
(/srv/salt/win/repo-ng) will be processed in alphabetical order. If
two or more software definition files contain the same name, the last
one processed replaces all data from the files processed before it.

For more information see
Windows Software Repository

Arguments:

saltenv (str): Salt environment. Default: base

	verbose (bool):
	Return a verbose data structure which includes 'success_list', a
list of all sls files and the package names contained within.
Default is 'False'

	failhard (bool):
	If True, an error will be raised if any repo SLS files fails to
process. If False, no error will be raised, and a dictionary
containing the full results will be returned.

	Returns:

	A dictionary containing the results of the database refresh.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Note

A result with a total: 0 generally means that the files are in the
wrong location on the master. Try running the following command on the
minion: salt-call -l debug pkg.refresh saltenv=base

Warning

When calling this command from a state using module.run be sure to
pass failhard: False. Otherwise, the state will report failure if it
encounters a bad software definition file.

CLI Example:

salt '*' pkg.refresh_db
salt '*' pkg.refresh_db saltenv=base

	
salt.modules.win_pkg.remove(name=None, pkgs=None, **kwargs)

	Remove the passed package(s) from the system using winrepo

New in version 0.16.0.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name(s) of the package(s) to be uninstalled. Can be a
single package or a comma delimited list of packages, no spaces.

	pkgs (list [https://docs.python.org/3/library/stdtypes.html#list]) -- A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

Kwargs:

	version (str):
	The version of the package to be uninstalled. If this option is
used to to uninstall multiple packages, then this version will be
applied to all targeted packages. Recommended using only when
uninstalling a single package. If this parameter is omitted, the
latest version will be uninstalled.

saltenv (str): Salt environment. Default base
refresh (bool): Refresh package metadata. Default False

	Returns:

	Returns a dict containing the changes.

If the package is removed by pkg.remove:

	{'<package>': {'old': '<old-version>',
	'new': '<new-version>'}}

If the package is already uninstalled:

{'<package>': {'current': 'not installed'}}

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.win_pkg.upgrade(**kwargs)

	Upgrade all software. Currently not implemented

	Kwargs:
	saltenv (str): The salt environment to use. Default base.
refresh (bool): Refresh package metadata. Default True.

Note

This feature is not yet implemented for Windows.

	Returns:

	Empty dict, until implemented

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' pkg.upgrade

	
salt.modules.win_pkg.upgrade_available(name, **kwargs)

	Check whether or not an upgrade is available for a given package

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of a single package

	Kwargs:
	refresh (bool): Refresh package metadata. Default True
saltenv (str): The salt environment. Default base

	Returns:

	True if new version available, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' pkg.upgrade_available <package name>

	
salt.modules.win_pkg.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- One or more package names

	Kwargs:
	saltenv (str): The salt environment to use. Default base.
refresh (bool): Refresh package metadata. Default False.

	Returns:

	version string when a single package is specified.
dict: The package name(s) with the installed versions.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

{['<version>', '<version>',]} OR
{'<package name>': ['<version>', '<version>',]}

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package name01> <package name02>

salt.modules.win_pki

Microsoft certificate management via the PKI Client PowerShell module.
https://technet.microsoft.com/en-us/itpro/powershell/windows/pkiclient/pkiclient

The PKI Client PowerShell module is only available on Windows 8+ and Windows
Server 2012+.
https://technet.microsoft.com/en-us/library/hh848636(v=wps.620).aspx

	platform:

	Windows

	depends:

	
	PowerShell 4

	PKI Client Module (Windows 8+ / Windows Server 2012+)

New in version 2016.11.0.

	
salt.modules.win_pki.export_cert(name, thumbprint, cert_format='cer', context='LocalMachine', store='My', password='')

	Export the certificate to a file from the given certificate store.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The destination path for the exported certificate file.

	thumbprint (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The thumbprint value of the target certificate.

	cert_format (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The certificate format. Specify 'cer' for X.509, or
'pfx' for PKCS #12.

	context (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the certificate store location context.

	store (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the certificate store.

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The password of the certificate. Only applicable to pfx
format. Note that if used interactively, the password will be seen by all minions.
To protect the password, use a state and get the password from pillar.

	Returns:

	A boolean representing whether all changes succeeded.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_pki.export_cert name='C:\certs\example.cer' thumbprint='AAA000'

	
salt.modules.win_pki.get_cert_file(name, cert_format='cer', password='')

	Get the details of the certificate file.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The filesystem path of the certificate file.

	cert_format (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The certificate format. Specify 'cer' for X.509, or
'pfx' for PKCS #12.

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The password of the certificate. Only applicable to pfx
format. Note that if used interactively, the password will be seen by all minions.
To protect the password, use a state and get the password from pillar.

	Returns:

	A dictionary of the certificate thumbprints and properties.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' win_pki.get_cert_file name='C:\certs\example.cer'

	
salt.modules.win_pki.get_certs(context='LocalMachine', store='My')

	Get the available certificates in the given store.

	Parameters:

	
	context (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the certificate store location context.

	store (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the certificate store.

	Returns:

	A dictionary of the certificate thumbprints and properties.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' win_pki.get_certs

	
salt.modules.win_pki.get_stores()

	Get the certificate location contexts and their corresponding stores.

	Returns:

	A dictionary of the certificate location contexts and stores.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' win_pki.get_stores

	
salt.modules.win_pki.import_cert(name, cert_format='cer', context='LocalMachine', store='My', exportable=True, password='', saltenv='base')

	Import the certificate file into the given certificate store.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path of the certificate file to import.

	cert_format (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The certificate format. Specify 'cer' for X.509, or
'pfx' for PKCS #12.

	context (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the certificate store location context.

	store (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the certificate store.

	exportable (bool [https://docs.python.org/3/library/functions.html#bool]) -- Mark the certificate as exportable. Only applicable
to pfx format.

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The password of the certificate. Only applicable to pfx
format. Note that if used interactively, the password will be seen by all minions.
To protect the password, use a state and get the password from pillar.

	saltenv (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The environment the file resides in.

	Returns:

	A boolean representing whether all changes succeeded.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_pki.import_cert name='salt://cert.cer'

	
salt.modules.win_pki.remove_cert(thumbprint, context='LocalMachine', store='My')

	Remove the certificate from the given certificate store.

	Parameters:

	
	thumbprint (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The thumbprint value of the target certificate.

	context (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the certificate store location context.

	store (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the certificate store.

	Returns:

	A boolean representing whether all changes succeeded.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_pki.remove_cert thumbprint='AAA000'

	
salt.modules.win_pki.test_cert(thumbprint, context='LocalMachine', store='My', untrusted_root=False, dns_name='', eku='')

	Check the certificate for validity.

	Parameters:

	
	thumbprint (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The thumbprint value of the target certificate.

	context (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the certificate store location context.

	store (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the certificate store.

	untrusted_root (bool [https://docs.python.org/3/library/functions.html#bool]) -- Whether the root certificate is required to be
trusted in chain building.

	dns_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The DNS name to verify as valid for the certificate.

	eku (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The enhanced key usage object identifiers to verify for the
certificate chain.

	Returns:

	A boolean representing whether the certificate was considered
valid.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_pki.test_cert thumbprint='AAA000' dns_name='example.test'

salt.modules.win_powercfg

This module allows you to control the power settings of a windows minion via
powercfg.

New in version 2015.8.0.

Set monitor to never turn off on Battery power
salt '*' powercfg.set_monitor_timeout 0 power=dc
Set disk timeout to 120 minutes on AC power
salt '*' powercfg.set_disk_timeout 120 power=ac

	
salt.modules.win_powercfg.get_disk_timeout(scheme=None)

	Get the current disk timeout of the given scheme

	Parameters:

	scheme (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The scheme to use, leave as None to use the current. Default is
None. This can be the GUID or the Alias for the Scheme. Known
Aliases are:

	SCHEME_BALANCED - Balanced

	SCHEME_MAX - Power saver

	SCHEME_MIN - High performance

	Returns:

	A dictionary of both the AC and DC settings

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' powercfg.get_disk_timeout

	
salt.modules.win_powercfg.get_hibernate_timeout(scheme=None)

	Get the current hibernate timeout of the given scheme

	scheme (str):
	The scheme to use, leave as None to use the current. Default is
None. This can be the GUID or the Alias for the Scheme. Known
Aliases are:

	SCHEME_BALANCED - Balanced

	SCHEME_MAX - Power saver

	SCHEME_MIN - High performance

	Returns:

	A dictionary of both the AC and DC settings

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' powercfg.get_hibernate_timeout

	
salt.modules.win_powercfg.get_monitor_timeout(scheme=None)

	Get the current monitor timeout of the given scheme

	Parameters:

	scheme (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The scheme to use, leave as None to use the current. Default is
None. This can be the GUID or the Alias for the Scheme. Known
Aliases are:

	SCHEME_BALANCED - Balanced

	SCHEME_MAX - Power saver

	SCHEME_MIN - High performance

	Returns:

	A dictionary of both the AC and DC settings

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' powercfg.get_monitor_timeout

	
salt.modules.win_powercfg.get_standby_timeout(scheme=None)

	Get the current standby timeout of the given scheme

	scheme (str):
	The scheme to use, leave as None to use the current. Default is
None. This can be the GUID or the Alias for the Scheme. Known
Aliases are:

	SCHEME_BALANCED - Balanced

	SCHEME_MAX - Power saver

	SCHEME_MIN - High performance

	Returns:

	A dictionary of both the AC and DC settings

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' powercfg.get_standby_timeout

	
salt.modules.win_powercfg.set_disk_timeout(timeout, power='ac', scheme=None)

	Set the disk timeout in minutes for the given power scheme

	Parameters:

	
	timeout (int [https://docs.python.org/3/library/functions.html#int]) -- The amount of time in minutes before the disk will timeout

	power (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Set the value for AC or DC power. Default is ac. Valid options
are:

	ac (AC Power)

	dc (Battery)

	scheme (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The scheme to use, leave as None to use the current. Default is
None. This can be the GUID or the Alias for the Scheme. Known
Aliases are:

	SCHEME_BALANCED - Balanced

	SCHEME_MAX - Power saver

	SCHEME_MIN - High performance

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

Sets the disk timeout to 30 minutes on battery
salt '*' powercfg.set_disk_timeout 30 power=dc

	
salt.modules.win_powercfg.set_hibernate_timeout(timeout, power='ac', scheme=None)

	Set the hibernate timeout in minutes for the given power scheme

	Parameters:

	
	timeout (int [https://docs.python.org/3/library/functions.html#int]) -- The amount of time in minutes before the computer hibernates

	power (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Set the value for AC or DC power. Default is ac. Valid options
are:

	ac (AC Power)

	dc (Battery)

	scheme (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The scheme to use, leave as None to use the current. Default is
None. This can be the GUID or the Alias for the Scheme. Known
Aliases are:

	SCHEME_BALANCED - Balanced

	SCHEME_MAX - Power saver

	SCHEME_MIN - High performance

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

Sets the hibernate timeout to 30 minutes on Battery
salt '*' powercfg.set_hibernate_timeout 30 power=dc

	
salt.modules.win_powercfg.set_monitor_timeout(timeout, power='ac', scheme=None)

	Set the monitor timeout in minutes for the given power scheme

	Parameters:

	
	timeout (int [https://docs.python.org/3/library/functions.html#int]) -- The amount of time in minutes before the monitor will timeout

	power (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Set the value for AC or DC power. Default is ac. Valid options
are:

	ac (AC Power)

	dc (Battery)

	scheme (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The scheme to use, leave as None to use the current. Default is
None. This can be the GUID or the Alias for the Scheme. Known
Aliases are:

	SCHEME_BALANCED - Balanced

	SCHEME_MAX - Power saver

	SCHEME_MIN - High performance

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

Sets the monitor timeout to 30 minutes
salt '*' powercfg.set_monitor_timeout 30

	
salt.modules.win_powercfg.set_standby_timeout(timeout, power='ac', scheme=None)

	Set the standby timeout in minutes for the given power scheme

	Parameters:

	
	timeout (int [https://docs.python.org/3/library/functions.html#int]) -- The amount of time in minutes before the computer sleeps

	power (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Set the value for AC or DC power. Default is ac. Valid options
are:

	ac (AC Power)

	dc (Battery)

	scheme (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The scheme to use, leave as None to use the current. Default is
None. This can be the GUID or the Alias for the Scheme. Known
Aliases are:

	SCHEME_BALANCED - Balanced

	SCHEME_MAX - Power saver

	SCHEME_MIN - High performance

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

Sets the system standby timeout to 30 minutes on Battery
salt '*' powercfg.set_standby_timeout 30 power=dc

salt.modules.win_psget

Module for managing PowerShell through PowerShellGet (PSGet)

	depends:

	
	PowerShell 5.0

	PSGet

Support for PowerShell

	
salt.modules.win_psget.avail_modules(desc=False)

	List available modules in registered Powershell module repositories.

	Parameters:

	desc (bool) -- If True, the verbose description will be returned.

CLI Example:

salt 'win01' psget.avail_modules
salt 'win01' psget.avail_modules desc=True

	
salt.modules.win_psget.bootstrap()

	Make sure that nuget-anycpu.exe is installed.
This will download the official nuget-anycpu.exe from the internet.

CLI Example:

salt 'win01' psget.bootstrap

	
salt.modules.win_psget.get_repository(name)

	Get the details of a local PSGet repository

	Parameters:

	name (str) -- Name of the repository

CLI Example:

salt 'win01' psget.get_repository MyRepo

	
salt.modules.win_psget.install(name, minimum_version=None, required_version=None, scope=None, repository=None)

	Install a Powershell module from powershell gallery on the system.

	Parameters:

	
	name (str) -- Name of a Powershell module

	minimum_version (str) -- The maximum version to install, e.g. 1.23.2

	required_version (str) -- Install a specific version

	scope (str) -- The scope to install the module to, e.g. CurrentUser, Computer

	repository (str) -- The friendly name of a private repository, e.g. MyREpo

CLI Example:

salt 'win01' psget.install PowerPlan

	
salt.modules.win_psget.list_modules(desc=False)

	List currently installed PSGet Modules on the system.

	Parameters:

	desc (bool) -- If True, the verbose description will be returned.

CLI Example:

salt 'win01' psget.list_modules
salt 'win01' psget.list_modules desc=True

	
salt.modules.win_psget.register_repository(name, location, installation_policy=None)

	Register a PSGet repository on the local machine

	Parameters:

	
	name (str) -- The name for the repository

	location (str) -- The URI for the repository

	installation_policy (str) -- The installation policy
for packages, e.g. Trusted, Untrusted

CLI Example:

salt 'win01' psget.register_repository MyRepo https://myrepo.mycompany.com/packages

	
salt.modules.win_psget.remove(name)

	Remove a Powershell DSC module from the system.

	Parameters:

	name (str) -- Name of a Powershell DSC module

CLI Example:

salt 'win01' psget.remove PowerPlan

	
salt.modules.win_psget.update(name, maximum_version=None, required_version=None)

	Update a PowerShell module to a specific version, or the newest

	Parameters:

	
	name (str) -- Name of a Powershell module

	maximum_version (str) -- The maximum version to install, e.g. 1.23.2

	required_version (str) -- Install a specific version

CLI Example:

salt 'win01' psget.update PowerPlan

salt.modules.win_servermanager

Manage Windows features via the ServerManager powershell module. Can list
available and installed roles/features. Can install and remove roles/features.

	maintainer:

	Shane Lee <slee@saltstack.com>

	platform:

	Windows Server 2008R2 or greater

	depends:

	PowerShell module ServerManager

	
salt.modules.win_servermanager.install(feature, recurse=False, restart=False, source=None, exclude=None)

	Install a feature

Note

Some features require reboot after un/installation, if so until the
server is restarted other features can not be installed!

Note

Some features take a long time to complete un/installation, set -t with
a long timeout

	Parameters:

	
	feature (str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list]) -- The name of the feature(s) to install. This can be a single feature,
a string of features in a comma delimited list (no spaces), or a
list of features.

New in version 2018.3.0: Added the ability to pass a list of features to be installed.

	recurse (Options[bool [https://docs.python.org/3/library/functions.html#bool]]) -- Install all sub-features. Default is False

	restart (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) -- Restarts the computer when installation is complete, if required by
the role/feature installed. Will also trigger a reboot if an item
in exclude requires a reboot to be properly removed. Default is
False

	source (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- Path to the source files if missing from the target system. None
means that the system will use windows update services to find the
required files. Default is None

	exclude (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) -- The name of the feature to exclude when installing the named
feature. This can be a single feature, a string of features in a
comma-delimited list (no spaces), or a list of features.

Warning

As there is no exclude option for the Add-WindowsFeature
or Install-WindowsFeature PowerShell commands the features
named in exclude will be installed with other sub-features
and will then be removed. If the feature named in ``exclude``
is not a sub-feature of one of the installed items it will still
be removed.

	Returns:

	A dictionary containing the results of the install

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

Install the Telnet Client passing a single string
salt '*' win_servermanager.install Telnet-Client

Install the TFTP Client and the SNMP Service passing a comma-delimited
string. Install all sub-features
salt '*' win_servermanager.install TFTP-Client,SNMP-Service recurse=True

Install the TFTP Client from d:\side-by-side
salt '*' win_servermanager.install TFTP-Client source=d:\\side-by-side

Install the XPS Viewer, SNMP Service, and Remote Access passing a
list. Install all sub-features, but exclude the Web Server
salt '*' win_servermanager.install "['XPS-Viewer', 'SNMP-Service', 'RemoteAccess']" True recurse=True exclude="Web-Server"

	
salt.modules.win_servermanager.list_available()

	List available features to install

	Returns:

	A list of available features as returned by the
Get-WindowsFeature PowerShell command

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' win_servermanager.list_available

	
salt.modules.win_servermanager.list_installed()

	List installed features. Supported on Windows Server 2008 and Windows 8 and
newer.

	Returns:

	A dictionary of installed features

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' win_servermanager.list_installed

	
salt.modules.win_servermanager.remove(feature, remove_payload=False, restart=False)

	Remove an installed feature

Note

Some features require a reboot after installation/uninstallation. If
one of these features are modified, then other features cannot be
installed until the server is restarted. Additionally, some features
take a while to complete installation/uninstallation, so it is a good
idea to use the -t option to set a longer timeout.

	Parameters:

	
	feature (str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list]) -- The name of the feature(s) to remove. This can be a single feature,
a string of features in a comma delimited list (no spaces), or a
list of features.

New in version 2018.3.0: Added the ability to pass a list of features to be removed.

	remove_payload (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) -- True will cause the feature to be removed from the side-by-side
store (%SystemDrive%:\Windows\WinSxS). Default is False

	restart (Optional[bool [https://docs.python.org/3/library/functions.html#bool]]) -- Restarts the computer when uninstall is complete, if required by the
role/feature removed. Default is False

	Returns:

	A dictionary containing the results of the uninstall

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt -t 600 '*' win_servermanager.remove Telnet-Client

salt.modules.win_service

Windows Service module.

Changed in version 2016.11.0: Rewritten to use PyWin32

	
salt.modules.win_service.available(name)

	Check if a service is available on the system.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service to check

	Returns:

	True if the service is available, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.available <service name>

	
salt.modules.win_service.create(name, bin_path, exe_args=None, display_name=None, description=None, service_type='own', start_type='manual', start_delayed=False, error_control='normal', load_order_group=None, dependencies=None, account_name='.\\LocalSystem', account_password=None, run_interactive=False, **kwargs)

	Create the named service.

New in version 2015.8.0.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specifies the service name. This is not the display_name

	bin_path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specifies the path to the service binary file. Backslashes must be
escaped, eg: C:\path\to\binary.exe

	exe_args (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Any additional arguments required by the service binary.

	display_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name to be displayed in the service manager. If not passed, the
name will be used

	description (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A description of the service

	service_type (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specifies the service type. Default is own. Valid options are as
follows:

	kernel: Driver service

	filesystem: File system driver service

	adapter: Adapter driver service (reserved)

	recognizer: Recognizer driver service (reserved)

	own (default): Service runs in its own process

	share: Service shares a process with one or more other services

	start_type (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specifies the service start type. Valid options are as follows:

	boot: Device driver that is loaded by the boot loader

	system: Device driver that is started during kernel initialization

	auto: Service that automatically starts

	manual (default): Service must be started manually

	disabled: Service cannot be started

	start_delayed (bool [https://docs.python.org/3/library/functions.html#bool]) -- Set the service to Auto(Delayed Start). Only valid if the start_type
is set to Auto. If service_type is not passed, but the service
is already set to Auto, then the flag will be set. Default is
False

	error_control (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The severity of the error, and action taken, if this service fails
to start. Valid options are as follows:

	normal (normal): Error is logged and a message box is displayed

	severe: Error is logged and computer attempts a restart with the
last known good configuration

	critical: Error is logged, computer attempts to restart with the
last known good configuration, system halts on failure

	ignore: Error is logged and startup continues, no notification is
given to the user

	load_order_group (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the load order group to which this service belongs

	dependencies (list [https://docs.python.org/3/library/stdtypes.html#list]) -- A list of services or load ordering groups that must start before
this service

	account_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the account under which the service should run. For
own type services this should be in the domain\username
format. The following are examples of valid built-in service
accounts:

	NT AuthorityLocalService

	NT AuthorityNetworkService

	NT AuthorityLocalSystem

	.LocalSystem

	account_password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The password for the account name specified in account_name. For
the above built-in accounts, this can be None. Otherwise a password
must be specified.

	run_interactive (bool [https://docs.python.org/3/library/functions.html#bool]) -- If this setting is True, the service will be allowed to interact
with the user. Not recommended for services that run with elevated
privileges.

	Returns:

	A dictionary containing information about the new service

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' service.create <service name> <path to exe> display_name='<display name>'

	
salt.modules.win_service.create_win_salt_restart_task()

	Create a task in Windows task scheduler to enable restarting the salt-minion

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.create_win_salt_restart_task()

	
salt.modules.win_service.delete(name, timeout=90)

	Delete the named service

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service to delete

	timeout (int [https://docs.python.org/3/library/functions.html#int]) -- The time in seconds to wait for the service to be deleted before
returning. This is necessary because a service must be stopped
before it can be deleted. Default is 90 seconds

New in version 2017.7.9,2018.3.4.

	Returns:

	
	True if successful, otherwise False. Also returns True
	if the service is not present

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.delete <service name>

	
salt.modules.win_service.disable(name, **kwargs)

	Disable the named service to start at boot

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service to disable

	Returns:

	True if disabled, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.disable <service name>

	
salt.modules.win_service.disabled(name)

	Check to see if the named service is disabled to start on boot

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service to check

	Returns:

	True if the service is disabled

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.disabled <service name>

	
salt.modules.win_service.enable(name, start_type='auto', start_delayed=False, **kwargs)

	Enable the named service to start at boot

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service to enable.

	start_type (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specifies the service start type. Valid options are as
follows:

	boot: Device driver that is loaded by the boot loader

	system: Device driver that is started during kernel initialization

	auto: Service that automatically starts

	manual: Service must be started manually

	disabled: Service cannot be started

	start_delayed (bool [https://docs.python.org/3/library/functions.html#bool]) -- Set the service to Auto(Delayed Start). Only valid
if the start_type is set to Auto. If service_type is not passed,
but the service is already set to Auto, then the flag will be
set.

	Returns:

	True if successful, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.enable <service name>

	
salt.modules.win_service.enabled(name, **kwargs)

	Check to see if the named service is enabled to start on boot

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service to check

	Returns:

	True if the service is set to start

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.enabled <service name>

	
salt.modules.win_service.execute_salt_restart_task()

	Run the Windows Salt restart task

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.execute_salt_restart_task()

	
salt.modules.win_service.get_all()

	Return all installed services

	Returns:

	Returns a list of all services on the system.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' service.get_all

	
salt.modules.win_service.get_disabled()

	Return a list of disabled services. Disabled is defined as a service that is
marked 'Disabled' or 'Manual'.

	Returns:

	A list of disabled services.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' service.get_disabled

	
salt.modules.win_service.get_enabled()

	Return a list of enabled services. Enabled is defined as a service that is
marked to Auto Start.

	Returns:

	A list of enabled services

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' service.get_enabled

	
salt.modules.win_service.get_service_name(*args)

	The Display Name is what is displayed in Windows when services.msc is
executed. Each Display Name has an associated Service Name which is the
actual name of the service. This function allows you to discover the
Service Name by returning a dictionary of Display Names and Service Names,
or filter by adding arguments of Display Names.

If no args are passed, return a dict of all services where the keys are the
service Display Names and the values are the Service Names.

If arguments are passed, create a dict of Display Names and Service Names

	Returns:

	A dictionary of display names and service names

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Examples:

salt '*' service.get_service_name
salt '*' service.get_service_name 'Google Update Service (gupdate)' 'DHCP Client'

	
salt.modules.win_service.getsid(name)

	Return the SID for this windows service

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service for which to return the SID

	Returns:

	A string representing the SID for the service

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' service.getsid <service name>

	
salt.modules.win_service.info(name)

	Get information about a service on the system

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service. This is not the display name. Use
get_service_name to find the service name.

	Returns:

	A dictionary containing information about the service.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' service.info spooler

	
salt.modules.win_service.missing(name)

	The inverse of service.available.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service to check

	Returns:

	True if the service is missing, False otherwise

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.missing <service name>

	
salt.modules.win_service.modify(name, bin_path=None, exe_args=None, display_name=None, description=None, service_type=None, start_type=None, start_delayed=None, error_control=None, load_order_group=None, dependencies=None, account_name=None, account_password=None, run_interactive=None)

	Modify a service's parameters. Changes will not be made for parameters that
are not passed.

New in version 2016.11.0.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service. Can be found using the
service.get_service_name function

	bin_path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the service executable. Backslashes must be escaped, eg:
C:\path\to\binary.exe

	exe_args (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Any arguments required by the service executable

	display_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name to display in the service manager

	description (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The description to display for the service

	service_type (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specifies the service type. Default is own. Valid options are as
follows:

	kernel: Driver service

	filesystem: File system driver service

	adapter: Adapter driver service (reserved)

	recognizer: Recognizer driver service (reserved)

	own (default): Service runs in its own process

	share: Service shares a process with one or more other services

	start_type (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Specifies the service start type. Valid options are as follows:

	boot: Device driver that is loaded by the boot loader

	system: Device driver that is started during kernel initialization

	auto: Service that automatically starts

	manual: Service must be started manually

	disabled: Service cannot be started

	start_delayed (bool [https://docs.python.org/3/library/functions.html#bool]) -- Set the service to Auto(Delayed Start). Only valid if the start_type
is set to Auto. If service_type is not passed, but the service
is already set to Auto, then the flag will be set.

	error_control (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The severity of the error, and action taken, if this service fails
to start. Valid options are as follows:

	normal: Error is logged and a message box is displayed

	severe: Error is logged and computer attempts a restart with the
last known good configuration

	critical: Error is logged, computer attempts to restart with the
last known good configuration, system halts on failure

	ignore: Error is logged and startup continues, no notification is
given to the user

	load_order_group (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the load order group to which this service belongs

	dependencies (list [https://docs.python.org/3/library/stdtypes.html#list]) -- A list of services or load ordering groups that must start before
this service

	account_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the account under which the service should run. For
own type services this should be in the domain\username
format. The following are examples of valid built-in service
accounts:

	NT AuthorityLocalService

	NT AuthorityNetworkService

	NT AuthorityLocalSystem

	.LocalSystem

	account_password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The password for the account name specified in account_name. For
the above built-in accounts, this can be None. Otherwise a password
must be specified.

	run_interactive (bool [https://docs.python.org/3/library/functions.html#bool]) -- If this setting is True, the service will be allowed to interact
with the user. Not recommended for services that run with elevated
privileges.

	Returns:

	a dictionary of changes made

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' service.modify spooler start_type=disabled

	
salt.modules.win_service.restart(name, timeout=90)

	Restart the named service. This issues a stop command followed by a start.

	Parameters:

	
	name -- The name of the service to restart.

Note

If the name passed is salt-minion a scheduled task is
created and executed to restart the salt-minion service.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) -- The time in seconds to wait for the service to stop and start before
returning. Default is 90 seconds

Note

The timeout is cumulative meaning it is applied to the stop and
then to the start command. A timeout of 90 could take up to 180
seconds if the service is long in stopping and starting

New in version 2017.7.9,2018.3.4.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.restart <service name>

	
salt.modules.win_service.start(name, timeout=90)

	Start the specified service.

Warning

You cannot start a disabled service in Windows. If the service is
disabled, it will be changed to Manual start.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service to start

	timeout (int [https://docs.python.org/3/library/functions.html#int]) -- The time in seconds to wait for the service to start before
returning. Default is 90 seconds

New in version 2017.7.9,2018.3.4.

	Returns:

	
	True if successful, otherwise False. Also returns True
	if the service is already started

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.start <service name>

	
salt.modules.win_service.status(name, *args, **kwargs)

	Return the status for a service.
If the name contains globbing, a dict mapping service name to True/False
values is returned.

Changed in version 2018.3.0: The service name can now be a glob (e.g. salt*)

Changed in version 3006.0: Returns "Not Found" if the service is not found on the system

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service to check

	Returns:

	True if running, False otherwise
dict: Maps service name to True if running, False otherwise
str: Not Found if the service is not found on the system

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.status <service name>

	
salt.modules.win_service.stop(name, timeout=90)

	Stop the specified service

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the service to stop

	timeout (int [https://docs.python.org/3/library/functions.html#int]) -- The time in seconds to wait for the service to stop before
returning. Default is 90 seconds

New in version 2017.7.9,2018.3.4.

	Returns:

	
	True if successful, otherwise False. Also returns True
	if the service is already stopped

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' service.stop <service name>

salt.modules.win_shadow

Manage the shadow file

Important

If you feel that Salt should be using this module to manage passwords on a
minion, and it is using a different module (or gives an error similar to
'shadow.info' is not available), see here.

	
salt.modules.win_shadow.info(name)

	Return information for the specified user
This is just returns dummy data so that salt states can work.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the user account to show.

CLI Example:

salt '*' shadow.info root

	
salt.modules.win_shadow.require_password_change(name)

	Require the user to change their password the next time they log in.

	Parameters:

	name -- The name of the user account to require a password change.

	Returns:

	True if successful. False if unsuccessful.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' shadow.require_password_change <username>

	
salt.modules.win_shadow.set_expire(name, expire)

	Set the expiration date for a user account.

	Parameters:

	
	name -- The name of the user account to edit.

	expire -- The date the account will expire.

	Returns:

	True if successful. False if unsuccessful.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' shadow.set_expire <username> 2016/7/1

	
salt.modules.win_shadow.set_password(name, password)

	Set the password for a named user.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the user account

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The new password

	Returns:

	True if successful. False if unsuccessful.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' shadow.set_password root mysecretpassword

	
salt.modules.win_shadow.unlock_account(name)

	Unlocks a user account.

	Parameters:

	name -- The name of the user account to unlock.

	Returns:

	True if successful. False if unsuccessful.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' shadow.unlock_account <username>

salt.modules.win_shortcut

Execution module for creating shortcuts on Windows. Handles file shortcuts
(.lnk) and url shortcuts (.url). Allows for the configuration of icons and
hot keys on file shortcuts. Changing the icon and hot keys are unsupported for
url shortcuts.

New in version 3005.

	
salt.modules.win_shortcut.create(path, target, arguments='', description='', hot_key='', icon_index=0, icon_location='', window_style='Normal', working_dir='', backup=False, force=False, make_dirs=False, user=None)

	Create a new shortcut. This can be a file shortcut (.lnk) or a url
shortcut (.url).

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The full path to the shortcut. Must have a .lnk or .url
file extension.

	target (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The full path to the target

	arguments (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- Any arguments to be passed to the target

	description (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- The description for the shortcut. This is
shown in the Comment field of the dialog box. Default is an
empty string

	hot_key (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- A combination of hot Keys to trigger this
shortcut. This is something like Ctrl+Alt+D. This is shown in
the Shortcut key field in the dialog box. Default is an empty
string. Available options are:

	Ctrl

	Alt

	Shift

	Ext

	icon_index (int [https://docs.python.org/3/library/functions.html#int], optional) -- The index for the icon to use in files that
contain multiple icons. Default is 0

	icon_location (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- The full path to a file containing icons.
This is shown in the Change Icon dialog box by clicking the
Change Icon button. If no file is specified and a binary is
passed as the target, Windows will attempt to get the icon from the
binary file. Default is an empty string

	window_style (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- The window style the program should start
in. This is shown in the Run field of the dialog box. Default is
Normal. Valid options are:

	Normal

	Minimized

	Maximized

	working_dir (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- The full path to the working directory for
the program to run in. This is shown in the Start in field of
the dialog box.

	backup (bool [https://docs.python.org/3/library/functions.html#bool], optional) -- If there is already a shortcut with the same
name, set this value to True to backup the existing shortcut and
continue creating the new shortcut. Default is False

	force (bool [https://docs.python.org/3/library/functions.html#bool], optional) -- If there is already a shortcut with the same
name and you aren't backing up the shortcut, set this value to
True to remove the existing shortcut and create a new with these
settings. Default is False

	make_dirs (bool [https://docs.python.org/3/library/functions.html#bool], optional) -- If the parent directory structure does not
exist for the new shortcut, create it. Default is False

	user (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- The user to be the owner of any directories
created by setting make_dirs to True. If no value is passed
Salt will use the user account that it is running under. Default is
an empty string.

	Returns:

	True if successful

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	
	CommandExecutionError -- If the path is not a .lnk or .url file
 extension.

	CommandExecutionError -- If there is an existing shortcut with the same
 name and backup and force are both False

	CommandExecutionError -- If the parent directory is not created and
 make_dirs is False

	CommandExecutionError -- If there was an error creating the parent
 directories

CLI Example:

Create a shortcut and set the ``Shortcut key`` (``hot_key``)
salt * shortcut.create "C:\path\to\shortcut.lnk" "C:\Windows\notepad.exe" hot_key="Ctrl+Alt+N"

Create a shortcut and change the icon to the 3rd one in the icon file
salt * shortcut.create "C:\path\to\shortcut.lnk" "C:\Windows\notepad.exe" icon_location="C:\path\to\icon.ico" icon_index=2

Create a shortcut and change the startup mode to full screen
salt * shortcut.create "C:\path\to\shortcut.lnk" "C:\Windows\notepad.exe" window_style="Maximized"

Create a shortcut and change the icon
salt * shortcut.create "C:\path\to\shortcut.lnk" "C:\Windows\notepad.exe" icon_location="C:\path\to\icon.ico"

Create a shortcut and force it to overwrite an existing shortcut
salt * shortcut.create "C:\path\to\shortcut.lnk" "C:\Windows\notepad.exe" force=True

Create a shortcut and create any parent directories if they are missing
salt * shortcut.create "C:\path\to\shortcut.lnk" "C:\Windows\notepad.exe" make_dirs=True

	
salt.modules.win_shortcut.get(path)

	Gets the properties for a shortcut

	Parameters:

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to the shortcut. Must have a .lnk or .url file
extension.

	Returns:

	
	A dictionary containing all available properties for the specified
	shortcut

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt * shortcut.get path="C:\path\to\shortcut.lnk"

	
salt.modules.win_shortcut.modify(path, target='', arguments='', description='', hot_key='', icon_index=0, icon_location='', window_style='Normal', working_dir='')

	Modify an existing shortcut. This can be a file shortcut (.lnk) or a
url shortcut (.url).

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The full path to the shortcut. Must have a .lnk or .url
file extension.

	target (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- The full path to the target

	arguments (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- Any arguments to be passed to the target

	description (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- The description for the shortcut. This is
shown in the Comment field of the dialog box. Default is an
empty string

	hot_key (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- A combination of hot Keys to trigger this
shortcut. This is something like Ctrl+Alt+D. This is shown in
the Shortcut key field in the dialog box. Default is an empty
string. Available options are:

	Ctrl

	Alt

	Shift

	Ext

	icon_index (int [https://docs.python.org/3/library/functions.html#int], optional) -- The index for the icon to use in files that
contain multiple icons. Default is 0

	icon_location (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- The full path to a file containing icons.
This is shown in the Change Icon dialog box by clicking the
Change Icon button. If no file is specified and a binary is
passed as the target, Windows will attempt to get the icon from the
binary file. Default is an empty string

	window_style (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- The window style the program should start
in. This is shown in the Run field of the dialog box. Default is
Normal. Valid options are:

	Normal

	Minimized

	Maximized

	working_dir (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- The full path to the working directory for
the program to run in. This is shown in the Start in field of
the dialog box.

	Returns:

	True if successful

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

Modify an existing shortcut. Set it to target notepad.exe
salt * shortcut.modify "C:\path\to\shortcut.lnk" "C:\Windows\notepad.exe"

salt.modules.win_smtp_server

Module for managing IIS SMTP server configuration on Windows servers.
The Windows features 'SMTP-Server' and 'Web-WMI' must be installed.

	depends:

	wmi

	
salt.modules.win_smtp_server.get_connection_ip_list(as_wmi_format=False, server='SmtpSvc/1')

	Get the IPGrant list for the SMTP virtual server.

	Parameters:

	
	as_wmi_format (bool [https://docs.python.org/3/library/functions.html#bool]) -- Returns the connection IPs as a list in the format WMI expects.

	server (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The SMTP server name.

	Returns:

	A dictionary of the IP and subnet pairs.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' win_smtp_server.get_connection_ip_list

	
salt.modules.win_smtp_server.get_log_format(server='SmtpSvc/1')

	Get the active log format for the SMTP virtual server.

	Parameters:

	server (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The SMTP server name.

	Returns:

	A string of the log format name.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' win_smtp_server.get_log_format

	
salt.modules.win_smtp_server.get_log_format_types()

	Get all available log format names and ids.

	Returns:

	A dictionary of the log format names and ids.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' win_smtp_server.get_log_format_types

	
salt.modules.win_smtp_server.get_relay_ip_list(server='SmtpSvc/1')

	Get the RelayIpList list for the SMTP virtual server.

	Parameters:

	server (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The SMTP server name.

	Returns:

	A list of the relay IPs.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

Note

A return value of None corresponds to the restrictive 'Only the list below' GUI parameter
with an empty access list, and setting an empty list/tuple corresponds to the more
permissive 'All except the list below' GUI parameter.

CLI Example:

salt '*' win_smtp_server.get_relay_ip_list

	
salt.modules.win_smtp_server.get_server_setting(settings, server='SmtpSvc/1')

	Get the value of the setting for the SMTP virtual server.

	Parameters:

	
	settings (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A list of the setting names.

	server (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The SMTP server name.

	Returns:

	A dictionary of the provided settings and their values.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' win_smtp_server.get_server_setting settings="['MaxRecipients']"

	
salt.modules.win_smtp_server.get_servers()

	Get the SMTP virtual server names.

	Returns:

	A list of the SMTP virtual servers.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' win_smtp_server.get_servers

	
salt.modules.win_smtp_server.set_connection_ip_list(addresses=None, grant_by_default=False, server='SmtpSvc/1')

	Set the IPGrant list for the SMTP virtual server.

	Parameters:

	
	addresses (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A dictionary of IP + subnet pairs.

	grant_by_default (bool [https://docs.python.org/3/library/functions.html#bool]) -- Whether the addresses should be a blacklist or whitelist.

	server (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The SMTP server name.

	Returns:

	A boolean representing whether the change succeeded.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_smtp_server.set_connection_ip_list addresses="{'127.0.0.1': '255.255.255.255'}"

	
salt.modules.win_smtp_server.set_log_format(log_format, server='SmtpSvc/1')

	Set the active log format for the SMTP virtual server.

	Parameters:

	
	log_format (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The log format name.

	server (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The SMTP server name.

	Returns:

	A boolean representing whether the change succeeded.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_smtp_server.set_log_format 'Microsoft IIS Log File Format'

	
salt.modules.win_smtp_server.set_relay_ip_list(addresses=None, server='SmtpSvc/1')

	Set the RelayIpList list for the SMTP virtual server.

Due to the unusual way that Windows stores the relay IPs, it is advisable to retrieve
the existing list you wish to set from a pre-configured server.

For example, setting '127.0.0.1' as an allowed relay IP through the GUI would generate
an actual relay IP list similar to the following:

['24.0.0.128', '32.0.0.128', '60.0.0.128', '68.0.0.128', '1.0.0.0', '76.0.0.0',
 '0.0.0.0', '0.0.0.0', '1.0.0.0', '1.0.0.0', '2.0.0.0', '2.0.0.0', '4.0.0.0',
 '0.0.0.0', '76.0.0.128', '0.0.0.0', '0.0.0.0', '0.0.0.0', '0.0.0.0',
 '255.255.255.255', '127.0.0.1']

Note

Setting the list to None corresponds to the restrictive 'Only the list below' GUI parameter
with an empty access list configured, and setting an empty list/tuple corresponds to the
more permissive 'All except the list below' GUI parameter.

	Parameters:

	
	addresses (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A list of the relay IPs. The order of the list is important.

	server (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The SMTP server name.

	Returns:

	A boolean representing whether the change succeeded.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_smtp_server.set_relay_ip_list addresses="['192.168.1.1', '172.16.1.1']"

	
salt.modules.win_smtp_server.set_server_setting(settings, server='SmtpSvc/1')

	Set the value of the setting for the SMTP virtual server.

Note

The setting names are case-sensitive.

	Parameters:

	
	settings (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A dictionary of the setting names and their values.

	server (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The SMTP server name.

	Returns:

	A boolean representing whether all changes succeeded.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_smtp_server.set_server_setting settings="{'MaxRecipients': '500'}"

salt.modules.win_snmp

Module for managing SNMP service settings on Windows servers.
The Windows feature 'SNMP-Service' must be installed.

	
salt.modules.win_snmp.get_agent_service_types()

	Get the sysServices types that can be configured.

	Returns:

	A list of service types.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' win_snmp.get_agent_service_types

	
salt.modules.win_snmp.get_agent_settings()

	Determine the value of the SNMP sysContact, sysLocation, and sysServices
settings.

	Returns:

	A dictionary of the agent settings.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' win_snmp.get_agent_settings

	
salt.modules.win_snmp.get_auth_traps_enabled()

	Determine whether the host is configured to send authentication traps.

	Returns:

	True if traps are enabled, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_snmp.get_auth_traps_enabled

	
salt.modules.win_snmp.get_community_names()

	Get the current accepted SNMP community names and their permissions.

If community names are being managed by Group Policy, those values will be
returned instead like this:

TestCommunity:
 Managed by GPO

Community names managed normally will denote the permission instead:

TestCommunity:
 Read Only

	Returns:

	A dictionary of community names and permissions.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' win_snmp.get_community_names

	
salt.modules.win_snmp.get_permission_types()

	Get the permission types that can be configured for communities.

	Returns:

	A list of permission types.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' win_snmp.get_permission_types

	
salt.modules.win_snmp.set_agent_settings(contact=None, location=None, services=None)

	Manage the SNMP sysContact, sysLocation, and sysServices settings.

	Parameters:

	
	contact (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- The SNMP contact.

	location (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- The SNMP location.

	services (list [https://docs.python.org/3/library/stdtypes.html#list], optional) -- A list of selected services. The possible
service names can be found via win_snmp.get_agent_service_types.
To disable all services pass a list of None, ie: ['None']

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_snmp.set_agent_settings contact='Contact Name' location='Place' services="['Physical']"

	
salt.modules.win_snmp.set_auth_traps_enabled(status=True)

	Manage the sending of authentication traps.

	Parameters:

	status (bool [https://docs.python.org/3/library/functions.html#bool]) -- True to enable traps. False to disable.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' win_snmp.set_auth_traps_enabled status='True'

	
salt.modules.win_snmp.set_community_names(communities)

	Manage the SNMP accepted community names and their permissions.

Note

Settings managed by Group Policy will always take precedence over those
set using the SNMP interface. Therefore if this function finds Group
Policy settings it will raise a CommandExecutionError

	Parameters:

	communities (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- A dictionary of SNMP community names and
permissions. The possible permissions can be found via
win_snmp.get_permission_types.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	CommandExecutionError -- If SNMP settings are being managed by Group Policy

CLI Example:

salt '*' win_snmp.set_community_names communities="{'TestCommunity': 'Read Only'}'

salt.modules.win_status

Module for returning various status data about a minion.
These data can be useful for compiling into stats later,
or for problem solving if your minion is having problems.

New in version 0.12.0.

	depends:

	
	wmi

	
class salt.modules.win_status.SYSTEM_PERFORMANCE_INFORMATION

	
	
AvailablePagedPoolPages

	Structure/Union member

	
AvailablePages

	Structure/Union member

	
CacheIoCount

	Structure/Union member

	
CacheReadCount

	Structure/Union member

	
CacheTransitionCount

	Structure/Union member

	
CcCopyReadNoWait

	Structure/Union member

	
CcCopyReadNoWaitMiss

	Structure/Union member

	
CcCopyReadWait

	Structure/Union member

	
CcCopyReadWaitMiss

	Structure/Union member

	
CcDataFlushes

	Structure/Union member

	
CcDataPages

	Structure/Union member

	
CcDirtyPagesThreshold

	Structure/Union member

	
CcFastMdlReadNoWait

	Structure/Union member

	
CcFastMdlReadNotPossible

	Structure/Union member

	
CcFastMdlReadResourceMiss

	Structure/Union member

	
CcFastMdlReadWait

	Structure/Union member

	
CcFastReadNoWait

	Structure/Union member

	
CcFastReadNotPossible

	Structure/Union member

	
CcFastReadResourceMiss

	Structure/Union member

	
CcFastReadWait

	Structure/Union member

	
CcLazyWriteIos

	Structure/Union member

	
CcLazyWritePages

	Structure/Union member

	
CcMapDataNoWait

	Structure/Union member

	
CcMapDataNoWaitMiss

	Structure/Union member

	
CcMapDataWait

	Structure/Union member

	
CcMapDataWaitMiss

	Structure/Union member

	
CcMdlReadNoWait

	Structure/Union member

	
CcMdlReadNoWaitMiss

	Structure/Union member

	
CcMdlReadWait

	Structure/Union member

	
CcMdlReadWaitMiss

	Structure/Union member

	
CcPinMappedDataCount

	Structure/Union member

	
CcPinReadNoWait

	Structure/Union member

	
CcPinReadNoWaitMiss

	Structure/Union member

	
CcPinReadWait

	Structure/Union member

	
CcPinReadWaitMiss

	Structure/Union member

	
CcReadAheadIos

	Structure/Union member

	
CcTotalDirtyPages

	Structure/Union member

	
CommitLimit

	Structure/Union member

	
CommittedPages

	Structure/Union member

	
ContextSwitches

	Structure/Union member

	
CopyOnWriteCount

	Structure/Union member

	
DemandZeroCount

	Structure/Union member

	
DirtyPagesWriteCount

	Structure/Union member

	
DirtyWriteIoCount

	Structure/Union member

	
FirstLevelTbFills

	Structure/Union member

	
FreeSystemPtes

	Structure/Union member

	
IdleProcessTime

	Structure/Union member

	
IoOtherOperationCount

	Structure/Union member

	
IoOtherTransferCount

	Structure/Union member

	
IoReadOperationCount

	Structure/Union member

	
IoReadTransferCount

	Structure/Union member

	
IoWriteOperationCount

	Structure/Union member

	
IoWriteTransferCount

	Structure/Union member

	
MappedPagesWriteCount

	Structure/Union member

	
MappedWriteIoCount

	Structure/Union member

	
NonPagedPoolAllocs

	Structure/Union member

	
NonPagedPoolFrees

	Structure/Union member

	
NonPagedPoolLookasideHits

	Structure/Union member

	
NonPagedPoolPages

	Structure/Union member

	
PageFaultCount

	Structure/Union member

	
PageReadCount

	Structure/Union member

	
PageReadIoCount

	Structure/Union member

	
PagedPoolAllocs

	Structure/Union member

	
PagedPoolFrees

	Structure/Union member

	
PagedPoolLookasideHits

	Structure/Union member

	
PagedPoolPages

	Structure/Union member

	
PeakCommitment

	Structure/Union member

	
ResidentAvailablePages

	Structure/Union member

	
ResidentPagedPoolPage

	Structure/Union member

	
ResidentSystemCachePage

	Structure/Union member

	
ResidentSystemCodePage

	Structure/Union member

	
ResidentSystemDriverPage

	Structure/Union member

	
SecondLevelTbFills

	Structure/Union member

	
SharedCommittedPages

	Structure/Union member

	
SystemCalls

	Structure/Union member

	
TotalSystemCodePages

	Structure/Union member

	
TotalSystemDriverPages

	Structure/Union member

	
TransitionCount

	Structure/Union member

	
salt.modules.win_status.cpuload()

	
New in version 2015.8.0.

Return the processor load as a percentage

CLI Example:

salt '*' status.cpuload

	
salt.modules.win_status.cpustats()

	Return information about the CPU.

	Returns
	dict: A dictionary containing information about the CPU stats

CLI Example:

salt * status.cpustats

	
salt.modules.win_status.diskusage(human_readable=False, path=None)

	
New in version 2015.8.0.

Return the disk usage for this minion

	human_readableFalse
	If True, usage will be in KB/MB/GB etc.

CLI Example:

salt '*' status.diskusage path=c:/salt

	
salt.modules.win_status.loadavg()

	Returns counter information related to the load of the machine

	Returns:

	A dictionary of counters

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt * status.loadavg

	
salt.modules.win_status.master(master=None, connected=True)

	
New in version 2015.5.0.

Fire an event if the minion gets disconnected from its master. This
function is meant to be run via a scheduled job from the minion. If
master_ip is an FQDN/Hostname, is must be resolvable to a valid IPv4
address.

CLI Example:

salt '*' status.master

	
salt.modules.win_status.meminfo()

	Return information about physical and virtual memory on the system

	Returns:

	A dictionary of information about memory on the system

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt * status.meminfo

	
salt.modules.win_status.procs(count=False)

	Return the process data

	countFalse
	If True, this function will simply return the number of processes.

New in version 2015.8.0.

CLI Example:

salt '*' status.procs
salt '*' status.procs count

	
salt.modules.win_status.saltmem(human_readable=False)

	
New in version 2015.8.0.

Returns the amount of memory that salt is using

	human_readableFalse
	return the value in a nicely formatted number

CLI Example:

salt '*' status.saltmem
salt '*' status.saltmem human_readable=True

	
salt.modules.win_status.uptime(human_readable=False)

	
New in version 2015.8.0.

Return the system uptime for the machine

	Parameters:

	human_readable (bool [https://docs.python.org/3/library/functions.html#bool]) -- Return uptime in human readable format if True, otherwise
return seconds. Default is False

Note

Human readable format is days, hours:min:sec. Days will only
be displayed if more than 0

	Returns:

	The uptime in seconds or human readable format depending on the
value of human_readable

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' status.uptime
salt '*' status.uptime human_readable=True

	
salt.modules.win_status.vmstats()

	Return information about the virtual memory on the machine

	Returns:

	A dictionary of virtual memory stats

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt * status.vmstats

salt.modules.win_system

Module for managing Windows systems and getting Windows system information.
Support for reboot, shutdown, join domain, rename

	depends:

	
	pywintypes

	win32api

	win32con

	win32net

	wmi

	
salt.modules.win_system.get_computer_desc()

	Get the Windows computer description

	Returns:

	Returns the computer description if found. Otherwise returns
False.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt 'minion-id' system.get_computer_desc

	
salt.modules.win_system.get_computer_description()

	This function is an alias of get_computer_desc.

Get the Windows computer description

	Returns:
	str: Returns the computer description if found. Otherwise returns
False.

CLI Example:

salt 'minion-id' system.get_computer_desc

	
salt.modules.win_system.get_computer_name()

	Get the Windows computer name

	Returns:

	Returns the computer name if found. Otherwise returns False.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt 'minion-id' system.get_computer_name

	
salt.modules.win_system.get_domain_workgroup()

	Get the domain or workgroup the computer belongs to.

New in version 2015.5.7.

New in version 2015.8.2.

	Returns:

	The name of the domain or workgroup

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt 'minion-id' system.get_domain_workgroup

	
salt.modules.win_system.get_hostname()

	Get the hostname of the windows minion

New in version 2016.3.0.

	Returns:

	Returns the hostname of the windows minion

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt 'minion-id' system.get_hostname

	
salt.modules.win_system.get_pending_component_servicing()

	Determine whether there are pending Component Based Servicing tasks that
require a reboot.

New in version 2016.11.0.

	Returns:

	True if there are pending Component Based Servicing tasks,
otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.get_pending_component_servicing

	
salt.modules.win_system.get_pending_computer_name()

	Get a pending computer name. If the computer name has been changed, and the
change is pending a system reboot, this function will return the pending
computer name. Otherwise, None will be returned. If there was an error
retrieving the pending computer name, False will be returned, and an
error message will be logged to the minion log.

	Returns:

	Returns the pending name if pending restart. Returns None if not
pending restart.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt 'minion-id' system.get_pending_computer_name

	
salt.modules.win_system.get_pending_domain_join()

	Determine whether there is a pending domain join action that requires a
reboot.

New in version 2016.11.0.

	Returns:

	True if there is a pending domain join action, otherwise
False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.get_pending_domain_join

	
salt.modules.win_system.get_pending_file_rename()

	Determine whether there are pending file rename operations that require a
reboot.

New in version 2016.11.0.

	Returns:

	True if there are pending file rename operations, otherwise
False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.get_pending_file_rename

	
salt.modules.win_system.get_pending_reboot()

	Determine whether there is a reboot pending.

New in version 2016.11.0.

	Returns:

	True if the system is pending reboot, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.get_pending_reboot

	
salt.modules.win_system.get_pending_reboot_details()

	Determine which check is signalling that the system is pending a reboot.
Useful in determining why your system is signalling that it needs a reboot.

New in version 3001.

	Returns:

	A dictionary of the results of each system that would indicate a
pending reboot

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' system.get_pending_reboot_details

	
salt.modules.win_system.get_pending_servermanager()

	Determine whether there are pending Server Manager tasks that require a
reboot.

New in version 2016.11.0.

	Returns:

	True if there are pending Server Manager tasks, otherwise
False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.get_pending_servermanager

	
salt.modules.win_system.get_pending_update()

	Determine whether there are pending updates that require a reboot.

New in version 2016.11.0.

	Returns:

	True if there are pending updates, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.get_pending_update

	
salt.modules.win_system.get_pending_windows_update()

	Check the Windows Update system for a pending reboot state.

This leverages the Windows Update System to determine if the system is
pending a reboot.

New in version 3001.

	Returns:

	True if the Windows Update system reports a pending update,
otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.get_pending_windows_update

	
salt.modules.win_system.get_reboot_required_witnessed()

	Determine if at any time during the current boot session the salt minion
witnessed an event indicating that a reboot is required.

This function will return True if an install completed with exit
code 3010 during the current boot session and can be extended where
appropriate in the future.

New in version 2016.11.0.

	Returns:

	True if the Requires reboot registry flag is set to 1,
otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.get_reboot_required_witnessed

	
salt.modules.win_system.get_system_date()

	Get the Windows system date

	Returns:

	Returns the system date

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' system.get_system_date

	
salt.modules.win_system.get_system_info()

	Get system information.

Note

Not all system info is available across all versions of Windows. If it
is not available on an older version, it will be skipped

	Returns:

	Dictionary containing information about the system to include
name, description, version, etc...

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt 'minion-id' system.get_system_info

	
salt.modules.win_system.get_system_time()

	Get the system time.

	Returns:

	Returns the system time in HH:MM:SS AM/PM format.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt 'minion-id' system.get_system_time

	
salt.modules.win_system.halt(timeout=5, in_seconds=False)

	Halt a running system.

	Parameters:

	
	timeout (int [https://docs.python.org/3/library/functions.html#int]) -- Number of seconds before halting the system. Default is 5 seconds.

	in_seconds (bool [https://docs.python.org/3/library/functions.html#bool]) -- Whether to treat timeout as seconds or minutes.

New in version 2015.8.0.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.halt 5 True

	
salt.modules.win_system.init(runlevel)

	Change the system runlevel on sysV compatible systems. Not applicable to
Windows

CLI Example:

salt '*' system.init 3

	
salt.modules.win_system.join_domain(domain, username=None, password=None, account_ou=None, account_exists=False, restart=False)

	Join a computer to an Active Directory domain. Requires a reboot.

	Parameters:

	
	domain (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The domain to which the computer should be joined, e.g.
example.com

	username (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Username of an account which is authorized to join computers to the
specified domain. Needs to be either fully qualified like
user@domain.tld or simply user

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Password of the specified user

	account_ou (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The DN of the OU below which the account for this computer should be
created when joining the domain, e.g.
ou=computers,ou=departm_432,dc=my-company,dc=com

	account_exists (bool [https://docs.python.org/3/library/functions.html#bool]) -- If set to True the computer will only join the domain if the
account already exists. If set to False the computer account
will be created if it does not exist, otherwise it will use the
existing account. Default is False

	restart (bool [https://docs.python.org/3/library/functions.html#bool]) -- True will restart the computer after a successful join. Default
is False

New in version 2015.5.7,2015.8.2.

	Returns:

	Returns a dictionary if successful, otherwise False

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt 'minion-id' system.join_domain domain='domain.tld' \
 username='joinuser' password='joinpassword' \
 account_ou='ou=clients,ou=org,dc=domain,dc=tld' \
 account_exists=False, restart=True

	
salt.modules.win_system.lock()

	Lock the workstation.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt 'minion-id' system.lock

	
salt.modules.win_system.poweroff(timeout=5, in_seconds=False)

	Power off a running system.

	Parameters:

	
	timeout (int [https://docs.python.org/3/library/functions.html#int]) -- Number of seconds before powering off the system. Default is 5
seconds.

	in_seconds (bool [https://docs.python.org/3/library/functions.html#bool]) -- Whether to treat timeout as seconds or minutes.

New in version 2015.8.0.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.poweroff 5

	
salt.modules.win_system.reboot(timeout=5, in_seconds=False, wait_for_reboot=False, only_on_pending_reboot=False)

	Reboot a running system.

	Parameters:

	
	timeout (int [https://docs.python.org/3/library/functions.html#int]) -- The number of minutes/seconds before rebooting the system. Use of
minutes or seconds depends on the value of in_seconds. Default
is 5 minutes.

	in_seconds (bool [https://docs.python.org/3/library/functions.html#bool]) --
	True will cause the timeout parameter to be in seconds.
	False will be in minutes. Default is False.

New in version 2015.8.0.

	wait_for_reboot (bool [https://docs.python.org/3/library/functions.html#bool]) -- True will sleep for timeout + 30 seconds after reboot has been
initiated. This is useful for use in a highstate. For example, you
may have states that you want to apply only after the reboot.
Default is False.

New in version 2015.8.0.

	only_on_pending_reboot (bool [https://docs.python.org/3/library/functions.html#bool]) -- If this is set to True, then the reboot will only proceed
if the system reports a pending reboot. Setting this parameter to
True could be useful when calling this function from a final
housekeeping state intended to be executed at the end of a state run
(using order: last). Default is False.

	Returns:

	True if successful (a reboot will occur), otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.reboot 5
salt '*' system.reboot 5 True

Invoking this function from a final housekeeping state:

final_housekeeping:
 module.run:
 - name: system.reboot
 - only_on_pending_reboot: True
 - order: last

	
salt.modules.win_system.set_computer_desc(desc=None)

	Set the Windows computer description

	Parameters:

	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The computer description

	Returns:

	Description if successful, otherwise False

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt 'minion-id' system.set_computer_desc 'This computer belongs to Dave!'

	
salt.modules.win_system.set_computer_description(desc=None)

	This function is an alias of set_computer_desc.

Set the Windows computer description

Args:

	desc (str):
	The computer description

	Returns:
	str: Description if successful, otherwise False

CLI Example:

salt 'minion-id' system.set_computer_desc 'This computer belongs to Dave!'

	
salt.modules.win_system.set_computer_name(name)

	Set the Windows computer name

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The new name to give the computer. Requires a reboot to take effect.

	Returns:

	Returns a dictionary containing the old and new names if successful.
False if not.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt 'minion-id' system.set_computer_name 'DavesComputer'

	
salt.modules.win_system.set_domain_workgroup(workgroup)

	Set the domain or workgroup the computer belongs to.

New in version 3001.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt 'minion-id' system.set_domain_workgroup LOCAL

	
salt.modules.win_system.set_hostname(hostname)

	Set the hostname of the windows minion, requires a restart before this will
be updated.

New in version 2016.3.0.

	Parameters:

	hostname (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The hostname to set

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt 'minion-id' system.set_hostname newhostname

	
salt.modules.win_system.set_reboot_required_witnessed()

	This function is used to remember that an event indicating that a reboot is
required was witnessed. This function relies on the salt-minion's ability to
create the following volatile registry key in the HKLM hive:

SYSTEM\CurrentControlSet\Services\salt-minion\Volatile-Data

Because this registry key is volatile, it will not persist beyond the
current boot session. Also, in the scope of this key, the name 'Reboot
required' will be assigned the value of 1.

For the time being, this function is being used whenever an install
completes with exit code 3010 and can be extended where appropriate in the
future.

New in version 2016.11.0.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.set_reboot_required_witnessed

	
salt.modules.win_system.set_system_date(newdate)

	Set the Windows system date. Use <mm-dd-yy> format for the date.

	Parameters:

	newdate (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The date to set. Can be any of the following formats

	YYYY-MM-DD

	MM-DD-YYYY

	MM-DD-YY

	MM/DD/YYYY

	MM/DD/YY

	YYYY/MM/DD

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.set_system_date '03-28-13'

	
salt.modules.win_system.set_system_date_time(years=None, months=None, days=None, hours=None, minutes=None, seconds=None)

	Set the system date and time. Each argument is an element of the date, but
not required. If an element is not passed, the current system value for that
element will be used. For example, if you don't pass the year, the current
system year will be used. (Used by set_system_date and set_system_time)

	Parameters:

	
	years (int [https://docs.python.org/3/library/functions.html#int]) -- Years digit, ie: 2015

	months (int [https://docs.python.org/3/library/functions.html#int]) -- Months digit: 1 - 12

	days (int [https://docs.python.org/3/library/functions.html#int]) -- Days digit: 1 - 31

	hours (int [https://docs.python.org/3/library/functions.html#int]) -- Hours digit: 0 - 23

	minutes (int [https://docs.python.org/3/library/functions.html#int]) -- Minutes digit: 0 - 59

	seconds (int [https://docs.python.org/3/library/functions.html#int]) -- Seconds digit: 0 - 59

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.set_system_date_ time 2015 5 12 11 37 53

	
salt.modules.win_system.set_system_time(newtime)

	Set the system time.

	Parameters:

	newtime (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The time to set. Can be any of the following formats:

	HH:MM:SS AM/PM

	HH:MM AM/PM

	HH:MM:SS (24 hour)

	HH:MM (24 hour)

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt 'minion-id' system.set_system_time 12:01

	
salt.modules.win_system.shutdown(message=None, timeout=5, force_close=True, reboot=False, in_seconds=False, only_on_pending_reboot=False)

	Shutdown a running system.

	Parameters:

	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The message to display to the user before shutting down.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) -- The length of time (in seconds) that the shutdown dialog box should
be displayed. While this dialog box is displayed, the shutdown can
be aborted using the system.shutdown_abort function.

If timeout is not zero, InitiateSystemShutdown displays a dialog box
on the specified computer. The dialog box displays the name of the
user who called the function, the message specified by the lpMessage
parameter, and prompts the user to log off. The dialog box beeps
when it is created and remains on top of other windows (system
modal). The dialog box can be moved but not closed. A timer counts
down the remaining time before the shutdown occurs.

If timeout is zero, the computer shuts down immediately without
displaying the dialog box and cannot be stopped by
system.shutdown_abort.

Default is 5 minutes

	in_seconds (bool [https://docs.python.org/3/library/functions.html#bool]) --
	True will cause the timeout parameter to be in seconds.
	False will be in minutes. Default is False.

New in version 2015.8.0.

	force_close (bool [https://docs.python.org/3/library/functions.html#bool]) -- True will force close all open applications. False will
display a dialog box instructing the user to close open
applications. Default is True.

	reboot (bool [https://docs.python.org/3/library/functions.html#bool]) -- True restarts the computer immediately after shutdown. False
powers down the system. Default is False.

	only_on_pending_reboot (bool [https://docs.python.org/3/library/functions.html#bool]) -- If this is set to True, then the shutdown
will only proceed if the system reports a pending reboot. To
optionally shutdown in a highstate, consider using the shutdown
state instead of this module.

	only_on_pending_reboot -- If True the shutdown will only proceed if there is a reboot
pending. False will shutdown the system. Default is False.

	Returns:

	True if successful (a shutdown or reboot will occur), otherwise
False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.shutdown "System will shutdown in 5 minutes"

	
salt.modules.win_system.shutdown_abort()

	Abort a shutdown. Only available while the dialog box is being
displayed to the user. Once the shutdown has initiated, it cannot be
aborted.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt 'minion-id' system.shutdown_abort

	
salt.modules.win_system.shutdown_hard()

	Shutdown a running system with no timeout or warning.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.shutdown_hard

	
salt.modules.win_system.start_time_service()

	Start the Windows time service

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.start_time_service

	
salt.modules.win_system.stop_time_service()

	Stop the Windows time service

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' system.stop_time_service

	
salt.modules.win_system.unjoin_domain(username=None, password=None, domain=None, workgroup='WORKGROUP', disable=False, restart=False)

	Unjoin a computer from an Active Directory Domain. Requires a restart.

	Parameters:

	
	username (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Username of an account which is authorized to manage computer
accounts on the domain. Needs to be a fully qualified name like
user@domain.tld or domain.tld\user. If the domain is not
specified, the passed domain will be used. If the computer account
doesn't need to be disabled after the computer is unjoined, this can
be None.

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The password of the specified user

	domain (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The domain from which to unjoin the computer. Can be None

	workgroup (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The workgroup to join the computer to. Default is WORKGROUP

New in version 2015.5.7,2015.8.2.

	disable (bool [https://docs.python.org/3/library/functions.html#bool]) -- True to disable the computer account in Active Directory.
Default is False

	restart (bool [https://docs.python.org/3/library/functions.html#bool]) -- True will restart the computer after successful unjoin. Default
is False

New in version 2015.5.7,2015.8.2.

	Returns:

	Returns a dictionary if successful, otherwise False

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt 'minion-id' system.unjoin_domain restart=True

salt 'minion-id' system.unjoin_domain username='unjoinuser' \
 password='unjoinpassword' disable=True \
 restart=True

salt.modules.win_task

Windows Task Scheduler Module
.. versionadded:: 2016.3.0

A module for working with the Windows Task Scheduler.
You can add and edit existing tasks.
You can add and clear triggers and actions.
You can list all tasks, folders, triggers, and actions.

	
salt.modules.win_task.add_action(name=None, location='\\', action_type='Execute', **kwargs)

	Add an action to a task.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the task to which to add the action.

	location (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing the location of the task. Default is
\ which is the root for the task scheduler
(C:\Windows\System32\tasks).

	action_type (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The type of action to add. There are three action types. Each one
requires its own set of Keyword Arguments (kwargs). Valid values
are:

	Execute

	Email

	Message

Required arguments for each action_type:

Execute

Execute a command or an executable

	cmd (str):
	(required) The command or executable to run.

	arguments (str):
	(optional) Arguments to be passed to the command or executable.
To launch a script the first command will need to be the
interpreter for the script. For example, to run a vbscript you
would pass cscript.exe in the cmd parameter and pass the
script in the arguments parameter as follows:

	cmd='cscript.exe' arguments='c:\scripts\myscript.vbs'

Batch files do not need an interpreter and may be passed to the
cmd parameter directly.

	start_in (str):
	(optional) The current working directory for the command.

Email

Send and email. Requires server, from, and to or cc.

from (str): The sender

reply_to (str): Who to reply to

to (str): The recipient

cc (str): The CC recipient

bcc (str): The BCC recipient

subject (str): The subject of the email

body (str): The Message Body of the email

server (str): The server used to send the email

	attachments (list):
	A list of attachments. These will be the paths to the files to
attach. ie: attachments="['C:\attachment1.txt',
'C:\attachment2.txt']"

Message

Display a dialog box. The task must be set to "Run only when user is
logged on" in order for the dialog box to display. Both parameters are
required.

	title (str):
	The dialog box title.

	message (str):
	The dialog box message body

	Returns:

	A dictionary containing the task configuration

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt 'minion-id' task.add_action <task_name> cmd='del /Q /S C:\\Temp'

	
salt.modules.win_task.add_trigger(name=None, location='\\', trigger_type=None, trigger_enabled=True, start_date=None, start_time=None, end_date=None, end_time=None, random_delay=None, repeat_interval=None, repeat_duration=None, repeat_stop_at_duration_end=False, execution_time_limit=None, delay=None, **kwargs)

	Add a trigger to a Windows Scheduled task

Note

Arguments are parsed by the YAML loader and are subject to
yaml's idiosyncrasies. Therefore, time values in some
formats (%H:%M:%S and %H:%M) should to be quoted.
See YAML IDIOSYNCRASIES [https://docs.saltproject.io/en/latest/topics/troubleshooting/yaml_idiosyncrasies.html#time-expressions] for more details.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the task to which to add the trigger.

	location (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing the location of the task. Default is
\ which is the root for the task scheduler
(C:\Windows\System32\tasks).

	trigger_type (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The type of trigger to create. This is defined when the trigger is
created and cannot be changed later. Options are as follows:

	Event

	Once

	Daily

	Weekly

	Monthly

	MonthlyDay

	OnIdle

	OnTaskCreation

	OnBoot

	OnLogon

	OnSessionChange

	trigger_enabled (bool [https://docs.python.org/3/library/functions.html#bool]) -- Boolean value that indicates whether the trigger is enabled.

	start_date (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The date when the trigger is activated. If no value is passed, the
current date will be used. Can be one of the following formats:

	%Y-%m-%d

	%m-%d-%y

	%m-%d-%Y

	%m/%d/%y

	%m/%d/%Y

	%Y/%m/%d

	start_time (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The time when the trigger is activated. If no value is passed,
midnight will be used. Can be one of the following formats:

	%I:%M:%S %p

	%I:%M %p

	%H:%M:%S

	%H:%M

	end_date (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The date when the trigger is deactivated. The trigger cannot start
the task after it is deactivated. Can be one of the following
formats:

	%Y-%m-%d

	%m-%d-%y

	%m-%d-%Y

	%m/%d/%y

	%m/%d/%Y

	%Y/%m/%d

	end_time (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The time when the trigger is deactivated. If this is not passed
with end_date it will be set to midnight. Can be one of the
following formats:

	%I:%M:%S %p

	%I:%M %p

	%H:%M:%S

	%H:%M

	random_delay (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The delay time that is randomly added to the start time of the
trigger. Valid values are:

	30 seconds

	1 minute

	30 minutes

	1 hour

	8 hours

	1 day

Note

This parameter applies to the following trigger types

	Once

	Daily

	Weekly

	Monthly

	MonthlyDay

	repeat_interval (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The amount of time between each restart of the task. Valid values
are:

	5 minutes

	10 minutes

	15 minutes

	30 minutes

	1 hour

	repeat_duration (str [https://docs.python.org/3/library/stdtypes.html#str]) -- How long the pattern is repeated. Valid values are:

	Indefinitely

	15 minutes

	30 minutes

	1 hour

	12 hours

	1 day

	repeat_stop_at_duration_end (bool [https://docs.python.org/3/library/functions.html#bool]) -- Boolean value that indicates if a running instance of the task is
stopped at the end of the repetition pattern duration.

	execution_time_limit (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The maximum amount of time that the task launched by the trigger is
allowed to run. Valid values are:

	30 minutes

	1 hour

	2 hours

	4 hours

	8 hours

	12 hours

	1 day

	3 days (default)

	delay (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The time the trigger waits after its activation to start the task.
Valid values are:

	15 seconds

	30 seconds

	1 minute

	30 minutes

	1 hour

	8 hours

	1 day

Note

This parameter applies to the following trigger types:

	OnLogon

	OnBoot

	Event

	OnTaskCreation

	OnSessionChange

kwargs

There are optional keyword arguments determined by the type of trigger
being defined. They are as follows:

Event

The trigger will be fired by an event.

	subscription (str):
	An event definition in xml format that fires the trigger. The
easiest way to get this would is to create an event in Windows
Task Scheduler and then copy the xml text.

Once

No special parameters required.

Daily

The task will run daily.

	days_interval (int):
	The interval between days in the schedule. An interval of 1
produces a daily schedule. An interval of 2 produces an
every-other day schedule. If no interval is specified, 1 is
used. Valid entries are 1 - 999.

Weekly

The task will run weekly.

	weeks_interval (int):
	The interval between weeks in the schedule. An interval of 1
produces a weekly schedule. An interval of 2 produces an
every-other week schedule. If no interval is specified, 1 is
used. Valid entries are 1 - 52.

	days_of_week (list):
	Sets the days of the week on which the task runs. Should be a
list. ie: ['Monday','Wednesday','Friday']. Valid entries are
the names of the days of the week.

Monthly

The task will run monthly.

	months_of_year (list):
	Sets the months of the year during which the task runs. Should
be a list. ie: ['January','July']. Valid entries are the
full names of all the months.

	days_of_month (list):
	Sets the days of the month during which the task runs. Should be
a list. ie: [1, 15, 'Last']. Options are all days of the
month 1 - 31 and the word 'Last' to indicate the last day of the
month.

	last_day_of_month (bool):
	Boolean value that indicates that the task runs on the last day
of the month regardless of the actual date of that day.

Note

You can set the task to run on the last day of the month by
either including the word 'Last' in the list of days, or
setting the parameter 'last_day_of_month' equal to True.

MonthlyDay

The task will run monthly on the specified day.

	months_of_year (list):
	Sets the months of the year during which the task runs. Should
be a list. ie: ['January','July']. Valid entries are the
full names of all the months.

	weeks_of_month (list):
	Sets the weeks of the month during which the task runs. Should
be a list. ie: ['First','Third']. Valid options are:

	First

	Second

	Third

	Fourth

	last_week_of_month (bool):
	Boolean value that indicates that the task runs on the last week
of the month.

	days_of_week (list):
	Sets the days of the week during which the task runs. Should be
a list. ie: ['Monday','Wednesday','Friday']. Valid entries
are the names of the days of the week.

OnIdle

No special parameters required.

OnTaskCreation

No special parameters required.

OnBoot

No special parameters required.

OnLogon

No special parameters required.

OnSessionChange

The task will be triggered by a session change.

	session_user_name (str):
	Sets the user for the Terminal Server session. When a session
state change is detected for this user, a task is started. To
detect session status change for any user, do not pass this
parameter.

	state_change (str):
	Sets the kind of Terminal Server session change that would
trigger a task launch. Valid options are:

	ConsoleConnect: When you connect to a user session (switch
users)

	ConsoleDisconnect: When you disconnect a user session
(switch users)

	RemoteConnect: When a user connects via Remote Desktop

	RemoteDisconnect: When a user disconnects via Remote
Desktop

	SessionLock: When the workstation is locked

	SessionUnlock: When the workstation is unlocked

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt 'minion-id' task.add_trigger <task_name> trigger_type=Once trigger_enabled=True start_date=2016/12/1 start_time='"12:01"'

	
salt.modules.win_task.clear_triggers(name, location='\\')

	Remove all triggers from the task.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the task from which to clear all triggers.

	location (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing the location of the task. Default is
\ which is the root for the task scheduler
(C:\Windows\System32\tasks).

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt 'minion-id' task.clear_trigger <task_name>

	
salt.modules.win_task.create_folder(name, location='\\')

	Create a folder in which to create tasks.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the folder. This will be displayed in the task
scheduler.

	location (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing the location in which to create the
folder. Default is \ which is the root for the task scheduler
(C:\Windows\System32\tasks).

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt 'minion-id' task.create_folder <folder_name>

	
salt.modules.win_task.create_task(name, location='\\', user_name='System', password=None, force=False, **kwargs)

	Create a new task in the designated location. This function has many keyword
arguments that are not listed here. For additional arguments see:

	edit_task()

	add_action()

	add_trigger()

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the task. This will be displayed in the task scheduler.

	location (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing the location in which to create the
task. Default is \ which is the root for the task scheduler
(C:\Windows\System32\tasks).

	user_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user account under which to run the task. To specify the
'System' account, use 'System'. The password will be ignored.

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The password to use for authentication. This should set the task to
run whether the user is logged in or not, but is currently not
working.

	force (bool [https://docs.python.org/3/library/functions.html#bool]) -- If the task exists, overwrite the existing task.

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt 'minion-id' task.create_task <task_name> user_name=System force=True action_type=Execute cmd='del /Q /S C:\\Temp' trigger_type=Once start_date=2016-12-1 start_time='"01:00"'

	
salt.modules.win_task.create_task_from_xml(name, location='\\', xml_text=None, xml_path=None, user_name='System', password=None)

	Create a task based on XML. Source can be a file or a string of XML.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the task. This will be displayed in the task scheduler.

	location (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing the location in which to create the
task. Default is \ which is the root for the task scheduler
(C:\Windows\System32\tasks).

	xml_text (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string of xml representing the task to be created. This will be
overridden by xml_path if passed.

	xml_path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The path to an XML file on the local system containing the xml that
defines the task. This will override xml_text

	user_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user account under which to run the task. To specify the
'System' account, use 'System'. The password will be ignored.

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The password to use for authentication. This should set the task to
run whether the user is logged in or not, but is currently not
working.

	Returns:

	True if successful, otherwise False
str: A string with the error message if there is an error

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	
	ArgumentValueError -- If arguments are invalid

	CommandExecutionError --

CLI Example:

salt '*' task.create_task_from_xml <task_name> xml_path=C:\task.xml

	
salt.modules.win_task.delete_folder(name, location='\\')

	Delete a folder from the task scheduler.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the folder to delete.

	location (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing the location of the folder. Default is
\ which is the root for the task scheduler
(C:\Windows\System32\tasks).

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt 'minion-id' task.delete_folder <folder_name>

	
salt.modules.win_task.delete_task(name, location='\\')

	Delete a task from the task scheduler.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the task to delete.

	location (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing the location of the task. Default is
\ which is the root for the task scheduler
(C:\Windows\System32\tasks).

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt 'minion-id' task.delete_task <task_name>

	
salt.modules.win_task.edit_task(name=None, location='\\', user_name=None, password=None, description=None, enabled=None, hidden=None, run_if_idle=None, idle_duration=None, idle_wait_timeout=None, idle_stop_on_end=None, idle_restart=None, ac_only=None, stop_if_on_batteries=None, wake_to_run=None, run_if_network=None, network_id=None, network_name=None, allow_demand_start=None, start_when_available=None, restart_every=None, restart_count=3, execution_time_limit=None, force_stop=None, delete_after=None, multiple_instances=None, **kwargs)

	Edit the parameters of a task. Triggers and Actions cannot be edited yet.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the task. This will be displayed in the task scheduler.

	location (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing the location in which to create the
task. Default is \ which is the root for the task scheduler
(C:\Windows\System32\tasks).

	user_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The user account under which to run the task. To specify the
'System' account, use 'System'. The password will be ignored.

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The password to use for authentication. This should set the task to
run whether the user is logged in or not, but is currently not
working.

Note

The combination of user_name and password determine how the
task runs. For example, if a username is passed without at
password the task will only run when the user is logged in. If a
password is passed as well the task will run whether the user is
logged on or not. If you pass 'System' as the username the task
will run as the system account (the password parameter is
ignored).

	description (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string representing the text that will be displayed in the
description field in the task scheduler.

	enabled (bool [https://docs.python.org/3/library/functions.html#bool]) -- A boolean value representing whether or not the task is enabled.

	hidden (bool [https://docs.python.org/3/library/functions.html#bool]) -- A boolean value representing whether or not the task is hidden.

	run_if_idle (bool [https://docs.python.org/3/library/functions.html#bool]) -- Boolean value that indicates that the Task Scheduler will run the
task only if the computer is in an idle state.

	idle_duration (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A value that indicates the amount of time that the computer must be
in an idle state before the task is run. Valid values are:

	1 minute

	5 minutes

	10 minutes

	15 minutes

	30 minutes

	1 hour

	idle_wait_timeout (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A value that indicates the amount of time that the Task Scheduler
will wait for an idle condition to occur. Valid values are:

	Do not wait

	1 minute

	5 minutes

	10 minutes

	15 minutes

	30 minutes

	1 hour

	2 hours

	idle_stop_on_end (bool [https://docs.python.org/3/library/functions.html#bool]) -- Boolean value that indicates that the Task Scheduler will terminate
the task if the idle condition ends before the task is completed.

	idle_restart (bool [https://docs.python.org/3/library/functions.html#bool]) -- Boolean value that indicates whether the task is restarted when the
computer cycles into an idle condition more than once.

	ac_only (bool [https://docs.python.org/3/library/functions.html#bool]) -- Boolean value that indicates that the Task Scheduler will launch the
task only while on AC power.

	stop_if_on_batteries (bool [https://docs.python.org/3/library/functions.html#bool]) -- Boolean value that indicates that the task will be stopped if the
computer begins to run on battery power.

	wake_to_run (bool [https://docs.python.org/3/library/functions.html#bool]) -- Boolean value that indicates that the Task Scheduler will wake the
computer when it is time to run the task.

	run_if_network (bool [https://docs.python.org/3/library/functions.html#bool]) -- Boolean value that indicates that the Task Scheduler will run the
task only when a network is available.

	network_id (guid) -- GUID value that identifies a network profile.

	network_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Sets the name of a network profile. The name is used for display
purposes.

	allow_demand_start (bool [https://docs.python.org/3/library/functions.html#bool]) -- Boolean value that indicates that the task can be started by using
either the Run command or the Context menu.

	start_when_available (bool [https://docs.python.org/3/library/functions.html#bool]) -- Boolean value that indicates that the Task Scheduler can start the
task at any time after its scheduled time has passed.

	restart_every (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A value that specifies the interval between task restart attempts.
Valid values are:

	False (to disable)

	1 minute

	5 minutes

	10 minutes

	15 minutes

	30 minutes

	1 hour

	2 hours

	restart_count (int [https://docs.python.org/3/library/functions.html#int]) -- The number of times the Task Scheduler will attempt to restart the
task. Valid values are integers 1 - 999.

	execution_time_limit (bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]) -- The amount of time allowed to complete the task. Valid values are:

	False (to disable)

	1 hour

	2 hours

	4 hours

	8 hours

	12 hours

	1 day

	3 days

	force_stop (bool [https://docs.python.org/3/library/functions.html#bool]) -- Boolean value that indicates that the task may be terminated by
using TerminateProcess.

	delete_after (bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]) -- The amount of time that the Task Scheduler will wait before deleting
the task after it expires. Requires a trigger with an expiration
date. Valid values are:

	False (to disable)

	Immediately

	30 days

	90 days

	180 days

	365 days

	multiple_instances (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Sets the policy that defines how the Task Scheduler deals with
multiple instances of the task. Valid values are:

	Parallel

	Queue

	No New Instance

	Stop Existing

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' task.edit_task <task_name> description='This task is awesome'

	
salt.modules.win_task.info(name, location='\\')

	Get the details about a task in the task scheduler.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the task for which to return the status

	location (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing the location of the task. Default is
\ which is the root for the task scheduler
(C:\Windows\System32\tasks).

	Returns:

	A dictionary containing the task configuration

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt 'minion-id' task.info <task_name>

	
salt.modules.win_task.list_actions(name, location='\\')

	List all actions that pertain to a task in the specified location.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the task for which list actions.

	location (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing the location of the task from which to
list actions. Default is \ which is the root for the task
scheduler (C:\Windows\System32\tasks).

	Returns:

	Returns a list of actions.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

List all actions for a task in the default location
salt 'minion-id' task.list_actions <task_name>

List all actions for the XblGameSaveTask in the Microsoft\XblGameSave
location
salt 'minion-id' task.list_actions XblGameSaveTask Microsoft\XblGameSave

	
salt.modules.win_task.list_folders(location='\\')

	List all folders located in a specific location in the task scheduler.

	Parameters:

	location (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing the folder from which you want to list
tasks. Default is \ which is the root for the task scheduler
(C:\Windows\System32\tasks).

	Returns:

	Returns a list of folders.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

List all folders in the default location
salt 'minion-id' task.list_folders

List all folders in the Microsoft directory
salt 'minion-id' task.list_folders Microsoft

	
salt.modules.win_task.list_tasks(location='\\')

	List all tasks located in a specific location in the task scheduler.

	Parameters:

	location (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing the folder from which you want to list
tasks. Default is \ which is the root for the task scheduler
(C:\Windows\System32\tasks).

	Returns:

	Returns a list of tasks

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

List all tasks in the default location
salt 'minion-id' task.list_tasks

List all tasks in the Microsoft\XblGameSave Directory
salt 'minion-id' task.list_tasks Microsoft\XblGameSave

	
salt.modules.win_task.list_triggers(name, location='\\')

	List all triggers that pertain to a task in the specified location.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the task for which list triggers.

	location (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing the location of the task from which to
list triggers. Default is \ which is the root for the task
scheduler (C:\Windows\System32\tasks).

	Returns:

	Returns a list of triggers.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

List all triggers for a task in the default location
salt 'minion-id' task.list_triggers <task_name>

List all triggers for the XblGameSaveTask in the Microsoft\XblGameSave
location
salt '*' task.list_triggers XblGameSaveTask Microsoft\XblGameSave

	
salt.modules.win_task.run(name, location='\\')

	Run a scheduled task manually.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the task to run.

	location (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing the location of the task. Default is
\ which is the root for the task scheduler
(C:\Windows\System32\tasks).

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt 'minion-id' task.run <task_name>

	
salt.modules.win_task.run_wait(name, location='\\')

	Run a scheduled task and return when the task finishes

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the task to run.

	location (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing the location of the task. Default is
\ which is the root for the task scheduler
(C:\Windows\System32\tasks).

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt 'minion-id' task.run_wait <task_name>

	
salt.modules.win_task.status(name, location='\\')

	Determine the status of a task. Is it Running, Queued, Ready, etc.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the task for which to return the status

	location (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing the location of the task. Default is
\ which is the root for the task scheduler
(C:\Windows\System32\tasks).

	Returns:

	The current status of the task. Will be one of the following:

	Unknown

	Disabled

	Queued

	Ready

	Running

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt 'minion-id' task.list_status <task_name>

	
salt.modules.win_task.stop(name, location='\\')

	Stop a scheduled task.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the task to stop.

	location (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A string value representing the location of the task. Default is
\ which is the root for the task scheduler
(C:\Windows\System32\tasks).

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt 'minion-id' task.list_stop <task_name>

salt.modules.win_timezone

Module for managing timezone on Windows systems.

	
class salt.modules.win_timezone.TzMapper(unix_to_win)

	
	
add(k, v)

	

	
get_unix(key, default=None)

	

	
get_win(key, default=None)

	

	
list_unix()

	

	
list_win()

	

	
remove(k)

	

	
salt.modules.win_timezone.get_hwclock()

	Get current hardware clock setting (UTC or localtime)

Note

The hardware clock is always local time on Windows so this will always
return "localtime"

CLI Example:

salt '*' timezone.get_hwclock

	
salt.modules.win_timezone.get_offset()

	Get current numeric timezone offset from UTC (i.e. -0700)

	Returns:

	Offset from UTC

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' timezone.get_offset

	
salt.modules.win_timezone.get_zone()

	Get current timezone (i.e. America/Denver)

	Returns:

	Timezone in unix format

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises:

	CommandExecutionError -- If timezone could not be gathered

CLI Example:

salt '*' timezone.get_zone

	
salt.modules.win_timezone.get_zonecode()

	Get current timezone (i.e. PST, MDT, etc)

	Returns:

	An abbreviated timezone code

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' timezone.get_zonecode

	
salt.modules.win_timezone.list(unix_style=True)

	Return a list of Timezones that this module supports. These can be in either
Unix or Windows format.

New in version 2018.3.3.

	Parameters:

	unix_style (bool [https://docs.python.org/3/library/functions.html#bool]) -- True returns Unix-style timezones. False returns
Windows-style timezones. Default is True

	Returns:

	A list of supported timezones

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

Unix-style timezones
salt '*' timezone.list

Windows-style timezones
salt '*' timezone.list unix_style=False

	
salt.modules.win_timezone.set_hwclock(clock)

	Sets the hardware clock to be either UTC or localtime

Note

The hardware clock is always local time on Windows so this will always
return False

CLI Example:

salt '*' timezone.set_hwclock UTC

	
salt.modules.win_timezone.set_zone(timezone)

	Sets the timezone using the tzutil.

	Parameters:

	timezone (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A valid timezone

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	CommandExecutionError -- If invalid timezone is passed

CLI Example:

salt '*' timezone.set_zone 'America/Denver'

	
salt.modules.win_timezone.zone_compare(timezone)

	Compares the given timezone with the machine timezone. Mostly useful for
running state checks.

	Parameters:

	timezone (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The timezone to compare. This can be in Windows or Unix format. Can
be any of the values returned by the timezone.list function

	Returns:

	True if they match, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

Example:

salt '*' timezone.zone_compare 'America/Denver'

salt.modules.win_useradd

Module for managing Windows Users.

Important

If you feel that Salt should be using this module to manage users on a
minion, and it is using a different module (or gives an error similar to
'user.info' is not available), see here.

	depends:

	
	pywintypes

	win32api

	win32con

	win32net

	win32netcon

	win32profile

	win32security

	win32ts

	wmi

Note

This currently only works with local user accounts, not domain accounts

	
salt.modules.win_useradd.add(name, password=None, fullname=None, description=None, groups=None, home=None, homedrive=None, profile=None, logonscript=None)

	Add a user to the minion.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The username for the new account

	password (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- User's password in plain text.

	fullname (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- The user's full name.

	description (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- A brief description of the user account.

	groups (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- A list of groups to add the user to.
(see chgroups)

	home (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- The path to the user's home directory.

	homedrive (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- The drive letter to assign to the home
directory. Must be the Drive Letter followed by a colon. ie: U:

	profile (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- An explicit path to a profile. Can be a UNC or
a folder on the system. If left blank, windows uses its default
profile directory.

	logonscript (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- Path to a login script to run when the user
logs on.

	Returns:

	True if successful, otherwise False.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' user.add name password

	
salt.modules.win_useradd.addgroup(name, group)

	Add user to a group

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The username to add to the group

	group (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the group to which to add the user

	Returns:

	True if successful, otherwise False.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' user.addgroup jsnuffy 'Power Users'

	
salt.modules.win_useradd.chfullname(name, fullname)

	Change the full name of the user

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The username for which to change the full name

	fullname (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The new value for the full name

	Returns:

	True if successful, otherwise False.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' user.chfullname user 'First Last'

	
salt.modules.win_useradd.chgroups(name, groups, append=True)

	Change the groups this user belongs to, add append=False to make the user a
member of only the specified groups

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The username for which to change groups

	groups (str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list]) -- A single group or a list of groups to assign to the
user. For multiple groups this can be a comma delimited string or a
list.

	append (bool [https://docs.python.org/3/library/functions.html#bool], optional) -- True adds the passed groups to the user's
current groups. False sets the user's groups to the passed groups
only. Default is True.

	Returns:

	True if successful, otherwise False.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' user.chgroups jsnuffy Administrators,Users True

	
salt.modules.win_useradd.chhome(name, home, **kwargs)

	Change the home directory of the user, pass True for persist to move files
to the new home directory if the old home directory exist.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the user whose home directory you wish to change

	home (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The new location of the home directory

	Returns:

	True if successful, otherwise False.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' user.chhome foo \\fileserver\home\foo True

	
salt.modules.win_useradd.chprofile(name, profile)

	Change the profile directory of the user

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the user whose profile you wish to change

	profile (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The new location of the profile

	Returns:

	True if successful, otherwise False.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' user.chprofile foo \\fileserver\profiles\foo

	
salt.modules.win_useradd.current(sam=False)

	Get the username that salt-minion is running under. If salt-minion is
running as a service it should return the Local System account. If salt is
running from a command prompt it should return the username that started the
command prompt.

New in version 2015.5.6.

	Parameters:

	sam (bool [https://docs.python.org/3/library/functions.html#bool], optional) -- False returns just the username without any domain
notation. True returns the domain with the username in the SAM
format. Ie: domain\username

	Returns:

	Returns username

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' user.current

	
salt.modules.win_useradd.delete(name, purge=False, force=False)

	Remove a user from the minion

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the user to delete

	purge (bool [https://docs.python.org/3/library/functions.html#bool], optional) -- Boolean value indicating that the user profile
should also be removed when the user account is deleted. If set to
True the profile will be removed. Default is False.

	force (bool [https://docs.python.org/3/library/functions.html#bool], optional) -- Boolean value indicating that the user account
should be deleted even if the user is logged in. True will log the
user out and delete user.

	Returns:

	True if successful, otherwise False.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' user.delete name

	
salt.modules.win_useradd.getUserSid(username)

	Deprecated function. Please use get_user_sid instead

CLI Example:

salt '*' user.get_user_sid jsnuffy

	
salt.modules.win_useradd.get_user_sid(username)

	Get the Security ID for the user

	Parameters:

	username (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The username for which to look up the SID

	Returns:

	The user SID

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

CLI Example:

salt '*' user.get_user_sid jsnuffy

	
salt.modules.win_useradd.getent(refresh=False)

	Return the list of all info for all users

	Parameters:

	refresh (bool [https://docs.python.org/3/library/functions.html#bool], optional) -- Refresh the cached user information. Useful
when used from within a state function. Default is False.

	Returns:

	A dictionary containing information about all users on the system

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' user.getent

	
salt.modules.win_useradd.info(name)

	Return user information

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Username for which to display information

	Returns:

	
	A dictionary containing user information
	
	fullname

	username

	SID

	passwd (will always return None)

	comment (same as description, left here for backwards compatibility)

	description

	active

	logonscript

	profile

	home

	homedrive

	groups

	password_changed

	successful_logon_attempts

	failed_logon_attempts

	last_logon

	account_disabled

	account_locked

	expiration_date

	password_never_expires

	disallow_change_password

	gid

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

salt '*' user.info jsnuffy

	
salt.modules.win_useradd.list_groups(name)

	Return a list of groups the named user belongs to

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The username for which to list groups

	Returns:

	A list of groups to which the user belongs

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' user.list_groups foo

	
salt.modules.win_useradd.list_users()

	Return a list of all users on Windows

	Returns:

	A list of all users on the system

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' user.list_users

	
salt.modules.win_useradd.removegroup(name, group)

	Remove user from a group

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The username to remove from the group

	group (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the group from which to remove the user

	Returns:

	True if successful, otherwise False.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' user.removegroup jsnuffy 'Power Users'

	
salt.modules.win_useradd.rename(name, new_name)

	Change the username for a named user

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The username to change

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The new name for the current user

	Returns:

	True if successful, otherwise False.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' user.rename jsnuffy jshmoe

	
salt.modules.win_useradd.setpassword(name, password)

	Set the user's password

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The username for which to set the password

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The new password

	Returns:

	True if successful, otherwise False.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' user.setpassword jsnuffy sup3rs3cr3t

	
salt.modules.win_useradd.update(name, password=None, fullname=None, description=None, home=None, homedrive=None, logonscript=None, profile=None, expiration_date=None, expired=None, account_disabled=None, unlock_account=None, password_never_expires=None, disallow_change_password=None)

	Updates settings for the Windows user. Name is the only required parameter.
Settings will only be changed if the parameter is passed a value.

New in version 2015.8.0.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The username to update.

	password (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- New user password in plain text.

	fullname (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- The user's full name.

	description (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- A brief description of the user account.

	home (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- The path to the user's home directory.

	homedrive (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- The drive letter to assign to the home
directory. Must be the Drive Letter followed by a colon. ie: U:

	logonscript (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- The path to the logon script.

	profile (str [https://docs.python.org/3/library/stdtypes.html#str], optional) -- The path to the user's profile directory.

	expiration_date (date, optional) -- The date and time when the account
expires. Can be a valid date/time string. To set to never expire
pass the string 'Never'.

	expired (bool [https://docs.python.org/3/library/functions.html#bool], optional) -- Pass True to expire the account. The user
will be prompted to change their password at the next logon. Pass
False to mark the account as 'not expired'. You can't use this to
negate the expiration if the expiration was caused by the account
expiring. You'll have to change the expiration_date as well.

	account_disabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) -- True disables the account. False
enables the account.

	unlock_account (bool [https://docs.python.org/3/library/functions.html#bool], optional) -- True unlocks a locked user account.
False is ignored.

	password_never_expires (bool [https://docs.python.org/3/library/functions.html#bool], optional) -- True sets the password to never
expire. False allows the password to expire.

	disallow_change_password (bool [https://docs.python.org/3/library/functions.html#bool], optional) -- True blocks the user from
changing the password. False allows the user to change the password.

	Returns:

	True if successful, otherwise False.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' user.update bob password=secret profile=C:\Users\Bob
 home=\server\homeshare\bob homedrive=U:

salt.modules.win_wua

Module for managing Windows Updates using the Windows Update Agent.

List updates on the system using the following functions:

	win_wua.available

	win_wua.list

This is an easy way to find additional information about updates available to
to the system, such as the GUID, KB number, or description.

Once you have the GUID or a KB number for the update you can get information
about the update, download, install, or uninstall it using these functions:

	win_wua.get

	win_wua.download

	win_wua.install

	win_wua.uninstall

The get function expects a name in the form of a GUID, KB, or Title and should
return information about a single update. The other functions accept either a
single item or a list of items for downloading/installing/uninstalling a
specific list of items.

The win_wua.list and
win_wua.get functions are utility
functions. In addition to returning information about updates they can also
download and install updates by setting download=True or install=True.
So, with py:func:win_wua.list <salt.modules.win_wua.list_> for example, you
could run the function with the filters you want to see what is available. Then
just add install=True to install everything on that list.

If you want to download, install, or uninstall specific updates, use
win_wua.download,
win_wua.install, or
win_wua.uninstall. To update your
system with the latest updates use win_wua.list and set install=True

You can also adjust the Windows Update settings using the
win_wua.set_wu_settings
function. This function is only supported on the following operating systems:

	Windows Vista / Server 2008

	Windows 7 / Server 2008R2

	Windows 8 / Server 2012

	Windows 8.1 / Server 2012R2

As of Windows 10 and Windows Server 2016, the ability to modify the Windows
Update settings has been restricted. The settings can be modified in the Local
Group Policy using the lgpo module.

New in version 2015.8.0.

	depends:

	salt.utils.win_update

	
salt.modules.win_wua.available(software=True, drivers=True, summary=False, skip_installed=True, skip_hidden=True, skip_mandatory=False, skip_reboot=False, categories=None, severities=None, online=True)

	
New in version 2017.7.0.

List updates that match the passed criteria. This allows for more filter
options than list(). Good for finding a specific GUID or KB.

	Parameters:

	
	software (bool [https://docs.python.org/3/library/functions.html#bool]) -- Include software updates in the results. Default is True

	drivers (bool [https://docs.python.org/3/library/functions.html#bool]) -- Include driver updates in the results. Default is True

	summary (bool [https://docs.python.org/3/library/functions.html#bool]) --
	True: Return a summary of updates available for each category.

	False (default): Return a detailed list of available updates.

	skip_installed (bool [https://docs.python.org/3/library/functions.html#bool]) -- Skip updates that are already installed. Default is True

	skip_hidden (bool [https://docs.python.org/3/library/functions.html#bool]) -- Skip updates that have been hidden. Default is True

	skip_mandatory (bool [https://docs.python.org/3/library/functions.html#bool]) -- Skip mandatory updates. Default is False

	skip_reboot (bool [https://docs.python.org/3/library/functions.html#bool]) -- Skip updates that require a reboot. Default is False

	categories (list [https://docs.python.org/3/library/stdtypes.html#list]) -- Specify the categories to list. Must be passed as a list. All
categories returned by default.

Categories include the following:

	Critical Updates

	Definition Updates

	Drivers (make sure you set drivers=True)

	Feature Packs

	Security Updates

	Update Rollups

	Updates

	Update Rollups

	Windows 7

	Windows 8.1

	Windows 8.1 drivers

	Windows 8.1 and later drivers

	Windows Defender

	severities (list [https://docs.python.org/3/library/stdtypes.html#list]) -- Specify the severities to include. Must be passed as a list. All
severities returned by default.

Severities include the following:

	Critical

	Important

	online (bool [https://docs.python.org/3/library/functions.html#bool]) -- Tells the Windows Update Agent go online to update its local update
database. True will go online. False will use the local
update database as is. Default is True

New in version 3001.

	Returns:

	Returns a dict containing either a summary or a list of updates:

Dict of Updates:
{'<GUID>': {
 'Title': <title>,
 'KB': <KB>,
 'GUID': <the globally unique identifier for the update>,
 'Description': <description>,
 'Downloaded': <has the update been downloaded>,
 'Installed': <has the update been installed>,
 'Mandatory': <is the update mandatory>,
 'UserInput': <is user input required>,
 'EULAAccepted': <has the EULA been accepted>,
 'Severity': <update severity>,
 'NeedsReboot': <is the update installed and awaiting reboot>,
 'RebootBehavior': <will the update require a reboot>,
 'Categories': [
 '<category 1>',
 '<category 2>',
 ...]
}}

Summary of Updates:
{'Total': <total number of updates returned>,
 'Available': <updates that are not downloaded or installed>,
 'Downloaded': <updates that are downloaded but not installed>,
 'Installed': <updates installed (usually 0 unless installed=True)>,
 'Categories': {
 <category 1>: <total for that category>,
 <category 2>: <total for category 2>,
 ... }
}

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Examples:

Normal Usage (list all software updates)
salt '*' win_wua.available

List all updates with categories of Critical Updates and Drivers
salt '*' win_wua.available categories=["Critical Updates","Drivers"]

List all Critical Security Updates
salt '*' win_wua.available categories=["Security Updates"] severities=["Critical"]

List all updates with a severity of Critical
salt '*' win_wua.available severities=["Critical"]

A summary of all available updates
salt '*' win_wua.available summary=True

A summary of all Feature Packs and Windows 8.1 Updates
salt '*' win_wua.available categories=["Feature Packs","Windows 8.1"] summary=True

	
salt.modules.win_wua.download(names)

	
New in version 2017.7.0.

Downloads updates that match the list of passed identifiers. It's easier to
use this function by using list_updates and setting download=True.

	Parameters:

	names (str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list]) -- A single update or a list of updates to download. This can be any
combination of GUIDs, KB numbers, or names. GUIDs or KBs are
preferred.

Note

An error will be raised if there are more results than there are
items in the names parameter

	Returns:

	A dictionary containing the details about the downloaded updates

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Example:

Normal Usage
salt '*' win_wua.download names=['12345678-abcd-1234-abcd-1234567890ab', 'KB2131233']

	
salt.modules.win_wua.get(name, download=False, install=False, online=True)

	
New in version 2017.7.0.

Returns details for the named update

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the update you're searching for. This can be the GUID, a
KB number, or any part of the name of the update. GUIDs and KBs are
preferred. Run list to get the GUID for the update you're
looking for.

	download (bool [https://docs.python.org/3/library/functions.html#bool]) -- Download the update returned by this function. Run this function
first to see if the update exists, then set download=True to
download the update.

	install (bool [https://docs.python.org/3/library/functions.html#bool]) -- Install the update returned by this function. Run this function
first to see if the update exists, then set install=True to
install the update.

	online (bool [https://docs.python.org/3/library/functions.html#bool]) -- Tells the Windows Update Agent go online to update its local update
database. True will go online. False will use the local
update database as is. Default is True

New in version 3001.

	Returns:

	
	Returns a dict containing a list of updates that match the name if
	download and install are both set to False. Should usually be a
single update, but can return multiple if a partial name is given.

If download or install is set to true it will return the results of the
operation.

Dict of Updates:
{'<GUID>': {
 'Title': <title>,
 'KB': <KB>,
 'GUID': <the globally unique identifier for the update>,
 'Description': <description>,
 'Downloaded': <has the update been downloaded>,
 'Installed': <has the update been installed>,
 'Mandatory': <is the update mandatory>,
 'UserInput': <is user input required>,
 'EULAAccepted': <has the EULA been accepted>,
 'Severity': <update severity>,
 'NeedsReboot': <is the update installed and awaiting reboot>,
 'RebootBehavior': <will the update require a reboot>,
 'Categories': [
 '<category 1>',
 '<category 2>',
 ...]
}}

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Examples:

Recommended Usage using GUID without braces
Use this to find the status of a specific update
salt '*' win_wua.get 12345678-abcd-1234-abcd-1234567890ab

Use the following if you don't know the GUID:

Using a KB number
Not all updates have an associated KB
salt '*' win_wua.get KB3030298

Using part or all of the name of the update
Could possibly return multiple results
Not all updates have an associated KB
salt '*' win_wua.get 'Microsoft Camera Codec Pack'

	
salt.modules.win_wua.get_needs_reboot()

	Determines if the system needs to be rebooted.

	Returns:

	True if the system requires a reboot, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Examples:

salt '*' win_wua.get_needs_reboot

	
salt.modules.win_wua.get_wu_settings()

	Get current Windows Update settings.

	Returns:

	A dictionary of Windows Update settings:

	Featured Updates:
	Boolean value that indicates whether to display notifications for
featured updates.

	Group Policy Required (Read-only):
	Boolean value that indicates whether Group Policy requires the
Automatic Updates service.

	Microsoft Update:
	Boolean value that indicates whether to turn on Microsoft Update for
other Microsoft Products

	Needs Reboot:
	Boolean value that indicates whether the machine is in a reboot
pending state.

	Non Admins Elevated:
	Boolean value that indicates whether non-administrators can perform
some update-related actions without administrator approval.

Notification Level:

Number 1 to 4 indicating the update level:

	Never check for updates

	Check for updates but let me choose whether to download and
install them

	Download updates but let me choose whether to install them

	Install updates automatically

	Read Only (Read-only):
	Boolean value that indicates whether the Automatic Update
settings are read-only.

	Recommended Updates:
	Boolean value that indicates whether to include optional or
recommended updates when a search for updates and installation of
updates is performed.

	Scheduled Day:
	Days of the week on which Automatic Updates installs or uninstalls
updates.

	Scheduled Time:
	Time at which Automatic Updates installs or uninstalls updates.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Examples:

salt '*' win_wua.get_wu_settings

	
salt.modules.win_wua.install(names)

	
New in version 2017.7.0.

Installs updates that match the list of identifiers. It may be easier to use
the list_updates function and set install=True.

	Parameters:

	names (str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list]) -- A single update or a list of updates to install. This can be any
combination of GUIDs, KB numbers, or names. GUIDs or KBs are
preferred.

Note

An error will be raised if there are more results than there are items
in the names parameter

	Returns:

	A dictionary containing the details about the installed updates

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Examples:

Normal Usage
salt '*' win_wua.install KB12323211

	
salt.modules.win_wua.installed(summary=False, kbs_only=False)

	
New in version 3001.

Get a list of all updates that are currently installed on the system.

Note

This list may not necessarily match the Update History on the machine.
This will only show the updates that apply to the current build of
Windows. So, for example, the system may have shipped with Windows 10
Build 1607. That machine received updates to the 1607 build. Later the
machine was upgraded to a newer feature release, 1803 for example. Then
more updates were applied. This will only return the updates applied to
the 1803 build and not those applied when the system was at the 1607
build.

	Parameters:

	
	summary (bool [https://docs.python.org/3/library/functions.html#bool]) -- Return a summary instead of a detailed list of updates. True
will return a Summary, False will return a detailed list of
installed updates. Default is False

	kbs_only (bool [https://docs.python.org/3/library/functions.html#bool]) -- Only return a list of KBs installed on the system. If this parameter
is passed, the summary parameter will be ignored. Default is
False

	Returns:

	
	Returns a dictionary of either a Summary or a detailed list of
	updates installed on the system when kbs_only=False

	list:
	Returns a list of KBs installed on the system when kbs_only=True

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Examples:

Get a detailed list of all applicable updates installed on the system
salt '*' win_wua.installed

Get a summary of all applicable updates installed on the system
salt '*' win_wua.installed summary=True

Get a simple list of KBs installed on the system
salt '*' win_wua.installed kbs_only=True

	
salt.modules.win_wua.list(software=True, drivers=False, summary=False, skip_installed=True, categories=None, severities=None, download=False, install=False, online=True)

	
New in version 2017.7.0.

Returns a detailed list of available updates or a summary. If download
or install is True the same list will be downloaded and/or
installed.

	Parameters:

	
	software (bool [https://docs.python.org/3/library/functions.html#bool]) -- Include software updates in the results. Default is True

	drivers (bool [https://docs.python.org/3/library/functions.html#bool]) -- Include driver updates in the results. Default is False

	summary (bool [https://docs.python.org/3/library/functions.html#bool]) --
	True: Return a summary of updates available for each category.

	False (default): Return a detailed list of available updates.

	skip_installed (bool [https://docs.python.org/3/library/functions.html#bool]) -- Skip installed updates in the results. Default is True

	download (bool [https://docs.python.org/3/library/functions.html#bool]) -- (Overrides reporting functionality) Download the list of updates
returned by this function. Run this function first with
download=False to see what will be downloaded, then set
download=True to download the updates. Default is False

	install (bool [https://docs.python.org/3/library/functions.html#bool]) -- (Overrides reporting functionality) Install the list of updates
returned by this function. Run this function first with
install=False to see what will be installed, then set
install=True to install the updates. Default is False

	categories (list [https://docs.python.org/3/library/stdtypes.html#list]) -- Specify the categories to list. Must be passed as a list. All
categories returned by default.

Categories include the following:

	Critical Updates

	Definition Updates

	Drivers (make sure you set drivers=True)

	Feature Packs

	Security Updates

	Update Rollups

	Updates

	Update Rollups

	Windows 7

	Windows 8.1

	Windows 8.1 drivers

	Windows 8.1 and later drivers

	Windows Defender

	severities (list [https://docs.python.org/3/library/stdtypes.html#list]) -- Specify the severities to include. Must be passed as a list. All
severities returned by default.

Severities include the following:

	Critical

	Important

	online (bool [https://docs.python.org/3/library/functions.html#bool]) -- Tells the Windows Update Agent go online to update its local update
database. True will go online. False will use the local
update database as is. Default is True

New in version 3001.

	Returns:

	Returns a dict containing either a summary or a list of updates:

Dict of Updates:
{'<GUID>': {
 'Title': <title>,
 'KB': <KB>,
 'GUID': <the globally unique identifier for the update>,
 'Description': <description>,
 'Downloaded': <has the update been downloaded>,
 'Installed': <has the update been installed>,
 'Mandatory': <is the update mandatory>,
 'UserInput': <is user input required>,
 'EULAAccepted': <has the EULA been accepted>,
 'Severity': <update severity>,
 'NeedsReboot': <is the update installed and awaiting reboot>,
 'RebootBehavior': <will the update require a reboot>,
 'Categories': [
 '<category 1>',
 '<category 2>',
 ...]
}}

Summary of Updates:
{'Total': <total number of updates returned>,
 'Available': <updates that are not downloaded or installed>,
 'Downloaded': <updates that are downloaded but not installed>,
 'Installed': <updates installed (usually 0 unless installed=True)>,
 'Categories': {
 <category 1>: <total for that category>,
 <category 2>: <total for category 2>,
 ... }
}

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Examples:

Normal Usage (list all software updates)
salt '*' win_wua.list

List all updates with categories of Critical Updates and Drivers
salt '*' win_wua.list categories=['Critical Updates','Drivers']

List all Critical Security Updates
salt '*' win_wua.list categories=['Security Updates'] severities=['Critical']

List all updates with a severity of Critical
salt '*' win_wua.list severities=['Critical']

A summary of all available updates
salt '*' win_wua.list summary=True

A summary of all Feature Packs and Windows 8.1 Updates
salt '*' win_wua.list categories=['Feature Packs','Windows 8.1'] summary=True

	
salt.modules.win_wua.set_wu_settings(level=None, recommended=None, featured=None, elevated=None, msupdate=None, day=None, time=None)

	Change Windows Update settings. If no parameters are passed, the current
value will be returned.

	Supported:
	
	Windows Vista / Server 2008

	Windows 7 / Server 2008R2

	Windows 8 / Server 2012

	Windows 8.1 / Server 2012R2

	Parameters:

	
	level (int [https://docs.python.org/3/library/functions.html#int]) -- Number from 1 to 4 indicating the update level:

	Never check for updates

	Check for updates but let me choose whether to download and
install them

	Download updates but let me choose whether to install them

	Install updates automatically

	recommended (bool [https://docs.python.org/3/library/functions.html#bool]) -- Boolean value that indicates whether to include optional or
recommended updates when a search for updates and installation of
updates is performed.

	featured (bool [https://docs.python.org/3/library/functions.html#bool]) -- Boolean value that indicates whether to display notifications for
featured updates.

	elevated (bool [https://docs.python.org/3/library/functions.html#bool]) -- Boolean value that indicates whether non-administrators can perform
some update-related actions without administrator approval.

	msupdate (bool [https://docs.python.org/3/library/functions.html#bool]) -- Boolean value that indicates whether to turn on Microsoft Update for
other Microsoft products

	day (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Days of the week on which Automatic Updates installs or uninstalls
updates. Accepted values:

	Everyday

	Monday

	Tuesday

	Wednesday

	Thursday

	Friday

	Saturday

	time (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Time at which Automatic Updates installs or uninstalls updates. Must
be in the ##:## 24hr format, eg. 3:00 PM would be 15:00. Must be in
1 hour increments.

	Returns:

	Returns a dictionary containing the results.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Examples:

salt '*' win_wua.set_wu_settings level=4 recommended=True featured=False

	
salt.modules.win_wua.uninstall(names)

	
New in version 2017.7.0.

Uninstall updates.

	Parameters:

	names (str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list]) -- A single update or a list of updates to uninstall. This can be any
combination of GUIDs, KB numbers, or names. GUIDs or KBs are
preferred.

	Returns:

	A dictionary containing the details about the uninstalled updates

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

CLI Examples:

Normal Usage
salt '*' win_wua.uninstall KB3121212

As a list
salt '*' win_wua.uninstall guid=['12345678-abcd-1234-abcd-1234567890ab', 'KB1231231']

salt.modules.win_wusa

Microsoft Update files management via wusa.exe

	maintainer:

	Thomas Lemarchand

	platform:

	Windows

	depends:

	PowerShell

New in version 2018.3.4.

	
salt.modules.win_wusa.install(path, restart=False)

	Install a KB from a .msu file.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The full path to the msu file to install

	restart (bool [https://docs.python.org/3/library/functions.html#bool]) -- True to force a restart if required by the installation. Adds
the /forcerestart switch to the wusa.exe command. False
will add the /norestart switch instead. Default is False

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	CommandExecutionError -- If the package is already installed or an error
 is encountered

CLI Example:

salt '*' wusa.install C:/temp/KB123456.msu

	
salt.modules.win_wusa.is_installed(name)

	Check if a specific KB is installed.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the KB to check

	Returns:

	True if installed, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

CLI Example:

salt '*' wusa.is_installed KB123456

	
salt.modules.win_wusa.list_()

	Get a list of updates installed on the machine

	Returns:

	A list of installed updates

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

CLI Example:

salt '*' wusa.list

	
salt.modules.win_wusa.uninstall(path, restart=False)

	Uninstall a specific KB.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The full path to the msu file to uninstall. This can also be just
the name of the KB to uninstall

	restart (bool [https://docs.python.org/3/library/functions.html#bool]) -- True to force a restart if required by the installation. Adds
the /forcerestart switch to the wusa.exe command. False
will add the /norestart switch instead. Default is False

	Returns:

	True if successful, otherwise False

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises:

	CommandExecutionError -- If an error is encountered

CLI Example:

salt '*' wusa.uninstall KB123456

or

salt '*' wusa.uninstall C:/temp/KB123456.msu

salt.modules.winrepo

Module to manage Windows software repo on a Standalone Minion

file_client: local must be set in the minion config file.

For documentation on Salt's Windows Repo feature, see here.

	
salt.modules.winrepo.genrepo()

	Generate winrepo_cachefile based on sls files in the winrepo_dir

CLI Example:

salt-call winrepo.genrepo

	
salt.modules.winrepo.show_sls(name, saltenv='base')

	
New in version 2015.8.0.

Display the rendered software definition from a specific sls file in the
local winrepo cache. This will parse all Jinja. Run pkg.refresh_db to pull
the latest software definitions from the master.

Note

This function does not ask a master for an sls file to render. Instead
it directly processes the file specified in name

	Parameters:

	
	str (saltenv) -- The name/path of the package you want to view. This can be the

	local (full path to a file on the minion file system or a file on the) --

	cache. (minion) --

	str -- The default environment is base

	Returns:

	Returns a dictionary containing the rendered data structure

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Note

To use a file from the minion cache start from the local winrepo root
(C:\salt\var\cache\salt\minion\files\base\win\repo-ng). If you have
.sls files organized in subdirectories you'll have to denote them
with .. For example, if you have a test directory in the winrepo
root with a gvim.sls file inside, would target that file like so:
test.gvim. Directories can be targeted as well as long as they
contain an init.sls inside. For example, if you have a node
directory with an init.sls inside, target that like so: node.

CLI Example:

salt '*' winrepo.show_sls gvim
salt '*' winrepo.show_sls test.npp
salt '*' winrepo.show_sls C:\test\gvim.sls

	
salt.modules.winrepo.update_git_repos(clean=False)

	Checkout git repos containing Windows Software Package Definitions.

Important

This function requires Git for Windows [https://git-for-windows.github.io/] to be installed in order to
work. When installing, make sure to select an installation option which
permits the git executable to be run from the Command Prompt.

	cleanFalse
	Clean repo cachedirs which are not configured under
winrepo_remotes.

Note

This option only applies if either pygit2 [https://github.com/libgit2/pygit2] or GitPython [https://github.com/gitpython-developers/GitPython] is
installed into Salt's bundled Python.

Warning

This argument should not be set to True if a mix of git and
non-git repo definitions are being used, as it will result in the
non-git repo definitions being removed.

New in version 2015.8.0.

CLI Example:

salt-call winrepo.update_git_repos

salt.modules.wordpress

This module is used to manage Wordpress installations

	depends:

	wp binary from http://wp-cli.org/

	
class salt.modules.wordpress.Plugin(name, status, update, versino)

	
	
name

	Alias for field number 0

	
status

	Alias for field number 1

	
update

	Alias for field number 2

	
versino

	Alias for field number 3

	
salt.modules.wordpress.activate(name, path, user)

	Activate a wordpress plugin

	name
	Wordpress plugin name

	path
	path to wordpress install location

	user
	user to run the command as

CLI Example:

salt '*' wordpress.activate HyperDB /var/www/html apache

	
salt.modules.wordpress.deactivate(name, path, user)

	Deactivate a wordpress plugin

	name
	Wordpress plugin name

	path
	path to wordpress install location

	user
	user to run the command as

CLI Example:

salt '*' wordpress.deactivate HyperDB /var/www/html apache

	
salt.modules.wordpress.install(path, user, admin_user, admin_password, admin_email, title, url)

	Run the initial setup functions for a wordpress install

	path
	path to wordpress install location

	user
	user to run the command as

	admin_user
	Username for the Administrative user for the wordpress install

	admin_password
	Initial Password for the Administrative user for the wordpress install

	admin_email
	Email for the Administrative user for the wordpress install

	title
	Title of the wordpress website for the wordpress install

	url
	Url for the wordpress install

CLI Example:

salt '*' wordpress.install /var/www/html apache dwallace password123 dwallace@example.com "Daniel's Awesome Blog" https://blog.dwallace.com

	
salt.modules.wordpress.is_installed(path, user=None)

	Check if wordpress is installed and setup

	path
	path to wordpress install location

	user
	user to run the command as

CLI Example:

salt '*' wordpress.is_installed /var/www/html apache

	
salt.modules.wordpress.list_plugins(path, user)

	List plugins in an installed wordpress path

	path
	path to wordpress install location

	user
	user to run the command as

CLI Example:

salt '*' wordpress.list_plugins /var/www/html apache

	
salt.modules.wordpress.show_plugin(name, path, user)

	Show a plugin in a wordpress install and check if it is installed

	name
	Wordpress plugin name

	path
	path to wordpress install location

	user
	user to run the command as

CLI Example:

salt '*' wordpress.show_plugin HyperDB /var/www/html apache

salt.modules.x509

Manage X509 certificates

New in version 2015.8.0.

	depends:

	M2Crypto

Deprecated since version 3006.0.

Warning

This module has been deprecated and will be removed
in Salt 3009 (Potassium). Please migrate to the replacement
modules. For breaking changes between both versions,
you can refer to the x509_v2 execution module docs.

They will become the default x509 modules in Salt 3008 (Argon).
You can explicitly switch to the new modules before that release
by setting features: {x509_v2: true} in your minion configuration.

	
salt.modules.x509.create_certificate(path=None, text=False, overwrite=True, ca_server=None, **kwargs)

	Create an X509 certificate.

	path:
	Path to write the certificate to.

	text:
	If True, return the PEM text without writing to a file.
Default False.

	overwrite:
	If True (default), create_certificate will overwrite the entire PEM
file. Set False to preserve existing private keys and dh params that
may exist in the PEM file.

	kwargs:
	Any of the properties below can be included as additional
keyword arguments.

	ca_server:
	Request a remotely signed certificate from ca_server. For this to
work, a signing_policy must be specified, and that same policy
must be configured on the ca_server. See signing_policy for
details. Also, the salt master must permit peers to call the
sign_remote_certificate function.

Example:

/etc/salt/master.d/peer.conf

peer:
 .*:
 - x509.sign_remote_certificate

	subject properties:
	Any of the values below can be included to set subject properties
Any other subject properties supported by OpenSSL should also work.

	C:
	2 letter Country code

	CN:
	Certificate common name, typically the FQDN.

	Email:
	Email address

	GN:
	Given Name

	L:
	Locality

	O:
	Organization

	OU:
	Organization Unit

	SN:
	SurName

	ST:
	State or Province

	signing_private_key:
	A path or string of the private key in PEM format that will be used
to sign this certificate. If neither signing_cert, public_key,
or csr are included, it will be assumed that this is a self-signed
certificate, and the public key matching signing_private_key will
be used to create the certificate.

	signing_private_key_passphrase:
	Passphrase used to decrypt the signing_private_key.

	signing_cert:
	A certificate matching the private key that will be used to sign this
certificate. This is used to populate the issuer values in the
resulting certificate. Do not include this value for
self-signed certificates.

	public_key:
	The public key to be included in this certificate. This can be sourced
from a public key, certificate, CSR or private key. If a private key
is used, the matching public key from the private key will be
generated before any processing is done. This means you can request a
certificate from a remote CA using a private key file as your
public_key and only the public key will be sent across the network to
the CA. If neither public_key or csr are specified, it will be
assumed that this is a self-signed certificate, and the public key
derived from signing_private_key will be used. Specify either
public_key or csr, not both. Because you can input a CSR as a
public key or as a CSR, it is important to understand the difference.
If you import a CSR as a public key, only the public key will be added
to the certificate, subject or extension information in the CSR will
be lost.

	public_key_passphrase:
	If the public key is supplied as a private key, this is the passphrase
used to decrypt it.

	csr:
	A file or PEM string containing a certificate signing request. This
will be used to supply the subject, extensions and public key of a
certificate. Any subject or extensions specified explicitly will
overwrite any in the CSR.

	basicConstraints:
	X509v3 Basic Constraints extension.

	extensions:
	The following arguments set X509v3 Extension values. If the value
starts with critical, the extension will be marked as critical.

Some special extensions are subjectKeyIdentifier and
authorityKeyIdentifier.

subjectKeyIdentifier can be an explicit value or it can be the
special string hash. hash will set the subjectKeyIdentifier
equal to the SHA1 hash of the modulus of the public key in this
certificate. Note that this is not the exact same hashing method used
by OpenSSL when using the hash value.

authorityKeyIdentifier Use values acceptable to the openssl CLI
tools. This will automatically populate authorityKeyIdentifier
with the subjectKeyIdentifier of signing_cert. If this is a
self-signed cert these values will be the same.

	basicConstraints:
	X509v3 Basic Constraints

	keyUsage:
	X509v3 Key Usage

	extendedKeyUsage:
	X509v3 Extended Key Usage

	subjectKeyIdentifier:
	X509v3 Subject Key Identifier

	issuerAltName:
	X509v3 Issuer Alternative Name

	subjectAltName:
	X509v3 Subject Alternative Name

	crlDistributionPoints:
	X509v3 CRL Distribution Points

	issuingDistributionPoint:
	X509v3 Issuing Distribution Point

	certificatePolicies:
	X509v3 Certificate Policies

	policyConstraints:
	X509v3 Policy Constraints

	inhibitAnyPolicy:
	X509v3 Inhibit Any Policy

	nameConstraints:
	X509v3 Name Constraints

	noCheck:
	X509v3 OCSP No Check

	nsComment:
	Netscape Comment

	nsCertType:
	Netscape Certificate Type

	days_valid:
	The number of days this certificate should be valid. This sets the
notAfter property of the certificate. Defaults to 365.

	version:
	The version of the X509 certificate. Defaults to 3. This is
automatically converted to the version value, so version=3
sets the certificate version field to 0x2.

	serial_number:
	The serial number to assign to this certificate. If omitted a random
serial number of size serial_bits is generated.

	serial_bits:
	The number of bits to use when randomly generating a serial number.
Defaults to 64.

	algorithm:
	The hashing algorithm to be used for signing this certificate.
Defaults to sha256.

	copypath:
	An additional path to copy the resulting certificate to. Can be used
to maintain a copy of all certificates issued for revocation purposes.

	prepend_cn:
	If set to True, the CN and a dash will be prepended to the copypath's filename.

	Example:
	/etc/pki/issued_certs/www.example.com-DE:CA:FB:AD:00:00:00:00.crt

	signing_policy:
	A signing policy that should be used to create this certificate.
Signing policies should be defined in the minion configuration, or in
a minion pillar. It should be a YAML formatted list of arguments
which will override any arguments passed to this function. If the
minions key is included in the signing policy, only minions
matching that pattern (see match.glob and match.compound) will be
permitted to remotely request certificates from that policy.
In order to match.compound to work salt master must peers permit
peers to call it.

Example:

/etc/salt/master.d/peer.conf

peer:
 .*:
 - match.compound

Example:

x509_signing_policies:
 www:
 - minions: 'www*'
 - signing_private_key: /etc/pki/ca.key
 - signing_cert: /etc/pki/ca.crt
 - C: US
 - ST: Utah
 - L: Salt Lake City
 - basicConstraints: "critical CA:false"
 - keyUsage: "critical cRLSign, keyCertSign"
 - subjectKeyIdentifier: hash
 - authorityKeyIdentifier: keyid,issuer:always
 - days_valid: 90
 - copypath: /etc/pki/issued_certs/

The above signing policy can be invoked with signing_policy=www

	not_before:
	Initial validity date for the certificate. This date must be specified
in the format '%Y-%m-%d %H:%M:%S'.

New in version 3001.

	not_after:
	Final validity date for the certificate. This date must be specified in
the format '%Y-%m-%d %H:%M:%S'.

New in version 3001.

CLI Example:

salt '*' x509.create_certificate path=/etc/pki/myca.crt signing_private_key='/etc/pki/myca.key' csr='/etc/pki/myca.csr'}

	
salt.modules.x509.create_crl(path=None, text=False, signing_private_key=None, signing_private_key_passphrase=None, signing_cert=None, revoked=None, include_expired=False, days_valid=100, digest='')

	Create a CRL

	Depends:

	
	PyOpenSSL Python module

	path:
	Path to write the CRL to.

	text:
	If True, return the PEM text without writing to a file.
Default False.

	signing_private_key:
	A path or string of the private key in PEM format that will be used
to sign the CRL. This is required.

	signing_private_key_passphrase:
	Passphrase to decrypt the private key.

	signing_cert:
	A certificate matching the private key that will be used to sign
the CRL. This is required.

	revoked:
	A list of dicts containing all the certificates to revoke. Each dict
represents one certificate. A dict must contain either the key
serial_number with the value of the serial number to revoke, or
certificate with either the PEM encoded text of the certificate,
or a path to the certificate to revoke.

The dict can optionally contain the revocation_date key. If this
key is omitted the revocation date will be set to now. If should be a
string in the format "%Y-%m-%d %H:%M:%S".

The dict can also optionally contain the not_after key. This is
redundant if the certificate key is included. If the
Certificate key is not included, this can be used for the logic
behind the include_expired parameter. If should be a string in
the format "%Y-%m-%d %H:%M:%S".

The dict can also optionally contain the reason key. This is the
reason code for the revocation. Available choices are unspecified,
keyCompromise, CACompromise, affiliationChanged,
superseded, cessationOfOperation and certificateHold.

	include_expired:
	Include expired certificates in the CRL. Default is False.

	days_valid:
	The number of days that the CRL should be valid. This sets the Next
Update field in the CRL.

	digest:
	The digest to use for signing the CRL.
This has no effect on versions of pyOpenSSL less than 0.14

CLI Example:

salt '*' x509.create_crl path=/etc/pki/mykey.key \
 signing_private_key=/etc/pki/ca.key \
 signing_cert=/etc/pki/ca.crt \
 revoked="{'compromized-web-key': {'certificate': '/etc/pki/certs/www1.crt', 'revocation_date': '2015-03-01 00:00:00'}}"

	
salt.modules.x509.create_csr(path=None, text=False, **kwargs)

	Create a certificate signing request.

	path:
	Path to write the certificate to.

	text:
	If True, return the PEM text without writing to a file.
Default False.

	algorithm:
	The hashing algorithm to be used for signing this request. Defaults to sha256.

	kwargs:
	The subject, extension and version arguments from
x509.create_certificate
can be used.

CLI Example:

salt '*' x509.create_csr path=/etc/pki/myca.csr public_key='/etc/pki/myca.key' CN='My Cert'

	
salt.modules.x509.create_private_key(path=None, text=False, bits=2048, passphrase=None, cipher='aes_128_cbc', verbose=True)

	Creates a private key in PEM format.

	path:
	The path to write the file to, either path or text
are required.

	text:
	If True, return the PEM text without writing to a file.
Default False.

	bits:
	Length of the private key in bits. Default 2048

	passphrase:
	Passphrase for encrypting the private key

	cipher:
	Cipher for encrypting the private key. Has no effect if passphrase is None.

	verbose:
	Provide visual feedback on stdout. Default True

New in version 2016.11.0.

CLI Example:

salt '*' x509.create_private_key path=/etc/pki/mykey.key

	
salt.modules.x509.expired(certificate)

	Returns a dict containing limited details of a
certificate and whether the certificate has expired.

New in version 2016.11.0.

	certificate:
	The certificate to be read. Can be a path to a certificate file,
or a string containing the PEM formatted text of the certificate.

CLI Example:

salt '*' x509.expired "/etc/pki/mycert.crt"

	
salt.modules.x509.get_pem_entries(glob_path)

	Returns a dict containing PEM entries in files matching a glob

	glob_path:
	A path to certificates to be read and returned.

CLI Example:

salt '*' x509.get_pem_entries "/etc/pki/*.crt"

	
salt.modules.x509.get_pem_entry(text, pem_type=None)

	Returns a properly formatted PEM string from the input text fixing
any whitespace or line-break issues

	text:
	Text containing the X509 PEM entry to be returned or path to
a file containing the text.

	pem_type:
	If specified, this function will only return a pem of a certain type,
for example 'CERTIFICATE' or 'CERTIFICATE REQUEST'.

CLI Example:

salt '*' x509.get_pem_entry "-----BEGIN CERTIFICATE REQUEST-----MIICyzCC Ar8CAQI...-----END CERTIFICATE REQUEST"

	
salt.modules.x509.get_private_key_size(private_key, passphrase=None)

	Returns the bit length of a private key in PEM format.

	private_key:
	A path or PEM encoded string containing a private key.

CLI Example:

salt '*' x509.get_private_key_size /etc/pki/mycert.key

	
salt.modules.x509.get_public_key(key, passphrase=None, asObj=False)

	Returns a string containing the public key in PEM format.

	key:
	A path or PEM encoded string containing a CSR, Certificate or
Private Key from which a public key can be retrieved.

CLI Example:

salt '*' x509.get_public_key /etc/pki/mycert.cer

	
salt.modules.x509.get_signing_policy(signing_policy_name)

	Returns the details of a names signing policy, including the text of
the public key that will be used to sign it. Does not return the
private key.

CLI Example:

salt '*' x509.get_signing_policy www

	
salt.modules.x509.read_certificate(certificate)

	Returns a dict containing details of a certificate. Input can be a PEM
string or file path.

	certificate:
	The certificate to be read. Can be a path to a certificate file, or
a string containing the PEM formatted text of the certificate.

CLI Example:

salt '*' x509.read_certificate /etc/pki/mycert.crt

	
salt.modules.x509.read_certificates(glob_path)

	Returns a dict containing details of all certificates matching a glob

	glob_path:
	A path to certificates to be read and returned.

CLI Example:

salt '*' x509.read_certificates "/etc/pki/*.crt"

	
salt.modules.x509.read_crl(crl)

	Returns a dict containing details of a certificate revocation list.
Input can be a PEM string or file path.

	Depends:

	
	OpenSSL command line tool

	crl:
	A path or PEM encoded string containing the CRL to read.

CLI Example:

salt '*' x509.read_crl /etc/pki/mycrl.crl

	
salt.modules.x509.read_csr(csr)

	Returns a dict containing details of a certificate request.

	Depends:

	
	OpenSSL command line tool

	csr:
	A path or PEM encoded string containing the CSR to read.

CLI Example:

salt '*' x509.read_csr /etc/pki/mycert.csr

	
salt.modules.x509.sign_remote_certificate(argdic, **kwargs)

	Request a certificate to be remotely signed according to a signing policy.

	argdic:
	A dict containing all the arguments to be passed into the
create_certificate function. This will become kwargs when passed
to create_certificate.

	kwargs:
	kwargs delivered from publish.publish

CLI Example:

salt '*' x509.sign_remote_certificate argdic="{'public_key': '/etc/pki/www.key', 'signing_policy': 'www'}" __pub_id='www1'

	
salt.modules.x509.verify_crl(crl, cert)

	Validate a CRL against a certificate.
Parses openssl command line output, this is a workaround for M2Crypto's
inability to get them from CSR objects.

	crl:
	The CRL to verify

	cert:
	The certificate to verify the CRL against

CLI Example:

salt '*' x509.verify_crl crl=/etc/pki/myca.crl cert=/etc/pki/myca.crt

	
salt.modules.x509.verify_private_key(private_key, public_key, passphrase=None)

	Verify that 'private_key' matches 'public_key'

	private_key:
	The private key to verify, can be a string or path to a private
key in PEM format.

	public_key:
	The public key to verify, can be a string or path to a PEM formatted
certificate, CSR, or another private key.

	passphrase:
	Passphrase to decrypt the private key.

CLI Example:

salt '*' x509.verify_private_key private_key=/etc/pki/myca.key \
 public_key=/etc/pki/myca.crt

	
salt.modules.x509.verify_signature(certificate, signing_pub_key=None, signing_pub_key_passphrase=None)

	Verify that certificate has been signed by signing_pub_key

	certificate:
	The certificate to verify. Can be a path or string containing a
PEM formatted certificate.

	signing_pub_key:
	The public key to verify, can be a string or path to a PEM formatted
certificate, CSR, or private key.

	signing_pub_key_passphrase:
	Passphrase to the signing_pub_key if it is an encrypted private key.

CLI Example:

salt '*' x509.verify_signature /etc/pki/mycert.pem \
 signing_pub_key=/etc/pki/myca.crt

	
salt.modules.x509.will_expire(certificate, days)

	Returns a dict containing details of a certificate and whether
the certificate will expire in the specified number of days.
Input can be a PEM string or file path.

New in version 2016.11.0.

	certificate:
	The certificate to be read. Can be a path to a certificate file,
or a string containing the PEM formatted text of the certificate.

CLI Example:

salt '*' x509.will_expire "/etc/pki/mycert.crt" days=30

	
salt.modules.x509.write_pem(text, path, overwrite=True, pem_type=None)

	Writes out a PEM string fixing any formatting or whitespace
issues before writing.

	text:
	PEM string input to be written out.

	path:
	Path of the file to write the PEM out to.

	overwrite:
	If True (default), write_pem will overwrite the entire PEM file.
Set False to preserve existing private keys and dh params that may
exist in the PEM file.

	pem_type:
	The PEM type to be saved, for example CERTIFICATE or
PUBLIC KEY. Adding this will allow the function to take
input that may contain multiple PEM types.

CLI Example:

salt '*' x509.write_pem "-----BEGIN CERTIFICATE-----MIIGMzCCBBugA..." path=/etc/pki/mycert.crt

salt.modules.x509_v2

Manage X.509 certificates

	depends:

	cryptography

New in version 3006.0: This module represents a complete rewrite of the original x509 modules
and is named x509_v2 since it introduces breaking changes.

Note

	PKCS12-related operations require at least cryptography release 36.

	PKCS12-related operations with Edwards-curve keys require at least cryptography release 37.

	PKCS7-related operations require at least cryptography release 37.

Configuration

Explicit activation

Since this module uses the same virtualname as the previous x509 modules,
but is incompatible with them, it needs to be explicitly activated on each
minion by including the following line in the minion configuration:

/etc/salt/minion.d/x509.conf

features:
 x509_v2: true

Peer communication

To be able to remotely sign certificates, it is required to configure the Salt
master to allow Peer Communication:

/etc/salt/master.d/peer.conf

peer:
 .*:
 - x509.sign_remote_certificate

In order for the Compound Matcher to work with restricting signing
policies to a subset of minions, in addition calls to
match.compound_matches
by the minion acting as the CA must be permitted:

/etc/salt/master.d/peer.conf

peer:
 .*:
 - x509.sign_remote_certificate

peer_run:
 ca_server:
 - match.compound_matches

Note

When compound match expressions are employed, pillar values can only be matched
literally. This is a barrier to enumeration attacks by the CA server.

Also note that compound matching requires a minion data cache on the master.
Any certificate signing request will be denied if minion_data_cache is
disabled (it is enabled by default).

Note

Since grain values are controlled by minions, you should avoid using them
to restrict certificate issuance.

See Is Targeting using Grain Data Secure?.

Changed in version 3007.0: Previously, a compound expression match was validated by the requesting minion
itself via peer publishing, which did not protect from compromised minions.
The new match validation takes place on the master using peer running.

Signing policies

In addition, the minion representing the CA needs to have at least one
signing policy configured, remote calls not referencing one are always
rejected.

The parameters specified in this signing policy override any
parameters passed from the minion requesting the certificate. It can be
configured in the CA minion's pillar, which takes precedence, or any
location config.get looks up in.
Signing policies are defined under x509_signing_policies.

You can restrict which minions can request a certificate under a configured
signing policy by specifying a matcher in minions. This can be a glob
or compound matcher (for the latter, see the notes above).

x509_signing_policies:
 www:
 - minions: 'www*'
 - signing_private_key: /etc/pki/ca.key
 - signing_cert: /etc/pki/ca.crt
 - C: US
 - ST: Utah
 - L: Salt Lake City
 - basicConstraints: "critical, CA:false"
 - keyUsage: "critical, cRLSign, keyCertSign"
 - subjectKeyIdentifier: hash
 - authorityKeyIdentifier: keyid,issuer:always
 - days_valid: 90
 - copypath: /etc/pki/issued_certs/

Note

The following semantics are applied regarding the order of preference
for specifying the subject name:

	If neither subject nor any name attributes (like CN) are part of the policy,
issued certificates can contain any requested ones.

	If any name attributes are specified in the signing policy, subject contained
in requests is ignored.

	If subject is specified in the signing policy, any name attributes are ignored.
If the request contains the same data type for subject as the signing policy
(for dicts and lists, and only then), merging is performed, otherwise subject
is taken from the signing policy. Dicts are merged and list items are appended,
with the items taken from the signing policy having priority.

Breaking changes versus the previous x509 modules

	The output format has changed for all read_* functions as well as the state return dict.

	The formatting of some extension definitions might have changed, but should
be stable for most basic use cases.

	The default ordering of RDNs/Name Attributes in the subject's Distinguished Name
has been adapted to industry standards. This might cause a reissuance
during the first state run.

	For x509.private_key_managed, the file mode defaults to 0400. This should
be considered a bug fix because writing private keys with world-readable
permissions by default is a security issue.

	Restricting signing policies using compound match expressions requires peer run
permissions instead of peer publishing permissions:

x509, x509_v2 in 3006.*
peer:
 ca_server:
 - match.compound

x509_v2 from 3007.0 onwards
peer_run:
 ca_server:
 - match.compound_matches

Note that when a ca_server is involved, both peers must use the updated module version.

	
salt.modules.x509_v2.create_certificate(ca_server=None, signing_policy=None, encoding='pem', append_certs=None, pkcs12_passphrase=None, pkcs12_encryption_compat=False, pkcs12_friendlyname=None, path=None, overwrite=True, raw=False, **kwargs)

	Create an X.509 certificate and return an encoded version of it.

Note

All parameters that take a public key, private key or certificate
can be specified either as a PEM/hex/base64 string or a path to a
local file encoded in all supported formats for the type.

CLI Example:

salt '*' x509.create_certificate signing_private_key='/etc/pki/myca.key' csr='/etc/pki/my.csr'

	ca_server
	Request a remotely signed certificate from ca_server. For this to
work, a signing_policy must be specified, and that same policy
must be configured on the ca_server. See Signing policies for
details. Also, the Salt master must permit peers to call the
sign_remote_certificate function, see Peer communication.

	signing_policy
	The name of a configured signing policy. Parameters specified in there
are hardcoded and cannot be overridden. This is required for remote signing,
otherwise optional. See Signing policies for details.

	encoding
	Specify the encoding of the resulting certificate. It can be returned
as a pem (or pkcs7_pem) string or several (base64-encoded)
binary formats (der, pkcs7_der, pkcs12). Defaults to pem.

	append_certs
	A list of additional certificates to append to the new one, e.g. to create a CA chain.

Note

Mind that when der encoding is in use, appending certificatees is prohibited.

	copypath
	Create a copy of the issued certificate in PEM format in this directory.
The file will be named <serial_number>.crt if prepend_cn is False.

	prepend_cn
	When copypath is set, prepend the common name of the certificate to
the file name like so: <CN>-<serial_number>.crt. Defaults to false.

	pkcs12_passphrase
	When encoding a certificate as pkcs12, encrypt it with this passphrase.

Note

PKCS12 encryption is very weak and should not be relied on for security [https://cryptography.io/en/stable/hazmat/primitives/asymmetric/serialization/#cryptography.hazmat.primitives.serialization.pkcs12.serialize_key_and_certificates].

	pkcs12_encryption_compat
	OpenSSL 3 and cryptography v37 switched to a much more secure default
encryption for PKCS12, which might be incompatible with some systems.
This forces the legacy encryption. Defaults to False.

	pkcs12_friendlyname
	When encoding a certificate as pkcs12, a name for the certificate can be included.

	path
	Instead of returning the certificate, write it to this file path.

	overwrite
	If path is specified and the file exists, overwrite it.
Defaults to true.

	raw
	Return the encoded raw bytes instead of a string. Defaults to false.

	digest
	The hashing algorithm to use for the signature. Valid values are:
sha1, sha224, sha256, sha384, sha512, sha512_224, sha512_256, sha3_224,
sha3_256, sha3_384, sha3_512. Defaults to sha256.
This will be ignored for ed25519 and ed448 key types.

	private_key
	The private key corresponding to the public key the certificate should
be issued for. This is one way of specifying the public key that will
be included in the certificate, the other ones being public_key and csr.

	private_key_passphrase
	If private_key is specified and encrypted, the passphrase to decrypt it.

	public_key
	The public key the certificate should be issued for. Other ways of passing
the required information are private_key and csr. If neither are set,
the public key of the signing_private_key will be included, i.e.
a self-signed certificate is generated.

	csr
	A certificate signing request to use as a base for generating the certificate.
The following information will be respected, depending on configuration:
* public key
* extensions, if not otherwise specified (arguments, signing_policy)

	signing_cert
	The CA certificate to be used for signing the issued certificate.

	signing_private_key
	The private key corresponding to the public key in signing_cert. Required.

	signing_private_key_passphrase
	If signing_private_key is encrypted, the passphrase to decrypt it.

	serial_number
	A serial number to be embedded in the certificate. If unspecified, will
autogenerate one. This should be an integer, either in decimal or
hexadecimal notation.

	not_before
	Set a specific date the certificate should not be valid before.
The format should follow %Y-%m-%d %H:%M:%S and will be interpreted as GMT/UTC.
Defaults to the time of issuance.

	not_after
	Set a specific date the certificate should not be valid after.
The format should follow %Y-%m-%d %H:%M:%S and will be interpreted as GMT/UTC.
If unspecified, defaults to the current time plus days_valid days.

	days_valid
	If not_after is unspecified, the number of days from the time of issuance
the certificate should be valid for. Defaults to 30.

	subject
	The subject's distinguished name embedded in the certificate. This is one way of
passing this information (see kwargs below for the other).
This argument will be preferred and allows to control the order of RDNs in the DN
as well as to embed RDNs with multiple attributes.
This can be specified as an RFC4514-encoded string (CN=example.com,O=Example Inc,C=US,
mind that the rendered order is reversed from what is embedded), a list
of RDNs encoded as in RFC4514 (["C=US", "O=Example Inc", "CN=example.com"])
or a dictionary ({"CN": "example.com", "C": "US", "O": "Example Inc"},
default ordering).
Multiple name attributes per RDN are concatenated with a +.

Note

Parsing of RFC4514 strings requires at least cryptography release 37.

	kwargs
	Embedded X.509v3 extensions and the subject's distinguished name can be
controlled via supplemental keyword arguments. See the following for an overview.

	Subject properties in kwargs
	C, ST, L, STREET, O, OU, CN, MAIL, SN, GN, UID, SERIALNUMBER

	X.509v3 extensions in kwargs
	Most extensions can be configured using the same string format as OpenSSL,
while some require adjustments. In general, since the strings are
parsed to dicts/lists, you can always use the latter formats directly.
Marking an extension as critical is done by including it at the beginning
of the configuration string, in the list or as a key in the dictionary
with the value true.

Examples (some showcase dict/list correspondance):

	basicConstraints
	critical, CA:TRUE, pathlen:1 or

- basicConstraints:
 critical: true
 ca: true
 pathlen: 1

	keyUsage
	critical, cRLSign, keyCertSign or

- keyUsage:
 - critical
 - cRLSign
 - keyCertSign

	subjectKeyIdentifier
	This can be an explicit value or hash, in which case the value
will be set to the SHA1 hash of some encoding of the associated public key,
depending on the underlying algorithm (RSA/ECDSA/EdDSA).

	authorityKeyIdentifier
	keyid:always, issuer

	subjectAltName
	There is support for all OpenSSL-defined types except otherName.

email:me@example.com,DNS:example.com or

mind this being a list, not a dict
- subjectAltName:
 - email:me@example.com
 - DNS:example.com

	issuerAltName
	The syntax is the same as for subjectAltName, except that the additional
value issuer:copy is supported, which will copy the values of
subjectAltName in the issuer's certificate.

	authorityInfoAccess
	OCSP;URI:http://ocsp.example.com/,caIssuers;URI:http://myca.example.com/ca.cer

	crlDistributionPoints
	When set to a string value, items are interpreted as fullnames:

URI:http://example.com/myca.crl, URI:http://example.org/my.crl

There is also support for more attributes using the full form:

- crlDistributionPoints:
 - fullname: URI:http://example.com/myca.crl
 crlissuer: DNS:example.org
 reasons:
 - keyCompromise
 - URI:http://example.org/my.crl

	certificatePolicies
	critical, 1.2.4.5, 1.1.3.4

Again, there is support for more attributes using the full form:

- certificatePolicies:
 critical: true
 1.2.3.4.5: https://my.ca.com/pratice_statement
 1.2.4.5.6:
 - https://my.ca.com/pratice_statement
 - organization: myorg
 noticeNumbers: [1, 2, 3]
 text: mytext

	policyConstraints
	requireExplicitPolicy:3,inhibitPolicyMapping:1

	inhibitAnyPolicy
	The value is just an integer: - inhibitAnyPolicy: 1

	nameConstraints
	critical,permitted;IP:192.168.0.0/255.255.0.0,permitted;email:.example.com,excluded;email:.com

- nameConstraints:
 critical: true
 permitted:
 - IP:192.168.0.0/24
 - email:.example.com
 excluded:
 - email:.com

	noCheck
	This extension does not take any values, except critical. Just the presence
in the keyword args will include it.

	tlsfeature
	status_request

For more information, visit the OpenSSL docs [https://www.openssl.org/docs/man3.0/man5/x509v3_config.html].

	
salt.modules.x509_v2.create_crl(signing_private_key, revoked, signing_cert=None, signing_private_key_passphrase=None, include_expired=False, days_valid=None, digest='sha256', encoding='pem', extensions=None, path=None, raw=False, **kwargs)

	Create a certificate revocation list.

CLI Example:

salt '*' x509.create_crl signing_cert=/etc/pki/ca.crt signing_private_key=/etc/pki/ca.key revoked="[{'certificate': '/etc/pki/certs/www1.crt', 'revocation_date': '2015-03-01 00:00:00'}]"

	signing_private_key
	Your certificate authority's private key. It will be used to sign
the CRL. Required.

	revoked
	A list of dicts containing all the certificates to revoke. Each dict
represents one certificate. A dict must contain either the key
serial_number with the value of the serial number to revoke, or
certificate with some reference to the certificate to revoke.

The dict can optionally contain the revocation_date key. If this
key is omitted, the revocation date will be set to now. It should be a
string in the format "%Y-%m-%d %H:%M:%S".

The dict can also optionally contain the not_after key. This is
redundant if the certificate key is included, since it will be
sourced from the certificate. If the certificate key is not included,
this can be used for the logic behind the include_expired parameter.
It should be a string in the format "%Y-%m-%d %H:%M:%S".

The dict can also optionally contain the extensions key, which
allows to set CRL entry-specific extensions. The following extensions
are supported:

	certificateIssuer
	Identifies the certificate issuer associated with an entry in an
indirect CRL. The format is the same as for subjectAltName.

	CRLReason
	Identifies the reason for certificate revocation.
Available choices are unspecified, keyCompromise, CACompromise,
affiliationChanged, superseded, cessationOfOperation,
certificateHold, privilegeWithdrawn, aACompromise and
removeFromCRL.

	invalidityDate
	Provides the date on which the certificate likely became invalid.
The value should be a string in the same format as revocation_date.

	signing_cert
	The CA certificate to be used for signing the CRL.

	signing_private_key_passphrase
	If signing_private_key is encrypted, the passphrase to decrypt it.

	include_expired
	Also include already expired certificates in the CRL. Defaults to false.

	days_valid
	The number of days the CRL should be valid for. This sets the Next Update
field. Defaults to 100 (until v3009) or 7 (from v3009 onwards).

	digest
	The hashing algorithm to use for the signature. Valid values are:
sha1, sha224, sha256, sha384, sha512, sha512_224, sha512_256, sha3_224,
sha3_256, sha3_384, sha3_512. Defaults to sha256.
This will be ignored for ed25519 and ed448 key types.

	encoding
	Specify the encoding of the resulting certificate revocation list.
It can be returned as a pem string or base64-encoded der.
Defaults to pem.

	extensions
	Add CRL extensions. The following are available:

	authorityKeyIdentifier
	See x509.create_certificate.

	authorityInfoAccess
	See x509.create_certificate.

	cRLNumber
	Specifies a sequential number for each CRL issued by a CA.
Values must be integers.

	deltaCRLIndicator
	If the CRL is a delta CRL, this value points to the cRLNumber
of the base cRL. Values must be integers.

	freshestCRL
	Identifies how delta CRL information is obtained. The format
is the same as crlDistributionPoints.

	issuerAltName
	See x509.create_certificate.

	issuingDistributionPoint
	Identifies the CRL distribution point for a particular CRL and
indicates what kinds of revocation it covers. The format is
comparable to crlDistributionPoints. Specify as follows:

issuingDistributionPoint:
 fullname: # or relativename with RDN
 - URI:http://example.com/myca.crl
 onlysomereasons:
 - keyCompromise
 onlyuser: true
 onlyCA: true
 onlyAA: true
 indirectCRL: false

	path
	Instead of returning the CRL, write it to this file path.

	raw
	Return the encoded raw bytes instead of a string. Defaults to false.

	
salt.modules.x509_v2.create_csr(private_key, private_key_passphrase=None, digest='sha256', encoding='pem', path=None, raw=False, **kwargs)

	Create a certificate signing request.

CLI Example:

salt '*' x509.create_csr private_key='/etc/pki/myca.key' CN='My Cert'

	private_key
	The private key corresponding to the public key the certificate should
be issued for. The CSR will be signed by it. Required.

	private_key_passphrase
	If private_key is encrypted, the passphrase to decrypt it.

	digest
	The hashing algorithm to use for the signature. Valid values are:
sha1, sha224, sha256, sha384, sha512, sha512_224, sha512_256, sha3_224,
sha3_256, sha3_384, sha3_512. Defaults to sha256.
This will be ignored for ed25519 and ed448 key types.

	encoding
	Specify the encoding of the resulting certificate signing request.
It can be returned as a pem string or base64-encoded der.
Defaults to pem.

	path
	Instead of returning the CSR, write it to this file path.

	raw
	Return the encoded raw bytes instead of a string. Defaults to false.

	kwargs
	Embedded X.509v3 extensions and the subject's distinguished name can be
controlled via supplemental keyword arguments.
See x509.create_certificate
for an overview. Mind that some extensions are not available for CSR
(authorityInfoAccess, authorityKeyIdentifier,
issuerAltName, crlDistributionPoints).

	
salt.modules.x509_v2.create_private_key(algo='rsa', keysize=None, passphrase=None, encoding='pem', pkcs12_encryption_compat=False, path=None, raw=False, **kwargs)

	Create a private key.

CLI Example:

salt '*' x509.create_private_key algo=ec keysize=384

	algo
	The digital signature scheme the private key should be based on.
Available: rsa, ec, ed25519, ed448. Defaults to rsa.

	keysize
	For rsa, specifies the bitlength of the private key (2048, 3072, 4096).
For ec, specifies the NIST curve to use (256, 384, 521).
Irrelevant for Edwards-curve schemes (ed25519, ed448).
Defaults to 2048 for RSA and 256 for EC.

	passphrase
	If this is specified, the private key will be encrypted using this
passphrase. The encryption algorithm cannot be selected, it will be
determined automatically as the best available one.

	encoding
	Specify the encoding of the resulting private key. It can be returned
as a pem string, base64-encoded der or base64-encoded pkcs12.
Defaults to pem.

	pkcs12_encryption_compat
	Some operating systems are incompatible with the encryption defaults
for PKCS12 used since OpenSSL v3. This switch triggers a fallback to
PBESv1SHA1And3KeyTripleDESCBC.
Please consider the notes on PKCS12 encryption [https://cryptography.io/en/stable/hazmat/primitives/asymmetric/serialization/#cryptography.hazmat.primitives.serialization.pkcs12.serialize_key_and_certificates].

	path
	Instead of returning the private key, write it to this file path.
Note that this does not use safe permissions and should be avoided.

	raw
	Return the encoded raw bytes instead of a string. Defaults to false.

	
salt.modules.x509_v2.encode_certificate(certificate, encoding='pem', append_certs=None, private_key=None, private_key_passphrase=None, pkcs12_passphrase=None, pkcs12_encryption_compat=False, pkcs12_friendlyname=None, raw=False)

	Create an encoded representation of a certificate, optionally including
other structures. This can be used to create certificate chains, convert
a certificate into a different encoding or embed the corresponding
private key (for pkcs12).

CLI Example:

salt '*' x509.encode_certificate /etc/pki/my.crt pem /etc/pki/ca.crt

	certificate
	The certificate to encode.

	encoding
	Specify the encoding of the resulting certificate. It can be returned
as a pem (or pkcs7_pem) string or several (base64-encoded)
binary formats (der, pkcs7_der, pkcs12). Defaults to pem.

	append_certs
	A list of additional certificates to encode with the new one, e.g. to create a CA chain.

Note

Mind that when der encoding is in use, appending certificatees is prohibited.

	private_key
	For pkcs12, the private key corresponding to the public key of the certificate
to be embedded.

	private_key_passphrase
	For pkcs12, if the private key to embed is encrypted, specify the corresponding
passphrase.

	pkcs12_passphrase
	For pkcs12, the container can be encrypted. Specify the passphrase to use here.
Mind that PKCS12 encryption should not be relied on for security purposes, see
note above in x509.create_certificate.

	pkcs12_encryption_compat
	OpenSSL 3 and cryptography v37 switched to a much more secure default
encryption for PKCS12, which might be incompatible with some systems.
This forces the legacy encryption. Defaults to False.

	pkcs12_friendlyname
	When encoding a certificate as pkcs12, a name for the certificate can be included.

	raw
	Return the encoded raw bytes instead of a string. Defaults to false.

	
salt.modules.x509_v2.encode_crl(crl, encoding='pem', raw=False)

	Create an encoded representation of a certificate revocation list.

CLI Example:

salt '*' x509.encode_crl /etc/pki/my.crl der

	crl
	The certificate revocation list to encode.

	encoding
	Specify the encoding of the resulting certificate revocation list.
It can be returned as a pem string or base64-encoded der.
Defaults to pem.

	raw
	Return the encoded raw bytes instead of a string. Defaults to false.

	
salt.modules.x509_v2.encode_csr(csr, encoding='pem', raw=False)

	Create an encoded representation of a certificate signing request.

CLI Example:

salt '*' x509.encode_csr /etc/pki/my.csr der

	csr
	The certificate signing request to encode.

	encoding
	Specify the encoding of the resulting certificate signing request.
It can be returned as a pem string or base64-encoded der.
Defaults to pem.

	raw
	Return the encoded raw bytes instead of a string. Defaults to false.

	
salt.modules.x509_v2.encode_private_key(private_key, encoding='pem', passphrase=None, private_key_passphrase=None, pkcs12_encryption_compat=False, raw=False)

	Create an encoded representation of a private key.

CLI Example:

salt '*' x509.encode_private_key /etc/pki/my.key der

	private_key
	The private key to encode.

	encoding
	Specify the encoding of the resulting private key. It can be returned
as a pem string, base64-encoded der and base64-encoded pkcs12.
Defaults to pem.

	passphrase
	If this is specified, the private key will be encrypted using this
passphrase. The encryption algorithm cannot be selected, it will be
determined automatically as the best available one.

	private_key_passphrase
	
New in version 3006.2.

If the current private_key is encrypted, the passphrase to
decrypt it.

	pkcs12_encryption_compat
	Some operating systems are incompatible with the encryption defaults
for PKCS12 used since OpenSSL v3. This switch triggers a fallback to
PBESv1SHA1And3KeyTripleDESCBC.
Please consider the notes on PKCS12 encryption [https://cryptography.io/en/stable/hazmat/primitives/asymmetric/serialization/#cryptography.hazmat.primitives.serialization.pkcs12.serialize_key_and_certificates].

	raw
	Return the encoded raw bytes instead of a string. Defaults to false.

	
salt.modules.x509_v2.expired(certificate)

	Returns a dict containing limited details of a
certificate and whether the certificate has expired.

CLI Example:

salt '*' x509.expired /etc/pki/mycert.crt

	certificate
	The certificate to check.

	
salt.modules.x509_v2.expires(certificate, days=0)

	Determine whether a certificate will expire or has expired already.
Returns a boolean only.

CLI Example:

salt '*' x509.expires /etc/pki/my.crt days=7

	certificate
	The certificate to check.

	days
	If specified, determine expiration x days in the future.
Defaults to 0, which checks for the current time.

	
salt.modules.x509_v2.get_pem_entries(glob_path)

	Returns a dict containing PEM entries in files matching a glob.

CLI Example:

salt '*' x509.get_pem_entries "/etc/pki/*.crt"

	glob_path
	A path representing certificates to be read and returned.

	
salt.modules.x509_v2.get_pem_entry(text, pem_type=None)

	Returns a properly formatted PEM string from the input text,
fixing any whitespace or line-break issues.

CLI Example:

salt '*' x509.get_pem_entry "-----BEGIN CERTIFICATE REQUEST-----MIICyzCC Ar8CAQI...-----END CERTIFICATE REQUEST"

	text
	Text containing the X509 PEM entry to be returned or path to
a file containing the text.

	pem_type
	If specified, this function will only return a pem of a certain type,
for example 'CERTIFICATE' or 'CERTIFICATE REQUEST'.

	
salt.modules.x509_v2.get_private_key_size(private_key, passphrase=None)

	Return information about the keysize of a private key (RSA/EC).

CLI Example:

salt '*' x509.get_private_key_size /etc/pki/my.key

	private_key
	The private key to check.

	passphrase
	If private_key is encrypted, the passphrase to decrypt it.

	
salt.modules.x509_v2.get_public_key(key, passphrase=None, asObj=None)

	Returns a PEM-encoded public key derived from some reference.
The reference should be a public key, certificate, private key or CSR.

CLI Example:

salt '*' x509.get_public_key /etc/pki/my.key

	key
	A reference to the structure to look the public key up for.

	passphrase
	If key is encrypted, the passphrase to decrypt it.

	
salt.modules.x509_v2.get_signing_policy(signing_policy, ca_server=None)

	Returns the specified named signing policy.

CLI Example:

salt '*' x509.get_signing_policy www

	signing_policy
	The name of the signing policy to return.

	ca_server
	If this is set, the CA server will be queried for the
signing policy instead of looking it up locally.

	
salt.modules.x509_v2.read_certificate(certificate)

	Returns a dict containing details of a certificate.

CLI Example:

salt '*' x509.read_certificate /etc/pki/mycert.crt

	certificate
	The certificate to read.

	
salt.modules.x509_v2.read_certificates(glob_path)

	Returns a dict containing details of all certificates matching a glob.

CLI Example:

salt '*' x509.read_certificates "/etc/pki/*.crt"

	glob_path
	A path to certificates to be read and returned.

	
salt.modules.x509_v2.read_crl(crl)

	Returns a dict containing details of a certificate revocation list.

CLI Example:

salt '*' x509.read_crl /etc/pki/my.crl

	crl
	The certificate revocation list to read.

	
salt.modules.x509_v2.read_csr(csr)

	Returns a dict containing details of a certificate signing request.

CLI Example:

salt '*' x509.read_csr /etc/pki/mycert.csr

	csr
	The certificate signing request to read.

	
salt.modules.x509_v2.sign_remote_certificate(signing_policy, kwargs, get_signing_policy_only=False, **more_kwargs)

	Request a certificate to be remotely signed according to a signing policy.
This is mostly for internal use and does not make much sense on the CLI.

CLI Example:

salt '*' x509.sign_remote_certificate www kwargs="{'public_key': '/etc/pki/www.key'}"

	signing_policy
	The name of the signing policy to use. Required.

	kwargs
	A dict containing all the arguments to be passed into the
x509.create_certificate function.

	get_signing_policy_only
	Only return the named signing policy. Defaults to false.

	
salt.modules.x509_v2.verify_crl(crl, cert)

	Verify that a signature on a certificate revocation list was made
by the private key corresponding to the public key associated
with the specified certificate.

CLI Example:

salt '*' x509.verify_crl /etc/pki/my.crl /etc/pki/my.crt

	crl
	The certificate revocation list to check the signature on.

	cert
	The certificate (or any reference that can be passed
to get_public_key) to retrieve the public key from.

	
salt.modules.x509_v2.verify_private_key(private_key, public_key, passphrase=None)

	Verify that a private key belongs to the specified public key.

CLI Example:

salt '*' x509.verify_private_key /etc/pki/my.key /etc/pki/my.crt

	private_key
	The private key to check.

	public_key
	The certificate (or any reference that can be passed
to get_public_key) to retrieve the public key from.

	passphrase
	If private_key is encrypted, the passphrase to decrypt it.

	
salt.modules.x509_v2.verify_signature(certificate, signing_pub_key=None, signing_pub_key_passphrase=None)

	Verify that a signature on a certificate was made
by the private key corresponding to the public key associated
with the specified certificate.

CLI Example:

salt '*' x509.verify_signature /etc/pki/my.key /etc/pki/my.crt

	certificate
	The certificate to check the signature on.

	signing_pub_key
	Any reference that can be passed to get_public_key to retrieve
the public key of the signing entity from. If unspecified, will
take the public key of certificate, i.e. verify a self-signed
certificate.

signing_pub_key_passphrase

If signing_pub_key is encrypted, the passphrase to decrypt it.

	
salt.modules.x509_v2.will_expire(certificate, days)

	Returns a dict containing details of a certificate and whether
the certificate will expire in the specified number of days.

CLI Example:

salt '*' x509.will_expire "/etc/pki/mycert.crt" days=30

	certificate
	The certificate to check.

	days
	The number of days in the future to check the validity for.

	
salt.modules.x509_v2.write_pem(text, path, overwrite=True, pem_type=None)

	Writes out a PEM string, fixing any formatting or whitespace
issues before writing.

CLI Example:

salt '*' x509.write_pem "-----BEGIN CERTIFICATE-----MIIGMzCCBBugA..." path=/etc/pki/mycert.crt

	text
	PEM string input to be written out.

	path
	Path of the file to write the PEM out to.

	overwrite
	If True (default), write_pem will overwrite the entire PEM file.
Set to False to preserve existing private keys and DH params that may
exist in the PEM file.

	pem_type
	The PEM type to be saved, for example CERTIFICATE or
PUBLIC KEY. Adding this will allow the function to take
input that may contain multiple PEM types.

salt.modules.xapi_virt

This module (mostly) uses the XenAPI to manage Xen virtual machines.

Big fat warning: the XenAPI used in this file is the one bundled with
Xen Source, NOT XenServer nor Xen Cloud Platform. As a matter of fact it
will fail under those platforms. From what I've read, little work is needed
to adapt this code to XS/XCP, mostly playing with XenAPI version, but as
XCP is not taking precedence on Xen Source on many platforms, please keep
compatibility in mind.

Useful documentation:

. http://downloads.xen.org/Wiki/XenAPI/xenapi-1.0.6.pdf
. http://docs.vmd.citrix.com/XenServer/6.0.0/1.0/en_gb/api/
. https://github.com/xapi-project/xen-api/tree/master/scripts/examples/python
. http://xenbits.xen.org/gitweb/?p=xen.git;a=tree;f=tools/python/xen/xm;hb=HEAD

	
salt.modules.xapi_virt.freecpu()

	Return an int representing the number of unallocated cpus on this
hypervisor

CLI Example:

salt '*' virt.freecpu

	
salt.modules.xapi_virt.freemem()

	Return an int representing the amount of memory that has not been given
to virtual machines on this node

CLI Example:

salt '*' virt.freemem

	
salt.modules.xapi_virt.full_info()

	Return the node_info, vm_info and freemem

CLI Example:

salt '*' virt.full_info

	
salt.modules.xapi_virt.get_disks(vm_)

	Return the disks of a named vm

CLI Example:

salt '*' virt.get_disks <vm name>

	
salt.modules.xapi_virt.get_macs(vm_)

	Return a list off MAC addresses from the named vm

CLI Example:

salt '*' virt.get_macs <vm name>

	
salt.modules.xapi_virt.get_nics(vm_)

	Return info about the network interfaces of a named vm

CLI Example:

salt '*' virt.get_nics <vm name>

	
salt.modules.xapi_virt.is_hyper()

	Returns a bool whether or not this node is a hypervisor of any kind

CLI Example:

salt '*' virt.is_hyper

	
salt.modules.xapi_virt.list_domains()

	Return a list of virtual machine names on the minion

CLI Example:

salt '*' virt.list_domains

	
salt.modules.xapi_virt.migrate(vm_, target, live=1, port=0, node=-1, ssl=None, change_home_server=0)

	Migrates the virtual machine to another hypervisor

CLI Example:

salt '*' virt.migrate <vm name> <target hypervisor> [live] [port] [node] [ssl] [change_home_server]

Optional values:

	live
	Use live migration

	port
	Use a specified port

	node
	Use specified NUMA node on target

	ssl
	use ssl connection for migration

	change_home_server
	change home server for managed domains

	
salt.modules.xapi_virt.node_info()

	Return a dict with information about this node

CLI Example:

salt '*' virt.node_info

	
salt.modules.xapi_virt.pause(vm_)

	Pause the named vm

CLI Example:

salt '*' virt.pause <vm name>

	
salt.modules.xapi_virt.reboot(vm_)

	Reboot a domain via ACPI request

CLI Example:

salt '*' virt.reboot <vm name>

	
salt.modules.xapi_virt.reset(vm_)

	Reset a VM by emulating the reset button on a physical machine

CLI Example:

salt '*' virt.reset <vm name>

	
salt.modules.xapi_virt.resume(vm_)

	Resume the named vm

CLI Example:

salt '*' virt.resume <vm name>

	
salt.modules.xapi_virt.setmem(vm_, memory)

	Changes the amount of memory allocated to VM.

Memory is to be specified in MB

CLI Example:

salt '*' virt.setmem myvm 768

	
salt.modules.xapi_virt.setvcpus(vm_, vcpus)

	Changes the amount of vcpus allocated to VM.

vcpus is an int representing the number to be assigned

CLI Example:

salt '*' virt.setvcpus myvm 2

	
salt.modules.xapi_virt.shutdown(vm_)

	Send a soft shutdown signal to the named vm

CLI Example:

salt '*' virt.shutdown <vm name>

	
salt.modules.xapi_virt.start(config_)

	Start a defined domain

CLI Example:

salt '*' virt.start <path to Xen cfg file>

	
salt.modules.xapi_virt.stop(vm_)

	Hard power down the virtual machine, this is equivalent to pulling the
power

CLI Example:

salt '*' virt.stop <vm name>

	
salt.modules.xapi_virt.vcpu_pin(vm_, vcpu, cpus)

	Set which CPUs a VCPU can use.

CLI Example:

salt 'foo' virt.vcpu_pin domU-id 2 1
salt 'foo' virt.vcpu_pin domU-id 2 2-6

	
salt.modules.xapi_virt.vm_cputime(vm_=None)

	Return cputime used by the vms on this hyper in a
list of dicts:

[
 'your-vm': {
 'cputime' <int>
 'cputime_percent' <int>
 },
 ...
]

If you pass a VM name in as an argument then it will return info
for just the named VM, otherwise it will return all VMs.

CLI Example:

salt '*' virt.vm_cputime

	
salt.modules.xapi_virt.vm_diskstats(vm_=None)

	Return disk usage counters used by the vms on this hyper in a
list of dicts:

[
 'your-vm': {
 'io_read_kbs' : 0,
 'io_write_kbs' : 0
 },
 ...
]

If you pass a VM name in as an argument then it will return info
for just the named VM, otherwise it will return all VMs.

CLI Example:

salt '*' virt.vm_diskstats

	
salt.modules.xapi_virt.vm_info(vm_=None)

	Return detailed information about the vms.

If you pass a VM name in as an argument then it will return info
for just the named VM, otherwise it will return all VMs.

CLI Example:

salt '*' virt.vm_info

	
salt.modules.xapi_virt.vm_netstats(vm_=None)

	Return combined network counters used by the vms on this hyper in a
list of dicts:

[
 'your-vm': {
 'io_read_kbs' : 0,
 'io_total_read_kbs' : 0,
 'io_total_write_kbs' : 0,
 'io_write_kbs' : 0
 },
 ...
]

If you pass a VM name in as an argument then it will return info
for just the named VM, otherwise it will return all VMs.

CLI Example:

salt '*' virt.vm_netstats

	
salt.modules.xapi_virt.vm_state(vm_=None)

	Return list of all the vms and their state.

If you pass a VM name in as an argument then it will return info
for just the named VM, otherwise it will return all VMs.

CLI Example:

salt '*' virt.vm_state <vm name>

salt.modules.xbpspkg

Package support for XBPS package manager (used by VoidLinux)

New in version 2016.11.0.

	
salt.modules.xbpspkg.add_repo(repo, conffile='/usr/share/xbps.d/15-saltstack.conf')

	Add an XBPS repository to the system.

	repo
	url of repo to add (persistent).

	conffile
	path to xbps conf file to add this repo
default: /usr/share/xbps.d/15-saltstack.conf

CLI Examples:

salt '*' pkg.add_repo <repo url> [conffile=/path/to/xbps/repo.conf]

	
salt.modules.xbpspkg.available_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	
salt.modules.xbpspkg.del_repo(repo, **kwargs)

	Remove an XBPS repository from the system.

	repo
	url of repo to remove (persistent).

CLI Examples:

salt '*' pkg.del_repo <repo url>

	
salt.modules.xbpspkg.get_repo(repo, **kwargs)

	Display information about the repo.

CLI Examples:

salt '*' pkg.get_repo 'repo-url'

	
salt.modules.xbpspkg.install(name=None, refresh=False, fromrepo=None, pkgs=None, sources=None, **kwargs)

	Install the passed package

	name
	The name of the package to be installed.

	refresh
	Whether or not to refresh the package database before installing.

	fromrepo
	Specify a package repository (url) to install from.

Multiple Package Installation Options:

	pkgs
	A list of packages to install from a software repository. Must be
passed as a python list.

CLI Example:

salt '*' pkg.install pkgs='["foo","bar"]'

	sources
	A list of packages to install. Must be passed as a list of dicts,
with the keys being package names, and the values being the source URI
or local path to the package.

CLI Example:

salt '*' pkg.install sources='[{"foo": "salt://foo.deb"},{"bar": "salt://bar.deb"}]'

Return a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.install <package name>

	
salt.modules.xbpspkg.latest_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	
salt.modules.xbpspkg.list_pkgs(versions_as_list=False, **kwargs)

	List the packages currently installed as a dict:

{'<package_name>': '<version>'}

CLI Example:

salt '*' pkg.list_pkgs

	
salt.modules.xbpspkg.list_repos(**kwargs)

	List all repos known by XBPS

CLI Example:

salt '*' pkg.list_repos

	
salt.modules.xbpspkg.list_upgrades(refresh=True, **kwargs)

	Check whether or not an upgrade is available for all packages

CLI Example:

salt '*' pkg.list_upgrades

	
salt.modules.xbpspkg.refresh_db(**kwargs)

	Update list of available packages from installed repos

CLI Example:

salt '*' pkg.refresh_db

	
salt.modules.xbpspkg.remove(name=None, pkgs=None, recursive=True, **kwargs)

	
	name
	The name of the package to be deleted.

	recursive
	Also remove dependent packages (not required elsewhere).
Default mode: enabled.

Multiple Package Options:

	pkgs
	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

Returns a list containing the removed packages.

CLI Example:

salt '*' pkg.remove <package name> [recursive=False]
salt '*' pkg.remove <package1>,<package2>,<package3> [recursive=False]
salt '*' pkg.remove pkgs='["foo", "bar"]' [recursive=False]

	
salt.modules.xbpspkg.upgrade(refresh=True, **kwargs)

	Run a full system upgrade

	refresh
	Whether or not to refresh the package database before installing.
Default is True.

Returns a dictionary containing the changes:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade

	
salt.modules.xbpspkg.upgrade_available(name, **kwargs)

	Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pkg.upgrade_available <package name>

	
salt.modules.xbpspkg.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

salt.modules.xfs

Module for managing XFS file systems.

	
salt.modules.xfs.defragment(device)

	Defragment mounted XFS filesystem.
In order to mount a filesystem, device should be properly mounted and writable.

CLI Example:

salt '*' xfs.defragment /dev/sda1

	
salt.modules.xfs.devices()

	Get known XFS formatted devices on the system.

CLI Example:

salt '*' xfs.devices

	
salt.modules.xfs.dump(device, destination, level=0, label=None, noerase=None)

	Dump filesystem device to the media (file, tape etc).

Required parameters:

	device: XFS device, content of which to be dumped.

	destination: Specifies a dump destination.

Valid options are:

	label: Label of the dump. Otherwise automatically generated label is used.

	level: Specifies a dump level of 0 to 9.

	noerase: Pre-erase media.

Other options are not used in order to let xfsdump use its default
values, as they are most optimal. See the xfsdump(8) manpage for
a more complete description of these options.

CLI Example:

salt '*' xfs.dump /dev/sda1 /detination/on/the/client
salt '*' xfs.dump /dev/sda1 /detination/on/the/client label='Company accountancy'
salt '*' xfs.dump /dev/sda1 /detination/on/the/client noerase=True

	
salt.modules.xfs.estimate(path)

	Estimate the space that an XFS filesystem will take.
For each directory estimate the space that directory would take
if it were copied to an XFS filesystem.
Estimation does not cross mount points.

CLI Example:

salt '*' xfs.estimate /path/to/file
salt '*' xfs.estimate /path/to/dir/*

	
salt.modules.xfs.info(device)

	Get filesystem geometry information.

CLI Example:

salt '*' xfs.info /dev/sda1

	
salt.modules.xfs.inventory()

	Display XFS dump inventory without restoration.

CLI Example:

salt '*' xfs.inventory

	
salt.modules.xfs.mkfs(device, label=None, ssize=None, noforce=None, bso=None, gmo=None, ino=None, lso=None, rso=None, nmo=None, dso=None)

	Create a file system on the specified device. By default wipes out with force.

General options:

	label: Specify volume label.

	ssize: Specify the fundamental sector size of the filesystem.

	noforce: Do not force create filesystem, if disk is already formatted.

Filesystem geometry options:

	bso: Block size options.

	gmo: Global metadata options.

	
	dso: Data section options. These options specify the location, size,
	and other parameters of the data section of the filesystem.

	ino: Inode options to specify the inode size of the filesystem, and other inode allocation parameters.

	lso: Log section options.

	nmo: Naming options.

	rso: Realtime section options.

See the mkfs.xfs(8) manpage for a more complete description of corresponding options description.

CLI Example:

salt '*' xfs.mkfs /dev/sda1
salt '*' xfs.mkfs /dev/sda1 dso='su=32k,sw=6' noforce=True
salt '*' xfs.mkfs /dev/sda1 dso='su=32k,sw=6' lso='logdev=/dev/sda2,size=10000b'

	
salt.modules.xfs.modify(device, label=None, lazy_counting=None, uuid=None)

	Modify parameters of an XFS filesystem.

CLI Example:

salt '*' xfs.modify /dev/sda1 label='My backup' lazy_counting=False
salt '*' xfs.modify /dev/sda1 uuid=False
salt '*' xfs.modify /dev/sda1 uuid=True

	
salt.modules.xfs.prune_dump(sessionid)

	Prunes the dump session identified by the given session id.

CLI Example:

salt '*' xfs.prune_dump b74a3586-e52e-4a4a-8775-c3334fa8ea2c

salt.modules.xml

XML file manager

New in version 3000.

	
salt.modules.xml.get_attribute(file, element)

	Return the attributes of the matched xpath element.

CLI Example:

salt '*' xml.get_attribute /tmp/test.xml ".//element[@id='3']"

	
salt.modules.xml.get_value(file, element)

	Returns the value of the matched xpath element

CLI Example:

salt '*' xml.get_value /tmp/test.xml ".//element"

	
salt.modules.xml.set_attribute(file, element, key, value)

	Set the requested attribute key and value for matched xpath element.

CLI Example:

salt '*' xml.set_attribute /tmp/test.xml ".//element[@id='3']" editedby "gal"

	
salt.modules.xml.set_value(file, element, value)

	Sets the value of the matched xpath element

CLI Example:

salt '*' xml.set_value /tmp/test.xml ".//element" "new value"

salt.modules.xmpp

Module for Sending Messages via XMPP (a.k.a. Jabber)

New in version 2014.1.0.

	depends:

	
	sleekxmpp>=1.3.1

	pyasn1

	pyasn1-modules

	dnspython

	configuration:

	This module can be used by either passing a jid and password
directly to send_message, or by specifying the name of a configuration
profile in the minion config, minion pillar, or master config.

For example:

my-xmpp-login:
 xmpp.jid: myuser@jabber.example.org/resourcename
 xmpp.password: verybadpass

The resourcename refers to the resource that is using this account. It is
user-definable, and optional. The following configurations are both valid:

my-xmpp-login:
 xmpp.jid: myuser@jabber.example.org/salt
 xmpp.password: verybadpass

my-xmpp-login:
 xmpp.jid: myuser@jabber.example.org
 xmpp.password: verybadpass

	
class salt.modules.xmpp.SendMsgBot(jid, password, recipient, msg)

	
	
classmethod create_multi(jid, password, msg, recipients=None, rooms=None, nick='SaltStack Bot')

	Alternate constructor that accept multiple recipients and rooms

	
start(event)

	

	
class salt.modules.xmpp.SleekXMPPMUC(name='')

	
	
filter(record)

	Determine if the specified record is to be logged.

Returns True if the record should be logged, or False otherwise.
If deemed appropriate, the record may be modified in-place.

	
salt.modules.xmpp.send_msg(recipient, message, jid=None, password=None, profile=None)

	Send a message to an XMPP recipient. Designed for use in states.

CLI Examples:

xmpp.send_msg 'admins@xmpp.example.com' 'This is a salt module test' profile='my-xmpp-account'
xmpp.send_msg 'admins@xmpp.example.com' 'This is a salt module test' jid='myuser@xmpp.example.com/salt' password='verybadpass'

	
salt.modules.xmpp.send_msg_multi(message, recipients=None, rooms=None, jid=None, password=None, nick='SaltStack Bot', profile=None)

	Send a message to an XMPP recipient, support send message to
multiple recipients or chat room.

CLI Examples:

xmpp.send_msg recipients=['admins@xmpp.example.com'] rooms=['secret@conference.xmpp.example.com'] 'This is a salt module test' profile='my-xmpp-account'
xmpp.send_msg recipients=['admins@xmpp.example.com'] rooms=['secret@conference.xmpp.example.com'] 'This is a salt module test' jid='myuser@xmpp.example.com/salt' password='verybadpass'

salt.modules.yaml

Yaml helper module for troubleshooting yaml

New in version 3005.

	depends:

	yamllint >= 1.20.0

	
salt.modules.yaml.lint(source, saltenv=None, pre_render=None, **kwargs)

	lint the output after detecting a sucsessful render.

	Parameters:

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) -- managed source file

	saltenv (str [https://docs.python.org/3/library/stdtypes.html#str]) -- the saltenv to use, defaults
to minions enviroment or base if not set

	pre_render (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The render options passed to
slsutil.renderer other wise file is cached and loaded as stream

CLI Example:

salt '*' yaml.lint salt://example/bad_yaml.sls

salt.modules.yumpkg

Support for YUM/DNF

Important

If you feel that Salt should be using this module to manage packages on a
minion, and it is using a different module (or gives an error similar to
'pkg.install' is not available), see here.

Note

DNF is fully supported as of version 2015.5.10 and 2015.8.4 (partial
support for DNF was initially added in 2015.8.0), and DNF is used
automatically in place of YUM in Fedora 22 and newer.

New in version 3003: Support for tdnf on Photon OS.

New in version 3007.0: Support for dnf5` on Fedora 39

	
class salt.modules.yumpkg.AvailablePackages(*args, **kwargs)

	

	
salt.modules.yumpkg.available_version(*names, **kwargs)

	This function is an alias of latest_version.

Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

A specific repo can be requested using the fromrepo keyword argument,
and the disableexcludes option is also supported.

New in version 2014.7.0: Support for the disableexcludes option

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package name> fromrepo=epel-testing
salt '*' pkg.latest_version <package name> disableexcludes=main
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	
salt.modules.yumpkg.clean_metadata(**kwargs)

	
New in version 2014.1.0.

Cleans local yum metadata. Functionally identical to refresh_db().

CLI Example:

salt '*' pkg.clean_metadata

	
salt.modules.yumpkg.del_repo(repo, basedir=None, **kwargs)

	Delete a repo from <basedir> (default basedir: all dirs in reposdir yum
option).

If the .repo file in which the repo exists does not contain any other repo
configuration, the file itself will be deleted.

Strict parsing of configuration files is the default, this can be disabled
using the strict_config keyword argument set to False

CLI Examples:

salt '*' pkg.del_repo myrepo
salt '*' pkg.del_repo myrepo basedir=/path/to/dir strict_config=False
salt '*' pkg.del_repo myrepo basedir=/path/to/dir,/path/to/another/dir

	
salt.modules.yumpkg.diff(*paths, **kwargs)

	Return a formatted diff between current files and original in a package.
NOTE: this function includes all files (configuration and not), but does
not work on binary content.

	Parameters:

	path -- Full path to the installed file

	Returns:

	Difference string or raises and exception if examined file is binary.

CLI Example:

salt '*' pkg.diff /etc/apache2/httpd.conf /etc/sudoers

	
salt.modules.yumpkg.download(*packages, **kwargs)

	
New in version 2015.5.0.

Download packages to the local disk. Requires yumdownloader from
yum-utils package.

Note

yum-utils will already be installed on the minion if the package
was installed from the Fedora / EPEL repositories.

CLI Example:

salt '*' pkg.download httpd
salt '*' pkg.download httpd postfix

	
salt.modules.yumpkg.file_dict(*packages, **kwargs)

	
New in version 2014.1.0.

List the files that belong to a package, grouped by package. Not
specifying any packages will return a list of every file on the system's
rpm database (not generally recommended).

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

	
salt.modules.yumpkg.file_list(*packages, **kwargs)

	
New in version 2014.1.0.

List the files that belong to a package. Not specifying any packages will
return a list of every file on the system's rpm database (not generally
recommended).

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

	
salt.modules.yumpkg.get_locked_packages(pattern='[\\w+]+(?:[.-][^-]+)*', full=True)

	This function is an alias of list_holds.

Changed in version 2015.5.10,2015.8.4,2016.3.0: Function renamed from pkg.get_locked_pkgs to pkg.list_holds.

List information on locked packages

Note

Requires the appropriate versionlock plugin package to be installed:

	On RHEL 5: yum-versionlock

	On RHEL 6 & 7: yum-plugin-versionlock

	On Fedora: python-dnf-plugins-extras-versionlock

	patternw+(?:[.-][^-]+)*
	Regular expression used to match the package name

	fullTrue
	Show the full hold definition including version and epoch. Set to
False to return just the name of the package(s) being held.

CLI Example:

salt '*' pkg.list_holds
salt '*' pkg.list_holds full=False

	
salt.modules.yumpkg.get_repo(repo, basedir=None, **kwargs)

	Display a repo from <basedir> (default basedir: all dirs in reposdir
yum option).

CLI Examples:

salt '*' pkg.get_repo myrepo
salt '*' pkg.get_repo myrepo basedir=/path/to/dir
salt '*' pkg.get_repo myrepo basedir=/path/to/dir,/path/to/another/dir

	
salt.modules.yumpkg.group_diff(name, **kwargs)

	
New in version 2014.1.0.

Changed in version 2015.5.10,2015.8.4,2016.3.0: Environment groups are now supported. The key names have been renamed,
similar to the changes made in pkg.group_info.

Changed in version 3006.2: Support for fromrepo, enablerepo, and disablerepo (as used
in pkg.install) has been
added.

Lists which of a group's packages are installed and which are not
installed

	name
	The name of the group to check

	fromrepo
	Restrict yum groupinfo to the specified repo(s).
(e.g., yum --disablerepo='*' --enablerepo='somerepo')

New in version 3006.2.

	enablerepo (ignored if fromrepo is specified)
	Specify a disabled package repository (or repositories) to enable.
(e.g., yum --enablerepo='somerepo')

New in version 3006.2.

	disablerepo (ignored if fromrepo is specified)
	Specify an enabled package repository (or repositories) to disable.
(e.g., yum --disablerepo='somerepo')

New in version 3006.2.

CLI Example:

salt '*' pkg.group_diff 'Perl Support'
salt '*' pkg.group_diff 'Perl Support' fromrepo=base,updates
salt '*' pkg.group_diff 'Perl Support' enablerepo=somerepo

	
salt.modules.yumpkg.group_info(name, expand=False, ignore_groups=None, **kwargs)

	
New in version 2014.1.0.

Changed in version 2015.5.10,2015.8.4,2016.3.0,3001: The return data has changed. A new key type has been added to
distinguish environment groups from package groups. Also, keys for the
group name and group ID have been added. The mandatory packages,
optional packages, and default packages keys have been renamed
to mandatory, optional, and default for accuracy, as
environment groups include other groups, and not packages. Finally,
this function now properly identifies conditional packages.

Changed in version 3006.2: Support for fromrepo, enablerepo, and disablerepo (as used
in pkg.install) has been
added.

Lists packages belonging to a certain group

	name
	Name of the group to query

	expandFalse
	If the specified group is an environment group, then the group will be
expanded and the return data will include package names instead of
group names.

New in version 2016.3.0.

	ignore_groupsNone
	This parameter can be used to pass a list of groups to ignore when
expanding subgroups. It is used during recursion in order to prevent
expanding the same group multiple times.

New in version 3001.

	fromrepo
	Restrict yum groupinfo to the specified repo(s).
(e.g., yum --disablerepo='*' --enablerepo='somerepo')

New in version 3006.2.

	enablerepo (ignored if fromrepo is specified)
	Specify a disabled package repository (or repositories) to enable.
(e.g., yum --enablerepo='somerepo')

New in version 3006.2.

	disablerepo (ignored if fromrepo is specified)
	Specify an enabled package repository (or repositories) to disable.
(e.g., yum --disablerepo='somerepo')

New in version 3006.2.

CLI Example:

salt '*' pkg.group_info 'Perl Support'
salt '*' pkg.group_info 'Perl Support' fromrepo=base,updates
salt '*' pkg.group_info 'Perl Support' enablerepo=somerepo

	
salt.modules.yumpkg.group_install(name, skip=(), include=(), **kwargs)

	
New in version 2014.1.0.

Install the passed package group(s). This is basically a wrapper around
pkg.install, which performs
package group resolution for the user. This function is currently
considered experimental, and should be expected to undergo changes.

	name
	Package group to install. To install more than one group, either use a
comma-separated list or pass the value as a python list.

CLI Examples:

salt '*' pkg.group_install 'Group 1'
salt '*' pkg.group_install 'Group 1,Group 2'
salt '*' pkg.group_install '["Group 1", "Group 2"]'

	skip
	Packages that would normally be installed by the package group
("default" packages), which should not be installed. Can be passed
either as a comma-separated list or a python list.

CLI Examples:

salt '*' pkg.group_install 'My Group' skip='foo,bar'
salt '*' pkg.group_install 'My Group' skip='["foo", "bar"]'

	include
	Packages which are included in a group, which would not normally be
installed by a yum groupinstall ("optional" packages). Note that
this will not enforce group membership; if you include packages which
are not members of the specified groups, they will still be installed.
Can be passed either as a comma-separated list or a python list.

CLI Examples:

salt '*' pkg.group_install 'My Group' include='foo,bar'
salt '*' pkg.group_install 'My Group' include='["foo", "bar"]'

Note

Because this is essentially a wrapper around pkg.install, any argument
which can be passed to pkg.install may also be included here, and it
will be passed along wholesale.

	
salt.modules.yumpkg.group_list()

	
New in version 2014.1.0.

Lists all groups known by yum on this system

CLI Example:

salt '*' pkg.group_list

	
salt.modules.yumpkg.groupinstall(name, skip=(), include=(), **kwargs)

	This function is an alias of group_install.

New in version 2014.1.0.

Install the passed package group(s). This is basically a wrapper around
pkg.install, which performs
package group resolution for the user. This function is currently
considered experimental, and should be expected to undergo changes.

	name
	Package group to install. To install more than one group, either use a
comma-separated list or pass the value as a python list.

CLI Examples:

salt '*' pkg.group_install 'Group 1'
salt '*' pkg.group_install 'Group 1,Group 2'
salt '*' pkg.group_install '["Group 1", "Group 2"]'

	skip
	Packages that would normally be installed by the package group
("default" packages), which should not be installed. Can be passed
either as a comma-separated list or a python list.

CLI Examples:

salt '*' pkg.group_install 'My Group' skip='foo,bar'
salt '*' pkg.group_install 'My Group' skip='["foo", "bar"]'

	include
	Packages which are included in a group, which would not normally be
installed by a yum groupinstall ("optional" packages). Note that
this will not enforce group membership; if you include packages which
are not members of the specified groups, they will still be installed.
Can be passed either as a comma-separated list or a python list.

CLI Examples:

salt '*' pkg.group_install 'My Group' include='foo,bar'
salt '*' pkg.group_install 'My Group' include='["foo", "bar"]'

Note

Because this is essentially a wrapper around pkg.install, any argument
which can be passed to pkg.install may also be included here, and it
will be passed along wholesale.

	
salt.modules.yumpkg.hold(name=None, pkgs=None, sources=None, normalize=True, **kwargs)

	
New in version 2014.7.0.

Version-lock packages

Note

Requires the appropriate versionlock plugin package to be installed:

	On RHEL 5: yum-versionlock

	On RHEL 6 & 7: yum-plugin-versionlock

	On Fedora: python-dnf-plugins-extras-versionlock

	name
	The name of the package to be held.

Multiple Package Options:

	pkgs
	A list of packages to hold. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.hold <package name>
salt '*' pkg.hold pkgs='["foo", "bar"]'

	
salt.modules.yumpkg.info_installed(*names, **kwargs)

	
New in version 2015.8.1.

Return the information of the named package(s), installed on the system.

	Parameters:

	all_versions -- Include information for all versions of the packages installed on the minion.

CLI Example:

salt '*' pkg.info_installed <package1>
salt '*' pkg.info_installed <package1> <package2> <package3> ...
salt '*' pkg.info_installed <package1> <package2> <package3> all_versions=True

	
salt.modules.yumpkg.install(name=None, refresh=False, skip_verify=False, pkgs=None, sources=None, downloadonly=False, reinstall=False, normalize=True, update_holds=False, saltenv='base', ignore_epoch=False, **kwargs)

	
Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands which modify installed packages from the
salt-minion daemon's control group. This is done to keep systemd
from killing any yum/dnf commands spawned by Salt when the
salt-minion service is restarted. (see KillMode in the
systemd.kill(5) [https://www.freedesktop.org/software/systemd/man/systemd.kill.html] manpage for more information). If desired, usage of
systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by setting a config option called systemd.scope, with a value of
False (no quotes).

Install the passed package(s), add refresh=True to clean the yum database
before package is installed.

	name
	The name of the package to be installed. Note that this parameter is
ignored if either "pkgs" or "sources" is passed. Additionally, please
note that this option can only be used to install packages from a
software repository. To install a package file manually, use the
"sources" option.

32-bit packages can be installed on 64-bit systems by appending the
architecture designation (.i686, .i586, etc.) to the end of the
package name.

CLI Example:

salt '*' pkg.install <package name>

	refresh
	Whether or not to update the yum database before executing.

	reinstall
	Specifying reinstall=True will use yum reinstall rather than
yum install for requested packages that are already installed.

If a version is specified with the requested package, then
yum reinstall will only be used if the installed version
matches the requested version.

Works with sources when the package header of the source can be
matched to the name and version of an installed package.

New in version 2014.7.0.

	skip_verify
	Skip the GPG verification check (e.g., --nogpgcheck)

	downloadonly
	Only download the packages, do not install.

	version
	Install a specific version of the package, e.g. 1.2.3-4.el5. Ignored
if "pkgs" or "sources" is passed.

Changed in version 2018.3.0: version can now contain comparison operators (e.g. >1.2.3,
<=2.0, etc.)

	update_holdsFalse
	If True, and this function would update the package version, any
packages held using the yum/dnf "versionlock" plugin will be unheld so
that they can be updated. Otherwise, if this function attempts to
update a held package, the held package(s) will be skipped and an
error will be raised.

New in version 2016.11.0.

	setopt
	A comma-separated or Python list of key=value options. This list will
be expanded and --setopt prepended to each in the yum/dnf command
that is run.

CLI Example:

salt '*' pkg.install foo setopt='obsoletes=0,plugins=0'

New in version 2019.2.0.

Repository Options:

	fromrepo
	Specify a package repository (or repositories) from which to install.
(e.g., yum --disablerepo='*' --enablerepo='somerepo')

	enablerepo (ignored if fromrepo is specified)
	Specify a disabled package repository (or repositories) to enable.
(e.g., yum --enablerepo='somerepo')

	disablerepo (ignored if fromrepo is specified)
	Specify an enabled package repository (or repositories) to disable.
(e.g., yum --disablerepo='somerepo')

	disableexcludes
	Disable exclude from main, for a repo or for everything.
(e.g., yum --disableexcludes='main')

New in version 2014.7.0.

	ignore_epochFalse
	Only used when the version of a package is specified using a comparison
operator (e.g. >4.1). If set to True, then the epoch will be
ignored when comparing the currently-installed version to the desired
version.

New in version 2018.3.0.

Multiple Package Installation Options:

	pkgs
	A list of packages to install from a software repository. Must be
passed as a python list. A specific version number can be specified
by using a single-element dict representing the package and its
version.

CLI Examples:

salt '*' pkg.install pkgs='["foo", "bar"]'
salt '*' pkg.install pkgs='["foo", {"bar": "1.2.3-4.el5"}]'

	sources
	A list of RPM packages to install. Must be passed as a list of dicts,
with the keys being package names, and the values being the source URI
or local path to the package.

CLI Example:

salt '*' pkg.install sources='[{"foo": "salt://foo.rpm"}, {"bar": "salt://bar.rpm"}]'

	normalizeTrue
	Normalize the package name by removing the architecture. This is useful
for poorly created packages which might include the architecture as an
actual part of the name such as kernel modules which match a specific
kernel version.

salt -G role:nsd pkg.install gpfs.gplbin-2.6.32-279.31.1.el6.x86_64 normalize=False

New in version 2014.7.0.

	split_archTrue
	If set to False it prevents package name normalization more strict way
than normalize set to False does.

New in version 3006.0.

	diff_attr:
	If a list of package attributes is specified, returned value will
contain them, eg.:

{'<package>': {
 'old': {
 'version': '<old-version>',
 'arch': '<old-arch>'},

 'new': {
 'version': '<new-version>',
 'arch': '<new-arch>'}}}

Valid attributes are: epoch, version, release, arch,
install_date, install_date_time_t.

If all is specified, all valid attributes will be returned.

New in version 2018.3.0.

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

If an attribute list in diff_attr is specified, the dict will also contain
any specified attribute, eg.:

{'<package>': {
 'old': {
 'version': '<old-version>',
 'arch': '<old-arch>'},

 'new': {
 'version': '<new-version>',
 'arch': '<new-arch>'}}}

	
salt.modules.yumpkg.latest_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
string will be returned for that package.

A specific repo can be requested using the fromrepo keyword argument,
and the disableexcludes option is also supported.

New in version 2014.7.0: Support for the disableexcludes option

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package name> fromrepo=epel-testing
salt '*' pkg.latest_version <package name> disableexcludes=main
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	
salt.modules.yumpkg.list_downloaded(**kwargs)

	
New in version 2017.7.0.

List prefetched packages downloaded by Yum in the local disk.

CLI Example:

salt '*' pkg.list_downloaded

	
salt.modules.yumpkg.list_holds(pattern='[\\w+]+(?:[.-][^-]+)*', full=True)

	
Changed in version 2015.5.10,2015.8.4,2016.3.0: Function renamed from pkg.get_locked_pkgs to pkg.list_holds.

List information on locked packages

Note

Requires the appropriate versionlock plugin package to be installed:

	On RHEL 5: yum-versionlock

	On RHEL 6 & 7: yum-plugin-versionlock

	On Fedora: python-dnf-plugins-extras-versionlock

	patternw+(?:[.-][^-]+)*
	Regular expression used to match the package name

	fullTrue
	Show the full hold definition including version and epoch. Set to
False to return just the name of the package(s) being held.

CLI Example:

salt '*' pkg.list_holds
salt '*' pkg.list_holds full=False

	
salt.modules.yumpkg.list_installed_patches(**kwargs)

	
New in version 2017.7.0.

List installed advisory patches on the system.

CLI Examples:

salt '*' pkg.list_installed_patches

	
salt.modules.yumpkg.list_patches(refresh=False, **kwargs)

	
New in version 2017.7.0.

List all known advisory patches from available repos.

	refresh
	force a refresh if set to True.
If set to False (default) it depends on yum if a refresh is
executed.

CLI Examples:

salt '*' pkg.list_patches

	
salt.modules.yumpkg.list_pkgs(versions_as_list=False, **kwargs)

	List the packages currently installed as a dict. By default, the dict
contains versions as a comma separated string:

{'<package_name>': '<version>[,<version>...]'}

	versions_as_list:
	If set to true, the versions are provided as a list

{'<package_name>': ['<version>', '<version>']}

	attr:
	If a list of package attributes is specified, returned value will
contain them in addition to version, eg.:

{'<package_name>': [{'version' : 'version', 'arch' : 'arch'}]}

Valid attributes are: epoch, version, release, arch,
install_date, install_date_time_t.

If all is specified, all valid attributes will be returned.

New in version 2018.3.0.

CLI Example:

salt '*' pkg.list_pkgs
salt '*' pkg.list_pkgs attr=version,arch
salt '*' pkg.list_pkgs attr='["version", "arch"]'

	
salt.modules.yumpkg.list_repo_pkgs(*args, **kwargs)

	
New in version 2014.1.0.

Changed in version 2014.7.0: All available versions of each package are now returned. This required
a slight modification to the structure of the return dict. The return
data shown below reflects the updated return dict structure. Note that
packages which are version-locked using pkg.hold will only show the currently-installed
version, as locking a package will make other versions appear
unavailable to yum/dnf.

Changed in version 2017.7.0: By default, the versions for each package are no longer organized by
repository. To get results organized by repository, use
byrepo=True.

Returns all available packages. Optionally, package names (and name globs)
can be passed and the results will be filtered to packages matching those
names. This is recommended as it speeds up the function considerably.

Warning

Running this function on RHEL/CentOS 6 and earlier will be more
resource-intensive, as the version of yum that ships with older
RHEL/CentOS has no yum subcommand for listing packages from a
repository. Thus, a yum list installed and yum list available
are run, which generates a lot of output, which must then be analyzed
to determine which package information to include in the return data.

This function can be helpful in discovering the version or repo to specify
in a pkg.installed state.

The return data will be a dictionary mapping package names to a list of
version numbers, ordered from newest to oldest. If byrepo is set to
True, then the return dictionary will contain repository names at the
top level, and each repository will map packages to lists of version
numbers. For example:

With byrepo=False (default)
{
 'bash': ['4.1.2-15.el6_5.2',
 '4.1.2-15.el6_5.1',
 '4.1.2-15.el6_4'],
 'kernel': ['2.6.32-431.29.2.el6',
 '2.6.32-431.23.3.el6',
 '2.6.32-431.20.5.el6',
 '2.6.32-431.20.3.el6',
 '2.6.32-431.17.1.el6',
 '2.6.32-431.11.2.el6',
 '2.6.32-431.5.1.el6',
 '2.6.32-431.3.1.el6',
 '2.6.32-431.1.2.0.1.el6',
 '2.6.32-431.el6']
}
With byrepo=True
{
 'base': {
 'bash': ['4.1.2-15.el6_4'],
 'kernel': ['2.6.32-431.el6']
 },
 'updates': {
 'bash': ['4.1.2-15.el6_5.2', '4.1.2-15.el6_5.1'],
 'kernel': ['2.6.32-431.29.2.el6',
 '2.6.32-431.23.3.el6',
 '2.6.32-431.20.5.el6',
 '2.6.32-431.20.3.el6',
 '2.6.32-431.17.1.el6',
 '2.6.32-431.11.2.el6',
 '2.6.32-431.5.1.el6',
 '2.6.32-431.3.1.el6',
 '2.6.32-431.1.2.0.1.el6']
 }
}

	fromrepoNone
	Only include results from the specified repo(s). Multiple repos can be
specified, comma-separated.

	enablerepo (ignored if fromrepo is specified)
	Specify a disabled package repository (or repositories) to enable.
(e.g., yum --enablerepo='somerepo')

New in version 2017.7.0.

	disablerepo (ignored if fromrepo is specified)
	Specify an enabled package repository (or repositories) to disable.
(e.g., yum --disablerepo='somerepo')

New in version 2017.7.0.

	byrepoFalse
	When True, the return data for each package will be organized by
repository.

New in version 2017.7.0.

	cacheonlyFalse
	When True, the repo information will be retrieved from the cached
repo metadata. This is equivalent to passing the -C option to
yum/dnf.

New in version 2017.7.0.

	setopt
	A comma-separated or Python list of key=value options. This list will
be expanded and --setopt prepended to each in the yum/dnf command
that is run.

New in version 2019.2.0.

CLI Examples:

salt '*' pkg.list_repo_pkgs
salt '*' pkg.list_repo_pkgs foo bar baz
salt '*' pkg.list_repo_pkgs 'samba4*' fromrepo=base,updates
salt '*' pkg.list_repo_pkgs 'python2-*' byrepo=True

	
salt.modules.yumpkg.list_repos(basedir=None, **kwargs)

	Lists all repos in <basedir> (default: all dirs in reposdir yum option).

Strict parsing of configuration files is the default, this can be disabled
using the strict_config keyword argument set to False

CLI Example:

salt '*' pkg.list_repos
salt '*' pkg.list_repos basedir=/path/to/dir
salt '*' pkg.list_repos basedir=/path/to/dir,/path/to/another/dir strict_config=False

	
salt.modules.yumpkg.list_updates(refresh=True, **kwargs)

	This function is an alias of list_upgrades.

Check whether or not an upgrade is available for all packages

The fromrepo, enablerepo, and disablerepo arguments are
supported, as used in pkg states, and the disableexcludes option is
also supported.

New in version 2014.7.0: Support for the disableexcludes option

CLI Example:

salt '*' pkg.list_upgrades

	
salt.modules.yumpkg.list_upgrades(refresh=True, **kwargs)

	Check whether or not an upgrade is available for all packages

The fromrepo, enablerepo, and disablerepo arguments are
supported, as used in pkg states, and the disableexcludes option is
also supported.

New in version 2014.7.0: Support for the disableexcludes option

CLI Example:

salt '*' pkg.list_upgrades

	
salt.modules.yumpkg.mod_repo(repo, basedir=None, **kwargs)

	Modify one or more values for a repo. If the repo does not exist, it will
be created, so long as the following values are specified:

	repo
	name by which the yum refers to the repo

	name
	a human-readable name for the repo

	baseurl
	the URL for yum to reference

	mirrorlist
	the URL for yum to reference

Key/Value pairs may also be removed from a repo's configuration by setting
a key to a blank value. Bear in mind that a name cannot be deleted, and a
baseurl can only be deleted if a mirrorlist is specified (or vice versa).

Strict parsing of configuration files is the default, this can be disabled
using the strict_config keyword argument set to False

CLI Examples:

salt '*' pkg.mod_repo reponame enabled=1 gpgcheck=1
salt '*' pkg.mod_repo reponame basedir=/path/to/dir enabled=1 strict_config=False
salt '*' pkg.mod_repo reponame baseurl= mirrorlist=http://host.com/

	
salt.modules.yumpkg.modified(*packages, **flags)

	List the modified files that belong to a package. Not specifying any packages
will return a list of _all_ modified files on the system's RPM database.

New in version 2015.5.0.

Filtering by flags (True or False):

	size
	Include only files where size changed.

	mode
	Include only files which file's mode has been changed.

	checksum
	Include only files which MD5 checksum has been changed.

	device
	Include only files which major and minor numbers has been changed.

	symlink
	Include only files which are symbolic link contents.

	owner
	Include only files where owner has been changed.

	group
	Include only files where group has been changed.

	time
	Include only files where modification time of the file has been
changed.

	capabilities
	Include only files where capabilities differ or not. Note: supported
only on newer RPM versions.

CLI Examples:

salt '*' pkg.modified
salt '*' pkg.modified httpd
salt '*' pkg.modified httpd postfix
salt '*' pkg.modified httpd owner=True group=False

	
salt.modules.yumpkg.normalize_name(name)

	Strips the architecture from the specified package name, if necessary.
Circumstances where this would be done include:

	If the arch is 32 bit and the package name ends in a 32-bit arch.

	If the arch matches the OS arch, or is noarch.

CLI Example:

salt '*' pkg.normalize_name zsh.x86_64

	
salt.modules.yumpkg.owner(*paths, **kwargs)

	
New in version 2014.7.0.

Return the name of the package that owns the file. Multiple file paths can
be passed. Like pkg.version, if a
single path is passed, a string will be returned, and if multiple paths are
passed, a dictionary of file/package name pairs will be returned.

If the file is not owned by a package, or is not present on the minion,
then an empty string will be returned for that path.

CLI Examples:

salt '*' pkg.owner /usr/bin/apachectl
salt '*' pkg.owner /usr/bin/apachectl /etc/httpd/conf/httpd.conf

	
salt.modules.yumpkg.parse_arch(name)

	Parse name and architecture from the specified package name.

CLI Example:

salt '*' pkg.parse_arch zsh.x86_64

	
salt.modules.yumpkg.purge(name=None, pkgs=None, **kwargs)

	
Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands which modify installed packages from the
salt-minion daemon's control group. This is done to keep systemd
from killing any yum/dnf commands spawned by Salt when the
salt-minion service is restarted. (see KillMode in the
systemd.kill(5) [https://www.freedesktop.org/software/systemd/man/systemd.kill.html] manpage for more information). If desired, usage of
systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by setting a config option called systemd.scope, with a value of
False (no quotes).

Package purges are not supported by yum, this function is identical to
pkg.remove.

	name
	The name of the package to be purged

Multiple Package Options:

	pkgs
	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

	
salt.modules.yumpkg.refresh_db(**kwargs)

	Check the yum repos for updated packages

Returns:

	True: Updates are available

	False: An error occurred

	None: No updates are available

	repo
	Refresh just the specified repo

	disablerepo
	Do not refresh the specified repo

	enablerepo
	Refresh a disabled repo using this option

	branch
	Add the specified branch when refreshing

	disableexcludes
	Disable the excludes defined in your config files. Takes one of three
options:
- all - disable all excludes
- main - disable excludes defined in [main] in yum.conf
- repoid - disable excludes defined for that repo

	setopt
	A comma-separated or Python list of key=value options. This list will
be expanded and --setopt prepended to each in the yum/dnf command
that is run.

New in version 2019.2.0.

CLI Example:

salt '*' pkg.refresh_db

	
salt.modules.yumpkg.remove(name=None, pkgs=None, **kwargs)

	
Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands which modify installed packages from the
salt-minion daemon's control group. This is done to keep systemd
from killing any yum/dnf commands spawned by Salt when the
salt-minion service is restarted. (see KillMode in the
systemd.kill(5) [https://www.freedesktop.org/software/systemd/man/systemd.kill.html] manpage for more information). If desired, usage of
systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by setting a config option called systemd.scope, with a value of
False (no quotes).

Remove packages

	name
	The name of the package to be removed

Multiple Package Options:

	pkgs
	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

New in version 0.16.0.

	split_archTrue
	If set to False it prevents package name normalization by removing arch.

New in version 3006.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

	
salt.modules.yumpkg.services_need_restart(**kwargs)

	
New in version 3003.

List services that use files which have been changed by the
package manager. It might be needed to restart them.

Requires systemd.

CLI Examples:

salt '*' pkg.services_need_restart

	
salt.modules.yumpkg.unhold(name=None, pkgs=None, sources=None, **kwargs)

	
New in version 2014.7.0.

Remove version locks

Note

Requires the appropriate versionlock plugin package to be installed:

	On RHEL 5: yum-versionlock

	On RHEL 6 & 7: yum-plugin-versionlock

	On Fedora: python-dnf-plugins-extras-versionlock

	name
	The name of the package to be unheld

Multiple Package Options:

	pkgs
	A list of packages to unhold. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.unhold <package name>
salt '*' pkg.unhold pkgs='["foo", "bar"]'

	
salt.modules.yumpkg.update(name=None, pkgs=None, refresh=True, skip_verify=False, normalize=True, minimal=False, obsoletes=False, **kwargs)

	
New in version 2019.2.0.

Calls pkg.upgrade with
obsoletes=False. Mirrors the CLI behavior of yum update.
See pkg.upgrade for
further documentation.

CLI Example:

salt '*' pkg.update

	
salt.modules.yumpkg.upgrade(name=None, pkgs=None, refresh=True, skip_verify=False, normalize=True, minimal=False, obsoletes=True, diff_attr=None, **kwargs)

	Run a full system upgrade (a yum upgrade or dnf upgrade), or
upgrade specified packages. If the packages aren't installed, they will
not be installed.

Changed in version 2014.7.0.

Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands which modify installed packages from the
salt-minion daemon's control group. This is done to keep systemd
from killing any yum/dnf commands spawned by Salt when the
salt-minion service is restarted. (see KillMode in the
systemd.kill(5) [https://www.freedesktop.org/software/systemd/man/systemd.kill.html] manpage for more information). If desired, usage of
systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by setting a config option called systemd.scope, with a value of
False (no quotes).

Changed in version 2019.2.0: Added obsoletes and minimal arguments

Returns a dictionary containing the changes:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

CLI Example:

salt '*' pkg.upgrade
salt '*' pkg.upgrade name=openssl

Repository Options:

	fromrepo
	Specify a package repository (or repositories) from which to install.
(e.g., yum --disablerepo='*' --enablerepo='somerepo')

	enablerepo (ignored if fromrepo is specified)
	Specify a disabled package repository (or repositories) to enable.
(e.g., yum --enablerepo='somerepo')

	disablerepo (ignored if fromrepo is specified)
	Specify an enabled package repository (or repositories) to disable.
(e.g., yum --disablerepo='somerepo')

	disableexcludes
	Disable exclude from main, for a repo or for everything.
(e.g., yum --disableexcludes='main')

New in version 2014.7.0.

	name
	The name of the package to be upgraded. Note that this parameter is
ignored if "pkgs" is passed.

32-bit packages can be upgraded on 64-bit systems by appending the
architecture designation (.i686, .i586, etc.) to the end of the
package name.

Warning: if you forget 'name=' and run pkg.upgrade openssl, ALL packages
are upgraded. This will be addressed in next releases.

CLI Example:

salt '*' pkg.upgrade name=openssl

New in version 2016.3.0.

	pkgs
	A list of packages to upgrade from a software repository. Must be
passed as a python list. A specific version number can be specified
by using a single-element dict representing the package and its
version. If the package was not already installed on the system,
it will not be installed.

CLI Examples:

salt '*' pkg.upgrade pkgs='["foo", "bar"]'
salt '*' pkg.upgrade pkgs='["foo", {"bar": "1.2.3-4.el5"}]'

New in version 2016.3.0.

	normalizeTrue
	Normalize the package name by removing the architecture. This is useful
for poorly created packages which might include the architecture as an
actual part of the name such as kernel modules which match a specific
kernel version.

salt -G role:nsd pkg.upgrade gpfs.gplbin-2.6.32-279.31.1.el6.x86_64 normalize=False

New in version 2016.3.0.

	minimalFalse
	Use upgrade-minimal instead of upgrade (e.g., yum upgrade-minimal)
Goes to the 'newest' package match which fixes a problem that affects your system.

salt '*' pkg.upgrade minimal=True

New in version 2019.2.0.

	obsoletesTrue
	Controls whether yum/dnf should take obsoletes into account and remove them.
If set to False yum will use update instead of upgrade
and dnf will be run with --obsoletes=False

salt '*' pkg.upgrade obsoletes=False

New in version 2019.2.0.

	setopt
	A comma-separated or Python list of key=value options. This list will
be expanded and --setopt prepended to each in the yum/dnf command
that is run.

New in version 2019.2.0.

	diff_attr:
	If a list of package attributes is specified, returned value will
contain them, eg.:

{'<package>': {
 'old': {
 'version': '<old-version>',
 'arch': '<old-arch>'},

 'new': {
 'version': '<new-version>',
 'arch': '<new-arch>'}}}

Valid attributes are: epoch, version, release, arch,
install_date, install_date_time_t.

If all is specified, all valid attributes will be returned.

New in version 3006.0.

Note

To add extra arguments to the yum upgrade command, pass them as key
word arguments. For arguments without assignments, pass True

salt '*' pkg.upgrade security=True exclude='kernel*'

	
salt.modules.yumpkg.upgrade_available(name, **kwargs)

	Check whether or not an upgrade is available for a given package

CLI Example:

salt '*' pkg.upgrade_available <package name>

	
salt.modules.yumpkg.verify(*names, **kwargs)

	
New in version 2014.1.0.

Runs an rpm -Va on a system, and returns the results in a dict

Pass options to modify rpm verify behavior using the verify_options
keyword argument

Files with an attribute of config, doc, ghost, license or readme in the
package header can be ignored using the ignore_types keyword argument

CLI Example:

salt '*' pkg.verify
salt '*' pkg.verify httpd
salt '*' pkg.verify 'httpd postfix'
salt '*' pkg.verify 'httpd postfix' ignore_types=['config','doc']
salt '*' pkg.verify 'httpd postfix' verify_options=['nodeps','nosize']

	
salt.modules.yumpkg.version(*names, **kwargs)

	Returns a string representing the package version or an empty string if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

	
salt.modules.yumpkg.version_cmp(pkg1, pkg2, ignore_epoch=False, **kwargs)

	
New in version 2015.5.4.

Do a cmp-style comparison on two packages. Return -1 if pkg1 < pkg2, 0 if
pkg1 == pkg2, and 1 if pkg1 > pkg2. Return None if there was a problem
making the comparison.

	ignore_epochFalse
	Set to True to ignore the epoch when comparing versions

New in version 2015.8.10,2016.3.2.

CLI Example:

salt '*' pkg.version_cmp '0.2-001' '0.2.0.1-002'

salt.modules.zabbix

Warning

This module will be removed from Salt in version 3009 in favor of
the zabbix Salt Extension [https://github.com/salt-extensions/saltext-zabbix].

Support for Zabbix

	optdepends:

	
	zabbix server

	configuration:

	This module is not usable until the zabbix user and zabbix password are specified either in a pillar
or in the minion's config file. Zabbix url should be also specified.

zabbix.user: Admin
zabbix.password: mypassword
zabbix.url: http://127.0.0.1/zabbix/api_jsonrpc.php

Connection arguments from the minion config file can be overridden on the CLI by using arguments with
connection prefix.

zabbix.apiinfo_version _connection_user=Admin _connection_password=zabbix _connection_url=http://host/zabbix/

	codeauthor:

	Jiri Kotlin <jiri.kotlin@ultimum.io>

	
salt.modules.zabbix.apiinfo_version(**connection_args)

	Retrieve the version of the Zabbix API.

New in version 2016.3.0.

	Parameters:

	
	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	On success string with Zabbix API version, False on failure.

CLI Example:

salt '*' zabbix.apiinfo_version

	
salt.modules.zabbix.compare_params(defined, existing, return_old_value=False)

	
New in version 2017.7.0.

Compares Zabbix object definition against existing Zabbix object.

	Parameters:

	
	defined -- Zabbix object definition taken from sls file.

	existing -- Existing Zabbix object taken from result of an API call.

	return_old_value -- Default False. If True, returns dict("old"=old_val, "new"=new_val) for rollback purpose.

	Returns:

	Params that are different from existing object. Result extended by
object ID can be passed directly to Zabbix API update method.

CLI Example:

salt '*' zabbix.compare_params new_zabbix_object_dict existing_zabbix_onject_dict

	
salt.modules.zabbix.configuration_import(config_file, rules=None, file_format='xml', **connection_args)

	
New in version 2017.7.0.

Imports Zabbix configuration specified in file to Zabbix server.

	Parameters:

	
	config_file -- File with Zabbix config (local or remote)

	rules -- Optional - Rules that have to be different from default (defaults are the same as in Zabbix web UI.)

	file_format -- Config file format (default: xml)

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

CLI Example:

salt '*' zabbix.configuration_import salt://zabbix/config/zabbix_templates.xml "{'screens': {'createMissing': True, 'updateExisting': True}}"

	
salt.modules.zabbix.get_object_id_by_params(obj, params=None, **connection_args)

	
New in version 2017.7.0.

Get ID of single Zabbix object specified by its name.

	Parameters:

	
	obj -- Zabbix object type

	params -- Parameters by which object is uniquely identified

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	object ID

CLI Example:

salt '*' zabbix.get_object_id_by_params object_type params=zabbix_api_query_parameters_dict

	
salt.modules.zabbix.get_zabbix_id_mapper()

	
New in version 2017.7.0.

Make ZABBIX_ID_MAPPER constant available to state modules.

	Returns:

	ZABBIX_ID_MAPPER

CLI Example:

salt '*' zabbix.get_zabbix_id_mapper

	
salt.modules.zabbix.host_create(host, groups, interfaces, **connection_args)

	
New in version 2016.3.0.

Create new host

Note

This function accepts all standard host properties: keyword argument
names differ depending on your zabbix version, see here [https://www.zabbix.com/documentation/2.4/manual/api/reference/host/object#host].

	Parameters:

	
	host -- technical name of the host

	groups -- groupids of host groups to add the host to

	interfaces -- interfaces to be created for the host

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	visible_name -- string with visible name of the host, use
'visible_name' instead of 'name' parameter to not mess with value
supplied from Salt sls file.

return: ID of the created host.

CLI Example:

salt '*' zabbix.host_create technicalname 4
interfaces='{type: 1, main: 1, useip: 1, ip: "192.168.3.1", dns: "", port: 10050}'
visible_name='Host Visible Name' inventory_mode=0 inventory='{"alias": "something"}'

	
salt.modules.zabbix.host_delete(hostids, **connection_args)

	Delete hosts.

New in version 2016.3.0.

	Parameters:

	
	hostids -- Hosts (hostids) to delete.

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	IDs of the deleted hosts.

CLI Example:

salt '*' zabbix.host_delete 10106

	
salt.modules.zabbix.host_exists(host=None, hostid=None, name=None, node=None, nodeids=None, **connection_args)

	Checks if at least one host that matches the given filter criteria exists.

New in version 2016.3.0.

	Parameters:

	
	host -- technical name of the host

	hostids -- Hosts (hostids) to delete.

	name -- visible name of the host

	node -- name of the node the hosts must belong to (zabbix API < 2.4)

	nodeids -- IDs of the node the hosts must belong to (zabbix API < 2.4)

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	IDs of the deleted hosts, False on failure.

CLI Example:

salt '*' zabbix.host_exists 'Zabbix server'

	
salt.modules.zabbix.host_get(host=None, name=None, hostids=None, **connection_args)

	
New in version 2016.3.0.

Retrieve hosts according to the given parameters

Note

This function accepts all optional host.get parameters: keyword
argument names differ depending on your zabbix version, see here [https://www.zabbix.com/documentation/2.4/manual/api/reference/host/get].

	Parameters:

	
	host -- technical name of the host

	name -- visible name of the host

	hostids -- ids of the hosts

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	Array with convenient hosts details, False if no host found or on failure.

CLI Example:

salt '*' zabbix.host_get 'Zabbix server'

	
salt.modules.zabbix.host_inventory_get(hostids, **connection_args)

	Retrieve host inventory according to the given parameters.
See: https://www.zabbix.com/documentation/2.4/manual/api/reference/host/object#host_inventory

New in version 2019.2.0.

	Parameters:

	
	hostids -- ID of the host to query

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	Array with host inventory fields, populated or not, False if host inventory is disabled or on failure.

CLI Example:

salt '*' zabbix.host_inventory_get 101054

	
salt.modules.zabbix.host_inventory_set(hostid, **connection_args)

	Update host inventory items
NOTE: This function accepts all standard host: keyword argument names for inventory
see: https://www.zabbix.com/documentation/2.4/manual/api/reference/host/object#host_inventory

New in version 2019.2.0.

	Parameters:

	
	hostid -- ID of the host to update

	clear_old -- Set to True in order to remove all existing inventory items before setting the specified items

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	ID of the updated host, False on failure.

CLI Example:

salt '*' zabbix.host_inventory_set 101054 asset_tag=jml3322 type=vm clear_old=True

	
salt.modules.zabbix.host_list(**connection_args)

	Retrieve all hosts.

New in version 2016.3.0.

	Parameters:

	
	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	Array with details about hosts, False on failure.

CLI Example:

salt '*' zabbix.host_list

	
salt.modules.zabbix.host_update(hostid, **connection_args)

	
New in version 2016.3.0.

Update existing hosts

Note

This function accepts all standard host and host.update properties:
keyword argument names differ depending on your zabbix version, see the
documentation for host objects [https://www.zabbix.com/documentation/2.4/manual/api/reference/host/object#host] and the documentation for updating
hosts [https://www.zabbix.com/documentation/2.4/manual/api/reference/host/update].

	Parameters:

	
	hostid -- ID of the host to update

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	visible_name -- string with visible name of the host, use
'visible_name' instead of 'name' parameter to not mess with value
supplied from Salt sls file.

	Returns:

	ID of the updated host.

CLI Example:

salt '*' zabbix.host_update 10084 name='Zabbix server2'

	
salt.modules.zabbix.hostgroup_create(name, **connection_args)

	
New in version 2016.3.0.

Create a host group

Note

This function accepts all standard host group properties: keyword
argument names differ depending on your zabbix version, see here [https://www.zabbix.com/documentation/2.4/manual/api/reference/hostgroup/object#host_group].

	Parameters:

	
	name -- name of the host group

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	ID of the created host group.

CLI Example:

salt '*' zabbix.hostgroup_create MyNewGroup

	
salt.modules.zabbix.hostgroup_delete(hostgroupids, **connection_args)

	Delete the host group.

New in version 2016.3.0.

	Parameters:

	
	hostgroupids -- IDs of the host groups to delete

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	ID of the deleted host groups, False on failure.

CLI Example:

salt '*' zabbix.hostgroup_delete 23

	
salt.modules.zabbix.hostgroup_exists(name=None, groupid=None, node=None, nodeids=None, **connection_args)

	Checks if at least one host group that matches the given filter criteria exists.

New in version 2016.3.0.

	Parameters:

	
	name -- names of the host groups

	groupid -- host group IDs

	node -- name of the node the host groups must belong to (zabbix API < 2.4)

	nodeids -- IDs of the nodes the host groups must belong to (zabbix API < 2.4)

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	True if at least one host group exists, False if not or on failure.

CLI Example:

salt '*' zabbix.hostgroup_exists MyNewGroup

	
salt.modules.zabbix.hostgroup_get(name=None, groupids=None, hostids=None, **connection_args)

	
New in version 2016.3.0.

Retrieve host groups according to the given parameters

Note

This function accepts all standard hostgroup.get properities: keyword
argument names differ depending on your zabbix version, see here [https://www.zabbix.com/documentation/2.2/manual/api/reference/hostgroup/get].

	Parameters:

	
	name -- names of the host groups

	groupid -- host group IDs

	node -- name of the node the host groups must belong to

	nodeids -- IDs of the nodes the host groups must belong to

	hostids -- return only host groups that contain the given hosts

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	Array with host groups details, False if no convenient host group found or on failure.

CLI Example:

salt '*' zabbix.hostgroup_get MyNewGroup

	
salt.modules.zabbix.hostgroup_list(**connection_args)

	Retrieve all host groups.

New in version 2016.3.0.

	Parameters:

	
	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	Array with details about host groups, False on failure.

CLI Example:

salt '*' zabbix.hostgroup_list

	
salt.modules.zabbix.hostgroup_update(groupid, name=None, **connection_args)

	
New in version 2016.3.0.

Update existing hosts group

Note

This function accepts all standard host group properties: keyword
argument names differ depending on your zabbix version, see here [https://www.zabbix.com/documentation/2.4/manual/api/reference/hostgroup/object#host_group].

	Parameters:

	
	groupid -- ID of the host group to update

	name -- name of the host group

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	IDs of updated host groups.

CLI Example:

salt '*' zabbix.hostgroup_update 24 name='Renamed Name'

	
salt.modules.zabbix.hostinterface_create(hostid, ip_, dns='', main=1, if_type=1, useip=1, port=None, **connection_args)

	
New in version 2016.3.0.

Create new host interface

Note

This function accepts all standard host group interface: keyword
argument names differ depending on your zabbix version, see here [https://www.zabbix.com/documentation/3.0/manual/api/reference/hostinterface/object].

	Parameters:

	
	hostid -- ID of the host the interface belongs to

	ip -- IP address used by the interface

	dns -- DNS name used by the interface

	main -- whether the interface is used as default on the host (0 - not default, 1 - default)

	port -- port number used by the interface

	type -- Interface type (1 - agent; 2 - SNMP; 3 - IPMI; 4 - JMX)

	useip -- Whether the connection should be made via IP (0 - connect
using host DNS name; 1 - connect using host IP address for this host
interface)

	_connection_user -- Optional - zabbix user (can also be set in opts or
pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in
opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set
in opts, pillar, see module's docstring)

	Returns:

	ID of the created host interface, False on failure.

CLI Example:

salt '*' zabbix.hostinterface_create 10105 192.193.194.197

	
salt.modules.zabbix.hostinterface_delete(interfaceids, **connection_args)

	Delete host interface

New in version 2016.3.0.

	Parameters:

	
	interfaceids -- IDs of the host interfaces to delete

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	ID of deleted host interfaces, False on failure.

CLI Example:

salt '*' zabbix.hostinterface_delete 50

	
salt.modules.zabbix.hostinterface_get(hostids, **connection_args)

	
New in version 2016.3.0.

Retrieve host groups according to the given parameters

Note

This function accepts all standard hostinterface.get properities:
keyword argument names differ depending on your zabbix version, see
here [https://www.zabbix.com/documentation/2.4/manual/api/reference/hostinterface/get].

	Parameters:

	
	hostids -- Return only host interfaces used by the given hosts.

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	Array with host interfaces details, False if no convenient host interfaces found or on failure.

CLI Example:

salt '*' zabbix.hostinterface_get 101054

	
salt.modules.zabbix.hostinterface_update(interfaceid, **connection_args)

	
New in version 2016.3.0.

Update host interface

Note

This function accepts all standard hostinterface: keyword argument
names differ depending on your zabbix version, see here [https://www.zabbix.com/documentation/2.4/manual/api/reference/hostinterface/object#host_interface].

	Parameters:

	
	interfaceid -- ID of the hostinterface to update

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	ID of the updated host interface, False on failure.

CLI Example:

salt '*' zabbix.hostinterface_update 6 ip_=0.0.0.2

	
salt.modules.zabbix.mediatype_create(name, mediatype, **connection_args)

	Create new mediatype

Note

This function accepts all standard mediatype properties: keyword
argument names differ depending on your zabbix version, see here [https://www.zabbix.com/documentation/3.0/manual/api/reference/mediatype/object].

	Parameters:

	
	mediatype -- media type - 0: email, 1: script, 2: sms, 3: Jabber, 100: Ez Texting

	exec_path -- exec path - Required for script and Ez Texting types, see Zabbix API docs

	gsm_modem -- exec path - Required for sms type, see Zabbix API docs

	smtp_email -- email address from which notifications will be sent, required for email type

	smtp_helo -- SMTP HELO, required for email type

	smtp_server -- SMTP server, required for email type

	status -- whether the media type is enabled - 0: enabled, 1: disabled

	username -- authentication user, required for Jabber and Ez Texting types

	passwd -- authentication password, required for Jabber and Ez Texting types

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

return: ID of the created mediatype.

CLI Example:

salt '*' zabbix.mediatype_create 'Email' 0 smtp_email='noreply@example.com'
smtp_server='mailserver.example.com' smtp_helo='zabbix.example.com'

	
salt.modules.zabbix.mediatype_delete(mediatypeids, **connection_args)

	Delete mediatype

	Parameters:

	
	interfaceids -- IDs of the mediatypes to delete

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	ID of deleted mediatype, False on failure.

CLI Example:

salt '*' zabbix.mediatype_delete 3

	
salt.modules.zabbix.mediatype_get(name=None, mediatypeids=None, **connection_args)

	Retrieve mediatypes according to the given parameters.

	Parameters:

	
	name -- Name or description of the mediatype

	mediatypeids -- ids of the mediatypes

	connection_args (optional) -- _connection_user: zabbix user (can also be set in opts or pillar, see module's docstring)
_connection_password: zabbix password (can also be set in opts or pillar, see module's docstring)
_connection_url: url of zabbix frontend (can also be set in opts or pillar, see module's docstring)

all optional mediatype.get parameters: keyword argument names depends on your zabbix version, see:

https://www.zabbix.com/documentation/2.2/manual/api/reference/mediatype/get

	Returns:

	Array with mediatype details, False if no mediatype found or on failure.

CLI Example:

salt '*' zabbix.mediatype_get name='Email'
salt '*' zabbix.mediatype_get mediatypeids="['1', '2', '3']"

	
salt.modules.zabbix.mediatype_update(mediatypeid, name=False, mediatype=False, **connection_args)

	Update existing mediatype

Note

This function accepts all standard mediatype properties: keyword
argument names differ depending on your zabbix version, see here [https://www.zabbix.com/documentation/3.0/manual/api/reference/mediatype/object].

	Parameters:

	
	mediatypeid -- ID of the mediatype to update

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	IDs of the updated mediatypes, False on failure.

CLI Example:

salt '*' zabbix.usergroup_update 8 name="Email update"

	
salt.modules.zabbix.run_query(method, params, **connection_args)

	Send Zabbix API call

	Parameters:

	
	method -- actual operation to perform via the API

	params -- parameters required for specific method

	connection_args (optional) -- _connection_user: zabbix user (can also be set in opts or pillar, see module's docstring)
_connection_password: zabbix password (can also be set in opts or pillar, see module's docstring)
_connection_url: url of zabbix frontend (can also be set in opts or pillar, see module's docstring)

all optional template.get parameters: keyword argument names depends on your zabbix version, see:

https://www.zabbix.com/documentation/2.4/manual/api/reference/

	Returns:

	Response from Zabbix API

CLI Example:

salt '*' zabbix.run_query proxy.create '{"host": "zabbixproxy.domain.com", "status": "5"}'

	
salt.modules.zabbix.substitute_params(input_object, extend_params=None, filter_key='name', **kwargs)

	
New in version 2017.7.0.

Go through Zabbix object params specification and if needed get given object ID from Zabbix API and put it back
as a value. Definition of the object is done via dict with keys "query_object" and "query_name".

	Parameters:

	
	input_object -- Zabbix object type specified in state file

	extend_params -- Specify query with params

	filter_key -- Custom filtering key (default: name)

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	Params structure with values converted to string for further comparison purposes

CLI Example:

salt '*' zabbix.substitute_params '{"query_object": "object_name", "query_name": "specific_object_name"}'

	
salt.modules.zabbix.template_get(name=None, host=None, templateids=None, **connection_args)

	Retrieve templates according to the given parameters.

	Parameters:

	
	host -- technical name of the template

	name -- visible name of the template

	hostids -- ids of the templates

	connection_args (optional) -- _connection_user: zabbix user (can also be set in opts or pillar, see module's docstring)
_connection_password: zabbix password (can also be set in opts or pillar, see module's docstring)
_connection_url: url of zabbix frontend (can also be set in opts or pillar, see module's docstring)

all optional template.get parameters: keyword argument names depends on your zabbix version, see:

https://www.zabbix.com/documentation/2.4/manual/api/reference/template/get

	Returns:

	Array with convenient template details, False if no template found or on failure.

CLI Example:

salt '*' zabbix.template_get name='Template OS Linux'
salt '*' zabbix.template_get templateids="['10050', '10001']"

	
salt.modules.zabbix.user_addmedia(userids, active, mediatypeid, period, sendto, severity, **connection_args)

	Add new media to multiple users. Available only for Zabbix version 3.4 or older.

New in version 2016.3.0.

	Parameters:

	
	userids -- ID of the user that uses the media

	active -- Whether the media is enabled (0 enabled, 1 disabled)

	mediatypeid -- ID of the media type used by the media

	period -- Time when the notifications can be sent as a time period

	sendto -- Address, user name or other identifier of the recipient

	severity -- Trigger severities to send notifications about

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	IDs of the created media.

CLI Example:

salt '*' zabbix.user_addmedia 4 active=0 mediatypeid=1 period='1-7,00:00-24:00' sendto='support2@example.com'
severity=63

	
salt.modules.zabbix.user_create(alias, passwd, usrgrps, **connection_args)

	
New in version 2016.3.0.

Create new zabbix user

Note

This function accepts all standard user properties: keyword argument
names differ depending on your zabbix version, see here [https://www.zabbix.com/documentation/2.0/manual/appendix/api/user/definitions#user].

	Parameters:

	
	alias -- user alias

	passwd -- user's password

	usrgrps -- user groups to add the user to

	_connection_user -- zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- url of zabbix frontend (can also be set in opts or pillar, see module's docstring)

	firstname -- string with firstname of the user, use 'firstname' instead of 'name' parameter to not mess
with value supplied from Salt sls file.

	Returns:

	On success string with id of the created user.

CLI Example:

salt '*' zabbix.user_create james password007 '[7, 12]' firstname='James Bond'

	
salt.modules.zabbix.user_delete(users, **connection_args)

	Delete zabbix users.

New in version 2016.3.0.

	Parameters:

	
	users -- array of users (userids) to delete

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	On success array with userids of deleted users.

CLI Example:

salt '*' zabbix.user_delete 15

	
salt.modules.zabbix.user_deletemedia(mediaids, **connection_args)

	Delete media by id. Available only for Zabbix version 3.4 or older.

New in version 2016.3.0.

	Parameters:

	
	mediaids -- IDs of the media to delete

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	IDs of the deleted media, False on failure.

CLI Example:

salt '*' zabbix.user_deletemedia 27

	
salt.modules.zabbix.user_exists(alias, **connection_args)

	Checks if user with given alias exists.

New in version 2016.3.0.

	Parameters:

	
	alias -- user alias

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	True if user exists, else False.

CLI Example:

salt '*' zabbix.user_exists james

	
salt.modules.zabbix.user_get(alias=None, userids=None, **connection_args)

	Retrieve users according to the given parameters.

New in version 2016.3.0.

	Parameters:

	
	alias -- user alias

	userids -- return only users with the given IDs

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	Array with details of convenient users, False on failure of if no user found.

CLI Example:

salt '*' zabbix.user_get james

	
salt.modules.zabbix.user_getmedia(userids=None, **connection_args)

	
New in version 2016.3.0.

Retrieve media according to the given parameters

Note

This function accepts all standard usermedia.get properties: keyword
argument names differ depending on your zabbix version, see here [https://www.zabbix.com/documentation/3.2/manual/api/reference/usermedia/get].

	Parameters:

	
	userids -- return only media that are used by the given users

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	List of retrieved media, False on failure.

CLI Example:

salt '*' zabbix.user_getmedia

	
salt.modules.zabbix.user_list(**connection_args)

	Retrieve all of the configured users.

New in version 2016.3.0.

	Parameters:

	
	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	Array with user details.

CLI Example:

salt '*' zabbix.user_list

	
salt.modules.zabbix.user_update(userid, **connection_args)

	
New in version 2016.3.0.

Update existing users

Note

This function accepts all standard user properties: keyword argument
names differ depending on your zabbix version, see here [https://www.zabbix.com/documentation/2.0/manual/appendix/api/user/definitions#user].

	Parameters:

	
	userid -- id of the user to update

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	Id of the updated user on success.

CLI Example:

salt '*' zabbix.user_update 16 visible_name='James Brown'

	
salt.modules.zabbix.usergroup_create(name, **connection_args)

	
New in version 2016.3.0.

Create new user group

Note

This function accepts all standard user group properties: keyword
argument names differ depending on your zabbix version, see here [https://www.zabbix.com/documentation/2.0/manual/appendix/api/usergroup/definitions#user_group].

	Parameters:

	
	name -- name of the user group

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	IDs of the created user groups.

CLI Example:

salt '*' zabbix.usergroup_create GroupName

	
salt.modules.zabbix.usergroup_delete(usergroupids, **connection_args)

	
New in version 2016.3.0.

	Parameters:

	
	usergroupids -- IDs of the user groups to delete

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	IDs of the deleted user groups.

CLI Example:

salt '*' zabbix.usergroup_delete 28

	
salt.modules.zabbix.usergroup_exists(name=None, node=None, nodeids=None, **connection_args)

	Checks if at least one user group that matches the given filter criteria exists

New in version 2016.3.0.

	Parameters:

	
	name -- names of the user groups

	node -- name of the node the user groups must belong to (This will override the nodeids parameter.)

	nodeids -- IDs of the nodes the user groups must belong to

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	True if at least one user group that matches the given filter criteria exists, else False.

CLI Example:

salt '*' zabbix.usergroup_exists Guests

	
salt.modules.zabbix.usergroup_get(name=None, usrgrpids=None, userids=None, **connection_args)

	
New in version 2016.3.0.

Retrieve user groups according to the given parameters

Note

This function accepts all usergroup_get properties: keyword argument
names differ depending on your zabbix version, see here [https://www.zabbix.com/documentation/2.4/manual/api/reference/usergroup/get].

	Parameters:

	
	name -- names of the user groups

	usrgrpids -- return only user groups with the given IDs

	userids -- return only user groups that contain the given users

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	Array with convenient user groups details, False if no user group found or on failure.

CLI Example:

salt '*' zabbix.usergroup_get Guests

	
salt.modules.zabbix.usergroup_list(**connection_args)

	Retrieve all enabled user groups.

New in version 2016.3.0.

	Parameters:

	
	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	Array with enabled user groups details, False on failure.

CLI Example:

salt '*' zabbix.usergroup_list

	
salt.modules.zabbix.usergroup_update(usrgrpid, **connection_args)

	
New in version 2016.3.0.

Update existing user group

Note

This function accepts all standard user group properties: keyword
argument names differ depending on your zabbix version, see here [https://www.zabbix.com/documentation/2.4/manual/api/reference/usergroup/object#user_group].

	Parameters:

	
	usrgrpid -- ID of the user group to update.

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

	Returns:

	IDs of the updated user group, False on failure.

CLI Example:

salt '*' zabbix.usergroup_update 8 name=guestsRenamed

	
salt.modules.zabbix.usermacro_create(macro, value, hostid, **connection_args)

	Create new host usermacro.

	Parameters:

	
	macro -- name of the host usermacro

	value -- value of the host usermacro

	hostid -- hostid or templateid

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

return: ID of the created host usermacro.

CLI Example:

salt '*' zabbix.usermacro_create '{$SNMP_COMMUNITY}' 'public' 1

	
salt.modules.zabbix.usermacro_createglobal(macro, value, **connection_args)

	Create new global usermacro.

	Parameters:

	
	macro -- name of the global usermacro

	value -- value of the global usermacro

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

return: ID of the created global usermacro.

CLI Example:

salt '*' zabbix.usermacro_createglobal '{$SNMP_COMMUNITY}' 'public'

	
salt.modules.zabbix.usermacro_delete(macroids, **connection_args)

	Delete host usermacros.

	Parameters:

	
	macroids -- macroids of the host usermacros

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

return: IDs of the deleted host usermacro.

CLI Example:

salt '*' zabbix.usermacro_delete 21

	
salt.modules.zabbix.usermacro_deleteglobal(macroids, **connection_args)

	Delete global usermacros.

	Parameters:

	
	macroids -- macroids of the global usermacros

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

return: IDs of the deleted global usermacro.

CLI Example:

salt '*' zabbix.usermacro_deleteglobal 21

	
salt.modules.zabbix.usermacro_get(macro=None, hostids=None, templateids=None, hostmacroids=None, globalmacroids=None, globalmacro=False, **connection_args)

	Retrieve user macros according to the given parameters.

	Parameters:

	
	macro -- name of the usermacro

	hostids -- Return macros for the given hostids

	templateids -- Return macros for the given templateids

	hostmacroids -- Return macros with the given hostmacroids

	globalmacroids -- Return macros with the given globalmacroids (implies globalmacro=True)

	globalmacro -- if True, returns only global macros

	connection_args (optional) -- _connection_user: zabbix user (can also be set in opts or pillar, see module's docstring)
_connection_password: zabbix password (can also be set in opts or pillar, see module's docstring)
_connection_url: url of zabbix frontend (can also be set in opts or pillar, see module's docstring)

	Returns:

	Array with usermacro details, False if no usermacro found or on failure.

CLI Example:

salt '*' zabbix.usermacro_get macro='{$SNMP_COMMUNITY}'

	
salt.modules.zabbix.usermacro_update(hostmacroid, value, **connection_args)

	Update existing host usermacro.

	Parameters:

	
	hostmacroid -- id of the host usermacro

	value -- new value of the host usermacro

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

return: ID of the update host usermacro.

CLI Example:

salt '*' zabbix.usermacro_update 1 'public'

	
salt.modules.zabbix.usermacro_updateglobal(globalmacroid, value, **connection_args)

	Update existing global usermacro.

	Parameters:

	
	globalmacroid -- id of the host usermacro

	value -- new value of the host usermacro

	_connection_user -- Optional - zabbix user (can also be set in opts or pillar, see module's docstring)

	_connection_password -- Optional - zabbix password (can also be set in opts or pillar, see module's docstring)

	_connection_url -- Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)

return: ID of the update global usermacro.

CLI Example:

salt '*' zabbix.usermacro_updateglobal 1 'public'

salt.modules.zcbuildout

Management of zc.buildout

New in version 2014.1.0.

This module is inspired by minitage's buildout maker [https://github.com/minitage/minitage/blob/master/src/minitage/core/makers/buildout.py]

Note

The zc.buildout integration is still in beta; the API is subject to change

General notes

You have those following methods:

	upgrade_bootstrap

	bootstrap

	run_buildout

	buildout

	
salt.modules.zcbuildout.bootstrap(*a, **kw)

	Run the buildout bootstrap dance (python bootstrap.py).

	directory
	directory to execute in

	config
	alternative buildout configuration file to use

	runas
	User used to run buildout as

	env
	environment variables to set when running

	buildout_ver
	force a specific buildout version (1 | 2)

	test_release
	buildout accept test release

	offline
	are we executing buildout in offline mode

	distribute
	Forcing use of distribute

	new_st
	Forcing use of setuptools >= 0.7

	python
	path to a python executable to use in place of default (salt one)

	onlyif
	Only execute cmd if statement on the host return 0

	unless
	Do not execute cmd if statement on the host return 0

	use_vt
	Use the new salt VT to stream output [experimental]

CLI Example:

salt '*' buildout.bootstrap /srv/mybuildout

	
salt.modules.zcbuildout.buildout(*a, **kw)

	Run buildout in a directory.

	directory
	directory to execute in

	config
	buildout config to use

	parts
	specific buildout parts to run

	runas
	user used to run buildout as

	env
	environment variables to set when running

	buildout_ver
	force a specific buildout version (1 | 2)

	test_release
	buildout accept test release

	new_st
	Forcing use of setuptools >= 0.7

	distribute
	use distribute over setuptools if possible

	offline
	does buildout run offline

	python
	python to use

	debug
	run buildout with -D debug flag

	onlyif
	Only execute cmd if statement on the host return 0

	unless
	Do not execute cmd if statement on the host return 0

	newest
	run buildout in newest mode

	verbose
	run buildout in verbose mode (-vvvvv)

	use_vt
	Use the new salt VT to stream output [experimental]

CLI Example:

salt '*' buildout.buildout /srv/mybuildout

	
salt.modules.zcbuildout.run_buildout(*a, **kw)

	Run a buildout in a directory.

	directory
	directory to execute in

	config
	alternative buildout configuration file to use

	offline
	are we executing buildout in offline mode

	runas
	user used to run buildout as

	env
	environment variables to set when running

	onlyif
	Only execute cmd if statement on the host return 0

	unless
	Do not execute cmd if statement on the host return 0

	newest
	run buildout in newest mode

	force
	run buildout unconditionally

	verbose
	run buildout in verbose mode (-vvvvv)

	use_vt
	Use the new salt VT to stream output [experimental]

CLI Example:

salt '*' buildout.run_buildout /srv/mybuildout

	
salt.modules.zcbuildout.upgrade_bootstrap(*a, **kw)

	Upgrade current bootstrap.py with the last released one.

Indeed, when we first run a buildout, a common source of problem
is to have a locally stale bootstrap, we just try to grab a new copy

	directory
	directory to execute in

	offline
	are we executing buildout in offline mode

	buildout_ver
	forcing to use a specific buildout version (1 | 2)

	onlyif
	Only execute cmd if statement on the host return 0

	unless
	Do not execute cmd if statement on the host return 0

CLI Example:

salt '*' buildout.upgrade_bootstrap /srv/mybuildout

salt.modules.zenoss

Module for working with the Zenoss API

New in version 2016.3.0.

	configuration:

	This module requires a 'zenoss' entry in the master/minion config.

For example:

zenoss:
 hostname: https://zenoss.example.com
 username: admin
 password: admin123
 verify_ssl: True
 ca_bundle: /etc/ssl/certs/ca-certificates.crt

	
salt.modules.zenoss.add_device(device=None, device_class=None, collector='localhost', prod_state=1000)

	A function to connect to a zenoss server and add a new device entry.

	Parameters:

	
	device -- (Optional) Will use the grain 'fqdn' by default.

	device_class -- (Optional) The device class to use. If none, will determine based on kernel grain.

	collector -- (Optional) The collector to use for this device. Defaults to 'localhost'.

	prod_state -- (Optional) The prodState to set on the device. If none, defaults to 1000 (production)

CLI Example:

salt '*' zenoss.add_device

	
salt.modules.zenoss.device_exists(device=None)

	Check to see if a device already exists in Zenoss.

	Parameters:

	device -- (Optional) Will use the grain 'fqdn' by default

CLI Example:

salt '*' zenoss.device_exists

	
salt.modules.zenoss.find_device(device=None)

	Find a device in Zenoss. If device not found, returns None.

	Parameters:

	device -- (Optional) Will use the grain 'fqdn' by default

CLI Example:

salt '*' zenoss.find_device

	
salt.modules.zenoss.set_prod_state(prod_state, device=None)

	A function to set the prod_state in zenoss.

	Parameters:

	
	prod_state -- (Required) Integer value of the state

	device -- (Optional) Will use the grain 'fqdn' by default.

CLI Example:

salt zenoss.set_prod_state 1000 hostname

salt.modules.zfs

Module for running ZFS command

	codeauthor:

	Nitin Madhok <nmadhok@g.clemson.edu>, Jorge Schrauwen <sjorge@blackdot.be>

	maintainer:

	Jorge Schrauwen <sjorge@blackdot.be>

	maturity:

	new

	depends:

	salt.utils.zfs

	platform:

	illumos,freebsd,linux

Changed in version 2018.3.1: Big refactor to remove duplicate code, better type conversions and improved
consistency in output.

	
salt.modules.zfs.bookmark(snapshot, bookmark)

	Creates a bookmark of the given snapshot

Note

Bookmarks mark the point in time when the snapshot was created,
and can be used as the incremental source for a zfs send command.

This feature must be enabled to be used. See zpool-features(5) for
details on ZFS feature flags and the bookmarks feature.

	snapshotstring
	name of snapshot to bookmark

	bookmarkstring
	name of bookmark

New in version 2016.3.0.

CLI Example:

salt '*' zfs.bookmark myzpool/mydataset@yesterday myzpool/mydataset#complete

	
salt.modules.zfs.clone(name_a, name_b, **kwargs)

	Creates a clone of the given snapshot.

	name_astring
	name of snapshot

	name_bstring
	name of filesystem or volume

	create_parentboolean
	creates all the non-existing parent datasets. any property specified on the
command line using the -o option is ignored.

	propertiesdict
	additional zfs properties (-o)

Note

ZFS properties can be specified at the time of creation of the filesystem by
passing an additional argument called "properties" and specifying the properties
with their respective values in the form of a python dictionary:

properties="{'property1': 'value1', 'property2': 'value2'}"

New in version 2016.3.0.

CLI Example:

salt '*' zfs.clone myzpool/mydataset@yesterday myzpool/mydataset_yesterday

	
salt.modules.zfs.create(name, **kwargs)

	Create a ZFS File System.

	namestring
	name of dataset or volume

	volume_sizestring
	if specified, a zvol will be created instead of a dataset

	sparseboolean
	create sparse volume

	create_parentboolean
	creates all the non-existing parent datasets. any property specified on the
command line using the -o option is ignored.

	propertiesdict
	additional zfs properties (-o)

Note

ZFS properties can be specified at the time of creation of the filesystem by
passing an additional argument called "properties" and specifying the properties
with their respective values in the form of a python dictionary:

properties="{'property1': 'value1', 'property2': 'value2'}"

New in version 2015.5.0.

CLI Example:

salt '*' zfs.create myzpool/mydataset [create_parent=True|False]
salt '*' zfs.create myzpool/mydataset properties="{'mountpoint': '/export/zfs', 'sharenfs': 'on'}"
salt '*' zfs.create myzpool/volume volume_size=1G [sparse=True|False]`
salt '*' zfs.create myzpool/volume volume_size=1G properties="{'volblocksize': '512'}" [sparse=True|False]

	
salt.modules.zfs.destroy(name, **kwargs)

	Destroy a ZFS File System.

	namestring
	name of dataset, volume, or snapshot

	forceboolean
	force an unmount of any file systems using the unmount -f command.

	recursiveboolean
	recursively destroy all children. (-r)

	recursive_allboolean
	recursively destroy all dependents, including cloned file systems
outside the target hierarchy. (-R)

Warning

watch out when using recursive and recursive_all

New in version 2015.5.0.

CLI Example:

salt '*' zfs.destroy myzpool/mydataset [force=True|False]

	
salt.modules.zfs.diff(name_a, name_b=None, **kwargs)

	Display the difference between a snapshot of a given filesystem and
another snapshot of that filesystem from a later time or the current
contents of the filesystem.

	name_astring
	name of snapshot

	name_bstring
	(optional) name of snapshot or filesystem

	show_changetimeboolean
	display the path's inode change time as the first column of output. (default = True)

	show_indicationboolean
	display an indication of the type of file. (default = True)

	parsableboolean
	if true we don't parse the timestamp to a more readable date (default = True)

New in version 2016.3.0.

CLI Example:

salt '*' zfs.diff myzpool/mydataset@yesterday myzpool/mydataset

	
salt.modules.zfs.exists(name, **kwargs)

	Check if a ZFS filesystem or volume or snapshot exists.

	namestring
	name of dataset

	typestring
	also check if dataset is of a certain type, valid choices are:
filesystem, snapshot, volume, bookmark, or all.

New in version 2015.5.0.

CLI Example:

salt '*' zfs.exists myzpool/mydataset
salt '*' zfs.exists myzpool/myvolume type=volume

	
salt.modules.zfs.get(*dataset, **kwargs)

	Displays properties for the given datasets.

	datasetstring
	name of snapshot(s), filesystem(s), or volume(s)

	propertiesstring
	comma-separated list of properties to list, defaults to all

	recursiveboolean
	recursively list children

	depthint
	recursively list children to depth

	fieldsstring
	comma-separated list of fields to include, the name and property field will always be added

	typestring
	comma-separated list of types to display, where type is one of
filesystem, snapshot, volume, bookmark, or all.

Changed in version 3004.

type is ignored on Solaris 10 and 11 since not a valid parameter on those platforms

	sourcestring
	comma-separated list of sources to display. Must be one of the following:
local, default, inherited, temporary, and none. The default value is all sources.

	parsableboolean
	display numbers in parsable (exact) values (default = True)
.. versionadded:: 2018.3.0

Note

If no datasets are specified, then the command displays properties
for all datasets on the system.

New in version 2016.3.0.

CLI Example:

salt '*' zfs.get
salt '*' zfs.get myzpool/mydataset [recursive=True|False]
salt '*' zfs.get myzpool/mydataset properties="sharenfs,mountpoint" [recursive=True|False]
salt '*' zfs.get myzpool/mydataset myzpool/myotherdataset properties=available fields=value depth=1

	
salt.modules.zfs.hold(tag, *snapshot, **kwargs)

	Adds a single reference, named with the tag argument, to the specified
snapshot or snapshots.

Note

Each snapshot has its own tag namespace, and tags must be unique within that space.

If a hold exists on a snapshot, attempts to destroy that snapshot by
using the zfs destroy command return EBUSY.

	tagstring
	name of tag

	snapshotstring
	name of snapshot(s)

	recursiveboolean
	specifies that a hold with the given tag is applied recursively to
the snapshots of all descendent file systems.

New in version 2016.3.0.

Changed in version 2018.3.1.

Warning

As of 2018.3.1 the tag parameter no longer accepts a comma-separated value.
It's is now possible to create a tag that contains a comma, this was impossible before.

CLI Example:

salt '*' zfs.hold mytag myzpool/mydataset@mysnapshot [recursive=True]
salt '*' zfs.hold mytag myzpool/mydataset@mysnapshot myzpool/mydataset@myothersnapshot

	
salt.modules.zfs.holds(snapshot, **kwargs)

	Lists all existing user references for the given snapshot or snapshots.

	snapshotstring
	name of snapshot

	recursiveboolean
	lists the holds that are set on the named descendent snapshots also.

New in version 2016.3.0.

CLI Example:

salt '*' zfs.holds myzpool/mydataset@baseline

	
salt.modules.zfs.inherit(prop, name, **kwargs)

	Clears the specified property

	propstring
	name of property

	namestring
	name of the filesystem, volume, or snapshot

	recursiveboolean
	recursively inherit the given property for all children.

	revertboolean
	revert the property to the received value if one exists; otherwise
operate as if the -S option was not specified.

New in version 2016.3.0.

CLI Example:

salt '*' zfs.inherit canmount myzpool/mydataset [recursive=True|False]

	
salt.modules.zfs.list_(name=None, **kwargs)

	Return a list of all datasets or a specified dataset on the system and the
values of their used, available, referenced, and mountpoint properties.

	namestring
	name of dataset, volume, or snapshot

	recursiveboolean
	recursively list children

	depthint
	limit recursion to depth

	propertiesstring
	comma-separated list of properties to list, the name property will always be added

	typestring
	comma-separated list of types to display, where type is one of
filesystem, snapshot, volume, bookmark, or all.

	sortstring
	property to sort on (default = name)

	orderstring [ascending|descending]
	sort order (default = ascending)

	parsableboolean
	display numbers in parsable (exact) values
.. versionadded:: 2018.3.0

New in version 2015.5.0.

CLI Example:

salt '*' zfs.list
salt '*' zfs.list myzpool/mydataset [recursive=True|False]
salt '*' zfs.list myzpool/mydataset properties="sharenfs,mountpoint"

	
salt.modules.zfs.list_mount()

	List mounted zfs filesystems

New in version 2018.3.1.

CLI Example:

salt '*' zfs.list_mount

	
salt.modules.zfs.mount(name=None, **kwargs)

	Mounts ZFS file systems

	namestring
	name of the filesystem, having this set to None will mount all filesystems. (this is the default)

	overlayboolean
	perform an overlay mount.

	optionsstring
	optional comma-separated list of mount options to use temporarily for
the duration of the mount.

New in version 2016.3.0.

Changed in version 2018.3.1.

Warning

Passing '-a' as name is deprecated and will be removed in 3001.

CLI Example:

salt '*' zfs.mount
salt '*' zfs.mount myzpool/mydataset
salt '*' zfs.mount myzpool/mydataset options=ro

	
salt.modules.zfs.promote(name)

	Promotes a clone file system to no longer be dependent on its "origin"
snapshot.

Note

This makes it possible to destroy the file system that the
clone was created from. The clone parent-child dependency relationship
is reversed, so that the origin file system becomes a clone of the
specified file system.

The snapshot that was cloned, and any snapshots previous to this
snapshot, are now owned by the promoted clone. The space they use moves
from the origin file system to the promoted clone, so enough space must
be available to accommodate these snapshots. No new space is consumed
by this operation, but the space accounting is adjusted. The promoted
clone must not have any conflicting snapshot names of its own. The
rename subcommand can be used to rename any conflicting snapshots.

	namestring
	name of clone-filesystem

New in version 2016.3.0.

CLI Example:

salt '*' zfs.promote myzpool/myclone

	
salt.modules.zfs.release(tag, *snapshot, **kwargs)

	Removes a single reference, named with the tag argument, from the
specified snapshot or snapshots.

Note

The tag must already exist for each snapshot.
If a hold exists on a snapshot, attempts to destroy that
snapshot by using the zfs destroy command return EBUSY.

	tagstring
	name of tag

	snapshotstring
	name of snapshot(s)

	recursiveboolean
	recursively releases a hold with the given tag on the snapshots of
all descendent file systems.

New in version 2016.3.0.

Changed in version 2018.3.1.

Warning

As of 2018.3.1 the tag parameter no longer accepts a comma-separated value.
It's is now possible to create a tag that contains a comma, this was impossible before.

CLI Example:

salt '*' zfs.release mytag myzpool/mydataset@mysnapshot [recursive=True]
salt '*' zfs.release mytag myzpool/mydataset@mysnapshot myzpool/mydataset@myothersnapshot

	
salt.modules.zfs.rename(name, new_name, **kwargs)

	Rename or Relocate a ZFS File System.

	namestring
	name of dataset, volume, or snapshot

	new_namestring
	new name of dataset, volume, or snapshot

	forceboolean
	force unmount any filesystems that need to be unmounted in the process.

	create_parentboolean
	creates all the nonexistent parent datasets. Datasets created in
this manner are automatically mounted according to the mountpoint
property inherited from their parent.

	recursiveboolean
	recursively rename the snapshots of all descendent datasets.
snapshots are the only dataset that can be renamed recursively.

New in version 2015.5.0.

CLI Example:

salt '*' zfs.rename myzpool/mydataset myzpool/renameddataset

	
salt.modules.zfs.rollback(name, **kwargs)

	Roll back the given dataset to a previous snapshot.

	namestring
	name of snapshot

	recursiveboolean
	destroy any snapshots and bookmarks more recent than the one
specified.

	recursive_allboolean
	destroy any more recent snapshots and bookmarks, as well as any
clones of those snapshots.

	forceboolean
	used with the -R option to force an unmount of any clone file
systems that are to be destroyed.

Warning

When a dataset is rolled back, all data that has changed since
the snapshot is discarded, and the dataset reverts to the state
at the time of the snapshot. By default, the command refuses to
roll back to a snapshot other than the most recent one.

In order to do so, all intermediate snapshots and bookmarks
must be destroyed by specifying the -r option.

New in version 2016.3.0.

CLI Example:

salt '*' zfs.rollback myzpool/mydataset@yesterday

	
salt.modules.zfs.set(*dataset, **kwargs)

	Sets the property or list of properties to the given value(s) for each dataset.

	datasetstring
	name of snapshot(s), filesystem(s), or volume(s)

	propertiesstring
	additional zfs properties pairs

Note

properties are passed as key-value pairs. e.g.

compression=off

Note

Only some properties can be edited.

See the Properties section for more information on what properties
can be set and acceptable values.

Numeric values can be specified as exact values, or in a human-readable
form with a suffix of B, K, M, G, T, P, E (for bytes, kilobytes,
megabytes, gigabytes, terabytes, petabytes, or exabytes respectively).

New in version 2016.3.0.

CLI Example:

salt '*' zfs.set myzpool/mydataset compression=off
salt '*' zfs.set myzpool/mydataset myzpool/myotherdataset compression=off
salt '*' zfs.set myzpool/mydataset myzpool/myotherdataset compression=lz4 canmount=off

	
salt.modules.zfs.snapshot(*snapshot, **kwargs)

	Creates snapshots with the given names.

	snapshotstring
	name of snapshot(s)

	recursiveboolean
	recursively create snapshots of all descendent datasets.

	propertiesdict
	additional zfs properties (-o)

Note

ZFS properties can be specified at the time of creation of the filesystem by
passing an additional argument called "properties" and specifying the properties
with their respective values in the form of a python dictionary:

properties="{'property1': 'value1', 'property2': 'value2'}"

New in version 2016.3.0.

CLI Example:

salt '*' zfs.snapshot myzpool/mydataset@yesterday [recursive=True]
salt '*' zfs.snapshot myzpool/mydataset@yesterday myzpool/myotherdataset@yesterday [recursive=True]

	
salt.modules.zfs.unmount(name, **kwargs)

	Unmounts ZFS file systems

	namestring
	name of the filesystem, you can use None to unmount all mounted filesystems.

	forceboolean
	forcefully unmount the file system, even if it is currently in use.

Warning

Using -a for the name parameter will probably break your system, unless your rootfs is not on zfs.

New in version 2016.3.0.

Changed in version 2018.3.1.

Warning

Passing '-a' as name is deprecated and will be removed in 3001.

CLI Example:

salt '*' zfs.unmount myzpool/mydataset [force=True|False]

salt.modules.zk_concurrency

Concurrency controls in zookeeper

	depends:

	kazoo

	configuration:

	See salt.modules.zookeeper for setup instructions.

This module allows you to acquire and release a slot. This is primarily useful
for ensureing that no more than N hosts take a specific action at once. This can
also be used to coordinate between masters.

	
salt.modules.zk_concurrency.lock(path, zk_hosts=None, identifier=None, max_concurrency=1, timeout=None, ephemeral_lease=False, force=False, profile=None, scheme=None, username=None, password=None, default_acl=None)

	Get lock (with optional timeout)

	path
	The path in zookeeper where the lock is

	zk_hosts
	zookeeper connect string

	identifier
	Name to identify this minion, if unspecified defaults to the hostname

	max_concurrency
	Maximum number of lock holders

	timeout
	timeout to wait for the lock. A None timeout will block forever

	ephemeral_lease
	Whether the locks in zookeper should be ephemeral

	force
	Forcibly acquire the lock regardless of available slots

Example:

salt minion zk_concurrency.lock /lock/path host1:1234,host2:1234

	
salt.modules.zk_concurrency.lock_holders(path, zk_hosts=None, identifier=None, max_concurrency=1, timeout=None, ephemeral_lease=False, profile=None, scheme=None, username=None, password=None, default_acl=None)

	Return an un-ordered list of lock holders

	path
	The path in zookeeper where the lock is

	zk_hosts
	zookeeper connect string

	identifier
	Name to identify this minion, if unspecified defaults to hostname

	max_concurrency
	Maximum number of lock holders

	timeout
	timeout to wait for the lock. A None timeout will block forever

	ephemeral_lease
	Whether the locks in zookeper should be ephemeral

Example:

salt minion zk_concurrency.lock_holders /lock/path host1:1234,host2:1234

	
salt.modules.zk_concurrency.party_members(path, zk_hosts=None, min_nodes=1, blocking=False, profile=None, scheme=None, username=None, password=None, default_acl=None)

	Get the List of identifiers in a particular party, optionally waiting for the
specified minimum number of nodes (min_nodes) to appear

	path
	The path in zookeeper where the lock is

	zk_hosts
	zookeeper connect string

	min_nodes
	The minimum number of nodes expected to be present in the party

	blocking
	The boolean indicating if we need to block until min_nodes are available

Example:

salt minion zk_concurrency.party_members /lock/path host1:1234,host2:1234
salt minion zk_concurrency.party_members /lock/path host1:1234,host2:1234 min_nodes=3 blocking=True

	
salt.modules.zk_concurrency.unlock(path, zk_hosts=None, identifier=None, max_concurrency=1, ephemeral_lease=False, scheme=None, profile=None, username=None, password=None, default_acl=None)

	Remove lease from semaphore

	path
	The path in zookeeper where the lock is

	zk_hosts
	zookeeper connect string

	identifier
	Name to identify this minion, if unspecified defaults to hostname

	max_concurrency
	Maximum number of lock holders

	timeout
	timeout to wait for the lock. A None timeout will block forever

	ephemeral_lease
	Whether the locks in zookeper should be ephemeral

Example:

salt minion zk_concurrency.unlock /lock/path host1:1234,host2:1234

salt.modules.znc

znc - An advanced IRC bouncer

New in version 2014.7.0.

Provides an interface to basic ZNC functionality

	
salt.modules.znc.buildmod(*modules)

	Build module using znc-buildmod

CLI Example:

salt '*' znc.buildmod module.cpp [...]

	
salt.modules.znc.dumpconf()

	Write the active configuration state to config file

CLI Example:

salt '*' znc.dumpconf

	
salt.modules.znc.rehashconf()

	Rehash the active configuration state from config file

CLI Example:

salt '*' znc.rehashconf

	
salt.modules.znc.version()

	Return server version from znc --version

CLI Example:

salt '*' znc.version

salt.modules.zoneadm

Module for Solaris 10's zoneadm

	maintainer:

	Jorge Schrauwen <sjorge@blackdot.be>

	maturity:

	new

	platform:

	OmniOS,OpenIndiana,SmartOS,OpenSolaris,Solaris 10

New in version 2017.7.0.

Warning

Oracle Solaris 11's zoneadm is not supported by this module!

	
salt.modules.zoneadm.attach(zone, force=False, brand_opts=None)

	Attach the specified zone.

	zonestring
	name of the zone

	forceboolean
	force the zone into the "installed" state with no validation

	brand_optsstring
	brand specific options to pass

CLI Example:

salt '*' zoneadm.attach lawrence
salt '*' zoneadm.attach lawrence True

	
salt.modules.zoneadm.boot(zone, single=False, altinit=None, smf_options=None)

	Boot (or activate) the specified zone.

	zonestring
	name or uuid of the zone

	singleboolean
	boots only to milestone svc:/milestone/single-user:default.

	altinitstring
	valid path to an alternative executable to be the primordial process.

	smf_optionsstring
	include two categories of options to control booting behavior of
the service management facility: recovery options and messages options.

CLI Example:

salt '*' zoneadm.boot clementine
salt '*' zoneadm.boot maeve single=True
salt '*' zoneadm.boot teddy single=True smf_options=verbose

	
salt.modules.zoneadm.clone(zone, source, snapshot=None)

	Install a zone by copying an existing installed zone.

	zonestring
	name of the zone

	sourcestring
	zone to clone from

	snapshotstring
	optional name of snapshot to use as source

CLI Example:

salt '*' zoneadm.clone clementine dolores

	
salt.modules.zoneadm.detach(zone)

	Detach the specified zone.

	zonestring
	name or uuid of the zone

CLI Example:

salt '*' zoneadm.detach kissy

	
salt.modules.zoneadm.halt(zone)

	Halt the specified zone.

	zonestring
	name or uuid of the zone

Note

To cleanly shutdown the zone use the shutdown function.

CLI Example:

salt '*' zoneadm.halt hector

	
salt.modules.zoneadm.install(zone, nodataset=False, brand_opts=None)

	Install the specified zone from the system.

	zonestring
	name of the zone

	nodatasetboolean
	do not create a ZFS file system

	brand_optsstring
	brand specific options to pass

CLI Example:

salt '*' zoneadm.install dolores
salt '*' zoneadm.install teddy True

	
salt.modules.zoneadm.list_zones(verbose=True, installed=False, configured=False, hide_global=True)

	List all zones

	verboseboolean
	display additional zone information

	installedboolean
	include installed zones in output

	configuredboolean
	include configured zones in output

	hide_globalboolean
	do not include global zone

CLI Example:

salt '*' zoneadm.list

	
salt.modules.zoneadm.move(zone, zonepath)

	Move zone to new zonepath.

	zonestring
	name or uuid of the zone

	zonepathstring
	new zonepath

CLI Example:

salt '*' zoneadm.move meave /sweetwater/meave

	
salt.modules.zoneadm.ready(zone)

	Prepares a zone for running applications.

	zonestring
	name or uuid of the zone

CLI Example:

salt '*' zoneadm.ready clementine

	
salt.modules.zoneadm.reboot(zone, single=False, altinit=None, smf_options=None)

	Restart the zone. This is equivalent to a halt boot sequence.

	zonestring
	name or uuid of the zone

	singleboolean
	boots only to milestone svc:/milestone/single-user:default.

	altinitstring
	valid path to an alternative executable to be the primordial process.

	smf_optionsstring
	include two categories of options to control booting behavior of
the service management facility: recovery options and messages options.

CLI Example:

salt '*' zoneadm.reboot dolores
salt '*' zoneadm.reboot teddy single=True

	
salt.modules.zoneadm.shutdown(zone, reboot=False, single=False, altinit=None, smf_options=None)

	Gracefully shutdown the specified zone.

	zonestring
	name or uuid of the zone

	rebootboolean
	reboot zone after shutdown (equivalent of shutdown -i6 -g0 -y)

	singleboolean
	boots only to milestone svc:/milestone/single-user:default.

	altinitstring
	valid path to an alternative executable to be the primordial process.

	smf_optionsstring
	include two categories of options to control booting behavior of
the service management facility: recovery options and messages options.

CLI Example:

salt '*' zoneadm.shutdown peter
salt '*' zoneadm.shutdown armistice reboot=True

	
salt.modules.zoneadm.uninstall(zone)

	Uninstall the specified zone from the system.

	zonestring
	name or uuid of the zone

Warning

The -F flag is always used to avoid the prompts when uninstalling.

CLI Example:

salt '*' zoneadm.uninstall teddy

	
salt.modules.zoneadm.verify(zone)

	Check to make sure the configuration of the specified
zone can safely be installed on the machine.

	zonestring
	name of the zone

CLI Example:

salt '*' zoneadm.verify dolores

salt.modules.zonecfg

Module for Solaris 10's zonecfg

	maintainer:

	Jorge Schrauwen <sjorge@blackdot.be>

	maturity:

	new

	platform:

	OmniOS,OpenIndiana,SmartOS,OpenSolaris,Solaris 10

	depend:

	salt.modules.file

New in version 2017.7.0.

Warning

Oracle Solaris 11's zonecfg is not supported by this module!

	
salt.modules.zonecfg.add_resource(zone, resource_type, **kwargs)

	Add a resource

	zonestring
	name of zone

	resource_typestring
	type of resource

	kwargsstring|int|...
	resource properties

CLI Example:

salt '*' zonecfg.add_resource tallgeese rctl name=zone.max-locked-memory value='(priv=privileged,limit=33554432,action=deny)'

	
salt.modules.zonecfg.clear_property(zone, key)

	Clear a property

	zonestring
	name of zone

	keystring
	name of property

CLI Example:

salt '*' zonecfg.clear_property deathscythe cpu-shares

	
salt.modules.zonecfg.create(zone, brand, zonepath, force=False)

	Create an in-memory configuration for the specified zone.

	zonestring
	name of zone

	brandstring
	brand name

	zonepathstring
	path of zone

	forceboolean
	overwrite configuration

CLI Example:

salt '*' zonecfg.create deathscythe ipkg /zones/deathscythe

	
salt.modules.zonecfg.create_from_template(zone, template)

	Create an in-memory configuration from a template for the specified zone.

	zonestring
	name of zone

	templatestring
	name of template

Warning

existing config will be overwritten!

CLI Example:

salt '*' zonecfg.create_from_template leo tallgeese

	
salt.modules.zonecfg.delete(zone)

	Delete the specified configuration from memory and stable storage.

	zonestring
	name of zone

CLI Example:

salt '*' zonecfg.delete epyon

	
salt.modules.zonecfg.export(zone, path=None)

	Export the configuration from memory to stable storage.

	zonestring
	name of zone

	pathstring
	path of file to export to

CLI Example:

salt '*' zonecfg.export epyon
salt '*' zonecfg.export epyon /zones/epyon.cfg

	
salt.modules.zonecfg.import_(zone, path)

	Import the configuration to memory from stable storage.

	zonestring
	name of zone

	pathstring
	path of file to export to

CLI Example:

salt '*' zonecfg.import epyon /zones/epyon.cfg

	
salt.modules.zonecfg.info(zone, show_all=False)

	Display the configuration from memory

	zonestring
	name of zone

	show_allboolean
	also include calculated values like capped-cpu, cpu-shares, ...

CLI Example:

salt '*' zonecfg.info tallgeese

	
salt.modules.zonecfg.remove_resource(zone, resource_type, resource_key, resource_value)

	Remove a resource

	zonestring
	name of zone

	resource_typestring
	type of resource

	resource_keystring
	key for resource selection

	resource_valuestring
	value for resource selection

Note

Set resource_selector to None for resource that do not require one.

CLI Example:

salt '*' zonecfg.remove_resource tallgeese rctl name zone.max-locked-memory

	
salt.modules.zonecfg.set_property(zone, key, value)

	Set a property

	zonestring
	name of zone

	keystring
	name of property

	valuestring
	value of property

CLI Example:

salt '*' zonecfg.set_property deathscythe cpu-shares 100

	
salt.modules.zonecfg.update_resource(zone, resource_type, resource_selector, **kwargs)

	Add a resource

	zonestring
	name of zone

	resource_typestring
	type of resource

	resource_selectorstring
	unique resource identifier

	kwargsstring|int|...
	resource properties

Note

Set resource_selector to None for resource that do not require one.

CLI Example:

salt '*' zonecfg.update_resource tallgeese rctl name name=zone.max-locked-memory value='(priv=privileged,limit=33554432,action=deny)'

salt.modules.zookeeper

Zookeeper Module

	maintainer:

	SaltStack

	maturity:

	new

	platform:

	all

	depends:

	kazoo

New in version 2018.3.0.

Configuration

	configuration:

	This module is not usable until the following are specified
either in a pillar or in the minion's config file:

zookeeper:
 hosts: zoo1,zoo2,zoo3
 default_acl:
 - username: daniel
 password: test
 read: true
 write: true
 create: true
 delete: true
 admin: true
 username: daniel
 password: test

If configuration for multiple zookeeper environments is required, they can
be set up as different configuration profiles. For example:

zookeeper:
 prod:
 hosts: zoo1,zoo2,zoo3
 default_acl:
 - username: daniel
 password: test
 read: true
 write: true
 create: true
 delete: true
 admin: true
 username: daniel
 password: test
 dev:
 hosts:
 - dev1
 - dev2
 - dev3
 default_acl:
 - username: daniel
 password: test
 read: true
 write: true
 create: true
 delete: true
 admin: true
 username: daniel
 password: test

	
salt.modules.zookeeper.create(path, value='', acls=None, ephemeral=False, sequence=False, makepath=False, profile=None, hosts=None, scheme=None, username=None, password=None, default_acl=None)

	Create Znode

	path
	path of znode to create

	value
	value to assign to znode (Default: '')

	acls
	list of acl dictionaries to be assigned (Default: None)

	ephemeral
	indicate node is ephemeral (Default: False)

	sequence
	indicate node is suffixed with a unique index (Default: False)

	makepath
	Create parent paths if they do not exist (Default: False)

	profile
	Configured Zookeeper profile to authenticate with (Default: None)

	hosts
	Lists of Zookeeper Hosts (Default: '127.0.0.1:2181)

	scheme
	Scheme to authenticate with (Default: 'digest')

	username
	Username to authenticate (Default: None)

	password
	Password to authenticate (Default: None)

	default_acl
	Default acls to assign if a node is created in this connection (Default: None)

CLI Example:

salt minion1 zookeeper.create /test/name daniel profile=prod

	
salt.modules.zookeeper.delete(path, version=-1, recursive=False, profile=None, hosts=None, scheme=None, username=None, password=None, default_acl=None)

	Delete znode

	path
	path to znode

	version
	only delete if version matches (Default: -1 (always matches))

	profile
	Configured Zookeeper profile to authenticate with (Default: None)

	hosts
	Lists of Zookeeper Hosts (Default: '127.0.0.1:2181)

	scheme
	Scheme to authenticate with (Default: 'digest')

	username
	Username to authenticate (Default: None)

	password
	Password to authenticate (Default: None)

	default_acl
	Default acls to assign if a node is created in this connection (Default: None)

CLI Example:

salt minion1 zookeeper.delete /test/name profile=prod

	
salt.modules.zookeeper.ensure_path(path, acls=None, profile=None, hosts=None, scheme=None, username=None, password=None, default_acl=None)

	Ensure Znode path exists

	path
	Parent path to create

	acls
	list of acls dictionaries to be assigned (Default: None)

	profile
	Configured Zookeeper profile to authenticate with (Default: None)

	hosts
	Lists of Zookeeper Hosts (Default: '127.0.0.1:2181)

	scheme
	Scheme to authenticate with (Default: 'digest')

	username
	Username to authenticate (Default: None)

	password
	Password to authenticate (Default: None)

	default_acl
	Default acls to assign if a node is created in this connection (Default: None)

CLI Example:

salt minion1 zookeeper.ensure_path /test/name profile=prod

	
salt.modules.zookeeper.exists(path, profile=None, hosts=None, scheme=None, username=None, password=None, default_acl=None)

	Check if path exists

	path
	path to check

	profile
	Configured Zookeeper profile to authenticate with (Default: None)

	hosts
	Lists of Zookeeper Hosts (Default: '127.0.0.1:2181)

	scheme
	Scheme to authenticate with (Default: 'digest')

	username
	Username to authenticate (Default: None)

	password
	Password to authenticate (Default: None)

	default_acl
	Default acls to assign if a node is created in this connection (Default: None)

CLI Example:

salt minion1 zookeeper.exists /test/name profile=prod

	
salt.modules.zookeeper.get(path, profile=None, hosts=None, scheme=None, username=None, password=None, default_acl=None)

	Get value saved in znode

	path
	path to check

	profile
	Configured Zookeeper profile to authenticate with (Default: None)

	hosts
	Lists of Zookeeper Hosts (Default: '127.0.0.1:2181)

	scheme
	Scheme to authenticate with (Default: 'digest')

	username
	Username to authenticate (Default: None)

	password
	Password to authenticate (Default: None)

	default_acl
	Default acls to assign if a node is created in this connection (Default: None)

CLI Example:

salt minion1 zookeeper.get /test/name profile=prod

	
salt.modules.zookeeper.get_acls(path, profile=None, hosts=None, scheme=None, username=None, password=None, default_acl=None)

	Get acls on a znode

	path
	path to znode

	profile
	Configured Zookeeper profile to authenticate with (Default: None)

	hosts
	Lists of Zookeeper Hosts (Default: '127.0.0.1:2181)

	scheme
	Scheme to authenticate with (Default: 'digest')

	username
	Username to authenticate (Default: None)

	password
	Password to authenticate (Default: None)

	default_acl
	Default acls to assign if a node is created in this connection (Default: None)

CLI Example:

salt minion1 zookeeper.get_acls /test/name profile=prod

	
salt.modules.zookeeper.get_children(path, profile=None, hosts=None, scheme=None, username=None, password=None, default_acl=None)

	Get children in znode path

	path
	path to check

	profile
	Configured Zookeeper profile to authenticate with (Default: None)

	hosts
	Lists of Zookeeper Hosts (Default: '127.0.0.1:2181)

	scheme
	Scheme to authenticate with (Default: 'digest')

	username
	Username to authenticate (Default: None)

	password
	Password to authenticate (Default: None)

	default_acl
	Default acls to assign if a node is created in this connection (Default: None)

CLI Example:

salt minion1 zookeeper.get_children /test profile=prod

	
salt.modules.zookeeper.make_digest_acl(username, password, read=False, write=False, create=False, delete=False, admin=False, allperms=False)

	Generate acl object

Note

This is heavily used in the zookeeper state and probably is not useful as a cli module

	username
	username of acl

	password
	plain text password of acl

	read
	read acl

	write
	write acl

	create
	create acl

	delete
	delete acl

	admin
	admin acl

	allperms
	set all other acls to True

CLI Example:

salt minion1 zookeeper.make_digest_acl username=daniel password=mypass allperms=True

	
salt.modules.zookeeper.set(path, value, version=-1, profile=None, hosts=None, scheme=None, username=None, password=None, default_acl=None)

	Update znode with new value

	path
	znode to update

	value
	value to set in znode

	version
	only update znode if version matches (Default: -1 (always matches))

	profile
	Configured Zookeeper profile to authenticate with (Default: None)

	hosts
	Lists of Zookeeper Hosts (Default: '127.0.0.1:2181)

	scheme
	Scheme to authenticate with (Default: 'digest')

	username
	Username to authenticate (Default: None)

	password
	Password to authenticate (Default: None)

	default_acl
	Default acls to assign if a node is created in this connection (Default: None)

CLI Example:

salt minion1 zookeeper.set /test/name gtmanfred profile=prod

	
salt.modules.zookeeper.set_acls(path, acls, version=-1, profile=None, hosts=None, scheme=None, username=None, password=None, default_acl=None)

	Set acls on a znode

	path
	path to znode

	acls
	list of acl dictionaries to set on the znode

	version
	only set acls if version matches (Default: -1 (always matches))

	profile
	Configured Zookeeper profile to authenticate with (Default: None)

	hosts
	Lists of Zookeeper Hosts (Default: '127.0.0.1:2181)

	scheme
	Scheme to authenticate with (Default: 'digest')

	username
	Username to authenticate (Default: None)

	password
	Password to authenticate (Default: None)

	default_acl
	Default acls to assign if a node is created in this connection (Default: None)

CLI Example:

salt minion1 zookeeper.set_acls /test/name acls='[{"username": "gtmanfred", "password": "test", "all": True}]' profile=prod

salt.modules.zpool

Module for running ZFS zpool command

	codeauthor:

	Nitin Madhok <nmadhok@g.clemson.edu>, Jorge Schrauwen <sjorge@blackdot.be>

	maintainer:

	Jorge Schrauwen <sjorge@blackdot.be>

	maturity:

	new

	depends:

	salt.utils.zfs

	platform:

	illumos,freebsd,linux

Changed in version 2018.3.1: Big refactor to remove duplicate code, better type conversions and improved
consistency in output.

	
salt.modules.zpool.add(zpool, *vdevs, **kwargs)

	Add the specified vdev's to the given storage pool

	zpoolstring
	Name of storage pool

	vdevsstring
	One or more devices

	forceboolean
	Forces use of device

CLI Example:

salt '*' zpool.add myzpool /path/to/vdev1 /path/to/vdev2 [...]

	
salt.modules.zpool.attach(zpool, device, new_device, force=False)

	Attach specified device to zpool

	zpoolstring
	Name of storage pool

	devicestring
	Existing device name too

	new_devicestring
	New device name (to be attached to device)

	forceboolean
	Forces use of device

CLI Example:

salt '*' zpool.attach myzpool /path/to/vdev1 /path/to/vdev2 [...]

	
salt.modules.zpool.clear(zpool, device=None)

	Clears device errors in a pool.

Warning

The device must not be part of an active pool configuration.

	zpoolstring
	name of storage pool

	devicestring
	(optional) specific device to clear

New in version 2018.3.1.

CLI Example:

salt '*' zpool.clear mypool
salt '*' zpool.clear mypool /path/to/dev

	
salt.modules.zpool.create(zpool, *vdevs, **kwargs)

	
New in version 2015.5.0.

Create a simple zpool, a mirrored zpool, a zpool having nested VDEVs, a hybrid zpool with cache, spare and log drives or a zpool with RAIDZ-1, RAIDZ-2 or RAIDZ-3

	zpoolstring
	Name of storage pool

	vdevsstring
	One or move devices

	forceboolean
	Forces use of vdevs, even if they appear in use or specify a
conflicting replication level.

	mountpointstring
	Sets the mount point for the root dataset

	altrootstring
	Equivalent to "-o cachefile=none,altroot=root"

	propertiesdict
	Additional pool properties

	filesystem_propertiesdict
	Additional filesystem properties

	createbootboolean
	create a boot partition

New in version 2018.3.0.

CLI Examples:

salt '*' zpool.create myzpool /path/to/vdev1 [...] [force=True|False]
salt '*' zpool.create myzpool mirror /path/to/vdev1 /path/to/vdev2 [...] [force=True|False]
salt '*' zpool.create myzpool raidz1 /path/to/vdev1 /path/to/vdev2 raidz2 /path/to/vdev3 /path/to/vdev4 /path/to/vdev5 [...] [force=True|False]
salt '*' zpool.create myzpool mirror /path/to/vdev1 [...] mirror /path/to/vdev2 /path/to/vdev3 [...] [force=True|False]
salt '*' zpool.create myhybridzpool mirror /tmp/file1 [...] log mirror /path/to/vdev1 [...] cache /path/to/vdev2 [...] spare /path/to/vdev3 [...] [force=True|False]

Note

Zpool properties can be specified at the time of creation of the pool
by passing an additional argument called "properties" and specifying
the properties with their respective values in the form of a python
dictionary:

properties="{'property1': 'value1', 'property2': 'value2'}"

Filesystem properties can be specified at the time of creation of the
pool by passing an additional argument called "filesystem_properties"
and specifying the properties with their respective values in the form
of a python dictionary:

filesystem_properties="{'property1': 'value1', 'property2': 'value2'}"

Example:

salt '*' zpool.create myzpool /path/to/vdev1 [...] properties="{'property1': 'value1', 'property2': 'value2'}"

CLI Example:

salt '*' zpool.create myzpool /path/to/vdev1 [...] [force=True|False]
salt '*' zpool.create myzpool mirror /path/to/vdev1 /path/to/vdev2 [...] [force=True|False]
salt '*' zpool.create myzpool raidz1 /path/to/vdev1 /path/to/vdev2 raidz2 /path/to/vdev3 /path/to/vdev4 /path/to/vdev5 [...] [force=True|False]
salt '*' zpool.create myzpool mirror /path/to/vdev1 [...] mirror /path/to/vdev2 /path/to/vdev3 [...] [force=True|False]
salt '*' zpool.create myhybridzpool mirror /tmp/file1 [...] log mirror /path/to/vdev1 [...] cache /path/to/vdev2 [...] spare /path/to/vdev3 [...] [force=True|False]

	
salt.modules.zpool.create_file_vdev(size, *vdevs)

	Creates file based virtual devices for a zpool

CLI Example:

salt '*' zpool.create_file_vdev 7G /path/to/vdev1 [/path/to/vdev2] [...]

Note

Depending on file size, the above command may take a while to return.

	
salt.modules.zpool.destroy(zpool, force=False)

	Destroys a storage pool

	zpoolstring
	Name of storage pool

	forceboolean
	Force destroy of pool

CLI Example:

salt '*' zpool.destroy myzpool

	
salt.modules.zpool.detach(zpool, device)

	Detach specified device to zpool

	zpoolstring
	Name of storage pool

	devicestring
	Device to detach

CLI Example:

salt '*' zpool.detach myzpool /path/to/vdev1

	
salt.modules.zpool.exists(zpool)

	Check if a ZFS storage pool is active

	zpoolstring
	Name of storage pool

CLI Example:

salt '*' zpool.exists myzpool

	
salt.modules.zpool.export(*pools, **kwargs)

	
New in version 2015.5.0.

Export storage pools

	poolsstring
	One or more storage pools to export

	forceboolean
	Force export of storage pools

CLI Example:

salt '*' zpool.export myzpool ... [force=True|False]
salt '*' zpool.export myzpool2 myzpool2 ... [force=True|False]

	
salt.modules.zpool.get(zpool, prop=None, show_source=False, parsable=True)

	
New in version 2016.3.0.

Retrieves the given list of properties

	zpoolstring
	Name of storage pool

	propstring
	Optional name of property to retrieve

	show_sourceboolean
	Show source of property

	parsableboolean
	Display numbers in parsable (exact) values

New in version 2018.3.0.

CLI Example:

salt '*' zpool.get myzpool

	
salt.modules.zpool.healthy()

	Check if all zpools are healthy

New in version 2016.3.0.

CLI Example:

salt '*' zpool.healthy

	
salt.modules.zpool.history(zpool=None, internal=False, verbose=False)

	
New in version 2016.3.0.

Displays the command history of the specified pools, or all pools if no
pool is specified

	zpoolstring
	Optional storage pool

	internalboolean
	Toggle display of internally logged ZFS events

	verboseboolean
	Toggle display of the user name, the hostname, and the zone in which
the operation was performed

CLI Example:

salt '*' zpool.upgrade myzpool

	
salt.modules.zpool.import_(zpool=None, new_name=None, **kwargs)

	
New in version 2015.5.0.

Import storage pools or list pools available for import

	zpoolstring
	Optional name of storage pool

	new_namestring
	Optional new name for the storage pool

	mntoptsstring
	Comma-separated list of mount options to use when mounting datasets
within the pool.

	forceboolean
	Forces import, even if the pool appears to be potentially active.

	altrootstring
	Equivalent to "-o cachefile=none,altroot=root"

	dirstring
	Searches for devices or files in dir, multiple dirs can be specified as
follows: dir="dir1,dir2"

	no_mountboolean
	Import the pool without mounting any file systems.

	only_destroyedboolean
	Imports destroyed pools only. This also sets force=True.

	recoverybool|str
	false: do not try to recovery broken pools
true: try to recovery the pool by rolling back the latest transactions
test: check if a pool can be recovered, but don't import it
nolog: allow import without log device, recent transactions might be lost

Note

If feature flags are not support this forced to the default of 'false'

Warning

When recovery is set to 'test' the result will be have imported set to True if the pool
can be imported. The pool might also be imported if the pool was not broken to begin with.

	propertiesdict
	Additional pool properties

Note

Zpool properties can be specified at the time of creation of the pool
by passing an additional argument called "properties" and specifying
the properties with their respective values in the form of a python
dictionary:

properties="{'property1': 'value1', 'property2': 'value2'}"

CLI Example:

salt '*' zpool.import [force=True|False]
salt '*' zpool.import myzpool [mynewzpool] [force=True|False]
salt '*' zpool.import myzpool dir='/tmp'

	
salt.modules.zpool.iostat(zpool=None, sample_time=5, parsable=True)

	Display I/O statistics for the given pools

	zpoolstring
	optional name of storage pool

	sample_timeint
	seconds to capture data before output
default a sample of 5 seconds is used

	parsableboolean
	display data in pythonc values (True, False, Bytes,...)

New in version 2016.3.0.

Changed in version 2018.3.1: Added `parsable` parameter that defaults to True

CLI Example:

salt '*' zpool.iostat myzpool

	
salt.modules.zpool.labelclear(device, force=False)

	
New in version 2018.3.0.

Removes ZFS label information from the specified device

	devicestring
	Device name; must not be part of an active pool configuration.

	forceboolean
	Treat exported or foreign devices as inactive

CLI Example:

salt '*' zpool.labelclear /path/to/dev

	
salt.modules.zpool.list_(properties='size,alloc,free,cap,frag,health', zpool=None, parsable=True)

	
New in version 2015.5.0.

Return information about (all) storage pools

	zpoolstring
	optional name of storage pool

	propertiesstring
	comma-separated list of properties to list

	parsableboolean
	display numbers in parsable (exact) values

New in version 2018.3.0.

Note

The name property will always be included, while the frag
property will get removed if not available

	zpoolstring
	optional zpool

Note

Multiple storage pool can be provided as a space separated list

CLI Example:

salt '*' zpool.list
salt '*' zpool.list zpool=tank
salt '*' zpool.list 'size,free'
salt '*' zpool.list 'size,free' tank

	
salt.modules.zpool.offline(zpool, *vdevs, **kwargs)

	
New in version 2015.5.0.

Ensure that the specified devices are offline

Warning

By default, the OFFLINE state is persistent. The device remains
offline when the system is rebooted. To temporarily take a device
offline, use temporary=True.

	zpoolstring
	name of storage pool

	vdevsstring
	One or more devices

	temporaryboolean
	Enable temporarily offline

CLI Example:

salt '*' zpool.offline myzpool /path/to/vdev1 [...] [temporary=True|False]

	
salt.modules.zpool.online(zpool, *vdevs, **kwargs)

	
New in version 2015.5.0.

Ensure that the specified devices are online

	zpoolstring
	name of storage pool

	vdevsstring
	one or more devices

	expandboolean
	Expand the device to use all available space.

Note

If the device is part of a mirror or raidz then all devices must be
expanded before the new space will become available to the pool.

CLI Example:

salt '*' zpool.online myzpool /path/to/vdev1 [...]

	
salt.modules.zpool.reguid(zpool)

	Generates a new unique identifier for the pool

Warning

You must ensure that all devices in this pool are online and healthy
before performing this action.

	zpoolstring
	name of storage pool

New in version 2016.3.0.

CLI Example:

salt '*' zpool.reguid myzpool

	
salt.modules.zpool.reopen(zpool)

	Reopen all the vdevs associated with the pool

	zpoolstring
	name of storage pool

New in version 2016.3.0.

CLI Example:

salt '*' zpool.reopen myzpool

	
salt.modules.zpool.replace(zpool, old_device, new_device=None, force=False)

	Replaces old_device with new_device

Note

This is equivalent to attaching new_device,
waiting for it to resilver, and then detaching old_device.

The size of new_device must be greater than or equal to the minimum
size of all the devices in a mirror or raidz configuration.

	zpoolstring
	Name of storage pool

	old_devicestring
	Old device to replace

	new_devicestring
	Optional new device

	forceboolean
	Forces use of new_device, even if its appears to be in use.

CLI Example:

salt '*' zpool.replace myzpool /path/to/vdev1 /path/to/vdev2

	
salt.modules.zpool.scrub(zpool, stop=False, pause=False)

	Scrub a storage pool

	zpoolstring
	Name of storage pool

	stopboolean
	If True, cancel ongoing scrub

	pauseboolean
	If True, pause ongoing scrub

New in version 2018.3.0.

Note

Pause is only available on recent versions of ZFS.

If both pause and stop are True, then stop will
win.

CLI Example:

salt '*' zpool.scrub myzpool

	
salt.modules.zpool.set(zpool, prop, value)

	Sets the given property on the specified pool

	zpoolstring
	Name of storage pool

	propstring
	Name of property to set

	valuestring
	Value to set for the specified property

New in version 2016.3.0.

CLI Example:

salt '*' zpool.set myzpool readonly yes

	
salt.modules.zpool.split(zpool, newzpool, **kwargs)

	
New in version 2018.3.0.

Splits devices off pool creating newpool.

Note

All vdevs in pool must be mirrors. At the time of the split,
newzpool will be a replica of zpool.

After splitting, do not forget to import the new pool!

	zpoolstring
	Name of storage pool

	newzpoolstring
	Name of new storage pool

	mountpointstring
	Sets the mount point for the root dataset

	altrootstring
	Sets altroot for newzpool

	propertiesdict
	Additional pool properties for newzpool

CLI Examples:

salt '*' zpool.split datamirror databackup
salt '*' zpool.split datamirror databackup altroot=/backup

Note

Zpool properties can be specified at the time of creation of the pool
by passing an additional argument called "properties" and specifying
the properties with their respective values in the form of a python
dictionary:

properties="{'property1': 'value1', 'property2': 'value2'}"

Example:

salt '*' zpool.split datamirror databackup properties="{'readonly': 'on'}"

CLI Example:

salt '*' zpool.split datamirror databackup
salt '*' zpool.split datamirror databackup altroot=/backup

	
salt.modules.zpool.status(zpool=None)

	Return the status of the named zpool

	zpoolstring
	optional name of storage pool

New in version 2016.3.0.

CLI Example:

salt '*' zpool.status myzpool

	
salt.modules.zpool.upgrade(zpool=None, version=None)

	
New in version 2016.3.0.

Enables all supported features on the given pool

	zpoolstring
	Optional storage pool, applies to all otherwize

	versionint
	Version to upgrade to, if unspecified upgrade to the highest possible

Warning

Once this is done, the pool will no longer be accessible on systems that do not
support feature flags. See zpool-features(5) for details on compatibility with
systems that support feature flags, but do not support all features enabled on the pool.

CLI Example:

salt '*' zpool.upgrade myzpool

salt.modules.zypperpkg

Package support for openSUSE via the zypper package manager

	depends:

	
	rpm Python module. Install with zypper install rpm-python

Important

If you feel that Salt should be using this module to manage packages on a
minion, and it is using a different module (or gives an error similar to
'pkg.install' is not available), see here.

	
class salt.modules.zypperpkg.Wildcard(zypper)

	
New in version 2017.7.0.

Converts string wildcard to a zypper query.
.. rubric:: Example

'1.2.3.4*' is '1.2.3.4.whatever.is.here' and is equal to:
'1.2.3.4 >= and < 1.2.3.5'

	Parameters:

	ptn -- Pattern

	Returns:

	Query range

	
Z_OP = ['<', '<=', '=', '>=', '>']

	

	
salt.modules.zypperpkg.available_version(*names, **kwargs)

	This function is an alias of latest_version.

Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
dict will be returned for that package.

	refresh
	force a refresh if set to True (default).
If set to False it depends on zypper if a refresh is
executed or not.

	root
	operate on a different root directory.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	
salt.modules.zypperpkg.clean_locks(root=None)

	Remove unused locks that do not currently (with regard to repositories
used) lock any package.

	root
	Operate on a different root directory.

CLI Example:

salt '*' pkg.clean_locks

	
salt.modules.zypperpkg.del_repo(repo, root=None)

	Delete a repo.

	root
	operate on a different root directory.

CLI Examples:

salt '*' pkg.del_repo alias

	
salt.modules.zypperpkg.diff(*paths, **kwargs)

	Return a formatted diff between current files and original in a package.
NOTE: this function includes all files (configuration and not), but does
not work on binary content.

The root parameter can also be passed via the keyword argument.

	Parameters:

	path -- Full path to the installed file

	Returns:

	Difference string or raises and exception if examined file is binary.

CLI Example:

salt '*' pkg.diff /etc/apache2/httpd.conf /etc/sudoers

	
salt.modules.zypperpkg.download(*packages, **kwargs)

	Download packages to the local disk.

	refresh
	force a refresh if set to True.
If set to False (default) it depends on zypper if a refresh is
executed.

	root
	operate on a different root directory.

CLI Example:

salt '*' pkg.download httpd
salt '*' pkg.download httpd postfix

	
salt.modules.zypperpkg.file_dict(*packages, **kwargs)

	List the files that belong to a package, grouped by package. Not
specifying any packages will return a list of every file on the system's
rpm database (not generally recommended).

The root parameter can also be passed via the keyword argument.

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

	
salt.modules.zypperpkg.file_list(*packages, **kwargs)

	List the files that belong to a package. Not specifying any packages will
return a list of every file on the system's rpm database (not generally
recommended).

The root parameter can also be passed via the keyword argument.

CLI Examples:

salt '*' pkg.file_list httpd
salt '*' pkg.file_list httpd postfix
salt '*' pkg.file_list

	
salt.modules.zypperpkg.get_repo(repo, root=None, **kwargs)

	Display a repo.

	root
	operate on a different root directory.

CLI Example:

salt '*' pkg.get_repo alias

	
salt.modules.zypperpkg.hold(name=None, pkgs=None, root=None, **kwargs)

	
New in version 3003.

Add a package hold. Specify one of name and pkgs.

	name
	A package name to hold, or a comma-separated list of package names to
hold.

	pkgs
	A list of packages to hold. The name parameter will be ignored if
this option is passed.

	root
	operate on a different root directory.

CLI Example:

salt '*' pkg.hold <package name>
salt '*' pkg.hold <package1>,<package2>,<package3>
salt '*' pkg.hold pkgs='["foo", "bar"]'

	
salt.modules.zypperpkg.info_available(*names, **kwargs)

	Return the information of the named package available for the system.

	refresh
	force a refresh if set to True (default).
If set to False it depends on zypper if a refresh is
executed or not.

	root
	operate on a different root directory.

CLI Example:

salt '*' pkg.info_available <package1>
salt '*' pkg.info_available <package1> <package2> <package3> ...

	
salt.modules.zypperpkg.info_installed(*names, **kwargs)

	Return the information of the named package(s), installed on the system.

	Parameters:

	
	names -- Names of the packages to get information about.

	attr -- Comma-separated package attributes. If no 'attr' is specified, all available attributes returned.

	Valid attributes are:
	version, vendor, release, build_date, build_date_time_t, install_date, install_date_time_t,
build_host, group, source_rpm, arch, epoch, size, license, signature, packager, url,
summary, description.

	errors -- Handle RPM field errors. If 'ignore' is chosen, then various mistakes are simply ignored and omitted
from the texts or strings. If 'report' is chonen, then a field with a mistake is not returned, instead
a 'N/A (broken)' (not available, broken) text is placed.

	Valid attributes are:
	ignore, report

	all_versions -- Include information for all versions of the packages installed on the minion.

	root -- Operate on a different root directory.

CLI Example:

salt '*' pkg.info_installed <package1>
salt '*' pkg.info_installed <package1> <package2> <package3> ...
salt '*' pkg.info_installed <package1> <package2> <package3> all_versions=True
salt '*' pkg.info_installed <package1> attr=version,vendor all_versions=True
salt '*' pkg.info_installed <package1> <package2> <package3> ... attr=version,vendor
salt '*' pkg.info_installed <package1> <package2> <package3> ... attr=version,vendor errors=ignore
salt '*' pkg.info_installed <package1> <package2> <package3> ... attr=version,vendor errors=report

	
salt.modules.zypperpkg.install(name=None, refresh=False, fromrepo=None, pkgs=None, sources=None, downloadonly=None, skip_verify=False, version=None, ignore_repo_failure=False, no_recommends=False, root=None, **kwargs)

	
Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands which modify installed packages from the
salt-minion daemon's control group. This is done to keep systemd
from killing any zypper commands spawned by Salt when the
salt-minion service is restarted. (see KillMode in the
systemd.kill(5) [https://www.freedesktop.org/software/systemd/man/systemd.kill.html] manpage for more information). If desired, usage of
systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by setting a config option called systemd.scope, with a value of
False (no quotes).

Install the passed package(s), add refresh=True to force a 'zypper refresh'
before package is installed.

	name
	The name of the package to be installed. Note that this parameter is
ignored if either pkgs or sources is passed. Additionally,
please note that this option can only be used to install packages from
a software repository. To install a package file manually, use the
sources option.

CLI Example:

salt '*' pkg.install <package name>

	refresh
	force a refresh if set to True.
If set to False (default) it depends on zypper if a refresh is
executed.

	fromrepo
	Specify a package repository to install from.

	downloadonly
	Only download the packages, do not install.

	skip_verify
	Skip the GPG verification check (e.g., --no-gpg-checks)

	version
	Can be either a version number, or the combination of a comparison
operator (<, >, <=, >=, =) and a version number (ex. '>1.2.3-4').
This parameter is ignored if pkgs or sources is passed.

	resolve_capabilities
	If this option is set to True zypper will take capabilities into
account. In this case names which are just provided by a package
will get installed. Default is False.

Multiple Package Installation Options:

	pkgs
	A list of packages to install from a software repository. Must be
passed as a python list. A specific version number can be specified
by using a single-element dict representing the package and its
version. As with the version parameter above, comparison operators
can be used to target a specific version of a package.

CLI Examples:

salt '*' pkg.install pkgs='["foo", "bar"]'
salt '*' pkg.install pkgs='["foo", {"bar": "1.2.3-4"}]'
salt '*' pkg.install pkgs='["foo", {"bar": "<1.2.3-4"}]'

	sources
	A list of RPM packages to install. Must be passed as a list of dicts,
with the keys being package names, and the values being the source URI
or local path to the package.

CLI Example:

salt '*' pkg.install sources='[{"foo": "salt://foo.rpm"},{"bar": "salt://bar.rpm"}]'

	ignore_repo_failure
	Zypper returns error code 106 if one of the repositories are not available for various reasons.
In case to set strict check, this parameter needs to be set to True. Default: False.

	no_recommends
	Do not install recommended packages, only required ones.

	root
	operate on a different root directory.

	diff_attr:
	If a list of package attributes is specified, returned value will
contain them, eg.:

{'<package>': {
 'old': {
 'version': '<old-version>',
 'arch': '<old-arch>'},

 'new': {
 'version': '<new-version>',
 'arch': '<new-arch>'}}}

Valid attributes are: epoch, version, release, arch,
install_date, install_date_time_t.

If all is specified, all valid attributes will be returned.

New in version 2018.3.0.

Returns a dict containing the new package names and versions:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

If an attribute list is specified in diff_attr, the dict will also contain
any specified attribute, eg.:

{'<package>': {
 'old': {
 'version': '<old-version>',
 'arch': '<old-arch>'},

 'new': {
 'version': '<new-version>',
 'arch': '<new-arch>'}}}

	
salt.modules.zypperpkg.latest_version(*names, **kwargs)

	Return the latest version of the named package available for upgrade or
installation. If more than one package name is specified, a dict of
name/version pairs is returned.

If the latest version of a given package is already installed, an empty
dict will be returned for that package.

	refresh
	force a refresh if set to True (default).
If set to False it depends on zypper if a refresh is
executed or not.

	root
	operate on a different root directory.

CLI Example:

salt '*' pkg.latest_version <package name>
salt '*' pkg.latest_version <package1> <package2> <package3> ...

	
salt.modules.zypperpkg.list_downloaded(root=None, **kwargs)

	
New in version 2017.7.0.

List prefetched packages downloaded by Zypper in the local disk.

	root
	operate on a different root directory.

CLI Example:

salt '*' pkg.list_downloaded

	
salt.modules.zypperpkg.list_holds(pattern=None, full=True, root=None, **kwargs)

	
New in version 3005.

List information on locked packages.

Note

This function returns the computed output of list_locks
to show exact locked packages.

	pattern
	Regular expression used to match the package name

	fullTrue
	Show the full hold definition including version and epoch. Set to
False to return just the name of the package(s) being held.

	root
	Operate on a different root directory.

CLI Example:

salt '*' pkg.list_holds
salt '*' pkg.list_holds full=False

	
salt.modules.zypperpkg.list_installed_patches(root=None, **kwargs)

	
New in version 2017.7.0.

List installed advisory patches on the system.

	root
	operate on a different root directory.

CLI Examples:

salt '*' pkg.list_installed_patches

	
salt.modules.zypperpkg.list_installed_patterns(root=None)

	List installed patterns on the system.

	root
	operate on a different root directory.

CLI Examples:

salt '*' pkg.list_installed_patterns

	
salt.modules.zypperpkg.list_locks(root=None)

	List current package locks.

	root
	operate on a different root directory.

Return a dict containing the locked package with attributes:

{'<package>': {'case_sensitive': '<case_sensitive>',
 'match_type': '<match_type>'
 'type': '<type>'}}

CLI Example:

salt '*' pkg.list_locks

	
salt.modules.zypperpkg.list_patches(refresh=False, root=None, **kwargs)

	
New in version 2017.7.0.

List all known advisory patches from available repos.

	refresh
	force a refresh if set to True.
If set to False (default) it depends on zypper if a refresh is
executed.

	root
	operate on a different root directory.

CLI Examples:

salt '*' pkg.list_patches

	
salt.modules.zypperpkg.list_patterns(refresh=False, root=None)

	List all known patterns from available repos.

	refresh
	force a refresh if set to True.
If set to False (default) it depends on zypper if a refresh is
executed.

	root
	operate on a different root directory.

CLI Examples:

salt '*' pkg.list_patterns

	
salt.modules.zypperpkg.list_pkgs(versions_as_list=False, root=None, includes=None, **kwargs)

	List the packages currently installed as a dict. By default, the dict
contains versions as a comma separated string:

{'<package_name>': '<version>[,<version>...]'}

	versions_as_list:
	If set to true, the versions are provided as a list

{'<package_name>': ['<version>', '<version>']}

	root:
	operate on a different root directory.

	includes:
	List of types of packages to include (package, patch, pattern, product)
By default packages are always included

	attr:
	If a list of package attributes is specified, returned value will
contain them in addition to version, eg.:

{'<package_name>': [{'version' : 'version', 'arch' : 'arch'}]}

Valid attributes are: epoch, version, release, arch,
install_date, install_date_time_t.

If all is specified, all valid attributes will be returned.

New in version 2018.3.0.

	removed:
	not supported

	purge_desired:
	not supported

CLI Example:

salt '*' pkg.list_pkgs
salt '*' pkg.list_pkgs attr=version,arch
salt '*' pkg.list_pkgs attr='["version", "arch"]'

	
salt.modules.zypperpkg.list_products(all=False, refresh=False, root=None)

	List all available or installed SUSE products.

	all
	List all products available or only installed. Default is False.

	refresh
	force a refresh if set to True.
If set to False (default) it depends on zypper if a refresh is
executed.

	root
	operate on a different root directory.

Includes handling for OEM products, which read the OEM productline file
and overwrite the release value.

CLI Examples:

salt '*' pkg.list_products
salt '*' pkg.list_products all=True

	
salt.modules.zypperpkg.list_provides(root=None, **kwargs)

	
New in version 2018.3.0.

List package provides of installed packages as a dict.
{'<provided_name>': ['<package_name>', '<package_name>', ...]}

	root
	operate on a different root directory.

CLI Examples:

salt '*' pkg.list_provides

	
salt.modules.zypperpkg.list_repo_pkgs(*args, **kwargs)

	
New in version 2017.7.5,2018.3.1.

Returns all available packages. Optionally, package names (and name globs)
can be passed and the results will be filtered to packages matching those
names. This is recommended as it speeds up the function considerably.

This function can be helpful in discovering the version or repo to specify
in a pkg.installed state.

The return data will be a dictionary mapping package names to a list of
version numbers, ordered from newest to oldest. If byrepo is set to
True, then the return dictionary will contain repository names at the
top level, and each repository will map packages to lists of version
numbers. For example:

With byrepo=False (default)
{
 'bash': ['4.3-83.3.1',
 '4.3-82.6'],
 'vim': ['7.4.326-12.1']
}
{
 'OSS': {
 'bash': ['4.3-82.6'],
 'vim': ['7.4.326-12.1']
 },
 'OSS Update': {
 'bash': ['4.3-83.3.1']
 }
}

	fromrepoNone
	Only include results from the specified repo(s). Multiple repos can be
specified, comma-separated.

	byrepoFalse
	When True, the return data for each package will be organized by
repository.

	root
	operate on a different root directory.

CLI Examples:

salt '*' pkg.list_repo_pkgs
salt '*' pkg.list_repo_pkgs foo bar baz
salt '*' pkg.list_repo_pkgs 'python2-*' byrepo=True
salt '*' pkg.list_repo_pkgs 'python2-*' fromrepo='OSS Updates'

	
salt.modules.zypperpkg.list_repos(root=None, **kwargs)

	Lists all repos.

	root
	operate on a different root directory.

CLI Example:

salt '*' pkg.list_repos

	
salt.modules.zypperpkg.list_updates(refresh=True, root=None, **kwargs)

	This function is an alias of list_upgrades.

List all available package upgrades on this system

	refresh
	force a refresh if set to True (default).
If set to False it depends on zypper if a refresh is
executed.

	root
	operate on a different root directory.

CLI Example:

salt '*' pkg.list_upgrades

	
salt.modules.zypperpkg.list_upgrades(refresh=True, root=None, **kwargs)

	List all available package upgrades on this system

	refresh
	force a refresh if set to True (default).
If set to False it depends on zypper if a refresh is
executed.

	root
	operate on a different root directory.

CLI Example:

salt '*' pkg.list_upgrades

	
salt.modules.zypperpkg.mod_repo(repo, **kwargs)

	Modify one or more values for a repo. If the repo does not exist, it will
be created, so long as the following values are specified:

	repo or alias
	alias by which Zypper refers to the repo

	url, mirrorlist or baseurl
	the URL for Zypper to reference

	enabled
	Enable or disable (True or False) repository,
but do not remove if disabled.

	name
	This is used as the descriptive name value in the repo file.

	refresh
	Enable or disable (True or False) auto-refresh of the repository.

	cache
	Enable or disable (True or False) RPM files caching.

	gpgcheck
	Enable or disable (True or False) GPG check for this repository.

	gpgautoimportFalse
	If set to True, automatically trust and import public GPG key for
the repository.

	root
	operate on a different root directory.

Key/Value pairs may also be removed from a repo's configuration by setting
a key to a blank value. Bear in mind that a name cannot be deleted, and a
URL can only be deleted if a mirrorlist is specified (or vice versa).

CLI Examples:

salt '*' pkg.mod_repo alias alias=new_alias
salt '*' pkg.mod_repo alias url= mirrorlist=http://host.com/

	
salt.modules.zypperpkg.modified(*packages, **flags)

	List the modified files that belong to a package. Not specifying any packages
will return a list of _all_ modified files on the system's RPM database.

New in version 2015.5.0.

Filtering by flags (True or False):

	size
	Include only files where size changed.

	mode
	Include only files which file's mode has been changed.

	checksum
	Include only files which MD5 checksum has been changed.

	device
	Include only files which major and minor numbers has been changed.

	symlink
	Include only files which are symbolic link contents.

	owner
	Include only files where owner has been changed.

	group
	Include only files where group has been changed.

	time
	Include only files where modification time of the file has been changed.

	capabilities
	Include only files where capabilities differ or not. Note: supported only on newer RPM versions.

	root
	operate on a different root directory.

CLI Examples:

salt '*' pkg.modified
salt '*' pkg.modified httpd
salt '*' pkg.modified httpd postfix
salt '*' pkg.modified httpd owner=True group=False

	
salt.modules.zypperpkg.normalize_name(name)

	Strips the architecture from the specified package name, if necessary.
Circumstances where this would be done include:

	If the arch is 32 bit and the package name ends in a 32-bit arch.

	If the arch matches the OS arch, or is noarch.

CLI Example:

salt '*' pkg.normalize_name zsh.x86_64

	
salt.modules.zypperpkg.owner(*paths, **kwargs)

	Return the name of the package that owns the file. Multiple file paths can
be passed. If a single path is passed, a string will be returned,
and if multiple paths are passed, a dictionary of file/package name
pairs will be returned.

If the file is not owned by a package, or is not present on the minion,
then an empty string will be returned for that path.

The root parameter can also be passed via the keyword argument.

CLI Examples:

salt '*' pkg.owner /usr/bin/apachectl
salt '*' pkg.owner /usr/bin/apachectl /etc/httpd/conf/httpd.conf

	
salt.modules.zypperpkg.parse_arch(name)

	Parse name and architecture from the specified package name.

CLI Example:

salt '*' pkg.parse_arch zsh.x86_64

	
salt.modules.zypperpkg.purge(name=None, pkgs=None, root=None, **kwargs)

	
Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands which modify installed packages from the
salt-minion daemon's control group. This is done to keep systemd
from killing any zypper commands spawned by Salt when the
salt-minion service is restarted. (see KillMode in the
systemd.kill(5) [https://www.freedesktop.org/software/systemd/man/systemd.kill.html] manpage for more information). If desired, usage of
systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by setting a config option called systemd.scope, with a value of
False (no quotes).

Recursively remove a package and all dependencies which were installed
with it, this will call a zypper -n remove -u

	name
	The name of the package to be deleted.

Multiple Package Options:

	pkgs
	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

	root
	Operate on a different root directory.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.purge <package name>
salt '*' pkg.purge <package1>,<package2>,<package3>
salt '*' pkg.purge pkgs='["foo", "bar"]'

	
salt.modules.zypperpkg.refresh_db(force=None, root=None, gpgautoimport=False, **kwargs)

	Trigger a repository refresh by calling zypper refresh. Refresh will run
with --force if the "force=True" flag is passed on the CLI or
refreshdb_force is set to true in the pillar. The CLI option
overrides the pillar setting.

It will return a dict:

{'<database name>': Bool}

	gpgautoimportFalse
	If set to True, automatically trust and import public GPG key for
the repository.

New in version 3007.0.

	repos
	Refresh just the specified repos

New in version 3007.0.

	root
	operate on a different root directory.

CLI Example:

salt '*' pkg.refresh_db [force=true|false]

Pillar Example:

zypper:
 refreshdb_force: false

	
salt.modules.zypperpkg.remove(name=None, pkgs=None, root=None, **kwargs)

	
Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands which modify installed packages from the
salt-minion daemon's control group. This is done to keep systemd
from killing any zypper commands spawned by Salt when the
salt-minion service is restarted. (see KillMode in the
systemd.kill(5) [https://www.freedesktop.org/software/systemd/man/systemd.kill.html] manpage for more information). If desired, usage of
systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by setting a config option called systemd.scope, with a value of
False (no quotes).

Remove packages with zypper -n remove

	name
	The name of the package to be deleted.

Multiple Package Options:

	pkgs
	A list of packages to delete. Must be passed as a python list. The
name parameter will be ignored if this option is passed.

	root
	Operate on a different root directory.

New in version 0.16.0.

Returns a dict containing the changes.

CLI Example:

salt '*' pkg.remove <package name>
salt '*' pkg.remove <package1>,<package2>,<package3>
salt '*' pkg.remove pkgs='["foo", "bar"]'

Changed in version 3007.0: Can now remove also PTF packages which require a different handling in the backend.

Can now remove also PTF packages which require a different handling in the backend.

	
salt.modules.zypperpkg.resolve_capabilities(pkgs, refresh=False, root=None, **kwargs)

	
New in version 2018.3.0.

Convert name provides in pkgs into real package names if
resolve_capabilities parameter is set to True. In case of
resolve_capabilities is set to False the package list
is returned unchanged.

	refresh
	force a refresh if set to True.
If set to False (default) it depends on zypper if a refresh is
executed.

	root
	operate on a different root directory.

	resolve_capabilities
	If this option is set to True the input will be checked if
a package with this name exists. If not, this function will
search for a package which provides this name. If one is found
the output is exchanged with the real package name.
In case this option is set to False (Default) the input will
be returned unchanged.

CLI Examples:

salt '*' pkg.resolve_capabilities resolve_capabilities=True w3m_ssl

	
salt.modules.zypperpkg.search(criteria, refresh=False, **kwargs)

	List known packages, available to the system.

	refresh
	force a refresh if set to True.
If set to False (default) it depends on zypper if a refresh is
executed.

	match (str)
	One of exact, words, substrings. Search for an exact match
or for the whole words only. Default to substrings to patch
partial words.

	provides (bool)
	Search for packages which provide the search strings.

	recommends (bool)
	Search for packages which recommend the search strings.

	requires (bool)
	Search for packages which require the search strings.

	suggests (bool)
	Search for packages which suggest the search strings.

	conflicts (bool)
	Search packages conflicting with search strings.

	obsoletes (bool)
	Search for packages which obsolete the search strings.

	file_list (bool)
	Search for a match in the file list of packages.

	search_descriptions (bool)
	Search also in package summaries and descriptions.

	case_sensitive (bool)
	Perform case-sensitive search.

	installed_only (bool)
	Show only installed packages.

	not_installed_only (bool)
	Show only packages which are not installed.

	details (bool)
	Show version and repository

	root
	operate on a different root directory.

CLI Examples:

salt '*' pkg.search <criteria>

	
salt.modules.zypperpkg.services_need_restart(root=None, **kwargs)

	
New in version 3003.

List services that use files which have been changed by the
package manager. It might be needed to restart them.

	root
	operate on a different root directory.

CLI Examples:

salt '*' pkg.services_need_restart

	
salt.modules.zypperpkg.unhold(name=None, pkgs=None, root=None, **kwargs)

	
New in version 3003.

Remove a package hold.

	name
	A package name to unhold, or a comma-separated list of package names to
unhold.

	pkgs
	A list of packages to unhold. The name parameter will be ignored if
this option is passed.

	root
	operate on a different root directory.

CLI Example:

salt '*' pkg.unhold <package name>
salt '*' pkg.unhold <package1>,<package2>,<package3>
salt '*' pkg.unhold pkgs='["foo", "bar"]'

	
salt.modules.zypperpkg.upgrade(name=None, pkgs=None, refresh=True, dryrun=False, dist_upgrade=False, fromrepo=None, novendorchange=False, skip_verify=False, no_recommends=False, root=None, diff_attr=None, **kwargs)

	
Changed in version 2015.8.12,2016.3.3,2016.11.0: On minions running systemd>=205, systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] is now used to
isolate commands which modify installed packages from the
salt-minion daemon's control group. This is done to keep systemd
from killing any zypper commands spawned by Salt when the
salt-minion service is restarted. (see KillMode in the
systemd.kill(5) [https://www.freedesktop.org/software/systemd/man/systemd.kill.html] manpage for more information). If desired, usage of
systemd-run(1) [https://www.freedesktop.org/software/systemd/man/systemd-run.html] can be suppressed by setting a config option called systemd.scope, with a value of
False (no quotes).

Run a full system upgrade, a zypper upgrade

	name
	The name of the package to be installed. Note that this parameter is
ignored if pkgs is passed or if dryrun is set to True.

CLI Example:

salt '*' pkg.install name=<package name>

	pkgs
	A list of packages to install from a software repository. Must be
passed as a python list. Note that this parameter is ignored if
dryrun is set to True.

CLI Examples:

salt '*' pkg.install pkgs='["foo", "bar"]'

	refresh
	force a refresh if set to True (default).
If set to False it depends on zypper if a refresh is
executed.

	dryrun
	If set to True, it creates a debug solver log file and then perform
a dry-run upgrade (no changes are made). Default: False

	dist_upgrade
	Perform a system dist-upgrade. Default: False

	fromrepo
	Specify a list of package repositories to upgrade from. Default: None

	novendorchange
	If set to True, no allow vendor changes. Default: False

	skip_verify
	Skip the GPG verification check (e.g., --no-gpg-checks)

	no_recommends
	Do not install recommended packages, only required ones.

	root
	Operate on a different root directory.

	diff_attr:
	If a list of package attributes is specified, returned value will
contain them, eg.:

{'<package>': {
 'old': {
 'version': '<old-version>',
 'arch': '<old-arch>'},

 'new': {
 'version': '<new-version>',
 'arch': '<new-arch>'}}}

Valid attributes are: epoch, version, release, arch,
install_date, install_date_time_t.

If all is specified, all valid attributes will be returned.

New in version 3006.0.

Returns a dictionary containing the changes:

{'<package>': {'old': '<old-version>',
 'new': '<new-version>'}}

If an attribute list is specified in diff_attr, the dict will also contain
any specified attribute, eg.:

.. code-block:: python

	{'<package>': {
	
	'old': {
	'version': '<old-version>',
'arch': '<old-arch>'},

	'new': {
	'version': '<new-version>',
'arch': '<new-arch>'}}}

CLI Example:

salt '*' pkg.upgrade
salt '*' pkg.upgrade name=mypackage
salt '*' pkg.upgrade pkgs='["package1", "package2"]'
salt '*' pkg.upgrade dist_upgrade=True fromrepo='["MyRepoName"]' novendorchange=True
salt '*' pkg.upgrade dist_upgrade=True dryrun=True

	
salt.modules.zypperpkg.upgrade_available(name, **kwargs)

	Check whether or not an upgrade is available for a given package

	refresh
	force a refresh if set to True (default).
If set to False it depends on zypper if a refresh is
executed or not.

	root
	operate on a different root directory.

CLI Example:

salt '*' pkg.upgrade_available <package name>

	
salt.modules.zypperpkg.verify(*names, **kwargs)

	Runs an rpm -Va on a system, and returns the results in a dict

Files with an attribute of config, doc, ghost, license or readme in the
package header can be ignored using the ignore_types keyword argument.

The root parameter can also be passed via the keyword argument.

CLI Example:

salt '*' pkg.verify
salt '*' pkg.verify httpd
salt '*' pkg.verify 'httpd postfix'
salt '*' pkg.verify 'httpd postfix' ignore_types=['config','doc']

	
salt.modules.zypperpkg.version(*names, **kwargs)

	Returns a string representing the package version or an empty dict if not
installed. If more than one package name is specified, a dict of
name/version pairs is returned.

	root
	operate on a different root directory.

CLI Example:

salt '*' pkg.version <package name>
salt '*' pkg.version <package1> <package2> <package3> ...

	
salt.modules.zypperpkg.version_cmp(ver1, ver2, ignore_epoch=False, **kwargs)

	
New in version 2015.5.4.

Do a cmp-style comparison on two packages. Return -1 if ver1 < ver2, 0 if
ver1 == ver2, and 1 if ver1 > ver2. Return None if there was a problem
making the comparison.

	ignore_epochFalse
	Set to True to ignore the epoch when comparing versions

New in version 2015.8.10,2016.3.2.

CLI Example:

salt '*' pkg.version_cmp '0.2-001' '0.2.0.1-002'

executors modules

	direct_call

	Direct call executor module

	docker

	

	splay

	Splay function calls across targeted minions

	sudo

	Sudo executor module

	transactional_update

	Transactional executor module

salt.executors.direct_call

Direct call executor module

	
salt.executors.direct_call.execute(opts, data, func, args, kwargs)

	Directly calls the given function with arguments

salt.executors.docker

Warning

This module will be removed from Salt in version 3009 in favor of
the docker Salt Extension [https://github.com/saltstack/saltext-docker].

Docker executor module

New in version 2019.2.0.

Used with the docker proxy minion.

	
salt.executors.docker.allow_missing_func(function)

	Allow all calls to be passed through to docker container.

The docker call will use direct_call, which will return back if the module
was unable to be run.

	
salt.executors.docker.execute(opts, data, func, args, kwargs)

	Directly calls the given function with arguments

salt.executors.splay

Splay function calls across targeted minions

	
salt.executors.splay.execute(opts, data, func, args, kwargs)

	Splay a salt function call execution time across minions over
a number of seconds (default: 300)

Note

You probably want to use --async here and look up the job results later.
If you're dead set on getting the output from the CLI command, then make
sure to set the timeout (with the -t flag) to something greater than the
splaytime (max splaytime + time to execute job).
Otherwise, it's very likely that the cli will time out before the job returns.

CLI Example:

With default splaytime
salt --async --module-executors='[splay, direct_call]' '*' pkg.install cowsay version=3.03-8.el6

With specified splaytime (5 minutes) and timeout with 10 second buffer
salt -t 310 --module-executors='[splay, direct_call]' --executor-opts='{splaytime: 300}' '*' pkg.version cowsay

salt.executors.sudo

Sudo executor module

	
salt.executors.sudo.execute(opts, data, func, args, kwargs)

	Allow for the calling of execution modules via sudo.

This module is invoked by the minion if the sudo_user minion config is
present.

Example minion config:

sudo_user: saltdev

Once this setting is made, any execution module call done by the minion will be
run under sudo -u <sudo_user> salt-call. For example, with the above
minion config,

salt sudo_minion cmd.run 'cat /etc/sudoers'

is equivalent to

sudo -u saltdev salt-call cmd.run 'cat /etc/sudoers'

being run on sudo_minion.

salt.executors.transactional_update module

Transactional executor module

New in version 3004.

	
salt.executors.transactional_update.execute(opts, data, func, args, kwargs)

	Delegate into transactional_update module

The transactional_update module support the execution of
functions inside a transaction, as support apply a state (via
apply, sls, single or highstate).

This execution module can be used to route some Salt modules and
functions to be executed inside the transaction snapshot.

Add this executor in the minion configuration file:

module_executors:
 - transactional_update
 - direct_call

Or use the command line parameter:

salt-call --module-executors='[transactional_update, direct_call]' test.version

You can also schedule a reboot if needed:

salt-call --module-executors='[transactional_update]' state.sls stuff activate_transaction=True

There are some configuration parameters supported:

Replace the list of default modules that all the functions
are delegated to `transactional_update.call()`
delegated_modules: [cmd, pkg]

Replace the list of default functions that are delegated to
`transactional_update.call()`
delegated_functions: [pip.install]

Expand the default list of modules
add_delegated_modules: [ansible]

Expand the default list of functions
add_delegated_functions: [file.copy]

fileserver modules

	gitfs

	Git Fileserver Backend

	hgfs

	Mercurial Fileserver Backend

	minionfs

	Fileserver backend which serves files pushed to the Master

	roots

	The default file server backend

	s3fs

	Amazon S3 Fileserver Backend

	svnfs

	Subversion Fileserver Backend

salt.fileserver.gitfs

Git Fileserver Backend

With this backend, branches and tags in a remote git repository are exposed to
salt as different environments.

To enable, add gitfs to the fileserver_backend option in the
Master config file.

fileserver_backend:
 - gitfs

Note

git also works here. Prior to the 2018.3.0 release, only git
would work.

The Git fileserver backend supports both pygit2 [https://github.com/libgit2/pygit2] and GitPython [https://github.com/gitpython-developers/GitPython], to provide the
Python interface to git. If both are present, the order of preference for which
one will be chosen is the same as the order in which they were listed: pygit2,
then GitPython.

An optional master config parameter (gitfs_provider) can be used
to specify which provider should be used, in the event that compatible versions
of both pygit2 [https://github.com/libgit2/pygit2] and GitPython [https://github.com/gitpython-developers/GitPython] are installed.

More detailed information on how to use GitFS can be found in the GitFS
Walkthrough.

Note

Minimum requirements

To use pygit2 [https://github.com/libgit2/pygit2] for GitFS requires a minimum pygit2 [https://github.com/libgit2/pygit2] version of 0.20.3.
pygit2 [https://github.com/libgit2/pygit2] 0.20.3 requires libgit2 [https://libgit2.github.com/] 0.20.0. pygit2 [https://github.com/libgit2/pygit2] and libgit2 [https://libgit2.github.com/] are developed
alongside one another, so it is recommended to keep them both at the same
major release to avoid unexpected behavior. For example, pygit2 [https://github.com/libgit2/pygit2] 0.21.x
requires libgit2 [https://libgit2.github.com/] 0.21.x, pygit2 [https://github.com/libgit2/pygit2] 0.22.x will require libgit2 [https://libgit2.github.com/] 0.22.x, etc.

To use GitPython [https://github.com/gitpython-developers/GitPython] for GitFS requires a minimum GitPython version of 0.3.0,
as well as the git CLI utility. Instructions for installing GitPython can
be found here.

To clear stale refs the git CLI utility must also be installed.

salt.fileserver.hgfs

Mercurial Fileserver Backend

To enable, add hgfs to the fileserver_backend option in the
Master config file.

fileserver_backend:
 - hgfs

Note

hg also works here. Prior to the 2018.3.0 release, only hg would
work.

After enabling this backend, branches, bookmarks, and tags in a remote
mercurial repository are exposed to salt as different environments. This
feature is managed by the fileserver_backend option in the salt
master config file.

This fileserver has an additional option hgfs_branch_method that
will set the desired branch method. Possible values are: branches,
bookmarks, or mixed. If using branches or mixed, the
default branch will be mapped to base.

Changed in version 2014.1.0: The hgfs_base master config parameter was added, allowing
for a branch other than default to be used for the base
environment, and allowing for a base environment to be specified when
using an hgfs_branch_method of bookmarks.

	depends:

	
	mercurial

	python bindings for mercurial (python-hglib)

salt.fileserver.minionfs

Fileserver backend which serves files pushed to the Master

The cp.push function allows Minions to push files
up to the Master. Using this backend, these pushed files are exposed to other
Minions via the Salt fileserver.

To enable minionfs, file_recv needs to be set to True in the
master config file (otherwise cp.push will not be
allowed to push files to the Master), and minionfs must be added to the
fileserver_backends list.

fileserver_backend:
 - minionfs

Note

minion also works here. Prior to the 2018.3.0 release, only
minion would work.

Other minionfs settings include: minionfs_whitelist,
minionfs_blacklist, minionfs_mountpoint, and
minionfs_env.

See also

MinionFS Backend Walkthrough

salt.fileserver.roots

The default file server backend

This fileserver backend serves files from the Master's local filesystem. If
fileserver_backend is not defined in the Master config file,
then this backend is enabled by default. If it is defined then roots must
be in the fileserver_backend list to enable this backend.

fileserver_backend:
 - roots

Fileserver environments are defined using the file_roots
configuration option.

salt.fileserver.s3fs

Amazon S3 Fileserver Backend

New in version 0.16.0.

This backend exposes directories in S3 buckets as Salt environments. To enable
this backend, add s3fs to the fileserver_backend option in the
Master config file.

fileserver_backend:
 - s3fs

S3 credentials must also be set in the master config file:

s3.keyid: GKTADJGHEIQSXMKKRBJ08H
s3.key: askdjghsdfjkghWupUjasdflkdfklgjsdfjajkghs

Alternatively, if on EC2 these credentials can be automatically loaded from
instance metadata.

This fileserver supports two modes of operation for the buckets:

	A single bucket per environment

s3.buckets:
 production:
 - bucket1
 - bucket2
 staging:
 - bucket3
 - bucket4

	Multiple environments per bucket

s3.buckets:
 - bucket1
 - bucket2
 - bucket3
 - bucket4

Note that bucket names must be all lowercase both in the AWS console and in
Salt, otherwise you may encounter SignatureDoesNotMatch errors.

A multiple-environment bucket must adhere to the following root directory
structure:

s3://<bucket name>/<environment>/<files>

Note

This fileserver back-end requires the use of the MD5 hashing algorithm.
MD5 may not be compliant with all security policies.

Note

This fileserver back-end is only compatible with MD5 ETag hashes in
the S3 metadata. This means that you must use SSE-S3 or plaintext for
bucket encryption, and that you must not use multipart upload when
uploading to your bucket. More information here:
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTCommonResponseHeaders.html

Objects without an MD5 ETag will be fetched on every fileserver update.

If you deal with objects greater than 8MB, then you should use the
following AWS CLI config to avoid mutipart upload:

s3 =
 multipart_threshold = 1024MB

More info here:
https://docs.aws.amazon.com/cli/latest/topic/s3-config.html

Note

This fileserver back-end will by default sync all buckets on every
fileserver update.

If you want files to be only populated in the cache when requested, you can
disable this in the master config:

s3.s3_sync_on_update: False

salt.fileserver.svnfs

Subversion Fileserver Backend

After enabling this backend, branches and tags in a remote subversion
repository are exposed to salt as different environments. To enable this
backend, add svnfs to the fileserver_backend option in the
Master config file.

fileserver_backend:
 - svnfs

Note

svn also works here. Prior to the 2018.3.0 release, only svn
would work.

This backend assumes a standard svn layout with directories for branches,
tags, and trunk, at the repository root.

	depends:

	
	subversion

	pysvn

Changed in version 2014.7.0: The paths to the trunk, branches, and tags have been made configurable, via
the config options svnfs_trunk,
svnfs_branches, and svnfs_tags.
svnfs_mountpoint was also added. Finally, support for
per-remote configuration parameters was added. See the
documentation for more information.

grains modules

	chronos

	Generate chronos proxy minion grains.

	cimc

	Generate baseline proxy minion grains for cimc hosts.

	core

	The static grains, these are the core, or built in grains.

	disks

	Detect disks

	esxi

	Generate baseline proxy minion grains for ESXi hosts.

	extra

	

	fibre_channel

	Grains for Fibre Channel WWN's.

	fx2

	Generate baseline proxy minion grains for Dell FX2 chassis.

	iscsi

	Grains for iSCSI Qualified Names (IQN).

	junos

	Grains for junos.

	lvm

	Detect LVM Volumes

	marathon

	Generate marathon proxy minion grains.

	mdadm

	Detect MDADM RAIDs

	mdata

	SmartOS Metadata grain provider

	metadata

	Grains from cloud metadata servers at 169.254.169.254

	metadata_gce

	Grains from cloud metadata servers at 169.254.169.254 in google compute engine

	minion_process

	Set grains describing the minion process.

	napalm

	NAPALM Grains

	nvme

	Grains for NVMe Qualified Names (NQN).

	nxos

	Grains for Cisco NX-OS minions

	opts

	Simple grain to merge the opts into the grains directly if the grain_opts configuration value is set.

	package

	Grains for detecting what type of package Salt is using

	panos

	Generate baseline proxy minion grains for panos hosts.

	pending_reboot

	Grain that indicates the system is pending a reboot See functions in salt.utils.win_system to see what conditions would indicate a reboot is pending

	philips_hue

	Static grains for the Philips HUE lamps

	rest_sample

	Generate baseline proxy minion grains

	smartos

	SmartOS grain provider

	ssh_sample

	Generate baseline proxy minion grains

	zfs

	ZFS grain provider

salt.grains.chronos

Generate chronos proxy minion grains.

New in version 2015.8.2.

	
salt.grains.chronos.kernel()

	

	
salt.grains.chronos.os()

	

	
salt.grains.chronos.os_data()

	

	
salt.grains.chronos.os_family()

	

salt.grains.cimc

Generate baseline proxy minion grains for cimc hosts.

	
salt.grains.cimc.cimc(proxy=None)

	

salt.grains.core

The static grains, these are the core, or built in grains.

When grains are loaded they are not loaded in the same way that modules are
loaded, grain functions are detected and executed, the functions MUST
return a dict which will be applied to the main grains dict. This module
will always be executed first, so that any grains loaded here in the core
module can be overwritten just by returning dict keys with the same value
as those returned here

	
salt.grains.core.append_domain()

	Return append_domain if set

	
salt.grains.core.cwd()

	Current working directory

	
salt.grains.core.default_gateway()

	Populates grains which describe whether a server has a default gateway
configured or not. Uses ip -4 route show and ip -6 route show and greps
for a default at the beginning of any line. Assuming the standard
default via <ip> format for default gateways, it will also parse out the
ip address of the default gateway, and put it in ip4_gw or ip6_gw.

If the ip command is unavailable, no grains will be populated.

Currently does not support multiple default gateways. The grains will be
set to the first default gateway found.

List of grains:

ip4_gw: True # ip/True/False if default ipv4 gateway
ip6_gw: True # ip/True/False if default ipv6 gateway
ip_gw: True # True if either of the above is True, False otherwise

	
salt.grains.core.dns()

	Parse the resolver configuration file

New in version 2016.3.0.

	
salt.grains.core.fqdns()

	Return all known FQDNs for the system by enumerating all interfaces and
then trying to reverse resolve them (excluding 'lo' interface).
To disable the fqdns grain, set enable_fqdns_grains: False in the minion configuration file.

	
salt.grains.core.get_machine_id()

	Provide the machine-id for machine/virtualization combination

	
salt.grains.core.get_master()

	Provides the minion with the name of its master.
This is useful in states to target other services running on the master.

	
salt.grains.core.get_server_id()

	Provides an integer based on the FQDN of a machine.
Useful as server-id in MySQL replication or anywhere else you'll need an ID
like this.

	
salt.grains.core.hostname()

	Return fqdn, hostname, domainname

Note

On Windows the domain grain may refer to the dns entry for the host
instead of the Windows domain to which the host is joined. It may also
be empty if not a part of any domain. Refer to the windowsdomain
grain instead

	
salt.grains.core.hwaddr_interfaces()

	Provide a dict of the connected interfaces and their
hw addresses (Mac Address)

	
salt.grains.core.id_()

	Return the id

	
salt.grains.core.ip4_interfaces()

	Provide a dict of the connected interfaces and their ip4 addresses
The addresses will be passed as a list for each interface

	
salt.grains.core.ip6_interfaces()

	Provide a dict of the connected interfaces and their ip6 addresses
The addresses will be passed as a list for each interface

	
salt.grains.core.ip_fqdn()

	Return ip address and FQDN grains

	
salt.grains.core.ip_interfaces()

	Provide a dict of the connected interfaces and their ip addresses
The addresses will be passed as a list for each interface

	
salt.grains.core.kernelparams()

	Return the kernel boot parameters

	
salt.grains.core.locale_info()

	
	Provides
	defaultlanguage
defaultencoding

	
salt.grains.core.os_data()

	Return grains pertaining to the operating system

	
salt.grains.core.path()

	Return the path

	
salt.grains.core.pythonexecutable()

	Return the python executable in use

	
salt.grains.core.pythonpath()

	Return the Python path

	
salt.grains.core.pythonversion()

	Return the Python version

	
salt.grains.core.saltpath()

	Return the path of the salt module

	
salt.grains.core.saltversion()

	Return the version of salt

	
salt.grains.core.saltversioninfo()

	Return the version_info of salt

New in version 0.17.0.

	
salt.grains.core.zmqversion()

	Return the zeromq version

salt.grains.disks

Detect disks

	
salt.grains.disks.disks()

	Return list of disk devices

salt.grains.esxi

Generate baseline proxy minion grains for ESXi hosts.

Warning

This module will be deprecated in a future release of Salt. VMware strongly
recommends using the
VMware Salt extensions [https://docs.saltproject.io/salt/extensions/salt-ext-modules-vmware/en/latest/all.html]
instead of the ESXi module. Because the Salt extensions are newer and
actively supported by VMware, they are more compatible with current versions
of ESXi and they work well with the latest features in the VMware product
line.

	
salt.grains.esxi.esxi()

	

	
salt.grains.esxi.kernel()

	

	
salt.grains.esxi.os()

	

	
salt.grains.esxi.os_family()

	

salt.grains.extra

	
salt.grains.extra.config()

	Return the grains set in the grains file

	
salt.grains.extra.shell()

	Return the default shell to use on this system

	
salt.grains.extra.transactional()

	Determine if the system is transactional.

	
salt.grains.extra.uefi()

	Populate UEFI grains.

salt.grains.fibre_channel

Grains for Fibre Channel WWN's. On Windows this runs a PowerShell command that
queries WMI to get the Fibre Channel WWN's available.

New in version 2018.3.0.

To enable these grains set fibre_channel_grains: True in the minion config.

fibre_channel_grains: True

	
salt.grains.fibre_channel.fibre_channel_wwns()

	Return list of fiber channel HBA WWNs

salt.grains.fx2

Generate baseline proxy minion grains for Dell FX2 chassis.
The challenge is that most of Salt isn't bootstrapped yet,
so we need to repeat a bunch of things that would normally happen
in proxy/fx2.py--just enough to get data from the chassis to include
in grains.

	
salt.grains.fx2.fx2()

	

	
salt.grains.fx2.kernel()

	

	
salt.grains.fx2.location()

	

	
salt.grains.fx2.os_data()

	

	
salt.grains.fx2.os_family()

	

salt.grains.iscsi

Grains for iSCSI Qualified Names (IQN).

New in version 2018.3.0.

To enable these grains set iscsi_grains: True in the minion config.

iscsi_grains: True

	
salt.grains.iscsi.iscsi_iqn()

	Return iSCSI IQN

salt.grains.junos

Grains for junos.
NOTE this is a little complicated--junos can only be accessed
via salt-proxy-minion. Thus, some grains make sense to get them
from the minion (PYTHONPATH), but others don't (ip_interfaces)

	
salt.grains.junos.defaults()

	

	
salt.grains.junos.facts(proxy=None)

	

	
salt.grains.junos.os_family()

	

salt.grains.lvm

Detect LVM Volumes

	
salt.grains.lvm.lvm()

	Return list of LVM devices

salt.grains.marathon

Generate marathon proxy minion grains.

New in version 2015.8.2.

	
salt.grains.marathon.kernel()

	

	
salt.grains.marathon.marathon()

	

	
salt.grains.marathon.os()

	

	
salt.grains.marathon.os_data()

	

	
salt.grains.marathon.os_family()

	

salt.grains.mdadm

Detect MDADM RAIDs

	
salt.grains.mdadm.mdadm()

	Return list of mdadm devices

salt.grains.mdata

SmartOS Metadata grain provider

	maintainer:

	Jorge Schrauwen <sjorge@blackdot.be>

	maturity:

	new

	depends:

	salt.utils, salt.module.cmdmod

	platform:

	SmartOS

New in version 2017.7.0.

	
salt.grains.mdata.mdata()

	Provide grains from the SmartOS metadata

salt.grains.metadata

Grains from cloud metadata servers at 169.254.169.254

New in version 2017.7.0.

	depends:

	requests

To enable these grains that pull from the http://169.254.169.254/latest
metadata server set metadata_server_grains: True in the minion config.

metadata_server_grains: True

	
salt.grains.metadata.metadata()

	

salt.grains.metadata_gce

Grains from cloud metadata servers at 169.254.169.254 in
google compute engine

New in version 3005.

	depends:

	requests

To enable these grains that pull from the http://169.254.169.254/computeMetadata/v1/
metadata server set metadata_server_grains: True in the minion config.

metadata_server_grains: True

	
salt.grains.metadata_gce.metadata()

	Takes no arguments, returns a dictionary of metadata values from Google.

salt.grains.minion_process

Set grains describing the minion process.

	
salt.grains.minion_process.grains()

	Return the grains dictionary

salt.grains.napalm

NAPALM Grains

	codeauthor:

	Mircea Ulinic <ping@mirceaulinic.net>

	maturity:

	new

	depends:

	napalm

	platform:

	unix

Dependencies

	NAPALM proxy module

New in version 2016.11.0.

	
salt.grains.napalm.getos(proxy=None)

	Returns the Operating System name running on the network device.

Example: junos, iosxr, eos, ios etc.

CLI Example - select all network devices running JunOS:

salt -G 'os:junos' test.ping

	
salt.grains.napalm.host(proxy=None)

	This grain is set by the NAPALM grain module
only when running in a proxy minion.
When Salt is installed directly on the network device,
thus running a regular minion, the host grain
provides the physical hostname of the network device,
as it would be on an ordinary minion server.
When running in a proxy minion, host points to the
value configured in the pillar: NAPALM proxy module.

Note

The diference between host and hostname is that
host provides the physical location - either domain name or IP address,
while hostname provides the hostname as configured on the device.
They are not necessarily the same.

New in version 2017.7.0.

CLI Example:

salt 'device*' grains.get host

Output:

device1:
 ip-172-31-13-136.us-east-2.compute.internal
device2:
 ip-172-31-11-193.us-east-2.compute.internal
device3:
 ip-172-31-2-181.us-east-2.compute.internal

	
salt.grains.napalm.host_dns(proxy=None)

	Return the DNS information of the host.
This grain is a dictionary having two keys:

	A

	AAAA

Note

This grain is disabled by default, as the proxy startup may be slower
when the lookup fails.
The user can enable it using the napalm_host_dns_grain option (in
the pillar or proxy configuration file):

napalm_host_dns_grain: true

New in version 2017.7.0.

CLI Example:

salt 'device*' grains.get host_dns

Output:

device1:
 A:
 - 172.31.9.153
 AAAA:
 - fd52:188c:c068::1
device2:
 A:
 - 172.31.46.249
 AAAA:
 - fdca:3b17:31ab::17
device3:
 A:
 - 172.31.8.167
 AAAA:
 - fd0f:9fd6:5fab::1

	
salt.grains.napalm.hostname(proxy=None)

	Return the hostname as configured on the network device.

CLI Example:

salt 'device*' grains.get hostname

Output:

device1:
 edge01.yyz01
device2:
 edge01.bjm01
device3:
 edge01.flw01

	
salt.grains.napalm.interfaces(proxy=None)

	Returns the complete interfaces list of the network device.

Example: ['lc-0/0/0', 'pfe-0/0/0', 'xe-1/3/0', 'lo0', 'irb', 'demux0', 'fxp0']

CLI Example - select all devices that have a certain interface, e.g.: xe-1/1/1:

salt -G 'interfaces:xe-1/1/1' test.ping

Output:

edge01.yyz01:
 True
edge01.maa01:
 True
edge01.syd01:
 True
edge01.del01:
 True
edge01.dus01:
 True
edge01.kix01:
 True

	
salt.grains.napalm.model(proxy=None)

	Returns the network device chassis model.

Example: MX480, ASR-9904-AC etc.

CLI Example - select all Juniper MX480 routers and execute traceroute to 8.8.8.8:

salt -G 'model:MX480' net.traceroute 8.8.8.8

	
salt.grains.napalm.optional_args(proxy=None)

	Return the connection optional args.

Note

Sensible data will not be returned.

New in version 2017.7.0.

CLI Example - select all devices connecting via port 1234:

salt -G 'optional_args:port:1234' test.ping

Output:

device1:
 True
device2:
 True

	
salt.grains.napalm.serial(proxy=None)

	Returns the chassis serial number.

Example: FOX1234W00F

CLI Example - select all devices whose serial number begins with FOX and display the serial number value:

salt -G 'serial:FOX*' grains.get serial

Output:

edge01.icn01:
 FOXW00F001
edge01.del01:
 FOXW00F002
edge01.yyz01:
 FOXW00F003
edge01.mrs01:
 FOXW00F004

	
salt.grains.napalm.uptime(proxy=None)

	Returns the uptime in seconds.

CLI Example - select all devices started/restarted within the last hour:

salt -G 'uptime<3600' test.ping

	
salt.grains.napalm.username(proxy=None)

	Return the username.

New in version 2017.7.0.

CLI Example - select all devices using foobar as username for connection:

salt -G 'username:foobar' test.ping

Output:

device1:
 True
device2:
 True

	
salt.grains.napalm.vendor(proxy=None)

	Returns the network device vendor.

Example: juniper, cisco, arista etc.

CLI Example - select all devices produced by Cisco and shutdown:

salt -G 'vendor:cisco' net.cli "shut"

	
salt.grains.napalm.version(proxy=None)

	Returns the OS version.

Example: 13.3R6.5, 6.0.2 etc.

CLI Example - select all network devices running JunOS 13.3R6.5 and return the model:

salt -G 'os:junos and version:13.3R6.5' grains.get model

Output:

edge01.bjm01:
 MX2000
edge01.sjc01:
 MX960
edge01.mrs01:
 MX480
edge01.muc01:
 MX240

salt.grains.nvme

Grains for NVMe Qualified Names (NQN).

New in version 3000.

To enable these grains set nvme_grains: True in the minion config.

nvme_grains: True

	
salt.grains.nvme.nvme_nqn()

	Return NVMe NQN

salt.grains.nxos

Grains for Cisco NX-OS minions

New in version 2016.11.0.

For documentation on setting up the nxos proxy minion look in the documentation
for salt.proxy.nxos.

	
salt.grains.nxos.system_information(proxy=None)

	

salt.grains.opts

Simple grain to merge the opts into the grains directly if the grain_opts
configuration value is set.

	
salt.grains.opts.opts()

	Return the minion configuration settings

salt.grains.package

Grains for detecting what type of package Salt is using

New in version 3007.0.

	
salt.grains.package.package()

	Function to determine if the user is currently using
onedir, pip or system level package of Salt.

salt.grains.panos

Generate baseline proxy minion grains for panos hosts.

	
salt.grains.panos.panos(proxy=None)

	

salt.grains.pending_reboot

Grain that indicates the system is pending a reboot
See functions in salt.utils.win_system to see what conditions would indicate
a reboot is pending

	
salt.grains.pending_reboot.pending_reboot()

	A grain that indicates that a Windows system is pending a reboot.

salt.grains.philips_hue

Static grains for the Philips HUE lamps

New in version 2015.8.3.

	
salt.grains.philips_hue.kernel()

	

	
salt.grains.philips_hue.os()

	

	
salt.grains.philips_hue.os_family()

	

	
salt.grains.philips_hue.product()

	

	
salt.grains.philips_hue.vendor()

	

salt.grains.rest_sample

Generate baseline proxy minion grains

	
salt.grains.rest_sample.kernel()

	

	
salt.grains.rest_sample.location()

	

	
salt.grains.rest_sample.os()

	

	
salt.grains.rest_sample.os_data()

	

	
salt.grains.rest_sample.os_family()

	

	
salt.grains.rest_sample.proxy_functions(proxy)

	The loader will execute functions with one argument and pass
a reference to the proxymodules LazyLoader object. However,
grains sometimes get called before the LazyLoader object is setup
so proxy might be None.

salt.grains.smartos

SmartOS grain provider

	maintainer:

	Jorge Schrauwen <sjorge@blackdot.be>

	maturity:

	new

	depends:

	salt.utils, salt.module.cmdmod

	platform:

	SmartOS

New in version 2017.7.0.

	
salt.grains.smartos.smartos()

	Provide grains for SmartOS

salt.grains.ssh_sample

Generate baseline proxy minion grains

	
salt.grains.ssh_sample.kernel()

	

	
salt.grains.ssh_sample.location()

	

	
salt.grains.ssh_sample.os_data()

	

	
salt.grains.ssh_sample.proxy_functions(proxy)

	The loader will execute functions with one argument and pass
a reference to the proxymodules LazyLoader object. However,
grains sometimes get called before the LazyLoader object is setup
so proxy might be None.

salt.grains.zfs

ZFS grain provider

	maintainer:

	Jorge Schrauwen <sjorge@blackdot.be>

	maturity:

	new

	depends:

	salt.module.cmdmod

	platform:

	illumos,freebsd,linux

New in version 2018.3.0.

	
salt.grains.zfs.zfs()

	Provide grains for zfs/zpool

netapi modules

	rest_cherrypy

	A script to start the CherryPy WSGI server

	rest_tornado

	

	rest_wsgi

	A minimalist REST API for Salt

rest_cherrypy

	A REST API for Salt

	Authentication

	Usage

	Content negotiation

	Performance Expectations and Recommended Usage

	Long-Running HTTP Connections

	Timeouts

	Best Practices

	Performance Tuning

	Future Plans

	Deployment

	salt-api using the CherryPy server

	Using a WSGI-compliant web server

A script to start the CherryPy WSGI server

This is run by salt-api and started in a multiprocess.

A REST API for Salt

Note

This module is Experimental on Windows platforms and supports limited
configurations:

	doesn't support PAM authentication (i.e. external_auth: auto)

	doesn't support SSL (i.e. disable_ssl: True)

	depends:

	
	CherryPy Python module.

Note: there is a known SSL traceback for CherryPy versions 3.2.5 through
3.7.x [https://github.com/cherrypy/cherrypy/issues/1298]. Please use
version 3.2.3 or the latest 10.x version instead.

	optdepends:

	
	ws4py Python module for websockets support.

	client_libraries:

	
	Java: https://github.com/SUSE/salt-netapi-client

	Python: https://github.com/saltstack/pepper

	setup:

	All steps below are performed on the machine running the Salt Master
daemon. Configuration goes into the Master configuration file.

	Install salt-api. (This step varies between OS and Linux distros.
Some package systems have a split package, others include salt-api in
the main Salt package. Ensure the salt-api --version output matches
the salt --version output.)

	Install CherryPy. (Read the version caveat in the section above.)

	Optional: generate self-signed SSL certificates.

Using a secure HTTPS connection is strongly recommended since Salt
eauth authentication credentials will be sent over the wire.

	Install the PyOpenSSL package.

	Generate a self-signed certificate using the
create_self_signed_cert() execution
function.

salt-call --local tls.create_self_signed_cert

	Edit the master config to create at least one external auth user or
group following the full external auth instructions.

	Edit the master config with the following production-ready example to
enable the rest_cherrypy module. (Adjust cert paths as needed, or
disable SSL (not recommended!).)

rest_cherrypy:
 port: 8000
 ssl_crt: /etc/pki/tls/certs/localhost.crt
 ssl_key: /etc/pki/tls/certs/localhost.key

	Restart the salt-master daemon.

	Start the salt-api daemon.

	configuration:

	All available configuration options are detailed below. These settings
configure the CherryPy HTTP server and do not apply when using an external
server such as Apache or Nginx.

	port
	Required

The port for the webserver to listen on.

	host0.0.0.0
	The socket interface for the HTTP server to listen on.

	debugFalse
	Starts the web server in development mode. It will reload itself when
the underlying code is changed and will output more debugging info.

	log_access_file
	Path to a file to write HTTP access logs.

New in version 2016.11.0.

	log_error_file
	Path to a file to write HTTP error logs.

New in version 2016.11.0.

	ssl_crt
	The path to a SSL certificate. (See below)

	ssl_key
	The path to the private key for your SSL certificate. (See below)

	ssl_chain
	(Optional when using PyOpenSSL) the certificate chain to pass to
Context.load_verify_locations.

	disable_ssl
	A flag to disable SSL. Warning: your Salt authentication credentials
will be sent in the clear!

	webhook_disable_authFalse
	The Webhook URL requires authentication by default but
external services cannot always be configured to send authentication.
See the Webhook documentation for suggestions on securing this
interface.

	webhook_url/hook
	Configure the URL endpoint for the Webhook entry point.

	thread_pool100
	The number of worker threads to start up in the pool.

	socket_queue_size30
	Specify the maximum number of HTTP connections to queue.

	expire_responsesTrue
	Whether to check for and kill HTTP responses that have exceeded the
default timeout.

Deprecated since version 2016.11.9,2017.7.3,2018.3.0: The "expire_responses" configuration setting, which corresponds
to the timeout_monitor setting in CherryPy, is no longer
supported in CherryPy versions >= 12.0.0.

	max_request_body_size1048576
	Maximum size for the HTTP request body.

	collect_statsFalse
	Collect and report statistics about the CherryPy server

Reports are available via the Stats URL.

	stats_disable_authFalse
	Do not require authentication to access the /stats endpoint.

New in version 2018.3.0.

	static
	A filesystem path to static HTML/JavaScript/CSS/image assets.

	static_path/static
	The URL prefix to use when serving static assets out of the directory
specified in the static setting.

	enable_sessionsTrue
	Enable or disable all endpoints that rely on session cookies. This can
be useful to enforce only header-based authentication.

New in version 2017.7.0.

	appindex.html
	A filesystem path to an HTML file that will be served as a static file.
This is useful for bootstrapping a single-page JavaScript app.

Warning! If you set this option to a custom web application, anything
that uses cookie-based authentication is vulnerable to XSRF attacks.
Send the custom X-Auth-Token header instead and consider disabling
the enable_sessions setting.

Changed in version 2017.7.0: Add a proof-of-concept JavaScript single-page app.

	app_path/app
	The URL prefix to use for serving the HTML file specified in the app
setting. This should be a simple name containing no slashes.

Any path information after the specified path is ignored; this is
useful for apps that utilize the HTML5 history API.

	root_prefix/
	A URL path to the main entry point for the application. This is useful
for serving multiple applications from the same URL.

Authentication

Authentication is performed by passing a session token with each request.
Tokens are generated via the Login URL.

The token may be sent in one of two ways: as a custom header or as a session
cookie. The latter is far more convenient for clients that support cookies.

	Include a custom header named X-Auth-Token.

For example, using curl:

curl -sSk https://localhost:8000/login \
 -H 'Accept: application/x-yaml' \
 -d username=saltdev \
 -d password=saltdev \
 -d eauth=pam

Copy the token value from the output and include it in subsequent requests:

curl -sSk https://localhost:8000 \
 -H 'Accept: application/x-yaml' \
 -H 'X-Auth-Token: 697adbdc8fe971d09ae4c2a3add7248859c87079'\
 -d client=local \
 -d tgt='*' \
 -d fun=test.ping

	Sent via a cookie. This option is a convenience for HTTP clients that
automatically handle cookie support (such as browsers).

For example, using curl:

Write the cookie file:
curl -sSk https://localhost:8000/login \
 -c ~/cookies.txt \
 -H 'Accept: application/x-yaml' \
 -d username=saltdev \
 -d password=saltdev \
 -d eauth=auto

Read the cookie file:
curl -sSk https://localhost:8000 \
 -b ~/cookies.txt \
 -H 'Accept: application/x-yaml' \
 -d client=local \
 -d tgt='*' \
 -d fun=test.ping

Another example using the requests library in Python:

>>> import requests
>>> session = requests.Session()
>>> session.post('http://localhost:8000/login', json={
 'username': 'saltdev',
 'password': 'saltdev',
 'eauth': 'auto',
})
<Response [200]>
>>> resp = session.post('http://localhost:8000', json=[{
 'client': 'local',
 'tgt': '*',
 'fun': 'test.arg',
 'arg': ['foo', 'bar'],
 'kwarg': {'baz': 'Baz!'},
}])
>>> resp.json()
{u'return': [{
 ...snip...
}]}

See also

You can bypass the session handling via the Run URL.

Usage

This interface directly exposes Salt's Python API.
Everything possible at the CLI is possible through the Python API. Commands are
executed on the Salt Master.

The root URL (/) is RPC-like in that it accepts instructions in the request
body for what Salt functions to execute, and the response contains the result
of those function calls.

For example:

% curl -sSi https://localhost:8000 -H 'Content-type: application/json' -d '[{
 "client": "local",
 "tgt": "*",
 "fun": "test.ping"
 }]'
HTTP/1.1 200 OK
Content-Type: application/json
[...snip...]

{"return": [{"jerry": true}]}

The request body must be an array of commands. Use this workflow to build a
command:

	Choose a client interface.

	Choose a function.

	Fill out the remaining parameters needed for the chosen client.

The client field is a reference to the main Python classes used in Salt's
Python API. Read the full Client APIs documentation, but
in short:

	"local" uses LocalClient which sends
commands to Minions. Equivalent to the salt CLI command.

	"runner" uses RunnerClient which
invokes runner modules on the Master. Equivalent to the salt-run CLI
command.

	"wheel" uses WheelClient which invokes
wheel modules on the Master. Wheel modules do not have a direct CLI
equivalent but they typically manage Master-side resources such as state
files, pillar files, the Salt config files, and the key wheel module exposes similar functionality as the salt-key CLI
command.

Most clients have variants like synchronous or asynchronous execution as well as
others like batch execution. See the full list of client interfaces.

Each client requires different arguments and sometimes has different syntax.
For example, LocalClient requires the tgt argument because it forwards
the command to Minions and the other client interfaces do not. LocalClient
also takes arg (array) and kwarg (dictionary) arguments because these
values are sent to the Minions and used to execute the requested function
there. RunnerClient and WheelClient are executed directly on the Master
and thus do not need or accept those arguments.

Read the method signatures in the client documentation linked above, but
hopefully an example will help illustrate the concept. This example causes Salt
to execute two functions -- the test.arg execution function using LocalClient and the test.arg
runner function using RunnerClient; note the
different structure for each command. The results for both are combined and
returned as one response.

% curl -b ~/cookies.txt -sSi localhost:8000 -H 'Content-type: application/json' -d '
[
 {
 "client": "local",
 "tgt": "*",
 "fun": "test.arg",
 "arg": ["positional arg one", "positional arg two"],
 "kwarg": {
 "keyword arg one": "Hello from a minion",
 "keyword arg two": "Hello again from a minion"
 }
 },
 {
 "client": "runner",
 "fun": "test.arg",
 "keyword arg one": "Hello from a master",
 "keyword arg two": "Runners do not support positional args"
 }
]
'
HTTP/1.1 200 OK
[...snip...]
{
 "return": [
 {
 "jerry": {
 "args": [
 "positional arg one",
 "positional arg two"
],
 "kwargs": {
 "keyword arg one": "Hello from a minion",
 "keyword arg two": "Hello again from a minion",
 [...snip...]
 }
 },
 [...snip; other minion returns here...]
 },
 {
 "args": [],
 "kwargs": {
 "keyword arg two": "Runners do not support positional args",
 "keyword arg one": "Hello from a master"
 }
 }
]
}

One more example, this time with more commonly used functions:

curl -b /tmp/cookies.txt -sSi localhost:8000 -H 'Content-type: application/json' -d '
[
 {
 "client": "local",
 "tgt": "*",
 "fun": "state.sls",
 "kwarg": {
 "mods": "apache",
 "pillar": {
 "lookup": {
 "wwwdir": "/srv/httpd/htdocs"
 }
 }
 }
 },
 {
 "client": "runner",
 "fun": "cloud.create",
 "provider": "my-ec2-provider",
 "instances": "my-centos-6",
 "image": "ami-1624987f",
 "delvol_on_destroy", true
 }
]
'
HTTP/1.1 200 OK
[...snip...]
{
 "return": [
 {
 "jerry": {
 "pkg_|-install_apache_|-httpd_|-installed": {
 [...snip full state return here...]
 }
 }
 [...snip other minion returns here...]
 },
 {
 [...snip full salt-cloud output here...]
 }
]
}

Content negotiation

This REST interface is flexible in what data formats it will accept as well
as what formats it will return (e.g., JSON, YAML, urlencoded).

	Specify the format of data in the request body by including the
Content-Type header.

	Specify the desired data format for the response body with the
Accept header.

We recommend the JSON format for most HTTP requests. urlencoded data is simple
and cannot express complex data structures -- and that is often required for
some Salt commands, such as starting a state run that uses Pillar data. Salt's
CLI tool can reformat strings passed in at the CLI into complex data
structures, and that behavior also works via salt-api, but that can be brittle
and since salt-api can accept JSON it is best just to send JSON.

Here is an example of sending urlencoded data:

curl -sSik https://localhost:8000 \
 -b ~/cookies.txt \
 -d client=runner \
 -d fun='jobs.lookup_jid' \
 -d jid='20150129182456704682'

urlencoded data caveats

	Only a single command may be sent per HTTP request.

	Repeating the arg parameter multiple times will cause those
parameters to be combined into a single list.

Note, some popular frameworks and languages (notably jQuery, PHP, and
Ruby on Rails) will automatically append empty brackets onto repeated
query string parameters. E.g., ?foo[]=fooone&foo[]=footwo. This is
not supported; send ?foo=fooone&foo=footwo instead, or send JSON
or YAML.

A note about curl

The -d flag to curl does not automatically urlencode data which can
affect passwords and other data that contains characters that must be
encoded. Use the --data-urlencode flag instead. E.g.:

curl -ksi http://localhost:8000/login \
-H "Accept: application/json" \
-d username='myapiuser' \
--data-urlencode password='1234+' \
-d eauth='pam'

Performance Expectations and Recommended Usage

This module provides a thin wrapper around Salt's Python API. Executing a Salt command via rest_cherrypy is directly analogous
to executing a Salt command via Salt's CLI (which also uses the Python API) --
they share the same semantics, performance characteristics, and 98% of the same
code. As a rule-of-thumb: if you wouldn't do it at the CLI don't do it via this
API.

Long-Running HTTP Connections

The CherryPy server is a production-ready, threading HTTP server written in
Python. Because it makes use of a thread pool to process HTTP requests it is
not ideally suited to maintaining large numbers of concurrent, synchronous
connections. On moderate hardware with default settings it should top-out at
around 30 to 50 concurrent connections.

That number of long-running, synchronous Salt processes is also not ideal. Like
at the CLI, each Salt command run will start a process that instantiates its
own LocalClient, which instantiates its own listener to the Salt event bus,
and sends out its own periodic saltutil.find_job queries to determine if a
Minion is still running the command. Not exactly a lightweight operation.

Timeouts

In addition to the above resource overhead for long-running connections, there
are the usual HTTP timeout semantics for the CherryPy server, any HTTP client
being used, as well as any hardware in between such as proxies, gateways, or
load balancers. rest_cherrypy can be configured not to time-out long responses
via the expire_responses setting, and both LocalClient and RunnerClient have their own timeout parameters that may be
passed as top-level keywords:

curl -b /tmp/cookies.txt -sSi localhost:8000 -H 'Content-type: application/json' -d '
[
 {
 "client": "local",
 "tgt": "*",
 "fun": "test.sleep",
 "kwarg": {"length": 30},
 "timeout": 60
 },
 {
 "client": "runner",
 "fun": "test.sleep",
 "kwarg": {"s_time": 30},
 "timeout": 60
 }
]
'

Best Practices

Given the performance overhead and HTTP timeouts for long-running operations
described above, the most effective and most scalable way to use both Salt and
salt-api is to run commands asynchronously using the local_async,
runner_async, and wheel_async clients.

Running asynchronous jobs results in being able to process 3x more commands per second
for LocalClient and 17x more commands per second for RunnerClient, in
addition to much less network traffic and memory requirements. Job returns can
be fetched from Salt's job cache via the /jobs/<jid> endpoint, or they can
be collected into a data store using Salt's Returner system.

The /events endpoint is specifically designed to handle long-running HTTP
connections and it exposes Salt's event bus which includes job returns.
Watching this endpoint first, then executing asynchronous Salt commands second,
is the most lightweight and scalable way to use rest_cherrypy while still
receiving job returns in real-time. But this requires clients that can properly
handle the inherent asynchronicity of that workflow.

Performance Tuning

The thread_pool and socket_queue_size settings can be used to increase
the capacity of rest_cherrypy to handle incoming requests. Keep an eye on RAM
usage as well as available file handles while testing changes to these
settings. As salt-api is a thin wrapper around Salt's Python API, also keep an
eye on the performance of Salt when testing.

Future Plans

Now that Salt uses the Tornado concurrency library internally, we plan to
improve performance in the API by taking advantage of existing processes and
event listeners and to use lightweight coroutines to facilitate more
simultaneous HTTP connections and better support for synchronous operations.
That effort can be tracked in issue 26505 [https://github.com/saltstack/salt/issues/26505], but until that issue is closed
rest_cherrypy will remain the officially recommended REST API.

Deployment

The rest_cherrypy netapi module is a standard Python WSGI app. It can be
deployed one of two ways.

salt-api using the CherryPy server

The default configuration is to run this module using salt-api to
start the Python-based CherryPy server. This server is lightweight,
multi-threaded, encrypted with SSL, and should be considered production-ready.
See the section above for performance expectations.

Using a WSGI-compliant web server

This module may be deployed on any WSGI-compliant server such as Apache with
mod_wsgi or Nginx with FastCGI, to name just two (there are many).

Note, external WSGI servers handle URLs, paths, and SSL certs directly. The
rest_cherrypy configuration options are ignored and the salt-api daemon
does not need to be running at all. Remember Salt authentication credentials
are sent in the clear unless SSL is being enforced!

An example Apache virtual host configuration:

<VirtualHost *:80>
 ServerName example.com
 ServerAlias *.example.com

 ServerAdmin webmaster@example.com

 LogLevel warn
 ErrorLog /var/www/example.com/logs/error.log
 CustomLog /var/www/example.com/logs/access.log combined

 DocumentRoot /var/www/example.com/htdocs

 WSGIScriptAlias / /path/to/salt/netapi/rest_cherrypy/wsgi.py
</VirtualHost>

REST URI Reference

/

	
class salt.netapi.rest_cherrypy.app.LowDataAdapter

	The primary entry point to Salt's REST API

	
GET()

	An explanation of the API with links of where to go next

	
GET /

	
	Request Headers:

	
	Accept [https://www.rfc-editor.org/rfc/rfc7231#section-5.3.2] -- the desired response format.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- success

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- authentication required

	406 Not Acceptable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7] -- requested Content-Type not available

Example request:

curl -i localhost:8000

GET / HTTP/1.1
Host: localhost:8000
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

	
POST(**kwargs)

	Send one or more Salt commands in the request body

	
POST /

	
	Request Headers:

	
	X-Auth-Token -- a session token from Login.

	Accept [https://www.rfc-editor.org/rfc/rfc7231#section-5.3.2] -- the desired response format.

	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] -- the format of the request body.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] -- the format of the response body; depends on the
Accept request header.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- success

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] -- bad or malformed request

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- authentication required

	406 Not Acceptable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7] -- requested Content-Type not available

lowstate data describing Salt commands must be sent in the
request body.

Example request:

curl -sSik https://localhost:8000 \
 -b ~/cookies.txt \
 -H "Accept: application/x-yaml" \
 -H "Content-type: application/json" \
 -d '[{"client": "local", "tgt": "*", "fun": "test.ping"}]'

POST / HTTP/1.1
Host: localhost:8000
Accept: application/x-yaml
X-Auth-Token: d40d1e1e
Content-Type: application/json

[{"client": "local", "tgt": "*", "fun": "test.ping"}]

Example response:

HTTP/1.1 200 OK
Content-Length: 200
Allow: GET, HEAD, POST
Content-Type: application/x-yaml

return:
- ms-0: true
 ms-1: true
 ms-2: true
 ms-3: true
 ms-4: true

/login

	
class salt.netapi.rest_cherrypy.app.Login(*args, **kwargs)

	Log in to receive a session token

Authentication information.

	
GET()

	Present the login interface

	
GET /login

	An explanation of how to log in.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- success

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- authentication required

	406 Not Acceptable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7] -- requested Content-Type not available

Example request:

curl -i localhost:8000/login

GET /login HTTP/1.1
Host: localhost:8000
Accept: text/html

Example response:

HTTP/1.1 200 OK
Content-Type: text/html

	
POST(**kwargs)

	Authenticate against Salt's eauth system

	
POST /login

	
	Request Headers:

	
	X-Auth-Token -- a session token from Login.

	Accept [https://www.rfc-editor.org/rfc/rfc7231#section-5.3.2] -- the desired response format.

	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] -- the format of the request body.

	Form Parameters:

	
	eauth -- the eauth backend configured for the user

	username -- username

	password -- password

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- success

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- authentication required

	406 Not Acceptable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7] -- requested Content-Type not available

Example request:

curl -si localhost:8000/login \
 -c ~/cookies.txt \
 -H "Accept: application/json" \
 -H "Content-type: application/json" \
 -d '{
 "username": "saltuser",
 "password": "saltuser",
 "eauth": "auto"
 }'

POST / HTTP/1.1
Host: localhost:8000
Content-Length: 42
Content-Type: application/json
Accept: application/json

{"username": "saltuser", "password": "saltuser", "eauth": "auto"}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 206
X-Auth-Token: 6d1b722e
Set-Cookie: session_id=6d1b722e; expires=Sat, 17 Nov 2012 03:23:52 GMT; Path=/

{"return": {
 "token": "6d1b722e",
 "start": 1363805943.776223,
 "expire": 1363849143.776224,
 "user": "saltuser",
 "eauth": "pam",
 "perms": [
 "grains.*",
 "status.*",
 "sys.*",
 "test.*"
]
}}

/logout

	
class salt.netapi.rest_cherrypy.app.Logout

	Class to remove or invalidate sessions

	
POST()

	Destroy the currently active session and expire the session cookie

/minions

	
class salt.netapi.rest_cherrypy.app.Minions

	Convenience URLs for working with minions

	
GET(mid=None)

	A convenience URL for getting lists of minions or getting minion
details

	
GET /minions/(mid)

	
	Request Headers:

	
	X-Auth-Token -- a session token from Login.

	Accept [https://www.rfc-editor.org/rfc/rfc7231#section-5.3.2] -- the desired response format.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- success

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- authentication required

	406 Not Acceptable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7] -- requested Content-Type not available

Example request:

curl -i localhost:8000/minions/ms-3

GET /minions/ms-3 HTTP/1.1
Host: localhost:8000
Accept: application/x-yaml

Example response:

HTTP/1.1 200 OK
Content-Length: 129005
Content-Type: application/x-yaml

return:
- ms-3:
 grains.items:
 ...

	
POST(**kwargs)

	Start an execution command and immediately return the job id

	
POST /minions

	
	Request Headers:

	
	X-Auth-Token -- a session token from Login.

	Accept [https://www.rfc-editor.org/rfc/rfc7231#section-5.3.2] -- the desired response format.

	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] -- the format of the request body.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] -- the format of the response body; depends on the
Accept request header.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- success

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] -- bad or malformed request

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- authentication required

	406 Not Acceptable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7] -- requested Content-Type not available

Lowstate data describing Salt commands must be sent in the request
body. The client option will be set to
local_async().

Example request:

curl -sSi localhost:8000/minions \
 -b ~/cookies.txt \
 -H "Accept: application/x-yaml" \
 -d '[{"tgt": "*", "fun": "status.diskusage"}]'

POST /minions HTTP/1.1
Host: localhost:8000
Accept: application/x-yaml
Content-Type: application/x-www-form-urlencoded

tgt=*&fun=status.diskusage

Example response:

HTTP/1.1 202 Accepted
Content-Length: 86
Content-Type: application/x-yaml

return:
- jid: '20130603122505459265'
 minions: [ms-4, ms-3, ms-2, ms-1, ms-0]
_links:
 jobs:
 - href: /jobs/20130603122505459265

/jobs

	
class salt.netapi.rest_cherrypy.app.Jobs

	
	
GET(jid=None, timeout='')

	A convenience URL for getting lists of previously run jobs or getting
the return from a single job

	
GET /jobs/(jid)

	List jobs or show a single job from the job cache.

	Request Headers:

	
	X-Auth-Token -- a session token from Login.

	Accept [https://www.rfc-editor.org/rfc/rfc7231#section-5.3.2] -- the desired response format.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- success

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- authentication required

	406 Not Acceptable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7] -- requested Content-Type not available

Example request:

curl -i localhost:8000/jobs

GET /jobs HTTP/1.1
Host: localhost:8000
Accept: application/x-yaml

Example response:

HTTP/1.1 200 OK
Content-Length: 165
Content-Type: application/x-yaml

return:
- '20121130104633606931':
 Arguments:
 - '3'
 Function: test.fib
 Start Time: 2012, Nov 30 10:46:33.606931
 Target: jerry
 Target-type: glob

Example request:

curl -i localhost:8000/jobs/20121130104633606931

GET /jobs/20121130104633606931 HTTP/1.1
Host: localhost:8000
Accept: application/x-yaml

Example response:

HTTP/1.1 200 OK
Content-Length: 73
Content-Type: application/x-yaml

info:
- Arguments:
 - '3'
 Function: test.fib
 Minions:
 - jerry
 Start Time: 2012, Nov 30 10:46:33.606931
 Target: '*'
 Target-type: glob
 User: saltdev
 jid: '20121130104633606931'
return:
- jerry:
 - - 0
 - 1
 - 1
 - 2
 - 6.9141387939453125e-06

/run

	
class salt.netapi.rest_cherrypy.app.Run

	Run commands bypassing the normal session handling.

salt-api does not enforce authorization, Salt's eauth system does that.
Local/Runner/WheelClient all accept username/password/eauth
or token kwargs that are then checked by the eauth system. The
session mechanism in rest_cherrypy simply pairs a session with a Salt
eauth token and then passes the token kwarg in automatically.

If you already have a Salt eauth token, perhaps generated by the
mk_token function in the Auth
Runner module, then there is no reason to use sessions.

This endpoint accepts either a username, password, eauth trio,
or a token kwarg and does not make use of sessions at all.

	
POST(**kwargs)

	Run commands bypassing the normal session handling. Otherwise, this URL is identical to the
root URL (/).

	
POST /run

	An array of lowstate data describing Salt commands must be sent in
the request body.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- success

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] -- bad or malformed request

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- authentication required

	406 Not Acceptable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7] -- requested Content-Type not available

Example request:

curl -sS localhost:8000/run \
 -H 'Accept: application/x-yaml' \
 -H 'Content-type: application/json' \
 -d '[{
 "client": "local",
 "tgt": "*",
 "fun": "test.ping",
 "username": "saltdev",
 "password": "saltdev",
 "eauth": "auto"
 }]'

Or using a Salt Eauth token:

curl -sS localhost:8000/run \
 -H 'Accept: application/x-yaml' \
 -H 'Content-type: application/json' \
 -d '[{
 "client": "local",
 "tgt": "*",
 "fun": "test.ping",
 "token": "<salt eauth token here>"
 }]'

POST /run HTTP/1.1
Host: localhost:8000
Accept: application/x-yaml
Content-Length: 75
Content-Type: application/json

[{"client": "local", "tgt": "*", "fun": "test.ping", "username": "saltdev", "password": "saltdev", "eauth": "auto"}]

Example response:

HTTP/1.1 200 OK
Content-Length: 73
Content-Type: application/x-yaml

return:
- ms-0: true
 ms-1: true
 ms-2: true
 ms-3: true
 ms-4: true

The /run endpoint can also be used to issue commands using the salt-ssh
subsystem. When using salt-ssh, eauth credentials must also be
supplied, and are subject to eauth access-control lists.

All SSH client requests are synchronous.

Example SSH client request:

curl -sS localhost:8000/run \
 -H 'Accept: application/x-yaml' \
 -d client='ssh' \
 -d tgt='*' \
 -d username='saltdev' \
 -d password='saltdev' \
 -d eauth='auto' \
 -d fun='test.ping'

POST /run HTTP/1.1
Host: localhost:8000
Accept: application/x-yaml
Content-Length: 75
Content-Type: application/x-www-form-urlencoded

Example SSH response:

return:
- silver:
 _stamp: '2020-09-08T23:04:28.912609'
 fun: test.ping
 fun_args: []
 id: silver
 jid: '20200908230427905565'
 retcode: 0
 return: true

/events

	
class salt.netapi.rest_cherrypy.app.Events

	Expose the Salt event bus

The event bus on the Salt master exposes a large variety of things, notably
when executions are started on the master and also when minions ultimately
return their results. This URL provides a real-time window into a running
Salt infrastructure.

See also

Events & Reactor

	
GET(token=None, salt_token=None)

	An HTTP stream of the Salt master event bus

This stream is formatted per the Server Sent Events (SSE) spec. Each
event is formatted as JSON.

	
GET /events

	
	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- success

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- authentication required

	406 Not Acceptable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7] -- requested Content-Type not available

	Query Parameters:

	
	token -- optional parameter containing the token
ordinarily supplied via the X-Auth-Token header in order to
allow cross-domain requests in browsers that do not include
CORS support in the EventSource API. E.g.,
curl -NsS localhost:8000/events?token=308650d

	salt_token -- optional parameter containing a raw Salt
eauth token (not to be confused with the token returned from
the /login URL). E.g.,
curl -NsS localhost:8000/events?salt_token=30742765

Example request:

curl -NsS localhost:8000/events

GET /events HTTP/1.1
Host: localhost:8000

Example response:

Note, the tag field is not part of the spec. SSE compliant clients
should ignore unknown fields. This addition allows non-compliant
clients to only watch for certain tags without having to deserialze the
JSON object each time.

HTTP/1.1 200 OK
Connection: keep-alive
Cache-Control: no-cache
Content-Type: text/event-stream;charset=utf-8

retry: 400

tag: salt/job/20130802115730568475/new
data: {'tag': 'salt/job/20130802115730568475/new', 'data': {'minions': ['ms-4', 'ms-3', 'ms-2', 'ms-1', 'ms-0']}}

tag: salt/job/20130802115730568475/ret/jerry
data: {'tag': 'salt/job/20130802115730568475/ret/jerry', 'data': {'jid': '20130802115730568475', 'return': True, 'retcode': 0, 'success': True, 'cmd': '_return', 'fun': 'test.ping', 'id': 'ms-1'}}

The event stream can be easily consumed via JavaScript:

var source = new EventSource('/events');
source.onopen = function() { console.info('Listening ...') };
source.onerror = function(err) { console.error(err) };
source.onmessage = function(message) {
 var saltEvent = JSON.parse(message.data);
 console.log(saltEvent.tag, saltEvent.data);
};

Note, the SSE stream is fast and completely asynchronous and Salt is
very fast. If a job is created using a regular POST request, it is
possible that the job return will be available on the SSE stream before
the response for the POST request arrives. It is important to take that
asynchronicity into account when designing an application. Below are
some general guidelines.

	Subscribe to the SSE stream _before_ creating any events.

	Process SSE events directly as they arrive and don't wait for any
other process to "complete" first (like an ajax request).

	Keep a buffer of events if the event stream must be used for
synchronous lookups.

	Be cautious in writing Salt's event stream directly to the DOM. It is
very busy and can quickly overwhelm the memory allocated to a
browser tab.

A full, working proof-of-concept JavaScript application is available
adjacent to this file [https://github.com/saltstack/salt/blob/master/salt/netapi/rest_cherrypy/index.html].
It can be viewed by pointing a browser at the /app endpoint in a
running rest_cherrypy instance.

Or using CORS:

var source = new EventSource('/events?token=ecd589e4e01912cf3c4035afad73426dbb8dba75', {withCredentials: true});

It is also possible to consume the stream via the shell.

Records are separated by blank lines; the data: and tag:
prefixes will need to be removed manually before attempting to
unserialize the JSON.

curl's -N flag turns off input buffering which is required to
process the stream incrementally.

Here is a basic example of printing each event as it comes in:

curl -NsS localhost:8000/events |\
 while IFS= read -r line ; do
 echo $line
 done

Here is an example of using awk to filter events based on tag:

curl -NsS localhost:8000/events |\
 awk '
 BEGIN { RS=""; FS="\\n" }
 $1 ~ /^tag: salt\/job\/[0-9]+\/new$/ { print $0 }
 '
tag: salt/job/20140112010149808995/new
data: {"tag": "salt/job/20140112010149808995/new", "data": {"tgt_type": "glob", "jid": "20140112010149808995", "tgt": "jerry", "_stamp": "2014-01-12_01:01:49.809617", "user": "shouse", "arg": [], "fun": "test.ping", "minions": ["jerry"]}}
tag: 20140112010149808995
data: {"tag": "20140112010149808995", "data": {"fun_args": [], "jid": "20140112010149808995", "return": true, "retcode": 0, "success": true, "cmd": "_return", "_stamp": "2014-01-12_01:01:49.819316", "fun": "test.ping", "id": "jerry"}}

/hook

	
class salt.netapi.rest_cherrypy.app.Webhook

	A generic web hook entry point that fires an event on Salt's event bus

External services can POST data to this URL to trigger an event in Salt.
For example, Amazon SNS, Jenkins-CI or Travis-CI, or GitHub web hooks.

Note

Be mindful of security

Salt's Reactor can run any code. A Reactor SLS that responds to a hook
event is responsible for validating that the event came from a trusted
source and contains valid data.

This is a generic interface and securing it is up to you!

This URL requires authentication however not all external services can
be configured to authenticate. For this reason authentication can be
selectively disabled for this URL. Follow best practices -- always use
SSL, pass a secret key, configure the firewall to only allow traffic
from a known source, etc.

The event data is taken from the request body. The
Content-Type header is respected for the payload.

The event tag is prefixed with salt/netapi/hook and the URL path is
appended to the end. For example, a POST request sent to
/hook/mycompany/myapp/mydata will produce a Salt event with the tag
salt/netapi/hook/mycompany/myapp/mydata.

The following is an example .travis.yml file to send notifications to
Salt of successful test runs:

language: python
script: python -m unittest tests
after_success:
 - |
 curl -sSk https://saltapi-url.example.com:8000/hook/travis/build/success -d branch="${TRAVIS_BRANCH}" -d commit="${TRAVIS_COMMIT}"

See also

Events & Reactor, reactor

	
POST(*args, **kwargs)

	Fire an event in Salt with a custom event tag and data

	
POST /hook

	
	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- success

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- authentication required

	406 Not Acceptable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7] -- requested Content-Type not available

	413 Request Entity Too Large [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14] -- request body is too large

Example request:

curl -sS localhost:8000/hook \
 -H 'Content-type: application/json' \
 -d '{"foo": "Foo!", "bar": "Bar!"}'

POST /hook HTTP/1.1
Host: localhost:8000
Content-Length: 16
Content-Type: application/json

{"foo": "Foo!", "bar": "Bar!"}

Example response:

HTTP/1.1 200 OK
Content-Length: 14
Content-Type: application/json

{"success": true}

As a practical example, an internal continuous-integration build
server could send an HTTP POST request to the URL
https://localhost:8000/hook/mycompany/build/success which contains
the result of a build and the SHA of the version that was built as
JSON. That would then produce the following event in Salt that could be
used to kick off a deployment via Salt's Reactor:

Event fired at Fri Feb 14 17:40:11 2014

Tag: salt/netapi/hook/mycompany/build/success
Data:
{'_stamp': '2014-02-14_17:40:11.440996',
 'headers': {
 'X-My-Secret-Key': 'F0fAgoQjIT@W',
 'Content-Length': '37',
 'Content-Type': 'application/json',
 'Host': 'localhost:8000',
 'Remote-Addr': '127.0.0.1'},
 'post': {'revision': 'aa22a3c4b2e7', 'result': True}}

Salt's Reactor could listen for the event:

reactor:
 - 'salt/netapi/hook/mycompany/build/*':
 - /srv/reactor/react_ci_builds.sls

And finally deploy the new build:

{% set secret_key = data.get('headers', {}).get('X-My-Secret-Key') %}
{% set build = data.get('post', {}) %}

{% if secret_key == 'F0fAgoQjIT@W' and build.result == True %}
deploy_my_app:
 cmd.state.sls:
 - tgt: 'application*'
 - arg:
 - myapp.deploy
 - kwarg:
 pillar:
 revision: {{ revision }}
{% endif %}

/keys

	
class salt.netapi.rest_cherrypy.app.Keys

	Convenience URLs for working with minion keys

New in version 2014.7.0.

These URLs wrap the functionality provided by the key wheel
module functions.

	
GET(mid=None)

	Show the list of minion keys or detail on a specific key

New in version 2014.7.0.

	
GET /keys/(mid)

	List all keys or show a specific key

	Request Headers:

	
	X-Auth-Token -- a session token from Login.

	Accept [https://www.rfc-editor.org/rfc/rfc7231#section-5.3.2] -- the desired response format.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- success

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- authentication required

	406 Not Acceptable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7] -- requested Content-Type not available

Example request:

curl -i localhost:8000/keys

GET /keys HTTP/1.1
Host: localhost:8000
Accept: application/x-yaml

Example response:

HTTP/1.1 200 OK
Content-Length: 165
Content-Type: application/x-yaml

return:
 local:
 - master.pem
 - master.pub
 minions:
 - jerry
 minions_pre: []
 minions_rejected: []

Example request:

curl -i localhost:8000/keys/jerry

GET /keys/jerry HTTP/1.1
Host: localhost:8000
Accept: application/x-yaml

Example response:

HTTP/1.1 200 OK
Content-Length: 73
Content-Type: application/x-yaml

return:
 minions:
 jerry: 51:93:b3:d0:9f:3a:6d:e5:28:67:c2:4b:27:d6:cd:2b

	
POST(**kwargs)

	Easily generate keys for a minion and auto-accept the new key

Accepts all the same parameters as the key.gen_accept.

Note

A note about curl
Avoid using the -i flag or HTTP headers will be written and
produce an invalid tar file.

Example partial kickstart script to bootstrap a new minion:

%post
mkdir -p /etc/salt/pki/minion
curl -sSk https://localhost:8000/keys \
 -d mid=jerry \
 -d username=kickstart \
 -d password=kickstart \
 -d eauth=pam \
 | tar -C /etc/salt/pki/minion -xf -

mkdir -p /etc/salt/minion.d
printf 'master: 10.0.0.5\nid: jerry' > /etc/salt/minion.d/id.conf
%end

	
POST /keys

	Generate a public and private key and return both as a tarball

Authentication credentials must be passed in the request.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- success

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- authentication required

	406 Not Acceptable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7] -- requested Content-Type not available

Example request:

curl -sSk https://localhost:8000/keys \
 -d mid=jerry \
 -d username=kickstart \
 -d password=kickstart \
 -d eauth=pam \
 -o jerry-salt-keys.tar

POST /keys HTTP/1.1
Host: localhost:8000

Example response:

HTTP/1.1 200 OK
Content-Length: 10240
Content-Disposition: attachment; filename="saltkeys-jerry.tar"
Content-Type: application/x-tar

jerry.pub0000644000000000000000000000070300000000000010730 0ustar 00000000000000

/ws

	
class salt.netapi.rest_cherrypy.app.WebsocketEndpoint

	Open a WebSocket connection to Salt's event bus

The event bus on the Salt master exposes a large variety of things, notably
when executions are started on the master and also when minions ultimately
return their results. This URL provides a real-time window into a running
Salt infrastructure. Uses websocket as the transport mechanism.

See also

Events & Reactor

	
GET(token=None, **kwargs)

	Return a websocket connection of Salt's event stream

	
GET /ws/(token)

	

	Query format_events:

	The event stream will undergo server-side
formatting if the format_events URL parameter is included
in the request. This can be useful to avoid formatting on the
client-side:

curl -NsS <...snip...> localhost:8000/ws?format_events

	Reqheader X-Auth-Token:

	an authentication token from
Login.

	Status 101:

	switching to the websockets protocol

	Status 401:

	authentication required

	Status 406:

	requested Content-Type not available

Example request:

curl -NsSk \
 -H 'X-Auth-Token: ffedf49d' \
 -H 'Host: localhost:8000' \
 -H 'Connection: Upgrade' \
 -H 'Upgrade: websocket' \
 -H 'Origin: https://localhost:8000' \
 -H 'Sec-WebSocket-Version: 13' \
 -H 'Sec-WebSocket-Key: '"$(echo -n $RANDOM | base64)" \
 localhost:8000/ws

GET /ws HTTP/1.1
Connection: Upgrade
Upgrade: websocket
Host: localhost:8000
Origin: https://localhost:8000
Sec-WebSocket-Version: 13
Sec-WebSocket-Key: s65VsgHigh7v/Jcf4nXHnA==
X-Auth-Token: ffedf49d

Example response:

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: mWZjBV9FCglzn1rIKJAxrTFlnJE=
Sec-WebSocket-Version: 13

An authentication token may optionally be passed as part of the URL
for browsers that cannot be configured to send the authentication
header or cookie:

curl -NsS <...snip...> localhost:8000/ws/ffedf49d

The event stream can be easily consumed via JavaScript:

// Note, you must be authenticated!
var source = new Websocket('ws://localhost:8000/ws/d0ce6c1a');
source.onerror = function(e) { console.debug('error!', e); };
source.onmessage = function(e) { console.debug(e.data); };

source.send('websocket client ready')

source.close();

Or via Python, using the Python module websocket-client [https://pypi.python.org/pypi/websocket-client/] for example.

Note, you must be authenticated!

from websocket import create_connection

ws = create_connection('ws://localhost:8000/ws/d0ce6c1a')
ws.send('websocket client ready')

Look at https://pypi.python.org/pypi/websocket-client/ for more
examples.
while listening_to_events:
 print ws.recv()

ws.close()

Above examples show how to establish a websocket connection to Salt and
activating real time updates from Salt's event stream by signaling
websocket client ready.

/stats

	
class salt.netapi.rest_cherrypy.app.Stats

	Expose statistics on the running CherryPy server

	
GET()

	Return a dump of statistics collected from the CherryPy server

	
GET /stats

	
	Request Headers:

	
	X-Auth-Token -- a session token from Login.

	Accept [https://www.rfc-editor.org/rfc/rfc7231#section-5.3.2] -- the desired response format.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] -- the format of the response body; depends on the
Accept request header.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- success

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- authentication required

	406 Not Acceptable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7] -- requested Content-Type not available

rest_tornado

A non-blocking REST API for Salt

	depends:

	
	tornado Python module

	configuration:

	All authentication is done through Salt's external auth system which requires additional configuration not described
here.

In order to run rest_tornado with the salt-master
add the following to the Salt master config file.

rest_tornado:
 # can be any port
 port: 8000
 # address to bind to (defaults to 0.0.0.0)
 address: 0.0.0.0
 # socket backlog
 backlog: 128
 ssl_crt: /etc/pki/api/certs/server.crt
 # no need to specify ssl_key if cert and key
 # are in one single file
 ssl_key: /etc/pki/api/certs/server.key
 debug: False
 disable_ssl: False
 webhook_disable_auth: False
 cors_origin: null

Authentication

Authentication is performed by passing a session token with each request.
Tokens are generated via the SaltAuthHandler URL.

The token may be sent in one of two ways:

	Include a custom header named X-Auth-Token.

	Sent via a cookie. This option is a convenience for HTTP clients that
automatically handle cookie support (such as browsers).

See also

You can bypass the session handling via the RunSaltAPIHandler URL.

CORS

rest_tornado supports Cross-site HTTP requests out of the box. It is by default
deactivated and controlled by the cors_origin config key.

You can allow all origins by settings cors_origin to *.

You can allow only one origin with this configuration:

rest_tornado:
 cors_origin: http://salt.yourcompany.com

You can also be more specific and select only a few allowed origins by using
a list. For example:

rest_tornado:
 cors_origin:
 - http://salt.yourcompany.com
 - http://salt-preprod.yourcampany.com

The format for origin are full URL, with both scheme and port if not standard.

In this case, rest_tornado will check if the Origin header is in the allowed
list if it's the case allow the origin. Else it will returns nothing,
effectively preventing the origin to make request.

For reference, CORS is a mechanism used by browser to allow (or disallow)
requests made from browser from a different origin than salt-api. It's
complementary to Authentication and mandatory only if you plan to use
a salt client developed as a Javascript browser application.

Usage

Commands are sent to a running Salt master via this module by sending HTTP
requests to the URLs detailed below.

Content negotiation

This REST interface is flexible in what data formats it will accept as well
as what formats it will return (e.g., JSON, YAML, x-www-form-urlencoded).

	Specify the format of data in the request body by including the
Content-Type header.

	Specify the desired data format for the response body with the
Accept header.

Data sent in POST [https://www.rfc-editor.org/rfc/rfc7231#section-4.3.3] and PUT [https://www.rfc-editor.org/rfc/rfc7231#section-4.3.4] requests must be in
the format of a list of lowstate dictionaries. This allows multiple commands to
be executed in a single HTTP request.

	lowstate
	A dictionary containing various keys that instruct Salt which command
to run, where that command lives, any parameters for that command, any
authentication credentials, what returner to use, etc.

Salt uses the lowstate data format internally in many places to pass
command data between functions. Salt also uses lowstate for the
LocalClient() Python API interface.

The following example (in JSON format) causes Salt to execute two commands:

[{
 "client": "local",
 "tgt": "*",
 "fun": "test.fib",
 "arg": ["10"]
},
{
 "client": "runner",
 "fun": "jobs.lookup_jid",
 "jid": "20130603122505459265"
}]

Multiple commands in a Salt API request will be executed in serial and makes
no guarantees that all commands will run. Meaning that if test.fib (from the
example above) had an exception, the API would still execute "jobs.lookup_jid".

Responses to these lowstates are an in-order list of dicts containing the
return data, a yaml response could look like:

- ms-1: true
 ms-2: true
- ms-1: foo
 ms-2: bar

In the event of an exception while executing a command the return for that lowstate
will be a string, for example if no minions matched the first lowstate we would get
a return like:

- No minions matched the target. No command was sent, no jid was assigned.
- ms-1: true
 ms-2: true

x-www-form-urlencoded

Sending JSON or YAML in the request body is simple and most flexible,
however sending data in urlencoded format is also supported with the
caveats below. It is the default format for HTML forms, many JavaScript
libraries, and the curl command.

For example, the equivalent to running salt '*' test.ping is sending
fun=test.ping&arg&client=local&tgt=* in the HTTP request body.

Caveats:

	Only a single command may be sent per HTTP request.

	Repeating the arg parameter multiple times will cause those
parameters to be combined into a single list.

Note, some popular frameworks and languages (notably jQuery, PHP, and
Ruby on Rails) will automatically append empty brackets onto repeated
parameters. E.g., arg=one, arg=two will be sent as arg[]=one,
arg[]=two. This is not supported; send JSON or YAML instead.

A Websockets add-on to saltnado

	depends:

	
	tornado Python module

In order to enable saltnado_websockets you must add websockets: True to your
saltnado config block.

rest_tornado:
 # can be any port
 port: 8000
 ssl_crt: /etc/pki/api/certs/server.crt
 # no need to specify ssl_key if cert and key
 # are in one single file
 ssl_key: /etc/pki/api/certs/server.key
 debug: False
 disable_ssl: False
 websockets: True

All Events

Exposes all "real-time" events from Salt's event bus on a websocket connection.
It should be noted that "Real-time" here means these events are made available
to the server as soon as any salt related action (changes to minions, new jobs etc) happens.
Clients are however assumed to be able to tolerate any network transport related latencies.
Functionality provided by this endpoint is similar to the /events end point.

The event bus on the Salt master exposes a large variety of things, notably
when executions are started on the master and also when minions ultimately
return their results. This URL provides a real-time window into a running
Salt infrastructure. Uses websocket as the transport mechanism.

Exposes GET method to return websocket connections.
All requests should include an auth token.
A way to obtain obtain authentication tokens is shown below.

% curl -si localhost:8000/login \
 -H "Accept: application/json" \
 -d username='salt' \
 -d password='salt' \
 -d eauth='pam'

Which results in the response

{
 "return": [{
 "perms": [".*", "@runner", "@wheel"],
 "start": 1400556492.277421,
 "token": "d0ce6c1a37e99dcc0374392f272fe19c0090cca7",
 "expire": 1400599692.277422,
 "user": "salt",
 "eauth": "pam"
 }]
}

In this example the token returned is d0ce6c1a37e99dcc0374392f272fe19c0090cca7 and can be included
in subsequent websocket requests (as part of the URL).

The event stream can be easily consumed via JavaScript:

// Note, you must be authenticated!

// Get the Websocket connection to Salt
var source = new Websocket('wss://localhost:8000/all_events/d0ce6c1a37e99dcc0374392f272fe19c0090cca7');

// Get Salt's "real time" event stream.
source.onopen = function() { source.send('websocket client ready'); };

// Other handlers
source.onerror = function(e) { console.debug('error!', e); };

// e.data represents Salt's "real time" event data as serialized JSON.
source.onmessage = function(e) { console.debug(e.data); };

// Terminates websocket connection and Salt's "real time" event stream on the server.
source.close();

Or via Python, using the Python module
websocket-client [https://pypi.python.org/pypi/websocket-client/] for example.
Or the tornado
client [https://tornado.readthedocs.io/en/latest/websocket.html#client-side-support].

Note, you must be authenticated!

from websocket import create_connection

Get the Websocket connection to Salt
ws = create_connection('wss://localhost:8000/all_events/d0ce6c1a37e99dcc0374392f272fe19c0090cca7')

Get Salt's "real time" event stream.
ws.send('websocket client ready')

Simple listener to print results of Salt's "real time" event stream.
Look at https://pypi.python.org/pypi/websocket-client/ for more examples.
while listening_to_events:
 print ws.recv() # Salt's "real time" event data as serialized JSON.

Terminates websocket connection and Salt's "real time" event stream on the server.
ws.close()

Please refer to https://github.com/liris/websocket-client/issues/81 when using a self signed cert

Above examples show how to establish a websocket connection to Salt and activating
real time updates from Salt's event stream by signaling websocket client ready.

Formatted Events

Exposes formatted "real-time" events from Salt's event bus on a websocket connection.
It should be noted that "Real-time" here means these events are made available
to the server as soon as any salt related action (changes to minions, new jobs etc) happens.
Clients are however assumed to be able to tolerate any network transport related latencies.
Functionality provided by this endpoint is similar to the /events end point.

The event bus on the Salt master exposes a large variety of things, notably
when executions are started on the master and also when minions ultimately
return their results. This URL provides a real-time window into a running
Salt infrastructure. Uses websocket as the transport mechanism.

Formatted events parses the raw "real time" event stream and maintains
a current view of the following:

	minions

	jobs

A change to the minions (such as addition, removal of keys or connection drops)
or jobs is processed and clients are updated.
Since we use salt's presence events to track minions,
please enable presence_events
and set a small value for the loop_interval
in the salt master config file.

Exposes GET method to return websocket connections.
All requests should include an auth token.
A way to obtain obtain authentication tokens is shown below.

% curl -si localhost:8000/login \
 -H "Accept: application/json" \
 -d username='salt' \
 -d password='salt' \
 -d eauth='pam'

Which results in the response

{
 "return": [{
 "perms": [".*", "@runner", "@wheel"],
 "start": 1400556492.277421,
 "token": "d0ce6c1a37e99dcc0374392f272fe19c0090cca7",
 "expire": 1400599692.277422,
 "user": "salt",
 "eauth": "pam"
 }]
}

In this example the token returned is d0ce6c1a37e99dcc0374392f272fe19c0090cca7 and can be included
in subsequent websocket requests (as part of the URL).

The event stream can be easily consumed via JavaScript:

// Note, you must be authenticated!

// Get the Websocket connection to Salt
var source = new Websocket('wss://localhost:8000/formatted_events/d0ce6c1a37e99dcc0374392f272fe19c0090cca7');

// Get Salt's "real time" event stream.
source.onopen = function() { source.send('websocket client ready'); };

// Other handlers
source.onerror = function(e) { console.debug('error!', e); };

// e.data represents Salt's "real time" event data as serialized JSON.
source.onmessage = function(e) { console.debug(e.data); };

// Terminates websocket connection and Salt's "real time" event stream on the server.
source.close();

Or via Python, using the Python module
websocket-client [https://pypi.python.org/pypi/websocket-client/] for example.
Or the tornado
client [https://tornado.readthedocs.io/en/latest/websocket.html#client-side-support].

Note, you must be authenticated!

from websocket import create_connection

Get the Websocket connection to Salt
ws = create_connection('wss://localhost:8000/formatted_events/d0ce6c1a37e99dcc0374392f272fe19c0090cca7')

Get Salt's "real time" event stream.
ws.send('websocket client ready')

Simple listener to print results of Salt's "real time" event stream.
Look at https://pypi.python.org/pypi/websocket-client/ for more examples.
while listening_to_events:
 print ws.recv() # Salt's "real time" event data as serialized JSON.

Terminates websocket connection and Salt's "real time" event stream on the server.
ws.close()

Please refer to https://github.com/liris/websocket-client/issues/81 when using a self signed cert

Above examples show how to establish a websocket connection to Salt and activating
real time updates from Salt's event stream by signaling websocket client ready.

Example responses

Minion information is a dictionary keyed by each connected minion's id (mid),
grains information for each minion is also included.

Minion information is sent in response to the following minion events:

	
	connection drops
	
	requires running manage.present periodically every loop_interval seconds

	minion addition

	minion removal

Not all grains are shown
data: {
 "minions": {
 "minion1": {
 "id": "minion1",
 "grains": {
 "kernel": "Darwin",
 "domain": "local",
 "zmqversion": "4.0.3",
 "kernelrelease": "13.2.0"
 }
 }
 }
}

Job information is also tracked and delivered.

Job information is also a dictionary
in which each job's information is keyed by salt's jid.

data: {
 "jobs": {
 "20140609153646699137": {
 "tgt_type": "glob",
 "jid": "20140609153646699137",
 "tgt": "*",
 "start_time": "2014-06-09T15:36:46.700315",
 "state": "complete",
 "fun": "test.ping",
 "minions": {
 "minion1": {
 "return": true,
 "retcode": 0,
 "success": true
 }
 }
 }
 }
}

Setup

REST URI Reference

	/

	/login

	/minions

	/jobs

	/run

	/events

	/hook

/

	
class salt.netapi.rest_tornado.saltnado.SaltAPIHandler(*args, **kwargs)

	Main API handler for base "/"

	
disbatch()

	Disbatch all lowstates to the appropriate clients

	
get()

	An endpoint to determine salt-api capabilities

	
GET /

	
	Request Headers:

	
	Accept [https://www.rfc-editor.org/rfc/rfc7231#section-5.3.2] -- the desired response format.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- success

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- authentication required

	406 Not Acceptable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7] -- requested Content-Type not available

Example request:

curl -i localhost:8000

GET / HTTP/1.1
Host: localhost:8000
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json
Content-Legnth: 83

{"clients": ["local", "local_async", "runner", "runner_async"], "return": "Welcome"}

	
post()

	Send one or more Salt commands (lowstates) in the request body

	
POST /

	
	Request Headers:

	
	X-Auth-Token -- a session token from SaltAuthHandler.

	Accept [https://www.rfc-editor.org/rfc/rfc7231#section-5.3.2] -- the desired response format.

	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] -- the format of the request body.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] -- the format of the response body; depends on the
Accept request header.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- success

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- authentication required

	406 Not Acceptable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7] -- requested Content-Type not available

lowstate data describing Salt commands must be sent in the
request body.

Example request:

curl -si https://localhost:8000 \
 -H "Accept: application/x-yaml" \
 -H "X-Auth-Token: d40d1e1e" \
 -d client=local \
 -d tgt='*' \
 -d fun='test.ping' \
 -d arg

POST / HTTP/1.1
Host: localhost:8000
Accept: application/x-yaml
X-Auth-Token: d40d1e1e
Content-Length: 36
Content-Type: application/x-www-form-urlencoded

fun=test.ping&arg&client=local&tgt=*

Example response:

Responses are an in-order list of the lowstate's return data. In the
event of an exception running a command the return will be a string
instead of a mapping.

HTTP/1.1 200 OK
Content-Length: 200
Allow: GET, HEAD, POST
Content-Type: application/x-yaml

return:
- ms-0: true
 ms-1: true
 ms-2: true
 ms-3: true
 ms-4: true

multiple commands

Note that if multiple lowstate structures are sent, the Salt
API will execute them in serial, and will not stop execution upon failure
of a previous job. If you need to have commands executed in order and
stop on failure please use compound-command-execution.

/login

	
class salt.netapi.rest_tornado.saltnado.SaltAuthHandler(*args, **kwargs)

	Handler for login requests

	
get()

	All logins are done over post, this is a parked endpoint

	
GET /login

	
	Status Codes:

	
	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- authentication required

	406 Not Acceptable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7] -- requested Content-Type not available

Example request:

curl -i localhost:8000/login

GET /login HTTP/1.1
Host: localhost:8000
Accept: application/json

Example response:

HTTP/1.1 401 Unauthorized
Content-Type: application/json
Content-Length: 58

{"status": "401 Unauthorized", "return": "Please log in"}

	
post()

	Authenticate against Salt's eauth system

	
POST /login

	
	Request Headers:

	
	X-Auth-Token -- a session token from SaltAuthHandler.

	Accept [https://www.rfc-editor.org/rfc/rfc7231#section-5.3.2] -- the desired response format.

	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] -- the format of the request body.

	Form Parameters:

	
	eauth -- the eauth backend configured for the user

	username -- username

	password -- password

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- success

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] -- bad request

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- authentication required

	406 Not Acceptable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7] -- requested Content-Type not available

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] -- internal server error

Example request:

curl -si localhost:8000/login \
 -H "Accept: application/json" \
 -d username='saltuser' \
 -d password='saltpass' \
 -d eauth='pam'

POST / HTTP/1.1
Host: localhost:8000
Content-Length: 42
Content-Type: application/x-www-form-urlencoded
Accept: application/json

username=saltuser&password=saltpass&eauth=pam

Example response:

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 206
X-Auth-Token: 6d1b722e
Set-Cookie: session_id=6d1b722e; expires=Sat, 17 Nov 2012 03:23:52 GMT; Path=/

{"return": {
 "token": "6d1b722e",
 "start": 1363805943.776223,
 "expire": 1363849143.776224,
 "user": "saltuser",
 "eauth": "pam",
 "perms": [
 "grains.*",
 "status.*",
 "sys.*",
 "test.*"
]
}}

/minions

	
class salt.netapi.rest_tornado.saltnado.MinionSaltAPIHandler(*args, **kwargs)

	A convenience endpoint for minion related functions

	
get(mid=None)

	A convenience URL for getting lists of minions or getting minion
details

	
GET /minions/(mid)

	
	Request Headers:

	
	X-Auth-Token -- a session token from SaltAuthHandler.

	Accept [https://www.rfc-editor.org/rfc/rfc7231#section-5.3.2] -- the desired response format.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- success

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- authentication required

	406 Not Acceptable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7] -- requested Content-Type not available

Example request:

curl -i localhost:8000/minions/ms-3

GET /minions/ms-3 HTTP/1.1
Host: localhost:8000
Accept: application/x-yaml

Example response:

HTTP/1.1 200 OK
Content-Length: 129005
Content-Type: application/x-yaml

return:
- ms-3:
 grains.items:
 ...

	
post()

	Start an execution command and immediately return the job id

	
POST /minions

	
	Request Headers:

	
	X-Auth-Token -- a session token from SaltAuthHandler.

	Accept [https://www.rfc-editor.org/rfc/rfc7231#section-5.3.2] -- the desired response format.

	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] -- the format of the request body.

	Response Headers:

	
	Content-Type [https://www.rfc-editor.org/rfc/rfc7231#section-3.1.1.5] -- the format of the response body; depends on the
Accept request header.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- success

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- authentication required

	406 Not Acceptable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7] -- requested Content-Type not available

lowstate data describing Salt commands must be sent in the
request body. The client option will be set to
local_async().

Example request:

curl -sSi localhost:8000/minions \
 -H "Accept: application/x-yaml" \
 -d tgt='*' \
 -d fun='status.diskusage'

POST /minions HTTP/1.1
Host: localhost:8000
Accept: application/x-yaml
Content-Length: 26
Content-Type: application/x-www-form-urlencoded

tgt=*&fun=status.diskusage

Example response:

HTTP/1.1 202 Accepted
Content-Length: 86
Content-Type: application/x-yaml

return:
- jid: '20130603122505459265'
 minions: [ms-4, ms-3, ms-2, ms-1, ms-0]

/jobs

	
class salt.netapi.rest_tornado.saltnado.JobsSaltAPIHandler(*args, **kwargs)

	A convenience endpoint for job cache data

	
get(jid=None)

	A convenience URL for getting lists of previously run jobs or getting
the return from a single job

	
GET /jobs/(jid)

	List jobs or show a single job from the job cache.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- success

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- authentication required

	406 Not Acceptable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7] -- requested Content-Type not available

Example request:

curl -i localhost:8000/jobs

GET /jobs HTTP/1.1
Host: localhost:8000
Accept: application/x-yaml

Example response:

HTTP/1.1 200 OK
Content-Length: 165
Content-Type: application/x-yaml

return:
- '20121130104633606931':
 Arguments:
 - '3'
 Function: test.fib
 Start Time: 2012, Nov 30 10:46:33.606931
 Target: jerry
 Target-type: glob

Example request:

curl -i localhost:8000/jobs/20121130104633606931

GET /jobs/20121130104633606931 HTTP/1.1
Host: localhost:8000
Accept: application/x-yaml

Example response:

HTTP/1.1 200 OK
Content-Length: 73
Content-Type: application/x-yaml

info:
- Arguments:
 - '3'
 Function: test.fib
 Minions:
 - jerry
 Start Time: 2012, Nov 30 10:46:33.606931
 Target: '*'
 Target-type: glob
 User: saltdev
 jid: '20121130104633606931'
return:
- jerry:
 - - 0
 - 1
 - 1
 - 2
 - 6.9141387939453125e-06

/run

	
class salt.netapi.rest_tornado.saltnado.RunSaltAPIHandler(*args, **kwargs)

	Endpoint to run commands without normal session handling

	
post()

	Run commands bypassing the normal session handling

	
POST /run

	This entry point is primarily for "one-off" commands. Each request
must pass full Salt authentication credentials. Otherwise this URL
is identical to the root URL (/).

lowstate data describing Salt commands must be sent in the
request body.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- success

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- authentication required

	406 Not Acceptable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7] -- requested Content-Type not available

Example request:

curl -sS localhost:8000/run \
 -H 'Accept: application/x-yaml' \
 -d client='local' \
 -d tgt='*' \
 -d fun='test.ping' \
 -d username='saltdev' \
 -d password='saltdev' \
 -d eauth='pam'

POST /run HTTP/1.1
Host: localhost:8000
Accept: application/x-yaml
Content-Length: 75
Content-Type: application/x-www-form-urlencoded

client=local&tgt=*&fun=test.ping&username=saltdev&password=saltdev&eauth=pam

Example response:

HTTP/1.1 200 OK
Content-Length: 73
Content-Type: application/x-yaml

return:
- ms-0: true
 ms-1: true
 ms-2: true
 ms-3: true
 ms-4: true

/events

	
class salt.netapi.rest_tornado.saltnado.EventsSaltAPIHandler(*args, **kwargs)

	Expose the Salt event bus

The event bus on the Salt master exposes a large variety of things, notably
when executions are started on the master and also when minions ultimately
return their results. This URL provides a real-time window into a running
Salt infrastructure.

See also

Events & Reactor

	
get()

	An HTTP stream of the Salt master event bus

This stream is formatted per the Server Sent Events (SSE) spec. Each
event is formatted as JSON.

	
GET /events

	
	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- success

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- authentication required

	406 Not Acceptable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7] -- requested Content-Type not available

Example request:

curl -NsS localhost:8000/events

GET /events HTTP/1.1
Host: localhost:8000

Example response:

HTTP/1.1 200 OK
Connection: keep-alive
Cache-Control: no-cache
Content-Type: text/event-stream;charset=utf-8

retry: 400
data: {'tag': '', 'data': {'minions': ['ms-4', 'ms-3', 'ms-2', 'ms-1', 'ms-0']}}

data: {'tag': '20130802115730568475', 'data': {'jid': '20130802115730568475', 'return': True, 'retcode': 0, 'success': True, 'cmd': '_return', 'fun': 'test.ping', 'id': 'ms-1'}}

The event stream can be easily consumed via JavaScript:

<!-- Note, you must be authenticated! -->
var source = new EventSource('/events');
source.onopen = function() { console.debug('opening') };
source.onerror = function(e) { console.debug('error!', e) };
source.onmessage = function(e) { console.debug(e.data) };

Or using CORS:

var source = new EventSource('/events', {withCredentials: true});

Some browser clients lack CORS support for the EventSource() API. Such
clients may instead pass the X-Auth-Token value as an URL
parameter:

curl -NsS localhost:8000/events/6d1b722e

It is also possible to consume the stream via the shell.

Records are separated by blank lines; the data: and tag:
prefixes will need to be removed manually before attempting to
unserialize the JSON.

curl's -N flag turns off input buffering which is required to
process the stream incrementally.

Here is a basic example of printing each event as it comes in:

curl -NsS localhost:8000/events |\
 while IFS= read -r line ; do
 echo $line
 done

Here is an example of using awk to filter events based on tag:

curl -NsS localhost:8000/events |\
 awk '
 BEGIN { RS=""; FS="\\n" }
 $1 ~ /^tag: salt\/job\/[0-9]+\/new$/ { print $0 }
 '
tag: salt/job/20140112010149808995/new
data: {"tag": "salt/job/20140112010149808995/new", "data": {"tgt_type": "glob", "jid": "20140112010149808995", "tgt": "jerry", "_stamp": "2014-01-12_01:01:49.809617", "user": "shouse", "arg": [], "fun": "test.ping", "minions": ["jerry"]}}
tag: 20140112010149808995
data: {"tag": "20140112010149808995", "data": {"fun_args": [], "jid": "20140112010149808995", "return": true, "retcode": 0, "success": true, "cmd": "_return", "_stamp": "2014-01-12_01:01:49.819316", "fun": "test.ping", "id": "jerry"}}

/hook

	
class salt.netapi.rest_tornado.saltnado.WebhookSaltAPIHandler(*args, **kwargs)

	A generic web hook entry point that fires an event on Salt's event bus

External services can POST data to this URL to trigger an event in Salt.
For example, Amazon SNS, Jenkins-CI or Travis-CI, or GitHub web hooks.

Note

Be mindful of security

Salt's Reactor can run any code. A Reactor SLS that responds to a hook
event is responsible for validating that the event came from a trusted
source and contains valid data.

This is a generic interface and securing it is up to you!

This URL requires authentication however not all external services can
be configured to authenticate. For this reason authentication can be
selectively disabled for this URL. Follow best practices -- always use
SSL, pass a secret key, configure the firewall to only allow traffic
from a known source, etc.

The event data is taken from the request body. The
Content-Type header is respected for the payload.

The event tag is prefixed with salt/netapi/hook and the URL path is
appended to the end. For example, a POST request sent to
/hook/mycompany/myapp/mydata will produce a Salt event with the tag
salt/netapi/hook/mycompany/myapp/mydata.

The following is an example .travis.yml file to send notifications to
Salt of successful test runs:

language: python
script: python -m unittest tests
after_success:
 - 'curl -sS http://saltapi-url.example.com:8000/hook/travis/build/success -d branch="${TRAVIS_BRANCH}" -d commit="${TRAVIS_COMMIT}"'

See also

Events, Reactor

	
post(tag_suffix=None)

	Fire an event in Salt with a custom event tag and data

	
POST /hook

	
	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] -- success

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] -- authentication required

	406 Not Acceptable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7] -- requested Content-Type not available

	413 Request Entity Too Large [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14] -- request body is too large

Example request:

curl -sS localhost:8000/hook -d foo='Foo!' -d bar='Bar!'

POST /hook HTTP/1.1
Host: localhost:8000
Content-Length: 16
Content-Type: application/x-www-form-urlencoded

foo=Foo&bar=Bar!

Example response:

HTTP/1.1 200 OK
Content-Length: 14
Content-Type: application/json

{"success": true}

As a practical example, an internal continuous-integration build
server could send an HTTP POST request to the URL
http://localhost:8000/hook/mycompany/build/success which contains
the result of a build and the SHA of the version that was built as
JSON. That would then produce the following event in Salt that could be
used to kick off a deployment via Salt's Reactor:

Event fired at Fri Feb 14 17:40:11 2014

Tag: salt/netapi/hook/mycompany/build/success
Data:
{'_stamp': '2014-02-14_17:40:11.440996',
 'headers': {
 'X-My-Secret-Key': 'F0fAgoQjIT@W',
 'Content-Length': '37',
 'Content-Type': 'application/json',
 'Host': 'localhost:8000',
 'Remote-Addr': '127.0.0.1'},
 'post': {'revision': 'aa22a3c4b2e7', 'result': True}}

Salt's Reactor could listen for the event:

reactor:
 - 'salt/netapi/hook/mycompany/build/*':
 - /srv/reactor/react_ci_builds.sls

And finally deploy the new build:

{% set secret_key = data.get('headers', {}).get('X-My-Secret-Key') %}
{% set build = data.get('post', {}) %}

{% if secret_key == 'F0fAgoQjIT@W' and build.result == True %}
deploy_my_app:
 cmd.state.sls:
 - tgt: 'application*'
 - arg:
 - myapp.deploy
 - kwarg:
 pillar:
 revision: {{ revision }}
{% endif %}

rest_wsgi

A minimalist REST API for Salt

This rest_wsgi module provides a no-frills REST interface for sending
commands to the Salt master. There are no dependencies.

Extra care must be taken when deploying this module into production. Please
read this documentation in entirety.

All authentication is done through Salt's external auth
system.

Usage

	All requests must be sent to the root URL (/).

	All requests must be sent as a POST request with JSON content in the request
body.

	All responses are in JSON.

See also

rest_cherrypy

The rest_cherrypy module is
more full-featured, production-ready, and has builtin security features.

Deployment

The rest_wsgi netapi module is a standard Python WSGI app. It can be
deployed one of two ways.

Using a WSGI-compliant web server

This module may be run via any WSGI-compliant production server such as Apache
with mod_wsgi or Nginx with FastCGI.

It is strongly recommended that this app be used with a server that supports
HTTPS encryption since raw Salt authentication credentials must be sent with
every request. Any apps that access Salt through this interface will need to
manually manage authentication credentials (either username and password or a
Salt token). Tread carefully.

salt-api using a development-only server

If run directly via the salt-api daemon it uses the wsgiref.simple_server() [http://docs.python.org/2/library/wsgiref.html#module-wsgiref.simple_server]
that ships in the Python standard library. This is a single-threaded server
that is intended for testing and development. This server does not use
encryption; please note that raw Salt authentication credentials must be sent
with every HTTP request.

Running this module via salt-api is not recommended!

In order to start this module via the salt-api daemon the following must be
put into the Salt master config:

rest_wsgi:
 port: 8001

Usage examples

	
POST /

	Example request for a basic test.ping:

% curl -sS -i \
 -H 'Content-Type: application/json' \
 -d '[{"eauth":"pam","username":"saltdev","password":"saltdev","client":"local","tgt":"*","fun":"test.ping"}]' localhost:8001

Example response:

HTTP/1.0 200 OK
Content-Length: 89
Content-Type: application/json

{"return": [{"ms--4": true, "ms--3": true, "ms--2": true, "ms--1": true, "ms--0": true}]}

Example request for an asynchronous test.ping:

% curl -sS -i \
 -H 'Content-Type: application/json' \
 -d '[{"eauth":"pam","username":"saltdev","password":"saltdev","client":"local_async","tgt":"*","fun":"test.ping"}]' localhost:8001

Example response:

HTTP/1.0 200 OK
Content-Length: 103
Content-Type: application/json

{"return": [{"jid": "20130412192112593739", "minions": ["ms--4", "ms--3", "ms--2", "ms--1", "ms--0"]}]}

Example request for looking up a job ID:

% curl -sS -i \
 -H 'Content-Type: application/json' \
 -d '[{"eauth":"pam","username":"saltdev","password":"saltdev","client":"runner","fun":"jobs.lookup_jid","jid":"20130412192112593739"}]' localhost:8001

Example response:

HTTP/1.0 200 OK
Content-Length: 89
Content-Type: application/json

{"return": [{"ms--4": true, "ms--3": true, "ms--2": true, "ms--1": true, "ms--0": true}]}

	form lowstate:

	A list of lowstate data appropriate for the
client interface you are calling.

	status 200:

	success

	status 401:

	authentication required

output modules

Follow one of the below links for further information and examples

	dson

	Display return data in DSON format

	highstate

	Outputter for displaying results of state runs

	json_out

	Display return data in JSON format

	key

	Display salt-key output

	nested

	Recursively display nested data

	newline_values_only

	Display values only, separated by newlines

	no_out_quiet

	Display no output

	no_return

	Display output for minions that did not return

	overstatestage

	Display clean output of an overstate stage

	pony

	Display Pony output data structure

	pprint_out

	Python pretty-print (pprint)

	profile

	Display profiling data in a table format

	progress

	Display return data as a progress bar

	raw

	Display raw output data structure

	table_out

	Display output in a table format

	txt

	Simple text outputter

	virt_query

	virt.query outputter

	yaml_out

	Display return data in YAML format

salt.output.dson

Display return data in DSON format

This outputter is intended for demonstration purposes. Information on the DSON
spec can be found here [http://vpzomtrrfrt.github.io/DSON/].

This outputter requires Dogeon [https://github.com/soasme/dogeon] (installable via pip)

	
salt.output.dson.output(data, **kwargs)

	Print the output data in JSON

salt.output.highstate

Outputter for displaying results of state runs

The return data from the Highstate command is a standard data structure
which is parsed by the highstate outputter to deliver a clean and readable
set of information about the HighState run on minions.

Two configurations can be set to modify the highstate outputter. These values
can be set in the master config to change the output of the salt command or
set in the minion config to change the output of the salt-call command.

	state_verbose:
	By default state_verbose is set to True, setting this to False will
instruct the highstate outputter to omit displaying anything in green, this
means that nothing with a result of True and no changes will not be printed

	state_output:
	The highstate outputter has six output modes,
full, terse, mixed, changes and filter

	The default is set to full, which will display many lines of detailed
information for each executed chunk.

	If terse is used, then the output is greatly simplified and shown in
only one line.

	If mixed is used, then terse output will be used unless a state
failed, in which case full output will be used.

	If changes is used, then terse output will be used if there was no
error and no changes, otherwise full output will be used.

	If filter is used, then either or both of two different filters can be
used: exclude or terse.

	for exclude, state.highstate expects a list of states to be excluded (or None)
followed by True for terse output or False for regular output.
Because of parsing nuances, if only one of these is used, it must still
contain a comma. For instance: exclude=True,.

	for terse, state.highstate expects simply True or False.

These can be set as such from the command line, or in the Salt config as
state_output_exclude or state_output_terse, respectively.

The output modes have one modifier:

full_id, terse_id, mixed_id, changes_id and filter_id
If _id is used, then the corresponding form will be used, but the value for name
will be drawn from the state ID. This is useful for cases where the name
value might be very long and hard to read.

	state_tabular:
	If state_output uses the terse output, set this to True for an aligned
output format. If you wish to use a custom format, this can be set to a
string.

	state_output_pct:
	Set state_output_pct to True in order to add "Success %" and "Failure %"
to the "Summary" section at the end of the highstate output.

	state_compress_ids:
	Set state_compress_ids to True to aggregate information about states
which have multiple "names" under the same state ID in the highstate output.
This is useful in combination with the terse_id value set in the
state_output option when states are using the names state parameter.

Example usage:

If state_output: filter is set in the configuration file:

salt '*' state.highstate exclude=None,True

means to exclude no states from the highstate and turn on terse output.

salt twd state.highstate exclude=problemstate1,problemstate2,False

means to exclude states problemstate1 and problemstate2
from the highstate, and use regular output.

Example output for the above highstate call when top.sls defines only
one other state to apply to minion twd:

twd:

Summary for twd

Succeeded: 1 (changed=1)
Failed: 0

Total states run: 1

Example output with no special settings in configuration files:

myminion:

 ID: test.ping
 Function: module.run
 Result: True
 Comment: Module function test.ping executed
 Changes:

 ret:
 True

Summary for myminion

Succeeded: 1
Failed: 0

Total: 0

	
salt.output.highstate.output(data, **kwargs)

	The HighState Outputter is only meant to be used with the state.highstate
function, or a function that returns highstate return data.

salt.output.json_out

Display return data in JSON format

	configuration:

	The output format can be configured in two ways:
Using the --out-indent CLI flag and specifying a positive integer or a
negative integer to group JSON from each minion to a single line.

Or setting the output_indent setting in the Master or Minion
configuration file with one of the following values:

	Null: put each minion return on a single line.

	pretty: use four-space indents and sort the keys.

	An integer: specify the indentation level.

Salt's outputters operate on a per-minion basis. Each minion return will be
output as a single JSON object once it comes in to the master.

Some JSON parsers can guess when an object ends and a new one begins but many
can not. A good way to differentiate between each minion return is to use the
single-line output format and to parse each line individually. Example output
(truncated):

{"dave": {"en0": {"hwaddr": "02:b0:26:32:4c:69", ...}}}
{"jerry": {"en0": {"hwaddr": "02:26:ab:0d:b9:0d", ...}}}
{"kevin": {"en0": {"hwaddr": "02:6d:7f:ce:9f:ee", ...}}}
{"mike": {"en0": {"hwaddr": "02:48:a2:4b:70:a0", ...}}}
{"phill": {"en0": {"hwaddr": "02:1d:cc:a2:33:55", ...}}}
{"stuart": {"en0": {"hwaddr": "02:9a:e0:ea:9e:3c", ...}}}

CLI Example:

salt '*' foo.bar --out=json

	
salt.output.json_out.output(data, **kwargs)

	Print the output data in JSON

salt.output.key

Display salt-key output

The salt-key command makes use of this outputter to format its output.

	
salt.output.key.output(data, **kwargs)

	Read in the dict structure generated by the salt key API methods and
print the structure.

salt.output.nested

Recursively display nested data

This is the default outputter for most execution functions.

Example output:

myminion:

 foo:

 bar:
 baz
 dictionary:

 abc:
 123
 def:
 456
 list:
 - Hello
 - World

	
class salt.output.nested.NestDisplay(retcode=0)

	Manage the nested display contents

	
display(ret, indent, prefix, out)

	Recursively iterate down through data structures to determine output

	
ustring(indent, color, msg, prefix='', suffix='', endc=None)

	

	
salt.output.nested.output(ret, **kwargs)

	Display ret data

salt.output.newline_values_only

Display values only, separated by newlines

New in version 2015.5.0.

This outputter is designed for Salt CLI return data. It will do the following
to the return dict:

	Get just the values (ignoring the minion IDs).

	Each value, if it is iterable, is split a separate line.

	Each minion's values are separated by newlines.

This results in a single string of return data containing all the values from
the various minions.

Warning

As noted above, this outputter will discard the minion ID. If the minion ID
is important, then an outputter that returns the full return dictionary in
a parsable format (such as json, pprint,, or yaml) may be more
suitable.

Example 1

salt '*' foo.bar --out=newline_values_only

Input

{
 'myminion': ['127.0.0.1', '10.0.0.1'],
 'second-minion': ['127.0.0.1', '10.0.0.2']
}

Output

127.0.0.1
10.0.0.1
127.0.0.1
10.0.0.2

Example 2

salt '*' foo.bar --out=newline_values_only

Input

{
 'myminion': 8,
 'second-minion': 10
}

Output

8
10

	
salt.output.newline_values_only.output(data, **kwargs)

	Display modified ret data

salt.output.no_out_quiet

Display no output

No output is produced when this outputter is selected

CLI Example:

salt '*' foo.bar --out=quiet

	
salt.output.no_out_quiet.output(ret, **kwargs)

	Don't display data. Used when you only are interested in the
return.

salt.output.no_return

Display output for minions that did not return

This outputter is used to display notices about which minions failed to return
when a salt function is run with -v or --verbose. It should not be
called directly from the CLI.

Example output:

virtucentos:
 Minion did not return

	
class salt.output.no_return.NestDisplay

	Create generator for nested output

	
display(ret, indent, prefix, out)

	Recursively iterate down through data structures to determine output

	
salt.output.no_return.output(ret, **kwargs)

	Display ret data

salt.output.overstatestage

Display clean output of an overstate stage

This outputter is used to display Orchestrate Runner stages, and should not be called directly.

	
salt.output.overstatestage.output(data, **kwargs)

	Format the data for printing stage information from the overstate system

salt.output.pony

Display Pony output data structure

	depends:

	
	ponysay CLI program

Display output from a pony. Ponies are better than cows
because everybody wants a pony.

Example output:

< {'local': True} >

 \
 \
 \
 ▄▄▄▄▄▄▄
 ▀▄▄████▄▄
 ▄▄▄█████▄█▄█▄█▄▄▄
 ██████▄▄▄█▄▄█████▄▄
 ▀▄▀ █████▄▄█▄▄█████
 ▄▄▄███████████▄▄▄
 ████▄▄▄▄▄▄███▄▄██ ▄▄▄▄▄▄▄
 ████▄████▄██▄▄███ ▄▄▄▄██▄▄▄▄▄▄
 █▄███▄▄█▄███▄▄██▄▀ ▄▄███████▄▄███▄▄
 ▀▄██████████████▄▄ ▄▄█▄▀▀▀▄▄█████▄▄██
 ▀▀▀▀▀█████▄█▄█▄▄▄▄▄▄▄█ ▀▄████▄████
 ████▄███▄▄▄▄▄▄▄▄▄ ▄▄█████▄███
 ▀▄█▄█▄▄▄██▄▄▄▄▄██ ▄▄██▄██████
 ▀▄████████████▄▀ ▄▄█▄██████▄▀
 ██▄██▄▄▄▄█▄███▄ ███▄▄▄▄▄██▄▀
 ██████ ▀▄▄█████ ▀████████
 ▄▄▄▄███ ███████ ██████▄█▄▄
 ███████ ████████▀▄▀███▄▄█▄▄
 ▄██▄▄████ ████████ ▀▄██▀▄▄▀
 █▄▄██████ █▄▄██████
 █▄▄▄▄█ █▄▄▄▄█

CLI Example:

salt '*' foo.bar --out=pony

	
salt.output.pony.output(data, **kwargs)

	Mane function

salt.output.pprint_out

Python pretty-print (pprint)

The python pretty-print system was once the default outputter. It simply
passes the return data through to pprint.pformat and prints the results.

CLI Example:

salt '*' foo.bar --out=pprint

Example output:

{'saltmine': {'foo': {'bar': 'baz',
 'dictionary': {'abc': 123, 'def': 456},
 'list': ['Hello', 'World']}}}

	
salt.output.pprint_out.output(data, **kwargs)

	Print out via pretty print

salt.output.profile

Display profiling data in a table format

Show profile data for returners that would normally show a highstate output.

CLI Example:

salt '*' state.apply something --out=profile

Attempt to output the returns of state.sls and state.highstate as a table of
names, modules and durations that looks somewhat like the following:

name mod.fun duration (ms)
--
I-fail-unless-stmt other.function -1.0000
old-minion-config grains.list_present 1.1200
salt-data group.present 48.3800
/etc/salt/minion file.managed 63.1450

To get the above appearance, use settings something like these:

out.table.separate_rows: False
out.table.justify: left
out.table.delim: ' '
out.table.prefix: ''
out.table.suffix: ''

	
salt.output.profile.output(data, **kwargs)

	Display the profiling data in a table format.

salt.output.progress

Display return data as a progress bar

	
salt.output.progress.output(ret, bar, **kwargs)

	Update the progress bar

	
salt.output.progress.progress_iter(progress)

	Initialize and return a progress bar iter

salt.output.raw

Display raw output data structure

This outputter simply displays the output as a python data structure, by
printing a string representation of it. It is similar to the pprint outputter, only the data is not nicely
formatted/indented.

This was the original outputter used by Salt before the outputter system was
developed.

CLI Example:

salt '*' foo.bar --out=raw

Example output:

salt '*' foo.bar --out=raw
{'myminion': {'foo': {'list': ['Hello', 'World'], 'bar': 'baz', 'dictionary': {'abc': 123, 'def': 456}}}}

	
salt.output.raw.output(data, **kwargs)

	Rather basic....

salt.output.table_out

Display output in a table format

New in version 2017.7.0.

The table outputter displays a sequence of rows as table.

Example output:

edge01.bjm01:

 comment:

 out:

 __
 | Active | Interface | Last Move | Mac | Moves | Static | Vlan |
 __
 | True | ae1.900 | 0.0 | 40:A6:77:5A:50:01 | 0 | False | 111 |
 __
 | True | ae1.111 | 0.0 | 64:16:8D:32:26:58 | 0 | False | 111 |
 __
 | True | ae1.111 | 0.0 | 8C:60:4F:73:2D:57 | 0 | False | 111 |
 __
 | True | ae1.111 | 0.0 | 8C:60:4F:73:2D:7C | 0 | False | 111 |
 __
 | True | ae1.222 | 0.0 | 8C:60:4F:73:2D:57 | 0 | False | 222 |
 __
 | True | ae1.222 | 0.0 | F4:0F:1B:76:9D:97 | 0 | False | 222 |
 __
 result:

CLI Example:

salt '*' foo.bar --out=table

	
class salt.output.table_out.TableDisplay(has_header=True, row_delimiter='-', delim=' | ', justify='center', separate_rows=True, prefix='| ', suffix=' |', width=50, wrapfunc=None)

	Manage the table display content.

	
display(ret, indent, out, rows_key=None, labels_key=None)

	Display table(s).

	
display_rows(rows, labels, indent)

	Prepares row content and displays.

	
prepare_rows(rows, indent, has_header)

	Prepare rows content to be displayed.

	
ustring(indent, color, msg, prefix='', suffix='', endc=None)

	Build the unicode string to be displayed.

	
wrap_onspace(text)

	When the text inside the column is longer then the width, will split by space and continue on the next line.

	
salt.output.table_out.output(ret, **kwargs)

	Display the output as table.

	Parameters:

	
	nested_indent (*) -- integer, specify the left alignment.

	has_header (*) -- boolean specifying if header should be displayed. Default: True.

	row_delimiter (*) -- character to separate rows. Default: _.

	delim (*) -- character to separate columns. Default: " | ".

	justify (*) -- text alignment. Default: center.

	separate_rows (*) -- boolean specifying if row separator will be displayed between consecutive rows. Default: True.

	prefix (*) -- character at the beginning of the row. Default: "| ".

	suffix (*) -- character at the end of the row. Default: " |".

	width (*) -- column max width. Default: 50.

	rows_key (*) -- display the rows under a specific key.

	labels_key (*) -- use the labels under a certain key. Otherwise will try to use the dictionary keys (if any).

	title (*) -- display title when only one table is selected (using the rows_key argument).

salt.output.txt

Simple text outputter

The txt outputter has been developed to make the output from shell commands
on minions appear as they do when the command is executed on the minion.

CLI Example:

salt '*' foo.bar --out=txt

	
salt.output.txt.output(data, **kwargs)

	Output the data in lines, very nice for running commands

salt.output.virt_query

virt.query outputter

Used to display the output from the virt.query
runner.

	
salt.output.virt_query.output(data, **kwargs)

	Display output for the salt-run virt.query function

salt.output.yaml_out

Display return data in YAML format

This outputter defaults to printing in YAML block mode for better readability.

CLI Example:

salt '*' foo.bar --out=yaml

Example output:

CLI Example:

saltmine:
 foo:
 bar: baz
 dictionary:
 abc: 123
 def: 456
 list:
 - Hello
 - World

	
salt.output.yaml_out.output(data, **kwargs)

	Print out YAML using the block mode

pillar modules

	cmd_json

	Execute a command and read the output as JSON.

	cmd_yaml

	Execute a command and read the output as YAML.

	cmd_yamlex

	Execute a command and read the output as YAMLEX.

	cobbler

	A module to pull data from Cobbler via its API into the Pillar dictionary

	confidant

	An external pillar module for getting credentials from confidant.

	consul_pillar

	Use Consul K/V as a Pillar source with values parsed as YAML

	csvpillar

	Store key/value pairs in a CSV file

	digicert

	Digicert Pillar Certificates

	django_orm

	Generate Pillar data from Django models through the Django ORM

	ec2_pillar

	Retrieve EC2 instance data for minions for ec2_tags and ec2_tags_list

	etcd_pillar

	Use etcd data as a Pillar source

	extra_minion_data_in_pillar

	Add all extra minion data to the pillar.

	file_tree

	The file_tree external pillar allows values from all files in a directory tree to be imported as Pillar data.

	foreman

	A module to pull data from Foreman via its API into the Pillar dictionary

	git_pillar

	Use a git repository as a Pillar source

	gpg

	Decrypt pillar data through the builtin GPG renderer

	hg_pillar

	Use remote Mercurial repository as a Pillar source.

	hiera

	Use hiera data as a Pillar source

	http_json

	A module that adds data to the Pillar structure retrieved by an http request

	http_yaml

	A module that adds data to the Pillar structure retrieved by an http request

	libvirt

	Load up the libvirt keys into Pillar for a given minion if said keys have been generated using the libvirt key runner

	makostack

	Simple and flexible YAML ext_pillar which can read pillar from within pillar.

	mongo

	Read Pillar data from a mongodb collection

	mysql

	Retrieve Pillar data by doing a MySQL query

	nacl

	Decrypt pillar data through the builtin NACL renderer

	netbox

	A module that adds data to the Pillar structure from a NetBox API.

	neutron

	Use Openstack Neutron data as a Pillar source.

	nodegroups

	Nodegroups Pillar

	pepa

	Pepa

	pillar_ldap

	Use LDAP data as a Pillar source

	postgres

	Retrieve Pillar data by doing a postgres query

	puppet

	Execute an unmodified puppet_node_classifier and read the output as YAML.

	reclass_adapter

	Use the "reclass" database as a Pillar source

	redismod

	Read pillar data from a Redis backend

	rethinkdb_pillar

	Provide external pillar data from RethinkDB

	s3

	Copy pillar data from a bucket in Amazon S3

	saltclass

	SaltClass Pillar Module

	sql_base

	Retrieve Pillar data by doing a SQL query

	sqlcipher

	Retrieve Pillar data by running a SQLCipher query

	sqlite3

	Retrieve Pillar data by doing a SQLite3 query

	stack

	Simple and flexible YAML ext_pillar which can read pillar from within pillar.

	svn_pillar

	Clone a remote SVN repository and use the filesystem as a Pillar source

	varstack_pillar

	Use Varstack [https://github.com/conversis/varstack] data as a Pillar source

	vault

	Vault Pillar Module

	venafi

	Venafi Pillar Certificates

	virtkey

	Accept a key from a hypervisor if the virt runner has already submitted an authorization request

	vmware_pillar

	Pillar data from vCenter or an ESXi host

salt.pillar.cmd_json

Execute a command and read the output as JSON. The JSON data is then directly overlaid onto the minion's Pillar data.

Configuring the CMD_JSON ext_pillar

Set the following Salt config to setup cmd json result as external pillar source:

ext_pillar:
 - cmd_json: 'echo {"arg":"value"}'

This will run the command echo {arg: value} on the master.

Module Documentation

	
salt.pillar.cmd_json.ext_pillar(minion_id, pillar, command)

	Execute a command and read the output as JSON

salt.pillar.cmd_yaml

Execute a command and read the output as YAML. The YAML data is then directly overlaid onto the minion's Pillar data

	
salt.pillar.cmd_yaml.ext_pillar(minion_id, pillar, command)

	Execute a command and read the output as YAML

salt.pillar.cmd_yamlex

Execute a command and read the output as YAMLEX.

The YAMLEX data is then directly overlaid onto the minion's Pillar data

	
salt.pillar.cmd_yamlex.ext_pillar(minion_id, pillar, command)

	Execute a command and read the output as YAMLEX

salt.pillar.cobbler

A module to pull data from Cobbler via its API into the Pillar dictionary

Configuring the Cobbler ext_pillar

The same cobbler.* parameters are used for both the Cobbler tops and Cobbler pillar
modules.

ext_pillar:
- cobbler:
 key: cobbler # Nest results within this key. By default, values are not nested.
 only: [parameters] # Add only these keys to pillar.

cobbler.url: https://example.com/cobbler_api #default is http://localhost/cobbler_api
cobbler.user: username # default is no username
cobbler.password: password # default is no password

Module Documentation

	
salt.pillar.cobbler.ext_pillar(minion_id, pillar, key=None, only=())

	Read pillar data from Cobbler via its API.

salt.pillar.confidant

An external pillar module for getting credentials from confidant.

Configuring the Confidant module

The module can be configured via ext_pillar in the minion config:

	ext_pillar:
	
	
	confidant:
	
	profile:
	# The URL of the confidant web service
url: 'https://confidant-production.example.com'
The context to use for KMS authentication
auth_context:
from: example-production-iad
to: confidant-production-iad
user_type: service
The KMS master key to use for authentication
auth_key: "alias/authnz"
Cache file for KMS auth token
token_cache_file: /run/confidant/confidant_token
The duration of the validity of a token, in minutes
token_duration: 60
key, keyid and region can be defined in the profile, but it's
generally best to use IAM roles or environment variables for AWS
auth.
keyid: 98nh9h9h908h09kjjk
key: jhf908gyeghehe0he0g8h9u0j0n0n09hj09h0
region: us-east-1

	depends:

	confidant-common, confidant-client

Module Documentation

	
salt.pillar.confidant.ext_pillar(minion_id, pillar, profile=None)

	Read pillar data from Confidant via its API.

salt.pillar.consul_pillar

Use Consul K/V as a Pillar source with values parsed as YAML

	depends:

	
	python-consul

In order to use an consul server, a profile must be created in the master
configuration file:

my_consul_config:
 consul.host: 127.0.0.1
 consul.port: 8500
 consul.token: b6376760-a8bb-edd5-fcda-33bc13bfc556
 consul.scheme: http
 consul.consistency: default
 consul.dc: dev
 consul.verify: True

All parameters are optional.

The consul.token requires python-consul >= 0.4.7.

If you have a multi-datacenter Consul cluster you can map your pillarenv
entries to your data centers by providing a dictionary of mappings in
consul.dc field:

my_consul_config:
 consul.dc:
 dev: us-east-1
 prod: us-west-1

In the example above we specifying static mapping between Pillar environments
and data centers: the data for dev and prod Pillar environments will
be fetched from us-east-1 and us-west-1 datacenter respectively.

In fact when consul.dc is set to dictionary keys are processed as regular
expressions (that can capture named parameters) and values are processed as
string templates as per PEP 3101.

my_consul_config:
 consul.dc:
 ^dev-.*$: dev-datacenter
 ^(?P<region>.*)-prod$: prod-datacenter-{region}

This example maps all Pillar environments starting with dev- to
dev-datacenter whereas Pillar environment like eu-prod will be
mapped to prod-datacenter-eu.

Before evaluation patterns are sorted by length in descending order.

If Pillar environment names correspond to data center names a single pattern
can be used:

my_consul_config:
 consul.dc:
 ^(?P<env>.*)$: '{env}'

After the profile is created, configure the external pillar system to use it.
Optionally, a root may be specified.

ext_pillar:
 - consul: my_consul_config

ext_pillar:
 - consul: my_consul_config root=salt

Using these configuration profiles, multiple consul sources may also be used:

ext_pillar:
 - consul: my_consul_config
 - consul: my_other_consul_config

Either the minion_id, or the role, or the environment grain may be used in the root
path to expose minion-specific information stored in consul.

ext_pillar:
 - consul: my_consul_config root=salt/%(minion_id)s
 - consul: my_consul_config root=salt/%(role)s
 - consul: my_consul_config root=salt/%(environment)s

Minion-specific values may override shared values when the minion-specific root
appears after the shared root:

ext_pillar:
 - consul: my_consul_config root=salt-shared
 - consul: my_other_consul_config root=salt-private/%(minion_id)s

If using the role or environment grain in the consul key path, be sure to define it using
/etc/salt/grains, or similar:

role: my-minion-role
environment: dev

It's possible to lock down where the pillar values are shared through minion
targeting. Note that double quotes " are required around the target value
and cannot be used inside the matching statement. See the section on Compound
Matchers for more examples.

ext_pillar:
 - consul: my_consul_config root=salt target="L@salt.example.com and G@osarch:x86_64"

The data from Consul can be merged into a nested key in Pillar.

ext_pillar:
 - consul: my_consul_config pillar_root=consul_data

By default, keys containing YAML data will be deserialized before being merged into Pillar.
This behavior can be disabled by setting expand_keys to false.

ext_pillar:
 - consul: my_consul_config expand_keys=false

	
salt.pillar.consul_pillar.consul_fetch(client, path)

	Query consul for all keys/values within base path

	
salt.pillar.consul_pillar.ext_pillar(minion_id, pillar, conf)

	Check consul for all data

	
salt.pillar.consul_pillar.fetch_tree(client, path, expand_keys)

	Grab data from consul, trim base path and remove any keys which
are folders. Take the remaining data and send it to be formatted
in such a way as to be used as pillar data.

	
salt.pillar.consul_pillar.get_conn(opts, profile)

	Return a client object for accessing consul

	
salt.pillar.consul_pillar.pillar_format(ret, keys, value, expand_keys)

	Perform data formatting to be used as pillar data and
merge it with the current pillar data

salt.pillar.csvpillar

Store key/value pairs in a CSV file

New in version 2016.11.0.

Example configuration:

ext_pillar:
 - csv: /path/to/file.csv

or

ext_pillar:
 - csv:
 path: /path/to/file.csv
 namespace: 'subkey'
 fieldnames:
 - col1
 - col2
 - col2

The first column must be minion IDs and the first row must be dictionary keys.
E.g.:

	id

	role

	env

	jerry

	web

	prod

	stuart

	web

	stage

	dave

	web

	qa

	phil

	db

	prod

	kevin

	db

	stage

	mike

	db

	qa

Will produce the following Pillar values for a minion named "jerry":

{
 'role': 'web',
 'env': 'prod',
}

	
salt.pillar.csvpillar.ext_pillar(mid, pillar, path, idkey='id', namespace=None, fieldnames=None, restkey=None, restval=None, dialect='excel')

	Read a CSV into Pillar

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Absolute path to a CSV file.

	idkey (str [https://docs.python.org/3/library/stdtypes.html#str]) -- (Optional) The column name of minion IDs.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) -- (Optional) A pillar key to namespace the values under.

	fieldnames (list [https://docs.python.org/3/library/stdtypes.html#list]) -- (Optional) if the first row of the CSV is not
column names they may be specified here instead.

salt.pillar.digicert

Digicert Pillar Certificates

This module will only return pillar data if the digicert runner module has
already been used to create certificates.

To configure this module, set digicert to True in the ext_pillar
section of your master configuration file:

ext_pillar:
 - digicert: True

	
salt.pillar.digicert.ext_pillar(minion_id, pillar, conf)

	Return an existing set of certificates

salt.pillar.django_orm

Generate Pillar data from Django models through the Django ORM

	maintainer:

	Micah Hausler <micah.hausler@gmail.com>

	maturity:

	new

Configuring the django_orm ext_pillar

To use this module, your Django project must be on the salt master server with
database access. This assumes you are using virtualenv with all the project's
requirements installed.

ext_pillar:
 - django_orm:
 pillar_name: my_application
 project_path: /path/to/project/
 settings_module: my_application.settings
 env_file: /path/to/env/file.sh
 # Optional: If your project is not using the system python,
 # add your virtualenv path below.
 env: /path/to/virtualenv/

 django_app:

 # Required: the app that is included in INSTALLED_APPS
 my_application.clients:

 # Required: the model name
 Client:

 # Required: model field to use as the key in the rendered
 # Pillar. Must be unique; must also be included in the
 # ``fields`` list below.
 name: shortname

 # Optional:
 # See Django's QuerySet documentation for how to use .filter()
 filter: {'kw': 'args'}

 # Required: a list of field names
 # List items will be used as arguments to the .values() method.
 # See Django's QuerySet documentation for how to use .values()
 fields:
 - field_1
 - field_2

This would return pillar data that would look like

my_application:
 my_application.clients:
 Client:
 client_1:
 field_1: data_from_field_1
 field_2: data_from_field_2
 client_2:
 field_1: data_from_field_1
 field_2: data_from_field_2

As another example, data from multiple database tables can be fetched using
Django's regular lookup syntax. Note, using ManyToManyFields will not currently
work since the return from values() changes if a ManyToMany is present.

ext_pillar:
 - django_orm:
 pillar_name: djangotutorial
 project_path: /path/to/mysite
 settings_module: mysite.settings

 django_app:
 mysite.polls:
 Choices:
 name: poll__question
 fields:
 - poll__question
 - poll__id
 - choice_text
 - votes

Module Documentation

	
salt.pillar.django_orm.ext_pillar(minion_id, pillar, pillar_name, project_path, settings_module, django_app, env=None, env_file=None, *args, **kwargs)

	Connect to a Django database through the ORM and retrieve model fields

	Parameters:

	
	pillar_name (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The name of the pillar to be returned

	project_path (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The full path to your Django project (the directory
manage.py is in)

	settings_module (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The settings module for your project. This can be
found in your manage.py file

	django_app (str [https://docs.python.org/3/library/stdtypes.html#str]) -- A dictionary containing your apps, models, and fields

	env (str [https://docs.python.org/3/library/stdtypes.html#str]) -- The full path to the virtualenv for your Django project

	env_file (str [https://docs.python.org/3/library/stdtypes.html#str]) -- An optional bash file that sets up your environment. The
file is run in a subprocess and the changed variables are then added

salt.pillar.ec2_pillar

Retrieve EC2 instance data for minions for ec2_tags and ec2_tags_list

The minion id must be the AWS instance-id or value in tag_match_key. For
example set tag_match_key to Name to have the minion-id matched against
the tag 'Name'. The tag contents must be unique. The value of
tag_match_value can be 'uqdn' or 'asis'. if 'uqdn', then the domain will be
stripped before comparison.

Additionally, the use_grain option can be set to True. This allows the
use of an instance-id grain instead of the minion-id. Since this is a potential
security risk, the configuration can be further expanded to include a list of
minions that are trusted to only allow the alternate id of the instances to
specific hosts. There is no glob matching at this time.

Note

If you are using use_grain: True in the configuration for this external
pillar module, the minion must have metadata_server_grains
enabled in the minion config file (see also here).

It is important to also note that enabling the use_grain option allows
the minion to manipulate the pillar data returned, as described above.

The optional tag_list_key indicates which keys should be added to
ec2_tags_list and be split by tag_list_sep (by default ;). If a tag
key is included in tag_list_key it is removed from ec2_tags. If a tag does
not exist it is still included as an empty list.

Note

As with any master configuration change, restart the salt-master daemon for
changes to take effect.

ext_pillar:
 - ec2_pillar:
 tag_match_key: 'Name'
 tag_match_value: 'asis'
 tag_list_key:
 - Role
 tag_list_sep: ';'
 use_grain: True
 minion_ids:
 - trusted-minion-1
 - trusted-minion-2
 - trusted-minion-3

This is a very simple pillar configuration that simply retrieves the instance
data from AWS. Currently the only portion implemented are EC2 tags, which
returns a list of key/value pairs for all of the EC2 tags assigned to the
instance.

	
salt.pillar.ec2_pillar.ext_pillar(minion_id, pillar, use_grain=False, minion_ids=None, tag_match_key=None, tag_match_value='asis', tag_list_key=None, tag_list_sep=';')

	Execute a command and read the output as YAML

salt.pillar.etcd_pillar

Use etcd data as a Pillar source

New in version 2014.7.0.

	depends:

	
	python-etcd or etcd3-py

In order to use an etcd server, a profile must be created in the master
configuration file:

my_etcd_config:
 etcd.host: 127.0.0.1
 etcd.port: 4001

In order to choose whether to use etcd API v2 or v3, you can put the following
configuration option in the same place as your etcd configuration. This option
defaults to true, meaning you will use v2 unless you specify otherwise.

etcd.require_v2: True

When using API v3, there are some specific options available to be configured
within your etcd profile. They are defaulted to the following...

etcd.encode_keys: False
etcd.encode_values: True
etcd.raw_keys: False
etcd.raw_values: False
etcd.unicode_errors: "surrogateescape"

etcd.encode_keys indicates whether you want to pre-encode keys using msgpack before
adding them to etcd.

Note

If you set etcd.encode_keys to True, all recursive functionality will no longer work.
This includes tree and ls and all other methods if you set recurse/recursive to True.
This is due to the fact that when encoding with msgpack, keys like /salt and /salt/stack will have
differing byte prefixes, and etcd v3 searches recursively using prefixes.

etcd.encode_values indicates whether you want to pre-encode values using msgpack before
adding them to etcd. This defaults to True to avoid data loss on non-string values wherever possible.

etcd.raw_keys determines whether you want the raw key or a string returned.

etcd.raw_values determines whether you want the raw value or a string returned.

etcd.unicode_errors determines what you policy to follow when there are encoding/decoding errors.

After the profile is created, configure the external pillar system to use it.
Optionally, a root may be specified.

ext_pillar:
 - etcd: my_etcd_config

ext_pillar:
 - etcd: my_etcd_config root=/salt

Using these configuration profiles, multiple etcd sources may also be used:

ext_pillar:
 - etcd: my_etcd_config
 - etcd: my_other_etcd_config

The minion_id may be used in the root path to expose minion-specific
information stored in etcd.

ext_pillar:
 - etcd: my_etcd_config root=/salt/%(minion_id)s

Minion-specific values may override shared values when the minion-specific root
appears after the shared root:

ext_pillar:
 - etcd: my_etcd_config root=/salt-shared
 - etcd: my_other_etcd_config root=/salt-private/%(minion_id)s

Using the configuration above, the following commands could be used to share a
key with all minions but override its value for a specific minion:

etcdctl set /salt-shared/mykey my_value
etcdctl set /salt-private/special_minion_id/mykey my_other_value

	
salt.pillar.etcd_pillar.ext_pillar(minion_id, pillar, conf)

	Check etcd for all data

salt.pillar.extra_minion_data_in_pillar

Add all extra minion data to the pillar.

	codeauthor:

	Alexandru.Bleotu@morganstanley.ms.com

One can filter on the keys to include in the pillar by using the include
parameter. For subkeys the ':' notation is supported (i.e. 'key:subkey')
The keyword <all> includes all keys.

Complete example in etc/salt/master

ext_pillar:
 - extra_minion_data_in_pillar:
 include: *

ext_pillar:
 - extra_minion_data_in_pillar:
 include:
 - key1
 - key2:subkey2

ext_pillar:
 - extra_minion_data_in_pillar:
 include: <all>

	
salt.pillar.extra_minion_data_in_pillar.ext_pillar(minion_id, pillar, include, extra_minion_data=None)

	

salt.pillar.file_tree

The file_tree external pillar allows values from all files in a directory
tree to be imported as Pillar data.

Note

This is an external pillar and is subject to the rules and
constraints governing external pillars.

New in version 2015.5.0.

In this pillar, data is organized by either Minion ID or Nodegroup name. To
setup pillar data for a specific Minion, place it in
<root_dir>/hosts/<minion_id>. To setup pillar data for an entire
Nodegroup, place it in <root_dir>/nodegroups/<node_group> where
<node_group> is the Nodegroup's name.

Example file_tree Pillar

Master Configuration

ext_pillar:
 - file_tree:
 root_dir: /srv/ext_pillar
 follow_dir_links: False
 keep_newline: True

The root_dir parameter is required and points to the directory where files
for each host are stored. The follow_dir_links parameter is optional and
defaults to False. If follow_dir_links is set to True, this external pillar
will follow symbolic links to other directories.

Warning

Be careful when using follow_dir_links, as a recursive symlink chain
will result in unexpected results.

Changed in version 2018.3.0: If root_dir is a relative path, it will be treated as relative to the
pillar_roots of the environment specified by
pillarenv. If an environment specifies multiple
roots, this module will search for files relative to all of them, in order,
merging the results.

If keep_newline is set to True, then the pillar values for files ending
in newlines will keep that newline. The default behavior is to remove the
end-of-file newline. keep_newline should be turned on if the pillar data is
intended to be used to deploy a file using contents_pillar with a
file.managed state.

Changed in version 2015.8.4: The raw_data parameter has been renamed to keep_newline. In earlier
releases, raw_data must be used. Also, this parameter can now be a list
of globs, allowing for more granular control over which pillar values keep
their end-of-file newline. The globs match paths relative to the
directories named for minion IDs and nodegroups underneath the root_dir
(see the layout examples in the below sections).

ext_pillar:
 - file_tree:
 root_dir: /path/to/root/directory
 keep_newline:
 - files/testdir/*

Note

In earlier releases, this documentation incorrectly stated that binary
files would not affected by the keep_newline configuration. However,
this module does not actually distinguish between binary and text files.

Changed in version 2017.7.0: Templating/rendering has been added. You can now specify a default render
pipeline and a black- and whitelist of (dis)allowed renderers.

template must be set to True for templating to happen.

ext_pillar:
 - file_tree:
 root_dir: /path/to/root/directory
 render_default: jinja|yaml
 renderer_blacklist:
 - gpg
 renderer_whitelist:
 - jinja
 - yaml
 template: True

Assigning Pillar Data to Individual Hosts

To configure pillar data for each host, this external pillar will recursively
iterate over root_dir/hosts/id (where id is a minion ID), and
compile pillar data with each subdirectory as a dictionary key and each file
as a value.

For example, the following root_dir tree:

./hosts/
./hosts/test-host/
./hosts/test-host/files/
./hosts/test-host/files/testdir/
./hosts/test-host/files/testdir/file1.txt
./hosts/test-host/files/testdir/file2.txt
./hosts/test-host/files/another-testdir/
./hosts/test-host/files/another-testdir/symlink-to-file1.txt

will result in the following pillar tree for minion with ID test-host:

test-host:

 apache:

 config.d:

 00_important.conf:
 <important_config important_setting="yes" />
 20_bob_extra.conf:
 <bob_specific_cfg has_freeze_ray="yes" />
 corporate_app:

 settings:

 common_settings:
 // This is the main settings file for the corporate
 // internal web app
 main_setting: probably
 bob_settings:
 role: bob

Note

The leaf data in the example shown is the contents of the pillar files.

	
salt.pillar.file_tree.ext_pillar(minion_id, pillar, root_dir=None, follow_dir_links=False, debug=False, keep_newline=False, render_default=None, renderer_blacklist=None, renderer_whitelist=None, template=False)

	Compile pillar data from the given root_dir specific to Nodegroup names
and Minion IDs.

If a Minion's ID is not found at <root_dir>/host/<minion_id> or if it
is not included in any Nodegroups named at
<root_dir>/nodegroups/<node_group>, no pillar data provided by this
pillar module will be available for that Minion.

Changed in version 2017.7.0: Templating/rendering has been added. You can now specify a default
render pipeline and a black- and whitelist of (dis)allowed renderers.

template must be set to True for templating to happen.

ext_pillar:
 - file_tree:
 root_dir: /path/to/root/directory
 render_default: jinja|yaml
 renderer_blacklist:
 - gpg
 renderer_whitelist:
 - jinja
 - yaml
 template: True

	Parameters:

	
	minion_id -- The ID of the Minion whose pillar data is to be collected

	pillar -- Unused by the file_tree pillar module

	root_dir -- Filesystem directory used as the root for pillar data (e.g.
/srv/ext_pillar)

Changed in version 2018.3.0: If root_dir is a relative path, it will be treated as relative to the
pillar_roots of the environment specified by
pillarenv. If an environment specifies multiple
roots, this module will search for files relative to all of them, in order,
merging the results.

	follow_dir_links -- Follow symbolic links to directories while collecting pillar files.
Defaults to False.

Warning

Care should be exercised when enabling this option as it will
follow links that point outside of root_dir.

Warning

Symbolic links that lead to infinite recursion are not filtered.

	debug -- Enable debug information at log level debug. Defaults to
False. This option may be useful to help debug errors when setting
up the file_tree pillar module.

	keep_newline -- Preserve the end-of-file newline in files. Defaults to False.
This option may either be a boolean or a list of file globs (as defined
by the Python fnmatch package [https://docs.python.org/library/fnmatch.html]) for which end-of-file
newlines are to be kept.

keep_newline should be turned on if the pillar data is intended to
be used to deploy a file using contents_pillar with a
file.managed state.

Changed in version 2015.8.4: The raw_data parameter has been renamed to keep_newline. In
earlier releases, raw_data must be used. Also, this parameter
can now be a list of globs, allowing for more granular control over
which pillar values keep their end-of-file newline. The globs match
paths relative to the directories named for Minion IDs and
Nodegroup namess underneath the root_dir.

ext_pillar:
 - file_tree:
 root_dir: /srv/ext_pillar
 keep_newline:
 - apache/config.d/*
 - corporate_app/settings/*

Note

In earlier releases, this documentation incorrectly stated that
binary files would not affected by the keep_newline. However,
this module does not actually distinguish between binary and text
files.

	render_default -- Override Salt's default global renderer for
the file_tree pillar.

render_default: jinja

	renderer_blacklist -- Disallow renderers for pillar files.

renderer_blacklist:
 - json

	renderer_whitelist -- Allow renderers for pillar files.

renderer_whitelist:
 - yaml
 - jinja

	template -- Enable templating of pillar files. Defaults to False.

salt.pillar.foreman

A module to pull data from Foreman via its API into the Pillar dictionary

Configuring the Foreman ext_pillar

Set the following Salt config to setup Foreman as external pillar source:

ext_pillar:
 - foreman:
 key: foreman # Nest results within this key
 only: ['hostgroup_name', 'parameters'] # Add only these keys to pillar

foreman.url: https://example.com/foreman_api
foreman.user: username # default is admin
foreman.password: password # default is changeme

The following options are optional:

foreman.api: apiversion # default is 2 (1 is not supported yet)
foreman.verifyssl: False # default is True
foreman.certfile: /etc/ssl/certs/mycert.pem # default is None
foreman.keyfile: /etc/ssl/private/mykey.pem # default is None
foreman.cafile: /etc/ssl/certs/mycert.ca.pem # default is None
foreman.lookup_parameters: True # default is True

An alternative would be to use the Foreman modules integrating Salt features
in the Smart Proxy and the webinterface.

Further information can be found on GitHub [https://github.com/theforeman/foreman_salt].

Module Documentation

	
salt.pillar.foreman.ext_pillar(minion_id, pillar, key=None, only=())

	Read pillar data from Foreman via its API.

salt.pillar.git_pillar

Use a git repository as a Pillar source

This external pillar allows for a Pillar top file and Pillar SLS files to be
sourced from a git repository.

However, since git_pillar does not have an equivalent to the
pillar_roots parameter, configuration is slightly different. A
Pillar top file is required to be in the git repository and must still contain
the relevant environment, like so:

base:
 '*':
 - foo

The branch/tag which maps to that environment must then be specified along with
the repo's URL. Configuration details can be found below.

Important

Each branch/tag used for git_pillar must have its own top file. This is
different from how the top file works when configuring States. The reason for this is that each git_pillar branch/tag
is processed separately from the rest. Therefore, if the qa branch is
to be used for git_pillar, it would need to have its own top file, with the
qa environment defined within it, like this:

qa:
 'dev-*':
 - bar

Additionally, while git_pillar allows for the branch/tag to be overridden
(see here), keep in
mind that the top file must reference the actual environment name. It is
common practice to make the environment in a git_pillar top file match the
branch/tag name, but when remapping, the environment of course no longer
matches the branch/tag, and the top file needs to be adjusted accordingly.
When expected Pillar values configured in git_pillar are missing, this is a
common misconfiguration that may be to blame, and is a good first step in
troubleshooting.

Configuring git_pillar for Salt

Beginning with Salt version 2015.8.0, pygit2 [https://github.com/libgit2/pygit2] is now supported in addition to
GitPython [https://github.com/gitpython-developers/GitPython]. The requirements for GitPython [https://github.com/gitpython-developers/GitPython] and pygit2 [https://github.com/libgit2/pygit2] are the same as for
GitFS, as described here.

Important

git_pillar has its own set of global configuration parameters. While it may
seem intuitive to use the global gitfs configuration parameters
(gitfs_base, etc.) to manage git_pillar, this will not work.
The main difference for this is the fact that the different components
which use Salt's git backend code do not all function identically. For
instance, in git_pillar it is necessary to specify which branch/tag to be
used for git_pillar remotes. This is the reverse behavior from gitfs, where
branches/tags make up your environments.

See here for documentation on the
git_pillar configuration options and their usage.

Here is an example git_pillar configuration:

ext_pillar:
 - git:
 # Use 'prod' instead of the branch name 'production' as the environment
 - production https://gitserver/git-pillar.git:
 - env: prod
 # Use 'dev' instead of the branch name 'develop' as the environment
 - develop https://gitserver/git-pillar.git:
 - env: dev
 # No per-remote config parameters (and no trailing colon), 'qa' will
 # be used as the environment
 - qa https://gitserver/git-pillar.git
 # SSH key authentication
 - master git@other-git-server:pillardata-ssh.git:
 # Pillar SLS files will be read from the 'pillar' subdirectory in
 # this repository
 - root: pillar
 - privkey: /path/to/key
 - pubkey: /path/to/key.pub
 - passphrase: CorrectHorseBatteryStaple
 # HTTPS authentication
 - master https://other-git-server/pillardata-https.git:
 - user: git
 - password: CorrectHorseBatteryStaple

The main difference between this and the old way of configuring git_pillar is
that multiple remotes can be configured under one git section under
ext_pillar. More than one git section can be used, but it is
not necessary. Remotes will be evaluated sequentially.

Per-remote configuration parameters are supported (similar to gitfs), and global versions of the git_pillar
configuration parameters can also be set.

To remap a specific branch to a specific Pillar environment, use the env
per-remote parameter:

ext_pillar:
 - git:
 - production https://gitserver/git-pillar.git:
 - env: prod

If __env__ is specified as the branch name, then git_pillar will decide
which branch to use based on the following criteria:

	If the minion has a pillarenv configured, it will use that
pillar environment. (2016.11.2 and later)

	Otherwise, if the minion has an environment configured, it will use that
environment.

	Otherwise, the master's git_pillar_base will be used.

Note

The use of environment to choose the pillar environment
dates from a time before the pillarenv parameter was added.
In a future release, it will be ignored and either the minion's
pillarenv or the master's git_pillar_base
will be used.

Here's an example of using __env__ as the git_pillar environment:

ext_pillar:
 - git:
 - __env__ https://gitserver/git-pillar.git:
 - root: pillar

The corresponding Pillar top file would look like this:

"{{saltenv}}":
 '*':
 - bar

With the addition of pygit2 [https://github.com/libgit2/pygit2] support, git_pillar can now interact with
authenticated remotes. Authentication works just like in gitfs (as outlined in
the Git Fileserver Backend Walkthrough), only
with the global authentication parameter names prefixed with git_pillar
instead of gitfs (e.g. git_pillar_pubkey,
git_pillar_privkey, git_pillar_passphrase, etc.).

Note

The name parameter can be used to further differentiate between two
remotes with the same URL and branch. When using two remotes with the same
URL, the name option is required.

How Multiple Remotes Are Handled

As noted above, multiple remotes can be included in the same git ext_pillar
configuration. Consider the following:

my_etcd_config:
 etcd.host: 127.0.0.1
 etcd.port: 4001

ext_pillar:
 - etcd: my_etcd_config
 - git:
 - master https://mydomain.tld/foo.git:
 - root: pillar
 - master https://mydomain.tld/bar.git
 - master https://mydomain.tld/baz.git
 - dev https://mydomain.tld/qux.git
 - git:
 - master https://mydomain.tld/abc.git
 - dev https://mydomain.tld/123.git

To understand how pillar data from these repos will be compiled, it's important
to know how Salt will process them. The following points should be kept in
mind:

	Each ext_pillar is called separately from the others. So, in the above
example, the etcd ext_pillar will be evaluated
first, with the first group of git_pillar remotes evaluated next (and merged
into the etcd pillar data). Lastly, the second group of git_pillar remotes
will be evaluated, and then merged into the ext_pillar data evaluated before
it.

	Within a single group of git_pillar remotes, each remote will be evaluated in
order, with results merged together as each remote is evaluated.

Note

Prior to the 2017.7.0 release, remotes would be evaluated in a
non-deterministic order.

	By default, when a repo is evaluated, other remotes' which share its pillar
environment will have their files made available to the remote being
processed.

The first point should be straightforward enough, but the second and third
could use some additional clarification.

First, point #2. In the first group of git_pillar remotes, the top file and
pillar SLS files in the foo remote will be evaluated first. The bar
remote will be evaluated next, and its results will be merged into the pillar
data compiled when the foo remote was evaluated. As the subsequent remotes
are evaluated, their data will be merged in the same fashion.

But wait, don't these repositories belong to more than one pillar environments?
Well, yes. The default method of generating pillar data compiles pillar data
from all environments. This behavior can be overridden using a pillarenv.
Setting a pillarenv in the minion config file will make that
minion tell the master to ignore any pillar data from environments which don't
match that pillarenv. A pillarenv can also be specified for a given minion or
set of minions when running states, by using the
pillarenv argument. The CLI pillarenv will override one set in the minion
config file. So, assuming that a pillarenv of base was set for a minion, it
would not get any of the pillar variables configured in the qux remote,
since that remote is assigned to the dev environment. The only way to get
its pillar data would be to specify a pillarenv of dev, which would mean
that it would then ignore any items from the base pillarenv. A more
detailed explanation of pillar environments can be found here.

Moving on to point #3, and looking at the example ext_pillar configuration, as
the foo remote is evaluated, it will also have access to the files from the
bar and baz remotes, since all three are assigned to the base
pillar environment. So, if an SLS file referenced by the foo remotes's top
file does not exist in the foo remote, it will be searched for in the
bar remote, followed by the baz remote. When it comes time to evaluate
the bar remote, SLS files referenced by the bar remote's top file will
first be looked for in the bar remote, followed by foo, and baz,
and when the baz remote is processed, SLS files will be looked for in
baz, followed by foo and bar. This "failover" logic is called a
directory overlay, and it is also used by
file_roots and :conf_minion`pillar_roots`. The ordering of which
remote is checked for SLS files is determined by the order they are listed.
First the remote being processed is checked, then the others that share the
same environment are checked. However, before the 2017.7.0 release, since
evaluation was unordered, the remote being processed would be checked, followed
in no specific order by the other repos which share the same environment.

Beginning with the 2017.7.0 release, this behavior of git_pillar remotes having
access to files in other repos which share the same environment can be disabled
by setting git_pillar_includes to False. If this is done,
then all git_pillar remotes will only have access to their own SLS files.
Another way of ensuring that a git_pillar remote will not have access to SLS
files from other git_pillar remotes which share the same pillar environment is
to put them in a separate git section under ext_pillar. Look again at
the example configuration above. In the second group of git_pillar remotes, the
abc remote would not have access to the SLS files from the foo,
bar, and baz remotes, and vice-versa.

Mountpoints

New in version 2017.7.0.

Assume the following pillar top file:

base:
 'web*':
 - common
 - web.server.nginx
 - web.server.appdata

Now, assume that you would like to configure the web.server.nginx and
web.server.appdata SLS files in separate repos. This could be done using
the following ext_pillar configuration (assuming that
git_pillar_includes has not been set to False):

ext_pillar:
 - git:
 - master https://mydomain.tld/pillar-common.git
 - master https://mydomain.tld/pillar-nginx.git
 - master https://mydomain.tld/pillar-appdata.git

However, in order to get the files in the second and third git_pillar remotes
to work, you would need to first create the directory structure underneath it
(i.e. place them underneath web/server/ in the repository). This also makes
it tedious to reorganize the configuration, as changing web.server.nginx to
web.nginx in the top file would require you to also move the SLS files in
the pillar-nginx up a directory level.

For these reasons, much like gitfs, git_pillar now supports a "mountpoint"
feature. Using the following ext_pillar configuration, the SLS files in the
second and third git_pillar remotes can be placed in the root of the git
repository:

ext_pillar:
 - git:
 - master https://mydomain.tld/pillar-common.git
 - master https://mydomain.tld/pillar-nginx.git:
 - mountpoint: web/server/
 - master https://mydomain.tld/pillar-appdata.git:
 - mountpoint: web/server/

Now, if the top file changed the SLS target from web.server.nginx, instead
of reorganizing the git repository, you would just need to adjust the
mountpoint to web/ (and restart the salt-master daemon).

Note

	Leading and trailing slashes on the mountpoints are optional.

	Use of the mountpoint feature requires that
git_pillar_includes is not disabled.

	Content from mounted git_pillar repos can only be referenced by a top
file in the same pillar environment.

	Salt versions prior to 2018.3.4 ignore the root parameter when
mountpoint is set.

all_saltenvs

New in version 2018.3.4.

When __env__ is specified as the branch name, all_saltenvs per-remote configuration parameter overrides the logic Salt uses to map branches/tags to pillar environments (i.e. pillarenvs). This allows a single branch/tag to appear in all saltenvs. Example:

ext_pillar:
 - git:
 - __env__ https://mydomain.tld/top.git
 - all_saltenvs: master
 - __env__ https://mydomain.tld/pillar-nginx.git:
 - mountpoint: web/server/
 - __env__ https://mydomain.tld/pillar-appdata.git:
 - mountpoint: web/server/

git_pillar_update_interval

New in version 3000.

This option defines the default update interval (in seconds) for git_pillar
remotes. The update is handled within the global loop, hence
git_pillar_update_interval should be a multiple of loop_interval.

git_pillar_update_interval: 120

fallback

New in version 3001.

Setting fallback per-remote or global configuration parameter will map non-existing environments to a default branch. Example:

ext_pillar:
 - git:
 - __env__ https://mydomain.tld/top.git
 - all_saltenvs: master
 - __env__ https://mydomain.tld/pillar-nginx.git:
 - mountpoint: web/server/
 - fallback: master
 - __env__ https://mydomain.tld/pillar-appdata.git:
 - mountpoint: web/server/
 - fallback: master

	
salt.pillar.git_pillar.ext_pillar(minion_id, pillar, *repos)

	Checkout the ext_pillar sources and compile the resulting pillar SLS

salt.pillar.gpg

Decrypt pillar data through the builtin GPG renderer

In most cases, you'll want to make this the last external pillar used. For
example, to pair with the builtin stack pillar you could do something like
this:

ext_pillar:
 - stack: /path/to/stack.cfg
 - gpg: {}

Set gpg_keydir in your config to adjust the homedir the renderer uses.

	
salt.pillar.gpg.ext_pillar(minion_id, pillar, *args, **kwargs)

	

salt.pillar.hg_pillar

Use remote Mercurial repository as a Pillar source.

New in version 2015.8.0.

The module depends on the hglib python module being available.
This is the same requirement as for hgfs_ so should not pose any extra
hurdles.

This external Pillar source can be configured in the master config file as such:

ext_pillar:
 - hg: ssh://hg@example.co/user/repo

	
class salt.pillar.hg_pillar.Repo(repo_uri)

	Deal with remote hg (mercurial) repository for Pillar

	
close()

	Cleanup mercurial command server

	
pull()

	

	
update(branch='default')

	Ensure we are using the latest revision in the hg repository

	
salt.pillar.hg_pillar.ext_pillar(minion_id, pillar, repo, branch='default', root=None)

	Extract pillar from an hg repository

	
salt.pillar.hg_pillar.update(repo_uri)

	Execute an hg pull on all the repos

salt.pillar.hiera

Use hiera data as a Pillar source

	
salt.pillar.hiera.ext_pillar(minion_id, pillar, conf)

	Execute hiera and return the data

salt.pillar.http_json

A module that adds data to the Pillar structure retrieved by an http request

Configuring the HTTP_JSON ext_pillar

Set the following Salt config to setup http json result as external pillar source:

ext_pillar:
 - http_json:
 url: http://example.com/api/minion_id
 namespace: 'subkey'
 username: username
 password: password
 header_dict: None
 auth: None

You can pass additional parameters, they will be added to the http.query call
utils.http.query function:

Changed in version 3006.0: If namespace is defined, the data will be added under the specified subkeys in the Pillar structure.

If the with_grains parameter is set, grain keys wrapped in can be provided (wrapped
in <> brackets) in the url in order to populate pillar data based on the grain value.

ext_pillar:
 - http_json:
 url: http://example.com/api/<nodename>
 with_grains: True

Changed in version 2018.3.0: If %s is present in the url, it will be automatically replaced by the minion_id:

ext_pillar:
 - http_json:
 url: http://example.com/api/%s

Module Documentation

	
salt.pillar.http_json.ext_pillar(minion_id, pillar, url, with_grains=False, header_dict=None, auth=None, username=None, password=None, namespace=None)

	Read pillar data from HTTP response.

	Parameters:

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Url to request.

	with_grains (bool [https://docs.python.org/3/library/functions.html#bool]) -- Whether to substitute strings in the url with their grain values.

	header_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Extra headers to send

	auth -- special auth if needed

	username (str [https://docs.python.org/3/library/stdtypes.html#str]) -- username for auth

	pasword (str [https://docs.python.org/3/library/stdtypes.html#str]) -- password for auth

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) -- (Optional) A pillar key to namespace the values under.
.. versionadded:: 3006.0

	Returns:

	A dictionary of the pillar data to add.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

salt.pillar.http_yaml

A module that adds data to the Pillar structure retrieved by an http request

Configuring the HTTP_YAML ext_pillar

Set the following Salt config to setup an http endpoint as the external pillar source:

ext_pillar:
 - http_yaml:
 url: http://example.com/api/minion_id
 username: username
 password: password
 header_dict: None
 auth: None

You can pass additional parameters, they will be added to the http.query call
utils.http.query function:

If the with_grains parameter is set, grain keys wrapped in can be provided (wrapped
in <> brackets) in the url in order to populate pillar data based on the grain value.

ext_pillar:
 - http_yaml:
 url: http://example.com/api/<nodename>
 with_grains: True

Changed in version 2018.3.0: If %s is present in the url, it will be automatically replaced by the minion_id:

ext_pillar:
 - http_json:
 url: http://example.com/api/%s

Module Documentation

	
salt.pillar.http_yaml.ext_pillar(minion_id, pillar, url, with_grains=False, header_dict=None, auth=None, username=None, password=None)

	Read pillar data from HTTP response.

	Parameters:

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Url to request.

	with_grains (bool [https://docs.python.org/3/library/functions.html#bool]) -- Whether to substitute strings in the url with their grain values.

	header_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- Extra headers to send

	username (str [https://docs.python.org/3/library/stdtypes.html#str]) -- username for auth

	pasword (str [https://docs.python.org/3/library/stdtypes.html#str]) -- password for auth

	auth -- special auth if needed

	Returns:

	A dictionary of the pillar data to add.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

salt.pillar.libvirt

Load up the libvirt keys into Pillar for a given minion if said keys have been
generated using the libvirt key runner

	depends:

	certtool

	
salt.pillar.libvirt.ext_pillar(minion_id, pillar, command)

	Read in the generated libvirt keys

	
salt.pillar.libvirt.gen_hyper_keys(minion_id, country='US', state='Utah', locality='Salt Lake City', organization='Salted', expiration_days='365')

	Generate the keys to be used by libvirt hypervisors, this routine gens
the keys and applies them to the pillar for the hypervisor minions

salt.pillar.makostack

Simple and flexible YAML ext_pillar which can read pillar from within pillar.

New in version 2016.3.0.

This custom saltstack ext_pillar is a direct ripoff of the 'stack'
ext_pillar, simply ported to use mako instead of jinja2 for templating.

It supports the following features:

	multiple config files that are mako templates with support for pillar,
__grains__, __salt__, __opts__ objects.

	a config file renders as an ordered list of files. Unless absolute, the paths
of these files are relative to the current config file - if absolute, they
will be treated literally.

	this list of files are read in order as mako templates with support for
stack, pillar, __grains__, __salt__, __opts__ objects.

	all these rendered files are then parsed as yaml.

	then all yaml dicts are merged in order, with support for the following.
merging strategies: merge-first, merge-last, remove, and
overwrite.

	stack config files can be matched based on pillar, grains, or
opts values, which make it possible to support kind of self-contained
environments.

Configuration in Salt

Like any other external pillar, its configuration takes place through the
ext_pillar key in the master config file.

However, you can configure MakoStack in 3 different ways:

Single config file

This is the simplest option, you just need to set the path to your single
MakoStack config file like below:

ext_pillar:
 - makostack: /path/to/stack.cfg

List of config files

You can also provide a list of config files:

ext_pillar:
 - makostack:
 - /path/to/stack1.cfg
 - /path/to/stack2.cfg

Select config files through grains|pillar|opts matching

You can also opt for a much more flexible configuration: MakoStack allows one to
select the config files for the current minion based on matching values from
either grains, or pillar, or opts objects.

Here is an example of such a configuration, which should speak by itself:

ext_pillar:
 - makostack:
 pillar:environment:
 dev: /path/to/dev/stack.cfg
 prod: /path/to/prod/stack.cfg
 grains:custom:grain:
 value:
 - /path/to/stack1.cfg
 - /path/to/stack2.cfg
 opts:custom:opt:
 value: /path/to/stack0.cfg

Grafting data from files to arbitrary namespaces

An extended syntax for config files permits defining "graft points" on a
per-config-file basis. As an example, if the file foo.cfg would produce
the following:

foo:
 - bar
 - baz

and you specified the cfg file as /path/to/foo.cfg:yummy:fur, the following
would actually end up in pillar after all merging was complete:

yummy:
 fur:
 foo:
 - bar
 - baz

MakoStack configuration files

The config files that are referenced in the above ext_pillar configuration
are mako templates which must render as a simple ordered list of yaml
files that will then be merged to build pillar data.

Unless an absolute path name is specified, the path of these yaml files is
assumed to be relative to the directory containing the MakoStack config file.
If a path begins with '/', however, it will be treated literally and can be
anywhere on the filesystem.

The following variables are available in mako templating of makostack
configuration files:

	pillar: the pillar data (as passed by Salt to our ext_pillar
function)

	minion_id: the minion id ;-)

	__opts__: a dictionary of mostly Salt configuration options

	__grains__: a dictionary of the grains of the minion making this pillar
call

	__salt__: a dictionary of Salt module functions, useful so you don't have
to duplicate functions that already exist (note: runs on the master)

So you can use all the power of mako to build your list of yaml files
that will be merged in pillar data.

For example, you could have a MakoStack config file which looks like:

$ cat /path/to/stack/config.cfg
core.yml
osarchs/%{ __grains__['osarch'] }}.yml
oscodenames/%{ __grains__['oscodename'] }.yml
% for role in pillar.get('roles', []):
roles/%{ role }.yml
% endfor
minions/%{ minion_id }.yml

And the whole directory structure could look like:

$ tree /path/to/stack/
/path/to/stack/
├── config.cfg
├── core.yml
├── osarchs/
│ ├── amd64.yml
│ └── armhf.yml
├── oscodenames/
│ ├── wheezy.yml
│ └── jessie.yml
├── roles/
│ ├── web.yml
│ └── db.yml
└── minions/
 ├── test-1-dev.yml
 └── test-2-dev.yml

Overall process

In the above MakoStack configuration, given that test-1-dev minion is an
amd64 platform running Debian Jessie, and which pillar roles is ["db"],
the following yaml files would be merged in order:

	core.yml

	osarchs/amd64.yml

	oscodenames/jessie.yml

	roles/db.yml

	minions/test-1-dev.yml

Before merging, every files above will be preprocessed as mako templates.
The following variables are available in mako templating of yaml files:

	stack: the MakoStack pillar data object that has currently been merged
(data from previous yaml files in MakoStack configuration)

	pillar: the pillar data (as passed by Salt to our ext_pillar
function)

	minion_id: the minion id ;-)

	__opts__: a dictionary of mostly Salt configuration options

	__grains__: a dictionary of the grains of the minion making this pillar
call

	__salt__: a dictionary of Salt module functions, useful so you don't have
to duplicate functions that already exist (note: runs on the master)

So you can use all the power of mako to build your pillar data, and even use
other pillar values that has already been merged by MakoStack (from previous
yaml files in MakoStack configuration) through the stack variable.

Once a yaml file has been preprocessed by mako, we obtain a Python dict -
let's call it yml_data - then, MakoStack will merge this yml_data
dict in the main stack dict (which contains already merged MakoStack
pillar data).
By default, MakoStack will deeply merge yml_data in stack (similarly
to the recurse salt pillar_source_merging_strategy), but 3 merging
strategies are currently available for you to choose (see next section).

Once every yaml files have been processed, the stack dict will contain
your whole own pillar data, merged in order by MakoStack.
So MakoStack ext_pillar returns the stack dict, the contents of which
Salt takes care to merge in with all of the other pillars and finally return
the whole pillar to the minion.

Merging strategies

The way the data from a new yaml_data dict is merged with the existing
stack data can be controlled by specifying a merging strategy. Right now
this strategy can either be merge-last (the default), merge-first,
remove, or overwrite.

Note that scalar values like strings, integers, booleans, etc. are always
evaluated using the overwrite strategy (other strategies don't make sense
in that case).

The merging strategy can be set by including a dict in the form of:

__: <merging strategy>

as the first item of the dict or list.
This allows fine grained control over the merging process.

merge-last (default) strategy

If the merge-last strategy is selected (the default), then content of dict
or list variables is merged recursively with previous definitions of this
variable (similarly to the recurse salt
pillar_source_merging_strategy).
This allows for extending previously defined data.

merge-first strategy

If the merge-first strategy is selected, then the content of dict or list
variables are swapped between the yaml_data and stack objects before
being merged recursively with the merge-last previous strategy.

remove strategy

If the remove strategy is selected, then content of dict or list variables
in stack are removed only if the corresponding item is present in the
yaml_data dict.
This allows for removing items from previously defined data.

overwrite strategy

If the overwrite strategy is selected, then the content of dict or list
variables in stack is overwritten by the content of yaml_data dict.
So this allows one to overwrite variables from previous definitions.

Merging examples

Let's go through small examples that should clarify what's going on when a
yaml_data dict is merged in the stack dict.

When you don't specify any strategy, the default merge-last strategy is
selected:

	stack

	yaml_data

	stack (after merge)

	users:
 tom:
 uid: 500
 roles:
 - sysadmin
 root:
 uid: 0

	users:
 tom:
 uid: 1000
 roles:
 - developer
 mat:
 uid: 1001

	users:
 tom:
 uid: 1000
 roles:
 - sysadmin
 - developer
 mat:
 uid: 1001
 root:
 uid: 0

Then you can select a custom merging strategy using the __ key in a dict:

	stack

	yaml_data

	stack (after merge)

	users:
 tom:
 uid: 500
 roles:
 - sysadmin
 root:
 uid: 0

	users:
 __: merge-last
 tom:
 uid: 1000
 roles:
 - developer
 mat:
 uid: 1001

	users:
 tom:
 uid: 1000
 roles:
 - sysadmin
 - developer
 mat:
 uid: 1001
 root:
 uid: 0

	users:
 tom:
 uid: 500
 roles:
 - sysadmin
 root:
 uid: 0

	users:
 __: merge-first
 tom:
 uid: 1000
 roles:
 - developer
 mat:
 uid: 1001

	users:
 tom:
 uid: 500
 roles:
 - developer
 - sysadmin
 mat:
 uid: 1001
 root:
 uid: 0

	users:
 tom:
 uid: 500
 roles:
 - sysadmin
 root:
 uid: 0

	users:
 __: remove
 tom:
 mat:

	users:
 root:
 uid: 0

	users:
 tom:
 uid: 500
 roles:
 - sysadmin
 root:
 uid: 0

	users:
 __: overwrite
 tom:
 uid: 1000
 roles:
 - developer
 mat:
 uid: 1001

	users:
 tom:
 uid: 1000
 roles:
 - developer
 mat:
 uid: 1001

You can also select a custom merging strategy using a __ object in a list:

	stack

	yaml_data

	stack (after merge)

	users:
 - tom
 - root

	users:
 - __: merge-last
 - mat

	users:
 - tom
 - root
 - mat

	users:
 - tom
 - root

	users:
 - __: merge-first
 - mat

	users:
 - mat
 - tom
 - root

	users:
 - tom
 - root

	users:
 - __: remove
 - mat
 - tom

	users:
 - root

	users:
 - tom
 - root

	users:
 - __: overwrite
 - mat

	users:
 - mat

	
salt.pillar.makostack.ext_pillar(minion_id, pillar, *args, **kwargs)

	

salt.pillar.mongo

Read Pillar data from a mongodb collection

	depends:

	pymongo (for salt-master)

This module will load a node-specific pillar dictionary from a mongo
collection. It uses the node's id for lookups and can load either the whole
document, or just a specific field from that
document as the pillar dictionary.

Salt Master Mongo Configuration

The module shares the same base mongo connection variables as
salt.returners.mongo_future_return. These variables go in your master
config file.

mongo.db: <database name>
mongo.host: <server ip address>
mongo.user: <MongoDB username>
mongo.password: <MongoDB user password>
mongo.port: 27017

Or single URI:

mongo.uri: URI

where uri is in the format:

mongodb://[username:password@]host1[:port1][,host2[:port2],...[,hostN[:portN]]][/[database][?options]]

Example:

mongodb://db1.example.net:27017/mydatabase
mongodb://db1.example.net:27017,db2.example.net:2500/?replicaSet=test
mongodb://db1.example.net:27017,db2.example.net:2500/?replicaSet=test&connectTimeoutMS=300000

More information on URI format can be found in
https://docs.mongodb.com/manual/reference/connection-string/

Configuring the Mongo ext_pillar

The Mongo ext_pillar takes advantage of the fact that the Salt Master
configuration file is yaml. It uses a sub-dictionary of values to adjust
specific features of the pillar. This is the explicit single-line dictionary
notation for yaml. One may be able to get the easier-to-read multi-line dict to
work correctly with some experimentation.

ext_pillar:
 - mongo: {collection: vm, id_field: name, re_pattern: \.example\.com, fields: [customer_id, software, apache_vhosts]}

In the example above, we've decided to use the vm collection in the
database to store the data. Minion ids are stored in the name field on
documents in that collection. And, since minion ids are FQDNs in most cases,
we'll need to trim the domain name in order to find the minion by hostname in
the collection. When we find a minion, return only the customer_id,
software, and apache_vhosts fields, as that will contain the data we
want for a given node. They will be available directly inside the pillar
dict in your SLS templates.

Module Documentation

	
salt.pillar.mongo.ext_pillar(minion_id, pillar, collection='pillar', id_field='_id', re_pattern=None, re_replace='', fields=None)

	Connect to a mongo database and read per-node pillar information.

	Parameters:

	
	collection (*) -- The mongodb collection to read data from. Defaults to
'pillar'.

	id_field (*) -- The field in the collection that represents an individual
minion id. Defaults to '_id'.

	re_pattern (*) -- If your naming convention in the collection is shorter
than the minion id, you can use this to trim the name.
re_pattern will be used to match the name, and re_replace will
be used to replace it. Backrefs are supported as they are in the
Python standard library. If None, no mangling of the name will
be performed - the collection will be searched with the entire
minion id. Defaults to None.

	re_replace (*) -- Use as the replacement value in node ids matched with
re_pattern. Defaults to ''. Feel free to use backreferences here.

	fields (*) -- The specific fields in the document to use for the pillar
data. If None, will use the entire document. If using the
entire document, the _id field will be converted to string. Be
careful with other fields in the document as they must be string
serializable. Defaults to None.

salt.pillar.mysql

Retrieve Pillar data by doing a MySQL query

MariaDB provides Python support through the MySQL Python package.
Therefore, you may use this module with both MySQL or MariaDB.

This module is a concrete implementation of the sql_base ext_pillar for MySQL.

	maturity:

	new

	depends:

	python-mysqldb

	platform:

	all

Configuring the mysql ext_pillar

Use the 'mysql' key under ext_pillar for configuration of queries.

MySQL configuration of the MySQL returner is being used (mysql.db, mysql.user,
mysql.pass, mysql.port, mysql.host) for database connection info.

Required python modules: MySQLdb

Complete example

mysql:
 user: 'salt'
 pass: 'super_secret_password'
 db: 'salt_db'
 port: 3306
 ssl:
 cert: /etc/mysql/client-cert.pem
 key: /etc/mysql/client-key.pem

ext_pillar:
 - mysql:
 fromdb:
 query: 'SELECT col1,col2,col3,col4,col5,col6,col7
 FROM some_random_table
 WHERE minion_pattern LIKE %s'
 depth: 5
 as_list: True
 with_lists: [1,3]

	
class salt.pillar.mysql.MySQLExtPillar

	This class receives and processes the database rows from MySQL.

	
extract_queries(args, kwargs)

	This function normalizes the config block into a set of queries we
can use. The return is a list of consistently laid out dicts.

	
salt.pillar.mysql.ext_pillar(minion_id, pillar, *args, **kwargs)

	Execute queries against MySQL, merge and return as a dict

salt.pillar.nacl

Decrypt pillar data through the builtin NACL renderer

In most cases, you'll want to make this the last external pillar used. For
example, to pair with the builtin stack pillar you could do something like
this:

nacl.config:
 keyfile: /root/.nacl

ext_pillar:
 - stack: /path/to/stack.cfg
 - nacl: {}

Set nacl.config in your config.

	
salt.pillar.nacl.ext_pillar(minion_id, pillar, *args, **kwargs)

	

salt.pillar.netbox

A module that adds data to the Pillar structure from a NetBox API.

New in version 2019.2.0.

Configuring the NetBox ext_pillar

To use this pillar, you must first create a token in your NetBox instance at
http://netbox.example.com/user/api-tokens/ (substituting the hostname of your
NetBox instance)

The NetBox api_url and api_token must be set in the master
config.

For example /etc/salt/master.d/netbox.conf:

ext_pillar:
 - netbox:
 api_url: http://netbox.example.com/api/
 api_token: 123abc

The following options are optional, and determine whether or not
the module will attempt to configure the proxy pillar data for
use with the napalm proxy-minion:

proxy_return: True
proxy_username: admin

By default, this module will query the NetBox API for the platform
associated with the device, and use the 'NAPALM driver' field to
set the napalm proxy-minion driver. (Currently only 'napalm' is supported
for drivertype.)

This module currently only supports the napalm proxy minion and assumes
you will use SSH keys to authenticate to the network device. If password
authentication is desired, it is recommended to create another proxy
key in pillar_roots (or git_pillar) with just the passwd key and use
salt.renderers.gpg to encrypt the value.

If you use more than one username for your devices, leave proxy_username unset,
and set the username key in your pillar as well. If any additional options
for the proxy setup are needed, they should also be configured in pillar_roots.

Other available configuration options:

	site_details: True
	Whether should retrieve details of the site the device belongs to.

	site_prefixes: True
	Whether should retrieve the prefixes of the site the device belongs to.

	devices: True
	
New in version 3004.

Whether should retrieve physical devices.

	virtual_machines: False
	
New in version 3004.

Whether should retrieve virtual machines.

	interfaces: False
	
New in version 3004.

Whether should retrieve the interfaces of the device.

	interface_ips: False
	
New in version 3004.

Whether should retrieve the IP addresses for interfaces of the device.
(interfaces must be set to True as well)

	api_query_result_limit: Use NetBox default
	
New in version 3004.

An integer specifying how many results should be returned for each query
to the NetBox API. Leaving this unset will use NetBox's default value.

	connected_devices: False
	
New in version 3006.0.

Whether connected_devices key should be populated with device objects.
If set to True it will force interfaces to also be true as a dependency

Note that each option you enable can have a detrimental impact on pillar
performance, so use them with caution.

After configuring the pillar, you must restart the Salt master for the changes
to take effect.

For example:

systemctl restart salt-master

To query perform a quick test of the pillar, you should refresh the pillar on
the minion with the following:

salt minion1 saltutil.refresh_pillar

And then query the pillar:

salt minion1 pillar.items 'netbox'

Example output:

minion1:
 netbox:

 id:
 511
 url:
 https://netbox.example.com/api/dcim/devices/511/
 name:
 minion1
 node_type:
 device
 display_name:
 minion1
 device_type:

 id:
 4
 url:
 https://netbox.example.com/api/dcim/device-types/4/
 manufacturer:

 id:
 1
 url:
 https://netbox.example.com/api/dcim/manufacturers/1/
 name:
 Cisco
 slug:
 cisco
 model:
 ISR2901
 slug:
 isr2901
 display_name:
 Cisco ISR2901
 device_role:

 id:
 45
 url:
 https://netbox.example.com/api/dcim/device-roles/45/
 name:
 Network
 slug:
 network
 interfaces:
 |_

 id:
 8158
 ip_addresses:
 |_

 id:
 1146
 url:
 https://netbox.example.com/api/ipam/ip-addresses/1146/
 family:

 value:
 4
 label:
 IPv4
 address:
 192.0.2.1/24
 vrf:
 None
 tenant:
 None
 status:

 value:
 active
 label:
 Active
 role:
 None
 nat_inside:
 None
 nat_outside:
 None
 dns_name:
 description:
 tags:
 custom_fields:
 created:
 2021-02-19
 last_updated:
 2021-02-19T06:12:04.153386Z
 url:
 https://netbox.example.com/api/dcim/interfaces/8158/
 name:
 GigabitEthernet0/0
 label:
 type:

 value:
 1000base-t
 label:
 1000BASE-T (1GE)
 enabled:
 True
 lag:
 None
 mtu:
 None
 mac_address:
 None
 mgmt_only:
 False
 description:
 mode:
 None
 untagged_vlan:
 None
 tagged_vlans:
 cable:
 None
 cable_peer:
 None
 cable_peer_type:
 None
 connected_endpoint:
 None
 connected_endpoint_type:
 None
 connected_endpoint_reachable:
 None
 tags:
 count_ipaddresses:
 1
 |_

 id:
 8159
 ip_addresses:
 |_

 id:
 1147
 url:
 https://netbox.example.com/api/ipam/ip-addresses/1147/
 family:

 value:
 4
 label:
 IPv4
 address:
 198.51.100.1/24
 vrf:
 None
 tenant:
 None
 status:

 value:
 active
 label:
 Active
 role:
 None
 nat_inside:
 None
 nat_outside:
 None
 dns_name:
 description:
 tags:
 custom_fields:
 created:
 2021-02-19
 last_updated:
 2021-02-19T06:12:40.508154Z
 url:
 https://netbox.example.com/api/dcim/interfaces/8159/
 name:
 GigabitEthernet0/1
 label:
 type:

 value:
 1000base-t
 label:
 1000BASE-T (1GE)
 enabled:
 True
 lag:
 None
 mtu:
 None
 mac_address:
 None
 mgmt_only:
 False
 description:
 mode:
 None
 untagged_vlan:
 None
 tagged_vlans:
 cable:
 None
 cable_peer:
 None
 cable_peer_type:
 None
 connected_endpoint:
 None
 connected_endpoint_type:
 None
 connected_endpoint_reachable:
 None
 tags:
 count_ipaddresses:
 1
 tenant:
 None
 platform:

 id:
 1
 url:
 https://netbox.example.com/api/dcim/platforms/1/
 name:
 Cisco IOS
 slug:
 ios
 serial:
 asset_tag:
 None
 site:

 id:
 18
 url:
 https://netbox.example.com/api/dcim/sites/18/
 name:
 Site 1
 slug:
 site1
 status:

 value:
 active
 label:
 Active
 region:
 None
 tenant:
 None
 facility:
 asn:
 None
 time_zone:
 None
 description:
 physical_address:
 shipping_address:
 latitude:
 None
 longitude:
 None
 contact_name:
 contact_phone:
 contact_email:
 comments:
 tags:
 custom_fields:
 created:
 2021-02-25
 last_updated:
 2021-02-25T14:21:07.898957Z
 circuit_count:
 0
 device_count:
 1
 prefix_count:
 2
 rack_count:
 0
 virtualmachine_count:
 1
 vlan_count:
 0
 prefixes:
 |_

 id:
 284
 url:
 https://netbox.example.com/api/ipam/prefixes/284/
 family:

 value:
 4
 label:
 IPv4
 prefix:
 192.0.2.0/24
 vrf:
 None
 tenant:
 None
 vlan:
 None

 value:
 active
 label:
 Active
 role:
 None
 is_pool:
 False
 description:
 tags:
 custom_fields:
 created:
 2021-02-25
 last_updated:
 2021-02-25T15:08:27.136305Z
 |_

 id:
 285
 url:
 https://netbox.example.com/api/ipam/prefixes/285/
 family:

 value:
 4
 label:
 IPv4
 prefix:
 198.51.100.0/24
 vrf:
 None
 tenant:
 None
 vlan:
 None
 status:

 value:
 active
 label:
 Active
 role:
 None
 is_pool:
 False
 description:
 tags:
 custom_fields:
 created:
 2021-02-25
 last_updated:
 2021-02-25T15:08:59.880440Z
 rack:
 None
 position:
 None
 face:
 None
 parent_device:
 None
 status:

 value:
 active
 label:
 Active
 primary_ip:

 id:
 1146
 url:
 https://netbox.example.com/api/ipam/ip-addresses/1146/
 family:
 4
 address:
 192.0.2.1/24
 primary_ip4:

 id:
 1146
 url:
 https://netbox.example.com/api/ipam/ip-addresses/1146/
 family:
 4
 address:
 192.0.2.1/24
 primary_ip6:
 None
 cluster:
 None
 virtual_chassis:
 None
 vc_position:
 None
 vc_priority:
 None
 comments:
 local_context_data:
 None
 tags:
 custom_fields:
 config_context:
 connected_devices:

 512:

 airflow:
 None
 asset_tag:
 001
 cluster:
 None
 comments:
 config_context:
 created:
 2022-03-10T00:00:00Z
 custom_fields:
 device_role:

 display:
 Network switch
 id:
 512
 name:
 Network switch
 slug:
 network_switch
 url:
 https://netbox.example.com/api/dcim/device-roles/5/
 device_type:

 display:
 Nexus 3048
 id:
 40
 manufacturer:

 display:
 Cisco
 id:
 1
 name:
 Cisco
 slug:
 cisco
 url:
 https://netbox.example.com/api/dcim/manufacturers/1/
 model:
 Nexus 3048
 slug:
 n3k-c3048tp-1ge
 url:
 https://netbox.example.com/api/dcim/device-types/40/
 display:
 another device (001)
 face:

 label:
 Front
 value:
 front
 id:
 1533
 last_updated:
 2022-08-22T13:50:15.923868Z
 local_context_data:
 None
 location:

 _depth:
 2
 display:
 Location Name
 id:
 2
 name:
 Location Name
 slug:
 location-name
 url:
 https://netbox.example.com/api/dcim/locations/2
 name:
 another device
 parent_device:
 None
 platform:
 None
 position:
 18.0
 primary_ip:

 address:
 192.168.1.1/24
 display:
 192.168.1.1/24
 family:
 4
 id:
 1234
 url:
 https://netbox.example.com/api/ipam/ip-addresses/1234/
 primary_ip4:

 address:
 192.168.1.1/24
 display:
 192.168.1.1/24
 family:
 4
 id:
 1234
 url:
 https://netbox.example.com/api/ipam/ip-addresses/1234/
 primary_ip6:
 None
 rack:

 display:
 RackName
 id:
 139
 name:
 RackName
 url:
 https://netbox.example.com/api/dcim/racks/139/
 serial:
 ABCD12345
 site:

 display:
 SiteName
 id:
 2
 name:
 SiteName
 slug:
 sitename
 url:
 https://netbox.example.com/api/dcim/sites/2/
 status:

 label:
 Active
 value:
 active
 tags:
 tenant:
 None
 url:
 https://netbox.example.com/api/dcim/devices/1533/
 vc_position:
 None
 vc_priority:
 None
 virtual_chassis:
 None
 created:
 2021-02-19
 last_updated:
 2021-02-19T06:12:04.171105Z

	
salt.pillar.netbox.ext_pillar(minion_id, pillar, *args, **kwargs)

	Query NetBox API for minion data

salt.pillar.neutron

Use Openstack Neutron data as a Pillar source. Will list all networks listed
inside of Neutron, to all minions.

New in version 2015.5.1.

	depends:

	
	python-neutronclient

A keystone profile must be used for the pillar to work (no generic keystone
configuration here). For example:

my openstack_config:
 keystone.user: 'admin'
 keystone.password: 'password'
 keystone.tenant: 'admin'
 keystone.auth_url: 'http://127.0.0.1:5000/v2.0/'
 keystone.region_name: 'RegionOne'
 keystone.service_type: 'network'

After the profile is created, configure the external pillar system to use it.

ext_pillar:
 - neutron: my_openstack_config

Using these configuration profiles, multiple neutron sources may also be used:

ext_pillar:
 - neutron: my_openstack_config
 - neutron: my_other_openstack_config

By default, these networks will be returned as a pillar item called
networks. In order to have them returned under a different name, add the
name after the Keystone profile name:

	ext_pillar:
	
	neutron: my_openstack_config neutron_networks

	
salt.pillar.neutron.ext_pillar(minion_id, pillar, conf)

	Check neutron for all data

salt.pillar.nodegroups

Nodegroups Pillar

Introspection: to which nodegroups does my minion belong?
Provides a pillar with the default name of nodegroups
which contains a list of nodegroups which match for a given minion.

New in version 2016.11.0.

Command Line

salt-call pillar.get nodegroups
local:
 - class_infra
 - colo_sj
 - state_active
 - country_US
 - type_saltmaster

Configuring Nodegroups Pillar

extension_modules: /srv/salt/ext
ext_pillar:
 - nodegroups:
 pillar_name: 'nodegroups'

	
salt.pillar.nodegroups.ext_pillar(minion_id, pillar, pillar_name=None)

	A salt external pillar which provides the list of nodegroups of which the minion is a member.

	Parameters:

	
	minion_id -- used for compound matching nodegroups

	pillar -- provided by salt, but not used by nodegroups ext_pillar

	pillar_name -- optional name to use for the pillar, defaults to 'nodegroups'

	Returns:

	a dictionary which is included by the salt master in the pillars returned to the minion

salt.pillar.pepa

Pepa

Configuration templating for SaltStack using Hierarchical substitution and Jinja.

Configuring Pepa

extension_modules: /srv/salt/ext

ext_pillar:
 - pepa:
 resource: host # Name of resource directory and sub-key in pillars
 sequence: # Sequence used for hierarchical substitution
 - hostname: # Name of key
 name: input # Alias used for template directory
 base_only: True # Only use templates from Base environment, i.e. no staging
 - default:
 - environment:
 - location..region:
 name: region
 - location..country:
 name: country
 - location..datacenter:
 name: datacenter
 - roles:
 - osfinger:
 name: os
 - hostname:
 name: override
 base_only: True
 subkey: True # Create a sub-key in pillars, named after the resource in this case [host]
 subkey_only: True # Only create a sub-key, and leave the top level untouched

pepa_roots: # Base directory for each environment
 base: /srv/pepa/base # Path for base environment
 dev: /srv/pepa/base # Associate dev with base
 qa: /srv/pepa/qa
 prod: /srv/pepa/prod

Use a different delimiter for nested dictionaries, defaults to '..' since some keys may use '.' in the name
#pepa_delimiter: ..

Supply Grains for Pepa, this should **ONLY** be used for testing or validation
#pepa_grains:
environment: dev

Supply Pillar for Pepa, this should **ONLY** be used for testing or validation
#pepa_pillars:
saltversion: 0.17.4

Enable debug for Pepa, and keep Salt on warning
#log_level: debug

#log_granular_levels:
salt: warning
salt.loaded.ext.pillar.pepa: debug

Pepa can also be used in Master-less SaltStack setup.

Command line

usage: pepa.py [-h] [-c CONFIG] [-d] [-g GRAINS] [-p PILLAR] [-n] [-v]
 hostname

positional arguments:
 hostname Hostname

optional arguments:
 -h, --help show this help message and exit
 -c CONFIG, --config CONFIG
 Configuration file
 -d, --debug Print debug info
 -g GRAINS, --grains GRAINS
 Input Grains as YAML
 -p PILLAR, --pillar PILLAR
 Input Pillar as YAML
 -n, --no-color No color output
 -v, --validate Validate output

Templates

Templates is configuration for a host or software, that can use information from Grains or Pillars. These can then be used for hierarchically substitution.

Example File: host/input/test_example_com.yaml

location..region: emea
location..country: nl
location..datacenter: foobar
environment: dev
roles:
 - salt.master
network..gateway: 10.0.0.254
network..interfaces..eth0..hwaddr: 00:20:26:a1:12:12
network..interfaces..eth0..dhcp: False
network..interfaces..eth0..ipv4: 10.0.0.3
network..interfaces..eth0..netmask: 255.255.255.0
network..interfaces..eth0..fqdn: {{ hostname }}
cobbler..profile: fedora-19-x86_64

As you see in this example you can use Jinja directly inside the template.

Example File: host/region/amer.yaml

network..dns..servers:
 - 10.0.0.1
 - 10.0.0.2
time..ntp..servers:
 - ntp1.amer.example.com
 - ntp2.amer.example.com
 - ntp3.amer.example.com
time..timezone: America/Chihuahua
yum..mirror: yum.amer.example.com

Each template is named after the value of the key using lowercase and all extended characters are replaced with underscore.

Example:

osfinger: Fedora-19

Would become:

fedora_19.yaml

Nested dictionaries

In order to create nested dictionaries as output you can use double dot ".." as a delimiter. You can change this using "pepa_delimiter" we choose double dot since single dot is already used by key names in some modules, and using ":" requires quoting in the YAML.

Example:

network..dns..servers:
 - 10.0.0.1
 - 10.0.0.2
network..dns..options:
 - timeout:2
 - attempts:1
 - ndots:1
network..dns..search:
 - example.com

Would become:

network:
 dns:
 servers:
 - 10.0.0.1
 - 10.0.0.2
 options:
 - timeout:2
 - attempts:1
 - ndots:1
 search:
 - example.com

Operators

Operators can be used to merge/unset a list/hash or set the key as immutable, so it can't be changed.

	Operator

	Description

	merge()

	Merge list or hash

	unset()

	Unset key

	immutable()

	Set the key as immutable, so it can't be changed

	imerge()

	Set immutable and merge

	iunset()

	Set immutable and unset

Example:

network..dns..search..merge():
 - foobar.com
 - dummy.nl
owner..immutable(): Operations
host..printers..unset():

Validation

Since it's very hard to test Jinja as is, the best approach is to run all the permutations of input and validate the output, i.e. Unit Testing.

To facilitate this in Pepa we use YAML, Jinja and Cerberus <https://github.com/nicolaiarocci/cerberus>.

Schema

So this is a validation schema for network configuration, as you see it can be customized with Jinja just as Pepa templates.

This was designed to be run as a build job in Jenkins or similar tool. You can provide Grains/Pillar input using either the config file or command line arguments.

File Example: host/validation/network.yaml

network..dns..search:
 type: list
 allowed:
 - example.com

network..dns..options:
 type: list
 allowed: ['timeout:2', 'attempts:1', 'ndots:1']

network..dns..servers:
 type: list
 schema:
 regex: ^([0-9]{1,3}\.){3}[0-9]{1,3}$

network..gateway:
 type: string
 regex: ^([0-9]{1,3}\.){3}[0-9]{1,3}$

{% if network.interfaces is defined %}
{% for interface in network.interfaces %}

network..interfaces..{{ interface }}..dhcp:
 type: boolean

network..interfaces..{{ interface }}..fqdn:
 type: string
 regex: ^([a-z0-9]([a-z0-9-]{0,61}[a-z0-9])?\.)+[a-zA-Z]{2,6}$

network..interfaces..{{ interface }}..hwaddr:
 type: string
 regex: ^([0-9a-f]{1,2}\:){5}[0-9a-f]{1,2}$

network..interfaces..{{ interface }}..ipv4:
 type: string
 regex: ^([0-9]{1,3}\.){3}[0-9]{1,3}$

network..interfaces..{{ interface }}..netmask:
 type: string
 regex: ^([0-9]{1,3}\.){3}[0-9]{1,3}$

{% endfor %}
{% endif %}

Links

For more examples and information see <https://github.com/mickep76/pepa>.

	
salt.pillar.pepa.ext_pillar(minion_id, pillar, resource, sequence, subkey=False, subkey_only=False)

	Evaluate Pepa templates

	
salt.pillar.pepa.key_value_to_tree(data)

	Convert key/value to tree

	
salt.pillar.pepa.validate(output, resource)

	Validate Pepa templates

salt.pillar.pillar_ldap

Use LDAP data as a Pillar source

This pillar module executes a series of LDAP searches.
Data returned by these searches are aggregated, whereby data returned by later
searches override data by previous searches with the same key.

The final result is merged with existing pillar data.

The configuration of this external pillar module is done via an external
file which provides the actual configuration for the LDAP searches.

Configuring the LDAP ext_pillar

The basic configuration is part of the master configuration.

ext_pillar:
 - pillar_ldap: /etc/salt/master.d/pillar_ldap.yaml

Note

When placing the file in the master.d directory, make sure its name
doesn't end in .conf, otherwise the salt-master process will attempt
to parse its content.

Warning

Make sure this file has very restrictive permissions, as it will contain
possibly sensitive LDAP credentials!

The only required key in the master configuration is pillar_ldap pointing
to a file containing the actual configuration.

Configuring the LDAP searches

The file is processed using Salt's Renderers <renderers> which makes it
possible to reference grains within the configuration.

Warning

When using Jinja in this file, make sure to do it in a way which prevents
leaking sensitive information. A rogue minion could send arbitrary grains
to trick the master into returning secret data.
Use only the 'id' grain which is verified through the minion's key/cert.

Map Mode

The it-admins configuration below returns the Pillar it-admins by:

	filtering for:
- members of the group it-admins
- objects with objectclass=user

	returning the data of users, where each user is a dictionary containing the
configured string or list attributes.

Configuration

salt-users:
 server: ldap.company.tld
 port: 389
 tls: true
 dn: 'dc=company,dc=tld'
 binddn: 'cn=salt-pillars,ou=users,dc=company,dc=tld'
 bindpw: bi7ieBai5Ano
 referrals: false
 anonymous: false
 mode: map
 dn: 'ou=users,dc=company,dc=tld'
 filter: '(&(memberof=cn=it-admins,ou=groups,dc=company,dc=tld)(objectclass=user))'
 attrs:
 - cn
 - displayName
 - givenName
 - sn
 lists:
 - memberOf

search_order:
 - salt-users

Result

{
 'salt-users': [
 {
 'cn': 'cn=johndoe,ou=users,dc=company,dc=tld',
 'displayName': 'John Doe'
 'givenName': 'John'
 'sn': 'Doe'
 'memberOf': [
 'cn=it-admins,ou=groups,dc=company,dc=tld',
 'cn=team01,ou=groups,dc=company'
]
 },
 {
 'cn': 'cn=janedoe,ou=users,dc=company,dc=tld',
 'displayName': 'Jane Doe',
 'givenName': 'Jane',
 'sn': 'Doe',
 'memberOf': [
 'cn=it-admins,ou=groups,dc=company,dc=tld',
 'cn=team02,ou=groups,dc=company'
]
 }
]
}

	
salt.pillar.pillar_ldap.ext_pillar(minion_id, pillar, config_file)

	Execute LDAP searches and return the aggregated data

salt.pillar.postgres

Retrieve Pillar data by doing a postgres query

New in version 2017.7.0.

	maturity:

	new

	depends:

	psycopg2

	platform:

	all

Complete Example

postgres:
 user: 'salt'
 pass: 'super_secret_password'
 db: 'salt_db'

ext_pillar:
 - postgres:
 fromdb:
 query: 'SELECT col1,col2,col3,col4,col5,col6,col7
 FROM some_random_table
 WHERE minion_pattern LIKE %s'
 depth: 5
 as_list: True
 with_lists: [1,3]

	
class salt.pillar.postgres.POSTGRESExtPillar

	This class receives and processes the database rows from POSTGRES.

	
extract_queries(args, kwargs)

	This function normalizes the config block into a set of queries we
can use. The return is a list of consistently laid out dicts.

	
salt.pillar.postgres.ext_pillar(minion_id, pillar, *args, **kwargs)

	Execute queries against POSTGRES, merge and return as a dict

salt.pillar.puppet

Execute an unmodified puppet_node_classifier and read the output as YAML. The YAML data is then directly overlaid onto the minion's Pillar data.

	
salt.pillar.puppet.ext_pillar(minion_id, pillar, command)

	Execute an unmodified puppet_node_classifier and read the output as YAML

salt.pillar.reclass_adapter

Use the "reclass" database as a Pillar source

This ext_pillar plugin provides access to the reclass database, such
that Pillar data for a specific minion are fetched using reclass.

You can find more information about reclass at
http://reclass.pantsfullofunix.net.

To use the plugin, add it to the ext_pillar list in the Salt master config
and tell reclass by way of a few options how and where to find the
inventory:

ext_pillar:
 - reclass:
 storage_type: yaml_fs
 inventory_base_uri: /srv/salt

This would cause reclass to read the inventory from YAML files in
/srv/salt/nodes and /srv/salt/classes.

If you are also using reclass as master_tops plugin, and you want to
avoid having to specify the same information for both, use YAML anchors (take
note of the differing data types for ext_pillar and master_tops):

reclass: &reclass
 storage_type: yaml_fs
 inventory_base_uri: /srv/salt
 reclass_source_path: ~/code/reclass

ext_pillar:
 - reclass: *reclass

master_tops:
 reclass: *reclass

If you want to run reclass from source, rather than installing it, you can
either let the master know via the PYTHONPATH environment variable, or by
setting the configuration option, like in the example above.

	
salt.pillar.reclass_adapter.ext_pillar(minion_id, pillar, **kwargs)

	Obtain the Pillar data from reclass for the given minion_id.

salt.pillar.redismod

Read pillar data from a Redis backend

New in version 2014.7.0.

	depends:

	
	redis Python module (on master)

Salt Master Redis Configuration

The module shares the same base Redis connection variables as
salt.returners.redis_return. These variables go in your master
config file.

	redis.db - The Redis database to use. Defaults to 0.

	redis.host - The Redis host to connect to. Defaults to 'salt'.

	redis.port - The port that the Redis database is listening on. Defaults
to 6379.

	redis.password - The password for authenticating with Redis. Only
required if you are using master auth. Defaults to None.

Configuring the Redis ext_pillar

ext_pillar:
 - redis: {function: key_value}

	
salt.pillar.redismod.ext_pillar(minion_id, pillar, function, **kwargs)

	Grabs external pillar data based on configured function

	
salt.pillar.redismod.key_json(minion_id, pillar, pillar_key=None)

	Pulls a string from redis and deserializes it from json. Deserialized
dictionary data loaded directly into top level if pillar_key is not set.

	pillar_key
	Pillar key to return data into

	
salt.pillar.redismod.key_value(minion_id, pillar, pillar_key='redis_pillar')

	Looks for key in redis matching minion_id, returns a structure based on the
data type of the redis key. String for string type, dict for hash type and
lists for lists, sets and sorted sets.

	pillar_key
	Pillar key to return data into

salt.pillar.rethinkdb_pillar

Provide external pillar data from RethinkDB

New in version 2018.3.0.

	depends:

	rethinkdb (on the salt-master)

salt master rethinkdb configuration

	These variables must be configured in your master configuration file.
	
	rethinkdb.host - The RethinkDB server. Defaults to 'salt'

	rethinkdb.port - The port the RethinkDB server listens on.
Defaults to '28015'

	rethinkdb.database - The database to connect to.
Defaults to 'salt'

	rethinkdb.username - The username for connecting to RethinkDB.
Defaults to ''

	rethinkdb.password - The password for connecting to RethinkDB.
Defaults to ''

salt-master ext_pillar configuration

The ext_pillar function arguments are given in single line dictionary notation.

ext_pillar:
 - rethinkdb: {table: ext_pillar, id_field: minion_id, field: pillar_root, pillar_key: external_pillar}

	In the example above the following happens.
	
	The salt-master will look for external pillars in the 'ext_pillar' table
on the RethinkDB host

	The minion id will be matched against the 'minion_id' field

	Pillars will be retrieved from the nested field 'pillar_root'

	Found pillars will be merged inside a key called 'external_pillar'

Module Documentation

	
salt.pillar.rethinkdb_pillar.ext_pillar(minion_id, pillar, table='pillar', id_field=None, field=None, pillar_key=None)

	Collect minion external pillars from a RethinkDB database

Arguments:

	table: The RethinkDB table containing external pillar information.
Defaults to 'pillar'

	id_field: Field in document containing the minion id.
If blank then we assume the table index matches minion ids

	field: Specific field in the document used for pillar data, if blank
then the entire document will be used

	pillar_key: The salt-master will nest found external pillars under
this key before merging into the minion pillars. If blank, external
pillars will be merged at top level

salt.pillar.s3

Copy pillar data from a bucket in Amazon S3

The S3 pillar can be configured in the master config file with the following
options

ext_pillar:
 - s3:
 bucket: my.fancy.pillar.bucket
 keyid: KASKFJWAKJASJKDAJKSD
 key: ksladfDLKDALSFKSD93q032sdDasdfasdflsadkf
 multiple_env: False
 environment: base
 prefix: somewhere/overthere
 verify_ssl: True
 service_url: s3.amazonaws.com
 kms_keyid: 01234567-89ab-cdef-0123-4567890abcde
 s3_cache_expire: 30
 s3_sync_on_update: True
 path_style: False
 https_enable: True

The bucket parameter specifies the target S3 bucket. It is required.

The keyid parameter specifies the key id to use when access the S3 bucket.
If it is not provided, an attempt to fetch it from EC2 instance meta-data will
be made.

The key parameter specifies the key to use when access the S3 bucket. If it
is not provided, an attempt to fetch it from EC2 instance meta-data will be made.

The multiple_env defaults to False. It specifies whether the pillar should
interpret top level folders as pillar environments (see mode section below).

The environment defaults to 'base'. It specifies which environment the
bucket represents when in single environments mode (see mode section below). It
is ignored if multiple_env is True.

The prefix defaults to ''. It specifies a key prefix to use when searching
for data in the bucket for the pillar. It works when multiple_env is True or False.
Essentially it tells ext_pillar to look for your pillar data in a 'subdirectory'
of your S3 bucket

The verify_ssl parameter defaults to True. It specifies whether to check for
valid S3 SSL certificates. NOTE If you use bucket names with periods, this
must be set to False else an invalid certificate error will be thrown (issue
#12200).

The service_url parameter defaults to 's3.amazonaws.com'. It specifies the
base url to use for accessing S3.

The kms_keyid parameter is optional. It specifies the ID of the Key
Management Service (KMS) master key that was used to encrypt the object.

The s3_cache_expire parameter defaults to 30s. It specifies expiration
time of S3 metadata cache file.

The s3_sync_on_update parameter defaults to True. It specifies if cache
is synced on update rather than jit.

The path_style parameter defaults to False. It specifies whether to use
path style requests or dns style requests

The https_enable parameter defaults to True. It specifies whether to use
https protocol or http protocol

This pillar can operate in two modes, single environment per bucket or multiple
environments per bucket.

Single environment mode must have this bucket structure:

s3://<bucket name>/<prefix>/<files>

Multiple environment mode must have this bucket structure:

s3://<bucket name>/<prefix>/<environment>/<files>

If you wish to define your pillar data entirely within S3 it's recommended
that you use the prefix= parameter and specify one entry in ext_pillar
for each environment rather than specifying multiple_env. This is due
to issue #22471 (https://github.com/saltstack/salt/issues/22471)

	
class salt.pillar.s3.S3Credentials(key, keyid, bucket, service_url, verify_ssl=True, kms_keyid=None, location=None, path_style=False, https_enable=True)

	

	
salt.pillar.s3.ext_pillar(minion_id, pillar, bucket, key=None, keyid=None, verify_ssl=True, location=None, multiple_env=False, environment='base', prefix='', service_url=None, kms_keyid=None, s3_cache_expire=30, s3_sync_on_update=True, path_style=False, https_enable=True)

	Execute a command and read the output as YAML

salt.pillar.saltclass

SaltClass Pillar Module

ext_pillar:
 - saltclass:
 - path: /srv/saltclass

For additional configuration instructions, see the saltclass module

	
salt.pillar.saltclass.ext_pillar(minion_id, pillar, *args, **kwargs)

	Compile pillar data

salt.pillar.sql_base

Retrieve Pillar data by doing a SQL query

This module is not meant to be used directly as an ext_pillar.
It is a place to put code common to PEP 249 compliant SQL database adapters.
It exposes a python ABC that can be subclassed for new database providers.

	maturity:

	new

	platform:

	all

Theory of sql_base ext_pillar

Ok, here's the theory for how this works...

	First, any non-keyword args are processed in order.

	Then, remaining keywords are processed.

We do this so that it's backward compatible with older configs.
Keyword arguments are sorted before being appended, so that they're predictable,
but they will always be applied last so overall it's moot.

For each of those items we process, it depends on the object type:

	Strings are executed as is and the pillar depth is determined by the number
of fields returned.

	A list has the first entry used as the query, the second as the pillar depth.

	A mapping uses the keys "query" and "depth" as the tuple

You can retrieve as many fields as you like, how they get used depends on the
exact settings.

Configuring a sql_base ext_pillar

The sql_base ext_pillar cannot be used directly, but shares query configuration
with its implementations. These examples use a fake 'sql_base' adapter, which
should be replaced with the name of the adapter you are using.

A list of queries can be passed in

ext_pillar:
 - sql_base:
 - "SELECT pillar,value FROM pillars WHERE minion_id = %s"
 - "SELECT pillar,value FROM more_pillars WHERE minion_id = %s"

Or you can pass in a mapping

ext_pillar:
 - sql_base:
 main: "SELECT pillar,value FROM pillars WHERE minion_id = %s"
 extras: "SELECT pillar,value FROM more_pillars WHERE minion_id = %s"

The query can be provided as a string as we have just shown, but they can be
provided as lists

ext_pillar:
 - sql_base:
 - "SELECT pillar,value FROM pillars WHERE minion_id = %s"
 2

Or as a mapping

ext_pillar:
 - sql_base:
 - query: "SELECT pillar,value FROM pillars WHERE minion_id = %s"
 depth: 2

The depth defines how the dicts are constructed.
Essentially if you query for fields a,b,c,d for each row you'll get:

	With depth 1: {a: {"b": b, "c": c, "d": d}}

	With depth 2: {a: {b: {"c": c, "d": d}}}

	With depth 3: {a: {b: {c: d}}}

Depth greater than 3 wouldn't be different from 3 itself.
Depth of 0 translates to the largest depth needed, so 3 in this case.
(max depth == key count - 1)

Then they are merged in a similar way to plain pillar data, in the order
returned by the SQL database.

Thus subsequent results overwrite previous ones when they collide.

The ignore_null option can be used to change the overwrite behavior so that
only non-NULL values in subsequent results will overwrite. This can be used
to selectively overwrite default values.

ext_pillar:
 - sql_base:
 - query: "SELECT pillar,value FROM pillars WHERE minion_id = 'default' and minion_id != %s"
 depth: 2
 - query: "SELECT pillar,value FROM pillars WHERE minion_id = %s"
 depth: 2
 ignore_null: True

If you specify as_list: True in the mapping expression it will convert
collisions to lists.

If you specify with_lists: '...' in the mapping expression it will
convert the specified depths to list. The string provided is a sequence
numbers that are comma separated. The string '1,3' will result in:

a,b,c,d,e,1 # field 1 same, field 3 differs
a,b,c,f,g,2 # ^^^^
a,z,h,y,j,3 # field 1 same, field 3 same
a,z,h,y,k,4 # ^^^^
 ^ ^

These columns define list grouping

{a: [
 {c: [
 {e: 1},
 {g: 2}
]
 },
 {h: [
 {j: 3, k: 4 }
]
 }
]}

The range for with_lists is 1 to number_of_fields, inclusive.
Numbers outside this range are ignored.

If you specify as_json: True in the mapping expression and query only for
single value, returned data are considered in JSON format and will be merged
directly.

ext_pillar:
 - sql_base:
 - query: "SELECT json_pillar FROM pillars WHERE minion_id = %s"
 as_json: True

The processed JSON entries are recursively merged in a single dictionary.
Additionnaly if as_list is set to True the lists will be merged in case of collision.

For instance the following rows:

{"a": {"b": [1, 2]}, "c": 3}
{"a": {"b": [1, 3]}, "d": 4}

will result in the following pillar with as_list=False

{"a": {"b": [1, 3], "c": 3, "d": 4}

and in with as_list=True

{"a": {"b": [1, 2, 3], "c": 3, "d": 4}

Finally, if you pass the queries in via a mapping, the key will be the
first level name where as passing them in as a list will place them in the
root. This isolates the query results into their own subtrees.
This may be a help or hindrance to your aims and can be used as such.

You can basically use any SELECT query that gets you the information, you
could even do joins or subqueries in case your minion_id is stored elsewhere.
It is capable of handling single rows or multiple rows per minion.

Configuration of the connection depends on the adapter in use.

New in version 3005: The as_json parameter.

More complete example for MySQL (to also show configuration)

mysql:
 user: 'salt'
 pass: 'super_secret_password'
 db: 'salt_db'

ext_pillar:
 - mysql:
 fromdb:
 query: 'SELECT col1,col2,col3,col4,col5,col6,col7
 FROM some_random_table
 WHERE minion_pattern LIKE %s'
 depth: 5
 as_list: True
 with_lists: [1,3]

	
class salt.pillar.sql_base.SqlBaseExtPillar

	This class receives and processes the database rows in a database
agnostic way.

	
as_json = False

	

	
as_list = False

	

	
depth = 0

	

	
enter_root(root)

	Set self.focus for kwarg queries

	
extract_queries(args, kwargs)

	This function normalizes the config block into a set of queries we
can use. The return is a list of consistently laid out dicts.

	
fetch(minion_id, pillar, *args, **kwargs)

	Execute queries, merge and return as a dict.

	
field_names = None

	

	
focus = None

	

	
ignore_null = False

	

	
num_fields = 0

	

	
process_fields(field_names, depth)

	The primary purpose of this function is to store the sql field list
and the depth to which we process.

	
process_results(rows)

	This function takes a list of database results and iterates over,
merging them into a dict form.

	
result = None

	

	
with_lists = None

	

salt.pillar.sqlcipher

Retrieve Pillar data by running a SQLCipher query

New in version 2016.3.0.

Python SQLCipher support is provided by the pysqlcipher
Python package. You need this module installed to query
Pillar data from a SQLCipher database.

This module is a concrete implementation of the sql_base
ext_pillar for SQLCipher.

	maturity:

	new

	depends:

	pysqlcipher (for py2) or pysqlcipher3 (for py3)

	platform:

	all

Configuring the sqlcipher ext_pillar

Use the 'sqlcipher' key under ext_pillar for configuration of queries.

SQLCipher database connection configuration requires the following values
configured in the master config:

	sqlcipher.database - The SQLCipher database to connect to.
Defaults to '/var/lib/salt/pillar-sqlcipher.db'.

	sqlcipher.pass - The SQLCipher database decryption password.

	sqlcipher.timeout - The connection timeout in seconds.

Example configuration

sqlcipher:
 database: /var/lib/salt/pillar-sqlcipher.db
 pass: strong_pass_phrase
 timeout: 5.0

Complete Example

sqlcipher:
 database: '/var/lib/salt/pillar-sqlcipher.db'
 pass: strong_pass_phrase
 timeout: 5.0

ext_pillar:
 - sqlcipher:
 fromdb:
 query: 'SELECT col1,col2,col3,col4,col5,col6,col7
 FROM some_random_table
 WHERE minion_pattern LIKE ?'
 depth: 5
 as_list: True
 with_lists: [1,3]

	
class salt.pillar.sqlcipher.SQLCipherExtPillar

	This class receives and processes the database rows from SQLCipher.

	
salt.pillar.sqlcipher.ext_pillar(minion_id, pillar, *args, **kwargs)

	Execute queries against SQLCipher, merge and return as a dict

salt.pillar.sqlite3

Retrieve Pillar data by doing a SQLite3 query

New in version 2015.8.0.

sqlite3 is included in the stdlib since Python 2.5.

This module is a concrete implementation of the sql_base ext_pillar for
SQLite3.

	platform:

	all

Configuring the sqlite3 ext_pillar

Use the 'sqlite3' key under ext_pillar for configuration of queries.

SQLite3 database connection configuration requires the following values
configured in the master config:

Note, timeout is in seconds.

sqlite3.database: /var/lib/salt/pillar.db
sqlite3.timeout: 5.0

Complete Example

sqlite3:
 database: '/var/lib/salt/pillar.db'
 timeout: 5.0

ext_pillar:
 - sqlite3:
 fromdb:
 query: 'SELECT col1,col2,col3,col4,col5,col6,col7
 FROM some_random_table
 WHERE minion_pattern LIKE ?'
 depth: 5
 as_list: True
 with_lists: [1,3]

	
class salt.pillar.sqlite3.SQLite3ExtPillar

	This class receives and processes the database rows from SQLite3.

	
salt.pillar.sqlite3.ext_pillar(minion_id, pillar, *args, **kwargs)

	Execute queries against SQLite3, merge and return as a dict

salt.pillar.stack

Simple and flexible YAML ext_pillar which can read pillar from within pillar.

New in version 2016.3.0.

PillarStack [https://github.com/bbinet/pillarstack] is a custom saltstack
ext_pillar which was inspired by varstack [https://github.com/conversis/varstack] but is heavily based on Jinja2 for
maximum flexibility.

It supports the following features:

	multiple config files that are jinja2 templates with support for pillar,
__grains__, __salt__, __opts__ objects and pillarenv

	a config file renders as an ordered list of files (paths of these files are
relative to the current config file)

	this list of files are read in ordered as jinja2 templates with support for
stack, pillar, __grains__, __salt__, __opts__ objects and
pillarenv

	all these rendered files are then parsed as yaml

	then all yaml dicts are merged in order with support for the following
merging strategies: merge-first, merge-last, remove, and
overwrite

	stack config files can be matched based on pillar, grains, or
opts values, which make it possible to support kind of self-contained
environments

Installation

PillarStack is already bundled with Salt since 2016.3.0 version so there is
nothing to install from version 2016.3.0.

If you use an older Salt version or you want to override PillarStack with a
more recent one, follow the installation procedure below.

Installing the PillarStack ext_pillar is as simple as dropping the
stack.py file in the <extension_modules>/pillar directory (no external
python module required), given that extension_modules is set in your
salt-master configuration, see:
https://docs.saltproject.io/en/latest/ref/configuration/master.html#extension-modules

Configuration in Salt

Like any other external pillar, its configuration takes place through the
ext_pillar key in the master config file.

However, you can configure PillarStack in 3 different ways:

Single config file

This is the simplest option, you just need to set the path to your single
PillarStack config file like below:

ext_pillar:
 - stack: /path/to/stack.cfg

List of config files

You can also provide a list of config files:

ext_pillar:
 - stack:
 - /path/to/stack1.cfg
 - /path/to/stack2.cfg

Select config files through grains|pillar|opts matching

You can also opt for a much more flexible configuration: PillarStack allows one
to select the config files for the current minion based on matching values from
either grains, or pillar, or opts objects.

Here is an example of such a configuration, which should speak by itself:

ext_pillar:
 - stack:
 pillar:something:
 bar: /path/to/bar/stack.cfg
 foo: /path/to/foo/stack.cfg
 grains:custom:grain:
 value:
 - /path/to/stack1.cfg
 - /path/to/stack2.cfg
 opts:custom:opt:
 value: /path/to/stack0.cfg
 opts:saltenv:
 dev: /path/to/dev/stack.cfg
 __env__: /path/to/__env__/stack.cfg

PillarStack configuration files

The config files that are referenced in the above ext_pillar configuration
are jinja2 templates which must render as a simple ordered list of yaml
files that will then be merged to build pillar data.

The path of these yaml files must be relative to the directory of the
PillarStack config file. These paths support unix style pathname pattern
expansion through the
Python glob module <https://docs.python.org/2/library/glob.html>.

The following variables are available in jinja2 templating of PillarStack
configuration files:

	pillar: the pillar data (as passed by Salt to our ext_pillar
function)

	minion_id: the minion id ;-)

	__opts__: a dictionary of mostly Salt configuration options

	__grains__: a dictionary of the grains of the minion making this pillar
call

	__salt__: a dictionary of Salt module functions, useful so you don't have
to duplicate functions that already exist (note: runs on the master)

So you can use all the power of jinja2 to build your list of yaml files
that will be merged in pillar data.

For example, you could have a PillarStack config file which looks like:

$ cat /path/to/stack/config.cfg
core.yml
common/*.yml
osarchs/{{ __grains__['osarch'] }}.yml
oscodenames/{{ __grains__['oscodename'] }}.yml
{%- for role in pillar.get('roles', []) %}
roles/{{ role }}.yml
{%- endfor %}
minions/{{ minion_id }}.yml

And the whole directory structure could look like:

$ tree /path/to/stack/
/path/to/stack/
├── config.cfg
├── core.yml
├── common/
│ ├── xxx.yml
│ └── yyy.yml
├── osarchs/
│ ├── amd64.yml
│ └── armhf.yml
├── oscodenames/
│ ├── wheezy.yml
│ └── jessie.yml
├── roles/
│ ├── web.yml
│ └── db.yml
└── minions/
 ├── test-1-dev.yml
 └── test-2-dev.yml

Overall process

In the above PillarStack configuration, given that test-1-dev minion is an
amd64 platform running Debian Jessie, and which pillar roles is ["db"],
the following yaml files would be merged in order:

	core.yml

	common/xxx.yml

	common/yyy.yml

	osarchs/amd64.yml

	oscodenames/jessie.yml

	roles/db.yml

	minions/test-1-dev.yml

Before merging, every files above will be preprocessed as Jinja2 templates.
The following variables are available in Jinja2 templating of yaml files:

	stack: the PillarStack pillar data object that has currently been merged
(data from previous yaml files in PillarStack configuration)

	pillar: the pillar data (as passed by Salt to our ext_pillar
function)

	minion_id: the minion id ;-)

	__opts__: a dictionary of mostly Salt configuration options

	__grains__: a dictionary of the grains of the minion making this pillar
call

	__salt__: a dictionary of Salt module functions, useful so you don't have
to duplicate functions that already exist (note: runs on the master)

So you can use all the power of jinja2 to build your pillar data, and even use
other pillar values that has already been merged by PillarStack (from previous
yaml files in PillarStack configuration) through the stack variable.

Once a yaml file has been preprocessed by Jinja2, we obtain a Python dict -
let's call it yml_data - then, PillarStack will merge this yml_data
dict in the main stack dict (which contains already merged PillarStack
pillar data).
By default, PillarStack will deeply merge yml_data in stack (similarly
to the recurse salt pillar_source_merging_strategy), but 3 merging
strategies are currently available for you to choose (see next section).

Once every yaml files have been processed, the stack dict will contain
your whole own pillar data, merged in order by PillarStack.
So PillarStack ext_pillar returns the stack dict, the contents of which
Salt takes care to merge in with all of the other pillars and finally return
the whole pillar to the minion.

Merging strategies

The way the data from a new yaml_data dict is merged with the existing
stack data can be controlled by specifying a merging strategy. Right now
this strategy can either be merge-last (the default), merge-first,
remove, or overwrite.

Note that scalar values like strings, integers, booleans, etc. are always
evaluated using the overwrite strategy (other strategies don't make sense
in that case).

The merging strategy can be set by including a dict in the form of:

__: <merging strategy>

as the first item of the dict or list.
This allows fine grained control over the merging process.

merge-last (default) strategy

If the merge-last strategy is selected (the default), then content of dict
or list variables is merged recursively with previous definitions of this
variable (similarly to the recurse salt
pillar_source_merging_strategy).
This allows for extending previously defined data.

merge-first strategy

If the merge-first strategy is selected, then the content of dict or list
variables are swapped between the yaml_data and stack objects before
being merged recursively with the merge-last previous strategy.

remove strategy

If the remove strategy is selected, then content of dict or list variables
in stack are removed only if the corresponding item is present in the
yaml_data dict.
This allows for removing items from previously defined data.

overwrite strategy

If the overwrite strategy is selected, then the content of dict or list
variables in stack is overwritten by the content of yaml_data dict.
So this allows one to overwrite variables from previous definitions.

Merging examples

Let's go through small examples that should clarify what's going on when a
yaml_data dict is merged in the stack dict.

When you don't specify any strategy, the default merge-last strategy is
selected:

	stack

	yaml_data

	stack (after merge)

	users:
 tom:
 uid: 500
 roles:
 - sysadmin
 root:
 uid: 0

	users:
 tom:
 uid: 1000
 roles:
 - developer
 mat:
 uid: 1001

	users:
 tom:
 uid: 1000
 roles:
 - sysadmin
 - developer
 mat:
 uid: 1001
 root:
 uid: 0

Then you can select a custom merging strategy using the __ key in a dict:

	stack

	yaml_data

	stack (after merge)

	users:
 tom:
 uid: 500
 roles:
 - sysadmin
 root:
 uid: 0

	users:
 __: merge-last
 tom:
 uid: 1000
 roles:
 - developer
 mat:
 uid: 1001

	users:
 tom:
 uid: 1000
 roles:
 - sysadmin
 - developer
 mat:
 uid: 1001
 root:
 uid: 0

	users:
 tom:
 uid: 500
 roles:
 - sysadmin
 root:
 uid: 0

	users:
 __: merge-first
 tom:
 uid: 1000
 roles:
 - developer
 mat:
 uid: 1001

	users:
 tom:
 uid: 500
 roles:
 - developer
 - sysadmin
 mat:
 uid: 1001
 root:
 uid: 0

	users:
 tom:
 uid: 500
 roles:
 - sysadmin
 root:
 uid: 0

	users:
 __: remove
 tom:
 mat:

	users:
 root:
 uid: 0

	users:
 tom:
 uid: 500
 roles:
 - sysadmin
 root:
 uid: 0

	users:
 __: overwrite
 tom:
 uid: 1000
 roles:
 - developer
 mat:
 uid: 1001

	users:
 tom:
 uid: 1000
 roles:
 - developer
 mat:
 uid: 1001

You can also select a custom merging strategy using a __ object in a list:

	stack

	yaml_data

	stack (after merge)

	users:
 - tom
 - root

	users:
 - __: merge-last
 - mat

	users:
 - tom
 - root
 - mat

	users:
 - tom
 - root

	users:
 - __: merge-first
 - mat

	users:
 - mat
 - tom
 - root

	users:
 - tom
 - root

	users:
 - __: remove
 - mat
 - tom

	users:
 - root

	users:
 - tom
 - root

	users:
 - __: overwrite
 - mat

	users:
 - mat

	
salt.pillar.stack.ext_pillar(minion_id, pillar, *args, **kwargs)

	Builds stacked pillar from yaml files listed in file(s).

	Parameters:

	
	minion_id (str [https://docs.python.org/3/library/stdtypes.html#str]) -- Minion ID

	pillar (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- pillar

	args (list [https://docs.python.org/3/library/stdtypes.html#list]) -- (Optional) file(s) that list yaml files

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) -- (Optional) conditional file(s) that list yaml files

salt.pillar.svn_pillar

Clone a remote SVN repository and use the filesystem as a Pillar source

This external Pillar source can be configured in the master config file like
so:

ext_pillar:
 - svn: trunk svn://svnserver/repo root=subdirectory

The root= parameter is optional and used to set the subdirectory from where
to look for Pillar files (such as top.sls).

Changed in version 2014.7.0: The optional root parameter will be added.

Note that this is not the same thing as configuring pillar data using the
pillar_roots parameter. The branch referenced in the
ext_pillar entry above (master), would evaluate to the
base environment, so this branch needs to contain a top.sls with a
base section in it, like this:

base:
 '*':
 - foo

To use other environments from the same SVN repo as svn_pillar sources, just
add additional lines, like so:

ext_pillar:
 - svn: trunk svn://svnserver/repo
 - svn: dev svn://svnserver/repo

In this case, the dev branch would need its own top.sls with a dev
section in it, like this:

dev:
 '*':
 - bar

	
class salt.pillar.svn_pillar.SvnPillar(branch, repo_location, root, opts)

	Deal with the remote SVN repository for Pillar

	
pillar_dir()

	Returns the directory of the pillars (repo cache + branch + root)

	
update()

	

	
salt.pillar.svn_pillar.ext_pillar(minion_id, pillar, repo_string)

	Execute a command and read the output as YAML

salt.pillar.varstack_pillar

Use Varstack [https://github.com/conversis/varstack] data as a Pillar source

Configuring Varstack

Using varstack in Salt is fairly simple. Just put the following into the
config file of your master:

ext_pillar:
 - varstack: /etc/varstack.yaml

Varstack will then use /etc/varstack.yaml to determine which configuration
data to return as pillar information. From there you can take a look at the
README [https://github.com/conversis/varstack/blob/master/README.md] of
varstack on how this file is evaluated.

	
salt.pillar.varstack_pillar.ext_pillar(minion_id, pillar, conf)

	Parse varstack data and return the result

salt.pillar.vault

Vault Pillar Module

	maintainer:

	SaltStack

	maturity:

	New

	platform:

	all

New in version 2016.11.0.

This module allows pillar data to be stored in Hashicorp Vault.

Base configuration instructions are documented in the execution module docs.
Below are noted extra configuration required for the pillar module, but the base
configuration must also be completed.

After the base Vault configuration is created, add the configuration below to
the ext_pillar section in the Salt master configuration.

ext_pillar:
 - vault: path=secret/salt

Each key needs to have all the key-value pairs with the names you
require. Avoid naming every key 'password' as they will collide.

If you want to nest results under a nesting_key name use the following format:

ext_pillar:
 - vault:
 conf: path=secret/salt
 nesting_key: vault_key_name

$ vault write secret/salt auth=my_password master=127.0.0.1

The above will result in two pillars being available, auth and master.

You can then use normal pillar requests to get each key pair directly from
pillar root. Example:

$ salt-ssh '*' pillar.get auth

Multiple Vault sources may also be used:

ext_pillar:
 - vault: path=secret/salt
 - vault: path=secret/root
 - vault: path=secret/minions/{minion}/pass
 - vault: path=secret/roles/{pillar[roles]}/pass

You can also use nesting here as well. Identical nesting keys will get merged.

ext_pillar:
 - vault:
 conf: path=secret/salt
 nesting_key: keyname1
 - vault:
 conf: path=secret/root
 nesting_key: keyname1
 - vault:
 conf: path=secret/minions/{minion}/pass
 nesting_key: keyname2

The difference between the return with and without the nesting key is shown below.
This example takes the key value pairs returned from vault as follows:

path=secret/salt

Key Value
--- -----
salt-passwd badpasswd1

path=secret/root

Key Value
--- -----
root-passwd rootbadpasswd1

path=secret/minions/{minion}/pass

Key Value
--- -----
minion-passwd minionbadpasswd1

#Nesting Key not defined

local:

 salt-passwd:
 badpasswd1
 root-passwd:
 rootbadpasswd1
 minion-passwd:
 minionbadpasswd1

#Nesting Key defined

local:

 keyname1:

 salt-passwd:
 badpasswd1
 root-passwd:
 rootbadpasswd1
 keyname2:

 minion-passwd:
 minionbadpasswd1

New in version 3006.0: Pillar values from previously rendered pillars can be used to template
vault ext_pillar paths.

Using pillar values to template vault pillar paths requires them to be defined
before the vault ext_pillar is called. Especially consider the significancy
of ext_pillar_first master config setting.
You cannot use pillar values sourced from Vault in pillar-templated policies.

If a pillar pattern matches multiple paths, the results are merged according to
the master configuration values pillar_source_merging_strategy
and pillar_merge_lists by default.

If the optional nesting_key was defined, the merged result will be nested below.
There is currently no way to nest multiple results under different keys.

You can override the merging behavior per defined ext_pillar:

ext_pillar:
 - vault:
 conf: path=secret/roles/{pillar[roles]}
 merge_strategy: smart
 merge_lists: false

	
salt.pillar.vault.ext_pillar(minion_id, pillar, conf, nesting_key=None, merge_strategy=None, merge_lists=None, extra_minion_data=None)

	Get pillar data from Vault for the configuration conf.

salt.pillar.venafi

Venafi Pillar Certificates

This module will only return pillar data if the venafi runner module has
already been used to create certificates.

To configure this module, set venafi to True in the ext_pillar
section of your master configuration file:

ext_pillar:
 - venafi: True

	
salt.pillar.venafi.ext_pillar(minion_id, pillar, conf)

	Return an existing set of certificates

salt.pillar.virtkey

Accept a key from a hypervisor if the virt runner has already submitted an authorization request

	
salt.pillar.virtkey.ext_pillar(hyper_id, pillar, name, key)

	Accept the key for the VM on the hyper, if authorized.

salt.pillar.vmware_pillar

Pillar data from vCenter or an ESXi host

New in version 2017.7.0.

	depends:

	
	pyVmomi

This external pillar can pull attributes from objects in vCenter or an ESXi host and provide those attributes
as pillar data to minions. This can allow for pillar based targeting of minions on ESXi host, Datastore, VM
configuration, etc. This setup requires only the salt master have access to the vCenter server/ESXi hosts.

The pillar will return an empty dict if the 'os' or 'virtual' grain are not 'VMWare', 'ESXi', or 'VMWare ESXi'.

Defaults

	The external pillar will search for Virtual Machines with the VM name matching the minion id.

	Data will be returned into the 'vmware' pillar key.

	The external pillar has a default set of properties to return for both VirtualMachine and HostSystem types.

Configuring the VMWare pillar

The required minimal configuration in the salt master ext_pillar setup:

ext_pillar:
 - vmware:
 host: <vcenter/esx host>
 username: <user to connect with>
 password: <password>

Optionally, the following keyword arguments can be passed to the ext_pillar for customized configuration:

	pillar_key
	Optionally set the pillar key to return the data into. Default is vmware.

	protocol
	Optionally set to alternate protocol if the vCenter server or ESX/ESXi host is not
using the default protocol. Default protocol is https.

	port
	Optionally set to alternate port if the vCenter server or ESX/ESXi host is not
using the default port. Default port is 443.

	property_name
	Property name to match the minion id against. Defaults to name.

	property_types
	Optionally specify a list of pyVmomi vim types to search for the minion id in 'property_name'.
Default is ['VirtualMachine'].

For example, to search both vim.VirtualMachine and vim.HostSystem object types:

ext_pillar:
 - vmware:
 host: myesx
 username: root
 password: complex_password
 property_types:
 - VirtualMachine
 - HostSystem

Additionally, the list of property types can be dicts, the item of the dict being a list specifying
the attribute to return for that vim object type.

The pillar will attempt to recurse the attribute and return all child attributes.

To explicitly specify deeper attributes without attempting to recurse an attribute, convert the list
item to a dict with the item of the dict being the child attributes to return. Follow this pattern
to return attributes as deep within the object as necessary.

Note

Be careful when specifying custom attributes! Many attributes have objects as attributes which
have the parent object as an attribute and which will cause the pillar to fail due to the attempt
to convert all sub-objects recursively (i.e. infinite attribute loops). Specifying only the
sub-attributes you would like returned will keep the infinite recursion from occurring.

A maximum recursion exception will occur in this case and the pillar will not return as desired.

ext_pillar:
 - vmware:
 host: myvcenter
 username: my_user
 password: my_pass
 replace_default_attributes: True
 property_types:
 - VirtualMachine:
 - config:
 - bootOptions:
 - bootDelay
 - bootRetryDelay
 - HostSystem:
 - datastore:
 - name

The above ext_pillar example would return a pillar like the following for a VirtualMachine object that's
name matched the minion id:

vmware:
 config:
 bootOptions:
 bootDelay: 1000
 bootRetryDelay: 1000

If you were to retrieve these virtual machine attributes via pyVmomi directly, this would be the same as

vmObject.config.bootOptions.bootDelay
vmObject.config.bootOptionis.bootRetryDelay

The above ext_pillar example would return a pillar like the following for a HostySystem object that's name
matched the minion id:

vmware:
 datastore:
 - name: Datastore1
 - name: Datastore2

The 'datastore' property of a HostSystem object is a list of datastores, thus a list is returned.

	replace_default_attributes
	If custom attributes are specified by the property_types parameter, replace_default_attributes determines
if those will be added to default attributes (False) or replace the default attributes completely (True).
The default setting is 'False'.

Note

vCenter "Custom Attributes" (i.e. Annotations) will always be returned if it exists on the object as
part of the pillar regardless of this setting.

	
salt.pillar.vmware_pillar.ext_pillar(minion_id, pillar, **kwargs)

	Check vmware/vcenter for all data

proxy modules

	arista_pyeapi

	Arista pyeapi

	chronos

	Chronos

	cimc

	Proxy Minion interface module for managing Cisco Integrated Management Controller devices

	cisconso

	Proxy Minion interface module for managing (practically) any network device with Cisco Network Services Orchestrator (Cisco NSO).

	deltaproxy

	This is the "master" deltaproxy minion, known better as the control proxy because it controls all the deltaproxies underneath it.

	docker

	

	dummy

	This is the a dummy proxy-minion designed for testing the proxy minion subsystem.

	esxcluster

	Proxy Minion interface module for managing VMWare ESXi clusters.

	esxdatacenter

	Proxy Minion interface module for managing VMWare ESXi clusters.

	esxi

	Proxy Minion interface module for managing VMware ESXi hosts.

	esxvm

	Proxy Minion interface module for managing VMWare ESXi virtual machines.

	fx2

	Dell FX2 chassis

	junos

	Interface with a Junos device via proxy-minion.

	marathon

	Marathon

	napalm

	NAPALM: Network Automation and Programmability Abstraction Layer with Multivendor support

	netmiko_px

	Netmiko

	nxos

	Proxy Minion for Cisco NX-OS Switches

	nxos_api

	Proxy Minion to manage Cisco Nexus Switches (NX-OS) over the NX-API

	panos

	Proxy Minion interface module for managing Palo Alto firewall devices

	philips_hue

	Philips HUE lamps module for proxy.

	rest_sample

	This is a simple proxy-minion designed to connect to and communicate with the bottle-based web service contained in https://github.com/saltstack/salt-contrib/tree/master/proxyminion_rest_example

	restconf

	Proxy Minion to manage RESTCONF Devices

	ssh_sample

	This is a simple proxy-minion designed to connect to and communicate with a server that exposes functionality via SSH.

	vcenter

	Proxy Minion interface module for managing VMWare vCenters.

salt.proxy.arista_pyeapi

Arista pyeapi

New in version 2019.2.0.

Proxy module for managing Arista switches via the eAPI using the
pyeapi [http://pyeapi.readthedocs.io/en/master/index.html] library.

	codeauthor:

	Mircea Ulinic <ping@mirceaulinic.net>

	maturity:

	new

	depends:

	pyeapi

	platform:

	unix

Note

To understand how to correctly enable the eAPI on your switch, please check
https://eos.arista.com/arista-eapi-101/.

Dependencies

The pyeapi Proxy module requires pyeapi to be installed:
pip install pyeapi.

Pillar

The pyeapi proxy configuration requires the following parameters in order
to connect to the network device:

	transport: https
	Specifies the type of connection transport to use. Valid values for the
connection are socket, http_local, http, and https.

	host: localhost
	The IP address or DNS host name of the connection device.

	username: admin
	The username to pass to the device to authenticate the eAPI connection.

	password
	The password to pass to the device to authenticate the eAPI connection.

	port
	The TCP port of the endpoint for the eAPI connection. If this keyword is
not specified, the default value is automatically determined by the
transport type (80 for http, or 443 for https).

	enablepwd
	The enable mode password if required by the destination node.

All the arguments may be optional, depending on your setup.

Proxy Pillar Example

proxy:
 proxytype: pyeapi
 host: router1.example.com
 username: example
 password: example

	
salt.proxy.arista_pyeapi.call(method, *args, **kwargs)

	Calls an arbitrary pyeapi method.

	
salt.proxy.arista_pyeapi.conn()

	Return the connection object.

	
salt.proxy.arista_pyeapi.init(opts)

	Open the connection to the Arista switch over the eAPI.

	
salt.proxy.arista_pyeapi.initialized()

	Connection finished initializing?

	
salt.proxy.arista_pyeapi.ping()

	Connection open successfully?

	
salt.proxy.arista_pyeapi.shutdown(opts)

	Closes connection with the device.

salt.proxy.chronos

Chronos

Proxy minion for managing a Chronos cluster.

Dependencies

	chronos execution module (salt.modules.chronos)

Pillar

The chronos proxy configuration requires a 'base_url' property that points to
the chronos endpoint:

proxy:
 proxytype: chronos
 base_url: http://my-chronos-master.mydomain.com:4400

New in version 2015.8.2.

	
salt.proxy.chronos.init(opts)

	Perform any needed setup.

	
salt.proxy.chronos.ping()

	Is the chronos api responding?

	
salt.proxy.chronos.shutdown(opts)

	For this proxy shutdown is a no-op

salt.proxy.cimc

Proxy Minion interface module for managing Cisco Integrated Management Controller devices

New in version 2018.3.0.

	codeauthor:

	Spencer Ervin <spencer_ervin@hotmail.com>

	maturity:

	new

	depends:

	none

	platform:

	unix

This proxy minion enables Cisco Integrated Management Controller devices (hereafter referred to
as simply 'cimc' devices to be treated individually like a Salt Minion.

The cimc proxy leverages the XML API functionality on the Cisco Integrated Management Controller.
The Salt proxy must have access to the cimc on HTTPS (tcp/443).

More in-depth conceptual reading on Proxy Minions can be found in the
Proxy Minion section of Salt's
documentation.

Configuration

To use this integration proxy module, please configure the following:

Pillar

Proxy minions get their configuration from Salt's Pillar. Every proxy must
have a stanza in Pillar and a reference in the Pillar top-file that matches
the ID.

proxy:
 proxytype: cimc
 host: <ip or dns name of cimc host>
 username: <cimc username>
 password: <cimc password>
 verify_ssl: True

proxytype

The proxytype key and value pair is critical, as it tells Salt which
interface to load from the proxy directory in Salt's install hierarchy,
or from /srv/salt/_proxy on the Salt Master (if you have created your
own proxy module, for example). To use this cimc Proxy Module, set this to
cimc.

host

The location, or ip/dns, of the cimc host. Required.

username

The username used to login to the cimc host. Required.

password

The password used to login to the cimc host. Required.

	
salt.proxy.cimc.get_config_resolver_class(cid=None, hierarchical=False)

	The configResolveClass method returns requested managed object in a given class.

	
salt.proxy.cimc.grains()

	Get the grains from the proxied device

	
salt.proxy.cimc.grains_refresh()

	Refresh the grains from the proxied device

	
salt.proxy.cimc.init(opts)

	This function gets called when the proxy starts up.

	
salt.proxy.cimc.initialized()

	Since grains are loaded in many different places and some of those
places occur before the proxy can be initialized, return whether
our init() function has been called

	
salt.proxy.cimc.logon()

	Logs into the cimc device and returns the session cookie.

	
salt.proxy.cimc.logout(cookie=None)

	Closes the session with the device.

	
salt.proxy.cimc.ping()

	Returns true if the device is reachable, else false.

	
salt.proxy.cimc.prepare_return(x)

	Converts the etree to dict

	
salt.proxy.cimc.set_config_modify(dn=None, inconfig=None, hierarchical=False)

	The configConfMo method configures the specified managed object in a single subtree (for example, DN).

	
salt.proxy.cimc.shutdown()

	Shutdown the connection to the proxy device. For this proxy,
shutdown is a no-op.

salt.proxy.cisconso

Proxy Minion interface module for managing (practically) any network device with
Cisco Network Services Orchestrator (Cisco NSO). Cisco NSO uses a series of
remote polling
agents, APIs and SSH commands to fetch network configuration and represent
it in a data model.
PyNSO, the Python module used by this proxy minion does the task of converting
native Python dictionaries
into NETCONF/YANG syntax that the REST API for Cisco NSO can then use to set
the configuration of the target
network device.

	Supported devices:
	
	A10 AX Series

	Arista 7150 Series

	Ciena 3000, 5000, ESM

	H3c S5800 Series

	Overture 1400, 2200, 5000, 5100, 6000

	Accedian MetroNID

	Avaya ERS 4000, SR8000, VSP 9000

	
	Cisco: APIC-DC, ASA, IOS, IOS XE, IOS XR, er, ME-4600, NX OS,
	Prime Network Registrar, Quantum, StarOS, UCS ManagWSA

	Huawei: NE40E, quidway series, Enterprise Network Simulation Framework

	PaloAlto PA-2000, PA-3000, Virtualized Firewalls

	Adtran 900 Series

	Brocade ADX, MLX, Netiron, Vyatta

	Dell Force 10 Networking S-Series

	Infinera DTN-X Multi-Terabit Packet Optical Network Platform

	Pulsecom SuperG

	Adva 150CC Series

	CableLabs Converged Cable Access Platform

	Ericsson EFN324 Series, SE family

	Juniper: Contrail, EX, M, MX, QFX, SRX, Virtual SRX

	Quagga Routing Software

	Affirmed Networks

	Citrix Netscaler

	F5 BIG-IP

	NEC iPasolink

	Riverbed Steelhead Series

	Alcatel-Lucent 7XXX, SAM

	Clavister

	Fortinet

	Nominum DCS

	Sonus SBC 5000 Series

	Allied Telesys

	Open vSwitch

New in version 2016.11.0.

	codeauthor:

	Anthony Shaw <anthony.shaw@dimensiondata.com>

This proxy minion enables a consistent interface to fetch, control and maintain
the configuration of network devices via a NETCONF-compliant control plane.
Cisco Network Services Orchestrator.

More in-depth conceptual reading on Proxy Minions can be found in the
Proxy Minion section of Salt's
documentation.

Dependencies

	pynso Python module

PyNSO

PyNSO can be installed via pip:

pip install pynso

Configuration

To use this integration proxy module, please configure the following:

Pillar

Proxy minions get their configuration from Salt's Pillar. Every proxy must
have a stanza in Pillar and a reference in the Pillar top-file that matches
the ID. At a minimum for communication with the NSO host, the pillar should
look like this:

proxy:
 proxytype: cisconso
 host: <ip or dns name of host>
 port: 8080
 use_ssl: false
 username: <username>
 password: password

proxytype

The proxytype key and value pair is critical, as it tells Salt which
interface to load from the proxy directory in Salt's install hierarchy,
or from /srv/salt/_proxy on the Salt Master (if you have created your
own proxy module, for example). To use this Cisco NSO Proxy Module, set this to
cisconso.

host

The location, or IP/dns, of the Cisco NSO API host. Required.

username

The username used to login to the Cisco NSO host, such as admin. Required.

passwords

The password for the given user. Required.

use_ssl

Whether to use HTTPS messaging to speak to the API.

port

The port that the Cisco NSO API is running on, 8080 by default

Salt Proxy

After your pillar is in place, you can test the proxy. The proxy can run on
any machine that has network connectivity to your Salt Master and to the
Cisco NSO host in question. SaltStack recommends that the machine running the
salt-proxy process also run a regular minion, though it is not strictly
necessary.

On the machine that will run the proxy, make sure
there is an /etc/salt/proxy
file with at least the following in it:

master: <ip or hostname of salt-master>

You can then start the salt-proxy process with:

salt-proxy --proxyid <id you want to give the host>

You may want to add -l debug to run the above in the foreground in
debug mode just to make sure everything is OK.

Next, accept the key for the proxy on your salt-master, just like you
would for a regular minion:

salt-key -a <id you gave the cisconso host>

You can confirm that the pillar data is in place for the proxy:

salt <id> pillar.items

And now you should be able to ping the Cisco NSO host to make sure it is
responding:

salt <id> test.ping

	
salt.proxy.cisconso.apply_rollback(datastore, name)

	Apply a system rollback

	Parameters:

	
	datastore (DatastoreType (str enum).) -- The datastore, e.g. running, operational.
One of the NETCONF store IETF types

	name (str) -- an ID of the rollback to restore

	
salt.proxy.cisconso.get_data(datastore, path)

	Get the configuration of the device tree at the given path

	Parameters:

	
	datastore (DatastoreType (str enum).) -- The datastore, e.g. running, operational.
One of the NETCONF store IETF types

	path (list of str OR tuple) -- The device path, a list of element names in order,
comma separated

	Returns:

	The network configuration at that tree

	Return type:

	dict

salt cisco-nso cisconso.get_data devices

	
salt.proxy.cisconso.get_rollback(name)

	Get the backup of stored a configuration rollback

	Parameters:

	name (str) -- Typically an ID of the backup

	Return type:

	str

	Returns:

	the contents of the rollback snapshot

	
salt.proxy.cisconso.get_rollbacks()

	Get a list of stored configuration rollbacks

	
salt.proxy.cisconso.grains()

	Get the grains from the proxy device.

	
salt.proxy.cisconso.init(opts)

	

	
salt.proxy.cisconso.ping()

	Check to see if the host is responding. Returns False if the host didn't
respond, True otherwise.

CLI Example:

salt cisco-nso test.ping

	
salt.proxy.cisconso.set_data_value(datastore, path, data)

	Get a data entry in a datastore

	Parameters:

	
	datastore (DatastoreType (str enum).) -- The datastore, e.g. running, operational.
One of the NETCONF store IETF types

	path (list of str OR tuple) -- The device path to set the value at,
a list of element names in order, comma separated

	data (dict) -- The new value at the given path

	Return type:

	bool

	Returns:

	True if successful, otherwise error.

	
salt.proxy.cisconso.shutdown()

	Shutdown the connection to the proxy device. For this proxy,
shutdown is a no-op.

salt.proxy.deltaproxy

This is the "master" deltaproxy minion, known better as the control proxy because
it controls all the deltaproxies underneath it.

	
salt.proxy.deltaproxy.grains()

	Make up some grains

	
salt.proxy.deltaproxy.grains_refresh()

	Refresh the grains

	
salt.proxy.deltaproxy.init(opts)

	

	
salt.proxy.deltaproxy.initialized()

	Since grains are loaded in many different places and some of those ws
places occur before the proxy can be initialized, return whether
our init() function has been called

	
salt.proxy.deltaproxy.ping()

	Degenerate ping

	
salt.proxy.deltaproxy.shutdown(opts)

	For this proxy shutdown is a no-op

salt.proxy.docker

Warning

This module will be removed from Salt in version 3009 in favor of
the docker Salt Extension [https://github.com/saltstack/saltext-docker].

Docker Proxy Minion

New in version 2019.2.0.

	depends:

	docker

This proxy minion is just a shim to the docker executor, which will use the
docker.call for everything except
state runs.

To configure the proxy minion:

proxy:
 proxytype: docker
 name: festive_leakey

It is also possible to just name the proxy minion the same name as the
container, and use grains to configure the proxy minion:

proxy:
 proxytype: docker
 name: {{grains['id']}}

name

Name of the docker container

	
salt.proxy.docker.init(opts)

	Always initialize

	
salt.proxy.docker.initialized()

	This should always be initialized

	
salt.proxy.docker.module_executors()

	List of module executors to use for this Proxy Minion

	
salt.proxy.docker.shutdown(opts)

	Nothing needs to be done to shutdown

salt.proxy.dummy

This is the a dummy proxy-minion designed for testing the proxy minion subsystem.

	
salt.proxy.dummy.fns()

	Method called by grains module.

	
salt.proxy.dummy.grains()

	Make up some grains

	
salt.proxy.dummy.grains_refresh()

	Refresh the grains

	
salt.proxy.dummy.init(opts)

	Required.
Can be used to initialize the server connection.

	
salt.proxy.dummy.initialized()

	Since grains are loaded in many different places and some of those
places occur before the proxy can be initialized, return whether
our init() function has been called

	
salt.proxy.dummy.package_install(name, **kwargs)

	Install a "package" on the REST server

	
salt.proxy.dummy.package_list()

	List "packages" installed on the REST server

	
salt.proxy.dummy.package_remove(name)

	Remove a "package" on the REST server

	
salt.proxy.dummy.package_status(name)

	Check the installation status of a package on the REST server

	
salt.proxy.dummy.ping()

	Degenerate ping

	
salt.proxy.dummy.service_list()

	List "services" on the REST server

	
salt.proxy.dummy.service_restart(name)

	Restart a "service" on the REST server

	
salt.proxy.dummy.service_start(name)

	Start a "service" on the dummy server

	
salt.proxy.dummy.service_status(name)

	Check if a service is running on the REST server

	
salt.proxy.dummy.service_stop(name)

	Stop a "service" on the dummy server

	
salt.proxy.dummy.shutdown(opts)

	For this proxy shutdown is a no-op

	
salt.proxy.dummy.test_from_state()

	Test function so we have something to call from a state
:return:

	
salt.proxy.dummy.upgrade()

	"Upgrade" packages

	
salt.proxy.dummy.uptodate()

	Call the REST endpoint to see if the packages on the "server" are up to date.

salt.proxy.esxcluster

Proxy Minion interface module for managing VMWare ESXi clusters.

Dependencies

	pyVmomi

	jsonschema

Configuration

To use this integration proxy module, please configure the following:

Pillar

Proxy minions get their configuration from Salt's Pillar. This can now happen
from the proxy's configuration file.

Example pillars:

userpass mechanism:

proxy:
 proxytype: esxcluster
 cluster: <cluster name>
 datacenter: <datacenter name>
 vcenter: <ip or dns name of parent vcenter>
 mechanism: userpass
 username: <vCenter username>
 passwords: (required if userpass is used)
 - first_password
 - second_password
 - third_password

sspi mechanism:

proxy:
 proxytype: esxcluster
 cluster: <cluster name>
 datacenter: <datacenter name>
 vcenter: <ip or dns name of parent vcenter>
 mechanism: sspi
 domain: <user domain>
 principal: <host kerberos principal>

proxytype

To use this Proxy Module, set this to esxdatacenter.

cluster

Name of the managed cluster. Required.

datacenter

Name of the datacenter the managed cluster is in. Required.

vcenter

The location of the VMware vCenter server (host of ip) where the datacenter
should be managed. Required.

mechanism

The mechanism used to connect to the vCenter server. Supported values are
userpass and sspi. Required.

Note

Connections are attempted using all (username, password)
combinations on proxy startup.

username

The username used to login to the host, such as root. Required if mechanism
is userpass.

passwords

A list of passwords to be used to try and login to the vCenter server. At least
one password in this list is required if mechanism is userpass. When the
proxy comes up, it will try the passwords listed in order.

domain

User domain. Required if mechanism is sspi.

principal

Kerberos principal. Rquired if mechanism is sspi.

protocol

If the ESXi host is not using the default protocol, set this value to an
alternate protocol. Default is https.

port

If the ESXi host is not using the default port, set this value to an
alternate port. Default is 443.

Salt Proxy

After your pillar is in place, you can test the proxy. The proxy can run on
any machine that has network connectivity to your Salt Master and to the
vCenter server in the pillar. SaltStack recommends that the machine running the
salt-proxy process also run a regular minion, though it is not strictly
necessary.

To start a proxy minion one needs to establish its identity <id>:

salt-proxy --proxyid <proxy_id>

On the machine that will run the proxy, make sure there is a configuration file
present. By default this is /etc/salt/proxy. If in a different location, the
<configuration_folder> has to be specified when running the proxy:
file with at least the following in it:

salt-proxy --proxyid <proxy_id> -c <configuration_folder>

Commands

Once the proxy is running it will connect back to the specified master and
individual commands can be runs against it:

Master - minion communication
salt <cluster_name> test.ping

Test vcenter connection
salt <cluster_name> vsphere.test_vcenter_connection

States

Associated states are documented in
salt.states.esxcluster.
Look there to find an example structure for Pillar as well as an example
.sls file for configuring an ESX cluster from scratch.

	
salt.proxy.esxcluster.find_credentials()

	Cycle through all the possible credentials and return the first one that
works.

	
salt.proxy.esxcluster.get_details()

	Function that returns the cached details

	
salt.proxy.esxcluster.init(opts)

	This function gets called when the proxy starts up. For
login
the protocol and port are cached.

	
salt.proxy.esxcluster.ping()

	Returns True.

CLI Example:

salt esx-cluster test.ping

	
salt.proxy.esxcluster.shutdown()

	Shutdown the connection to the proxy device. For this proxy,
shutdown is a no-op.

salt.proxy.esxdatacenter

Proxy Minion interface module for managing VMWare ESXi clusters.

Dependencies

	pyVmomi

	jsonschema

Configuration

To use this integration proxy module, please configure the following:

Pillar

Proxy minions get their configuration from Salt's Pillar. This can now happen
from the proxy's configuration file.

Example pillars:

userpass mechanism:

proxy:
 proxytype: esxdatacenter
 datacenter: <datacenter name>
 vcenter: <ip or dns name of parent vcenter>
 mechanism: userpass
 username: <vCenter username>
 passwords: (required if userpass is used)
 - first_password
 - second_password
 - third_password

sspi mechanism:

proxy:
 proxytype: esxdatacenter
 datacenter: <datacenter name>
 vcenter: <ip or dns name of parent vcenter>
 mechanism: sspi
 domain: <user domain>
 principal: <host kerberos principal>

proxytype

To use this Proxy Module, set this to esxdatacenter.

datacenter

Name of the managed datacenter. Required.

vcenter

The location of the VMware vCenter server (host of ip) where the datacenter
should be managed. Required.

mechanism

The mechanism used to connect to the vCenter server. Supported values are
userpass and sspi. Required.

Note

Connections are attempted using all (username, password)
combinations on proxy startup.

username

The username used to login to the host, such as root. Required if mechanism
is userpass.

passwords

A list of passwords to be used to try and login to the vCenter server. At least
one password in this list is required if mechanism is userpass. When the
proxy comes up, it will try the passwords listed in order.

domain

User domain. Required if mechanism is sspi.

principal

Kerberos principal. Rquired if mechanism is sspi.

protocol

If the ESXi host is not using the default protocol, set this value to an
alternate protocol. Default is https.

port

If the ESXi host is not using the default port, set this value to an
alternate port. Default is 443.

Salt Proxy

After your pillar is in place, you can test the proxy. The proxy can run on
any machine that has network connectivity to your Salt Master and to the
vCenter server in the pillar. SaltStack recommends that the machine running the
salt-proxy process also run a regular minion, though it is not strictly
necessary.

To start a proxy minion one needs to establish its identity <id>:

salt-proxy --proxyid <proxy_id>

On the machine that will run the proxy, make sure there is a configuration file
present. By default this is /etc/salt/proxy. If in a different location, the
<configuration_folder> has to be specified when running the proxy:
file with at least the following in it:

salt-proxy --proxyid <proxy_id> -c <configuration_folder>

Commands

Once the proxy is running it will connect back to the specified master and
individual commands can be runs against it:

Master - minion communication
salt <datacenter_name> test.ping

Test vcenter connection
salt <datacenter_name> vsphere.test_vcenter_connection

States

Associated states are documented in
salt.states.esxdatacenter.
Look there to find an example structure for Pillar as well as an example
.sls file for configuring an ESX datacenter from scratch.

	
salt.proxy.esxdatacenter.find_credentials()

	Cycle through all the possible credentials and return the first one that
works.

	
salt.proxy.esxdatacenter.get_details()

	Function that returns the cached details

	
salt.proxy.esxdatacenter.init(opts)

	This function gets called when the proxy starts up.
All login details are cached.

	
salt.proxy.esxdatacenter.ping()

	Returns True.

CLI Example:

salt dc_id test.ping

	
salt.proxy.esxdatacenter.shutdown()

	Shutdown the connection to the proxy device. For this proxy,
shutdown is a no-op.

salt.proxy.esxi

Proxy Minion interface module for managing VMware ESXi hosts.

Warning

This module will be deprecated in a future release of Salt. VMware strongly
recommends using the
VMware Salt extensions [https://docs.saltproject.io/salt/extensions/salt-ext-modules-vmware/en/latest/all.html]
instead of the ESXi module. Because the Salt extensions are newer and
actively supported by VMware, they are more compatible with current versions
of ESXi and they work well with the latest features in the VMware product
line.

Special Note: SaltStack thanks Adobe Corporation [http://adobe.com/]
for their support in creating this Proxy Minion integration.

This proxy minion enables VMware ESXi (hereafter referred to as simply 'ESXi')
hosts to be treated individually like a Salt Minion.

Since the ESXi host may not necessarily run on an OS capable of hosting a
Python stack, the ESXi host can't run a Salt Minion directly. Salt's
"Proxy Minion" functionality enables you to designate another machine to host
a minion process that "proxies" communication from the Salt Master. The master
does not know nor care that the target is not a "real" Salt Minion.

More in-depth conceptual reading on Proxy Minions can be found in the
Proxy Minion section of Salt's
documentation.

Dependencies

	pyVmomi Python Module

	ESXCLI

pyVmomi

PyVmomi can be installed via pip:

pip install pyVmomi

Note

Version 6.0 of pyVmomi has some problems with SSL error handling on certain
versions of Python. If using version 6.0 of pyVmomi, Python 2.6,
Python 2.7.9, or newer must be present. This is due to an upstream dependency
in pyVmomi 6.0 that is not supported in Python versions 2.7 to 2.7.8. If the
version of Python is not in the supported range, you will need to install an
earlier version of pyVmomi. See Issue #29537 [https://github.com/saltstack/salt/issues/29537] for more information.

Based on the note above, to install an earlier version of pyVmomi than the
version currently listed in PyPi, run the following:

pip install pyVmomi==5.5.0.2014.1.1

The 5.5.0.2014.1.1 is a known stable version that this original ESXi State
Module was developed against.

ESXCLI

Currently, about a third of the functions used in the vSphere Execution Module require
the ESXCLI package be installed on the machine running the Proxy Minion process.

The ESXCLI package is also referred to as the VMware vSphere CLI, or vCLI. VMware
provides vCLI package installation instructions for vSphere 5.5 [http://pubs.vmware.com/vsphere-55/index.jsp#com.vmware.vcli.getstart.doc/cli_install.4.2.html] and
vSphere 6.0 [http://pubs.vmware.com/vsphere-60/index.jsp#com.vmware.vcli.getstart.doc/cli_install.4.2.html].

Once all of the required dependencies are in place and the vCLI package is
installed, you can check to see if you can connect to your ESXi host or vCenter
server by running the following command:

esxcli -s <host-location> -u <username> -p <password> system syslog config get

If the connection was successful, ESXCLI was successfully installed on your system.
You should see output related to the ESXi host's syslog configuration.

Configuration

To use this integration proxy module, please configure the following:

Pillar

Proxy minions get their configuration from Salt's Pillar. Every proxy must
have a stanza in Pillar and a reference in the Pillar top-file that matches
the ID. At a minimum for communication with the ESXi host, the pillar should
look like this:

proxy:
 proxytype: esxi
 host: <ip or dns name of esxi host>
 username: <ESXi username>
 passwords:
 - first_password
 - second_password
 - third_password
 credstore: <path to credential store>

proxytype

The proxytype key and value pair is critical, as it tells Salt which
interface to load from the proxy directory in Salt's install hierarchy,
or from /srv/salt/_proxy on the Salt Master (if you have created your
own proxy module, for example). To use this ESXi Proxy Module, set this to
esxi.

host

The location, or ip/dns, of the ESXi host. Required.

username

The username used to login to the ESXi host, such as root. Required.

passwords

A list of passwords to be used to try and login to the ESXi host. At least
one password in this list is required.

The proxy integration will try the passwords listed in order. It is
configured this way so you can have a regular password and the password you
may be updating for an ESXi host either via the
vsphere.update_host_password
execution module function or via the
esxi.password_present state
function. This way, after the password is changed, you should not need to
restart the proxy minion--it should just pick up the new password
provided in the list. You can then change pillar at will to move that
password to the front and retire the unused ones.

This also allows you to use any number of potential fallback passwords.

Note

When a password is changed on the host to one in the list of possible
passwords, the further down on the list the password is, the longer
individual commands will take to return. This is due to the nature of
pyVmomi's login system. We have to wait for the first attempt to fail
before trying the next password on the list.

This scenario is especially true, and even slower, when the proxy
minion first starts. If the correct password is not the first password
on the list, it may take up to a minute for test.ping to respond
with a True result. Once the initial authorization is complete, the
responses for commands will be a little faster.

To avoid these longer waiting periods, SaltStack recommends moving the
correct password to the top of the list and restarting the proxy minion
at your earliest convenience.

protocol

If the ESXi host is not using the default protocol, set this value to an
alternate protocol. Default is https.

port

If the ESXi host is not using the default port, set this value to an
alternate port. Default is 443.

credstore

If the ESXi host is using an untrusted SSL certificate, set this value to
the file path where the credential store is located. This file is passed to
esxcli. Default is <HOME>/.vmware/credstore/vicredentials.xml on Linux
and <APPDATA>/VMware/credstore/vicredentials.xml on Windows.

Note

HOME variable is sometimes not set for processes running as system
services. If you want to rely on the default credential store location,
make sure HOME is set for the proxy process.

Salt Proxy

After your pillar is in place, you can test the proxy. The proxy can run on
any machine that has network connectivity to your Salt Master and to the
ESXi host in question. SaltStack recommends that the machine running the
salt-proxy process also run a regular minion, though it is not strictly
necessary.

On the machine that will run the proxy, make sure there is an /etc/salt/proxy
file with at least the following in it:

master: <ip or hostname of salt-master>

You can then start the salt-proxy process with:

salt-proxy --proxyid <id you want to give the host>

You may want to add -l debug to run the above in the foreground in
debug mode just to make sure everything is OK.

Next, accept the key for the proxy on your salt-master, just like you
would for a regular minion:

salt-key -a <id you gave the esxi host>

You can confirm that the pillar data is in place for the proxy:

salt <id> pillar.items

And now you should be able to ping the ESXi host to make sure it is
responding:

salt <id> test.ping

At this point you can execute one-off commands against the host. For
example, you can get the ESXi host's system information:

salt <id> esxi.cmd system_info

Note that you don't need to provide credentials or an ip/hostname. Salt
knows to use the credentials you stored in Pillar.

It's important to understand how this particular proxy works.
Salt.modules.vsphere is a
standard Salt execution module. If you pull up the docs for it you'll see
that almost every function in the module takes credentials and a target
host. When credentials and a host aren't passed, Salt runs commands
through pyVmomi against the local machine. If you wanted, you could run
functions from this module on any host where an appropriate version of
pyVmomi is installed, and that host would reach out over the network
and communicate with the ESXi host.

esxi.cmd acts as a "shim" between the execution module and the proxy. Its
first parameter is always the function from salt.modules.vsphere. If the
function takes more positional or keyword arguments you can append them to the
call. It's this shim that speaks to the ESXi host through the proxy, arranging
for the credentials and hostname to be pulled from the Pillar section for this
Proxy Minion.

Because of the presence of the shim, to lookup documentation for what
functions you can use to interface with the ESXi host, you'll want to
look in salt.modules.vsphere
instead of salt.modules.esxi.

States

Associated states are thoroughly documented in
salt.states.esxi. Look there
to find an example structure for Pillar as well as an example .sls file
for standing up an ESXi host from scratch.

	
salt.proxy.esxi.ch_config(cmd, *args, **kwargs)

	This function is called by the
salt.modules.esxi.cmd shim.
It then calls whatever is passed in cmd inside the
salt.modules.vsphere module.
Passes the return through from the vsphere module.

	cmd
	The command to call inside salt.modules.vsphere

	args
	Arguments that need to be passed to that command.

	kwargs
	Keyword arguments that need to be passed to that command.

	
salt.proxy.esxi.find_credentials(host)

	Cycle through all the possible credentials and return the first one that
works.

	
salt.proxy.esxi.get_details()

	Return the proxy details

	
salt.proxy.esxi.grains()

	Get the grains from the proxy device.

	
salt.proxy.esxi.grains_refresh()

	Refresh the grains from the proxy device.

	
salt.proxy.esxi.init(opts)

	This function gets called when the proxy starts up. For
ESXi devices, the host, login credentials, and, if configured,
the protocol and port are cached.

	
salt.proxy.esxi.is_connected_via_vcenter()

	

	
salt.proxy.esxi.ping()

	Returns True if connection is to be done via a vCenter (no connection is attempted).
Check to see if the host is responding when connecting directly via an ESXi
host.

CLI Example:

salt esxi-host test.ping

	
salt.proxy.esxi.shutdown()

	Shutdown the connection to the proxy device. For this proxy,
shutdown is a no-op.

salt.proxy.esxvm

Proxy Minion interface module for managing VMWare ESXi virtual machines.

Dependencies

	pyVmomi

	jsonschema

Configuration

To use this integration proxy module, please configure the following:

Pillar

Proxy minions get their configuration from Salt's Pillar. This can now happen
from the proxy's configuration file.

Example pillars:

userpass mechanism:

proxy:
 proxytype: esxvm
 datacenter: <datacenter name>
 vcenter: <ip or dns name of parent vcenter>
 mechanism: userpass
 username: <vCenter username>
 passwords: (required if userpass is used)
 - first_password
 - second_password
 - third_password

sspi mechanism:

proxy:
 proxytype: esxvm
 datacenter: <datacenter name>
 vcenter: <ip or dns name of parent vcenter>
 mechanism: sspi
 domain: <user domain>
 principal: <host kerberos principal>

proxytype

To use this Proxy Module, set this to esxvm.

datacenter

Name of the datacenter where the virtual machine should be deployed. Required.

vcenter

The location of the VMware vCenter server (host of ip) where the virtual
machine should be managed. Required.

mechanism

The mechanism used to connect to the vCenter server. Supported values are
userpass and sspi. Required.

Note

Connections are attempted using all (username, password)
combinations on proxy startup.

username

The username used to login to the host, such as root. Required if mechanism
is userpass.

passwords

A list of passwords to be used to try and login to the vCenter server. At least
one password in this list is required if mechanism is userpass. When the
proxy comes up, it will try the passwords listed in order.

domain

User realm domain. Required if mechanism is sspi.

principal

Kerberos principal. Rquired if mechanism is sspi.

protocol

If the ESXi host is not using the default protocol, set this value to an
alternate protocol. Default is https.

port

If the ESXi host is not using the default port, set this value to an
alternate port. Default is 443.

Salt Proxy

After your pillar is in place, you can test the proxy. The proxy can run on
any machine that has network connectivity to your Salt Master and to the
vCenter server in the pillar. SaltStack recommends that the machine running the
salt-proxy process also run a regular minion, though it is not strictly
necessary.

To start a proxy minion one needs to establish its identity <id>:

salt-proxy --proxyid <proxy_id>

On the machine that will run the proxy, make sure there is a configuration file
present. By default this is /etc/salt/proxy. If in a different location, the
<configuration_folder> has to be specified when running the proxy:
file with at least the following in it:

salt-proxy --proxyid <proxy_id> -c <configuration_folder>

Commands

Once the proxy is running it will connect back to the specified master and
individual commands can be runs against it:

Master - minion communication
salt <proxy_id> test.ping

Test vcenter connection
salt <proxy_id> vsphere.test_vcenter_connection

States

Associated states are documented in
salt.states.esxvm.
Look there to find an example structure for Pillar as well as an example
.sls file for configuring an ESX virtual machine from scratch.

	
salt.proxy.esxvm.find_credentials()

	Cycle through all the possible credentials and return the first one that
works.

	
salt.proxy.esxvm.get_details()

	Function that returns the cached details

	
salt.proxy.esxvm.init(opts)

	This function gets called when the proxy starts up. For
login the protocol and port are cached.

	
salt.proxy.esxvm.ping()

	Returns True.

CLI Example:

salt esx-vm test.ping

	
salt.proxy.esxvm.shutdown()

	Shutdown the connection to the proxy device. For this proxy,
shutdown is a no-op.

salt.proxy.fx2

Dell FX2 chassis

New in version 2015.8.2.

Proxy minion interface module for managing Dell FX2 chassis (Dell
Chassis Management Controller version 1.2 and above, iDRAC8 version 2.00
and above)

Dependencies

	iDRAC Remote execution module (salt.modules.dracr)

	Chassis command shim (salt.modules.chassis)

	Dell Chassis States (salt.states.dellchassis)

	Dell's racadm command line interface to CMC and iDRAC devices.

Special Note: SaltStack thanks Adobe Corporation [http://adobe.com/]
for their support in creating this proxy minion integration.

This proxy minion enables Dell FX2 and FX2s (hereafter referred to as
simply "chassis", "CMC", or "FX2") chassis to be treated individually
like a salt-minion.

Since the CMC embedded in the chassis does not run an OS capable of hosting a
Python stack, the chassis can't run a minion directly. Salt's "Proxy Minion"
functionality enables you to designate another machine to host a minion
process that "proxies" communication from the salt-master. The master does not
know nor care that the target is not a real minion.

More in-depth conceptual reading on Proxy Minions can be found
in the Proxy Minion section of
Salt's documentation.

To configure this integration, follow these steps:

Pillar

Proxy minions get their configuration from Salt's Pillar. Every proxy must
have a stanza in Pillar, and a reference in the Pillar topfile that matches
the ID. At a minimum for communication with the chassis the pillar should
look like this:

proxy:
 host: <ip or dns name of chassis controller>
 admin_username: <iDRAC username for the CMC, usually 'root'>
 fallback_admin_username: <username to try if the first fails>
 passwords:
 - first_password
 - second_password
 - third-password
 proxytype: fx2

The proxytype line above is critical, it tells Salt which interface to load
from the proxy directory in Salt's install hierarchy, or from /srv/salt/_proxy
on the salt-master (if you have created your own proxy module, for example).

The proxy integration will try the passwords listed in order. It is
configured this way so you can have a regular password, a potential
fallback password, and the third password can be the one you intend
to change the chassis to use. This way, after it is changed, you
should not need to restart the proxy minion--it should just pick up the
third password in the list. You can then change pillar at will to
move that password to the front and retire the unused ones.

Beware, many Dell CMC and iDRAC units are configured to lockout
IP addresses or users after too many failed password attempts. This can
generate user panic in the form of "I no longer know what the password is!!!".
To mitigate panic try the web interface from a different IP, or setup a
emergency administrator user in the CMC before doing a wholesale
password rotation.

The automatic lockout can be disabled via Salt with the following:

salt <cmc> chassis.cmd set_general cfgRacTuning cfgRacTuneIpBlkEnable 0

and then verified with

salt <cmc> chassis.cmd get_general cfgRacTuning cfgRacTuneIpBlkEnable

salt-proxy

After your pillar is in place, you can test the proxy. The proxy can run on
any machine that has network connectivity to your salt-master and to the chassis in question.
SaltStack recommends that this machine also run a regular minion, though
it is not strictly necessary.

On the machine that will run the proxy, make sure there is an /etc/salt/proxy
file with at least the following in it:

master: <ip or hostname of salt-master>

You can start the proxy with

salt-proxy --proxyid <id you want to give the chassis>

You may want to add -l debug to run the above in the foreground in debug
mode just to make sure everything is OK.

Next, accept the key for the proxy on your salt-master, just like you would
for a regular minion:

salt-key -a <id you want to give the chassis>

You can confirm that the pillar data is in place for the proxy:

salt <id> pillar.items

And now you should be able to ping the chassis to make sure it is responding:

salt <id> test.ping

At this point you can execute one-off commands against the chassis. For
example, you can get the chassis inventory:

salt <id> chassis.cmd inventory

Note that you don't need to provide credentials or an ip/hostname. Salt knows
to use the credentials you stored in Pillar.

It's important to understand how this particular proxy works.
Salt.modules.dracr is a standard Salt execution
module. If you pull up the docs for it you'll see that almost every function
in the module takes credentials and a target host. When credentials and a host
aren't passed, Salt runs racadm against the local machine. If you wanted
you could run functions from this module on any host where an appropriate
version of racadm is installed, and that host would reach out over the network
and communicate with the chassis.

Chassis.cmd acts as a "shim" between the execution module and the proxy. Its
first parameter is always the function from salt.modules.dracr to execute. If the
function takes more positional or keyword arguments you can append them to the call.
It's this shim that speaks to the chassis through the proxy, arranging for the
credentials and hostname to be pulled from the pillar section for this proxy minion.

Because of the presence of the shim, to lookup documentation for what
functions you can use to interface with the chassis, you'll want to
look in salt.modules.dracr instead
of salt.modules.chassis.

States

Associated states are thoroughly documented in salt.states.dellchassis.
Look there to find an example structure for pillar as well as an example
.sls file for standing up a Dell Chassis from scratch.

	
salt.proxy.fx2.admin_password()

	Return the admin_password in the DETAILS dictionary, or 'calvin'
(the Dell default) if there is none present

	
salt.proxy.fx2.admin_username()

	Return the admin_username in the DETAILS dictionary, or root if there
is none present

	
salt.proxy.fx2.chconfig(cmd, *args, **kwargs)

	This function is called by the salt.modules.chassis.cmd
shim. It then calls whatever is passed in cmd
inside the salt.modules.dracr
module.

	Parameters:

	
	cmd -- The command to call inside salt.modules.dracr

	args -- Arguments that need to be passed to that command

	kwargs -- Keyword arguments that need to be passed to that command

	Returns:

	Passthrough the return from the dracr module.

	
salt.proxy.fx2.find_credentials()

	Cycle through all the possible credentials and return the first one that
works

	
salt.proxy.fx2.grains()

	Get the grains from the proxied device

	
salt.proxy.fx2.grains_refresh()

	Refresh the grains from the proxied device

	
salt.proxy.fx2.host()

	

	
salt.proxy.fx2.init(opts)

	This function gets called when the proxy starts up.
We check opts to see if a fallback user and password are supplied.
If they are present, and the primary credentials don't work, then
we try the backup before failing.

Whichever set of credentials works is placed in the persistent
DETAILS dictionary and will be used for further communication with the
chassis.

	
salt.proxy.fx2.ping()

	Is the chassis responding?

	Returns:

	Returns False if the chassis didn't respond, True otherwise.

	
salt.proxy.fx2.shutdown(opts)

	Shutdown the connection to the proxied device.
For this proxy shutdown is a no-op.

salt.proxy.junos

Interface with a Junos device via proxy-minion. To connect to a junos device via junos proxy, specify the host information in the pillar in '/srv/pillar/details.sls'

proxy:
 proxytype: junos
 host: <ip or dns name of host>
 username: <username>
 port: 830
 password: <secret>

In '/srv/pillar/top.sls' map the device details with the proxy name.

base:
 'vmx':
 - details

After storing the device information in the pillar, configure the proxy in '/etc/salt/proxy'

master: <ip or hostname of salt-master>

Run the salt proxy via the following command:

salt-proxy --proxyid=vmx

	
class salt.proxy.junos.RebootActive(**kwargs)

	Class to get static variable, to indicate when a reboot/shutdown
is being processed and the keep_alive should not probe the
connection since it interferes with the shutdown process.

	
reboot_shutdown = False

	

	
salt.proxy.junos.alive(opts)

	Validate and return the connection status with the remote device.

New in version 2018.3.0.

	
salt.proxy.junos.conn()

	

	
salt.proxy.junos.get_reboot_active()

	

	
salt.proxy.junos.get_serialized_facts()

	

	
salt.proxy.junos.init(opts)

	Open the connection to the Junos device, login, and bind to the
Resource class

	
salt.proxy.junos.initialized()

	

	
salt.proxy.junos.ping()

	Ping? Pong!

	
salt.proxy.junos.proxytype()

	Returns the name of this proxy

	
salt.proxy.junos.reboot_active()

	

	
salt.proxy.junos.reboot_clear()

	

	
salt.proxy.junos.shutdown(opts)

	This is called when the proxy-minion is exiting to make sure the
connection to the device is closed cleanly.

salt.proxy.marathon

Marathon

Proxy minion for managing a Marathon cluster.

Dependencies

	marathon execution module (salt.modules.marathon)

Pillar

The marathon proxy configuration requires a 'base_url' property that points to
the marathon endpoint:

proxy:
 proxytype: marathon
 base_url: http://my-marathon-master.mydomain.com:8080

New in version 2015.8.2.

	
salt.proxy.marathon.init(opts)

	Perform any needed setup.

	
salt.proxy.marathon.ping()

	Is the marathon api responding?

	
salt.proxy.marathon.shutdown(opts)

	For this proxy shutdown is a no-op

salt.proxy.napalm

NAPALM: Network Automation and Programmability Abstraction Layer with Multivendor support

New in version 2016.11.0.

Proxy minion for managing network devices via NAPALM [https://napalm-automation.net/] library.

	codeauthor:

	Mircea Ulinic <ping@mirceaulinic.net> & Jerome Fleury <jf@cloudflare.com>

	maturity:

	new

	depends:

	napalm

	platform:

	unix

Dependencies

The napalm proxy module requires NAPALM [https://napalm-automation.net/] library to be installed: pip install napalm
Please check Installation [http://napalm.readthedocs.io/en/latest/installation/index.html] for complete details.

Note

Beginning with Salt release 2017.7.3, it is recommended to use
napalm >= 2.0.0. The library has been unified into a monolithic
package, as in opposite to separate packages per driver. For more details
you can check this document [https://napalm-automation.net/reunification/].
While it will still work with the old packages, bear in mind that the NAPALM
core team will maintain only the main napalm package.

Moreover, for additional capabilities, the users can always define a
library that extends NAPALM's base capabilities and configure the
provider option (see below).

Pillar

The napalm proxy configuration requires the following parameters in order to connect to the network device:

	driver
	Specifies the network device operating system.
For a complete list of the supported operating systems please refer to the
NAPALM Read the Docs page [https://napalm.readthedocs.io/en/latest/#supported-network-operating-systems].

	host
	The IP Address or FQDN to use when connecting to the device. Alternatively,
the following field names can be used instead: hostname, fqdn, ip.

	username
	The username to be used when connecting to the device.

	passwd
	The password needed to establish the connection.

Note

This field may not be mandatory when working with SSH-based drivers, and
the username has a SSH key properly configured on the device targeted to
be managed.

	optional_args
	Dictionary with the optional arguments.
Check the complete list of supported optional arguments [http://napalm.readthedocs.io/en/latest/support/index.html#list-of-supported-optional-arguments].

	always_alive: True
	In certain less dynamic environments, maintaining the remote connection permanently
open with the network device is not always beneficial. In that case, the user can
select to initialize the connection only when needed, by specifying this field to false.
Default: true (maintains the connection with the remote network device).

New in version 2017.7.0.

	provider: napalm_base
	The library that provides the get_network_device function.
This option is useful when the user has more specific needs and requires
to extend the NAPALM capabilities using a private library implementation.
The only constraint is that the alternative library needs to have the
get_network_device function available.

New in version 2017.7.1.

	multiprocessing: False
	Overrides the multiprocessing option, per proxy minion.
The multiprocessing option must be turned off for SSH-based proxies.
However, some NAPALM drivers (e.g. Arista, NX-OS) are not SSH-based.
As multiple proxy minions may share the same configuration file,
this option permits the configuration of the multiprocessing option
more specifically, for some proxy minions.

New in version 2017.7.2.

Proxy pillar file example:

proxy:
 proxytype: napalm
 driver: junos
 host: core05.nrt02
 username: my_username
 passwd: my_password
 optional_args:
 port: 12201

Example using a user-specific library, extending NAPALM's capabilities, e.g. custom_napalm_base:

proxy:
 proxytype: napalm
 driver: ios
 fqdn: cr1.th2.par.as1234.net
 username: salt
 password: ''
 provider: custom_napalm_base

See also

	NAPALM grains: select network devices based on their characteristics

	NET module: network basic features

	Network config state: Manage the configuration using arbitrary templates

	NAPALM YANG state: Manage the configuration according to the YANG models (OpenConfig/IETF)

	Network ACL module: Generate and load ACL (firewall) configuration

	Network ACL state: Manage the firewall configuration

	NTP operational and configuration management module

	BGP operational and configuration management module

	Routes details

	SNMP configuration module

	Users configuration management

Note

Beginning with release codename 2019.2.0, any NAPALM command executed when
running under a NAPALM Proxy Minion supports the force_reconnect
magic argument.

Proxy Minions generally establish a connection with the remote network
device at the time of the Minion startup and that connection is going to be
used forever.

If one would need execute a command on the device but connecting using
different parameters (due to various causes, e.g., unable to authenticate
the user specified in the Pillar as the authentication system - say
TACACS+ is not available, or the DNS resolver is currently down and would
like to temporarily use the IP address instead, etc.), it implies updating
the Pillar data and restarting the Proxy Minion process restart.
In particular cases like that, you can pass the force_reconnect=True
keyword argument, together with the alternative connection details, to
enforce the command to be executed over a separate connection.

For example, if the usual command is salt '*' net.arp, you can use the
following to connect using a different username instead:
salt '*' net.arp username=my-alt-usr force_reconnect=True.

	
salt.proxy.napalm.alive(opts)

	Return the connection status with the remote device.

New in version 2017.7.0.

	
salt.proxy.napalm.call(method, *args, **kwargs)

	Calls a specific method from the network driver instance.
Please check the readthedocs [http://napalm.readthedocs.org/en/latest/support/index.html#getters-support-matrix] page for the updated list of getters.

	Parameters:

	
	method -- specifies the name of the method to be called

	params -- contains the mapping between the name and the values of the parameters needed to call the method

	Returns:

	A dictionary with three keys:

	result (True/False): if the operation succeeded

	out (object): returns the object as-is from the call

	comment (string): provides more details in case the call failed

	traceback (string): complete traceback in case of exception. Please
submit an issue including this traceback on the correct driver repo [https://github.com/napalm-automation/napalm/issues/new]
and make sure to read the FAQ [https://github.com/napalm-automation/napalm#faq]

Example:

__proxy__['napalm.call']('cli'
 **{
 'commands': [
 'show version',
 'show chassis fan'
]
 })

	
salt.proxy.napalm.fns()

	Method called by NAPALM grains module.

	
salt.proxy.napalm.get_device()

	Returns the network device object.

	
salt.proxy.napalm.get_grains()

	Retrieve facts from the network device.

	
salt.proxy.napalm.grains_refresh()

	Refresh the grains.

	
salt.proxy.napalm.init(opts)

	Opens the connection with the network device.

	
salt.proxy.napalm.initialized()

	Connection finished initializing?

	
salt.proxy.napalm.ping()

	Connection open successfully?

	
salt.proxy.napalm.shutdown(opts)

	Closes connection with the device.

salt.proxy.netmiko_px

Netmiko

New in version 2019.2.0.

Proxy module for managing network devices via
Netmiko [https://github.com/ktbyers/netmiko].

	codeauthor:

	Mircea Ulinic <ping@mirceaulinic.net> & Kirk Byers <ktbyers@twb-tech.com>

	maturity:

	new

	depends:

	netmiko

	platform:

	unix

Dependencies

The netmiko proxy modules requires Netmiko to be installed: pip install netmiko.

Pillar

The netmiko proxy configuration requires the following parameters in order
to connect to the network device:

	device_type - Class selection based on device type. Supported options:

	a10: A10 Networks

	accedian: Accedian Networks

	alcatel_aos: Alcatel AOS

	alcatel_sros: Alcatel SROS

	apresia_aeos: Apresia AEOS

	arista_eos: Arista EOS

	aruba_os: Aruba

	avaya_ers: Avaya ERS

	avaya_vsp: Avaya VSP

	brocade_fastiron: Brocade Fastiron

	brocade_netiron: Brocade Netiron

	brocade_nos: Brocade NOS

	brocade_vdx: Brocade NOS

	brocade_vyos: VyOS

	checkpoint_gaia: Check Point GAiA

	calix_b6: Calix B6

	ciena_saos: Ciena SAOS

	cisco_asa: Cisco SA

	cisco_ios: Cisco IOS

	cisco_nxos: Cisco NX-oS

	cisco_s300: Cisco S300

	cisco_tp: Cisco TpTcCe

	cisco_wlc: Cisco WLC

	cisco_xe: Cisco IOS

	cisco_xr: Cisco XR

	coriant: Coriant

	dell_force10: Dell Force10

	dell_os10: Dell OS10

	dell_powerconnect: Dell PowerConnect

	eltex: Eltex

	enterasys: Enterasys

	extreme: Extreme

	extreme_wing: Extreme Wing

	f5_ltm: F5 LTM

	fortinet: Fortinet

	generic_termserver: TerminalServer

	hp_comware: HP Comware

	hp_procurve: HP Procurve

	huawei: Huawei

	huawei_vrpv8: Huawei VRPV8

	juniper: Juniper Junos

	juniper_junos: Juniper Junos

	linux: Linux

	mellanox: Mellanox

	mrv_optiswitch: MrvOptiswitch

	netapp_cdot: NetAppcDot

	netscaler: Netscaler

	ovs_linux: OvsLinux

	paloalto_panos: PaloAlto Panos

	pluribus: Pluribus

	quanta_mesh: Quanta Mesh

	ruckus_fastiron: Ruckus Fastiron

	ubiquiti_edge: Ubiquiti Edge

	ubiquiti_edgeswitch: Ubiquiti Edge

	vyatta_vyos: VyOS

	vyos: VyOS

	brocade_fastiron_telnet: Brocade Fastiron over Telnet

	brocade_netiron_telnet: Brocade Netiron over Telnet

	cisco_ios_telnet: Cisco IOS over Telnet

	apresia_aeos_telnet: Apresia AEOS over Telnet

	arista_eos_telnet: Arista EOS over Telnet

	hp_procurve_telnet: HP Procurve over Telnet

	hp_comware_telnet: HP Comware over Telnet

	juniper_junos_telnet: Juniper Junos over Telnet

	calix_b6_telnet: Calix B6 over Telnet

	dell_powerconnect_telnet: Dell PowerConnect over Telnet

	generic_termserver_telnet: TerminalServer over Telnet

	extreme_telnet: Extreme Networks over Telnet

	ruckus_fastiron_telnet: Ruckus Fastiron over Telnet

	cisco_ios_serial: Cisco IOS over serial port

	ip - IP address of target device (not required if host is provided)

	host - Hostname of target device (not required if ip is provided)

	username - Username to authenticate against target device, if required

	password - Password to authenticate against target device, if required

	secret - The enable password if target device requires one

	port - The destination port used to connect to the target device

	global_delay_factor - Multiplication factor affecting Netmiko delays
(default: 1)

	use_keys - Connect to target device using SSH keys (default: False)

	key_file - Filename path of the SSH key file to use

	allow_agent - Enable use of SSH key-agent

	ssh_strict - Automatically reject unknown SSH host keys (default:
False, which means unknown SSH host keys will be accepted)

	system_host_keys - Load host keys from the user's "known_hosts" file
(default: False)

	alt_host_keys - If True, host keys will be loaded from the file
specified in alt_key_file (default: False)

	alt_key_file - SSH host key file to use (if alt_host_keys=True)

	ssh_config_file - File name of OpenSSH configuration file

	timeout - Connection timeout, in seconds (default: 90)

	session_timeout - Set a timeout for parallel requests, in seconds
(default: 60)

	keepalive - Send SSH keepalive packets at a specific interval, in
seconds. Currently defaults to 0, for backwards compatibility (it will
not attempt to keep the connection alive using the KEEPALIVE packets).

	default_enter - Character(s) to send to correspond to enter key (default:
\n)

	response_return - Character(s) to use in normalized return data to
represent enter key (default: \n)

	always_alive - In certain less dynamic environments, maintaining the
remote connection permanently open with the network device is not always
beneficial. In that case, the user can select to initialize the connection
only when needed, by setting this option to False. By default this option
is set to True (maintains the connection with the remote network device)

	multiprocessing - Overrides the multiprocessing option,
per proxy minion, as the Netmiko communication channel is mainly SSH
(default: False)

	connection_timeout - The number of seconds to attempt to connect to
the device in seconds.
(default: 300)

Proxy Pillar Example

proxy:
 proxytype: netmiko
 device_type: juniper_junos
 host: router1.example.com
 username: example
 password: example

proxy:
 proxytype: netmiko
 device_type: cisco_ios
 ip: 1.2.3.4
 username: test
 use_keys: true
 secret: w3@k

	
salt.proxy.netmiko_px.alive(opts)

	Return the connection status with the network device.

	
salt.proxy.netmiko_px.args()

	Return the Netmiko device args.

	
salt.proxy.netmiko_px.call(method, *args, **kwargs)

	Calls an arbitrary netmiko method.

	
salt.proxy.netmiko_px.conn()

	Return the connection object.

	
salt.proxy.netmiko_px.connection(connection_timeout=300)

	

	
salt.proxy.netmiko_px.init(opts)

	Open the connection to the network device
managed through netmiko.

	
salt.proxy.netmiko_px.initialized()

	Connection finished initializing?

	
salt.proxy.netmiko_px.make_con(connection_timeout=300)

	

	
salt.proxy.netmiko_px.ping()

	Connection open successfully?

	
salt.proxy.netmiko_px.shutdown(opts)

	Closes connection with the device.

salt.proxy.nxos

Proxy Minion for Cisco NX-OS Switches

New in version 2016.11.0.

The Cisco NX-OS Proxy Minion is supported on NX-OS devices for the following connection types:
1) Connection Type SSH
2) Connection Type NX-API (If Supported By The Device and Image Version).

	maturity:

	new

	platform:

	nxos

SSH uses the built in SSHConnection module in salt.utils.vt_helper

To configure the proxy minion for ssh:

proxy:
 proxytype: nxos
 connection: ssh
 host: 192.168.187.100
 username: admin
 password: admin
 prompt_name: nxos-switch
 ssh_args: '-o PubkeyAuthentication=no'
 key_accept: True

To configure the proxy minion for nxapi:

proxy:
 proxytype: nxos
 connection: nxapi
 host: 192.168.187.100
 username: admin
 password: admin
 transport: http
 port: 80
 verify: False
 save_config: False

	proxytype:
	(REQUIRED) Use this proxy minion nxos

	connection:
	(REQUIRED) connection transport type.
Choices: ssh, nxapi
Default: ssh

	host:
	(REQUIRED) login ip address or dns hostname.

	username:
	(REQUIRED) login username.

	password:
	(REQUIRED) login password.

	save_config:
	If True, 'copy running-config starting-config' is issues for every
configuration command.
If False, Running config is not saved to startup config
Default: True

The recommended approach is to use the save_running_config function
instead of this option to improve performance. The default behavior
controlled by this option is preserved for backwards compatibility.

Connection SSH Args:

	prompt_name:
	(REQUIRED when connection is ssh)
(REQUIRED, this or prompt_regex below, but not both)
The name in the prompt on the switch. Recommended to use your
device's hostname.

	prompt_regex:
	(REQUIRED when connection is ssh)
(REQUIRED, this or prompt_name above, but not both)
A regular expression that matches the prompt on the switch
and any other possible prompt at which you need the proxy minion
to continue sending input. This feature was specifically developed
for situations where the switch may ask for confirmation. prompt_name
above would not match these, and so the session would timeout.

Example:

nxos-switch#.*|\(y\/n\)\?.*

This should match

nxos-switch#

or

Flash complete. Reboot this switch (y/n)? [n]

If neither prompt_name nor prompt_regex is specified the prompt will be
defaulted to

.+#$

which should match any number of characters followed by a # at the end
of the line. This may be far too liberal for most installations.

	ssh_args:
	Extra optional arguments used for connecting to switch.

	key_accept:
	Whether or not to accept the host key of the switch on initial login.
Default: False

Connection NXAPI Args:

	transport:
	(REQUIRED) when connection is nxapi.
Choices: http, https
Default: https

	port:
	(REQUIRED) when connection is nxapi.
Default: 80

	verify:
	(REQUIRED) when connection is nxapi.
Either a boolean, in which case it controls whether we verify the NX-API
TLS certificate, or a string, in which case it must be a path to a CA bundle
to use.
Default: True

When there is no certificate configuration on the device and this option is
set as True (default), the commands will fail with the following error:
SSLError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:581).
In this case, you either need to configure a proper certificate on the
device (recommended), or bypass the checks setting this argument as False
with all the security risks considered.

Check https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/programmability/6_x/b_Cisco_Nexus_3000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_3000_Series_NX-OS_Programmability_Guide_chapter_01.html
to see how to properly configure the certificate.

The functions from the proxy minion can be run from the salt commandline using
the salt.modules.nxos execution module.

	
salt.proxy.nxos.grains()

	Helper function for nxos execution module functions that need to
retrieve nxos grains using the proxy minion.

	
salt.proxy.nxos.grains_refresh()

	Helper function for nxos execution module functions that need to
refresh nxos grains using the proxy minion.

	
salt.proxy.nxos.init(opts=None)

	Required.
Initialize device connection using ssh or nxapi connection type.

	
salt.proxy.nxos.initialized()

	Since grains are loaded in many different places and some of those
places occur before the proxy can be initialized, return whether the
init() function has been called.

	
salt.proxy.nxos.ping()

	Helper function for nxos execution module functions that need to
ping the nxos device using the proxy minion.

	
salt.proxy.nxos.proxy_config(commands, save_config=None)

	Helper function for nxos execution module functions that need to
configure an nxos device using the proxy minion.

	
salt.proxy.nxos.sendline(commands, method='cli_show_ascii', **kwargs)

	Helper function for nxos execution module functions that need to
send commands to an nxos device using the proxy minion.

	
salt.proxy.nxos.shutdown()

	Not supported. Only used as a place holder to satisfy shutdown function
requirement.

salt.proxy.nxos_api

Proxy Minion to manage Cisco Nexus Switches (NX-OS) over the NX-API

New in version 2019.2.0.

Proxy module for managing Cisco Nexus switches via the NX-API.

	codeauthor:

	Mircea Ulinic <ping@mirceaulinic.net>

	maturity:

	new

	platform:

	any

Usage

Note

To be able to use this module you need to enable to NX-API on your switch,
by executing feature nxapi in configuration mode.

Configuration example:

switch# conf t
switch(config)# feature nxapi

To check that NX-API is properly enabled, execute show nxapi.

Output example:

switch# show nxapi
nxapi enabled
HTTPS Listen on port 443

Note

NX-API requires modern NXOS distributions, typically at least 7.0 depending
on the hardware. Due to reliability reasons it is recommended to run the
most recent version.

Check https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus7000/sw/programmability/guide/b_Cisco_Nexus_7000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_7000_Series_NX-OS_Programmability_Guide_chapter_0101.html
for more details.

Pillar

The nxos_api proxy configuration requires the following parameters in order
to connect to the network switch:

	transport: https
	Specifies the type of connection transport to use. Valid values for the
connection are http, and https.

	host: localhost
	The IP address or DNS host name of the connection device.

	username: admin
	The username to pass to the device to authenticate the NX-API connection.

	password
	The password to pass to the device to authenticate the NX-API connection.

	port
	The TCP port of the endpoint for the NX-API connection. If this keyword is
not specified, the default value is automatically determined by the
transport type (80 for http, or 443 for https).

	timeout: 60
	Time in seconds to wait for the device to respond. Default: 60 seconds.

	verify: True
	Either a boolean, in which case it controls whether we verify the NX-API
TLS certificate, or a string, in which case it must be a path to a CA bundle
to use. Defaults to True.

When there is no certificate configuration on the device and this option is
set as True (default), the commands will fail with the following error:
SSLError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:581).
In this case, you either need to configure a proper certificate on the
device (recommended), or bypass the checks setting this argument as False
with all the security risks considered.

Check https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/programmability/6_x/b_Cisco_Nexus_3000_Series_NX-OS_Programmability_Guide/b_Cisco_Nexus_3000_Series_NX-OS_Programmability_Guide_chapter_01.html
to see how to properly configure the certificate.

All the arguments may be optional, depending on your setup.

Proxy Pillar Example

proxy:
 proxytype: nxos_api
 host: switch1.example.com
 username: example
 password: example

	
salt.proxy.nxos_api.get_conn_args()

	Returns the connection arguments of the Proxy Minion.

	
salt.proxy.nxos_api.init(opts)

	Open the connection to the Nexsu switch over the NX-API.

As the communication is HTTP based, there is no connection to maintain,
however, in order to test the connectivity and make sure we are able to
bring up this Minion, we are executing a very simple command (show clock)
which doesn't come with much overhead and it's sufficient to confirm we are
indeed able to connect to the NX-API endpoint as configured.

	
salt.proxy.nxos_api.initialized()

	Connection finished initializing?

	
salt.proxy.nxos_api.ping()

	Connection open successfully?

	
salt.proxy.nxos_api.rpc(commands, method='cli', **kwargs)

	Executes an RPC request over the NX-API.

	
salt.proxy.nxos_api.shutdown(opts)

	Closes connection with the device.

salt.proxy.panos

Proxy Minion interface module for managing Palo Alto firewall devices

New in version 2018.3.0.

	codeauthor:

	Spencer Ervin <spencer_ervin@hotmail.com>

	maturity:

	new

	depends:

	none

	platform:

	unix

This proxy minion enables Palo Alto firewalls (hereafter referred to
as simply 'panos') to be treated individually like a Salt Minion.

The panos proxy leverages the XML API functionality on the Palo Alto
firewall. The Salt proxy must have access to the Palo Alto firewall on
HTTPS (tcp/443).

More in-depth conceptual reading on Proxy Minions can be found in the
Proxy Minion section of Salt's
documentation.

Configuration

To use this integration proxy module, please configure the following:

Pillar

Proxy minions get their configuration from Salt's Pillar. Every proxy must
have a stanza in Pillar and a reference in the Pillar top-file that matches
the ID. There are four connection options available for the panos proxy module.

	Direct Device (Password)

	Direct Device (API Key)

	Panorama Pass-Through (Password)

	Panorama Pass-Through (API Key)

Direct Device (Password)

The direct device configuration configures the proxy to connect directly to
the device with username and password.

proxy:
 proxytype: panos
 host: <ip or dns name of panos host>
 username: <panos username>
 password: <panos password>
 verify_ssl: True

proxytype

The proxytype key and value pair is critical, as it tells Salt which
interface to load from the proxy directory in Salt's install hierarchy,
or from /srv/salt/_proxy on the Salt Master (if you have created your
own proxy module, for example). To use this panos Proxy Module, set this to
panos.

host

The location, or ip/dns, of the panos host. Required.

username

The username used to login to the panos host. Required.

password

The password used to login to the panos host. Required.

Direct Device (API Key)

Palo Alto devices allow for access to the XML API with a generated 'API key'_
instead of username and password.

proxy:
 proxytype: panos
 host: <ip or dns name of panos host>
 apikey: <panos generated api key>

proxytype

The proxytype key and value pair is critical, as it tells Salt which
interface to load from the proxy directory in Salt's install hierarchy,
or from /srv/salt/_proxy on the Salt Master (if you have created your
own proxy module, for example). To use this panos Proxy Module, set this to
panos.

host

The location, or ip/dns, of the panos host. Required.

apikey

The generated XML API key for the panos host. Required.

Panorama Pass-Through (Password)

The Panorama pass-through method sends all connections through the Panorama
management system. It passes the connections to the appropriate device using
the serial number of the Palo Alto firewall.

This option will reduce the number of connections that must be present for the
proxy server. It will only require a connection to the Panorama server.

The username and password will be for authentication to the Panorama server,
not the panos device.

proxy:
 proxytype: panos
 serial: <serial number of panos host>
 host: <ip or dns name of the panorama server>
 username: <panorama server username>
 password: <panorama server password>

proxytype

The proxytype key and value pair is critical, as it tells Salt which
interface to load from the proxy directory in Salt's install hierarchy,
or from /srv/salt/_proxy on the Salt Master (if you have created your
own proxy module, for example). To use this panos Proxy Module, set this to
panos.

serial

The serial number of the panos host. Required.

host

The location, or ip/dns, of the Panorama server. Required.

username

The username used to login to the Panorama server. Required.

password

The password used to login to the Panorama server. Required.

Panorama Pass-Through (API Key)

The Panorama server can also utilize a generated 'API key'_ for authentication.

proxy:
 proxytype: panos
 serial: <serial number of panos host>
 host: <ip or dns name of the panorama server>
 apikey: <panos generated api key>

proxytype

The proxytype key and value pair is critical, as it tells Salt which
interface to load from the proxy directory in Salt's install hierarchy,
or from /srv/salt/_proxy on the Salt Master (if you have created your
own proxy module, for example). To use this panos Proxy Module, set this to
panos.

serial

The serial number of the panos host. Required.

host

The location, or ip/dns, of the Panorama server. Required.

apikey

The generated XML API key for the Panorama server. Required.

	
salt.proxy.panos.call(payload=None)

	This function captures the query string and sends it to the Palo Alto device.

	
salt.proxy.panos.grains()

	Get the grains from the proxied device

	
salt.proxy.panos.grains_refresh()

	Refresh the grains from the proxied device

	
salt.proxy.panos.init(opts)

	This function gets called when the proxy starts up. For
panos devices, a determination is made on the connection type
and the appropriate connection details that must be cached.

	
salt.proxy.panos.initialized()

	Since grains are loaded in many different places and some of those
places occur before the proxy can be initialized, return whether
our init() function has been called

	
salt.proxy.panos.is_required_version(required_version='0.0.0')

	Because different versions of Palo Alto support different command sets, this function
will return true if the current version of Palo Alto supports the required command.

	
salt.proxy.panos.ping()

	Returns true if the device is reachable, else false.

	
salt.proxy.panos.shutdown()

	Shutdown the connection to the proxy device. For this proxy,
shutdown is a no-op.

salt.proxy.philips_hue

Philips HUE lamps module for proxy.

New in version 2015.8.3.

First create a new user on the Hue bridge by following the
Meet hue [https://www.developers.meethue.com/documentation/getting-started] instructions.

To configure the proxy minion:

proxy:
 proxytype: philips_hue
 host: [hostname or ip]
 user: [username]

	
class salt.proxy.philips_hue.Const

	Constants for the lamp operations.

	
COLOR_BLUE = {'hue': 46920, 'sat': 254}

	

	
COLOR_DAYLIGHT = {'xy': [0.3806, 0.3576]}

	

	
COLOR_GREEN = {'hue': 25500, 'sat': 254}

	

	
COLOR_ORANGE = {'hue': 12000, 'sat': 254}

	

	
COLOR_PINK = {'xy': [0.3688, 0.2095]}

	

	
COLOR_PURPLE = {'xy': [0.3787, 0.1724]}

	

	
COLOR_RED = {'hue': 0, 'sat': 254}

	

	
COLOR_WHITE = {'xy': [0.3227, 0.329]}

	

	
COLOR_YELLOW = {'xy': [0.4432, 0.5154]}

	

	
LAMP_OFF = {'on': False, 'transitiontime': 0}

	

	
LAMP_ON = {'on': True, 'transitiontime': 0}

	

	
salt.proxy.philips_hue.call_alert(*args, **kwargs)

	Lamp alert

Options:

	id: Specifies a device ID. Can be a comma-separated values. All, if omitted.

	on: Turns on or off an alert. Default is True.

CLI Example:

salt '*' hue.alert
salt '*' hue.alert id=1
salt '*' hue.alert id=1,2,3 on=false

	
salt.proxy.philips_hue.call_blink(*args, **kwargs)

	Blink a lamp. If lamp is ON, then blink ON-OFF-ON, otherwise OFF-ON-OFF.

Options:

	id: Specifies a device ID. Can be a comma-separated values. All, if omitted.

	pause: Time in seconds. Can be less than 1, i.e. 0.7, 0.5 sec.

CLI Example:

salt '*' hue.blink id=1
salt '*' hue.blink id=1,2,3

	
salt.proxy.philips_hue.call_brightness(*args, **kwargs)

	Set an effect to the lamp.

Arguments:

	value: 0~255 brightness of the lamp.

Options:

	id: Specifies a device ID. Can be a comma-separated values. All, if omitted.

	transition: Transition 0~200. Default 0.

CLI Example:

salt '*' hue.brightness value=100
salt '*' hue.brightness id=1 value=150
salt '*' hue.brightness id=1,2,3 value=255

	
salt.proxy.philips_hue.call_color(*args, **kwargs)

	Set a color to the lamp.

Options:

	id: Specifies a device ID. Can be a comma-separated values. All, if omitted.

	
	color: Fixed color. Values are: red, green, blue, orange, pink, white,
	yellow, daylight, purple. Default white.

	transition: Transition 0~200.

Advanced:

	
	gamut: XY coordinates. Use gamut according to the Philips HUE devices documentation.
	More: http://www.developers.meethue.com/documentation/hue-xy-values

CLI Example:

salt '*' hue.color
salt '*' hue.color id=1
salt '*' hue.color id=1,2,3 oolor=red transition=30
salt '*' hue.color id=1 gamut=0.3,0.5

	
salt.proxy.philips_hue.call_effect(*args, **kwargs)

	Set an effect to the lamp.

Options:

	id: Specifies a device ID. Can be a comma-separated values. All, if omitted.

	type: Type of the effect. Possible values are "none" or "colorloop". Default "none".

CLI Example:

salt '*' hue.effect
salt '*' hue.effect id=1
salt '*' hue.effect id=1,2,3 type=colorloop

	
salt.proxy.philips_hue.call_lights(*args, **kwargs)

	Get info about all available lamps.

Options:

	id: Specifies a device ID. Can be a comma-separated values. All, if omitted.

CLI Example:

salt '*' hue.lights
salt '*' hue.lights id=1
salt '*' hue.lights id=1,2,3

	
salt.proxy.philips_hue.call_ping(*args, **kwargs)

	Ping the lamps by issuing a short inversion blink to all available devices.

CLI Example:

salt '*' hue.ping

	
salt.proxy.philips_hue.call_rename(*args, **kwargs)

	Rename a device.

Options:

	id: Specifies a device ID. Only one device at a time.

	title: Title of the device.

CLI Example:

salt '*' hue.rename id=1 title='WC for cats'

	
salt.proxy.philips_hue.call_status(*args, **kwargs)

	Return the status of the lamps.

Options:

	id: Specifies a device ID. Can be a comma-separated values. All, if omitted.

CLI Example:

salt '*' hue.status
salt '*' hue.status id=1
salt '*' hue.status id=1,2,3

	
salt.proxy.philips_hue.call_switch(*args, **kwargs)

	Switch lamp ON/OFF.

If no particular state is passed,
then lamp will be switched to the opposite state.

Options:

	id: Specifies a device ID. Can be a comma-separated values. All, if omitted.

	on: True or False. Inverted current, if omitted

CLI Example:

salt '*' hue.switch
salt '*' hue.switch id=1
salt '*' hue.switch id=1,2,3 on=True

	
salt.proxy.philips_hue.call_temperature(*args, **kwargs)

	Set the mired color temperature. More: http://en.wikipedia.org/wiki/Mired

Arguments:

	value: 150~500.

Options:

	id: Specifies a device ID. Can be a comma-separated values. All, if omitted.

CLI Example:

salt '*' hue.temperature value=150
salt '*' hue.temperature value=150 id=1
salt '*' hue.temperature value=150 id=1,2,3

	
salt.proxy.philips_hue.init(cnf)

	Initialize the module.

	
salt.proxy.philips_hue.ping(*args, **kw)

	Ping the lamps.

	
salt.proxy.philips_hue.shutdown(opts, *args, **kw)

	Shuts down the service.

salt.proxy.rest_sample

This is a simple proxy-minion designed to connect to and communicate with
the bottle-based web service contained in https://github.com/saltstack/salt-contrib/tree/master/proxyminion_rest_example

	
salt.proxy.rest_sample.alive(opts)

	

	
salt.proxy.rest_sample.fix_outage()

	

	
salt.proxy.rest_sample.fns()

	

	
salt.proxy.rest_sample.grains()

	Get the grains from the proxied device

	
salt.proxy.rest_sample.grains_refresh()

	Refresh the grains from the proxied device

	
salt.proxy.rest_sample.id(opts)

	Return a unique ID for this proxy minion. This ID MUST NOT CHANGE.
If it changes while the proxy is running the salt-master will get
really confused and may stop talking to this minion

	
salt.proxy.rest_sample.init(opts)

	

	
salt.proxy.rest_sample.initialized()

	Since grains are loaded in many different places and some of those
places occur before the proxy can be initialized, return whether
our init() function has been called

	
salt.proxy.rest_sample.package_install(name, **kwargs)

	Install a "package" on the REST server

	
salt.proxy.rest_sample.package_list()

	List "packages" installed on the REST server

	
salt.proxy.rest_sample.package_remove(name)

	Remove a "package" on the REST server

	
salt.proxy.rest_sample.package_status(name)

	Check the installation status of a package on the REST server

	
salt.proxy.rest_sample.ping()

	Is the REST server up?

	
salt.proxy.rest_sample.service_list()

	List "services" on the REST server

	
salt.proxy.rest_sample.service_restart(name)

	Restart a "service" on the REST server

	
salt.proxy.rest_sample.service_start(name)

	Start a "service" on the REST server

	
salt.proxy.rest_sample.service_status(name)

	Check if a service is running on the REST server

	
salt.proxy.rest_sample.service_stop(name)

	Stop a "service" on the REST server

	
salt.proxy.rest_sample.shutdown(opts)

	For this proxy shutdown is a no-op

	
salt.proxy.rest_sample.test_from_state()

	Test function so we have something to call from a state
:return:

	
salt.proxy.rest_sample.uptodate(name)

	Call the REST endpoint to see if the packages on the "server" are up to date.

salt.proxy.restconf

Proxy Minion to manage RESTCONF Devices

	codeauthor:

	Jamie (Bear) Murphy <jamiemurphyit@gmail.com>

	maturity:

	new

	platform:

	any

Usage

Note

To be able to use this module you need to enable RESTCONF on your device
and have https enabled.

Cisco Configuration example:

switch# conf t
switch(config)# restconf
switch(config)# ip http secure-server

Note

RESTCONF requires modern OS distributions.
This plugin has been written specifically to use JSON RESTCONF endpoints

Pillar

The restconf proxy configuration requires the following parameters in order
to connect to the network switch:

	transport: https (str)
	Specifies the type of connection transport to use. Valid values for the
connection are https, and http.
The RESTCONF standard explicitly requires https, but http is included as an option
as some manufacturers have ignored this requirement.

	hostname: (str)
	The IP address or DNS host name of the RESTCONF device.

	username: (str)
	The username for the device to authenticate the RESTCONF requests.

	password: (str)
	The password for the device to authenticate the RESTCONF requests.

	verify: True or False (str, optional, default:true)
	Verify the RESTCONF SSL certificate?

When there is no certificate configuration on the device and this option is
set as True (default), the commands will fail with the following error:
SSLError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed.

Warning

In this case, you either need to configure a proper certificate on the
device (recommended), or bypass the checks setting this argument as False
with all the security risks considered as you may be MITM'd.

Proxy Pillar Example

proxy:
 proxytype: restconf
 host: switch1.example.com
 username: example
 password: example
 verify: false

	
salt.proxy.restconf.connection_test()

	Runs a connection test via http/https. Returns an array.

	
salt.proxy.restconf.init(opts)

	Required.
Initialize device config and test an initial connection

	
salt.proxy.restconf.initialized()

	Connection finished initializing?

	
salt.proxy.restconf.ping()

	Triggers connection test.
Returns True or False

	
salt.proxy.restconf.request(path, method='GET', dict_payload=None)

	Trigger http request to device

	
salt.proxy.restconf.shutdown(opts)

	Closes connection with the device.

salt.proxy.ssh_sample

This is a simple proxy-minion designed to connect to and communicate with
a server that exposes functionality via SSH.
This can be used as an option when the device does not provide
an api over HTTP and doesn't have the python stack to run a minion.

	
salt.proxy.ssh_sample.fns()

	Method called by grains module.

	
salt.proxy.ssh_sample.grains()

	Get the grains from the proxied device

	
salt.proxy.ssh_sample.grains_refresh()

	Refresh the grains from the proxied device

	
salt.proxy.ssh_sample.init(opts)

	Required.
Can be used to initialize the server connection.

	
salt.proxy.ssh_sample.initialized()

	Since grains are loaded in many different places and some of those
places occur before the proxy can be initialized, return whether
our init() function has been called

	
salt.proxy.ssh_sample.package_install(name, **kwargs)

	Install a "package" on the ssh server

	
salt.proxy.ssh_sample.package_list()

	List "packages" by executing a command via ssh
This function is called in response to the salt command

salt target_minion pkg.list_pkgs

	
salt.proxy.ssh_sample.package_remove(name)

	Remove a "package" on the ssh server

	
salt.proxy.ssh_sample.parse(out)

	Extract json from out.

	Parameter
	out: Type string. The data returned by the
ssh command.

	
salt.proxy.ssh_sample.ping()

	Required.
Ping the device on the other end of the connection

	
salt.proxy.ssh_sample.service_list()

	Start a "service" on the ssh server

New in version 2015.8.2.

	
salt.proxy.ssh_sample.service_restart(name)

	Restart a "service" on the ssh server

New in version 2015.8.2.

	
salt.proxy.ssh_sample.service_start(name)

	Start a "service" on the ssh server

New in version 2015.8.2.

	
salt.proxy.ssh_sample.service_stop(name)

	Stop a "service" on the ssh server

New in version 2015.8.2.

	
salt.proxy.ssh_sample.shutdown(opts)

	Disconnect

salt.proxy.vcenter

Proxy Minion interface module for managing VMWare vCenters.

	codeauthor:

	Rod McKenzie (roderick.mckenzie@morganstanley.com)

	codeauthor:

	Alexandru Bleotu (alexandru.bleotu@morganstanley.com)

Dependencies

	pyVmomi Python Module

pyVmomi

PyVmomi can be installed via pip:

pip install pyVmomi

Note

Version 6.0 of pyVmomi has some problems with SSL error handling on certain
versions of Python. If using version 6.0 of pyVmomi, Python 2.6,
Python 2.7.9, or newer must be present. This is due to an upstream dependency
in pyVmomi 6.0 that is not supported in Python versions 2.7 to 2.7.8. If the
version of Python is not in the supported range, you will need to install an
earlier version of pyVmomi. See Issue #29537 [https://github.com/saltstack/salt/issues/29537] for more information.

Based on the note above, to install an earlier version of pyVmomi than the
version currently listed in PyPi, run the following:

pip install pyVmomi==5.5.0.2014.1.1

The 5.5.0.2014.1.1 is a known stable version that this original ESXi State
Module was developed against.

Configuration

To use this proxy module, please use on of the following configurations:

proxy:
 proxytype: vcenter
 vcenter: <ip or dns name of parent vcenter>
 username: <vCenter username>
 mechanism: userpass
 passwords:
 - first_password
 - second_password
 - third_password

proxy:
 proxytype: vcenter
 vcenter: <ip or dns name of parent vcenter>
 username: <vCenter username>
 domain: <user domain>
 mechanism: sspi
 principal: <host kerberos principal>

proxytype

The proxytype key and value pair is critical, as it tells Salt which
interface to load from the proxy directory in Salt's install hierarchy,
or from /srv/salt/_proxy on the Salt Master (if you have created your
own proxy module, for example). To use this Proxy Module, set this to
vcenter.

vcenter

The location of the VMware vCenter server (host of ip). Required

username

The username used to login to the vcenter, such as root.
Required only for userpass.

mechanism

The mechanism used to connect to the vCenter server. Supported values are
userpass and sspi. Required.

passwords

A list of passwords to be used to try and login to the vCenter server. At least
one password in this list is required if mechanism is userpass

The proxy integration will try the passwords listed in order.

domain

User domain. Required if mechanism is sspi

principal

Kerberos principal. Rquired if mechanism is sspi

protocol

If the vCenter is not using the default protocol, set this value to an
alternate protocol. Default is https.

port

If the ESXi host is not using the default port, set this value to an
alternate port. Default is 443.

Salt Proxy

After your pillar is in place, you can test the proxy. The proxy can run on
any machine that has network connectivity to your Salt Master and to the
vCenter server in the pillar. SaltStack recommends that the machine running the
salt-proxy process also run a regular minion, though it is not strictly
necessary.

On the machine that will run the proxy, make sure there is an /etc/salt/proxy
file with at least the following in it:

master: <ip or hostname of salt-master>

You can then start the salt-proxy process with:

salt-proxy --proxyid <id of the cluster>

You may want to add -l debug to run the above in the foreground in
debug mode just to make sure everything is OK.

Next, accept the key for the proxy on your salt-master, just like you
would for a regular minion:

salt-key -a <id you gave the vcenter host>

You can confirm that the pillar data is in place for the proxy:

salt <id> pillar.items

And now you should be able to ping the ESXi host to make sure it is
responding:

salt <id> test.ping

At this point you can execute one-off commands against the vcenter. For
example, you can get if the proxy can actually connect to the vCenter:

salt <id> vsphere.test_vcenter_connection

Note that you don't need to provide credentials or an ip/hostname. Salt
knows to use the credentials you stored in Pillar.

It's important to understand how this particular proxy works.
Salt.modules.vsphere is a
standard Salt execution module.

If you pull up the docs for it you'll see that almost every function in the
module takes credentials and a targets either a vcenter or a host. When
credentials and a host aren't passed, Salt runs commands through pyVmomi
against the local machine. If you wanted, you could run functions from this
module on any host where an appropriate version of pyVmomi is installed,
and that host would reach out over the network and communicate with the ESXi
host.

	
salt.proxy.vcenter.find_credentials()

	Cycle through all the possible credentials and return the first one that
works.

	
salt.proxy.vcenter.get_details()

	Function that returns the cached details

	
salt.proxy.vcenter.init(opts)

	This function gets called when the proxy starts up.
For login the protocol and port are cached.

	
salt.proxy.vcenter.ping()

	Returns True.

CLI Example:

salt vcenter test.ping

	
salt.proxy.vcenter.shutdown()

	Shutdown the connection to the proxy device. For this proxy,
shutdown is a no-op.

queue modules

	pgjsonb_queue

	
New in version 2016.3.0.

	sqlite_queue

	
New in version 2014.7.0.

salt.queues.pgjsonb_queue

New in version 2016.3.0.

This is a queue with postgres as the backend. It uses the jsonb store to
store information for queues.

	depends:

	python-psycopg2

To enable this queue, the following needs to be configured in your master
config. These are the defaults:

queue.pgjsonb.host: 'salt'
queue.pgjsonb.user: 'salt'
queue.pgjsonb.password: 'salt'
queue.pgjsonb.dbname: 'salt'
queue.pgjsonb.port: 5432

Use the following Pg database schema:

CREATE DATABASE salt WITH ENCODING 'utf-8';

--
-- Table structure for table `salt`
--
DROP TABLE IF EXISTS salt;
CREATE OR REPLACE TABLE salt(
 id SERIAL PRIMARY KEY,
 data jsonb NOT NULL
);

salt-run queue.insert test '{"name": "redis", "host": "172.16.0.8", "port": 6379}' backend=pgjsonb
salt-run queue.process_queue test all backend=pgjsonb

	
salt.queues.pgjsonb_queue.delete(queue, items)

	Delete an item or items from a queue

	
salt.queues.pgjsonb_queue.handle_queue_creation(queue)

	

	
salt.queues.pgjsonb_queue.insert(queue, items)

	Add an item or items to a queue

	
salt.queues.pgjsonb_queue.list_items(queue)

	List contents of a queue

	
salt.queues.pgjsonb_queue.list_length(queue)

	Provide the number of items in a queue

	
salt.queues.pgjsonb_queue.list_queues()

	Return a list of Salt Queues on the Salt Master

	
salt.queues.pgjsonb_queue.pop(queue, quantity=1, is_runner=False)

	Pop one or more or all items from the queue return them.

salt.queues.sqlite_queue

New in version 2014.7.0.

This is the default local master event queue built on sqlite. By default, an
sqlite3 database file is created in the sqlite_queue_dir which is found at:

/var/cache/salt/master/queues

It's possible to store the sqlite3 database files by setting sqlite_queue_dir
to another location:

sqlite_queue_dir: /home/myuser/salt/master/queues

	
salt.queues.sqlite_queue.delete(queue, items)

	Delete an item or items from a queue

	
salt.queues.sqlite_queue.insert(queue, items)

	Add an item or items to a queue

	
salt.queues.sqlite_queue.list_items(queue)

	List contents of a queue

	
salt.queues.sqlite_queue.list_length(queue)

	Provide the number of items in a queue

	
salt.queues.sqlite_queue.list_queues()

	Return a list of Salt Queues on the Salt Master

	
salt.queues.sqlite_queue.pop(queue, quantity=1, is_runner=False)

	Pop one or more or all items from the queue return them.

renderer modules

Important

Jinja supports a secure, sandboxed template execution environment [https://jinja.palletsprojects.com/en/2.11.x/sandbox/] that Salt
takes advantage of. Other text Renderers do not support this
functionality, so Salt highly recommends usage of jinja / jinja|yaml.

	aws_kms

	

	cheetah

	Cheetah Renderer for Salt

	dson

	DSON Renderer for Salt

	genshi

	Genshi Renderer for Salt

	gpg

	Renderer that will decrypt GPG ciphers

	hjson

	hjson renderer for Salt

	jinja

	Jinja loading utils to enable a more powerful backend for jinja templates

	json

	JSON Renderer for Salt

	json5

	JSON5 Renderer for Salt

	mako

	Mako Renderer for Salt

	msgpack

	

	nacl

	Renderer that will decrypt NACL ciphers

	pass

	Pass Renderer for Salt

	py

	Pure python state renderer

	pydsl

	A Python-based DSL

	pyobjects

	Python renderer that includes a Pythonic Object based interface

	stateconf

	A flexible renderer that takes a templating engine and a data format

	tomlmod

	

	wempy

	

	yaml

	YAML Renderer for Salt

	yamlex

	

salt.renderers.aws_kms

Renderer that will decrypt ciphers encrypted using AWS KMS Envelope Encryption [https://docs.aws.amazon.com/kms/latest/developerguide/workflow.html].

Any key in the data to be rendered can be a urlsafe_b64encoded string, and this renderer will attempt
to decrypt it before passing it off to Salt. This allows you to safely store secrets in
source control, in such a way that only your Salt master can decrypt them and
distribute them only to the minions that need them.

The typical use-case would be to use ciphers in your pillar data, and keep the encrypted
data key on your master. This way developers with appropriate AWS IAM privileges can add new secrets
quickly and easily.

This renderer requires the boto3 [https://boto3.readthedocs.io/] Python library.

Setup

First, set up your AWS client. For complete instructions on configuration the AWS client,
please read the boto3 configuration documentation [https://boto3.readthedocs.io/en/latest/guide/configuration.html]. By default, this renderer will use
the default AWS profile. You can override the profile name in salt configuration.
For example, if you have a profile in your aws client configuration named "salt",
you can add the following salt configuration:

aws_kms:
 profile_name: salt

The rest of these instructions assume that you will use the default profile for key generation
and setup. If not, export AWS_PROFILE and set it to the desired value.

Once the aws client is configured, generate a KMS customer master key and use that to generate
a local data key.

data_key=$(aws kms generate-data-key --key-id your-key-id --key-spec AES_256
 --query 'CiphertextBlob' --output text)
echo 'aws_kms:'
echo ' data_key: !!binary "%s"\n' "$data_key" >> config/master

To apply the renderer on a file-by-file basis add the following line to the
top of any pillar with gpg data in it:

#!yaml|aws_kms

Now with your renderer configured, you can include your ciphers in your pillar
data like so:

#!yaml|aws_kms

a-secret: gAAAAABaj5uzShPI3PEz6nL5Vhk2eEHxGXSZj8g71B84CZsVjAAtDFY1mfjNRl-1Su9YVvkUzNjI4lHCJJfXqdcTvwczBYtKy0Pa7Ri02s10Wn1tF0tbRwk=

	
salt.renderers.aws_kms.render(data, saltenv='base', sls='', argline='', **kwargs)

	Decrypt the data to be rendered that was encrypted using AWS KMS envelope encryption.

salt.renderers.cheetah

Cheetah Renderer for Salt

	
salt.renderers.cheetah.render(cheetah_data, saltenv='base', sls='', method='xml', **kws)

	Render a Cheetah template.

	Return type:

	A Python data structure

salt.renderers.dson

DSON Renderer for Salt

This renderer is intended for demonstration purposes. Information on the DSON
spec can be found here [http://vpzomtrrfrt.github.io/DSON/].

This renderer requires Dogeon [https://github.com/soasme/dogeon] (installable via pip)

	
salt.renderers.dson.render(dson_input, saltenv='base', sls='', **kwargs)

	Accepts DSON data as a string or as a file object and runs it through the
JSON parser.

	Return type:

	A Python data structure

salt.renderers.genshi

Genshi Renderer for Salt

	
salt.renderers.genshi.render(genshi_data, saltenv='base', sls='', method='xml', **kws)

	Render a Genshi template. A method should be passed in as part of the
kwargs. If no method is passed in, xml is assumed. Valid methods are:

Note that the text method will call NewTextTemplate. If oldtext
is desired, it must be called explicitly

	Return type:

	A Python data structure

salt.renderers.gpg

Renderer that will decrypt GPG ciphers

Any value in the SLS file can be a GPG cipher, and this renderer will decrypt it
before passing it off to Salt. This allows you to safely store secrets in
source control, in such a way that only your Salt master can decrypt them and
distribute them only to the minions that need them.

The typical use-case would be to use ciphers in your pillar data, and keep a
secret key on your master. You can put the public key in source control so that
developers can add new secrets quickly and easily.

This renderer requires the gpg [https://gnupg.org] binary. No python libraries are required as of
the 2015.8.0 release.

GPG Homedir

The default GPG Homedir <gpg-homedir> is ~/.gnupg and needs to be set using
gpg --homedir. Be very careful to not forget this option. It is also important
to run gpg commands as the user that owns the keys directory. If the salt-master
runs as user salt, then use su - salt before running any gpg commands.

In some cases, it's preferable to have gpg keys stored on removable media or
other non-standard locations. This can be done using the gpg_keydir option
on the salt master. This will also require using a different path to --homedir.

The --homedir argument can be configured for the current user using
echo 'homedir /etc/salt/gpgkeys' >> ~/.gnupg, but this should be used with
caution to avoid potential confusion.

gpg_keydir: <path/to/homedir>

GPG Keys

GPG key pairs include both a public and private key. The private key is akin to
a password and should be kept secure by the owner. A public key is used to
encrypt data being sent to the owner of the private key.

This means that the public key will be freely distributed so that others can
encrypt pillar data without access to the secret key.

New Key Pair

To create a new GPG key pair for encrypting data, log in to the master as root
and run the following:

mkdir -p /etc/salt/gpgkeys
chmod 0700 /etc/salt/gpgkeys
gpg --homedir /etc/salt/gpgkeys --gen-key

Do not supply a password for the keypair and use a name that makes sense for
your application.

Note

In some situations, gpg may be starved of entropy and will take an incredibly
long time to finish. Two common tools to generate (less secure) pseudo-random
data are rng-tools and haveged.

The new keys can be seen and verified using --list-secret-keys:

gpg --homedir /etc/salt/gpgkeys --list-secret-keys
/etc/salt/gpgkeys/pubring.kbx

sec rsa4096 2002-05-12 [SC] [expires: 2012-05-10]
 2DC47B416EE8C3484450B450A4D44406274AF44E
uid [ultimate] salt-master (gpg key for salt) <salt@cm.domain.tld>
ssb rsa4096 2002-05-12 [E] [expires: 2012-05-10]

In the example above, our KEY-ID is 2DC47B416EE8C3484450B450A4D44406274AF44E.

Export Public Key

To export a public key suitable for public distribution:

gpg --homedir /etc/salt/gpgkeys --armor --export <KEY-ID> > exported_pubkey.asc

Import Public Key

Users wishing to import the public key into their local keychain may run:

$ gpg --import exported_pubkey.asc

Export (Save) Private Key

This key protects all gpg-encrypted pillar data and should be backed up to a
safe and secure location. This command will generate a backup of secret keys
in the /etc/salt/gpgkeys directory to the gpgkeys.secret file:

gpg --homedir /etc/salt/gpgkeys --export-secret-keys --export-options export-backup -o gpgkeys.secret

Salt does not support password-protected private keys, which means this file
is essentially a clear-text password (just add --armor). Fortunately, it
is trivial to pass this export back to gpg to be encrypted with symmetric key:

gpg --homedir /etc/salt/gpgkeys --export-secret-keys --export-options export-backup | gpg --symmetric -o gpgkeys.gpg

Note

In some cases, particularly when using su/sudo, gpg gets confused and needs
to be told which TTY to use; this can be done with: export GPG_TTY=$(tty).

Import (Restore) Private Key

To import/restore a private key, create a directory with the correct permissions
and import using gpg.

mkdir -p /etc/salt/gpgkeys
chmod 0700 /etc/salt/gpgkeys
gpg --homedir /etc/salt/gpgkeys --import gpgkeys.secret

If the export was encrypted using a symmetric key, then decrypt first with:

gpg --decrypt gpgkeys.gpg | gpg --homedir /etc/salt/gpgkeys --import

Adjust trust level of imported keys

In some cases, importing existing keys may not be enough and the trust level of
the key needs to be adjusted. This can be done by editing the key. The KEY-ID
and the actual trust level of the key can be seen by listing the already imported
keys.

If the trust-level is not ultimate it needs to be changed by running

gpg --homedir /etc/salt/gpgkeys --edit-key <KEY-ID>

This will open an interactive shell for the management of the GPG encryption key.
Type trust to be able to set the trust level for the key and then select 5
(I trust ultimately). Then quit the shell by typing save.

Encrypting Data

In order to encrypt data to a recipient (salt), the public key must be imported
into the local keyring. Importing the public key is described above in the
Import Public Key <gpg-importpubkey:> section.

To generate a cipher from a secret:

$ echo -n 'supersecret' | gpg --trust-model always -ear <KEY-ID>

To apply the renderer on a file-by-file basis add the following line to the
top of any pillar with gpg data in it:

#!yaml|gpg

Now with your renderer configured, you can include your ciphers in your pillar
data like so:

#!yaml|gpg

a-secret: |
 -----BEGIN PGP MESSAGE-----
 Version: GnuPG v1

 hQEMAweRHKaPCfNeAQf9GLTN16hCfXAbPwU6BbBK0unOc7i9/etGuVc5CyU9Q6um
 QuetdvQVLFO/HkrC4lgeNQdM6D9E8PKonMlgJPyUvC8ggxhj0/IPFEKmrsnv2k6+
 cnEfmVexS7o/U1VOVjoyUeliMCJlAz/30RXaME49Cpi6No2+vKD8a4q4nZN1UZcG
 RhkhC0S22zNxOXQ38TBkmtJcqxnqT6YWKTUsjVubW3bVC+u2HGqJHu79wmwuN8tz
 m4wBkfCAd8Eyo2jEnWQcM4TcXiF01XPL4z4g1/9AAxh+Q4d8RIRP4fbw7ct4nCJv
 Gr9v2DTF7HNigIMl4ivMIn9fp+EZurJNiQskLgNbktJGAeEKYkqX5iCuB1b693hJ
 FKlwHiJt5yA8X2dDtfk8/Ph1Jx2TwGS+lGjlZaNqp3R1xuAZzXzZMLyZDe5+i3RJ
 skqmFTbOiA===Eqsm
 -----END PGP MESSAGE-----

Encrypted CLI Pillar Data

New in version 2016.3.0.

Functions like state.highstate and
state.sls allow for pillar data to be
passed on the CLI.

salt myminion state.highstate pillar="{'mypillar': 'foo'}"

Starting with the 2016.3.0 release of Salt, it is now possible for this pillar
data to be GPG-encrypted, and to use the GPG renderer to decrypt it.

Replacing Newlines

To pass encrypted pillar data on the CLI, the ciphertext must have its newlines
replaced with a literal backslash-n (\n), as newlines are not supported
within Salt CLI arguments. There are a number of ways to do this:

With awk or Perl:

awk
ciphertext=`echo -n "supersecret" | gpg --armor --batch --trust-model always --encrypt -r user@domain.com | awk '{printf "%s\\n",$0} END {print ""}'`
Perl
ciphertext=`echo -n "supersecret" | gpg --armor --batch --trust-model always --encrypt -r user@domain.com | perl -pe 's/\n/\\n/g'`

With Python:

import subprocess

secret, stderr = subprocess.Popen(
 ['gpg', '--armor', '--batch', '--trust-model', 'always', '--encrypt',
 '-r', 'user@domain.com'],
 stdin=subprocess.PIPE,
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE).communicate(input='supersecret')

if secret:
 print(secret.replace('\n', r'\n'))
else:
 raise ValueError('No ciphertext found: {0}'.format(stderr))

ciphertext=`python /path/to/script.py`

The ciphertext can be included in the CLI pillar data like so:

salt myminion state.sls secretstuff pillar_enc=gpg pillar="{secret_pillar: '$ciphertext'}"

The pillar_enc=gpg argument tells Salt that there is GPG-encrypted pillar
data, so that the CLI pillar data is passed through the GPG renderer, which
will iterate recursively though the CLI pillar dictionary to decrypt any
encrypted values.

Encrypting the Entire CLI Pillar Dictionary

If several values need to be encrypted, it may be more convenient to encrypt
the entire CLI pillar dictionary. Again, this can be done in several ways:

With awk or Perl:

awk
ciphertext=`echo -n "{'secret_a': 'CorrectHorseBatteryStaple', 'secret_b': 'GPG is fun!'}" | gpg --armor --batch --trust-model always --encrypt -r user@domain.com | awk '{printf "%s\\n",$0} END {print ""}'`
Perl
ciphertext=`echo -n "{'secret_a': 'CorrectHorseBatteryStaple', 'secret_b': 'GPG is fun!'}" | gpg --armor --batch --trust-model always --encrypt -r user@domain.com | perl -pe 's/\n/\\n/g'`

With Python:

import subprocess

pillar_data = {'secret_a': 'CorrectHorseBatteryStaple',
 'secret_b': 'GPG is fun!'}

secret, stderr = subprocess.Popen(
 ['gpg', '--armor', '--batch', '--trust-model', 'always', '--encrypt',
 '-r', 'user@domain.com'],
 stdin=subprocess.PIPE,
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE).communicate(input=repr(pillar_data))

if secret:
 print(secret.replace('\n', r'\n'))
else:
 raise ValueError('No ciphertext found: {0}'.format(stderr))

ciphertext=`python /path/to/script.py`

With the entire pillar dictionary now encrypted, it can be included in the CLI
pillar data like so:

salt myminion state.sls secretstuff pillar_enc=gpg pillar="$ciphertext"

Configuration

The default behaviour of this renderer is to log a warning if a block could not
be decrypted; in other words, it just returns the ciphertext rather than the
encrypted secret.

This behaviour can be changed via the gpg_decrypt_must_succeed configuration
option. If set to True, any gpg block that cannot be decrypted raises a
SaltRenderError exception, which registers an error in _errors during
rendering.

In the Chlorine release, the default behavior will be reversed and an error
message will be added to _errors by default.

	
salt.renderers.gpg.render(gpg_data, saltenv='base', sls='', argline='', **kwargs)

	Create a gpg object given a gpg_keydir, and then use it to try to decrypt
the data to be rendered.

salt.renderers.hjson

hjson renderer for Salt

See the hjson [http://laktak.github.io/hjson/] documentation for more information

	
salt.renderers.hjson.render(hjson_data, saltenv='base', sls='', **kws)

	Accepts HJSON as a string or as a file object and runs it through the HJSON
parser.

	Return type:

	A Python data structure

salt.renderers.jinja

Jinja loading utils to enable a more powerful backend for jinja templates

Important

Jinja supports a secure, sandboxed template execution environment [https://jinja.palletsprojects.com/en/2.11.x/sandbox/] that Salt
takes advantage of. Other text Renderers do not support this
functionality, so Salt highly recommends usage of jinja / jinja|yaml.

	
salt.renderers.jinja.render(template_file, saltenv='base', sls='', argline='', context=None, tmplpath=None, **kws)

	Render the template_file, passing the functions and grains into the
Jinja rendering system.

	Return type:

	string

	
class salt.utils.jinja.SerializerExtension(environment)

	Yaml and Json manipulation.

Format filters

Allows jsonifying or yamlifying any data structure. For example, this dataset:

data = {
 'foo': True,
 'bar': 42,
 'baz': [1, 2, 3],
 'qux': 2.0
}

yaml = {{ data|yaml }}
json = {{ data|json }}
python = {{ data|python }}
xml = {{ {'root_node': data}|xml }}

will be rendered as:

yaml = {bar: 42, baz: [1, 2, 3], foo: true, qux: 2.0}
json = {"baz": [1, 2, 3], "foo": true, "bar": 42, "qux": 2.0}
python = {'bar': 42, 'baz': [1, 2, 3], 'foo': True, 'qux': 2.0}
xml = """<<?xml version="1.0" ?>
 <root_node bar="42" foo="True" qux="2.0">
 <baz>1</baz>
 <baz>2</baz>
 <baz>3</baz>
 </root_node>"""

The yaml filter takes an optional flow_style parameter to control the
default-flow-style parameter of the YAML dumper.

{{ data|yaml(False) }}

will be rendered as:

bar: 42
baz:
 - 1
 - 2
 - 3
foo: true
qux: 2.0

Load filters

Strings and variables can be deserialized with load_yaml and
load_json tags and filters. It allows one to manipulate data directly
in templates, easily:

{%- set yaml_src = "{foo: it works}"|load_yaml %}
{%- set json_src = '{"bar": "for real"}'|load_json %}
Dude, {{ yaml_src.foo }} {{ json_src.bar }}!

will be rendered as:

Dude, it works for real!

Load tags

Salt implements load_yaml and load_json tags. They work like
the import tag [https://jinja.palletsprojects.com/en/2.11.x/templates/#import], except that the document is also deserialized.

Syntaxes are {% load_yaml as [VARIABLE] %}[YOUR DATA]{% endload %}
and {% load_json as [VARIABLE] %}[YOUR DATA]{% endload %}

For example:

{% load_yaml as yaml_src %}
 foo: it works
{% endload %}
{% load_json as json_src %}
 {
 "bar": "for real"
 }
{% endload %}
Dude, {{ yaml_src.foo }} {{ json_src.bar }}!

will be rendered as:

Dude, it works for real!

Import tags

External files can be imported and made available as a Jinja variable.

{% import_yaml "myfile.yml" as myfile %}
{% import_json "defaults.json" as defaults %}
{% import_text "completeworksofshakespeare.txt" as poems %}

Catalog

import_* and load_* tags will automatically expose their
target variable to import. This feature makes catalog of data to
handle.

for example:

doc1.sls
{% load_yaml as var1 %}
 foo: it works
{% endload %}
{% load_yaml as var2 %}
 bar: for real
{% endload %}

doc2.sls
{% from "doc1.sls" import var1, var2 as local2 %}
{{ var1.foo }} {{ local2.bar }}

** Escape Filters **

New in version 2017.7.0.

Allows escaping of strings so they can be interpreted literally by another
function.

For example:

regex_escape = {{ 'https://example.com?foo=bar%20baz' | regex_escape }}

will be rendered as:

regex_escape = https\:\/\/example\.com\?foo\=bar\%20baz

** Set Theory Filters **

New in version 2017.7.0.

Performs set math using Jinja filters.

For example:

unique = {{ ['foo', 'foo', 'bar'] | unique }}

will be rendered as:

unique = ['foo', 'bar']

** Salt State Parameter Format Filters **

New in version 3005.

Renders a formatted multi-line YAML string from a Python dictionary. Each
key/value pair in the dictionary will be added as a single-key dictionary
to a list that will then be sent to the YAML formatter.

For example:

{% set thing_params = {
 "name": "thing",
 "changes": True,
 "warnings": "OMG! Stuff is happening!"
 }
%}

thing:
 test.configurable_test_state:
 {{ thing_params | dict_to_sls_yaml_params | indent }}

will be rendered as:

.. code-block:: yaml

	thing:
	
	test.configurable_test_state:
	
	name: thing

	changes: true

	warnings: OMG! Stuff is happening!

salt.renderers.json

JSON Renderer for Salt

	
salt.renderers.json.render(json_data, saltenv='base', sls='', **kws)

	Accepts JSON as a string or as a file object and runs it through the JSON
parser.

	Return type:

	A Python data structure

salt.renderers.json5

JSON5 Renderer for Salt

New in version 2016.3.0.

JSON5 is an unofficial extension to JSON. See http://json5.org/ for more
information.

This renderer requires the json5 python bindings [https://pypi.python.org/pypi/json5], installable via pip.

	
salt.renderers.json5.render(json_data, saltenv='base', sls='', **kws)

	Accepts JSON as a string or as a file object and runs it through the JSON
parser.

	Return type:

	A Python data structure

salt.renderers.mako

Mako Renderer for Salt

This renderer requires the Mako library.

To install Mako, do the following:

	
salt.renderers.mako.render(template_file, saltenv='base', sls='', context=None, tmplpath=None, **kws)

	Render the template_file, passing the functions and grains into the
Mako rendering system.

	Return type:

	string

salt.renderers.msgpack

	
salt.renderers.msgpack.render(msgpack_data, saltenv='base', sls='', **kws)

	Accepts a message pack string or a file object, renders said data back to
a python dict.

	Return type:

	A Python data structure

salt.renderers.nacl

Renderer that will decrypt NACL ciphers

Any key in the SLS file can be an NACL cipher, and this renderer will decrypt it
before passing it off to Salt. This allows you to safely store secrets in
source control, in such a way that only your Salt master can decrypt them and
distribute them only to the minions that need them.

The typical use-case would be to use ciphers in your pillar data, and keep a
secret key on your master. You can put the public key in source control so that
developers can add new secrets quickly and easily.

This renderer requires the libsodium library binary and PyNacl >= 1.0

Setup

To set things up, first generate a keypair. On the master, run the following:

salt-call --local nacl.keygen sk_file=/root/.nacl

Using encrypted pillar

To encrypt secrets, copy the public key to your local machine and run:

$ salt-call --local nacl.enc datatoenc pk_file=/root/.nacl.pub

To apply the renderer on a file-by-file basis add the following line to the
top of any pillar with nacl encrypted data in it:

#!yaml|nacl

Now with your renderer configured, you can include your ciphers in your pillar
data like so:

#!yaml|nacl

a-secret: "NACL[MRN3cc+fmdxyQbz6WMF+jq1hKdU5X5BBI7OjK+atvHo1ll+w1gZ7XyWtZVfq9gK9rQaMfkDxmidJKwE0Mw==]"

	
salt.renderers.nacl.render(nacl_data, saltenv='base', sls='', argline='', **kwargs)

	Decrypt the data to be rendered using the given nacl key or the one given
in config

salt.renderers.pass

Pass Renderer for Salt

pass [https://www.passwordstore.org/] is an encrypted on-disk password store.

New in version 2017.7.0.

Setup

Note: <user> needs to be replaced with the user salt-master will be
running as.

Have private gpg loaded into user's gpg keyring

load_private_gpg_key:
 cmd.run:
 - name: gpg --import <location_of_private_gpg_key>
 - unless: gpg --list-keys '<gpg_name>'

Said private key's public key should have been used when encrypting pass entries
that are of interest for pillar data.

Fetch and keep local pass git repo up-to-date

update_pass:
 git.latest:
 - force_reset: True
 - name: <git_repo>
 - target: /<user>/.password-store
 - identity: <location_of_ssh_private_key>
 - require:
 - cmd: load_private_gpg_key

Install pass binary

pass:
 pkg.installed

Salt master configuration options

If the prefix is *not* set (default behavior), all template variables are
considered for fetching secrets from Pass. Those that cannot be resolved
to a secret are passed through.
#
If the prefix is set, only the template variables with matching prefix are
considered for fetching the secrets, other variables are passed through.
#
For ease of use it is recommended to set the following options as well:
renderer: 'jinja|yaml|pass'
pass_strict_fetch: true
#
pass_variable_prefix: 'pass:'

If set to 'true', error out when unable to fetch a secret for a template variable.
pass_strict_fetch: true

Set GNUPGHOME env for Pass.
Defaults to: ~/.gnupg
pass_gnupghome: <path>

Set PASSWORD_STORE_DIR env for Pass.
Defaults to: ~/.password-store
pass_dir: <path>

	
salt.renderers.pass.render(pass_info, saltenv='base', sls='', argline='', **kwargs)

	Fetch secret from pass based on pass_path

salt.renderers.py

Pure python state renderer

To use this renderer, the SLS file should contain a function called run
which returns highstate data.

The highstate data is a dictionary containing identifiers as keys, and execution
dictionaries as values. For example the following state declaration in YAML:

common_packages:
 pkg.installed:
 - pkgs:
 - curl
 - vim

translates to:

{'common_packages': {'pkg.installed': [{'pkgs': ['curl', 'vim']}]}}

In this module, a few objects are defined for you, giving access to Salt's
execution functions, grains, pillar, etc. They are:

	__salt__ - Execution functions (i.e.
__salt__['test.echo']('foo'))

	__grains__ - Grains (i.e. __grains__['os'])

	__pillar__ - Pillar data (i.e. __pillar__['foo'])

	__opts__ - Minion configuration options

	__env__ - The effective salt fileserver environment (i.e. base). Also
referred to as a "saltenv". __env__ should not be modified in a pure
python SLS file. To use a different environment, the environment should be
set when executing the state. This can be done in a couple different ways:

	Using the saltenv argument on the salt CLI (i.e. salt '*' state.sls
foo.bar.baz saltenv=env_name).

	By adding a saltenv argument to an individual state within the SLS
file. In other words, adding a line like this to the state's data
structure: {'saltenv': 'env_name'}

	__sls__ - The SLS path of the file. For example, if the root of the base
environment is /srv/salt, and the SLS file is
/srv/salt/foo/bar/baz.sls, then __sls__ in that file will be
foo.bar.baz.

When used in a scenario where additional user-provided context data is supplied
(such as with file.managed), the additional
data will typically be injected into the script as one or more global
variables:

/etc/http/conf/http.conf:
 file.managed:
 - source: salt://apache/generate_http_conf.py
 - template: py
 - context:
 # Will be injected as the global variable "site_name".
 site_name: {{ site_name }}

When writing a reactor SLS file the global context data (same as context
{{ data }} for states written with Jinja + YAML) is available. The
following YAML + Jinja state declaration:

{% if data['id'] == 'mysql1' %}
highstate_run:
 local.state.apply:
 - tgt: mysql1
{% endif %}

translates to:

if data['id'] == 'mysql1':
 return {'highstate_run': {'local.state.apply': [{'tgt': 'mysql1'}]}}

Full Example

 1 #!py
 2
 3 def run():
 4 config = {}
 5
 6 if __grains__['os'] == 'Ubuntu':
 7 user = 'ubuntu'
 8 group = 'ubuntu'
 9 home = '/home/{0}'.format(user)
10 else:
11 user = 'root'
12 group = 'root'
13 home = '/root/'
14
15 config['s3cmd'] = {
16 'pkg': [
17 'installed',
18 {'name': 's3cmd'},
19],
20 }
21
22 config[home + '/.s3cfg'] = {
23 'file.managed': [
24 {'source': 'salt://s3cfg/templates/s3cfg'},
25 {'template': 'jinja'},
26 {'user': user},
27 {'group': group},
28 {'mode': 600},
29 {'context': {
30 'aws_key': __pillar__['AWS_ACCESS_KEY_ID'],
31 'aws_secret_key': __pillar__['AWS_SECRET_ACCESS_KEY'],
32 },
33 },
34],
35 }
36
37 return config

	
salt.renderers.py.render(template, saltenv='base', sls='', tmplpath=None, **kws)

	Render the python module's components

	Return type:

	string

salt.renderers.pydsl

A Python-based DSL

	maintainer:

	Jack Kuan <kjkuan@gmail.com>

	maturity:

	new

	platform:

	all

The pydsl renderer allows one to author salt formulas (.sls files) in pure
Python using a DSL that's easy to write and easy to read. Here's an example:

1#!pydsl
2
3apache = state('apache')
4apache.pkg.installed()
5apache.service.running()
6state('/var/www/index.html') \
7 .file('managed',
8 source='salt://webserver/index.html') \
9 .require(pkg='apache')

Notice that any Python code is allow in the file as it's really a Python
module, so you have the full power of Python at your disposal. In this module,
a few objects are defined for you, including the usual (with __ added)
__salt__ dictionary, __grains__, __pillar__, __opts__,
__env__, and __sls__, plus a few more:

__file__

local file system path to the sls module.

__pydsl__

Salt PyDSL object, useful for configuring DSL behavior per sls rendering.

include

Salt PyDSL function for creating Include declaration's.

extend

Salt PyDSL function for creating Extend declaration's.

state

Salt PyDSL function for creating ID declaration's.

A state ID declaration is created with a state(id) function call.
Subsequent state(id) call with the same id returns the same object. This
singleton access pattern applies to all declaration objects created with the
DSL.

state('example')
assert state('example') is state('example')
assert state('example').cmd is state('example').cmd
assert state('example').cmd.running is state('example').cmd.running

The id argument is optional. If omitted, an UUID will be generated and used as
the id.

state(id) returns an object under which you can create a
State declaration object by accessing an attribute named after any
state module available in Salt.

state('example').cmd
state('example').file
state('example').pkg
...

Then, a Function declaration object can be created from a
State declaration object by one of the following two ways:

	by calling a method named after the state function on the State declaration object.

state('example').file.managed(...)

	by directly calling the attribute named for the State declaration, and
supplying the state function name as the first argument.

state('example').file('managed', ...)

With either way of creating a Function declaration object, any
Function arg declaration's can be passed as keyword arguments to the
call. Subsequent calls of a Function declaration will update the arg
declarations.

state('example').file('managed', source='salt://webserver/index.html')
state('example').file.managed(source='salt://webserver/index.html')

As a shortcut, the special name argument can also be passed as the
first or second positional argument depending on the first or second
way of calling the State declaration object. In the following
two examples ls -la is the name argument.

state('example').cmd.run('ls -la', cwd='/')
state('example').cmd('run', 'ls -la', cwd='/')

Finally, a Requisite declaration object with its
Requisite reference's can be created by invoking one of the
requisite methods (see State Requisites) on either a
Function declaration object or a State declaration object.
The return value of a requisite call is also a Function declaration
object, so you can chain several requisite calls together.

Arguments to a requisite call can be a list of State declaration objects
and/or a set of keyword arguments whose names are state modules and values are
IDs of ID declaration's or names of Name declaration's.

apache2 = state('apache2')
apache2.pkg.installed()
state('libapache2-mod-wsgi').pkg.installed()

you can call requisites on function declaration
apache2.service.running() \
 .require(apache2.pkg,
 pkg='libapache2-mod-wsgi') \
 .watch(file='/etc/apache2/httpd.conf')

or you can call requisites on state declaration.
this actually creates an anonymous function declaration object
to add the requisites.
apache2.service.require(state('libapache2-mod-wsgi').pkg,
 pkg='apache2') \
 .watch(file='/etc/apache2/httpd.conf')

we still need to set the name of the function declaration.
apache2.service.running()

Include declaration objects can be created with the include function,
while Extend declaration objects can be created with the extend function,
whose arguments are just Function declaration objects.

include('edit.vim', 'http.server')
extend(state('apache2').service.watch(file='/etc/httpd/httpd.conf')

The include function, by default, causes the included sls file to be rendered
as soon as the include function is called. It returns a list of rendered module
objects; sls files not rendered with the pydsl renderer return None's.
This behavior creates no Include declaration's in the resulting high state
data structure.

import types

including multiple sls returns a list.
_, mod = include('a-non-pydsl-sls', 'a-pydsl-sls')

assert _ is None
assert isinstance(slsmods[1], types.ModuleType)

including a single sls returns a single object
mod = include('a-pydsl-sls')

myfunc is a function that calls state(...) to create more states.
mod.myfunc(1, 2, "three")

Notice how you can define a reusable function in your pydsl sls module and then
call it via the module returned by include.

It's still possible to do late includes by passing the delayed=True keyword
argument to include.

include('edit.vim', 'http.server', delayed=True)

Above will just create a Include declaration in the rendered result, and
such call always returns None.

Special integration with the cmd state

Taking advantage of rendering a Python module, PyDSL allows you to declare a
state that calls a pre-defined Python function when the state is executed.

greeting = "hello world"
def helper(something, *args, **kws):
 print greeting # hello world
 print something, args, kws # test123 ['a', 'b', 'c'] {'x': 1, 'y': 2}

state().cmd.call(helper, "test123", 'a', 'b', 'c', x=1, y=2)

The cmd.call state function takes care of calling our helper function
with the arguments we specified in the states, and translates the return value
of our function into a structure expected by the state system.
See salt.states.cmd.call() for more information.

Implicit ordering of states

Salt states are explicitly ordered via Requisite declaration's.
However, with pydsl it's possible to let the renderer track the order
of creation for Function declaration objects, and implicitly add
require requisites for your states to enforce the ordering. This feature
is enabled by setting the ordered option on __pydsl__.

Note

this feature is only available if your minions are using Python >= 2.7.

include('some.sls.file')

A = state('A').cmd.run(cwd='/var/tmp')
extend(A)

__pydsl__.set(ordered=True)

for i in range(10):
 i = str(i)
 state(i).cmd.run('echo '+i, cwd='/')
state('1').cmd.run('echo one')
state('2').cmd.run(name='echo two')

Notice that the ordered option needs to be set after any extend calls.
This is to prevent pydsl from tracking the creation of a state function that's
passed to an extend call.

Above example should create states from 0 to 9 that will output 0,
one, two, 3, ... 9, in that order.

It's important to know that pydsl tracks the creations of
Function declaration objects, and automatically adds a require requisite
to a Function declaration object that requires the last
Function declaration object created before it in the sls file.

This means later calls (perhaps to update the function's Function arg declaration) to a previously created function declaration will not change the
order.

Render time state execution

When Salt processes a salt formula file, the file is rendered to salt's
high state data representation by a renderer before the states can be executed.
In the case of the pydsl renderer, the .sls file is executed as a python module
as it is being rendered which makes it easy to execute a state at render time.
In pydsl, executing one or more states at render time can be done by calling a
configured ID declaration object.

#!pydsl

s = state() # save for later invocation

configure it
s.cmd.run('echo at render time', cwd='/')
s.file.managed('target.txt', source='salt://source.txt')

s() # execute the two states now

Once an ID declaration is called at render time it is detached from the
sls module as if it was never defined.

Note

If implicit ordering is enabled (i.e., via __pydsl__.set(ordered=True)) then
the first invocation of a ID declaration object must be done before a
new Function declaration is created.

Integration with the stateconf renderer

The salt.renderers.stateconf renderer offers a few interesting features that
can be leveraged by the pydsl renderer. In particular, when using with the pydsl
renderer, we are interested in stateconf's sls namespacing feature (via dot-prefixed
id declarations), as well as, the automatic start and goal states generation.

Now you can use pydsl with stateconf like this:

#!pydsl|stateconf -ps

include('xxx', 'yyy')

ensure that states in xxx run BEFORE states in this file.
extend(state('.start').stateconf.require(stateconf='xxx::goal'))

ensure that states in yyy run AFTER states in this file.
extend(state('.goal').stateconf.require_in(stateconf='yyy::start'))

__pydsl__.set(ordered=True)

...

-s enables the generation of a stateconf start state, and -p lets us pipe
high state data rendered by pydsl to stateconf. This example shows that by
require-ing or require_in-ing the included sls' start or goal states,
it's possible to ensure that the included sls files can be made to execute before
or after a state in the including sls file.

Importing custom Python modules

To use a custom Python module inside a PyDSL state, place the module somewhere that
it can be loaded by the Salt loader, such as _modules in the /srv/salt directory.

Then, copy it to any minions as necessary by using saltutil.sync_modules.

To import into a PyDSL SLS, one must bypass the Python importer and insert it manually
by getting a reference from Python's sys.modules dictionary.

For example:

#!pydsl|stateconf -ps

def main():
 my_mod = sys.modules['salt.loaded.ext.module.my_mod']

	
exception salt.renderers.pydsl.PyDslError

	

	
exception salt.renderers.pydsl.SaltRenderError(message, line_num=None, buf='', marker=' <======================', trace=None)

	Used when a renderer needs to raise an explicit error. If a line number and
buffer string are passed, get_context will be invoked to get the location
of the error.

	
salt.renderers.pydsl.render(template, saltenv='base', sls='', tmplpath=None, rendered_sls=None, **kws)

	

salt.renderers.pyobjects

Python renderer that includes a Pythonic Object based interface

	maintainer:

	Evan Borgstrom <evan@borgstrom.ca>

Let's take a look at how you use pyobjects in a state file. Here's a quick
example that ensures the /tmp directory is in the correct state.

1 #!pyobjects
2
3 File.managed("/tmp", user='root', group='root', mode='1777')

Nice and Pythonic!

By using the "shebang" syntax to switch to the pyobjects renderer we can now
write our state data using an object based interface that should feel at home
to python developers. You can import any module and do anything that you'd
like (with caution, importing sqlalchemy, django or other large frameworks has
not been tested yet). Using the pyobjects renderer is exactly the same as
using the built-in Python renderer with the exception that pyobjects provides
you with an object based interface for generating state data.

Creating state data

Pyobjects takes care of creating an object for each of the available states on
the minion. Each state is represented by an object that is the CamelCase
version of its name (i.e. File, Service, User, etc), and these
objects expose all of their available state functions (i.e. File.managed,
Service.running, etc).

The name of the state is split based upon underscores (_), then each part
is capitalized and finally the parts are joined back together.

Some examples:

	postgres_user becomes PostgresUser

	ssh_known_hosts becomes SshKnownHosts

Context Managers and requisites

How about something a little more complex. Here we're going to get into the
core of how to use pyobjects to write states.

1 #!pyobjects
2
3 with Pkg.installed("nginx"):
4 Service.running("nginx", enable=True)
5
6 with Service("nginx", "watch_in"):
7 File.managed("/etc/nginx/conf.d/mysite.conf",
8 owner='root', group='root', mode='0444',
9 source='salt://nginx/mysite.conf')

The objects that are returned from each of the magic method calls are setup to
be used a Python context managers (with) and when you use them as such all
declarations made within the scope will automatically use the enclosing
state as a requisite!

The above could have also been written use direct requisite statements as.

1 #!pyobjects
2
3 Pkg.installed("nginx")
4 Service.running("nginx", enable=True, require=Pkg("nginx"))
5 File.managed("/etc/nginx/conf.d/mysite.conf",
6 owner='root', group='root', mode='0444',
7 source='salt://nginx/mysite.conf',
8 watch_in=Service("nginx"))

You can use the direct requisite statement for referencing states that are
generated outside of the current file.

1 #!pyobjects
2
3 # some-other-package is defined in some other state file
4 Pkg.installed("nginx", require=Pkg("some-other-package"))

The last thing that direct requisites provide is the ability to select which
of the SaltStack requisites you want to use (require, require_in, watch,
watch_in, use & use_in) when using the requisite as a context manager.

1 #!pyobjects
2
3 with Service("my-service", "watch_in"):
4 ...

The above example would cause all declarations inside the scope of the context
manager to automatically have their watch_in set to
Service("my-service").

Including and Extending

To include other states use the include() function. It takes one name per
state to include.

To extend another state use the extend() function on the name when creating
a state.

1 #!pyobjects
2
3 include('http', 'ssh')
4
5 Service.running(extend('apache'),
6 watch=[File('/etc/httpd/extra/httpd-vhosts.conf')])

Importing from other state files

Like any Python project that grows you will likely reach a point where you want
to create reusability in your state tree and share objects between state files,
Map Data (described below) is a perfect example of this.

To facilitate this Python's import statement has been augmented to allow
for a special case when working with a Salt state tree. If you specify a Salt
url (salt://...) as the target for importing from then the pyobjects
renderer will take care of fetching the file for you, parsing it with all of
the pyobjects features available and then place the requested objects in the
global scope of the template being rendered.

This works for all types of import statements; import X,
from X import Y, and from X import Y as Z.

1 #!pyobjects
2
3 import salt://myfile.sls
4 from salt://something/data.sls import Object
5 from salt://something/data.sls import Object as Other

See the Map Data section for a more practical use.

Caveats:

	Imported objects are ALWAYS put into the global scope of your template,
regardless of where your import statement is.

Salt object

In the spirit of the object interface for creating state data pyobjects also
provides a simple object interface to the __salt__ object.

A function named salt exists in scope for your sls files and will dispatch
its attributes to the __salt__ dictionary.

The following lines are functionally equivalent:

1 #!pyobjects
2
3 ret = salt.cmd.run(bar)
4 ret = __salt__['cmd.run'](bar)

Pillar, grain, mine & config data

Pyobjects provides shortcut functions for calling pillar.get,
grains.get, mine.get & config.get on the __salt__ object. This
helps maintain the readability of your state files.

Each type of data can be access by a function of the same name: pillar(),
grains(), mine() and config().

The following pairs of lines are functionally equivalent:

 1 #!pyobjects
 2
 3 value = pillar('foo:bar:baz', 'qux')
 4 value = __salt__['pillar.get']('foo:bar:baz', 'qux')
 5
 6 value = grains('pkg:apache')
 7 value = __salt__['grains.get']('pkg:apache')
 8
 9 value = mine('os:Fedora', 'network.interfaces', 'grain')
10 value = __salt__['mine.get']('os:Fedora', 'network.interfaces', 'grain')
11
12 value = config('foo:bar:baz', 'qux')
13 value = __salt__['config.get']('foo:bar:baz', 'qux')

Opts dictionary and SLS name

Pyobjects provides variable access to the minion options dictionary and the SLS
name that the code resides in. These variables are the same as the opts and
sls variables available in the Jinja renderer.

The following lines show how to access that information.

1 #!pyobjects
2
3 test_mode = __opts__["test"]
4 sls_name = __sls__

Map Data

When building complex states or formulas you often need a way of building up a
map of data based on grain data. The most common use of this is tracking the
package and service name differences between distributions.

To build map data using pyobjects we provide a class named Map that you use to
build your own classes with inner classes for each set of values for the
different grain matches.

 1 #!pyobjects
 2
 3 class Samba(Map):
 4 merge = 'samba:lookup'
 5 # NOTE: priority is new to 2017.7.0
 6 priority = ('os_family', 'os')
 7
 8 class Ubuntu:
 9 __grain__ = 'os'
10 service = 'smbd'
11
12 class Debian:
13 server = 'samba'
14 client = 'samba-client'
15 service = 'samba'
16
17 class RHEL:
18 __match__ = 'RedHat'
19 server = 'samba'
20 client = 'samba'
21 service = 'smb'

Note

By default, the os_family grain will be used as the target for
matching. This can be overridden by specifying a __grain__ attribute.

If a __match__ attribute is defined for a given class, then that value
will be matched against the targeted grain, otherwise the class name's
value will be be matched.

Given the above example, the following is true:

	Minions with an os_family of Debian will be assigned the
attributes defined in the Debian class.

	Minions with an os grain of Ubuntu will be assigned the
attributes defined in the Ubuntu class.

	Minions with an os_family grain of RedHat will be assigned the
attributes defined in the RHEL class.

That said, sometimes a minion may match more than one class. For instance,
in the above example, Ubuntu minions will match both the Debian and
Ubuntu classes, since Ubuntu has an os_family grain of Debian
and an os grain of Ubuntu. As of the 2017.7.0 release, the order is
dictated by the order of declaration, with classes defined later overriding
earlier ones. Additionally, 2017.7.0 adds support for explicitly defining
the ordering using an optional attribute called priority.

Given the above example, os_family matches will be processed first,
with os matches processed after. This would have the effect of
assigning smbd as the service attribute on Ubuntu minions. If the
priority item was not defined, or if the order of the items in the
priority tuple were reversed, Ubuntu minions would have a service
attribute of samba, since os_family matches would have been
processed second.

To use this new data you can import it into your state file and then access
your attributes. To access the data in the map you simply access the attribute
name on the base class that is extending Map. Assuming the above Map was in the
file samba/map.sls, you could do the following.

1 #!pyobjects
2
3 from salt://samba/map.sls import Samba
4
5 with Pkg.installed("samba", names=[Samba.server, Samba.client]):
6 Service.running("samba", name=Samba.service)

	
class salt.renderers.pyobjects.PyobjectsModule(name, attrs)

	This provides a wrapper for bare imports.

	
salt.renderers.pyobjects.load_states()

	This loads our states into the salt __context__

	
salt.renderers.pyobjects.render(template, saltenv='base', sls='', salt_data=True, **kwargs)

	

salt.renderers.stateconf

	maintainer:

	Jack Kuan <kjkuan@gmail.com>

	maturity:

	new

	platform:

	all

This module provides a custom renderer that processes a salt file with a
specified templating engine (e.g. Jinja) and a chosen data renderer (e.g. YAML),
extracts arguments for any stateconf.set state, and provides the extracted
arguments (including Salt-specific args, such as require, etc) as template
context. The goal is to make writing reusable/configurable/parameterized
salt files easier and cleaner.

To use this renderer, either set it as the default renderer via the
renderer option in master/minion's config, or use the shebang line in each
individual sls file, like so: #!stateconf. Note, due to the way this
renderer works, it must be specified as the first renderer in a render
pipeline. That is, you cannot specify #!mako|yaml|stateconf, for example.
Instead, you specify them as renderer arguments: #!stateconf mako . yaml.

Here's a list of features enabled by this renderer.

	Prefixes any state id (declaration or reference) that starts with a dot (.)
to avoid duplicated state ids when the salt file is included by other salt
files.

For example, in the salt://some/file.sls, a state id such as .sls_params
will be turned into some.file::sls_params. Example:

#!stateconf yaml . jinja

.vim:
 pkg.installed

Above will be translated into:

some.file::vim:
 pkg.installed:
 - name: vim

Notice how that if a state under a dot-prefixed state id has no name
argument then one will be added automatically by using the state id with
the leading dot stripped off.

The leading dot trick can be used with extending state ids as well,
so you can include relatively and extend relatively. For example, when
extending a state in salt://some/other_file.sls, e.g.:

#!stateconf yaml . jinja

include:
 - .file

extend:
 .file::sls_params:
 stateconf.set:
 - name1: something

Above will be pre-processed into:

include:
 - some.file

extend:
 some.file::sls_params:
 stateconf.set:
 - name1: something

	Adds a sls_dir context variable that expands to the directory containing
the rendering salt file. So, you can write salt://{{sls_dir}}/... to
reference templates files used by your salt file.

	Recognizes the special state function, stateconf.set, that configures a
default list of named arguments usable within the template context of
the salt file. Example:

#!stateconf yaml . jinja

.sls_params:
 stateconf.set:
 - name1: value1
 - name2: value2
 - name3:
 - value1
 - value2
 - value3
 - require_in:
 - cmd: output

--- end of state config ---

.output:
 cmd.run:
 - name: |
 echo 'name1={{sls_params.name1}}
 name2={{sls_params.name2}}
 name3[1]={{sls_params.name3[1]}}
 '

This even works with include + extend so that you can override
the default configured arguments by including the salt file and then
extend the stateconf.set states that come from the included salt
file. (IMPORTANT: Both the included and the extending sls files must use the
stateconf renderer for this ``extend`` to work!)

Notice that the end of configuration marker (# --- end of state config --)
is needed to separate the use of 'stateconf.set' form the rest of your salt
file. The regex that matches such marker can be configured via the
stateconf_end_marker option in your master or minion config file.

Sometimes, it is desirable to set a default argument value that's based on
earlier arguments in the same stateconf.set. For example, it may be
tempting to do something like this:

#!stateconf yaml . jinja

.apache:
 stateconf.set:
 - host: localhost
 - port: 1234
 - url: 'http://{{host}}:{{port}}/'

--- end of state config ---

.test:
 cmd.run:
 - name: echo '{{apache.url}}'
 - cwd: /

However, this won't work. It can however be worked around like so:

#!stateconf yaml . jinja

.apache:
 stateconf.set:
 - host: localhost
 - port: 1234
{# - url: 'http://{{host}}:{{port}}/' #}

--- end of state config ---
{{ apache.setdefault('url', "http://%(host)s:%(port)s/" % apache) }}

.test:
 cmd.run:
 - name: echo '{{apache.url}}'
 - cwd: /

	Adds support for relative include and exclude of .sls files. Example:

#!stateconf yaml . jinja

include:
 - .apache
 - .db.mysql
 - ..app.django

exclude:
 - sls: .users

If the above is written in a salt file at salt://some/where.sls then
it will include salt://some/apache.sls, salt://some/db/mysql.sls and
salt://app/django.sls, and exclude salt://some/users.ssl. Actually,
it does that by rewriting the above include and exclude into:

include:
 - some.apache
 - some.db.mysql
 - app.django

exclude:
 - sls: some.users

	Optionally (enabled by default, disable via the -G renderer option,
e.g. in the shebang line: #!stateconf -G), generates a
stateconf.set goal state (state id named as .goal by default,
configurable via the master/minion config option, stateconf_goal_state)
that requires all other states in the salt file. Note, the .goal
state id is subject to dot-prefix rename rule mentioned earlier.

Such goal state is intended to be required by some state in an including
salt file. For example, in your webapp salt file, if you include a
sls file that is supposed to setup Tomcat, you might want to make sure that
all states in the Tomcat sls file will be executed before some state in
the webapp sls file.

	Optionally (enable via the -o renderer option, e.g. in the shebang line:
#!stateconf -o), orders the states in a sls file by adding a
require requisite to each state such that every state requires the
state defined just before it. The order of the states here is the order
they are defined in the sls file. (Note: this feature is only available
if your minions are using Python >= 2.7. For Python2.6, it should also
work if you install the ordereddict module from PyPI)

By enabling this feature, you are basically agreeing to author your sls
files in a way that gives up the explicit (or implicit?) ordering imposed
by the use of require, watch, require_in or watch_in
requisites, and instead, you rely on the order of states you define in
the sls files. This may or may not be a better way for you. However, if
there are many states defined in a sls file, then it tends to be easier
to see the order they will be executed with this feature.

You are still allowed to use all the requisites, with a few restrictions.
You cannot require or watch a state defined after the current
state. Similarly, in a state, you cannot require_in or watch_in
a state defined before it. Breaking any of the two restrictions above
will result in a state loop. The renderer will check for such incorrect
uses if this feature is enabled.

Additionally, names declarations cannot be used with this feature
because the way they are compiled into low states make it impossible to
guarantee the order in which they will be executed. This is also checked
by the renderer. As a workaround for not being able to use names,
you can achieve the same effect, by generate your states with the
template engine available within your sls file.

Finally, with the use of this feature, it becomes possible to easily make
an included sls file execute all its states after some state (say, with
id X) in the including sls file. All you have to do is to make state,
X, require_in the first state defined in the included sls file.

When writing sls files with this renderer, one should avoid using what can be
defined in a name argument of a state as the state's id. That is, avoid
writing states like this:

/path/to/some/file:
 file.managed:
 - source: salt://some/file

cp /path/to/some/file file2:
 cmd.run:
 - cwd: /
 - require:
 - file: /path/to/some/file

Instead, define the state id and the name argument separately for each
state. Also, the ID should be something meaningful and easy to reference within
a requisite (which is a good habit anyway, and such extra indirection would
also makes the sls file easier to modify later). Thus, the above states should
be written like this:

add-some-file:
 file.managed:
 - name: /path/to/some/file
 - source: salt://some/file

copy-files:
 cmd.run:
 - name: cp /path/to/some/file file2
 - cwd: /
 - require:
 - file: add-some-file

Moreover, when referencing a state from a requisite, you should reference the
state's id plus the state name rather than the state name plus its name
argument. (Yes, in the above example, you can actually require the
file: /path/to/some/file, instead of the file: add-some-file). The
reason is that this renderer will re-write or rename state id's and their
references for state id's prefixed with .. So, if you reference name
then there's no way to reliably rewrite such reference.

salt.renderers.toml

	
salt.renderers.tomlmod.render(sls_data, saltenv='base', sls='', **kws)

	Accepts TOML as a string or as a file object and runs it through the
parser.

	Return type:

	A Python data structure

salt.renderers.wempy

	
salt.renderers.wempy.render(template_file, saltenv='base', sls='', argline='', context=None, **kws)

	Render the data passing the functions and grains into the rendering system

	Return type:

	string

salt.renderers.yaml

Understanding YAML

The default renderer for SLS files is the YAML renderer. YAML is a
markup language with many powerful features. However, Salt uses
a small subset of YAML that maps over very commonly used data structures,
like lists and dictionaries. It is the job of the YAML renderer to take
the YAML data structure and compile it into a Python data structure for
use by Salt.

Though YAML syntax may seem daunting and terse at first, there are only
three very simple rules to remember when writing YAML for SLS files.

Rule One: Indentation

YAML uses a fixed indentation scheme to represent relationships between
data layers. Salt requires that the indentation for each level consists
of exactly two spaces. Do not use tabs.

Rule Two: Colons

Python dictionaries are, of course, simply key-value pairs. Users from other
languages may recognize this data type as hashes or associative arrays.

Dictionary keys are represented in YAML as strings terminated by a trailing colon.
Values are represented by either a string following the colon, separated by a space:

my_key: my_value

In Python, the above maps to:

{"my_key": "my_value"}

Dictionaries can be nested:

first_level_dict_key:
 second_level_dict_key: value_in_second_level_dict

And in Python:

{"first_level_dict_key": {"second_level_dict_key": "value_in_second_level_dict"}}

Rule Three: Dashes

To represent lists of items, a single dash followed by a space is used. Multiple
items are a part of the same list as a function of their having the same level of indentation.

- list_value_one
- list_value_two
- list_value_three

Lists can be the value of a key-value pair. This is quite common in Salt:

my_dictionary:
 - list_value_one
 - list_value_two
 - list_value_three

Reference

YAML Renderer for Salt

For YAML usage information see Understanding YAML.

	
salt.renderers.yaml.get_yaml_loader(argline)

	Return the ordered dict yaml loader

	
salt.renderers.yaml.render(yaml_data, saltenv='base', sls='', argline='', **kws)

	Accepts YAML as a string or as a file object and runs it through the YAML
parser.

	Return type:

	A Python data structure

salt.renderers.yamlex

YAMLEX renderer is a replacement of the YAML renderer.
It's 100% YAML with a pinch of Salt magic:

	All mappings are automatically OrderedDict

	All strings are automatically str obj

	data aggregation with !aggregation yaml tag, based on the salt.utils.aggregation module.

	data aggregation over documents for pillar

Instructed aggregation within the !aggregation and the !reset tags:

#!yamlex
foo: !aggregate first
foo: !aggregate second
bar: !aggregate {first: foo}
bar: !aggregate {second: bar}
baz: !aggregate 42
qux: !aggregate default
!reset qux: !aggregate my custom data

is roughly equivalent to

foo: [first, second]
bar: {first: foo, second: bar}
baz: [42]
qux: [my custom data]

Reference

	
salt.renderers.yamlex.render(sls_data, saltenv='base', sls='', **kws)

	Accepts YAML_EX as a string or as a file object and runs it through the YAML_EX
parser.

	Return type:

	A Python data structure

returner modules

	appoptics_return

	Salt returner to return highstate stats to AppOptics Metrics

	carbon_return

	Take data from salt and "return" it into a carbon receiver

	cassandra_cql_return

	Return data to a cassandra server

	couchbase_return

	Simple returner for Couchbase.

	couchdb_return

	Simple returner for CouchDB.

	elasticsearch_return

	Return data to an elasticsearch server for indexing.

	etcd_return

	Return data to an etcd server or cluster

	highstate_return

	Return the results of a highstate (or any other state function that returns data in a compatible format) via an HTML email or HTML file.

	influxdb_return

	Return data to an influxdb server.

	kafka_return

	Return data to a Kafka topic

	librato_return

	Salt returner to return highstate stats to Librato

	local

	The local returner is used to test the returner interface, it just prints the return data to the console to verify that it is being passed properly

	local_cache

	Return data to local job cache

	mattermost_returner

	Return salt data via mattermost

	memcache_return

	Return data to a memcache server

	mongo_future_return

	Return data to a mongodb server

	mongo_return

	Return data to a mongodb server

	multi_returner

	Read/Write multiple returners

	mysql

	Return data to a mysql server

	nagios_nrdp_return

	Return salt data to Nagios

	odbc

	Return data to an ODBC compliant server.

	pgjsonb

	Return data to a PostgreSQL server with json data stored in Pg's jsonb data type

	postgres

	Return data to a postgresql server

	postgres_local_cache

	Use a postgresql server for the master job cache.

	pushover_returner

	

	rawfile_json

	Take data from salt and "return" it into a raw file containing the json, with one line per event.

	redis_return

	Return data to a redis server

	sentry_return

	Salt returner that reports execution results back to sentry.

	slack_returner

	Return salt data via slack

	slack_webhook_return

	Return salt data via Slack using Incoming Webhooks

	sms_return

	Return data by SMS.

	smtp_return

	Return salt data via email

	splunk

	Send json response data to Splunk via the HTTP Event Collector Requires the following config values to be specified in config or pillar:

	sqlite3_return

	Insert minion return data into a sqlite3 database

	syslog_return

	Return data to the host operating system's syslog facility

	telegram_return

	Return salt data via Telegram.

	xmpp_return

	Return salt data via xmpp

	zabbix_return

	

salt.returners.appoptics_return

Salt returner to return highstate stats to AppOptics Metrics

To enable this returner the minion will need the AppOptics Metrics
client importable on the Python path and the following
values configured in the minion or master config.

The AppOptics python client can be found at:

https://github.com/appoptics/python-appoptics-metrics

appoptics.api_token: abc12345def

An example configuration that returns the total number of successes
and failures for your salt highstate runs (the default) would look
like this:

return: appoptics
appoptics.api_token: <token string here>

The returner publishes the following metrics to AppOptics:

	saltstack.failed

	saltstack.passed

	saltstack.retcode

	saltstack.runtime

	saltstack.total

You can add a tags section to specify which tags should be attached to
all metrics created by the returner.

appoptics.tags:
 host_hostname_alias: <the minion ID - matches @host>
 tier: <the tier/etc. of this node>
 cluster: <the cluster name, etc.>

If no tags are explicitly configured, then the tag key host_hostname_alias
will be set, with the minion's id grain being the value.

In addition to the requested tags, for a highstate run each of these
will be tagged with the key:value of state_type: highstate.

In order to return metrics for state.sls runs (distinct from highstates), you can
specify a list of state names to the key appoptics.sls_states like so:

appoptics.sls_states:
 - role_salt_master.netapi
 - role_redis.config
 - role_smarty.dummy

This will report success and failure counts on runs of the
role_salt_master.netapi, role_redis.config, and
role_smarty.dummy states in addition to highstates.

This will report the same metrics as above, but for these runs the
metrics will be tagged with state_type: sls and state_name set to
the name of the state that was invoked, e.g. role_salt_master.netapi.

	
salt.returners.appoptics_return.returner(ret)

	Parse the return data and return metrics to AppOptics.

For each state that's provided in the configuration, return tagged metrics for
the result of that state if it's present.

salt.returners.carbon_return

Take data from salt and "return" it into a carbon receiver

Add the following configuration to the minion configuration file:

carbon.host: <server ip address>
carbon.port: 2003

Errors when trying to convert data to numbers may be ignored by setting
carbon.skip_on_error to True:

carbon.skip_on_error: True

By default, data will be sent to carbon using the plaintext protocol. To use
the pickle protocol, set carbon.mode to pickle:

carbon.mode: pickle

	You can also specify the pattern used for the metric base path (except for virt modules metrics):
	carbon.metric_base_pattern: carbon.[minion_id].[module].[function]

	These tokens can used :
	[module]: salt module
[function]: salt function
[minion_id]: minion id

	Default is :
	carbon.metric_base_pattern: [module].[function].[minion_id]

Carbon settings may also be configured as:

carbon:
 host: <server IP or hostname>
 port: <carbon port>
 skip_on_error: True
 mode: (pickle|text)
 metric_base_pattern: <pattern> | [module].[function].[minion_id]

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

alternative.carbon:
 host: <server IP or hostname>
 port: <carbon port>
 skip_on_error: True
 mode: (pickle|text)

To use the carbon returner, append '--return carbon' to the salt command.

salt '*' test.ping --return carbon

To use the alternative configuration, append '--return_config alternative' to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return carbon --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return carbon --return_kwargs '{"skip_on_error": False}'

	
salt.returners.carbon_return.event_return(events)

	Return event data to remote carbon server

Provide a list of events to be stored in carbon

	
salt.returners.carbon_return.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.carbon_return.returner(ret)

	Return data to a remote carbon server using the text metric protocol

Each metric will look like:

[module].[function].[minion_id].[metric path [...]].[metric name]

salt.returners.cassandra_cql_return

Return data to a cassandra server

New in version 2015.5.0.

	maintainer:

	Corin Kochenower<ckochenower@saltstack.com>

	maturity:

	new as of 2015.2

	depends:

	salt.modules.cassandra_cql

	depends:

	DataStax Python Driver for Apache Cassandra
https://github.com/datastax/python-driver
pip install cassandra-driver

	platform:

	all

	configuration:

	To enable this returner, the minion will need the DataStax Python Driver
for Apache Cassandra (https://github.com/datastax/python-driver)
installed and the following values configured in the minion or master
config. The list of cluster IPs must include at least one cassandra node
IP address. No assumption or default will be used for the cluster IPs.
The cluster IPs will be tried in the order listed. The port, username,
and password values shown below will be the assumed defaults if you do
not provide values.:

cassandra:
 cluster:
 - 192.168.50.11
 - 192.168.50.12
 - 192.168.50.13
 port: 9042
 username: salt
 password: salt

Use the following cassandra database schema:

CREATE KEYSPACE IF NOT EXISTS salt
 WITH replication = {'class': 'SimpleStrategy', 'replication_factor' : 1};

CREATE USER IF NOT EXISTS salt WITH PASSWORD 'salt' NOSUPERUSER;

GRANT ALL ON KEYSPACE salt TO salt;

USE salt;

CREATE TABLE IF NOT EXISTS salt.salt_returns (
 jid text,
 minion_id text,
 fun text,
 alter_time timestamp,
 full_ret text,
 return text,
 success boolean,
 PRIMARY KEY (jid, minion_id, fun)
) WITH CLUSTERING ORDER BY (minion_id ASC, fun ASC);
CREATE INDEX IF NOT EXISTS salt_returns_minion_id ON salt.salt_returns (minion_id);
CREATE INDEX IF NOT EXISTS salt_returns_fun ON salt.salt_returns (fun);

CREATE TABLE IF NOT EXISTS salt.jids (
 jid text PRIMARY KEY,
 load text
);

CREATE TABLE IF NOT EXISTS salt.minions (
 minion_id text PRIMARY KEY,
 last_fun text
);
CREATE INDEX IF NOT EXISTS minions_last_fun ON salt.minions (last_fun);

CREATE TABLE IF NOT EXISTS salt.salt_events (
 id timeuuid,
 tag text,
 alter_time timestamp,
 data text,
 master_id text,
 PRIMARY KEY (id, tag)
) WITH CLUSTERING ORDER BY (tag ASC);
CREATE INDEX tag ON salt.salt_events (tag);

Required python modules: cassandra-driver

To use the cassandra returner, append '--return cassandra_cql' to the salt command. ex:

salt '*' test.ping --return_cql cassandra

Note: if your Cassandra instance has not been tuned much you may benefit from
altering some timeouts in cassandra.yaml like so:

How long the coordinator should wait for read operations to complete
read_request_timeout_in_ms: 5000
How long the coordinator should wait for seq or index scans to complete
range_request_timeout_in_ms: 20000
How long the coordinator should wait for writes to complete
write_request_timeout_in_ms: 20000
How long the coordinator should wait for counter writes to complete
counter_write_request_timeout_in_ms: 10000
How long a coordinator should continue to retry a CAS operation
that contends with other proposals for the same row
cas_contention_timeout_in_ms: 5000
How long the coordinator should wait for truncates to complete
(This can be much longer, because unless auto_snapshot is disabled
we need to flush first so we can snapshot before removing the data.)
truncate_request_timeout_in_ms: 60000
The default timeout for other, miscellaneous operations
request_timeout_in_ms: 20000

As always, your mileage may vary and your Cassandra cluster may have different
needs. SaltStack has seen situations where these timeouts can resolve
some stacktraces that appear to come from the Datastax Python driver.

	
salt.returners.cassandra_cql_return.event_return(events)

	Return event to one of potentially many clustered cassandra nodes

Requires that configuration be enabled via 'event_return'
option in master config.

Cassandra does not support an auto-increment feature due to the
highly inefficient nature of creating a monotonically increasing
number across all nodes in a distributed database. Each event
will be assigned a uuid by the connecting client.

	
salt.returners.cassandra_cql_return.get_fun(fun)

	Return a dict of the last function called for all minions

	
salt.returners.cassandra_cql_return.get_jid(jid)

	Return the information returned when the specified job id was executed

	
salt.returners.cassandra_cql_return.get_jids()

	Return a list of all job ids

	
salt.returners.cassandra_cql_return.get_load(jid)

	Return the load data that marks a specified jid

	
salt.returners.cassandra_cql_return.get_minions()

	Return a list of minions

	
salt.returners.cassandra_cql_return.prep_jid(nocache, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.cassandra_cql_return.returner(ret)

	Return data to one of potentially many clustered cassandra nodes

	
salt.returners.cassandra_cql_return.save_load(jid, load, minions=None)

	Save the load to the specified jid id

	
salt.returners.cassandra_cql_return.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.couchbase_return

Simple returner for Couchbase. Optional configuration
settings are listed below, along with sane defaults.

couchbase.host: 'salt'
couchbase.port: 8091
couchbase.bucket: 'salt'
couchbase.ttl: 86400
couchbase.password: 'password'
couchbase.skip_verify_views: False

To use the couchbase returner, append '--return couchbase' to the salt command. ex:

salt '*' test.ping --return couchbase

To use the alternative configuration, append '--return_config alternative' to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return couchbase --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return couchbase --return_kwargs '{"bucket": "another-salt"}'

All of the return data will be stored in documents as follows:

JID

load: load obj
tgt_minions: list of minions targeted
nocache: should we not cache the return data

JID/MINION_ID

return: return_data
full_ret: full load of job return

	
salt.returners.couchbase_return.get_jid(jid)

	Return the information returned when the specified job id was executed

	
salt.returners.couchbase_return.get_jids()

	Return a list of all job ids

	
salt.returners.couchbase_return.get_load(jid)

	Return the load data that marks a specified jid

	
salt.returners.couchbase_return.prep_jid(nocache=False, passed_jid=None)

	Return a job id and prepare the job id directory
This is the function responsible for making sure jids don't collide (unless
its passed a jid)
So do what you have to do to make sure that stays the case

	
salt.returners.couchbase_return.returner(load)

	Return data to couchbase bucket

	
salt.returners.couchbase_return.save_load(jid, clear_load, minion=None)

	Save the load to the specified jid

	
salt.returners.couchbase_return.save_minions(jid, minions, syndic_id=None)

	Save/update the minion list for a given jid. The syndic_id argument is
included for API compatibility only.

salt.returners.couchdb_return

Simple returner for CouchDB. Optional configuration
settings are listed below, along with sane defaults:

couchdb.db: 'salt'
couchdb.url: 'http://salt:5984/'

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

alternative.couchdb.db: 'salt'
alternative.couchdb.url: 'http://salt:5984/'

To use the couchdb returner, append --return couchdb to the salt command. Example:

salt '*' test.ping --return couchdb

To use the alternative configuration, append --return_config alternative to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return couchdb --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return couchdb --return_kwargs '{"db": "another-salt"}'

On concurrent database access

As this returner creates a couchdb document with the salt job id as document id
and as only one document with a given id can exist in a given couchdb database,
it is advised for most setups that every minion be configured to write to it own
database (the value of couchdb.db may be suffixed with the minion id),
otherwise multi-minion targeting can lead to losing output:

	the first returning minion is able to create a document in the database

	other minions fail with {'error': 'HTTP Error 409: Conflict'}

	
salt.returners.couchdb_return.ensure_views()

	This function makes sure that all the views that should
exist in the design document do exist.

	
salt.returners.couchdb_return.get_fun(fun)

	Return a dict with key being minion and value
being the job details of the last run of function 'fun'.

	
salt.returners.couchdb_return.get_jid(jid)

	Get the document with a given JID.

	
salt.returners.couchdb_return.get_jids()

	List all the jobs that we have..

	
salt.returners.couchdb_return.get_minions()

	Return a list of minion identifiers from a request of the view.

	
salt.returners.couchdb_return.get_valid_salt_views()

	Returns a dict object of views that should be
part of the salt design document.

	
salt.returners.couchdb_return.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.couchdb_return.returner(ret)

	Take in the return and shove it into the couchdb database.

	
salt.returners.couchdb_return.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

	
salt.returners.couchdb_return.set_salt_view()

	Helper function that sets the salt design
document. Uses get_valid_salt_views and some hardcoded values.

salt.returners.elasticsearch_return

Return data to an elasticsearch server for indexing.

	maintainer:

	Jurnell Cockhren <jurnell.cockhren@sophicware.com>, Arnold Bechtoldt <mail@arnoldbechtoldt.com>

	maturity:

	New

	depends:

	elasticsearch-py [https://elasticsearch-py.readthedocs.io/en/latest/]

	platform:

	all

To enable this returner the elasticsearch python client must be installed
on the desired minions (all or some subset).

Please see documentation of elasticsearch execution module
for a valid connection configuration.

Warning

The index that you wish to store documents will be created by Elasticsearch automatically if
doesn't exist yet. It is highly recommended to create predefined index templates with appropriate mapping(s)
that will be used by Elasticsearch upon index creation. Otherwise you will have problems as described in #20826.

To use the returner per salt call:

salt '*' test.ping --return elasticsearch

In order to have the returner apply to all minions:

ext_job_cache: elasticsearch

	Minion configuration:
	
	debug_returner_payload': False
	Output the payload being posted to the log file in debug mode

	doc_type: 'default'
	Document type to use for normal return messages

	functions_blacklist
	Optional list of functions that should not be returned to elasticsearch

	index_date: False
	Use a dated index (e.g. <index>-2016.11.29)

	master_event_index: 'salt-master-event-cache'
	Index to use when returning master events

	master_event_doc_type: 'efault'
	Document type to use got master events

	master_job_cache_index: 'salt-master-job-cache'
	Index to use for master job cache

	master_job_cache_doc_type: 'default'
	Document type to use for master job cache

	number_of_shards: 1
	Number of shards to use for the indexes

	number_of_replicas: 0
	Number of replicas to use for the indexes

NOTE: The following options are valid for 'state.apply', 'state.sls' and 'state.highstate' functions only.

	states_count: False
	Count the number of states which succeeded or failed and return it in top-level item called 'counts'.
States reporting None (i.e. changes would be made but it ran in test mode) are counted as successes.

	states_order_output: False
	Prefix the state UID (e.g. file_|-yum_configured_|-/etc/yum.conf_|-managed) with a zero-padded version
of the '__run_num__' value to allow for easier sorting. Also store the state function (i.e. file.managed)
into a new key '_func'. Change the index to be '<index>-ordered' (e.g. salt-state_apply-ordered).

	states_single_index: False
	Store results for state.apply, state.sls and state.highstate in the salt-state_apply index
(or -ordered/-<date>) indexes if enabled

elasticsearch:
 hosts:
 - "10.10.10.10:9200"
 - "10.10.10.11:9200"
 - "10.10.10.12:9200"
 index_date: True
 number_of_shards: 5
 number_of_replicas: 1
 debug_returner_payload: True
 states_count: True
 states_order_output: True
 states_single_index: True
 functions_blacklist:
 - test.ping
 - saltutil.find_job

	
salt.returners.elasticsearch_return.event_return(events)

	Return events to Elasticsearch

Requires that the event_return configuration be set in master config.

	
salt.returners.elasticsearch_return.get_load(jid)

	Return the load data that marks a specified jid

New in version 2015.8.1.

	
salt.returners.elasticsearch_return.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.elasticsearch_return.returner(ret)

	Process the return from Salt

	
salt.returners.elasticsearch_return.save_load(jid, load, minions=None)

	Save the load to the specified jid id

New in version 2015.8.1.

salt.returners.etcd_return

Return data to an etcd server or cluster

	depends:

	
	python-etcd or etcd3-py

In order to return to an etcd server, a profile should be created in the master
configuration file:

my_etcd_config:
 etcd.host: 127.0.0.1
 etcd.port: 2379

It is technically possible to configure etcd without using a profile, but this
is not considered to be a best practice, especially when multiple etcd servers
or clusters are available.

etcd.host: 127.0.0.1
etcd.port: 2379

In order to choose whether to use etcd API v2 or v3, you can put the following
configuration option in the same place as your etcd configuration. This option
defaults to true, meaning you will use v2 unless you specify otherwise.

etcd.require_v2: True

When using API v3, there are some specific options available to be configured
within your etcd profile. They are defaulted to the following...

etcd.encode_keys: False
etcd.encode_values: True
etcd.raw_keys: False
etcd.raw_values: False
etcd.unicode_errors: "surrogateescape"

etcd.encode_keys indicates whether you want to pre-encode keys using msgpack before
adding them to etcd.

Note

If you set etcd.encode_keys to True, all recursive functionality will no longer work.
This includes tree and ls and all other methods if you set recurse/recursive to True.
This is due to the fact that when encoding with msgpack, keys like /salt and /salt/stack will have
differing byte prefixes, and etcd v3 searches recursively using prefixes.

etcd.encode_values indicates whether you want to pre-encode values using msgpack before
adding them to etcd. This defaults to True to avoid data loss on non-string values wherever possible.

etcd.raw_keys determines whether you want the raw key or a string returned.

etcd.raw_values determines whether you want the raw value or a string returned.

etcd.unicode_errors determines what you policy to follow when there are encoding/decoding errors.

Additionally, two more options must be specified in the top-level configuration
in order to use the etcd returner:

etcd.returner: my_etcd_config
etcd.returner_root: /salt/return

The etcd.returner option specifies which configuration profile to use. The
etcd.returner_root option specifies the path inside etcd to use as the root
of the returner system.

Once the etcd options are configured, the returner may be used:

CLI Example:

salt '*' test.ping --return etcd

A username and password can be set:

etcd.username: larry # Optional; requires etcd.password to be set
etcd.password: 123pass # Optional; requires etcd.username to be set

You can also set a TTL (time to live) value for the returner:

etcd.ttl: 5

Authentication with username and password, and ttl, currently requires the
master branch of python-etcd.

You may also specify different roles for read and write operations. First,
create the profiles as specified above. Then add:

etcd.returner_read_profile: my_etcd_read
etcd.returner_write_profile: my_etcd_write

	
salt.returners.etcd_return.clean_old_jobs()

	Included for API consistency

	
salt.returners.etcd_return.get_fun(fun)

	Return a dict of the last function called for all minions

	
salt.returners.etcd_return.get_jid(jid)

	Return the information returned when the specified job id was executed

	
salt.returners.etcd_return.get_jids()

	Return a list of all job ids

	
salt.returners.etcd_return.get_load(jid)

	Return the load data that marks a specified jid

	
salt.returners.etcd_return.get_minions()

	Return a list of minions

	
salt.returners.etcd_return.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.etcd_return.returner(ret)

	Return data to an etcd server or cluster

	
salt.returners.etcd_return.save_load(jid, load, minions=None)

	Save the load to the specified jid

	
salt.returners.etcd_return.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.highstate_return

Return the results of a highstate (or any other state function that returns
data in a compatible format) via an HTML email or HTML file.

New in version 2017.7.0.

Similar results can be achieved by using the smtp returner with a custom template,
except an attempt at writing such a template for the complex data structure
returned by highstate function had proven to be a challenge, not to mention
that the smtp module doesn't support sending HTML mail at the moment.

The main goal of this returner was to produce an easy to read email similar
to the output of highstate outputter used by the CLI.

This returner could be very useful during scheduled executions,
but could also be useful for communicating the results of a manual execution.

Returner configuration is controlled in a standard fashion either via
highstate group or an alternatively named group.

salt '*' state.highstate --return highstate

To use the alternative configuration, append '--return_config config-name'

salt '*' state.highstate --return highstate --return_config simple

Here is an example of what the configuration might look like:

simple.highstate:
 report_failures: True
 report_changes: True
 report_everything: False
 failure_function: pillar.items
 success_function: pillar.items
 report_format: html
 report_delivery: smtp
 smtp_success_subject: 'success minion {id} on host {host}'
 smtp_failure_subject: 'failure minion {id} on host {host}'
 smtp_server: smtp.example.com
 smtp_recipients: saltusers@example.com, devops@example.com
 smtp_sender: salt@example.com

The report_failures, report_changes, and report_everything flags provide
filtering of the results. If you want an email to be sent every time, then
report_everything is your choice. If you want to be notified only when
changes were successfully made use report_changes. And report_failures will
generate an email if there were failures.

The configuration allows you to run a salt module function in case of
success (success_function) or failure (failure_function).

Any salt function, including ones defined in the _module folder of your salt
repo, could be used here and its output will be displayed under the 'extra'
heading of the email.

Supported values for report_format are html, json, and yaml. The latter two
are typically used for debugging purposes, but could be used for applying
a template at some later stage.

The values for report_delivery are smtp or file. In case of file delivery
the only other applicable option is file_output.

In case of smtp delivery, smtp_* options demonstrated by the example above
could be used to customize the email.

As you might have noticed, the success and failure subjects contain {id} and {host}
values. Any other grain name could be used. As opposed to using
{{grains['id']}}, which will be rendered by the master and contain master's
values at the time of pillar generation, these will contain minion values at
the time of execution.

	
salt.returners.highstate_return.returner(ret)

	Check highstate return information and possibly fire off an email
or save a file.

salt.returners.influxdb_return

Return data to an influxdb server.

New in version 2015.8.0.

To enable this returner the minion will need the python client for influxdb
installed and the following values configured in the minion or master
config, these are the defaults:

influxdb.db: 'salt'
influxdb.user: 'salt'
influxdb.password: 'salt'
influxdb.host: 'localhost'
influxdb.port: 8086

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

alternative.influxdb.db: 'salt'
alternative.influxdb.user: 'salt'
alternative.influxdb.password: 'salt'
alternative.influxdb.host: 'localhost'
alternative.influxdb.port: 6379

To use the influxdb returner, append '--return influxdb' to the salt command.

salt '*' test.ping --return influxdb

To use the alternative configuration, append '--return_config alternative' to the salt command.

salt '*' test.ping --return influxdb --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return influxdb --return_kwargs '{"db": "another-salt"}'

	
salt.returners.influxdb_return.get_fun(fun)

	Return a dict of the last function called for all minions

	
salt.returners.influxdb_return.get_jid(jid)

	Return the information returned when the specified job id was executed

	
salt.returners.influxdb_return.get_jids()

	Return a list of all job ids

	
salt.returners.influxdb_return.get_load(jid)

	Return the load data that marks a specified jid

	
salt.returners.influxdb_return.get_minions()

	Return a list of minions

	
salt.returners.influxdb_return.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.influxdb_return.returner(ret)

	Return data to a influxdb data store

	
salt.returners.influxdb_return.save_load(jid, load, minions=None)

	Save the load to the specified jid

	
salt.returners.influxdb_return.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.kafka_return

Return data to a Kafka topic

	maintainer:

	Justin Desilets (justin.desilets@gmail.com)

	maturity:

	20181119

	depends:

	confluent-kafka

	platform:

	all

To enable this returner install confluent-kafka and enable the following
settings in the minion config:

	returner.kafka.bootstrap:
	
	"server1:9092"

	"server2:9092"

	"server3:9092"

returner.kafka.topic: 'topic'

To use the kafka returner, append --return kafka to the Salt command, eg;

salt '*' test.ping --return kafka

	
salt.returners.kafka_return.returner(ret)

	Return information to a Kafka server

salt.returners.librato_return

Salt returner to return highstate stats to Librato

To enable this returner the minion will need the Librato
client importable on the Python path and the following
values configured in the minion or master config.

The Librato python client can be found at:
https://github.com/librato/python-librato

librato.email: example@librato.com
librato.api_token: abc12345def

This return supports multi-dimension metrics for Librato. To enable
support for more metrics, the tags JSON object can be modified to include
other tags.

Adding EC2 Tags example:
If ec2_tags:region were desired within the tags for multi-dimension. The tags
could be modified to include the ec2 tags. Multiple dimensions are added simply
by adding more tags to the submission.

pillar_data = __salt__['pillar.raw']()
q.add(metric.name, value, tags={'Name': ret['id'],'Region': pillar_data['ec2_tags']['Name']})

	
salt.returners.librato_return.returner(ret)

	Parse the return data and return metrics to Librato.

salt.returners.local

The local returner is used to test the returner interface, it just prints the
return data to the console to verify that it is being passed properly

To use the local returner, append '--return local' to the salt command. ex:

salt '*' test.ping --return local

	
salt.returners.local.event_return(event)

	Print event return data to the terminal to verify functionality

	
salt.returners.local.returner(ret)

	Print the return data to the terminal to verify functionality

salt.returners.local_cache

Return data to local job cache

	
salt.returners.local_cache.clean_old_jobs()

	Clean out the old jobs from the job cache

	
salt.returners.local_cache.get_endtime(jid)

	Retrieve the stored endtime for a given job

Returns False if no endtime is present

	
salt.returners.local_cache.get_jid(jid)

	Return the information returned when the specified job id was executed

	
salt.returners.local_cache.get_jids()

	Return a dict mapping all job ids to job information

	
salt.returners.local_cache.get_jids_filter(count, filter_find_job=True)

	Return a list of all jobs information filtered by the given criteria.
:param int count: show not more than the count of most recent jobs
:param bool filter_find_jobs: filter out 'saltutil.find_job' jobs

	
salt.returners.local_cache.get_load(jid)

	Return the load data that marks a specified jid

	
salt.returners.local_cache.load_reg()

	Load the register from msgpack files

	
salt.returners.local_cache.prep_jid(nocache=False, passed_jid=None, recurse_count=0)

	Return a job id and prepare the job id directory.

This is the function responsible for making sure jids don't collide (unless
it is passed a jid).
So do what you have to do to make sure that stays the case

	
salt.returners.local_cache.returner(load)

	Return data to the local job cache

	
salt.returners.local_cache.save_load(jid, clear_load, minions=None, recurse_count=0)

	Save the load to the specified jid

minions argument is to provide a pre-computed list of matched minions for
the job, for cases when this function can't compute that list itself (such
as for salt-ssh)

	
salt.returners.local_cache.save_minions(jid, minions, syndic_id=None)

	Save/update the serialized list of minions for a given job

	
salt.returners.local_cache.save_reg(data)

	Save the register to msgpack files

	
salt.returners.local_cache.update_endtime(jid, time)

	Update (or store) the end time for a given job

Endtime is stored as a plain text string

salt.returners.mattermost_returner

Return salt data via mattermost

New in version 2017.7.0.

The following fields can be set in the minion conf file:

mattermost.hook (required)
mattermost.username (optional)
mattermost.channel (optional)

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

mattermost.channel
mattermost.hook
mattermost.username

mattermost settings may also be configured as:

mattermost:
 channel: RoomName
 hook: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 username: user

To use the mattermost returner, append '--return mattermost' to the salt command.

salt '*' test.ping --return mattermost

To override individual configuration items, append --return_kwargs '{'key:': 'value'}' to the salt command.

salt '*' test.ping --return mattermost --return_kwargs '{'channel': '#random'}'

	
salt.returners.mattermost_returner.event_return(events)

	Send the events to a mattermost room.

	Parameters:

	events -- List of events

	Returns:

	Boolean if messages were sent successfully.

	
salt.returners.mattermost_returner.post_message(channel, message, username, api_url, hook)

	Send a message to a mattermost room.

	Parameters:

	
	channel -- The room name.

	message -- The message to send to the mattermost room.

	username -- Specify who the message is from.

	hook -- The mattermost hook, if not specified in the configuration.

	Returns:

	Boolean if message was sent successfully.

	
salt.returners.mattermost_returner.returner(ret)

	Send an mattermost message with the data

salt.returners.memcache_return

Return data to a memcache server

To enable this returner the minion will need the python client for memcache
installed and the following values configured in the minion or master
config, these are the defaults.

memcache.host: 'localhost'
memcache.port: '11211'

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location.

alternative.memcache.host: 'localhost'
alternative.memcache.port: '11211'

python2-memcache uses 'localhost' and '11211' as syntax on connection.

To use the memcache returner, append '--return memcache' to the salt command.

salt '*' test.ping --return memcache

To use the alternative configuration, append '--return_config alternative' to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return memcache --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return memcache --return_kwargs '{"host": "hostname.domain.com"}'

	
salt.returners.memcache_return.get_fun(fun)

	Return a dict of the last function called for all minions

	
salt.returners.memcache_return.get_jid(jid)

	Return the information returned when the specified job id was executed

	
salt.returners.memcache_return.get_jids()

	Return a list of all job ids

	
salt.returners.memcache_return.get_load(jid)

	Return the load data that marks a specified jid

	
salt.returners.memcache_return.get_minions()

	Return a list of minions

	
salt.returners.memcache_return.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.memcache_return.returner(ret)

	Return data to a memcache data store

	
salt.returners.memcache_return.save_load(jid, load, minions=None)

	Save the load to the specified jid

	
salt.returners.memcache_return.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.mongo_future_return

Return data to a mongodb server

Required python modules: pymongo

This returner will send data from the minions to a MongoDB server. MongoDB
server can be configured by using host, port, db, user and password settings
or by connection string URI (for pymongo > 2.3). To configure the settings
for your MongoDB server, add the following lines to the minion config files:

mongo.db: <database name>
mongo.host: <server ip address>
mongo.user: <MongoDB username>
mongo.password: <MongoDB user password>
mongo.port: 27017

Or single URI:

mongo.uri: URI

where uri is in the format:

mongodb://[username:password@]host1[:port1][,host2[:port2],...[,hostN[:portN]]][/[database][?options]]

Example:

mongodb://db1.example.net:27017/mydatabase
mongodb://db1.example.net:27017,db2.example.net:2500/?replicaSet=test
mongodb://db1.example.net:27017,db2.example.net:2500/?replicaSet=test&connectTimeoutMS=300000

More information on URI format can be found in
https://docs.mongodb.com/manual/reference/connection-string/

You can also ask for indexes creation on the most common used fields, which
should greatly improve performance. Indexes are not created by default.

mongo.indexes: true

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

alternative.mongo.db: <database name>
alternative.mongo.host: <server ip address>
alternative.mongo.user: <MongoDB username>
alternative.mongo.password: <MongoDB user password>
alternative.mongo.port: 27017

Or single URI:

alternative.mongo.uri: URI

This mongo returner is being developed to replace the default mongodb returner
in the future and should not be considered API stable yet.

To use the mongo returner, append '--return mongo' to the salt command.

salt '*' test.ping --return mongo

To use the alternative configuration, append '--return_config alternative' to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return mongo --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return mongo --return_kwargs '{"db": "another-salt"}'

	
salt.returners.mongo_future_return.event_return(events)

	Return events to Mongodb server

	
salt.returners.mongo_future_return.get_fun(fun)

	Return the most recent jobs that have executed the named function

	
salt.returners.mongo_future_return.get_jid(jid)

	Return the return information associated with a jid

	
salt.returners.mongo_future_return.get_jids()

	Return a list of job ids

	
salt.returners.mongo_future_return.get_load(jid)

	Return the load associated with a given job id

	
salt.returners.mongo_future_return.get_minions()

	Return a list of minions

	
salt.returners.mongo_future_return.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.mongo_future_return.returner(ret)

	Return data to a mongodb server

	
salt.returners.mongo_future_return.save_load(jid, load, minions=None)

	Save the load for a given job id

	
salt.returners.mongo_future_return.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.mongo_return

Return data to a mongodb server

Required python modules: pymongo

This returner will send data from the minions to a MongoDB server. To
configure the settings for your MongoDB server, add the following lines
to the minion config files.

mongo.db: <database name>
mongo.host: <server ip address>
mongo.user: <MongoDB username>
mongo.password: <MongoDB user password>
mongo.port: 27017

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location.

alternative.mongo.db: <database name>
alternative.mongo.host: <server ip address>
alternative.mongo.user: <MongoDB username>
alternative.mongo.password: <MongoDB user password>
alternative.mongo.port: 27017

To use the mongo returner, append '--return mongo' to the salt command.

salt '*' test.ping --return mongo_return

To use the alternative configuration, append '--return_config alternative' to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return mongo_return --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return mongo --return_kwargs '{"db": "another-salt"}'

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return mongo --return_kwargs '{"db": "another-salt"}'

	
salt.returners.mongo_return.get_fun(fun)

	Return the most recent jobs that have executed the named function

	
salt.returners.mongo_return.get_jid(jid)

	Return the return information associated with a jid

	
salt.returners.mongo_return.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.mongo_return.returner(ret)

	Return data to a mongodb server

	
salt.returners.mongo_return.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.multi_returner

Read/Write multiple returners

	
salt.returners.multi_returner.clean_old_jobs()

	Clean out the old jobs from all returners (if you have it)

	
salt.returners.multi_returner.get_jid(jid)

	Merge the return data from all returners

	
salt.returners.multi_returner.get_jids()

	Return all job data from all returners

	
salt.returners.multi_returner.get_load(jid)

	Merge the load data from all returners

	
salt.returners.multi_returner.prep_jid(nocache=False, passed_jid=None)

	Call both with prep_jid on all returners in multi_returner

TODO: finish this, what do do when you get different jids from 2 returners...
since our jids are time based, this make this problem hard, because they
aren't unique, meaning that we have to make sure that no one else got the jid
and if they did we spin to get a new one, which means "locking" the jid in 2
returners is non-trivial

	
salt.returners.multi_returner.returner(load)

	Write return to all returners in multi_returner

	
salt.returners.multi_returner.save_load(jid, clear_load, minions=None)

	Write load to all returners in multi_returner

	
salt.returners.multi_returner.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.mysql

Return data to a mysql server

	maintainer:

	Dave Boucha <dave@saltstack.com>, Seth House <shouse@saltstack.com>

	maturity:

	mature

	depends:

	python-mysqldb

	platform:

	all

To enable this returner, the minion will need the python client for mysql
installed and the following values configured in the minion or master
config. These are the defaults:

mysql.host: 'salt'
mysql.user: 'salt'
mysql.pass: 'salt'
mysql.db: 'salt'
mysql.port: 3306

SSL is optional. The defaults are set to None. If you do not want to use SSL,
either exclude these options or set them to None.

mysql.ssl_ca: None
mysql.ssl_cert: None
mysql.ssl_key: None

Alternative configuration values can be used by prefacing the configuration
with alternative.. Any values not found in the alternative configuration will
be pulled from the default location. As stated above, SSL configuration is
optional. The following ssl options are simply for illustration purposes:

alternative.mysql.host: 'salt'
alternative.mysql.user: 'salt'
alternative.mysql.pass: 'salt'
alternative.mysql.db: 'salt'
alternative.mysql.port: 3306
alternative.mysql.ssl_ca: '/etc/pki/mysql/certs/localhost.pem'
alternative.mysql.ssl_cert: '/etc/pki/mysql/certs/localhost.crt'
alternative.mysql.ssl_key: '/etc/pki/mysql/certs/localhost.key'

Should you wish the returner data to be cleaned out every so often, set
keep_jobs_seconds to the number of hours for the jobs to live in the
tables. Setting it to 0 will cause the data to stay in the tables. The
default setting for keep_jobs_seconds is set to 86400.

Should you wish to archive jobs in a different table for later processing,
set archive_jobs to True. Salt will create 3 archive tables

	jids_archive

	salt_returns_archive

	salt_events_archive

and move the contents of jids, salt_returns, and salt_events that are
more than keep_jobs_seconds seconds old to these tables.

Use the following mysql database schema:

CREATE DATABASE `salt`
 DEFAULT CHARACTER SET utf8
 DEFAULT COLLATE utf8_general_ci;

USE `salt`;

--
-- Table structure for table `jids`
--

DROP TABLE IF EXISTS `jids`;
CREATE TABLE `jids` (
 `jid` varchar(255) NOT NULL,
 `load` mediumtext NOT NULL,
 UNIQUE KEY `jid` (`jid`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

--
-- Table structure for table `salt_returns`
--

DROP TABLE IF EXISTS `salt_returns`;
CREATE TABLE `salt_returns` (
 `fun` varchar(50) NOT NULL,
 `jid` varchar(255) NOT NULL,
 `return` mediumtext NOT NULL,
 `id` varchar(255) NOT NULL,
 `success` varchar(10) NOT NULL,
 `full_ret` mediumtext NOT NULL,
 `alter_time` TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 KEY `id` (`id`),
 KEY `jid` (`jid`),
 KEY `fun` (`fun`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

--
-- Table structure for table `salt_events`
--

DROP TABLE IF EXISTS `salt_events`;
CREATE TABLE `salt_events` (
`id` BIGINT NOT NULL AUTO_INCREMENT,
`tag` varchar(255) NOT NULL,
`data` mediumtext NOT NULL,
`alter_time` TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
`master_id` varchar(255) NOT NULL,
PRIMARY KEY (`id`),
KEY `tag` (`tag`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Required python modules: MySQLdb

To use the mysql returner, append '--return mysql' to the salt command.

salt '*' test.ping --return mysql

To use the alternative configuration, append '--return_config alternative' to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return mysql --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return mysql --return_kwargs '{"db": "another-salt"}'

	
salt.returners.mysql.clean_old_jobs()

	Called in the master's event loop every loop_interval. Archives and/or
deletes the events and job details from the database.
:return:

	
salt.returners.mysql.event_return(events)

	Return event to mysql server

Requires that configuration be enabled via 'event_return'
option in master config.

	
salt.returners.mysql.get_fun(fun)

	Return a dict of the last function called for all minions

	
salt.returners.mysql.get_jid(jid)

	Return the information returned when the specified job id was executed

	
salt.returners.mysql.get_jids()

	Return a list of all job ids

	
salt.returners.mysql.get_jids_filter(count, filter_find_job=True)

	Return a list of all job ids
:param int count: show not more than the count of most recent jobs
:param bool filter_find_jobs: filter out 'saltutil.find_job' jobs

	
salt.returners.mysql.get_load(jid)

	Return the load data that marks a specified jid

	
salt.returners.mysql.get_minions()

	Return a list of minions

	
salt.returners.mysql.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.mysql.returner(ret)

	Return data to a mysql server

	
salt.returners.mysql.save_load(jid, load, minions=None)

	Save the load to the specified jid id

	
salt.returners.mysql.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.nagios_nrdp_return

Return salt data to Nagios

The following fields can be set in the minion conf file:

nagios.url (required)
nagios.token (required)
nagios.service (optional)
nagios.check_type (optional)

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

nagios.url
nagios.token
nagios.service

Nagios settings may also be configured as:

 nagios:
 url: http://localhost/nrdp
 token: r4nd0mt0k3n
 service: service-check

 alternative.nagios:
 url: http://localhost/nrdp
 token: r4nd0mt0k3n
 service: another-service-check

To use the Nagios returner, append '--return nagios' to the salt command. ex:

.. code-block:: bash

 salt '*' test.ping --return nagios

To use the alternative configuration, append '--return_config alternative' to the salt command. ex:

 salt '*' test.ping --return nagios --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return nagios --return_kwargs '{"service": "service-name"}'

	
salt.returners.nagios_nrdp_return.returner(ret)

	Send a message to Nagios with the data

salt.returners.odbc

Return data to an ODBC compliant server. This driver was
developed with Microsoft SQL Server in mind, but theoretically
could be used to return data to any compliant ODBC database
as long as there is a working ODBC driver for it on your
minion platform.

	maintainer:

	
	
	Oldham (cr@saltstack.com)

	maturity:

	New

	depends:

	unixodbc, pyodbc, freetds (for SQL Server)

	platform:

	all

To enable this returner the minion will need

On Linux:

unixodbc (http://www.unixodbc.org)
pyodbc (pip install pyodbc)
The FreeTDS ODBC driver for SQL Server (http://www.freetds.org)
or another compatible ODBC driver

On Windows:

TBD

unixODBC and FreeTDS need to be configured via /etc/odbcinst.ini and
/etc/odbc.ini.

/etc/odbcinst.ini:

[TDS]
Description=TDS
Driver=/usr/lib/x86_64-linux-gnu/odbc/libtdsodbc.so

(Note the above Driver line needs to point to the location of the FreeTDS
shared library. This example is for Ubuntu 14.04.)

/etc/odbc.ini:

[TS]
Description = "Salt Returner"
Driver=TDS
Server = <your server ip or fqdn>
Port = 1433
Database = salt
Trace = No

Also you need the following values configured in the minion or master config.
Configure as you see fit:

returner.odbc.dsn: 'TS'
returner.odbc.user: 'salt'
returner.odbc.passwd: 'salt'

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

alternative.returner.odbc.dsn: 'TS'
alternative.returner.odbc.user: 'salt'
alternative.returner.odbc.passwd: 'salt'

Running the following commands against Microsoft SQL Server in the desired
database as the appropriate user should create the database tables
correctly. Replace with equivalent SQL for other ODBC-compliant servers

 --
 -- Table structure for table 'jids'
 --

 if OBJECT_ID('dbo.jids', 'U') is not null
 DROP TABLE dbo.jids

 CREATE TABLE dbo.jids (
 jid varchar(255) PRIMARY KEY,
 load varchar(MAX) NOT NULL
);

 --
 -- Table structure for table 'salt_returns'
 --
 IF OBJECT_ID('dbo.salt_returns', 'U') IS NOT NULL
 DROP TABLE dbo.salt_returns;

 CREATE TABLE dbo.salt_returns (
 added datetime not null default (getdate()),
 fun varchar(100) NOT NULL,
 jid varchar(255) NOT NULL,
 retval varchar(MAX) NOT NULL,
 id varchar(255) NOT NULL,
 success bit default(0) NOT NULL,
 full_ret varchar(MAX)
);

 CREATE INDEX salt_returns_added on dbo.salt_returns(added);
 CREATE INDEX salt_returns_id on dbo.salt_returns(id);
 CREATE INDEX salt_returns_jid on dbo.salt_returns(jid);
 CREATE INDEX salt_returns_fun on dbo.salt_returns(fun);

To use this returner, append '--return odbc' to the salt command.

.. code-block:: bash

 salt '*' status.diskusage --return odbc

To use the alternative configuration, append '--return_config alternative' to the salt command.

.. versionadded:: 2015.5.0

.. code-block:: bash

 salt '*' test.ping --return odbc --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return odbc --return_kwargs '{"dsn": "dsn-name"}'

	
salt.returners.odbc.get_fun(fun)

	Return a dict of the last function called for all minions

	
salt.returners.odbc.get_jid(jid)

	Return the information returned when the specified job id was executed

	
salt.returners.odbc.get_jids()

	Return a list of all job ids

	
salt.returners.odbc.get_load(jid)

	Return the load data that marks a specified jid

	
salt.returners.odbc.get_minions()

	Return a list of minions

	
salt.returners.odbc.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.odbc.returner(ret)

	Return data to an odbc server

	
salt.returners.odbc.save_load(jid, load, minions=None)

	Save the load to the specified jid id

	
salt.returners.odbc.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.pgjsonb

Return data to a PostgreSQL server with json data stored in Pg's jsonb data type

	maintainer:

	Dave Boucha <dave@saltstack.com>, Seth House <shouse@saltstack.com>, C. R. Oldham <cr@saltstack.com>

	maturity:

	Stable

	depends:

	python-psycopg2

	platform:

	all

Note

There are three PostgreSQL returners. Any can function as an external
master job cache. but each has different
features. SaltStack recommends
returners.pgjsonb if you are working with
a version of PostgreSQL that has the appropriate native binary JSON types.
Otherwise, review
returners.postgres and
returners.postgres_local_cache
to see which module best suits your particular needs.

To enable this returner, the minion will need the python client for PostgreSQL
installed and the following values configured in the minion or master
config. These are the defaults:

returner.pgjsonb.host: 'salt'
returner.pgjsonb.user: 'salt'
returner.pgjsonb.pass: 'salt'
returner.pgjsonb.db: 'salt'
returner.pgjsonb.port: 5432

SSL is optional. The defaults are set to None. If you do not want to use SSL,
either exclude these options or set them to None.

returner.pgjsonb.sslmode: None
returner.pgjsonb.sslcert: None
returner.pgjsonb.sslkey: None
returner.pgjsonb.sslrootcert: None
returner.pgjsonb.sslcrl: None

New in version 2017.5.0.

Alternative configuration values can be used by prefacing the configuration
with alternative.. Any values not found in the alternative configuration will
be pulled from the default location. As stated above, SSL configuration is
optional. The following ssl options are simply for illustration purposes:

alternative.pgjsonb.host: 'salt'
alternative.pgjsonb.user: 'salt'
alternative.pgjsonb.pass: 'salt'
alternative.pgjsonb.db: 'salt'
alternative.pgjsonb.port: 5432
alternative.pgjsonb.ssl_ca: '/etc/pki/mysql/certs/localhost.pem'
alternative.pgjsonb.ssl_cert: '/etc/pki/mysql/certs/localhost.crt'
alternative.pgjsonb.ssl_key: '/etc/pki/mysql/certs/localhost.key'

Should you wish the returner data to be cleaned out every so often, set
keep_jobs_seconds to the number of seconds for the jobs to live in the tables.
Setting it to 0 or leaving it unset will cause the data to stay in the tables.

Should you wish to archive jobs in a different table for later processing,
set archive_jobs to True. Salt will create 3 archive tables;

	jids_archive

	salt_returns_archive

	salt_events_archive

and move the contents of jids, salt_returns, and salt_events that are
more than keep_jobs_seconds seconds old to these tables.

New in version 2019.2.0.

Use the following Pg database schema:

CREATE DATABASE salt
 WITH ENCODING 'utf-8';

--
-- Table structure for table `jids`
--
DROP TABLE IF EXISTS jids;
CREATE TABLE jids (
 jid varchar(255) NOT NULL primary key,
 load jsonb NOT NULL
);
CREATE INDEX idx_jids_jsonb on jids
 USING gin (load)
 WITH (fastupdate=on);

--
-- Table structure for table `salt_returns`
--

DROP TABLE IF EXISTS salt_returns;
CREATE TABLE salt_returns (
 fun varchar(50) NOT NULL,
 jid varchar(255) NOT NULL,
 return jsonb NOT NULL,
 id varchar(255) NOT NULL,
 success varchar(10) NOT NULL,
 full_ret jsonb NOT NULL,
 alter_time TIMESTAMP WITH TIME ZONE DEFAULT NOW());

CREATE INDEX idx_salt_returns_id ON salt_returns (id);
CREATE INDEX idx_salt_returns_jid ON salt_returns (jid);
CREATE INDEX idx_salt_returns_fun ON salt_returns (fun);
CREATE INDEX idx_salt_returns_return ON salt_returns
 USING gin (return) with (fastupdate=on);
CREATE INDEX idx_salt_returns_full_ret ON salt_returns
 USING gin (full_ret) with (fastupdate=on);

--
-- Table structure for table `salt_events`
--

DROP TABLE IF EXISTS salt_events;
DROP SEQUENCE IF EXISTS seq_salt_events_id;
CREATE SEQUENCE seq_salt_events_id;
CREATE TABLE salt_events (
 id BIGINT NOT NULL UNIQUE DEFAULT nextval('seq_salt_events_id'),
 tag varchar(255) NOT NULL,
 data jsonb NOT NULL,
 alter_time TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
 master_id varchar(255) NOT NULL);

CREATE INDEX idx_salt_events_tag on
 salt_events (tag);
CREATE INDEX idx_salt_events_data ON salt_events
 USING gin (data) with (fastupdate=on);

Required python modules: Psycopg2

To use this returner, append '--return pgjsonb' to the salt command.

salt '*' test.ping --return pgjsonb

To use the alternative configuration, append '--return_config alternative' to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return pgjsonb --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return pgjsonb --return_kwargs '{"db": "another-salt"}'

	
salt.returners.pgjsonb.clean_old_jobs()

	Called in the master's event loop every loop_interval. Archives and/or
deletes the events and job details from the database.
:return:

	
salt.returners.pgjsonb.event_return(events)

	Return event to Pg server

Requires that configuration be enabled via 'event_return'
option in master config.

	
salt.returners.pgjsonb.get_fun(fun)

	Return a dict of the last function called for all minions

	
salt.returners.pgjsonb.get_jid(jid)

	Return the information returned when the specified job id was executed

	
salt.returners.pgjsonb.get_jids()

	Return a list of all job ids

	
salt.returners.pgjsonb.get_load(jid)

	Return the load data that marks a specified jid

	
salt.returners.pgjsonb.get_minions()

	Return a list of minions

	
salt.returners.pgjsonb.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.pgjsonb.returner(ret)

	Return data to a Pg server

	
salt.returners.pgjsonb.save_load(jid, load, minions=None)

	Save the load to the specified jid id

	
salt.returners.pgjsonb.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.postgres

Return data to a postgresql server

Note

There are three PostgreSQL returners. Any can function as an external
master job cache. but each has different
features. SaltStack recommends
returners.pgjsonb if you are working with
a version of PostgreSQL that has the appropriate native binary JSON types.
Otherwise, review
returners.postgres and
returners.postgres_local_cache
to see which module best suits your particular needs.

	maintainer:

	None

	maturity:

	New

	depends:

	psycopg2

	platform:

	all

To enable this returner the minion will need the psycopg2 installed and
the following values configured in the minion or master config:

returner.postgres.host: 'salt'
returner.postgres.user: 'salt'
returner.postgres.passwd: 'salt'
returner.postgres.db: 'salt'
returner.postgres.port: 5432

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

alternative.returner.postgres.host: 'salt'
alternative.returner.postgres.user: 'salt'
alternative.returner.postgres.passwd: 'salt'
alternative.returner.postgres.db: 'salt'
alternative.returner.postgres.port: 5432

Running the following commands as the postgres user should create the database
correctly:

psql << EOF
CREATE ROLE salt WITH PASSWORD 'salt';
CREATE DATABASE salt WITH OWNER salt;
EOF

psql -h localhost -U salt << EOF
--
-- Table structure for table 'jids'
--

DROP TABLE IF EXISTS jids;
CREATE TABLE jids (
 jid varchar(20) PRIMARY KEY,
 load text NOT NULL
);

--
-- Table structure for table 'salt_returns'
--

DROP TABLE IF EXISTS salt_returns;
CREATE TABLE salt_returns (
 fun varchar(50) NOT NULL,
 jid varchar(255) NOT NULL,
 return text NOT NULL,
 full_ret text,
 id varchar(255) NOT NULL,
 success varchar(10) NOT NULL,
 alter_time TIMESTAMP WITH TIME ZONE DEFAULT now()
);

CREATE INDEX idx_salt_returns_id ON salt_returns (id);
CREATE INDEX idx_salt_returns_jid ON salt_returns (jid);
CREATE INDEX idx_salt_returns_fun ON salt_returns (fun);
CREATE INDEX idx_salt_returns_updated ON salt_returns (alter_time);

--
-- Table structure for table `salt_events`
--

DROP TABLE IF EXISTS salt_events;
DROP SEQUENCE IF EXISTS seq_salt_events_id;
CREATE SEQUENCE seq_salt_events_id;
CREATE TABLE salt_events (
 id BIGINT NOT NULL UNIQUE DEFAULT nextval('seq_salt_events_id'),
 tag varchar(255) NOT NULL,
 data text NOT NULL,
 alter_time TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
 master_id varchar(255) NOT NULL
);

CREATE INDEX idx_salt_events_tag on salt_events (tag);

EOF

Required python modules: psycopg2

To use the postgres returner, append '--return postgres' to the salt command.

salt '*' test.ping --return postgres

To use the alternative configuration, append '--return_config alternative' to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return postgres --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return postgres --return_kwargs '{"db": "another-salt"}'

	
salt.returners.postgres.event_return(events)

	Return event to Pg server

Requires that configuration be enabled via 'event_return'
option in master config.

	
salt.returners.postgres.get_fun(fun)

	Return a dict of the last function called for all minions

	
salt.returners.postgres.get_jid(jid)

	Return the information returned when the specified job id was executed

	
salt.returners.postgres.get_jids()

	Return a list of all job ids

	
salt.returners.postgres.get_load(jid)

	Return the load data that marks a specified jid

	
salt.returners.postgres.get_minions()

	Return a list of minions

	
salt.returners.postgres.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.postgres.returner(ret)

	Return data to a postgres server

	
salt.returners.postgres.save_load(jid, load, minions=None)

	Save the load to the specified jid id

	
salt.returners.postgres.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.postgres_local_cache

Use a postgresql server for the master job cache. This helps the job cache to
cope with scale.

Note

There are three PostgreSQL returners. Any can function as an external
master job cache. but each has different
features. SaltStack recommends
returners.pgjsonb if you are working with
a version of PostgreSQL that has the appropriate native binary JSON types.
Otherwise, review
returners.postgres and
returners.postgres_local_cache
to see which module best suits your particular needs.

	maintainer:

	gjredelinghuys@gmail.com

	maturity:

	Stable

	depends:

	psycopg2

	platform:

	all

To enable this returner the minion will need the psycopg2 installed and
the following values configured in the master config:

master_job_cache: postgres_local_cache
master_job_cache.postgres.host: 'salt'
master_job_cache.postgres.user: 'salt'
master_job_cache.postgres.passwd: 'salt'
master_job_cache.postgres.db: 'salt'
master_job_cache.postgres.port: 5432

Running the following command as the postgres user should create the database
correctly:

psql << EOF
CREATE ROLE salt WITH PASSWORD 'salt';
CREATE DATABASE salt WITH OWNER salt;
EOF

In case the postgres database is a remote host, you'll need this command also:

ALTER ROLE salt WITH LOGIN;

and then:

psql -h localhost -U salt << EOF
--
-- Table structure for table 'jids'
--

DROP TABLE IF EXISTS jids;
CREATE TABLE jids (
 jid varchar(20) PRIMARY KEY,
 started TIMESTAMP WITH TIME ZONE DEFAULT now(),
 tgt_type text NOT NULL,
 cmd text NOT NULL,
 tgt text NOT NULL,
 kwargs text NOT NULL,
 ret text NOT NULL,
 username text NOT NULL,
 arg text NOT NULL,
 fun text NOT NULL
);

--
-- Table structure for table 'salt_returns'
--
-- note that 'success' must not have NOT NULL constraint, since
-- some functions don't provide it.

DROP TABLE IF EXISTS salt_returns;
CREATE TABLE salt_returns (
 added TIMESTAMP WITH TIME ZONE DEFAULT now(),
 fun text NOT NULL,
 jid varchar(20) NOT NULL,
 return text NOT NULL,
 id text NOT NULL,
 success boolean
);
CREATE INDEX ON salt_returns (added);
CREATE INDEX ON salt_returns (id);
CREATE INDEX ON salt_returns (jid);
CREATE INDEX ON salt_returns (fun);

DROP TABLE IF EXISTS salt_events;
CREATE TABLE salt_events (
 id SERIAL,
 tag text NOT NULL,
 data text NOT NULL,
 alter_time TIMESTAMP WITH TIME ZONE DEFAULT now(),
 master_id text NOT NULL
);
CREATE INDEX ON salt_events (tag);
CREATE INDEX ON salt_events (data);
CREATE INDEX ON salt_events (id);
CREATE INDEX ON salt_events (master_id);
EOF

Required python modules: psycopg2

	
salt.returners.postgres_local_cache.clean_old_jobs()

	Clean out the old jobs from the job cache

	
salt.returners.postgres_local_cache.event_return(events)

	Return event to a postgres server

Require that configuration be enabled via 'event_return'
option in master config.

	
salt.returners.postgres_local_cache.get_jid(jid)

	Return the information returned when the specified job id was executed

	
salt.returners.postgres_local_cache.get_jids()

	Return a list of all job ids
For master job cache this also formats the output and returns a string

	
salt.returners.postgres_local_cache.get_load(jid)

	Return the load data that marks a specified jid

	
salt.returners.postgres_local_cache.prep_jid(nocache=False, passed_jid=None)

	Return a job id and prepare the job id directory
This is the function responsible for making sure jids don't collide
(unless its passed a jid). So do what you have to do to make sure that
stays the case

	
salt.returners.postgres_local_cache.returner(load)

	Return data to a postgres server

	
salt.returners.postgres_local_cache.save_load(jid, clear_load, minions=None)

	Save the load to the specified jid id

	
salt.returners.postgres_local_cache.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.pushover_returner

Warning

This module will be removed from Salt in version 3009 in favor of
the pushover Salt Extension [https://github.com/salt-extensions/saltext-pushover].

Return salt data via pushover (http://www.pushover.net)

New in version 2016.3.0.

The following fields can be set in the minion conf file:

pushover.user (required)
pushover.token (required)
pushover.title (optional)
pushover.device (optional)
pushover.priority (optional)
pushover.expire (optional)
pushover.retry (optional)
pushover.profile (optional)

Note

The user here is your user key, not the email address you use to
login to pushover.net.

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

alternative.pushover.user
alternative.pushover.token
alternative.pushover.title
alternative.pushover.device
alternative.pushover.priority
alternative.pushover.expire
alternative.pushover.retry

PushOver settings may also be configured as:

 pushover:
 user: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 token: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 title: Salt Returner
 device: phone
 priority: -1
 expire: 3600
 retry: 5

 alternative.pushover:
 user: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 token: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 title: Salt Returner
 device: phone
 priority: 1
 expire: 4800
 retry: 2

 pushover_profile:
 pushover.token: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 pushover:
 user: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 profile: pushover_profile

 alternative.pushover:
 user: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 profile: pushover_profile

To use the PushOver returner, append '--return pushover' to the salt command. ex:

.. code-block:: bash

 salt '*' test.ping --return pushover

To use the alternative configuration, append '--return_config alternative' to the salt command. ex:

 salt '*' test.ping --return pushover --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

salt '*' test.ping --return pushover --return_kwargs '{"title": "Salt is awesome!"}'

	
salt.returners.pushover_returner.returner(ret)

	Send an PushOver message with the data

salt.returners.rawfile_json

Take data from salt and "return" it into a raw file containing the json, with
one line per event.

Add the following to the minion or master configuration file.

rawfile_json.filename: <path_to_output_file>

Default is /var/log/salt/events.

Common use is to log all events on the master. This can generate a lot of
noise, so you may wish to configure batch processing and/or configure the
event_return_whitelist or event_return_blacklist
to restrict the events that are written.

	
salt.returners.rawfile_json.event_return(events)

	Write event data (return data and non-return data) to file on the master.

	
salt.returners.rawfile_json.returner(ret)

	Write the return data to a file on the minion.

salt.returners.redis_return

Return data to a redis server

To enable this returner the minion will need the python client for redis
installed and the following values configured in the minion or master
config, these are the defaults:

redis.db: '0'
redis.host: 'salt'
redis.port: 6379
redis.password: ''

New in version 2018.3.1: Alternatively a UNIX socket can be specified by unix_socket_path:

redis.db: '0'
redis.unix_socket_path: /var/run/redis/redis.sock

Cluster Mode Example:

redis.db: '0'
redis.cluster_mode: true
redis.cluster.skip_full_coverage_check: true
redis.cluster.startup_nodes:
 - host: redis-member-1
 port: 6379
 - host: redis-member-2
 port: 6379

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

alternative.redis.db: '0'
alternative.redis.host: 'salt'
alternative.redis.port: 6379
alternative.redis.password: ''

To use the redis returner, append '--return redis' to the salt command.

salt '*' test.ping --return redis

To use the alternative configuration, append '--return_config alternative' to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return redis --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return redis --return_kwargs '{"db": "another-salt"}'

Redis Cluster Mode Options:

	cluster_mode: False
	Whether cluster_mode is enabled or not

	cluster.startup_nodes:
	A list of host, port dictionaries pointing to cluster members. At least one is required
but multiple nodes are better

redis.cluster.startup_nodes
 - host: redis-member-1
 port: 6379
 - host: redis-member-2
 port: 6379

	cluster.skip_full_coverage_check: False
	Some cluster providers restrict certain redis commands such as CONFIG for enhanced security.
Set this option to true to skip checks that required advanced privileges.

Note

Most cloud hosted redis clusters will require this to be set to True

	
salt.returners.redis_return.clean_old_jobs()

	Clean out minions's return data for old jobs.

Normally, hset 'ret:<jid>' are saved with a TTL, and will eventually
get cleaned by redis.But for jobs with some very late minion return, the
corresponding hset's TTL will be refreshed to a too late timestamp, we'll
do manually cleaning here.

	
salt.returners.redis_return.get_fun(fun)

	Return a dict of the last function called for all minions

	
salt.returners.redis_return.get_jid(jid)

	Return the information returned when the specified job id was executed

	
salt.returners.redis_return.get_jids()

	Return a dict mapping all job ids to job information

	
salt.returners.redis_return.get_load(jid)

	Return the load data that marks a specified jid

	
salt.returners.redis_return.get_minions()

	Return a list of minions

	
salt.returners.redis_return.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.redis_return.returner(ret)

	Return data to a redis data store

	
salt.returners.redis_return.save_load(jid, load, minions=None)

	Save the load to the specified jid

	
salt.returners.redis_return.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.sentry_return

Salt returner that reports execution results back to sentry. The returner will
inspect the payload to identify errors and flag them as such.

Pillar needs something like:

raven:
 servers:
 - http://192.168.1.1
 - https://sentry.example.com
 public_key: deadbeefdeadbeefdeadbeefdeadbeef
 secret_key: beefdeadbeefdeadbeefdeadbeefdead
 project: 1
 tags:
 - os
 - master
 - saltversion
 - cpuarch

or using a dsn:

raven:
 dsn: https://aaaa:bbbb@app.getsentry.com/12345
 tags:
 - os
 - master
 - saltversion
 - cpuarch

https://pypi.python.org/pypi/raven must be installed.

The pillar can be hidden on sentry return by setting hide_pillar: true.

The tags list (optional) specifies grains items that will be used as sentry
tags, allowing tagging of events in the sentry ui.

To report only errors to sentry, set report_errors_only: true.

	
salt.returners.sentry_return.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.sentry_return.returner(ret)

	Log outcome to sentry. The returner tries to identify errors and report
them as such. All other messages will be reported at info level.
Failed states will be appended as separate list for convenience.

salt.returners.slack_returner

Return salt data via slack

New in version 2015.5.0.

The following fields can be set in the minion conf file:

slack.channel (required)
slack.api_key (required)
slack.username (required)
slack.as_user (required to see the profile picture of your bot)
slack.profile (optional)
slack.changes(optional, only show changes and failed states)
slack.only_show_failed(optional, only show failed states)
slack.yaml_format(optional, format the json in yaml format)

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

slack.channel
slack.api_key
slack.username
slack.as_user

Slack settings may also be configured as:

slack:
 channel: RoomName
 api_key: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 username: user
 as_user: true

alternative.slack:
 room_id: RoomName
 api_key: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 from_name: user@email.com

slack_profile:
 slack.api_key: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 slack.from_name: user@email.com

slack:
 profile: slack_profile
 channel: RoomName

alternative.slack:
 profile: slack_profile
 channel: RoomName

To use the Slack returner, append '--return slack' to the salt command.

salt '*' test.ping --return slack

To use the alternative configuration, append '--return_config alternative' to the salt command.

salt '*' test.ping --return slack --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return slack --return_kwargs '{"channel": "#random"}'

	
salt.returners.slack_returner.returner(ret)

	Send an slack message with the data

salt.returners.slack_webhook_return

Return salt data via Slack using Incoming Webhooks

	codeauthor:

	Carlos D. Álvaro <github@cdalvaro.io>

The following fields can be set in the minion conf file:

slack_webhook.webhook (required, the webhook id. Just the part after: 'https://hooks.slack.com/services/')
slack_webhook.success_title (optional, short title for succeeded states. By default: '{id} | Succeeded')
slack_webhook.failure_title (optional, short title for failed states. By default: '{id} | Failed')
slack_webhook.author_icon (optional, a URL that with a small 16x16px image. Must be of type: GIF, JPEG, PNG, and BMP)
slack_webhook.show_tasks (optional, show identifiers for changed and failed tasks. By default: False)

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

slack_webhook.webhook
slack_webhook.success_title
slack_webhook.failure_title
slack_webhook.author_icon
slack_webhook.show_tasks

Slack settings may also be configured as:

slack_webhook:
 webhook: T00000000/B00000000/XXXXXXXXXXXXXXXXXXXXXXXX
 success_title: '[{id}] | Success'
 failure_title: '[{id}] | Failure'
 author_icon: https://platform.slack-edge.com/img/default_application_icon.png
 show_tasks: true

alternative.slack_webhook:
 webhook: T00000000/C00000000/YYYYYYYYYYYYYYYYYYYYYYYY
 show_tasks: false

To use the Slack returner,
append '--return slack_webhook' to the salt command.

salt '*' test.ping --return slack_webhook

To use the alternative configuration,
append '--return_config alternative' to the salt command.

salt '*' test.ping --return slack_webhook --return_config alternative

	
salt.returners.slack_webhook_return.event_return(events)

	Send event data to returner function
:param events: The Salt event return
:return: The result of the post

	
salt.returners.slack_webhook_return.returner(ret, **kwargs)

	Send a slack message with the data through a webhook
:param ret: The Salt return
:return: The result of the post

salt.returners.sms_return

Return data by SMS.

New in version 2015.5.0.

	maintainer:

	Damian Myerscough

	maturity:

	new

	depends:

	twilio

	platform:

	all

To enable this returner the minion will need the python twilio library
installed and the following values configured in the minion or master
config:

twilio.sid: 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
twilio.token: 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
twilio.to: '+1415XXXXXXX'
twilio.from: '+1650XXXXXXX'

To use the sms returner, append '--return sms' to the salt command.

salt '*' test.ping --return sms

	
salt.returners.sms_return.returner(ret)

	Return a response in an SMS message

salt.returners.smtp_return

Return salt data via email

The following fields can be set in the minion conf file. Fields are optional
unless noted otherwise.

	from (required) The name/address of the email sender.

	
	to (required) The names/addresses of the email recipients;
	comma-delimited. For example: you@example.com,someoneelse@example.com.

	host (required) The SMTP server hostname or address.

	port The SMTP server port; defaults to 25.

	
	username The username used to authenticate to the server. If specified a
	password is also required. It is recommended but not required to also use
TLS with this option.

	password The password used to authenticate to the server.

	tls Whether to secure the connection using TLS; defaults to False

	subject The email subject line.

	
	fields Which fields from the returned data to include in the subject line
	of the email; comma-delimited. For example: id,fun. Please note, the
subject line is not encrypted.

	
	gpgowner A user's ~/.gpg directory. This must contain a gpg
	public key matching the address the mail is sent to. If left unset, no
encryption will be used. Requires python-gnupg to be installed.

	template The path to a file to be used as a template for the email body.

	
	renderer A Salt renderer, or render-pipe, to use to render the email
	template. Default jinja.

Below is an example of the above settings in a Salt Minion configuration file:

smtp.from: me@example.net
smtp.to: you@example.com
smtp.host: localhost
smtp.port: 1025

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location. For example:

alternative.smtp.username: saltdev
alternative.smtp.password: saltdev
alternative.smtp.tls: True

To use the SMTP returner, append '--return smtp' to the salt command.

salt '*' test.ping --return smtp

To use the alternative configuration, append '--return_config alternative' to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return smtp --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the
salt command.

New in version 2016.3.0.

salt '*' test.ping --return smtp --return_kwargs '{"to": "user@domain.com"}'

An easy way to test the SMTP returner is to use the development SMTP server
built into Python. The command below will start a single-threaded SMTP server
that prints any email it receives to the console.

python -m smtpd -n -c DebuggingServer localhost:1025

New in version 2016.11.0.

It is possible to send emails with selected Salt events by configuring event_return option
for Salt Master. For example:

event_return: smtp

event_return_whitelist:
 - salt/key

smtp.from: me@example.net
smtp.to: you@example.com
smtp.host: localhost
smtp.subject: 'Salt Master {{act}}ed key from Minion ID: {{id}}'
smtp.template: /srv/salt/templates/email.j2

Also you need to create additional file /srv/salt/templates/email.j2 with email body template:

act: {{act}}
id: {{id}}
result: {{result}}

This configuration enables Salt Master to send an email when accepting or rejecting minions keys.

	
salt.returners.smtp_return.event_return(events)

	Return event data via SMTP

	
salt.returners.smtp_return.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.smtp_return.returner(ret)

	Send an email with the data

salt.returners.splunk

Send json response data to Splunk via the HTTP Event Collector
Requires the following config values to be specified in config or pillar:

splunk_http_forwarder:
 token: <splunk_http_forwarder_token>
 indexer: <hostname/IP of Splunk indexer>
 sourcetype: <Destination sourcetype for data>
 index: <Destination index for data>
 verify_ssl: true

Run a test by using salt-call test.ping --return splunk

Written by Scott Pack (github.com/scottjpack)

	
salt.returners.splunk.event_return(events)

	Return events to Splunk via the HTTP Event Collector.
Requires the Splunk HTTP Event Collector running on port 8088.
This is available on Splunk Enterprise version 6.3 or higher.

	
class salt.returners.splunk.http_event_collector(token, http_event_server, host='', http_event_port='8088', http_event_server_ssl=True, max_bytes=100000, verify_ssl=True)

	
	
sendEvent(payload, eventtime='')

	

	
salt.returners.splunk.returner(ret)

	Send a message to Splunk via the HTTP Event Collector.
Requires the Splunk HTTP Event Collector running on port 8088.
This is available on Splunk Enterprise version 6.3 or higher.

salt.returners.sqlite3

Insert minion return data into a sqlite3 database

	maintainer:

	Mickey Malone <mickey.malone@gmail.com>

	maturity:

	New

	depends:

	None

	platform:

	All

Sqlite3 is a serverless database that lives in a single file.
In order to use this returner the database file must exist,
have the appropriate schema defined, and be accessible to the
user whom the minion process is running as. This returner
requires the following values configured in the master or
minion config:

sqlite3.database: /usr/lib/salt/salt.db
sqlite3.timeout: 5.0

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

alternative.sqlite3.database: /usr/lib/salt/salt.db
alternative.sqlite3.timeout: 5.0

Use the commands to create the sqlite3 database and tables:

sqlite3 /usr/lib/salt/salt.db << EOF
--
-- Table structure for table 'jids'
--

CREATE TABLE jids (
 jid TEXT PRIMARY KEY,
 load TEXT NOT NULL
);

--
-- Table structure for table 'salt_returns'
--

CREATE TABLE salt_returns (
 fun TEXT KEY,
 jid TEXT KEY,
 id TEXT KEY,
 fun_args TEXT,
 date TEXT NOT NULL,
 full_ret TEXT NOT NULL,
 success TEXT NOT NULL
);
EOF

To use the sqlite returner, append '--return sqlite3' to the salt command.

salt '*' test.ping --return sqlite3

To use the alternative configuration, append '--return_config alternative' to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return sqlite3 --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return sqlite3 --return_kwargs '{"db": "/var/lib/salt/another-salt.db"}'

	
salt.returners.sqlite3_return.get_fun(fun)

	Return a dict of the last function called for all minions

	
salt.returners.sqlite3_return.get_jid(jid)

	Return the information returned from a specified jid

	
salt.returners.sqlite3_return.get_jids()

	Return a list of all job ids

	
salt.returners.sqlite3_return.get_load(jid)

	Return the load from a specified jid

	
salt.returners.sqlite3_return.get_minions()

	Return a list of minions

	
salt.returners.sqlite3_return.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.sqlite3_return.returner(ret)

	Insert minion return data into the sqlite3 database

	
salt.returners.sqlite3_return.save_load(jid, load, minions=None)

	Save the load to the specified jid

	
salt.returners.sqlite3_return.save_minions(jid, minions, syndic_id=None)

	Included for API consistency

salt.returners.syslog_return

Return data to the host operating system's syslog facility

To use the syslog returner, append '--return syslog' to the
salt command.

salt '*' test.ping --return syslog

The following fields can be set in the minion conf file:

syslog.level (optional, Default: LOG_INFO)
syslog.facility (optional, Default: LOG_USER)
syslog.tag (optional, Default: salt-minion)
syslog.options (list, optional, Default: [])

Available levels, facilities, and options can be found in the
syslog docs for your python version.

Note

The default tag comes from sys.argv[0] which is
usually "salt-minion" but could be different based on
the specific environment.

Configuration example:

syslog.level: 'LOG_ERR'
syslog.facility: 'LOG_DAEMON'
syslog.tag: 'mysalt'
syslog.options:
 - LOG_PID

Of course you can also nest the options:

syslog:
 level: 'LOG_ERR'
 facility: 'LOG_DAEMON'
 tag: 'mysalt'
 options:
 - LOG_PID

Alternative configuration values can be used by
prefacing the configuration. Any values not found
in the alternative configuration will be pulled from
the default location:

alternative.syslog.level: 'LOG_WARN'
alternative.syslog.facility: 'LOG_NEWS'

To use the alternative configuration, append
--return_config alternative to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return syslog --return_config alternative

To override individual configuration items, append
--return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return syslog --return_kwargs '{"level": "LOG_DEBUG"}'

Note

Syslog server implementations may have limits on the maximum
record size received by the client. This may lead to job
return data being truncated in the syslog server's logs. For
example, for rsyslog on RHEL-based systems, the default
maximum record size is approximately 2KB (which return data
can easily exceed). This is configurable in rsyslog.conf via
the $MaxMessageSize config parameter. Please consult your syslog
implmentation's documentation to determine how to adjust this limit.

	
salt.returners.syslog_return.prep_jid(nocache=False, passed_jid=None)

	Do any work necessary to prepare a JID, including sending a custom id

	
salt.returners.syslog_return.returner(ret)

	Return data to the local syslog

salt.returners.telegram_return

Return salt data via Telegram.

The following fields can be set in the minion conf file:

telegram.chat_id (required)
telegram.token (required)

Telegram settings may also be configured as:

telegram:
 chat_id: 000000000
 token: 000000000:xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

To use the Telegram return, append '--return telegram' to the salt command.

salt '*' test.ping --return telegram

	
salt.returners.telegram_return.returner(ret)

	Send a Telegram message with the data.

	Parameters:

	ret -- The data to be sent.

	Returns:

	Boolean if message was sent successfully.

salt.returners.xmpp_return

Return salt data via xmpp

	depends:

	sleekxmpp >= 1.3.1

The following fields can be set in the minion conf file:

xmpp.jid (required)
xmpp.password (required)
xmpp.recipient (required)
xmpp.profile (optional)

Alternative configuration values can be used by prefacing the configuration.
Any values not found in the alternative configuration will be pulled from
the default location:

xmpp.jid
xmpp.password
xmpp.recipient
xmpp.profile

XMPP settings may also be configured as:

xmpp:
 jid: user@xmpp.domain.com/resource
 password: password
 recipient: user@xmpp.example.com

alternative.xmpp:
 jid: user@xmpp.domain.com/resource
 password: password
 recipient: someone@xmpp.example.com

xmpp_profile:
 xmpp.jid: user@xmpp.domain.com/resource
 xmpp.password: password

xmpp:
 profile: xmpp_profile
 recipient: user@xmpp.example.com

alternative.xmpp:
 profile: xmpp_profile
 recipient: someone-else@xmpp.example.com

To use the XMPP returner, append '--return xmpp' to the salt command.

salt '*' test.ping --return xmpp

To use the alternative configuration, append '--return_config alternative' to the salt command.

New in version 2015.5.0.

salt '*' test.ping --return xmpp --return_config alternative

To override individual configuration items, append --return_kwargs '{"key:": "value"}' to the salt command.

New in version 2016.3.0.

salt '*' test.ping --return xmpp --return_kwargs '{"recipient": "someone-else@xmpp.example.com"}'

	
class salt.returners.xmpp_return.SendMsgBot(jid, password, recipient, msg)

	
	
start(event)

	

	
salt.returners.xmpp_return.returner(ret)

	Send an xmpp message with the data

salt.returners.zabbix_return

Warning

This module will be removed from Salt in version 3009 in favor of
the zabbix Salt Extension [https://github.com/salt-extensions/saltext-zabbix].

Return salt data to Zabbix

The following Type: "Zabbix trapper" with "Type of information" Text items are required:

Key: salt.trap.info
Key: salt.trap.warning
Key: salt.trap.high

To use the Zabbix returner, append '--return zabbix' to the salt command. ex:

salt '*' test.ping --return zabbix

	
salt.returners.zabbix_return.returner(ret)

	

	
salt.returners.zabbix_return.save_load(jid, load, minions=None)

	Included for API consistency

	
salt.returners.zabbix_return.zabbix_send(key, output)

	

	
salt.returners.zabbix_return.zbx()

	

roster modules

	ansible

	Read in an Ansible inventory file or script.

	cache

	The cache roster provides a flexible interface to the Salt Masters' minion cache to access regular minions over salt-ssh.

	cloud

	Use the cloud cache on the master to derive IPv4 addresses based on minion ID.

	clustershell

	This roster resolves hostname in a pdsh/clustershell style.

	dir

	Create a salt roster out of a flat directory of files.

	flat

	Read in the roster from a flat file using the renderer system

	range

	This roster resolves targets from a range server.

	scan

	Scan a netmask or ipaddr for open ssh ports

	sshconfig

	Parses roster entries out of Host directives from SSH config

	sshknownhosts

	Parses roster entries out of Host directives from SSH known_hosts

	terraform

	Dynamic roster from terraform current state

salt.roster.ansible

Read in an Ansible inventory file or script.

Flat inventory files should be in the regular ansible inventory format.

/tmp/example_roster
[servers]
salt.gtmanfred.com ansible_ssh_user=gtmanfred ansible_ssh_host=127.0.0.1 ansible_ssh_port=22 ansible_ssh_pass='password' ansible_sudo_pass='password'

[desktop]
home ansible_ssh_user=gtmanfred ansible_ssh_host=12.34.56.78 ansible_ssh_port=23 ansible_ssh_pass='password' ansible_sudo_pass='password'

[computers:children]
desktop
servers

[computers:vars]
http_port=80

then salt-ssh can be used to hit any of them

[~]# salt-ssh --roster=ansible --roster-file=/tmp/example_roster -N all test.ping
salt.gtmanfred.com:
 True
home:
 True
[~]# salt-ssh --roster=ansible --roster-file=/tmp/example_roster -N desktop test.ping
home:
 True
[~]# salt-ssh --roster=ansible --roster-file=/tmp/example_roster -N computers test.ping
salt.gtmanfred.com:
 True
home:
 True
[~]# salt-ssh --roster=ansible --roster-file=/tmp/example_roster salt.gtmanfred.com test.ping
salt.gtmanfred.com:
 True

There is also the option of specifying a dynamic inventory, and generating it on the fly

#!/bin/bash
filename: /etc/salt/hosts
echo '{
 "servers": [
 "salt.gtmanfred.com"
],
 "desktop": [
 "home"
],
 "computers": {
 "hosts": [],
 "children": [
 "desktop",
 "servers"
],
 "vars": {
 "http_port": 80
 }
 },
 "_meta": {
 "hostvars": {
 "salt.gtmanfred.com": {
 "ansible_ssh_user": "gtmanfred",
 "ansible_ssh_host": "127.0.0.1",
 "ansible_sudo_pass": "password",
 "ansible_ssh_pass": "password",
 "ansible_ssh_port": 22
 },
 "home": {
 "ansible_ssh_user": "gtmanfred",
 "ansible_ssh_host": "12.34.56.78",
 "ansible_sudo_pass": "password",
 "ansible_ssh_pass": "password",
 "ansible_ssh_port": 23
 }
 }
 }
}'

This is the format that an inventory script needs to output to work with ansible, and thus here.

[~]# salt-ssh --roster=ansible --roster-file /etc/salt/hosts salt.gtmanfred.com test.ping
salt.gtmanfred.com:
 True

Note

A dynamic inventory script must have the executable bit set. In the above
example, chmod +x /etc/salt/hosts.

Any of the [groups] or direct hostnames will return. The 'all' is special, and returns everything.

	
salt.roster.ansible.targets(tgt, tgt_type='glob', **kwargs)

	Return the targets from the ansible inventory_file
Default: /etc/salt/roster

salt.roster.cache

The cache roster provides a flexible interface to the Salt Masters' minion cache
to access regular minions over salt-ssh.

New in version 2017.7.0:

	grains, pillar, mine data matching

	SDB URLs

	IPv6 support

	roster_order per config key

	default order changed to industry-wide best practices

	CIDR range selection

Targeting

This roster supports all matching and targeting of the Salt Master.
The matching will be done using only the Salt Master's cache.

The Roster Order

The roster's composition can be configured using roster_order.
In the roster_order you can define any roster key and fill it with a parameter
overriding the one in roster_defaults:

roster_order:
 host: id # use the minion id as hostname

You can define lists of parameters as well, the first result from the list will become the value.

Selecting a host

default
roster_order:
 host:
 - ipv6-private # IPv6 addresses in private ranges
 - ipv6-global # IPv6 addresses in global ranges
 - ipv4-private # IPv4 addresses in private ranges
 - ipv4-public # IPv4 addresses in public ranges
 - ipv4-local # loopback addresses

This is the default roster_order.
It prefers IPv6 over IPv4 addresses and private addresses over public ones.
The relevant data will be fetched from the cache in-order, and the first match will fill the host key.

Other address selection parameters are also possible:

roster_order:
 host:
 - global|public|private|local # Both IPv6 and IPv4 addresses in that range
 - 2000::/3 # CIDR networks, both IPv4 and IPv6 are supported

Using cached data

Several cached libraries can be selected using the library: `` prefix, followed by the library key.
This can be referenced using the same ``: syntax as e.g. pillar.get.
Lists of references are also supported during the lookup, as are Salt SDB URLs.

This should be especially useful for the other roster keys:

roster_order:
 host:
 - grain: fqdn_ip4 # Lookup this grain
 - mine: network.ip_addrs # Mine data lookup works the same

 password: sdb://vault/ssh_pass # Salt SDB URLs are also supported

 user:
 - pillar: ssh:auth:user # Lookup this pillar key
 - sdb://osenv/USER # Lookup this env var through sdb

 priv:
 - pillar: # Lists are also supported
 - salt:ssh:private_key
 - ssh:auth:private_key

	
salt.roster.cache.targets(tgt, tgt_type='glob', **kwargs)

	Return the targets from the Salt Masters' minion cache.
All targets and matchers are supported.

The resulting roster can be configured using roster_order and roster_default.

salt.roster.cloud

Use the cloud cache on the master to derive IPv4 addresses based on minion ID.

This roster requires that the minion in question was created using at least the
2015.5.0 version of Salt Cloud. Starting with the 2015.5.0 release, Salt Cloud
maintains an index of minions that it creates and deletes. This index tracks the
provider and profile configuration used to provision the minion, including
authentication information. So long as this configuration remains current, it can
be used by Salt SSH to log into any minion in the index.

To connect as a user other than root, modify the cloud configuration file
usually located at /etc/salt/cloud. For example, add the following:

ssh_username: my_user
sudo: True

	
salt.roster.cloud.extract_ipv4(roster_order, ipv4)

	Extract the preferred IP address from the ipv4 grain

	
salt.roster.cloud.targets(tgt, tgt_type='glob', **kwargs)

	Return the targets from the flat yaml file, checks opts for location but
defaults to /etc/salt/roster

salt.roster.clustershell

This roster resolves hostname in a pdsh/clustershell style.

	depends:

	clustershell, https://github.com/cea-hpc/clustershell

When you want to use host globs for target matching, use --roster clustershell. For example:

salt-ssh --roster clustershell 'server_[1-10,21-30],test_server[5,7,9]' test.ping

	
salt.roster.clustershell.targets(tgt, tgt_type='glob', **kwargs)

	Return the targets

salt.roster.dir

Create a salt roster out of a flat directory of files.

Each filename in the directory is a minion id.
The contents of each file is rendered using the salt renderer system.

Consider the following configuration for example:

config/master:

...
roster: dir
roster_dir: config/roster.d
...

Where the directory config/roster.d contains two files:

config/roster.d/minion-x:

host: minion-x.example.com
port: 22
sudo: true
user: ubuntu

config/roster.d/minion-y:

host: minion-y.example.com
port: 22
sudo: true
user: gentoo

The roster would find two minions: minion-x and minion-y, with the given host, port, sudo and user settings.

The directory roster also extends the concept of roster defaults by supporting a roster_domain value in config:

...
roster_domain: example.org
...

If that option is set, then any roster without a 'host' setting will have an implicit host of
its minion id + '.' + the roster_domain. (The default roster_domain is the empty string,
so you can also name the files the fully qualified name of each host. However, if you do that,
then the fully qualified name of each host is also the minion id.)

This makes it possible to avoid having to specify the hostnames when you always want them to match
their minion id plus some domain.

	
salt.roster.dir.targets(tgt, tgt_type='glob', **kwargs)

	Return the targets from the directory of flat yaml files,
checks opts for location.

salt.roster.flat

Read in the roster from a flat file using the renderer system

	
salt.roster.flat.targets(tgt, tgt_type='glob', **kwargs)

	Return the targets from the flat yaml file, checks opts for location but
defaults to /etc/salt/roster

salt.roster.range

This roster resolves targets from a range server.

	depends:

	seco.range, https://github.com/ytoolshed/range

When you want to use a range query for target matching, use --roster range. For example:

salt-ssh --roster range '%%%example.range.cluster' test.ping

	
salt.roster.range.target_glob(tgt, hosts)

	

	
salt.roster.range.target_range(tgt, hosts)

	

	
salt.roster.range.targets(tgt, tgt_type='range', **kwargs)

	Return the targets from a range query

salt.roster.scan

Scan a netmask or ipaddr for open ssh ports

	
class salt.roster.scan.RosterMatcher(tgt, tgt_type)

	Matcher for the roster data structure

	
targets()

	Return ip addrs based on netmask, sitting in the "glob" spot because
it is the default

	
salt.roster.scan.targets(tgt, tgt_type='glob', **kwargs)

	Return the targets from the flat yaml file, checks opts for location but
defaults to /etc/salt/roster

salt.roster.sshconfig

Parses roster entries out of Host directives from SSH config

salt-ssh --roster sshconfig '*' -r "echo hi"

	
class salt.roster.sshconfig.RosterMatcher(raw, tgt, tgt_type)

	Matcher for the roster data structure

	
get_data(minion)

	Return the configured ip

	
ret_glob_minions()

	Return minions that match via glob

	
targets()

	Execute the correct tgt_type routine and return

	
salt.roster.sshconfig.parse_ssh_config(lines)

	Parses lines from the SSH config to create roster targets.

	Parameters:

	lines -- Individual lines from the ssh config file

	Returns:

	Dictionary of targets in similar style to the flat roster

	
salt.roster.sshconfig.targets(tgt, tgt_type='glob', **kwargs)

	Return the targets from the flat yaml file, checks opts for location but
defaults to /etc/salt/roster

salt.roster.sshknownhosts

Parses roster entries out of Host directives from SSH known_hosts

New in version 3006.0.

Sample configuration:

Note

The known_hosts file only contains hostname/IP. To pass other parameters,
use roster_defaults.

ssh_known_hosts_file: /Users/user1/.ssh/known_hosts
roster_defaults:
 user: user1
 sudo: True

Now you can use the module

salt-ssh --roster sshknownhosts '*' -r "echo hi"

Or with a Saltfile

salt-ssh:
 ssh_known_hosts_file: /Users/user1/.ssh/known_hosts

salt-ssh --roster sshknownhosts '*' -r "echo hi"

	
salt.roster.sshknownhosts.targets(tgt, tgt_type='glob')

	Return the targets from a known_hosts file

salt.roster.terraform

Dynamic roster from terraform current state

This roster module allows you dynamically generate the roster from the terraform
resources defined with the Terraform Salt [https://github.com/dmacvicar/terraform-provider-salt] provider.

It exposes all salt_host resources with the same attributes to the salt-ssh
roster, making it completely independent of the type of terraform resource, and
providing the integration using terraform constructs with interpolation.

Basic Example

Given a simple salt-ssh tree with a Saltfile:

salt-ssh:
 config_dir: etc/salt
 max_procs: 30
 wipe_ssh: True

and etc/salt/master:

root_dir: .
 file_roots:
 base:
 - srv/salt
 pillar_roots:
 base:
 - srv/pillar
 roster: terraform

In the same folder as your Saltfile, create terraform file with resources
like cloud instances, virtual machines, etc. For every single one of those that
you want to manage with Salt, create a salt_host resource:

resource "salt_host" "dbminion" {
 salt_id = "dbserver"
 host = "${libvirt_domain.vm-db.network_interface.0.addresses.0}"
 user = "root"
 passwd = "linux"
}

You can use the count attribute to create multiple roster entries with a single
definition. Please refer to the Terraform Salt [https://github.com/dmacvicar/terraform-provider-salt] provider for more detailed
examples.

	
salt.roster.terraform.targets(tgt, tgt_type='glob', **kwargs)

	Returns the roster from the terraform state file, checks opts for location, but defaults to terraform.tfstate

runner modules

	asam

	Novell ASAM Runner

	auth

	Authentication runner for creating, deleting, and managing eauth tokens.

	bgp

	BGP Finder

	cache

	Return cached data from minions

	cloud

	The Salt Cloud Runner

	config

	This runner is designed to mirror the execution module config.py, but for master settings

	ddns

	Dynamic DNS Runner

	digicertapi

	Support for Digicert.

	doc

	A runner module to collect and display the inline documentation from the various module types

	drac

	Manage Dell DRAC from the Master

	error

	Error generator to enable integration testing of salt runner error handling

	event

	Module for sending events using the runner system.

	f5

	Runner to provide F5 Load Balancer functionality

	fileserver

	Directly manage the Salt fileserver plugins

	git_pillar

	Runner module to directly manage the git external pillar

	http

	Module for making various web calls.

	jobs

	A convenience system to manage jobs, both active and already run

	launchd

	Manage launchd plist files

	lxc

	Control Linux Containers via Salt

	manage

	General management functions for salt, tools like seeing what hosts are up and what hosts are down

	match

	Run matchers from the master context.

	mattermost

	Module for sending messages to Mattermost

	mine

	A runner to access data from the salt mine

	nacl

	This module helps include encrypted passwords in pillars, grains and salt state files.

	net

	NET Finder

	network

	Network tools to run from the Master

	pagerduty

	Runner Module for Firing Events via PagerDuty

	pillar

	Functions to interact with the pillar compiler on the master

	pkg

	Package helper functions using salt.modules.pkg

	queue

	General management and processing of queues.

	reactor

	A convenience system to manage reactors

	salt

	This runner makes Salt's execution modules available on the salt master.

	saltutil

	The Saltutil runner is used to sync custom types to the Master.

	sdb

	Runner for setting and querying data via the sdb API on the master

	smartos_vmadm

	Runner for SmartOS minions control vmadm

	spacewalk

	Spacewalk Runner

	ssh

	A Runner module interface on top of the salt-ssh Python API.

	state

	Execute orchestration functions

	survey

	A general map/reduce style salt runner for aggregating results returned by several different minions.

	test

	This runner is used only for test purposes and serves no production purpose

	thin

	The thin runner is used to manage the salt thin systems.

	vault

	

	venafiapi

	Support for Venafi

	virt

	Control virtual machines via Salt

	vistara

	Vistara Runner

	winrepo

	Runner to manage Windows software repo

salt.runners.asam

Novell ASAM Runner

New in version 2015.8.0.

Runner to interact with Novell ASAM Fan-Out Driver

	codeauthor:

	Nitin Madhok <nmadhok@g.clemson.edu>

To use this runner, set up the Novell Fan-Out Driver URL, username and password in the
master configuration at /etc/salt/master or /etc/salt/master.d/asam.conf:

asam:
 prov1.domain.com
 username: "testuser"
 password: "verybadpass"
 verify_ssl: true
 prov2.domain.com
 username: "testuser"
 password: "verybadpass"
 verify_ssl: true

Note

Optionally, protocol and port can be specified if the Fan-Out Driver server
is not using the defaults. Default is protocol: https and port: 3451.

	
class salt.runners.asam.ASAMHTMLParser

	
	
handle_starttag(tag, attrs)

	

	
salt.runners.asam.add_platform(name, platform_set, server_url)

	To add an ASAM platform using the specified ASAM platform set on the Novell
Fan-Out Driver

CLI Example:

salt-run asam.add_platform my-test-vm test-platform-set prov1.domain.com

	
salt.runners.asam.list_platform_sets(server_url)

	To list all ASAM platform sets present on the Novell Fan-Out Driver

CLI Example:

salt-run asam.list_platform_sets prov1.domain.com

	
salt.runners.asam.list_platforms(server_url)

	To list all ASAM platforms present on the Novell Fan-Out Driver

CLI Example:

salt-run asam.list_platforms prov1.domain.com

	
salt.runners.asam.remove_platform(name, server_url)

	To remove specified ASAM platform from the Novell Fan-Out Driver

CLI Example:

salt-run asam.remove_platform my-test-vm prov1.domain.com

salt.runners.auth

Authentication runner for creating, deleting, and managing eauth tokens.

New in version 2016.11.0.

	
salt.runners.auth.del_token(token)

	Delete an eauth token by name

CLI Example:

salt-run auth.del_token 6556760736e4077daa601baec2b67c24

	
salt.runners.auth.mk_token(**load)

	Create an eauth token using provided credentials

Non-root users may specify an expiration date -- if allowed via the
token_expire_user_override setting -- by passing an
additional token_expire param. This overrides the
token_expire setting of the same name in the Master config
and is how long a token should live in seconds.

CLI Example:

salt-run auth.mk_token username=saltdev password=saltdev eauth=auto

Create a token valid for three years.
salt-run auth.mk_token username=saltdev password=saltdev eauth=auto \
 token_expire=94670856

Calculate the number of seconds using expr.
salt-run auth.mk_token username=saltdev password=saltdev eauth=auto \
 token_expire=$(expr \(365 * 24 * 60 * 60 \) * 3)

salt.runners.bgp

BGP Finder

New in version 2017.7.0.

Runner to search BGP neighbors details.

Configuration

	Minion (proxy) config

The bgp.neighbors function must be appened in the list of mine_functions:

mine_functions:
 bgp.neighbors: []

Which instructs Salt to cache the data returned by the neighbors function
from the NAPALM BGP module.

How often the mines are refreshed, can be specified using:

mine_interval: <X minutes>

	Master config

By default the following options can be configured on the master.
They are not mandatory, but available in case the user has different requirements.

	tgt: *
	From what minions will collect the mine data.
Default: * (collect mine data from all minions)

	tgt_type: glob
	Minion matching expression form. Default: glob.

	return_fields
	What fields to return in the output.
It can display all the fields from the neighbors function
from the NAPALM BGP module.

Some fields cannot be removed:

	as_number: the AS number of the neighbor

	device: the minion ID

	neighbor_address: the neighbor remote IP address

By default, the following extra fields are returned (displayed):

	connection_stats: connection stats, as described below

	import_policy: the name of the import policy

	export_policy: the name of the export policy

Special fields:

	vrf: return the name of the VRF.

	connection_stats: returning an output of the form <State>
<Active>/<Received>/<Accepted>/<Damped>, e.g. Established
398/399/399/0 similar to the usual output from network devices.

	interface_description: matches the neighbor details with the
corresponding interface and returns its description. This will reuse
functionality from the net runner, so the user needs to enable the mines
as specified in the documentation.

	interface_name: matches the neighbor details with the
corresponding interface and returns the name. Similar to
interface_description, this will reuse functionality from the
net runner, so the user needs to
enable the mines as specified in the documentation.

	display: True
	Display on the screen or return structured object? Default: True (return on the CLI).

	outputter: table
	Specify the outputter name when displaying on the CLI. Default: table.

Configuration example:

runners:
 bgp:
 tgt: 'edge*'
 tgt_type: 'glob'
 return_fields:
 - up
 - connection_state
 - previous_connection_state
 - suppress_4byte_as
 - holdtime
 - flap_count
 outputter: yaml

	
salt.runners.bgp.neighbors(*asns, **kwargs)

	Search for BGP neighbors details in the mines of the bgp.neighbors function.

Arguments:

	asns
	A list of AS numbers to search for.
The runner will return only the neighbors of these AS numbers.

	device
	Filter by device name (minion ID).

	ip
	Search BGP neighbor using the IP address.
In multi-VRF environments, the same IP address could be used by
more than one neighbors, in different routing tables.

	network
	Search neighbors within a certain IP network.

	title
	Custom title.

	display: True
	Display on the screen or return structured object? Default: True (return on the CLI).

	outputter: table
	Specify the outputter name when displaying on the CLI. Default: table.

In addition, any field from the output of the neighbors function
from the NAPALM BGP module can be used as a filter.

CLI Example:

salt-run bgp.neighbors 13335 15169
salt-run bgp.neighbors 13335 ip=172.17.19.1
salt-run bgp.neighbors multipath=True
salt-run bgp.neighbors up=False export_policy=my-export-policy multihop=False
salt-run bgp.neighbors network=192.168.0.0/16

Output example:

BGP Neighbors for 13335, 15169
__
| Device | AS Number | Neighbor Address | State|#Active/Received/Accepted/Damped | Policy IN | Policy OUT |
__
| edge01.bjm01 | 13335 | 172.17.109.11 | Established 0/398/398/0 | import-policy | export-policy |
__
| edge01.bjm01 | 13335 | 172.17.109.12 | Established 397/398/398/0 | import-policy | export-policy |
__
| edge01.flw01 | 13335 | 192.168.172.11 | Established 1/398/398/0 | import-policy | export-policy |
__
| edge01.oua01 | 13335 | 172.17.109.17 | Established 0/0/0/0 | import-policy | export-policy |
__
| edge01.bjm01 | 15169 | 2001::1 | Established 102/102/102/0 | import-policy | export-policy |
__
| edge01.bjm01 | 15169 | 2001::2 | Established 102/102/102/0 | import-policy | export-policy |
__
| edge01.tbg01 | 13335 | 192.168.172.17 | Established 0/1/1/0 | import-policy | export-policy |
__

salt.runners.cache

Return cached data from minions

	
salt.runners.cache.clear_all(tgt=None, tgt_type='glob')

	
Changed in version 2017.7.0: The expr_form argument has been renamed to tgt_type, earlier
releases must use expr_form.

Clear the cached pillar, grains, and mine data of the targeted minions

CLI Example:

salt-run cache.clear_all

	
salt.runners.cache.clear_git_lock(role, remote=None, **kwargs)

	
New in version 2015.8.2.

Remove the update locks for Salt components (gitfs, git_pillar, winrepo)
which use gitfs backend code from salt.utils.gitfs.

Note

Running cache.clear_all will
not include this function as it does for pillar, grains, and mine.

Additionally, executing this function with a role of gitfs is
equivalent to running salt-run fileserver.clear_lock backend=git.

	role
	Which type of lock to remove (gitfs, git_pillar, or
winrepo)

	remote
	If specified, then any remotes which contain the passed string will
have their lock cleared. For example, a remote value of github
will remove the lock from all github.com remotes.

	typeupdate,checkout,mountpoint
	The types of lock to clear. Can be one or more of update,
checkout, and mountpoint, and can be passed either as a
comma-separated or Python list.

New in version 2015.8.8.

Changed in version 2018.3.0: mountpoint lock type added

CLI Examples:

salt-run cache.clear_git_lock gitfs
salt-run cache.clear_git_lock git_pillar
salt-run cache.clear_git_lock git_pillar type=update
salt-run cache.clear_git_lock git_pillar type=update,checkout
salt-run cache.clear_git_lock git_pillar type='["update", "mountpoint"]'

	
salt.runners.cache.clear_grains(tgt=None, tgt_type='glob')

	
Changed in version 2017.7.0: The expr_form argument has been renamed to tgt_type, earlier
releases must use expr_form.

Clear the cached grains data of the targeted minions

CLI Example:

salt-run cache.clear_grains

	
salt.runners.cache.clear_mine(tgt=None, tgt_type='glob')

	
Changed in version 2017.7.0: The expr_form argument has been renamed to tgt_type, earlier
releases must use expr_form.

Clear the cached mine data of the targeted minions

CLI Example:

salt-run cache.clear_mine

	
salt.runners.cache.clear_mine_func(tgt=None, tgt_type='glob', clear_mine_func_flag=None)

	
Changed in version 2017.7.0: The expr_form argument has been renamed to tgt_type, earlier
releases must use expr_form.

Clear the cached mine function data of the targeted minions

CLI Example:

salt-run cache.clear_mine_func tgt='*' clear_mine_func_flag='network.interfaces'

	
salt.runners.cache.clear_pillar(tgt=None, tgt_type='glob')

	
Changed in version 2017.7.0: The expr_form argument has been renamed to tgt_type, earlier
releases must use expr_form.

Clear the cached pillar data of the targeted minions

CLI Example:

salt-run cache.clear_pillar

	
salt.runners.cache.cloud(tgt, provider=None)

	Return cloud cache data for target.

Note

Only works with glob matching

	tgt
	Glob Target to match minion ids

	provider
	Cloud Provider

CLI Example:

salt-run cache.cloud 'salt*'
salt-run cache.cloud glance.example.org provider=openstack

	
salt.runners.cache.fetch(bank, key, cachedir=None)

	Fetch data from a salt.cache bank.

CLI Example:

salt-run cache.fetch cloud/active/ec2/myec2 myminion cachedir=/var/cache/salt/

	
salt.runners.cache.flush(bank, key=None, cachedir=None)

	Remove the key from the cache bank with all the key content. If no key is
specified remove the entire bank with all keys and sub-banks inside.

CLI Examples:

salt-run cache.flush cloud/active/ec2/myec2 cachedir=/var/cache/salt/
salt-run cache.flush cloud/active/ec2/myec2 myminion cachedir=/var/cache/salt/

	
salt.runners.cache.grains(tgt, tgt_type='glob', **kwargs)

	
Changed in version 2017.7.0: The expr_form argument has been renamed to tgt_type, earlier
releases must use expr_form.

Return cached grains of the targeted minions.

	tgt
	Target to match minion ids.

Changed in version 2017.7.5,2018.3.0: The tgt argument is now required to display cached grains. If
not used, the function will not return grains. This optional
argument will become mandatory in the Salt 3001 release.

	tgt_type
	The type of targeting to use for matching, such as glob, list,
etc.

CLI Example:

salt-run cache.grains '*'

	
salt.runners.cache.list_(bank, cachedir=None)

	Lists entries stored in the specified bank.

CLI Example:

salt-run cache.list cloud/active/ec2/myec2 cachedir=/var/cache/salt/

	
salt.runners.cache.mine(tgt=None, tgt_type='glob', **kwargs)

	
Changed in version 2017.7.0: The expr_form argument has been renamed to tgt_type, earlier
releases must use expr_form.

Return cached mine data of the targeted minions

CLI Example:

salt-run cache.mine

	
salt.runners.cache.pillar(tgt=None, tgt_type='glob', **kwargs)

	
Changed in version 2017.7.0: The expr_form argument has been renamed to tgt_type, earlier
releases must use expr_form.

Return cached pillars of the targeted minions if tgt is set.
If tgt is not set will return cached pillars for all minions.

CLI Example:

salt-run cache.pillar

	
salt.runners.cache.store(bank, key, data, cachedir=None)

	Lists entries stored in the specified bank.

CLI Example:

salt-run cache.store mycache mykey 'The time has come the walrus said'

salt.runners.cloud

The Salt Cloud Runner

This runner wraps the functionality of salt cloud making salt cloud routines
available to all internal apis via the runner system

	
salt.runners.cloud.action(func=None, cloudmap=None, instances=None, provider=None, instance=None, opts=None, **kwargs)

	Execute a single action on the given map/provider/instance

CLI Example:

salt-run cloud.action start my-salt-vm

	
salt.runners.cloud.create(provider, instances, opts=None, **kwargs)

	Create an instance using Salt Cloud

CLI Example:

salt-run cloud.create my-ec2-config myinstance \
 image=ami-1624987f size='t1.micro' ssh_username=ec2-user \
 securitygroup=default delvol_on_destroy=True

	
salt.runners.cloud.destroy(instances, opts=None)

	Destroy the named vm(s)

	
salt.runners.cloud.full_query(query_type='list_nodes_full')

	List all available cloud provider data

	
salt.runners.cloud.list_images(provider='all')

	List cloud provider images for the given providers

	
salt.runners.cloud.list_locations(provider='all')

	List cloud provider sizes for the given providers

	
salt.runners.cloud.list_sizes(provider='all')

	List cloud provider sizes for the given providers

	
salt.runners.cloud.map_run(path=None, opts=None, **kwargs)

	Execute a salt cloud map file

	
salt.runners.cloud.profile(prof=None, instances=None, opts=None, **kwargs)

	Create a cloud vm with the given profile and instances, instances can be a
list or comma-delimited string

CLI Example:

salt-run cloud.profile prof=my-ec2 instances=node1,node2,node3

	
salt.runners.cloud.query(query_type='list_nodes')

	List cloud provider data for all providers

	
salt.runners.cloud.select_query(query_type='list_nodes_select')

	List selected nodes

salt.runners.config

This runner is designed to mirror the execution module config.py, but for
master settings

	
salt.runners.config.get(key, default='', delimiter=':')

	Retrieve master config options, with optional nesting via the delimiter
argument.

Arguments

default

If the key is not found, the default will be returned instead

delimiter

Override the delimiter used to separate nested levels of a data
structure.

CLI Example:

salt-run config.get gitfs_remotes
salt-run config.get file_roots:base
salt-run config.get file_roots,base delimiter=','

salt.runners.ddns

Dynamic DNS Runner

New in version 2015.8.0.

Runner to interact with DNS server and create/delete/update DNS records

	codeauthor:

	Nitin Madhok <nmadhok@g.clemson.edu>

	
salt.runners.ddns.add_host(zone, name, ttl, ip, keyname, keyfile, nameserver, timeout, port=53, keyalgorithm='hmac-md5')

	Create both A and PTR (reverse) records for a host.

CLI Example:

salt-run ddns.add_host domain.com my-test-vm 3600 10.20.30.40 my-tsig-key /etc/salt/tsig.keyring 10.0.0.1 5

	
salt.runners.ddns.create(zone, name, ttl, rdtype, data, keyname, keyfile, nameserver, timeout, port=53, keyalgorithm='hmac-md5')

	Create a DNS record. The nameserver must be an IP address and the master running
this runner must have create privileges on that server.

CLI Example:

salt-run ddns.create domain.com my-test-vm 3600 A 10.20.30.40 my-tsig-key /etc/salt/tsig.keyring 10.0.0.1 5

	
salt.runners.ddns.delete(zone, name, keyname, keyfile, nameserver, timeout, rdtype=None, data=None, port=53, keyalgorithm='hmac-md5')

	Delete a DNS record.

CLI Example:

salt-run ddns.delete domain.com my-test-vm my-tsig-key /etc/salt/tsig.keyring 10.0.0.1 5 A

	
salt.runners.ddns.delete_host(zone, name, keyname, keyfile, nameserver, timeout, port=53, keyalgorithm='hmac-md5')

	Delete both forward (A) and reverse (PTR) records for a host only if the
forward (A) record exists.

CLI Example:

salt-run ddns.delete_host domain.com my-test-vm my-tsig-key /etc/salt/tsig.keyring 10.0.0.1 5

	
salt.runners.ddns.update(zone, name, ttl, rdtype, data, keyname, keyfile, nameserver, timeout, replace=False, port=53, keyalgorithm='hmac-md5')

	Replace, or update a DNS record. The nameserver must be an IP address and the master running
this runner must have update privileges on that server.

Note

If replace is set to True, all records for this name and type will first be deleted and
then recreated. Default is replace=False.

CLI Example:

salt-run ddns.update domain.com my-test-vm 3600 A 10.20.30.40 my-tsig-key /etc/salt/tsig.keyring 10.0.0.1 5

salt.runners.digicertapi

Support for Digicert. Heavily based on the Venafi runner by Joseph Hall (jphall@saltstack.com).

Before using this module you need to register an account with Digicert's CertCentral.

Login to CertCentral, ensure you have a payment method configured and/or there are adequate
funds attached to your account. Click the Account item in the left sidebar, and select
Account Access. The right hand pane should show "Account Access" and a link to create
an API key. Create a new API key and assign it to the user that should be attached to requests
coming from Salt.

NOTE CertCentral will not show the API key again after revealing it the first time. Make sure
you copy it right away or you will have to revoke it and generate a new one.

Now open /etc/salt/master and add the API key as shown below.

digicert:
 api_key: ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABC

Restart your Salt Master.

You can also include default values of the following variables to help with creating CSRs:

digicert:
 api_key: ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABC
 shatype: sha256

This API currently only supports RSA key types. Support for other key types will be added
if interest warrants.

	
salt.runners.digicertapi.del_cached_domain(domains)

	Delete cached domains from the master

CLI Example:

salt-run digicert.del_cached_domain domain1.example.com,domain2.example.com

	
salt.runners.digicertapi.gen_csr(minion_id, dns_name, organization_id, ou_name=None, key_len=2048, shatype='sha256', password=None)

	CLI Example:

salt-run digicert.gen_csr <minion_id> <dns_name>

	
salt.runners.digicertapi.gen_key(minion_id, dns_name=None, password=None, key_len=2048)

	Generate and return a private_key. If a dns_name is passed in, the
private_key will be cached under that name.

CLI Example:

salt-run digicert.gen_key <minion_id> [dns_name] [password]

	
salt.runners.digicertapi.get_certificate(order_id=None, certificate_id=None, minion_id=None, cert_format='pem_all', filename=None)

	Retrieve a certificate by order_id or certificate_id and write it to stdout or a filename.

	A list of permissible cert_formats is here:
	https://www.digicert.com/services/v2/documentation/appendix-certificate-formats

CLI Example:

salt-run digicert.get_certificate order_id=48929454 cert_format=apache

Including a 'filename' will write the certificate to the desired file.
Note that some cert formats are zipped files, and some are binary.

If the certificate has not been issued, this function will return the order details
inside of which will be a status (one of pending, rejected, processing, issued,
revoked, canceled, needs_csr, and needs_approval)

If for some reason you want to pipe the output of this command to a file or other
command you will want to leave off the filename argument and make sure to include
--no-color so there will be no terminal ANSI escape sequences.

	
salt.runners.digicertapi.get_org_details(organization_id)

	Return the details for an organization

CLI Example:

salt-run digicert.get_org_details 34

Returns a dictionary with the org details, or with 'error' and 'status' keys.

	
salt.runners.digicertapi.list_domain_cache()

	List domains that have been cached

CLI Example:

salt-run digicert.list_domain_cache

	
salt.runners.digicertapi.list_domains(container_id=None)

	List domains that CertCentral knows about. You can filter by
container_id (also known as "Division") by passing a container_id.

CLI Example:

salt-run digicert.list_domains

	
salt.runners.digicertapi.list_orders(status=None)

	List certificate orders made to CertCentral.

CLI Example:

salt-run digicert.list_orders

	
salt.runners.digicertapi.list_organizations(container_id=None, include_validation=True)

	List organizations that CertCentral knows about. You can filter by
container_id (also known as "Division") by passing a container_id.
This function returns validation information by default; pass
include_validation=False to turn it off.

CLI Example:

salt-run digicert.list_organizations

	
salt.runners.digicertapi.list_requests(status=None)

	List certificate requests made to CertCentral. You can filter by
status: pending, approved, rejected

CLI Example:

salt-run digicert.list_requests pending

	
salt.runners.digicertapi.order_certificate(minion_id, common_name, organization_id, validity_years, cert_key_passphrase=None, signature_hash=None, key_len=2048, dns_names=None, organization_units=None, server_platform=None, custom_expiration_date=None, comments=None, disable_renewal_notifications=False, product_type_hint=None, renewal_of_order_id=None)

	Order a certificate. Requires that an Organization has been created inside Digicert's CertCentral.

See here for API documentation:
https://www.digicert.com/services/v2/documentation/order/order-ssl-determinator

CLI Example:

salt-run digicert.order_certificate my_minionid my.domain.com 10 3 signature_hash=sha256 dns_names=['this.domain.com', 'that.domain.com'] organization_units='My Domain Org Unit' comments='Comment goes here for the approver'

This runner can also be used to renew a certificate by passing renewal_of_order_id.
Previous order details can be retrieved with digicertapi.list_orders.

	
salt.runners.digicertapi.show_csrs()

	Show certificate requests for this API key

CLI Example:

salt-run digicert.show_csrs

	
salt.runners.digicertapi.show_organization(domain)

	Show organization information, especially the company id

CLI Example:

salt-run digicert.show_company example.com

	
salt.runners.digicertapi.show_rsa(minion_id, dns_name)

	Show a private RSA key

CLI Example:

salt-run digicert.show_rsa myminion domain.example.com

salt.runners.doc

A runner module to collect and display the inline documentation from the
various module types

	
salt.runners.doc.execution()

	Collect all the sys.doc output from each minion and return the aggregate

CLI Example:

salt-run doc.execution

	
salt.runners.doc.runner()

	Return all inline documentation for runner modules

CLI Example:

salt-run doc.runner

	
salt.runners.doc.wheel()

	Return all inline documentation for wheel modules

CLI Example:

salt-run doc.wheel

salt.runners.drac

Manage Dell DRAC from the Master

The login credentials need to be configured in the Salt master
configuration file.

drac:
 username: admin
 password: secret

	
salt.runners.drac.poweroff(hostname, timeout=20, username=None, password=None)

	Power server off

CLI Example:

salt-run drac.poweroff example.com

	
salt.runners.drac.poweron(hostname, timeout=20, username=None, password=None)

	Power server on

CLI Example:

salt-run drac.poweron example.com

	
salt.runners.drac.pxe(hostname, timeout=20, username=None, password=None)

	Connect to the Dell DRAC and have the boot order set to PXE
and power cycle the system to PXE boot

CLI Example:

salt-run drac.pxe example.com

	
salt.runners.drac.reboot(hostname, timeout=20, username=None, password=None)

	Reboot a server using the Dell DRAC

CLI Example:

salt-run drac.reboot example.com

	
salt.runners.drac.version(hostname, timeout=20, username=None, password=None)

	Display the version of DRAC

CLI Example:

salt-run drac.version example.com

salt.runners.error

Error generator to enable integration testing of salt runner error handling

	
salt.runners.error.error(name=None, message='')

	If name is None Then return empty dict

Otherwise raise an exception with __name__ from name, message from message

CLI Example:

salt-run error
salt-run error.error name="Exception" message="This is an error."

salt.runners.event

Module for sending events using the runner system.

New in version 2016.11.0.

	
salt.runners.event.send(tag, data=None)

	Send an event with the given tag and data.

This is useful for sending events directly to the master from the shell
with salt-run. It is also quite useful for sending events in orchestration
states where the fire_event requisite isn't sufficient because it does
not support sending custom data with the event.

Note that event tags will not be namespaced like events sent with the
fire_event requisite! Whereas events produced from fire_event are
prefixed with salt/state_result/<jid>/<minion_id>/<name>, events sent
using this runner module will have no such prefix. Make sure your reactors
don't expect a prefix!

	Parameters:

	
	tag -- the tag to send with the event

	data -- an optional dictionary of data to send with the event

CLI Example:

salt-run event.send my/custom/event '{"foo": "bar"}'

Orchestration Example:

orch/command.sls

run_a_command:
 salt.function:
 - name: cmd.run
 - tgt: my_minion
 - arg:
 - exit {{ pillar['exit_code'] }}

send_success_event:
 salt.runner:
 - name: event.send
 - tag: my_event/success
 - data:
 foo: bar
 - require:
 - salt: run_a_command

send_failure_event:
 salt.runner:
 - name: event.send
 - tag: my_event/failure
 - data:
 baz: qux
 - onfail:
 - salt: run_a_command

salt-run state.orchestrate orch.command pillar='{"exit_code": 0}'
salt-run state.orchestrate orch.command pillar='{"exit_code": 1}'

salt.runners.f5

Runner to provide F5 Load Balancer functionality

	depends:

	
	pycontrol Python module

	configuration:

	In order to connect to a F5 Load Balancer, you must specify
in the Salt master configuration the currently available load balancers

load_balancers:
 bigip1.example.com:
 username: admin
 password: secret
 bigip2.example.com:
 username: admin
 password: secret

	
class salt.runners.f5.F5Mgmt(lb, username, password)

	
	
add_pool_member(name, port, pool_name)

	Add a node to a pool

	
check_member_pool(member, pool_name)

	Check a pool member exists in a specific pool

	
check_pool(name)

	Check to see if a pool exists

	
check_virtualserver(name)

	Check to see if a virtual server exists

	
create_pool(name, method='ROUND_ROBIN')

	Create a pool on the F5 load balancer

	
create_vs(name, ip, port, protocol, profile, pool_name)

	Create a virtual server

	
lbmethods()

	List all the load balancer methods

	
salt.runners.f5.add_pool_member(lb, name, port, pool_name)

	Add a node to a pool

CLI Examples:

salt-run f5.add_pool_member load_balancer 10.0.0.1 80 my_pool

	
salt.runners.f5.check_member_pool(lb, member, pool_name)

	Check a pool member exists in a specific pool

CLI Examples:

salt-run f5.check_member_pool load_balancer 10.0.0.1 my_pool

	
salt.runners.f5.check_pool(lb, name)

	Check to see if a pool exists

CLI Examples:

salt-run f5.check_pool load_balancer pool_name

	
salt.runners.f5.check_virtualserver(lb, name)

	Check to see if a virtual server exists

CLI Examples:

salt-run f5.check_virtualserver load_balancer virtual_server

	
salt.runners.f5.create_pool(lb, name, method='ROUND_ROBIN')

	Create a pool on the F5 load balancer

CLI Examples:

salt-run f5.create_pool load_balancer pool_name loadbalance_method
salt-run f5.create_pool load_balancer my_pool ROUND_ROBIN

	
salt.runners.f5.create_vs(lb, name, ip, port, protocol, profile, pool_name)

	Create a virtual server

CLI Examples:

salt-run f5.create_vs lbalancer vs_name 10.0.0.1 80 tcp http poolname

salt.runners.fileserver

Directly manage the Salt fileserver plugins

	
salt.runners.fileserver.clear_cache(backend=None)

	
New in version 2015.5.0.

Clear the fileserver cache from VCS fileserver backends (git, hg, svn). Executing this runner with no arguments will
clear the cache for all enabled VCS fileserver backends, but this
can be narrowed using the backend argument.

	backend
	Only clear the update lock for the specified backend(s). If all passed
backends start with a minus sign (-), then these backends will be
excluded from the enabled backends. However, if there is a mix of
backends with and without a minus sign (ex: backend=-roots,git)
then the ones starting with a minus sign will be disregarded.

CLI Example:

salt-run fileserver.clear_cache
salt-run fileserver.clear_cache backend=git,hg
salt-run fileserver.clear_cache hg
salt-run fileserver.clear_cache -roots

	
salt.runners.fileserver.clear_file_list_cache(saltenv=None, backend=None)

	
New in version 2016.11.0.

The Salt fileserver caches the files/directories/symlinks for each
fileserver backend and environment as they are requested. This is done to
help the fileserver scale better. Without this caching, when
hundreds/thousands of minions simultaneously ask the master what files are
available, this would cause the master's CPU load to spike as it obtains
the same information separately for each minion.

	saltenv
	By default, this runner will clear the file list caches for all
environments. This argument allows for a list of environments to be
passed, to clear more selectively. This list can be passed either as a
comma-separated string, or a Python list.

	backend
	Similar to the saltenv parameter, this argument will restrict the
cache clearing to specific fileserver backends (the default behavior is
to clear from all enabled fileserver backends). This list can be passed
either as a comma-separated string, or a Python list.

Since the ability to clear these caches is often required by users writing
custom runners which add/remove files, this runner can easily be called
from within a custom runner using any of the following examples:

Clear all file list caches
__salt__['fileserver.clear_file_list_cache']()
Clear just the 'base' saltenv file list caches
__salt__['fileserver.clear_file_list_cache'](saltenv='base')
Clear just the 'base' saltenv file list caches from just the 'roots'
fileserver backend
__salt__['fileserver.clear_file_list_cache'](saltenv='base', backend='roots')
Clear all file list caches from the 'roots' fileserver backend
__salt__['fileserver.clear_file_list_cache'](backend='roots')

Note

In runners, the __salt__ dictionary will likely be renamed to
__runner__ in a future Salt release to distinguish runner functions
from remote execution functions. See this GitHub issue [https://github.com/saltstack/salt/issues/34958] for
discussion/updates on this.

If using Salt's Python API (not a runner), the following examples are
equivalent to the ones above:

import salt.config
import salt.runner

opts = salt.config.master_config('/etc/salt/master')
opts['fun'] = 'fileserver.clear_file_list_cache'

Clear all file list_caches
opts['arg'] = [] # No arguments
runner = salt.runner.Runner(opts)
cleared = runner.run()

Clear just the 'base' saltenv file list caches
opts['arg'] = ['base', None]
runner = salt.runner.Runner(opts)
cleared = runner.run()

Clear just the 'base' saltenv file list caches from just the 'roots'
fileserver backend
opts['arg'] = ['base', 'roots']
runner = salt.runner.Runner(opts)
cleared = runner.run()

Clear all file list caches from the 'roots' fileserver backend
opts['arg'] = [None, 'roots']
runner = salt.runner.Runner(opts)
cleared = runner.run()

This function will return a dictionary showing a list of environments which
were cleared for each backend. An empty return dictionary means that no
changes were made.

CLI Examples:

Clear all file list caches
salt-run fileserver.clear_file_list_cache
Clear just the 'base' saltenv file list caches
salt-run fileserver.clear_file_list_cache saltenv=base
Clear just the 'base' saltenv file list caches from just the 'roots'
fileserver backend
salt-run fileserver.clear_file_list_cache saltenv=base backend=roots
Clear all file list caches from the 'roots' fileserver backend
salt-run fileserver.clear_file_list_cache backend=roots

	
salt.runners.fileserver.clear_lock(backend=None, remote=None)

	
New in version 2015.5.0.

Clear the fileserver update lock from VCS fileserver backends (git, hg, svn). This should only need to be done if a fileserver
update was interrupted and a remote is not updating (generating a warning
in the Master's log file). Executing this runner with no arguments will
remove all update locks from all enabled VCS fileserver backends, but this
can be narrowed by using the following arguments:

	backend
	Only clear the update lock for the specified backend(s).

	remote
	If specified, then any remotes which contain the passed string will
have their lock cleared. For example, a remote value of github
will remove the lock from all github.com remotes.

CLI Example:

salt-run fileserver.clear_lock
salt-run fileserver.clear_lock backend=git,hg
salt-run fileserver.clear_lock backend=git remote=github
salt-run fileserver.clear_lock remote=bitbucket

	
salt.runners.fileserver.dir_list(saltenv='base', backend=None)

	Return a list of directories in the given environment

	saltenvbase
	The salt fileserver environment to be listed

	backend
	Narrow fileserver backends to a subset of the enabled ones. If all
passed backends start with a minus sign (-), then these backends
will be excluded from the enabled backends. However, if there is a mix
of backends with and without a minus sign (ex:
backend=-roots,git) then the ones starting with a minus sign will
be disregarded.

New in version 2015.5.0.

CLI Example:

salt-run fileserver.dir_list
salt-run fileserver.dir_list saltenv=prod
salt-run fileserver.dir_list saltenv=dev backend=git
salt-run fileserver.dir_list base hg,roots
salt-run fileserver.dir_list -git

	
salt.runners.fileserver.empty_dir_list(saltenv='base', backend=None)

	
New in version 2015.5.0.

Return a list of empty directories in the given environment

	saltenvbase
	The salt fileserver environment to be listed

	backend
	Narrow fileserver backends to a subset of the enabled ones. If all
passed backends start with a minus sign (-), then these backends
will be excluded from the enabled backends. However, if there is a mix
of backends with and without a minus sign (ex:
backend=-roots,git) then the ones starting with a minus sign will
be disregarded.

Note

Some backends (such as git and
hg) do not support empty directories.
So, passing backend=git or backend=hg will result in an
empty list being returned.

CLI Example:

salt-run fileserver.empty_dir_list
salt-run fileserver.empty_dir_list saltenv=prod
salt-run fileserver.empty_dir_list backend=roots

	
salt.runners.fileserver.envs(backend=None, sources=False)

	Return the available fileserver environments. If no backend is provided,
then the environments for all configured backends will be returned.

	backend
	Narrow fileserver backends to a subset of the enabled ones.

Changed in version 2015.5.0: If all passed backends start with a minus sign (-), then these
backends will be excluded from the enabled backends. However, if
there is a mix of backends with and without a minus sign (ex:
backend=-roots,git) then the ones starting with a minus
sign will be disregarded.

Additionally, fileserver backends can now be passed as a
comma-separated list. In earlier versions, they needed to be passed
as a python list (ex: backend="['roots', 'git']")

CLI Example:

salt-run fileserver.envs
salt-run fileserver.envs backend=roots,git
salt-run fileserver.envs git

	
salt.runners.fileserver.file_list(saltenv='base', backend=None)

	Return a list of files from the salt fileserver

	saltenvbase
	The salt fileserver environment to be listed

	backend
	Narrow fileserver backends to a subset of the enabled ones. If all
passed backends start with a minus sign (-), then these backends
will be excluded from the enabled backends. However, if there is a mix
of backends with and without a minus sign (ex:
backend=-roots,git) then the ones starting with a minus sign will
be disregarded.

New in version 2015.5.0.

CLI Examples:

salt-run fileserver.file_list
salt-run fileserver.file_list saltenv=prod
salt-run fileserver.file_list saltenv=dev backend=git
salt-run fileserver.file_list base hg,roots
salt-run fileserver.file_list -git

	
salt.runners.fileserver.lock(backend=None, remote=None)

	
New in version 2015.5.0.

Set a fileserver update lock for VCS fileserver backends (git, hg, svn).

Note

This will only operate on enabled backends (those configured in
fileserver_backend).

	backend
	Only set the update lock for the specified backend(s).

	remote
	If not None, then any remotes which contain the passed string will have
their lock cleared. For example, a remote value of *github.com*
will remove the lock from all github.com remotes.

CLI Example:

salt-run fileserver.lock
salt-run fileserver.lock backend=git,hg
salt-run fileserver.lock backend=git remote='*github.com*'
salt-run fileserver.lock remote=bitbucket

	
salt.runners.fileserver.symlink_list(saltenv='base', backend=None)

	Return a list of symlinked files and dirs

	saltenvbase
	The salt fileserver environment to be listed

	backend
	Narrow fileserver backends to a subset of the enabled ones. If all
passed backends start with a minus sign (-), then these backends
will be excluded from the enabled backends. However, if there is a mix
of backends with and without a minus sign (ex:
backend=-roots,git) then the ones starting with a minus sign will
be disregarded.

New in version 2015.5.0.

CLI Example:

salt-run fileserver.symlink_list
salt-run fileserver.symlink_list saltenv=prod
salt-run fileserver.symlink_list saltenv=dev backend=git
salt-run fileserver.symlink_list base hg,roots
salt-run fileserver.symlink_list -git

	
salt.runners.fileserver.update(backend=None, **kwargs)

	Update the fileserver cache. If no backend is provided, then the cache for
all configured backends will be updated.

	backend
	Narrow fileserver backends to a subset of the enabled ones.

Changed in version 2015.5.0: If all passed backends start with a minus sign (-), then these
backends will be excluded from the enabled backends. However, if
there is a mix of backends with and without a minus sign (ex:
backend=-roots,git) then the ones starting with a minus
sign will be disregarded.

Additionally, fileserver backends can now be passed as a
comma-separated list. In earlier versions, they needed to be passed
as a python list (ex: backend="['roots', 'git']")

	kwargs
	Pass additional arguments to backend. See example below

CLI Example:

salt-run fileserver.update
salt-run fileserver.update backend=roots,git
salt-run fileserver.update backend=git remotes=myrepo,yourrepo

salt.runners.git_pillar

Runner module to directly manage the git external pillar

	
salt.runners.git_pillar.update(branch=None, repo=None)

	
New in version 2014.1.0.

Changed in version 2015.8.4: This runner function now supports the git_pillar
configuration schema introduced in
2015.8.0. Additionally, the branch and repo can now be omitted to
update all git_pillar remotes. The return data has also changed to
a dictionary. The values will be True only if new commits were
fetched, and False if there were errors or no new commits were
fetched.

Changed in version 2018.3.0: The return for a given git_pillar remote will now be None when no
changes were fetched. False now is reserved only for instances in
which there were errors.

Changed in version 3001: The repo parameter also matches against the repo name.

Fetch one or all configured git_pillar remotes.

Note

This will not fast-forward the git_pillar cachedir on the master. All
it does is perform a git fetch. If this runner is executed with
-l debug, you may see a log message that says that the repo is
up-to-date. Keep in mind that Salt automatically fetches git_pillar
repos roughly every 60 seconds (or whatever
loop_interval is set to). So, it is possible that the
repo was fetched automatically in the time between when changes were
pushed to the repo, and when this runner was executed. When in doubt,
simply refresh pillar data using saltutil.refresh_pillar and then use
pillar.item to check if the
pillar data has changed as expected.

CLI Example:

Update specific branch and repo
salt-run git_pillar.update branch='branch' repo='https://foo.com/bar.git'
Update specific repo, by name
salt-run git_pillar.update repo=myrepo
Update all repos
salt-run git_pillar.update
Run with debug logging
salt-run git_pillar.update -l debug

salt.runners.http

Module for making various web calls. Primarily designed for webhooks and the
like, but also useful for basic http testing.

New in version 2015.5.0.

	
salt.runners.http.query(url, output=True, **kwargs)

	Query a resource, and decode the return data

Passes through all the parameters described in the
utils.http.query function:

CLI Example:

salt-run http.query http://somelink.com/
salt-run http.query http://somelink.com/ method=POST params='key1=val1&key2=val2'
salt-run http.query http://somelink.com/ method=POST data='<xml>somecontent</xml>'

	
salt.runners.http.update_ca_bundle(target=None, source=None, merge_files=None)

	Update the local CA bundle file from a URL

New in version 2015.5.0.

CLI Example:

salt-run http.update_ca_bundle
salt-run http.update_ca_bundle target=/path/to/cacerts.pem
salt-run http.update_ca_bundle source=https://example.com/cacerts.pem

If the target is not specified, it will be pulled from the ca_cert
configuration variable available to the master. If it cannot be found there,
it will be placed at <<FILE_ROOTS>>/cacerts.pem.

If the source is not specified, it will be pulled from the
ca_cert_url configuration variable available to the master. If it cannot
be found, it will be downloaded from the cURL website, using an http (not
https) URL. USING THE DEFAULT URL SHOULD BE AVOIDED!

merge_files may also be specified, which includes a string or list of
strings representing a file or files to be appended to the end of the CA
bundle, once it is downloaded.

CLI Example:

salt-run http.update_ca_bundle merge_files=/path/to/mycert.pem

salt.runners.jobs

A convenience system to manage jobs, both active and already run

	
salt.runners.jobs.active(display_progress=False)

	Return a report on all actively running jobs from a job id centric
perspective

CLI Example:

salt-run jobs.active

	
salt.runners.jobs.exit_success(jid, ext_source=None)

	Check if a job has been executed and exit successfully

	jid
	The jid to look up.

	ext_source
	The external job cache to use. Default: None.

CLI Example:

salt-run jobs.exit_success 20160520145827701627

	
salt.runners.jobs.last_run(ext_source=None, outputter=None, metadata=None, function=None, target=None, display_progress=False)

	
New in version 2015.8.0.

List all detectable jobs and associated functions

CLI Example:

salt-run jobs.last_run
salt-run jobs.last_run target=nodename
salt-run jobs.last_run function='cmd.run'
salt-run jobs.last_run metadata="{'foo': 'bar'}"

	
salt.runners.jobs.list_job(jid, ext_source=None, display_progress=False)

	List a specific job given by its jid

	ext_source
	If provided, specifies which external job cache to use.

	display_progressFalse
	If True, fire progress events.

New in version 2015.8.8.

CLI Example:

salt-run jobs.list_job 20130916125524463507
salt-run jobs.list_job 20130916125524463507 --out=pprint

	
salt.runners.jobs.list_jobs(ext_source=None, outputter=None, search_metadata=None, search_function=None, search_target=None, start_time=None, end_time=None, display_progress=False)

	List all detectable jobs and associated functions

	ext_source
	If provided, specifies which external job cache to use.

FILTER OPTIONS

Note

If more than one of the below options are used, only jobs which match
all of the filters will be returned.

	search_metadata
	Specify a dictionary to match to the job's metadata. If any of the
key-value pairs in this dictionary match, the job will be returned.
Example:

salt-run jobs.list_jobs search_metadata='{"foo": "bar", "baz": "qux"}'

	search_function
	Can be passed as a string or a list. Returns jobs which match the
specified function. Globbing is allowed. Example:

salt-run jobs.list_jobs search_function='test.*'
salt-run jobs.list_jobs search_function='["test.*", "pkg.install"]'

Changed in version 2015.8.8: Multiple targets can now also be passed as a comma-separated list.
For example:

salt-run jobs.list_jobs search_function='test.*,pkg.install'

	search_target
	Can be passed as a string or a list. Returns jobs which match the
specified minion name. Globbing is allowed. Example:

salt-run jobs.list_jobs search_target='*.mydomain.tld'
salt-run jobs.list_jobs search_target='["db*", "myminion"]'

Changed in version 2015.8.8: Multiple targets can now also be passed as a comma-separated list.
For example:

salt-run jobs.list_jobs search_target='db*,myminion'

	start_time
	Accepts any timestamp supported by the dateutil [https://pypi.python.org/pypi/python-dateutil] Python module (if this
module is not installed, this argument will be ignored). Returns jobs
which started after this timestamp.

	end_time
	Accepts any timestamp supported by the dateutil [https://pypi.python.org/pypi/python-dateutil] Python module (if this
module is not installed, this argument will be ignored). Returns jobs
which started before this timestamp.

CLI Example:

salt-run jobs.list_jobs
salt-run jobs.list_jobs search_function='test.*' search_target='localhost' search_metadata='{"bar": "foo"}'
salt-run jobs.list_jobs start_time='2015, Mar 16 19:00' end_time='2015, Mar 18 22:00'

	
salt.runners.jobs.list_jobs_filter(count, filter_find_job=True, ext_source=None, outputter=None, display_progress=False)

	List all detectable jobs and associated functions

	ext_source
	The external job cache to use. Default: None.

CLI Example:

salt-run jobs.list_jobs_filter 50
salt-run jobs.list_jobs_filter 100 filter_find_job=False

	
salt.runners.jobs.lookup_jid(jid, ext_source=None, returned=True, missing=False, display_progress=False)

	Return the printout from a previously executed job

	jid
	The jid to look up.

	ext_source
	The external job cache to use. Default: None.

	returnedTrue
	If True, include the minions that did return from the command.

New in version 2015.8.0.

	missingFalse
	If True, include the minions that did not return from the
command.

	display_progressFalse
	If True, fire progress events.

New in version 2015.5.0.

CLI Example:

salt-run jobs.lookup_jid 20130916125524463507
salt-run jobs.lookup_jid 20130916125524463507 --out=highstate

	
salt.runners.jobs.master()

	Return the actively executing runners for the master

CLI Example:

salt-run jobs.master

	
salt.runners.jobs.print_job(jid, ext_source=None)

	Print a specific job's detail given by its jid, including the return data.

CLI Example:

salt-run jobs.print_job 20130916125524463507

salt.runners.launchd

Manage launchd plist files

	
salt.runners.launchd.write_launchd_plist(program)

	Write a launchd plist for managing salt-master or salt-minion

CLI Example:

salt-run launchd.write_launchd_plist salt-master

salt.runners.lxc

Control Linux Containers via Salt

	depends:

	lxc execution module

	
salt.runners.lxc.cloud_init(names, host=None, quiet=False, **kwargs)

	Wrapper for using lxc.init in saltcloud compatibility mode

	names
	Name of the containers, supports a single name or a comma delimited
list of names.

	host
	Minion to start the container on. Required.

	path
	path to the container parent
default: /var/lib/lxc (system default)

New in version 2015.8.0.

	saltcloud_mode
	init the container with the saltcloud opts format instead

	
salt.runners.lxc.find_guest(name, quiet=False, path=None)

	Returns the host for a container.

	path
	path to the container parent
default: /var/lib/lxc (system default)

New in version 2015.8.0.

salt-run lxc.find_guest name

	
salt.runners.lxc.find_guests(names, path=None)

	Return a dict of hosts and named guests

	path
	path to the container parent
default: /var/lib/lxc (system default)

New in version 2015.8.0.

	
salt.runners.lxc.freeze(name, quiet=False, path=None)

	Freeze the named container

	path
	path to the container parent
default: /var/lib/lxc (system default)

New in version 2015.8.0.

salt-run lxc.freeze name

	
salt.runners.lxc.info(name, quiet=False, path=None)

	Returns information about a container.

	path
	path to the container parent
default: /var/lib/lxc (system default)

New in version 2015.8.0.

salt-run lxc.info name

	
salt.runners.lxc.init(names, host=None, saltcloud_mode=False, quiet=False, **kwargs)

	Initialize a new container

salt-run lxc.init name host=minion_id [cpuset=cgroups_cpuset] \
 [cpushare=cgroups_cpushare] [memory=cgroups_memory] \
 [template=lxc_template_name] [clone=original name] \
 [profile=lxc_profile] [network_proflile=network_profile] \
 [nic=network_profile] [nic_opts=nic_opts] \
 [start=(true|false)] [seed=(true|false)] \
 [install=(true|false)] [config=minion_config] \
 [snapshot=(true|false)]

	names
	Name of the containers, supports a single name or a comma delimited
list of names.

	host
	Minion on which to initialize the container (required)

	path
	path to the container parent
default: /var/lib/lxc (system default)

New in version 2015.8.0.

	saltcloud_mode
	init the container with the saltcloud opts format instead
See lxc.init_interface module documentation

	cpuset
	cgroups cpuset.

	cpushare
	cgroups cpu shares.

	memory
	cgroups memory limit, in MB

Changed in version 2015.5.0: If no value is passed, no limit is set. In earlier Salt versions,
not passing this value causes a 1024MB memory limit to be set, and
it was necessary to pass memory=0 to set no limit.

	template
	Name of LXC template on which to base this container

	clone
	Clone this container from an existing container

	profile
	A LXC profile (defined in config or pillar).

	network_profile
	Network profile to use for the container

New in version 2015.5.2.

	nic
	
Deprecated since version 2015.5.0: Use network_profile instead

	nic_opts
	Extra options for network interfaces. E.g.:

{"eth0": {"mac": "aa:bb:cc:dd:ee:ff", "ipv4": "10.1.1.1", "ipv6": "2001:db8::ff00:42:8329"}}

	start
	Start the newly created container.

	seed
	Seed the container with the minion config and autosign its key.
Default: true

	install
	If salt-minion is not already installed, install it. Default: true

	config
	Optional config parameters. By default, the id is set to
the name of the container.

	
salt.runners.lxc.list_(host=None, quiet=False, path=None)

	List defined containers (running, stopped, and frozen) for the named
(or all) host(s).

	path
	path to the container parent
default: /var/lib/lxc (system default)

New in version 2015.8.0.

salt-run lxc.list [host=minion_id]

	
salt.runners.lxc.purge(name, delete_key=True, quiet=False, path=None)

	Purge the named container and delete its minion key if present.
WARNING: Destroys all data associated with the container.

	path
	path to the container parent
default: /var/lib/lxc (system default)

New in version 2015.8.0.

salt-run lxc.purge name

	
salt.runners.lxc.start(name, quiet=False, path=None)

	Start the named container.

	path
	path to the container parent
default: /var/lib/lxc (system default)

New in version 2015.8.0.

salt-run lxc.start name

	
salt.runners.lxc.stop(name, quiet=False, path=None)

	Stop the named container.

	path
	path to the container parent
default: /var/lib/lxc (system default)

New in version 2015.8.0.

salt-run lxc.stop name

	
salt.runners.lxc.unfreeze(name, quiet=False, path=None)

	Unfreeze the named container

	path
	path to the container parent
default: /var/lib/lxc (system default)

New in version 2015.8.0.

salt-run lxc.unfreeze name

salt.runners.manage

General management functions for salt, tools like seeing what hosts are up
and what hosts are down

	
salt.runners.manage.alived(subset=None, show_ip=False)

	
New in version 2015.8.0.

Changed in version 2019.2.0.

Print a list of all minions that are up according to Salt's presence
detection (no commands will be sent to minions)

	subsetNone
	Pass in a list of minion ids.

	show_ipFalse
	Also show the IP address each minion is connecting from.

CLI Example:

salt-run manage.alived

	
salt.runners.manage.allowed(subset=None, show_ip=False)

	
New in version 2015.8.0.

Changed in version 2019.2.0.

Print a list of all minions that are up according to Salt's presence
detection (no commands will be sent to minions)

	subsetNone
	Pass in a list of minion ids.

	show_ipFalse
	Also show the IP address each minion is connecting from.

CLI Example:

salt-run manage.allowed

	
salt.runners.manage.bootstrap(version='develop', script='https://bootstrap.saltproject.io', hosts='', script_args='', roster='flat', ssh_user=None, ssh_password=None, ssh_priv_key=None, tmp_dir='/tmp/.bootstrap', http_backend='tornado')

	Bootstrap minions with salt-bootstrap

	versiondevelop
	Git tag of version to install

	scripthttps://bootstrap.saltproject.io/
	URL containing the script to execute

	hosts
	Comma-separated hosts [example: hosts='host1.local,host2.local']. These
hosts need to exist in the specified roster.

	script_args
	Any additional arguments that you want to pass to the script.

New in version 2016.11.0.

	rosterflat
	The roster to use for Salt SSH. More information about roster files can
be found in Salt's Roster Documentation.

A full list of roster types, see the builtin roster modules
documentation.

New in version 2016.11.0.

	ssh_user
	If user isn't found in the roster, a default SSH user can be set here.
Keep in mind that ssh_user will not override the roster user value if
it is already defined.

New in version 2016.11.0.

	ssh_password
	If passwd isn't found in the roster, a default SSH password can be set
here. Keep in mind that ssh_password will not override the roster passwd
value if it is already defined.

New in version 2016.11.0.

	ssh_privkey
	If priv isn't found in the roster, a default SSH private key can be set
here. Keep in mind that ssh_password will not override the roster passwd
value if it is already defined.

New in version 2016.11.0.

	tmp_dir/tmp/.bootstrap
	The temporary directory to download the bootstrap script in. This
directory will have -<uuid4> appended to it. For example:
/tmp/.bootstrap-a19a728e-d40a-4801-aba9-d00655c143a7/

New in version 2016.11.0.

	http_backendtornado
	The backend library to use to download the script. If you need to use
a file:/// URL, then you should set this to urllib2.

New in version 2016.11.0.

CLI Example:

salt-run manage.bootstrap hosts='host1,host2'
salt-run manage.bootstrap hosts='host1,host2' version='v3004.2'
salt-run manage.bootstrap hosts='host1,host2' version='v3004.2' script='https://bootstrap.saltproject.io/develop'

	
salt.runners.manage.bootstrap_psexec(hosts='', master=None, version=None, arch='win32', installer_url=None, username=None, password=None)

	Bootstrap Windows minions via PsExec.

	hosts
	Comma separated list of hosts to deploy the Windows Salt minion.

	master
	Address of the Salt master passed as an argument to the installer.

	version
	Point release of installer to download. Defaults to the most recent.

	arch
	Architecture of installer to download. Defaults to win32.

	installer_url
	URL of minion installer executable. Defaults to the latest version from
https://repo.saltproject.io/windows/

	username
	Optional user name for login on remote computer.

	password
	Password for optional username. If omitted, PsExec will prompt for one
to be entered for each host.

CLI Example:

salt-run manage.bootstrap_psexec hosts='host1,host2'
salt-run manage.bootstrap_psexec hosts='host1,host2' version='0.17' username='DOMAIN\Administrator'
salt-run manage.bootstrap_psexec hosts='host1,host2' installer_url='http://exampledomain/salt-installer.exe'

	
salt.runners.manage.down(removekeys=False, tgt='*', tgt_type='glob', timeout=None, gather_job_timeout=None)

	
Changed in version 2017.7.0: The expr_form argument has been renamed to tgt_type, earlier
releases must use expr_form.

Print a list of all the down or unresponsive salt minions
Optionally remove keys of down minions

CLI Example:

salt-run manage.down
salt-run manage.down removekeys=True
salt-run manage.down tgt="webservers" tgt_type="nodegroup"

	
salt.runners.manage.joined(subset=None, show_ip=False)

	
New in version 2015.8.0.

Changed in version 2019.2.0.

Print a list of all minions that are up according to Salt's presence
detection (no commands will be sent to minions)

	subsetNone
	Pass in a list of minion ids.

	show_ipFalse
	Also show the IP address each minion is connecting from.

CLI Example:

salt-run manage.joined

	
salt.runners.manage.key_regen()

	This routine is used to regenerate all keys in an environment. This is
invasive! ALL KEYS IN THE SALT ENVIRONMENT WILL BE REGENERATED!!

The key_regen routine sends a command out to minions to revoke the master
key and remove all minion keys, it then removes all keys from the master
and prompts the user to restart the master. The minions will all reconnect
and keys will be placed in pending.

After the master is restarted and minion keys are in the pending directory
execute a salt-key -A command to accept the regenerated minion keys.

The master must be restarted within 60 seconds of running this command or
the minions will think there is something wrong with the keys and abort.

Only Execute this runner after upgrading minions and master to 0.15.1 or
higher!

CLI Example:

salt-run manage.key_regen

	
salt.runners.manage.list_not_state(subset=None, show_ip=False)

	
New in version 2015.8.0.

Changed in version 2019.2.0.

Print a list of all minions that are NOT up according to Salt's presence
detection (no commands will be sent to minions)

	subsetNone
	Pass in a list of minion ids.

	show_ipFalse
	Also show the IP address each minion is connecting from.

CLI Example:

salt-run manage.list_not_state

	
salt.runners.manage.list_state(subset=None, show_ip=False)

	
New in version 2015.8.0.

Changed in version 2019.2.0.

Print a list of all minions that are up according to Salt's presence
detection (no commands will be sent to minions)

	subsetNone
	Pass in a list of minion ids.

	show_ipFalse
	Also show the IP address each minion is connecting from.

CLI Example:

salt-run manage.list_state

	
salt.runners.manage.not_alived(subset=None, show_ip=False)

	
New in version 2015.8.0.

Changed in version 2019.2.0.

Print a list of all minions that are NOT up according to Salt's presence
detection (no commands will be sent)

	subsetNone
	Pass in a list of minion ids.

	show_ipFalse
	Also show the IP address each minion is connecting from.

CLI Example:

salt-run manage.not_alived

	
salt.runners.manage.not_allowed(subset=None, show_ip=False)

	
New in version 2015.8.0.

Changed in version 2019.2.0.

Print a list of all minions that are NOT up according to Salt's presence
detection (no commands will be sent)

	subsetNone
	Pass in a list of minion ids.

	show_ipFalse
	Also show the IP address each minion is connecting from.

CLI Example:

salt-run manage.not_allowed

	
salt.runners.manage.not_joined(subset=None, show_ip=False)

	
New in version 2015.8.0.

Changed in version 2019.2.0.

Print a list of all minions that are NOT up according to Salt's presence
detection (no commands will be sent)

	subsetNone
	Pass in a list of minion ids.

	show_ipFalse
	Also show the IP address each minion is connecting from.

CLI Example:

salt-run manage.not_joined

	
salt.runners.manage.not_present(subset=None, show_ip=False)

	
New in version 2015.5.0.

Changed in version 2019.2.0.

Print a list of all minions that are NOT up according to Salt's presence
detection (no commands will be sent)

	subsetNone
	Pass in a list of minion ids.

	show_ipFalse
	Also show the IP address each minion is connecting from.

CLI Example:

salt-run manage.not_present

	
salt.runners.manage.not_reaped(subset=None, show_ip=False)

	
New in version 2015.8.0.

Changed in version 2019.2.0.

Print a list of all minions that are NOT up according to Salt's presence
detection (no commands will be sent)

	subsetNone
	Pass in a list of minion ids.

	show_ipFalse
	Also show the IP address each minion is connecting from.

CLI Example:

salt-run manage.not_reaped

	
salt.runners.manage.present(subset=None, show_ip=False)

	
Changed in version 2019.2.0.

Print a list of all minions that are up according to Salt's presence
detection (no commands will be sent to minions)

	subsetNone
	Pass in a list of minion ids.

	show_ipFalse
	Also show the IP address each minion is connecting from.

CLI Example:

salt-run manage.present

	
salt.runners.manage.reaped(subset=None, show_ip=False)

	
New in version 2015.8.0.

Changed in version 2019.2.0.

Print a list of all minions that are up according to Salt's presence
detection (no commands will be sent to minions)

	subsetNone
	Pass in a list of minion ids.

	show_ipFalse
	Also show the IP address each minion is connecting from.

CLI Example:

salt-run manage.reaped

	
salt.runners.manage.safe_accept(target, tgt_type='glob')

	
Changed in version 2017.7.0: The expr_form argument has been renamed to tgt_type, earlier
releases must use expr_form.

Accept a minion's public key after checking the fingerprint over salt-ssh

CLI Example:

salt-run manage.safe_accept my_minion
salt-run manage.safe_accept minion1,minion2 tgt_type=list

	
salt.runners.manage.status(output=True, tgt='*', tgt_type='glob', timeout=None, gather_job_timeout=None)

	
Changed in version 2017.7.0: The expr_form argument has been renamed to tgt_type, earlier
releases must use expr_form.

Print the status of all known salt minions

CLI Example:

salt-run manage.status
salt-run manage.status tgt="webservers" tgt_type="nodegroup"
salt-run manage.status timeout=5 gather_job_timeout=10

	
salt.runners.manage.up(tgt='*', tgt_type='glob', timeout=None, gather_job_timeout=None)

	
Changed in version 2017.7.0: The expr_form argument has been renamed to tgt_type, earlier
releases must use expr_form.

Print a list of all of the minions that are up

CLI Example:

salt-run manage.up
salt-run manage.up tgt="webservers" tgt_type="nodegroup"
salt-run manage.up timeout=5 gather_job_timeout=10

	
salt.runners.manage.versions()

	Check the version of active minions

CLI Example:

salt-run manage.versions

salt.runners.match

Run matchers from the master context.

New in version 3007.0.

	
salt.runners.match.compound_matches(expr, minion_id)

	Check whether a minion is matched by a given compound match expression.
On success, this function will return the minion ID, otherwise False.

Note

Pillar values will be matched literally only since this function is intended
for remote calling. This also applies to node groups defined on the master.
Custom matchers are not respected.

Note

If a module calls this runner from a minion, you will need to explicitly
allow the remote call. See peer_run.

CLI Example:

salt-run match.compound_matches 'I@foo:bar and G@os:Deb* and not db*' myminion

	expr
	The Compound Matcher expression to validate against.

	minion_id
	The minion ID of the minion to check the match for.

salt.runners.mattermost

Note for 2017.7 releases!

Due to the salt.runners.config [https://github.com/saltstack/salt/blob/master/salt/runners/config.py] module not being available in this release series, importing the salt.runners.config [https://github.com/saltstack/salt/blob/master/salt/runners/config.py] module from the master branch is required to make this module work.

Ref: Mattermost runner failing to retrieve config values due to unavailable config runner #43479 [https://github.com/saltstack/salt/issues/43479]

Module for sending messages to Mattermost

New in version 2017.7.0.

	configuration:

	This module can be used by either passing an api_url and hook
directly or by specifying both in a configuration profile in the salt
master/minion config. For example:

mattermost:
 hook: peWcBiMOS9HrZG15peWcBiMOS9HrZG15
 api_url: https://example.com

	
salt.runners.mattermost.post_event(event, channel=None, username=None, api_url=None, hook=None)

	Send an event to a Mattermost channel.
:param channel: The channel name, either will work.
:param username: The username of the poster.
:param event: The event to send to the Mattermost channel.
:param api_url: The Mattermost api url, if not specified in the configuration.
:param hook: The Mattermost hook, if not specified in the configuration.
:return: Boolean if message was sent successfully.

	
salt.runners.mattermost.post_message(message, channel=None, username=None, api_url=None, hook=None)

	Send a message to a Mattermost channel.
:param channel: The channel name, either will work.
:param username: The username of the poster.
:param message: The message to send to the Mattermost channel.
:param api_url: The Mattermost api url, if not specified in the configuration.
:param hook: The Mattermost hook, if not specified in the configuration.
:return: Boolean if message was sent successfully.

CLI Example:

salt-run mattermost.post_message message='Build is done'

salt.runners.mine

A runner to access data from the salt mine

	
salt.runners.mine.get(tgt, fun, tgt_type='glob')

	Gathers the data from the specified minions' mine, pass in the target,
function to look up and the target type

CLI Example:

salt-run mine.get '*' network.interfaces

	
salt.runners.mine.update(tgt, tgt_type='glob', clear=False, mine_functions=None)

	
New in version 2017.7.0.

Update the mine data on a certain group of minions.

	tgt
	Which minions to target for the execution.

	tgt_type: glob
	The type of tgt.

	clear: False
	Boolean flag specifying whether updating will clear the existing
mines, or will update. Default: False (update).

	mine_functions
	Update the mine data on certain functions only.
This feature can be used when updating the mine for functions
that require refresh at different intervals than the rest of
the functions specified under mine_functions in the
minion/master config or pillar.

CLI Example:

salt-run mine.update '*'
salt-run mine.update 'juniper-edges' tgt_type='nodegroup'

salt.runners.nacl

This module helps include encrypted passwords in pillars, grains and salt state files.

	depends:

	PyNaCl, https://github.com/pyca/pynacl

This is often useful if you wish to store your pillars in source control or
share your pillar data with others that you trust. I don't advise making your pillars public
regardless if they are encrypted or not.

	configuration:

	The following configuration defaults can be
define (pillar or config files) Avoid storing private keys in pillars! Ensure master does not have pillar_opts=True:

cat /etc/salt/master.d/nacl.conf
nacl.config:
 # NOTE: `key` and `key_file` have been renamed to `sk`, `sk_file`
 # also `box_type` default changed from secretbox to sealedbox.
 box_type: sealedbox (default)
 sk_file: /etc/salt/pki/master/nacl (default)
 pk_file: /etc/salt/pki/master/nacl.pub (default)
 sk: None
 pk: None

Usage can override the config defaults:

salt-run nacl.enc sk_file=/etc/salt/pki/master/nacl pk_file=/etc/salt/pki/master/nacl.pub

The nacl lib uses 32byte keys, these keys are base64 encoded to make your life more simple.
To generate your sk_file and pk_file use:

salt-run nacl.keygen sk_file=/etc/salt/pki/master/nacl
or if you want to work without files.
salt-run nacl.keygen
local:

 pk:
 /kfGX7PbWeu099702PBbKWLpG/9p06IQRswkdWHCDk0=
 sk:
 SVWut5SqNpuPeNzb1b9y6b2eXg2PLIog43GBzp48Sow=

Now with your keypair, you can encrypt data:

You have two option, sealedbox or secretbox.

SecretBox is data encrypted using private key pk. Sealedbox is encrypted using public key pk.

Recommend using Sealedbox because the one way encryption permits developers to encrypt data for source control but not decrypt.
Sealedbox only has one key that is for both encryption and decryption.

salt-run nacl.enc asecretpass pk=/kfGX7PbWeu099702PBbKWLpG/9p06IQRswkdWHCDk0=
tqXzeIJnTAM9Xf0mdLcpEdklMbfBGPj2oTKmlgrm3S1DTVVHNnh9h8mU1GKllGq/+cYsk6m5WhGdk58=

To decrypt the data:

salt-run nacl.dec data='tqXzeIJnTAM9Xf0mdLcpEdklMbfBGPj2oTKmlgrm3S1DTVVHNnh9h8mU1GKllGq/+cYsk6m5WhGdk58=' sk='SVWut5SqNpuPeNzb1b9y6b2eXg2PLIog43GBzp48Sow='

When the keys are defined in the master config you can use them from the nacl runner
without extra parameters:

cat /etc/salt/master.d/nacl.conf
nacl.config:
 sk_file: /etc/salt/pki/master/nacl
 pk: 'cTIqXwnUiD1ulg4kXsbeCE7/NoeKEzd4nLeYcCFpd9k='

salt-run nacl.enc 'asecretpass'
salt-run nacl.dec data='tqXzeIJnTAM9Xf0mdLcpEdklMbfBGPj2oTKmlgrm3S1DTVVHNnh9h8mU1GKllGq/+cYsk6m5WhGdk58='

a salt developers minion could have pillar data that includes a nacl public key
nacl.config:
 pk: '/kfGX7PbWeu099702PBbKWLpG/9p06IQRswkdWHCDk0='

The developer can then use a less-secure system to encrypt data.

salt-run nacl.enc apassword

Pillar files can include protected data that the salt master decrypts:

pillarexample:
 user: root
 password1: {{salt.nacl.dec('DRB7Q6/X5gGSRCTpZyxS6hlbWj0llUA+uaVyvou3vJ4=')|json}}
 cert_key: {{salt.nacl.dec_file('/srv/salt/certs/example.com/key.nacl')|json}}
 cert_key2: {{salt.nacl.dec_file('salt:///certs/example.com/key.nacl')|json}}

Larger files like certificates can be encrypted with:

salt-run nacl.enc_file /tmp/cert.crt out=/tmp/cert.nacl

	
salt.runners.nacl.dec(data, **kwargs)

	Alias to {box_type}_decrypt

box_type: secretbox, sealedbox(default)

	
salt.runners.nacl.dec_file(name, out=None, **kwargs)

	This is a helper function to decrypt a file and return its contents.

You can provide an optional output file using out

name can be a local file or when not using salt-run can be a url like salt://, https:// etc.

CLI Examples:

salt-run nacl.dec_file name=/tmp/id_rsa.nacl
salt-run nacl.dec_file name=/tmp/id_rsa.nacl box_type=secretbox sk_file=/etc/salt/pki/master/nacl.pub

	
salt.runners.nacl.enc(data, **kwargs)

	Alias to {box_type}_encrypt

box_type: secretbox, sealedbox(default)

	
salt.runners.nacl.enc_file(name, out=None, **kwargs)

	This is a helper function to encrypt a file and return its contents.

You can provide an optional output file using out

name can be a local file or when not using salt-run can be a url like salt://, https:// etc.

CLI Examples:

salt-run nacl.enc_file name=/tmp/id_rsa
salt-run nacl.enc_file name=/tmp/id_rsa box_type=secretbox sk_file=/etc/salt/pki/master/nacl.pub

	
salt.runners.nacl.keygen(sk_file=None, pk_file=None, **kwargs)

	Use PyNaCL to generate a keypair.

If no sk_file is defined return a keypair.

If only the sk_file is defined pk_file will use the same name with a postfix .pub.

When the sk_file is already existing, but pk_file is not. The pk_file will be generated
using the sk_file.

CLI Examples:

salt-run nacl.keygen
salt-run nacl.keygen sk_file=/etc/salt/pki/master/nacl
salt-run nacl.keygen sk_file=/etc/salt/pki/master/nacl pk_file=/etc/salt/pki/master/nacl.pub
salt-run nacl.keygen

	
salt.runners.nacl.sealedbox_decrypt(data, **kwargs)

	Decrypt data using a secret key that was encrypted using a public key with nacl.sealedbox_encrypt.

CLI Examples:

salt-run nacl.sealedbox_decrypt pEXHQM6cuaF7A=
salt-run nacl.sealedbox_decrypt data='pEXHQM6cuaF7A=' sk_file=/etc/salt/pki/master/nacl
salt-run nacl.sealedbox_decrypt data='pEXHQM6cuaF7A=' sk='YmFkcGFzcwo='

	
salt.runners.nacl.sealedbox_encrypt(data, **kwargs)

	Encrypt data using a public key generated from nacl.keygen.
The encryptd data can be decrypted using nacl.sealedbox_decrypt only with the secret key.

CLI Examples:

salt-run nacl.sealedbox_encrypt datatoenc

	
salt.runners.nacl.secretbox_decrypt(data, **kwargs)

	Decrypt data that was encrypted using nacl.secretbox_encrypt using the secret key
that was generated from nacl.keygen.

CLI Examples:

salt-run nacl.secretbox_decrypt pEXHQM6cuaF7A=
salt-run nacl.secretbox_decrypt data='pEXHQM6cuaF7A=' sk_file=/etc/salt/pki/master/nacl
salt-run nacl.secretbox_decrypt data='pEXHQM6cuaF7A=' sk='YmFkcGFzcwo='

	
salt.runners.nacl.secretbox_encrypt(data, **kwargs)

	Encrypt data using a secret key generated from nacl.keygen.
The same secret key can be used to decrypt the data using nacl.secretbox_decrypt.

CLI Examples:

salt-run nacl.secretbox_encrypt datatoenc
salt-run nacl.secretbox_encrypt datatoenc sk_file=/etc/salt/pki/master/nacl
salt-run nacl.secretbox_encrypt datatoenc sk='YmFkcGFzcwo='

salt.runners.net

NET Finder

New in version 2017.7.0.

A runner to find network details easily and fast.
It's smart enough to know what you are looking for.

Configuration

	Minion (proxy) config

To have the complete features, one needs to add the following mine configuration in the minion (proxy) config file:

mine_functions:
 net.ipaddrs: []
 net.lldp: []
 net.mac: []
 net.arp: []
 net.interfaces: []

Which instructs Salt to cache the data returned by the NAPALM-functions.
While they are not mandatory, the less functions configured, the less details will be found by the runner.

How often the mines are refreshed, can be specified using:

mine_interval: <X minutes>

	Master config

By default the following options can be configured on the master.
They are not necessary, but available in case the user has different requirements.

	target: *
	From what minions will collect the mine data. Default: * (collect from all minions).

	expr_form: glob
	Minion matching expression form. Default: glob.

	ignore_interfaces
	A list of interfaces name to ignore. By default will consider all interfaces.

	display: True
	Display on the screen or return structured object? Default: True (return on the CLI).

	outputter: table
	Specify the outputter name when displaying on the CLI. Default: table.

Configuration example:

runners:
 net.find:
 target: 'edge*'
 expr_form: 'glob'
 ignore_interfaces:
 - lo0
 - em1
 - jsrv
 - fxp0
 outputter: yaml

	
salt.runners.net.find(addr, best=True, display=True)

	Search in all possible entities (Interfaces, MAC tables, ARP tables, LLDP neighbors),
using the following mine functions:

	net.mac

	net.arp

	net.lldp

	net.ipaddrs

	net.interfaces

This function has the advantage that it knows where to look, but the output might
become quite long as returns all possible matches.

Optional arguments:

	best: True
	Return only the best match with the interfaces IP networks
when the saerching pattern is a valid IP Address or Network.

	display: True
	Display on the screen or return structured object? Default: True (return on the CLI).

CLI Example:

$ sudo salt-run net.find 10.10.10.7

Output Example:

Details for all interfaces that include network 10.10.10.7/32 - only best match returned
__
| Device | Interface | Interface Description | UP | Enabled | Speed [Mbps] | MAC Address | IP Addresses |
__
| edge01.flw01 | irb | | True | True | -1 | 5C:5E:AB:AC:52:B4 | 10.10.10.1/22 |
__

ARP Entries for IP 10.10.10.7

| Device | Interface | MAC | IP | Age |

| edge01.flw01 | irb.349 [ae0.349] | 2C:60:0C:2A:4C:0A | 10.10.10.7 | 832.0 |

salt.runners.net.findarp(device=None, interface=None, mac=None, ip=None, display=True)

	Search for entries in the ARP tables using the following mine functions:

	net.arp

Optional arguments:

	device
	Return interface data from a certain device only.

	interface
	Return data selecting by interface name.

	mac
	Search using a specific MAC Address.

	ip
	Search using a specific IP Address.

	display: True
	Display on the screen or return structured object? Default: True, will return on the CLI.

CLI Example:

$ sudo salt-run net.findarp mac=8C:60:0F:78:EC:41

Output Example:

ARP Entries for MAC 8C:60:0F:78:EC:41
__
| Device | Interface | MAC | IP | Age |
__
| edge01.bjm01 | irb.171 [ae0.171] | 8C:60:0F:78:EC:41 | 172.172.17.19 | 956.0 |
__

	
salt.runners.net.findmac(device=None, mac=None, interface=None, vlan=None, display=True)

	Search in the MAC Address tables, using the following mine functions:

	net.mac

Optional arguments:

	device
	Return interface data from a certain device only.

	interface
	Return data selecting by interface name.

	mac
	Search using a specific MAC Address.

	vlan
	Search using a VLAN ID.

	display: True
	Display on the screen or return structured object? Default: True, will return on the CLI.

CLI Example:

$ sudo salt-run net.findmac mac=8C:60:0F:78:EC:41

Output Example:

MAC Address(es)

| Device | Interface | MAC | VLAN | Static | Active | Moves | Last move |

| edge01.bjm01 | ae0.171 | 8C:60:0F:78:EC:41 | 171 | False | True | 0 | 0.0 |

salt.runners.net.interfaces(device=None, interface=None, title=None, pattern=None, ipnet=None, best=True, display=True)

	Search for interfaces details in the following mine functions:

	net.interfaces

	net.ipaddrs

Optional arguments:

	device
	Return interface data from a certain device only.

	interface
	Return data selecting by interface name.

	pattern
	Return interfaces that contain a certain pattern in their description.

	ipnet
	Return interfaces whose IP networks associated include this IP network.

	best: True
	When ipnet is specified, this argument says if the runner should return only the best match
(the output will contain at most one row). Default: True (return only the best match).

	display: True
	Display on the screen or return structured object? Default: True (return on the CLI).

	title
	Display a custom title for the table.

CLI Example:

$ sudo salt-run net.interfaces interface=vt-0/0/10

Output Example:

Details for interface xe-0/0/0

| Device | Interface | Interface Description | UP | Enabled | Speed [Mbps] | MAC Address | IP Addresses |

| edge01.bjm01 | vt-0/0/10 | | True | True | 1000 | | |

| edge01.flw01 | vt-0/0/10 | | True | True | 1000 | | |

| edge01.pos01 | vt-0/0/10 | | True | True | 1000 | | |

| edge01.oua01 | vt-0/0/10 | | True | True | 1000 | | |

salt.runners.net.lldp(device=None, interface=None, title=None, pattern=None, chassis=None, display=True)

	Search in the LLDP neighbors, using the following mine functions:

	net.lldp

Optional arguments:

	device
	Return interface data from a certain device only.

	interface
	Return data selecting by interface name.

	pattern
	Return LLDP neighbors that have contain this pattern in one of the following fields:

	Remote Port ID

	Remote Port Description

	Remote System Name

	Remote System Description

	chassis
	Search using a specific Chassis ID.

	display: True
	Display on the screen or return structured object? Default: True (return on the CLI).

	display: True
	Display on the screen or return structured object? Default: True (return on the CLI).

	title
	Display a custom title for the table.

CLI Example:

$ sudo salt-run net.lldp pattern=Ethernet1/48

Output Example:

Pattern "Ethernet1/48" found in one of the following LLDP details

| Device | Interface | Parent Interface | Remote Chassis ID | Remote Port ID | Remote Port Description | Remote System Name | Remote System Description |

edge01.bjm01	xe-2/3/4	ae0	8C:60:4F:3B:52:19		Ethernet1/48	edge05.bjm01.dummy.net	Cisco NX-OS(tm) n6000, Software (n6000-uk9),
							Version 7.3(0)N7(5), RELEASE SOFTWARE Copyright
							(c) 2002-2012 by Cisco Systems, Inc. Compiled
							2/17/2016 22:00:00

edge01.flw01	xe-1/2/3	ae0	8C:60:4F:1A:B4:22		Ethernet1/48	edge05.flw01.dummy.net	Cisco NX-OS(tm) n6000, Software (n6000-uk9),
							Version 7.3(0)N7(5), RELEASE SOFTWARE Copyright
							(c) 2002-2012 by Cisco Systems, Inc. Compiled
							2/17/2016 22:00:00

edge01.oua01	xe-0/1/2	ae1	8C:60:4F:51:A4:22		Ethernet1/48	edge05.oua01.dummy.net	Cisco NX-OS(tm) n6000, Software (n6000-uk9),
							Version 7.3(0)N7(5), RELEASE SOFTWARE Copyright
							(c) 2002-2012 by Cisco Systems, Inc. Compiled
							2/17/2016 22:00:00

salt.runners.net.multi_find(*patterns, **kwargs)

	Execute multiple search tasks.
This function is based on the find function.
Depending on the search items, some information might overlap.

Optional arguments:

	best: True
	Return only the best match with the interfaces IP networks
when the saerching pattern is a valid IP Address or Network.

	display: True
	Display on the screen or return structured object? Default: True (return on the CLI).

CLI Example:

$ sudo salt-run net.multi_find Ethernet1/49 xe-0/1/2

Output Example:

Pattern "Ethernet1/49" found in one of the following LLDP details

 | Device | Interface | Parent Interface | Remote Chassis ID | Remote Port Description | Remote Port ID | Remote System Description | Remote System Name |

 | edge01.oua04 | xe-0/1/2 | ae1 | DE:AD:BE:EF:DE:AD | Ethernet1/49 | | Cisco NX-OS(tm) n6000, Software (n6000-uk9) | edge07.oua04.dummy.net |

Details for interface xe-0/1/2

 | Device | Interface | Interface Description | IP Addresses | Enabled | UP | MAC Address | Speed [Mbps] |

 | edge01.oua04 | xe-0/1/2 | ae1 sw01.oua04 | | True | True | BE:EF:DE:AD:BE:EF | 10000 |

LLDP Neighbors for interface xe-0/1/2

 | Device | Interface | Parent Interface | Remote Chassis ID | Remote Port Description | Remote Port ID | Remote System Description | Remote System Name |

 | edge01.oua04 | xe-0/1/2 | ae1 | DE:AD:BE:EF:DE:AD | Ethernet1/49 | | Cisco NX-OS(tm) n6000, Software (n6000-uk9) | edge07.oua04.dummy.net |

salt.runners.network

Network tools to run from the Master

	
salt.runners.network.wol(mac, bcast='255.255.255.255', destport=9)

	Send a "Magic Packet" to wake up a Minion

CLI Example:

salt-run network.wol 08-00-27-13-69-77
salt-run network.wol 080027136977 255.255.255.255 7
salt-run network.wol 08:00:27:13:69:77 255.255.255.255 7

	
salt.runners.network.wollist(maclist, bcast='255.255.255.255', destport=9)

	Send a "Magic Packet" to wake up a list of Minions.
This list must contain one MAC hardware address per line

CLI Example:

salt-run network.wollist '/path/to/maclist'
salt-run network.wollist '/path/to/maclist' 255.255.255.255 7
salt-run network.wollist '/path/to/maclist' 255.255.255.255 7

	
salt.runners.network.wolmatch(tgt, tgt_type='glob', bcast='255.255.255.255', destport=9)

	Send a "Magic Packet" to wake up Minions that are matched in the grains cache

CLI Example:

salt-run network.wolmatch minion_id
salt-run network.wolmatch 192.168.0.0/16 tgt_type='ipcidr' bcast=255.255.255.255 destport=7

salt.runners.pagerduty

Runner Module for Firing Events via PagerDuty

New in version 2014.1.0.

	configuration:

	This module can be used by specifying the name of a
configuration profile in the master config.

For example:

my-pagerduty-account:
 pagerduty.api_key: F3Rbyjbve43rfFWf2214
 pagerduty.subdomain: mysubdomain

	
salt.runners.pagerduty.create_event(service_key=None, description=None, details=None, incident_key=None, profile=None)

	Create an event in PagerDuty. Designed for use in states.

CLI Example:

salt-run pagerduty.create_event <service_key> <description> <details> profile=my-pagerduty-account

The following parameters are required:

	service_key
	This key can be found by using pagerduty.list_services.

	description
	This is a short description of the event.

	details
	This can be a more detailed description of the event.

	profile
	This refers to the configuration profile to use to connect to the
PagerDuty service.

	
salt.runners.pagerduty.list_escalation_policies(profile=None, api_key=None)

	This function is an alias of list_policies.

List escalation policies belonging to this account

CLI Example:

salt-run pagerduty.list_policies my-pagerduty-account
salt-run pagerduty.list_escalation_policies my-pagerduty-account

	
salt.runners.pagerduty.list_incidents(profile=None, api_key=None)

	List incidents belonging to this account

CLI Example:

salt-run pagerduty.list_incidents my-pagerduty-account

	
salt.runners.pagerduty.list_maintenance_windows(profile=None, api_key=None)

	This function is an alias of list_windows.

List maintenance windows belonging to this account

CLI Example:

salt-run pagerduty.list_windows my-pagerduty-account
salt-run pagerduty.list_maintenance_windows my-pagerduty-account

	
salt.runners.pagerduty.list_policies(profile=None, api_key=None)

	List escalation policies belonging to this account

CLI Example:

salt-run pagerduty.list_policies my-pagerduty-account
salt-run pagerduty.list_escalation_policies my-pagerduty-account

	
salt.runners.pagerduty.list_schedules(profile=None, api_key=None)

	List schedules belonging to this account

CLI Example:

salt-run pagerduty.list_schedules my-pagerduty-account

	
salt.runners.pagerduty.list_services(profile=None, api_key=None)

	List services belonging to this account

CLI Example:

salt-run pagerduty.list_services my-pagerduty-account

	
salt.runners.pagerduty.list_users(profile=None, api_key=None)

	List users belonging to this account

CLI Example:

salt-run pagerduty.list_users my-pagerduty-account

	
salt.runners.pagerduty.list_windows(profile=None, api_key=None)

	List maintenance windows belonging to this account

CLI Example:

salt-run pagerduty.list_windows my-pagerduty-account
salt-run pagerduty.list_maintenance_windows my-pagerduty-account

salt.runners.pillar

Functions to interact with the pillar compiler on the master

	
salt.runners.pillar.clear_pillar_cache(minion='*', **kwargs)

	Clears the cached values when using pillar_cache

New in version 3003.

CLI Example:

Clears the pillar cache for a specific minion:

salt-run pillar.clear_pillar_cache 'minion'

	
salt.runners.pillar.show_pillar(minion='*', **kwargs)

	Returns the compiled pillar either of a specific minion
or just the global available pillars. This function assumes
that no minion has the id *.
Function also accepts pillarenv as attribute in order to limit to a specific pillar branch of git

CLI Example:

shows minion specific pillar:

salt-run pillar.show_pillar 'www.example.com'

shows global pillar:

salt-run pillar.show_pillar

shows global pillar for 'dev' pillar environment:
(note that not specifying pillarenv will merge all pillar environments
using the master config option pillar_source_merging_strategy.)

salt-run pillar.show_pillar 'pillarenv=dev'

shows global pillar for 'dev' pillar environment and specific pillarenv = dev:

salt-run pillar.show_pillar 'saltenv=dev' 'pillarenv=dev'

API Example:

import salt.config
import salt.runner
opts = salt.config.master_config('/etc/salt/master')
runner = salt.runner.RunnerClient(opts)
pillar = runner.cmd('pillar.show_pillar', [])
print(pillar)

	
salt.runners.pillar.show_pillar_cache(minion='*', **kwargs)

	Shows the cached values in pillar_cache

New in version 3003.

CLI Example:

Shows the pillar cache for a specific minion:

salt-run pillar.show_pillar_cache 'minion'

	
salt.runners.pillar.show_top(minion=None, saltenv='base')

	Returns the compiled top data for pillar for a specific minion. If no
minion is specified, we use the first minion we find.

CLI Example:

salt-run pillar.show_top

salt.runners.pkg

Package helper functions using salt.modules.pkg

New in version 2015.8.0.

	
salt.runners.pkg.list_upgrades(jid, style='group', outputter='nested', ext_source=None)

	Show list of available pkg upgrades using a specified format style

CLI Example:

salt-run pkg.list_upgrades jid=20141120114114417719 style=group

salt.runners.queue

General management and processing of queues.

This runner facilitates interacting with various queue backends such as the
included sqlite3 queue or the planned AWS SQS and Redis queues

The queue functions such as insert, delete, and pop can be used for
typical management of the queue.

The process_queue function pops the requested number of items from the queue
and creates a Salt Event that can then be processed by a Reactor. The
process_queue function can be called manually, or can be configured to run on
a schedule with the Salt Scheduler or regular system cron. It is also possible
to use the peer system to allow a minion to call the runner.

This runner, as well as the Queues system, is not api stable at this time.

There are many things that could potentially be done with queues within Salt.
For the time being the focus will be on queueing infrastructure actions on
specific minions. The queues generally will be populated with minion IDs. When
the process_queue runner function is called events are created on the Salt
Event bus that indicate the queue and a list of one or more minion IDs. The
reactor is set up to match on event tags for a specific queue and then take
infrastructure actions on those minion IDs. These actions might be to delete
the minion's key from the master, use salt-cloud to destroy the vm, or some
other custom action.

Queued runners

Using the Salt Queues, references to the commandline arguments of other runners
can be saved to be processed later. The queue runners require a queue backend
that can store json data (default: pgjsonb).

Once the queue is setup, the runner_queue will need to be configured.

runner_queue:
 queue: runners
 backend: pgjsonb

Note

only the queue is required, this defaults to using pgjsonb

Once this is set, then the following can be added to the scheduler on the
master and it will run the specified amount of commands per time period.

schedule:
 runner queue:
 schedule:
 function: queue.process_runner
 minutes: 1
 kwargs:
 quantity: 2

The above configuration will pop 2 runner jobs off the runner queue, and then
run them. And it will do this every minute, unless there are any jobs that are
still running from the last time the process_runner task was executed.

	
salt.runners.queue.delete(queue, items, backend='sqlite')

	Delete an item or items from a queue

CLI Example:

salt-run queue.delete myqueue myitem
salt-run queue.delete myqueue myitem backend=sqlite
salt-run queue.delete myqueue "['item1', 'item2', 'item3']"

	
salt.runners.queue.insert(queue, items, backend='sqlite')

	Add an item or items to a queue

CLI Example:

salt-run queue.insert myqueue myitem
salt-run queue.insert myqueue "['item1', 'item2', 'item3']"
salt-run queue.insert myqueue myitem backend=sqlite
salt-run queue.insert myqueue "['item1', 'item2', 'item3']" backend=sqlite

	
salt.runners.queue.insert_runner(fun, args=None, kwargs=None, queue=None, backend=None)

	Insert a reference to a runner into the queue so that it can be run later.

	fun
	The runner function that is going to be run

	args
	list or comma-separated string of args to send to fun

	kwargs
	dictionary of keyword arguments to send to fun

	queue
	queue to insert the runner reference into

	backend
	backend that to use for the queue

CLI Example:

salt-run queue.insert_runner test.stdout_print
salt-run queue.insert_runner event.send test_insert_runner kwargs='{"data": {"foo": "bar"}}'

	
salt.runners.queue.list_items(queue, backend='sqlite')

	List contents of a queue

CLI Example:

salt-run queue.list_items myqueue
salt-run queue.list_items myqueue backend=sqlite

	
salt.runners.queue.list_length(queue, backend='sqlite')

	Provide the number of items in a queue

CLI Example:

salt-run queue.list_length myqueue
salt-run queue.list_length myqueue backend=sqlite

	
salt.runners.queue.list_queues(backend='sqlite')

	Return a list of Salt Queues on the backend

CLI Example:

salt-run queue.list_queues
salt-run queue.list_queues backend=sqlite

	
salt.runners.queue.pop(queue, quantity=1, backend='sqlite', is_runner=False)

	Pop one or more or all items from a queue

CLI Example:

salt-run queue.pop myqueue
salt-run queue.pop myqueue 6
salt-run queue.pop myqueue all
salt-run queue.pop myqueue 6 backend=sqlite
salt-run queue.pop myqueue all backend=sqlite

	
salt.runners.queue.process_queue(queue, quantity=1, backend='sqlite', is_runner=False)

	Pop items off a queue and create an event on the Salt event bus to be
processed by a Reactor.

CLI Example:

salt-run queue.process_queue myqueue
salt-run queue.process_queue myqueue 6
salt-run queue.process_queue myqueue all backend=sqlite

	
salt.runners.queue.process_runner(quantity=1, queue=None, backend=None)

	Process queued runners

	quantity
	number of runners to process

	queue
	queue to insert the runner reference into

	backend
	backend that to use for the queue

CLI Example:

salt-run queue.process_runner
salt-run queue.process_runner 5

salt.runners.reactor

A convenience system to manage reactors

Beginning in the 2017.7 release, the reactor runner requires that the reactor
system is running. This is accomplished one of two ways, either
by having reactors configured or by including reactor in the
engine configuration for the Salt master.

	engines:
	
	reactor

	
salt.runners.reactor.add(event, reactors, saltenv='base', test=None)

	Add a new reactor

CLI Example:

salt-run reactor.add 'salt/cloud/*/destroyed' reactors='/srv/reactor/destroy/*.sls'

	
salt.runners.reactor.delete(event, saltenv='base', test=None)

	Delete a reactor

CLI Example:

salt-run reactor.delete 'salt/cloud/*/destroyed'

	
salt.runners.reactor.is_leader()

	Return whether the running reactor is acting as a leader (responding to events).

CLI Example:

salt-run reactor.is_leader

	
salt.runners.reactor.list_(saltenv='base', test=None)

	List currently configured reactors

CLI Example:

salt-run reactor.list

	
salt.runners.reactor.set_leader(value=True)

	Set the current reactor to act as a leader (responding to events). Defaults to True

CLI Example:

salt-run reactor.set_leader True

salt.runners.salt

This runner makes Salt's
execution modules available
on the salt master.

New in version 2016.11.0.

Salt's execution modules are normally available
on the salt minion. Use this runner to call
execution modules on the salt master.
Salt execution modules
are the functions called by the salt command.

Execution modules can be called with salt-run:

salt-run salt.cmd test.ping
call functions with arguments and keyword arguments
salt-run salt.cmd test.arg 1 2 3 key=value a=1

Execution modules are also available to salt runners:

__salt__['salt.cmd'](fun=fun, args=args, kwargs=kwargs)

	
salt.runners.salt.cmd(fun, *args, **kwargs)

	
Changed in version 2018.3.0: Added with_pillar argument

Execute fun with the given args and kwargs. Parameter fun
should be the string name of the execution module
to call.

Note

Execution modules will be loaded every time this function is called.
Additionally, keep in mind that since runners execute on the master,
custom execution modules will need to be synced to the master using
salt-run saltutil.sync_modules, otherwise they will not be
available.

	with_pillarFalse
	If True, pillar data will be compiled for the master

Note

To target the master in the pillar top file, keep in mind that the
default id for the master is <hostname>_master. This can be
overridden by setting an id configuration parameter in the
master config file.

CLI Example:

salt-run salt.cmd test.ping
call functions with arguments and keyword arguments
salt-run salt.cmd test.arg 1 2 3 a=1
salt-run salt.cmd mymod.myfunc with_pillar=True

	
salt.runners.salt.execute(tgt, fun, arg=(), timeout=None, tgt_type='glob', ret='', jid='', kwarg=None, **kwargs)

	
New in version 2017.7.0.

Execute fun on all minions matched by tgt and tgt_type.
Parameter fun is the name of execution module function to call.

This function should mainly be used as a helper for runner modules,
in order to avoid redundant code.
For example, when inside a runner one needs to execute a certain function
on arbitrary groups of minions, only has to:

ret1 = __salt__['salt.execute']('*', 'mod.fun')
ret2 = __salt__['salt.execute']('my_nodegroup', 'mod2.fun2', tgt_type='nodegroup')

It can also be used to schedule jobs directly on the master, for example:

schedule:
 collect_bgp_stats:
 function: salt.execute
 args:
 - edge-routers
 - bgp.neighbors
 kwargs:
 tgt_type: nodegroup
 days: 1
 returner: redis

salt.runners.saltutil

The Saltutil runner is used to sync custom types to the Master. See the
saltutil module for documentation on
managing updates to minions.

New in version 2016.3.0.

	
salt.runners.saltutil.sync_all(saltenv='base', extmod_whitelist=None, extmod_blacklist=None)

	Sync all custom types

	saltenvbase
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

	extmod_whitelistNone
	dictionary of modules to sync based on type

	extmod_blacklistNone
	dictionary of modules to blacklist based on type

CLI Example:

salt-run saltutil.sync_all
salt-run saltutil.sync_all extmod_whitelist={'runners': ['custom_runner'], 'grains': []}

	
salt.runners.saltutil.sync_cache(saltenv='base', extmod_whitelist=None, extmod_blacklist=None)

	
New in version 2017.7.0.

Sync cache modules from salt://_cache to the master

	saltenvbase
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Example:

salt-run saltutil.sync_cache

	
salt.runners.saltutil.sync_clouds(saltenv='base', extmod_whitelist=None, extmod_blacklist=None)

	
New in version 2017.7.0.

Sync cloud modules from salt://_clouds to the master

	saltenvbase
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Example:

salt-run saltutil.sync_clouds

	
salt.runners.saltutil.sync_eauth_tokens(saltenv='base', extmod_whitelist=None, extmod_blacklist=None)

	
New in version 2018.3.0.

Sync eauth token modules from salt://_tokens to the master

	saltenvbase
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Example:

salt-run saltutil.sync_eauth_tokens

	
salt.runners.saltutil.sync_engines(saltenv='base', extmod_whitelist=None, extmod_blacklist=None)

	Sync engines from salt://_engines to the master

	saltenvbase
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Example:

salt-run saltutil.sync_engines

	
salt.runners.saltutil.sync_executors(saltenv='base', extmod_whitelist=None, extmod_blacklist=None)

	
New in version 3000.

Sync executor modules from salt://_executors to the master

	saltenvbase
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

	extmod_whitelistNone
	comma-seperated list of modules to sync

	extmod_blacklistNone
	comma-seperated list of modules to blacklist based on type

CLI Example:

salt-run saltutil.sync_executors

	
salt.runners.saltutil.sync_fileserver(saltenv='base', extmod_whitelist=None, extmod_blacklist=None)

	
New in version 2018.3.0.

Sync fileserver modules from salt://_fileserver to the master

	saltenvbase
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Example:

salt-run saltutil.sync_fileserver

	
salt.runners.saltutil.sync_grains(saltenv='base', extmod_whitelist=None, extmod_blacklist=None)

	Sync grains modules from salt://_grains to the master

	saltenvbase
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Example:

salt-run saltutil.sync_grains

	
salt.runners.saltutil.sync_modules(saltenv='base', extmod_whitelist=None, extmod_blacklist=None)

	Sync execution modules from salt://_modules to the master

	saltenvbase
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Example:

salt-run saltutil.sync_modules

	
salt.runners.saltutil.sync_output(saltenv='base', extmod_whitelist=None, extmod_blacklist=None)

	Sync output modules from salt://_output to the master

	saltenvbase
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Example:

salt-run saltutil.sync_output

	
salt.runners.saltutil.sync_pillar(saltenv='base', extmod_whitelist=None, extmod_blacklist=None)

	Sync pillar modules from salt://_pillar to the master

	saltenvbase
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Example:

salt-run saltutil.sync_pillar

	
salt.runners.saltutil.sync_proxymodules(saltenv='base', extmod_whitelist=None, extmod_blacklist=None)

	Sync proxy modules from salt://_proxy to the master

	saltenvbase
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Example:

salt-run saltutil.sync_proxymodules

	
salt.runners.saltutil.sync_queues(saltenv='base', extmod_whitelist=None, extmod_blacklist=None)

	Sync queue modules from salt://_queues to the master

	saltenvbase
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Example:

salt-run saltutil.sync_queues

	
salt.runners.saltutil.sync_renderers(saltenv='base', extmod_whitelist=None, extmod_blacklist=None)

	Sync renderer modules from from salt://_renderers to the master

	saltenvbase
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Example:

salt-run saltutil.sync_renderers

	
salt.runners.saltutil.sync_returners(saltenv='base', extmod_whitelist=None, extmod_blacklist=None)

	Sync returner modules from salt://_returners to the master

	saltenvbase
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Example:

salt-run saltutil.sync_returners

	
salt.runners.saltutil.sync_roster(saltenv='base', extmod_whitelist=None, extmod_blacklist=None)

	
New in version 2017.7.0.

Sync roster modules from salt://_roster to the master

	saltenvbase
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Example:

salt-run saltutil.sync_roster

	
salt.runners.saltutil.sync_runners(saltenv='base', extmod_whitelist=None, extmod_blacklist=None)

	Sync runners from salt://_runners to the master

	saltenvbase
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Example:

salt-run saltutil.sync_runners

	
salt.runners.saltutil.sync_sdb(saltenv='base', extmod_whitelist=None, extmod_blacklist=None)

	
New in version 2017.7.0.

Sync sdb modules from salt://_sdb to the master

	saltenvbase
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Example:

salt-run saltutil.sync_sdb

	
salt.runners.saltutil.sync_serializers(saltenv='base', extmod_whitelist=None, extmod_blacklist=None)

	
New in version 2019.2.0.

Sync serializer modules from salt://_serializers to the master

	saltenvbase
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

	extmod_whitelistNone
	comma-seperated list of modules to sync

	extmod_blacklistNone
	comma-seperated list of modules to blacklist based on type

CLI Example:

salt-run saltutil.sync_utils

	
salt.runners.saltutil.sync_states(saltenv='base', extmod_whitelist=None, extmod_blacklist=None)

	Sync state modules from salt://_states to the master

	saltenvbase
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Example:

salt-run saltutil.sync_states

	
salt.runners.saltutil.sync_thorium(saltenv='base', extmod_whitelist=None, extmod_blacklist=None)

	
New in version 2018.3.0.

Sync Thorium from salt://_thorium to the master

	saltenv: base
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

	extmod_whitelist
	comma-separated list of modules to sync

	extmod_blacklist
	comma-separated list of modules to blacklist based on type

CLI Example:

salt-run saltutil.sync_thorium

	
salt.runners.saltutil.sync_tops(saltenv='base', extmod_whitelist=None, extmod_blacklist=None)

	
New in version 2016.3.7,2016.11.4,2017.7.0.

Sync master_tops modules from salt://_tops to the master

	saltenvbase
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

CLI Example:

salt-run saltutil.sync_tops

	
salt.runners.saltutil.sync_utils(saltenv='base', extmod_whitelist=None, extmod_blacklist=None)

	
New in version 2016.11.0.

Sync utils modules from salt://_utils to the master

	saltenvbase
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Example:

salt-run saltutil.sync_utils

	
salt.runners.saltutil.sync_wheel(saltenv='base', extmod_whitelist=None, extmod_blacklist=None)

	Sync wheel modules from salt://_wheel to the master

	saltenvbase
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

	extmod_whitelistNone
	comma-separated list of modules to sync

	extmod_blacklistNone
	comma-separated list of modules to blacklist based on type

CLI Example:

salt-run saltutil.sync_wheel

	
salt.runners.saltutil.sync_wrapper(saltenv='base', extmod_whitelist=None, extmod_blacklist=None)

	
New in version 3007.0.

Sync salt-ssh wrapper modules from salt://_wrapper to the master.

	saltenvbase
	The fileserver environment from which to sync. To sync from more than
one environment, pass a comma-separated list.

	extmod_whitelistNone
	comma-seperated list of modules to sync

	extmod_blacklistNone
	comma-seperated list of modules to blacklist based on type

CLI Example:

salt-run saltutil.sync_wrapper

salt.runners.sdb

Runner for setting and querying data via the sdb API on the master

	
salt.runners.sdb.delete(uri)

	Delete a value from a db, using a uri in the form of sdb://<profile>/<key>.
If the uri provided does not start with sdb:// or the value is not
successfully deleted, return False.

CLI Example:

salt-run sdb.delete sdb://mymemcached/foo

	
salt.runners.sdb.get(uri)

	Get a value from a db, using a uri in the form of sdb://<profile>/<key>. If
the uri provided does not start with sdb://, then it will be returned as-is.

CLI Example:

salt-run sdb.get sdb://mymemcached/foo

	
salt.runners.sdb.get_or_set_hash(uri, length=8, chars='abcdefghijklmnopqrstuvwxyz0123456789!@#$%^&*(-_=+)')

	Perform a one-time generation of a hash and write it to sdb.
If that value has already been set return the value instead.

This is useful for generating passwords or keys that are specific to
multiple minions that need to be stored somewhere centrally.

CLI Example:

salt-run sdb.get_or_set_hash 'SECRET_KEY' 50

Warning

This function could return strings which may contain characters which are reserved
as directives by the YAML parser, such as strings beginning with %. To avoid
issues when using the output of this function in an SLS file containing YAML+Jinja,
surround the call with single quotes.

	
salt.runners.sdb.set_(uri, value)

	Set a value in a db, using a uri in the form of sdb://<profile>/<key>.
If the uri provided does not start with sdb:// or the value is not
successfully set, return False.

CLI Example:

salt-run sdb.set sdb://mymemcached/foo bar

salt.runners.smartos_vmadm

Runner for SmartOS minions control vmadm

	
salt.runners.smartos_vmadm.get(search, one=True)

	Return information for vms

	searchstring
	filter vms, see the execution module.

	oneboolean
	return only one vm

Note

If the search parameter does not contain an equal (=) symbol it will be
assumed it will be tried as uuid, hostname, and alias.

CLI Example:

salt-run vmadm.get 91244bba-1146-e4ec-c07e-e825e0223aa9
salt-run vmadm.get search='alias=saskia'

	
salt.runners.smartos_vmadm.is_running(search)

	Return true if vm is running

	searchstring
	filter vms, see the execution module.

Note

If the search parameter does not contain an equal (=) symbol it will be
assumed it will be tried as uuid, hostname, and alias.

Note

If multiple vms are matched, the result will be true of ALL vms are running

CLI Example:

salt-run vmadm.is_running 91244bba-1146-e4ec-c07e-e825e0223aa9
salt-run vmadm.is_running search='alias=julia'

	
salt.runners.smartos_vmadm.list_vms(search=None, verbose=False)

	List all vms

	searchstring
	filter vms, see the execution module

	verboseboolean
	print additional information about the vm

CLI Example:

salt-run vmadm.list
salt-run vmadm.list search='type=KVM'
salt-run vmadm.list verbose=True

	
salt.runners.smartos_vmadm.nodes(verbose=False)

	List all compute nodes

	verboseboolean
	print additional information about the node
e.g. platform version, hvm capable, ...

CLI Example:

salt-run vmadm.nodes
salt-run vmadm.nodes verbose=True

	
salt.runners.smartos_vmadm.reboot(search, one=True, force=False)

	Reboot one or more vms

	searchstring
	filter vms, see the execution module.

	oneboolean
	reboot only one vm

	forceboolean
	force reboot, faster but no graceful shutdown

Note

If the search parameter does not contain an equal (=) symbol it will be
assumed it will be tried as uuid, hostname, and alias.

CLI Example:

salt-run vmadm.reboot 91244bba-1146-e4ec-c07e-e825e0223aa9
salt-run vmadm.reboot search='alias=marije'
salt-run vmadm.reboot search='type=KVM' one=False

	
salt.runners.smartos_vmadm.start(search, one=True)

	Start one or more vms

	searchstring
	filter vms, see the execution module.

	oneboolean
	start only one vm

Note

If the search parameter does not contain an equal (=) symbol it will be
assumed it will be tried as uuid, hostname, and alias.

CLI Example:

salt-run vmadm.start 91244bba-1146-e4ec-c07e-e825e0223aa9
salt-run vmadm.start search='alias=jiska'
salt-run vmadm.start search='type=KVM' one=False

	
salt.runners.smartos_vmadm.stop(search, one=True)

	Stop one or more vms

	searchstring
	filter vms, see the execution module.

	oneboolean
	stop only one vm

Note

If the search parameter does not contain an equal (=) symbol it will be
assumed it will be tried as uuid, hostname, and alias.

CLI Example:

salt-run vmadm.stop 91244bba-1146-e4ec-c07e-e825e0223aa9
salt-run vmadm.stop search='alias=jody'
salt-run vmadm.stop search='type=KVM' one=False

salt.runners.spacewalk

Spacewalk Runner

New in version 2016.3.0.

Runner to interact with Spacewalk using Spacewalk API

	codeauthor:

	Nitin Madhok <nmadhok@g.clemson.edu>, Joachim Werner <joe@suse.com>, Benedikt Werner <1benediktwerner@gmail.com>

	maintainer:

	Benedikt Werner <1benediktwerner@gmail.com>

To use this runner, set up the Spacewalk URL, username and password in the
master configuration at /etc/salt/master or /etc/salt/master.d/spacewalk.conf:

spacewalk:
 spacewalk01.domain.com:
 username: 'testuser'
 password: 'verybadpass'
 spacewalk02.domain.com:
 username: 'testuser'
 password: 'verybadpass'

Note

Optionally, protocol can be specified if the spacewalk server is
not using the defaults. Default is protocol: https.

	
salt.runners.spacewalk.addGroupsToKey(server, activation_key, groups)

	Add server groups to a activation key

CLI Example:

salt-run spacewalk.addGroupsToKey spacewalk01.domain.com 1-my-key '[group1, group2]'

	
salt.runners.spacewalk.api(server, command, *args, **kwargs)

	Call the Spacewalk xmlrpc api.

CLI Example:

salt-run spacewalk.api spacewalk01.domain.com systemgroup.create MyGroup Description
salt-run spacewalk.api spacewalk01.domain.com systemgroup.create arguments='["MyGroup", "Description"]'

State Example:

create_group:
 salt.runner:
 - name: spacewalk.api
 - server: spacewalk01.domain.com
 - command: systemgroup.create
 - arguments:
 - MyGroup
 - Description

	
salt.runners.spacewalk.deleteAllActivationKeys(server)

	Delete all activation keys from Spacewalk

CLI Example:

salt-run spacewalk.deleteAllActivationKeys spacewalk01.domain.com

	
salt.runners.spacewalk.deleteAllGroups(server)

	Delete all server groups from Spacewalk

	
salt.runners.spacewalk.deleteAllSystems(server)

	Delete all systems from Spacewalk

CLI Example:

salt-run spacewalk.deleteAllSystems spacewalk01.domain.com

	
salt.runners.spacewalk.unregister(name, server_url)

	Unregister specified server from Spacewalk

CLI Example:

salt-run spacewalk.unregister my-test-vm spacewalk01.domain.com

salt.runners.ssh

A Runner module interface on top of the salt-ssh Python API.

This allows for programmatic use from salt-api, the Reactor, Orchestrate, etc.

	
salt.runners.ssh.cmd(tgt, fun, arg=(), timeout=None, tgt_type='glob', kwarg=None)

	
New in version 2015.5.0.

Changed in version 2017.7.0: The expr_form argument has been renamed to tgt_type, earlier
releases must use expr_form.

Execute a single command via the salt-ssh subsystem and return all
routines at once

A wrapper around the SSHClient.cmd method.

salt.runners.state

Execute orchestration functions

	
salt.runners.state.event(tagmatch='*', count=-1, quiet=False, sock_dir=None, pretty=False, node='master')

	Watch Salt's event bus and block until the given tag is matched

New in version 2014.7.0.

Changed in version 2019.2.0: tagmatch can now be either a glob or regular expression.

This is useful for utilizing Salt's event bus from shell scripts or for
taking simple actions directly from the CLI.

Enable debug logging to see ignored events.

	Parameters:

	
	tagmatch -- the event is written to stdout for each tag that matches
this glob or regular expression.

	count -- this number is decremented for each event that matches the
tagmatch parameter; pass -1 to listen forever.

	quiet -- do not print to stdout; just block

	sock_dir -- path to the Salt master's event socket file.

	pretty -- Output the JSON all on a single line if False (useful
for shell tools); pretty-print the JSON output if True.

	node -- Watch the minion-side or master-side event bus.
.. versionadded:: 2016.3.0

CLI Examples:

Reboot a minion and run highstate when it comes back online
salt 'jerry' system.reboot && \\
 salt-run state.event 'salt/minion/jerry/start' count=1 quiet=True && \\
 salt 'jerry' state.highstate

Reboot multiple minions and run highstate when all are back online
salt -L 'kevin,stewart,dave' system.reboot && \\
 salt-run state.event 'salt/minion/*/start' count=3 quiet=True && \\
 salt -L 'kevin,stewart,dave' state.highstate

Watch the event bus forever in a shell while-loop.
salt-run state.event | while read -r tag data; do
 echo $tag
 echo $data | jq --color-output .
done

See also

See tests/eventlisten.sh [https://github.com/saltstack/salt/blob/master/tests/eventlisten.sh] for an example of usage within a shell
script.

	
salt.runners.state.orch(mods, saltenv='base', test=None, exclude=None, pillar=None, pillarenv=None, pillar_enc=None, orchestration_jid=None)

	This function is an alias of orchestrate.

New in version 0.17.0.

Execute a state run from the master, used as a powerful orchestration
system.

See also

More Orchestrate documentation

	Full Orchestrate Tutorial

	Docs for the master-side state module

CLI Examples:

salt-run state.orchestrate webserver
salt-run state.orchestrate webserver saltenv=dev test=True
salt-run state.orchestrate webserver saltenv=dev pillarenv=aws

Changed in version 2014.1.1: Runner renamed from state.sls to state.orchestrate

Changed in version 2014.7.0: Runner uses the pillar variable

Changed in version 2017.5.0: Runner uses the pillar_enc variable that allows renderers to render the pillar.
This is usable when supplying the contents of a file as pillar, and the file contains
gpg-encrypted entries.

See also

GPG renderer documentation

CLI Examples:

salt-run state.orchestrate webserver pillar_enc=gpg pillar="$(cat somefile.json)"

	
salt.runners.state.orch_show_sls(mods, saltenv='base', test=None, queue=False, pillar=None, pillarenv=None, pillar_enc=None)

	This function is an alias of orchestrate_show_sls.

Display the state data from a specific sls, or list of sls files, after
being render using the master minion.

Note, the master minion adds a "_master" suffix to its minion id.

See also

The state.show_sls module function

CLI Example:

salt-run state.orch_show_sls my-orch-formula.my-orch-state 'pillar={ nodegroup: ng1 }'

	
salt.runners.state.orchestrate(mods, saltenv='base', test=None, exclude=None, pillar=None, pillarenv=None, pillar_enc=None, orchestration_jid=None)

	
New in version 0.17.0.

Execute a state run from the master, used as a powerful orchestration
system.

See also

More Orchestrate documentation

	Full Orchestrate Tutorial

	Docs for the master-side state module

CLI Examples:

salt-run state.orchestrate webserver
salt-run state.orchestrate webserver saltenv=dev test=True
salt-run state.orchestrate webserver saltenv=dev pillarenv=aws

Changed in version 2014.1.1: Runner renamed from state.sls to state.orchestrate

Changed in version 2014.7.0: Runner uses the pillar variable

Changed in version 2017.5.0: Runner uses the pillar_enc variable that allows renderers to render the pillar.
This is usable when supplying the contents of a file as pillar, and the file contains
gpg-encrypted entries.

See also

GPG renderer documentation

CLI Examples:

salt-run state.orchestrate webserver pillar_enc=gpg pillar="$(cat somefile.json)"

	
salt.runners.state.orchestrate_high(data, test=None, queue=False, pillar=None, **kwargs)

	Execute a single state orchestration routine

New in version 2015.5.0.

CLI Example:

salt-run state.orchestrate_high '{
 stage_one:
 {salt.state: [{tgt: "db*"}, {sls: postgres_setup}]},
 stage_two:
 {salt.state: [{tgt: "web*"}, {sls: apache_setup}, {
 require: [{salt: stage_one}],
 }]},
 }'

	
salt.runners.state.orchestrate_show_sls(mods, saltenv='base', test=None, queue=False, pillar=None, pillarenv=None, pillar_enc=None)

	Display the state data from a specific sls, or list of sls files, after
being render using the master minion.

Note, the master minion adds a "_master" suffix to its minion id.

See also

The state.show_sls module function

CLI Example:

salt-run state.orch_show_sls my-orch-formula.my-orch-state 'pillar={ nodegroup: ng1 }'

	
salt.runners.state.orchestrate_single(fun, name, test=None, queue=False, pillar=None, **kwargs)

	Execute a single state orchestration routine

New in version 2015.5.0.

CLI Example:

salt-run state.orchestrate_single fun=salt.wheel name=key.list_all

	
salt.runners.state.pause(jid, state_id=None, duration=None)

	Set up a state id pause, this instructs a running state to pause at a given
state id. This needs to pass in the jid of the running state and can
optionally pass in a duration in seconds.

	
salt.runners.state.resume(jid, state_id=None)

	Remove a pause from a jid, allowing it to continue

	
salt.runners.state.rm_pause(jid, state_id=None)

	This function is an alias of resume.

Remove a pause from a jid, allowing it to continue

	
salt.runners.state.set_pause(jid, state_id=None, duration=None)

	This function is an alias of pause.

Set up a state id pause, this instructs a running state to pause at a given
state id. This needs to pass in the jid of the running state and can
optionally pass in a duration in seconds.

	
salt.runners.state.sls(mods, saltenv='base', test=None, exclude=None, pillar=None, pillarenv=None, pillar_enc=None, orchestration_jid=None)

	This function is an alias of orchestrate.

New in version 0.17.0.

Execute a state run from the master, used as a powerful orchestration
system.

See also

More Orchestrate documentation

	Full Orchestrate Tutorial

	Docs for the master-side state module

CLI Examples:

salt-run state.orchestrate webserver
salt-run state.orchestrate webserver saltenv=dev test=True
salt-run state.orchestrate webserver saltenv=dev pillarenv=aws

Changed in version 2014.1.1: Runner renamed from state.sls to state.orchestrate

Changed in version 2014.7.0: Runner uses the pillar variable

Changed in version 2017.5.0: Runner uses the pillar_enc variable that allows renderers to render the pillar.
This is usable when supplying the contents of a file as pillar, and the file contains
gpg-encrypted entries.

See also

GPG renderer documentation

CLI Examples:

salt-run state.orchestrate webserver pillar_enc=gpg pillar="$(cat somefile.json)"

	
salt.runners.state.soft_kill(jid, state_id=None)

	Set up a state run to die before executing the given state id,
this instructs a running state to safely exit at a given
state id. This needs to pass in the jid of the running state.
If a state_id is not passed then the jid referenced will be safely exited
at the beginning of the next state run.

salt.runners.survey

A general map/reduce style salt runner for aggregating results
returned by several different minions.

New in version 2014.7.0.

Aggregated results are sorted by the size of the minion pools which returned
matching results.

Useful for playing the game: "some of these things are not like the others..."
when identifying discrepancies in a large infrastructure managed by salt.

	
salt.runners.survey.diff(*args, **kwargs)

	Return the DIFFERENCE of the result sets returned by each matching minion
pool

New in version 2014.7.0.

These pools are determined from the aggregated and sorted results of
a salt command.

This command displays the "diffs" as a series of 2-way differences --
namely the difference between the FIRST displayed minion pool
(according to sort order) and EACH SUBSEQUENT minion pool result set.

Differences are displayed according to the Python difflib.unified_diff()
as in the case of the salt execution module file.get_diff.

This command is submitted via a salt runner using the general form:

salt-run survey.diff [survey_sort=up/down] <target>
 <salt-execution-module> <salt-execution-module parameters>

Optionally accept a survey_sort= parameter. Default:
survey_sort=down

CLI Example #1: (Example to display the "differences of files")

salt-run survey.diff survey_sort=up "*" cp.get_file_str file:///etc/hosts

	
salt.runners.survey.hash(*args, **kwargs)

	Return the MATCHING minion pools from the aggregated and sorted results of
a salt command

New in version 2014.7.0.

This command is submitted via a salt runner using the
general form:

salt-run survey.hash [survey_sort=up/down] <target>
 <salt-execution-module> <salt-execution-module parameters>

Optionally accept a survey_sort= parameter. Default: survey_sort=down

CLI Example #1: (functionally equivalent to salt-run manage.up)

salt-run survey.hash "*" test.ping

CLI Example #2: (find an "outlier" minion config file)

salt-run survey.hash "*" file.get_hash /etc/salt/minion survey_sort=up

salt.runners.test

This runner is used only for test purposes and serves no production purpose

	
salt.runners.test.arg(*args, **kwargs)

	Output the given args and kwargs

Kwargs will be filtered for 'private' keynames.

CLI Example:

salt-run test.arg foo bar=baz

	
salt.runners.test.get_opts()

	
New in version 2018.3.0.

Return the configuration options of the master.

CLI Example:

salt-run test.get_opts

	
salt.runners.test.metasyntactic(locality='us')

	Return common metasyntactic variables for the given locality

CLI Example:

salt-run test.metasyntactic locality=uk

	
salt.runners.test.raw_arg(*args, **kwargs)

	Output the given args and kwargs

CLI Example:

salt-run test.arg foo __bar=baz

	
salt.runners.test.sleep(s_time=10)

	Sleep t seconds, then return True

CLI Example:

salt-run test.sleep s_time=5

	
salt.runners.test.stdout_print()

	Print 'foo' and return 'bar'

CLI Example:

salt-run test.stdout_print

	
salt.runners.test.stream()

	Fire a stream of 100 test events, then return True

CLI Example:

salt-run test.stream

salt.runners.thin

The thin runner is used to manage the salt thin systems.

Salt Thin is a transport-less version of Salt that can be used to run routines
in a standalone way. This runner has tools which generate the standalone salt
system for easy consumption.

	
salt.runners.thin.generate(extra_mods='', overwrite=False, so_mods='', absonly=True, compress='gzip')

	Generate the salt-thin tarball and print the location of the tarball
Optional additional mods to include (e.g. mako) can be supplied as a comma
delimited string. Permits forcing an overwrite of the output file as well.

CLI Example:

salt-run thin.generate
salt-run thin.generate mako
salt-run thin.generate mako,wempy 1
salt-run thin.generate overwrite=1

	
salt.runners.thin.generate_min(extra_mods='', overwrite=False, so_mods='')

	Generate the salt-thin tarball and print the location of the tarball
Optional additional mods to include (e.g. mako) can be supplied as a comma
delimited string. Permits forcing an overwrite of the output file as well.

CLI Example:

salt-run thin.generate_min

salt.runners.vault

Warning

This module will be removed from Salt in version 3009 in favor of
the vault Salt Extension [https://github.com/salt-extensions/saltext-vault].

Runner functions supporting the Vault modules. Configuration instructions are
documented in the execution module docs.

	maintainer:

	SaltStack

	maturity:

	new

	platform:

	all

	
class salt.runners.vault.LazyPillar(opts, grains, minion_id, extra_minion_data=None)

	Simulates a pillar dictionary. Only compiles the pillar
once an item is requested.

	
salt.runners.vault.cleanup_auth()

	
New in version 3007.0.

Removes AppRoles and entities associated with unknown minion IDs.
Can only clean up entities if the AppRole still exists.

Warning

Make absolutely sure that the configured minion approle issue mount is
exclusively dedicated to the Salt master, otherwise you might lose data
by using this function! (config: vault:issue:approle:mount)

This detects unknown existing AppRoles by listing all roles on the
configured minion AppRole mount and deducting known minions from the
returned list.

CLI Example:

salt-run vault.cleanup_auth

	
salt.runners.vault.clear_cache(master=True, minions=True)

	
New in version 3007.0.

Clears master cache of Vault-specific data. This can include:
- AppRole metadata
- rendered policies
- cached authentication credentials for impersonated minions
- cached KV metadata for impersonated minions

CLI Example:

salt-run vault.clear_cache
salt-run vault.clear_cache minions=false
salt-run vault.clear_cache master=false minions='[minion1, minion2]'

	master
	Clear cached data for the master context.
Includes cached master authentication data and KV metadata.
Defaults to true.

	minions
	Clear cached data for minions on the master.
Can include cached authentication credentials and KV metadata
for pillar compilation as well as AppRole metadata and
rendered policies for credential issuance.
Defaults to true. Set this to a list of minion IDs to only clear
cached data pertaining to thse minions.

	
salt.runners.vault.generate_new_token(minion_id, signature, impersonated_by_master=False, issue_params=None)

	
New in version 3007.0.

Generate a Vault token for minion <minion_id>.

	minion_id
	The ID of the minion that requests a token.

	signature
	Cryptographic signature which validates that the request is indeed sent
by the minion (or the master, see impersonated_by_master).

	impersonated_by_master
	If the master needs to create a token on behalf of the minion, this is
True. This happens when the master generates minion pillars.

	issue_params
	Dictionary of parameters for the generated tokens.
See master configuration vault:issue:token:params for possible values.
Requires vault:issue:allow_minion_override_params master configuration
setting to be effective.

	
salt.runners.vault.generate_secret_id(minion_id, signature, impersonated_by_master=False, issue_params=None)

	
New in version 3007.0.

Generate a Vault secret ID for minion <minion_id>. Requires the master to be configured
to generate AppRoles for minions (configuration: vault:issue:type).

	minion_id
	The ID of the minion that requests a secret ID.

	signature
	Cryptographic signature which validates that the request is indeed sent
by the minion (or the master, see impersonated_by_master).

	impersonated_by_master
	If the master needs to create a token on behalf of the minion, this is
True. This happens when the master generates minion pillars.

	issue_params
	Dictionary of configuration values for the generated AppRole.
See master configuration vault:issue:approle:params for possible values.
Requires vault:issue:allow_minion_override_params master configuration
setting to be effective.

	
salt.runners.vault.generate_token(minion_id, signature, impersonated_by_master=False, ttl=None, uses=None, upgrade_request=False)

	
Deprecated since version 3007.0.

Generate a Vault token for minion <minion_id>.

	minion_id
	The ID of the minion that requests a token.

	signature
	Cryptographic signature which validates that the request is indeed sent
by the minion (or the master, see impersonated_by_master).

	impersonated_by_master
	If the master needs to create a token on behalf of the minion, this is
True. This happens when the master generates minion pillars.

	ttl
	Ticket time to live in seconds, 1m minutes, or 2h hrs

	uses
	Number of times a token can be used

	upgrade_request
	In case the new runner endpoints have not been whitelisted for peer running,
this endpoint serves as a gateway to vault.get_config.
Defaults to False.

	
salt.runners.vault.get_config(minion_id, signature, impersonated_by_master=False, issue_params=None, config_only=False)

	
New in version 3007.0.

Return Vault configuration for minion <minion_id>.

	minion_id
	The ID of the minion that requests the configuration.

	signature
	Cryptographic signature which validates that the request is indeed sent
by the minion (or the master, see impersonated_by_master).

	impersonated_by_master
	If the master needs to contact the Vault server on behalf of the minion, this is
True. This happens when the master generates minion pillars.

	issue_params
	Parameters for credential issuance.
Requires vault:issue:allow_minion_override_params master configuration
setting to be effective.

	config_only
	In case the master is configured to issue tokens, do not include a new
token in the response. This is used for configuration update checks.
Defaults to false.

	
salt.runners.vault.get_role_id(minion_id, signature, impersonated_by_master=False, issue_params=None)

	
New in version 3007.0.

Return the Vault role-id for minion <minion_id>. Requires the master to be configured
to generate AppRoles for minions (configuration: vault:issue:type).

	minion_id
	The ID of the minion that requests a role-id.

	signature
	Cryptographic signature which validates that the request is indeed sent
by the minion (or the master, see impersonated_by_master).

	impersonated_by_master
	If the master needs to create a token on behalf of the minion, this is
True. This happens when the master generates minion pillars.

	issue_params
	Dictionary of configuration values for the generated AppRole.
See master configuration vault:issue:approle:params for possible values.
Requires vault:issue:allow_minion_override_params master configuration
setting to be effective.

	
salt.runners.vault.list_approles()

	
New in version 3007.0.

List all AppRoles that have been created by the Salt master.
They are named after the minions.

CLI Example:

salt-run vault.list_approles

Required policy:

path "auth/<mount>/role" {
 capabilities = ["list"]
}

	
salt.runners.vault.list_entities()

	
New in version 3007.0.

List all entities that have been created by the Salt master.
They are named salt_minion_{minion_id}.

CLI Example:

salt-run vault.list_entities

Required policy:

path "identity/entity/name" {
 capabilities = ["list"]
}

	
salt.runners.vault.show_approle(minion_id)

	
New in version 3007.0.

Show AppRole configuration for <minion_id>.

CLI Example:

salt-run vault.show_approle db1

	
salt.runners.vault.show_entity(minion_id)

	
New in version 3007.0.

Show entity metadata for <minion_id>.

CLI Example:

salt-run vault.show_entity db1

	
salt.runners.vault.show_policies(minion_id, refresh_pillar=<Constant.NOT_SET>, expire=None)

	Show the Vault policies that are applied to tokens for the given minion.

	minion_id
	The ID of the minion to show policies for.

	refresh_pillar
	Whether to refresh the pillar data when rendering templated policies.
None will only refresh when the cached data is unavailable, boolean values
force one behavior always.
Defaults to config value vault:policies:refresh_pillar or None.

	expire
	Policy computation can be heavy in case pillar data is used in templated policies and
it has not been cached. Therefore, a short-lived cache specifically for rendered policies
is used. This specifies the expiration timeout in seconds.
Defaults to config value vault:policies:cache_time or 60.

Note

When issuing AppRoles to minions, the shown policies are read from Vault
configuration for the minion's AppRole and thus refresh_pillar/expire
will not be honored.

CLI Example:

salt-run vault.show_policies myminion

	
salt.runners.vault.sync_approles(minions=None, up=False, down=False)

	
New in version 3007.0.

Sync minion AppRole parameters with current settings, including associated
token policies.

Note

Only updates existing AppRoles. They are issued during the first request
for one by the minion.
Running this will reset minion overrides, which are reapplied automatically
during the next request for authentication details.

Note

Unlike when issuing tokens, AppRole-associated policies are not regularly
refreshed automatically. It is advised to schedule regular runs of this function.

If no parameter is specified, will try to sync AppRoles for all known minions.

CLI Example:

salt-run vault.sync_approles
salt-run vault.sync_approles ecorp

	minions
	(List of) ID(s) of the minion(s) to update the AppRole for.
Defaults to None.

	up
	Find all minions that are up and update their AppRoles.
Defaults to False.

	down
	Find all minions that are down and update their AppRoles.
Defaults to False.

	
salt.runners.vault.sync_entities(minions=None, up=False, down=False)

	
New in version 3007.0.

Sync minion entities with current settings. Only updates entities for minions
with existing AppRoles.

Note

This updates associated metadata only. Entities are created only
when issuing AppRoles to minions (vault:issue:type == approle).

If no parameter is specified, will try to sync entities for all known minions.

CLI Example:

salt-run vault.sync_entities

	minions
	(List of) ID(s) of the minion(s) to update the entity for.
Defaults to None.

	up
	Find all minions that are up and update their associated entities.
Defaults to False.

	down
	Find all minions that are down and update their associated entities.
Defaults to False.

	
salt.runners.vault.unseal()

	Unseal Vault server

This function uses the 'keys' from the 'vault' configuration to unseal vault server

	vault:
	
	keys:
	
	n63/TbrQuL3xaIW7ZZpuXj/tIfnK1/MbVxO4vT3wYD2A

	S9OwCvMRhErEA4NVVELYBs6w/Me6+urgUr24xGK44Uy3

	F1j4b7JKq850NS6Kboiy5laJ0xY8dWJvB3fcwA+SraYl

	1cYtvjKJNDVam9c7HNqJUfINk4PYyAXIpjkpN/sIuzPv

	3pPK5X6vGtwLhNOFv1U2elahECz3HpRUfNXJFYLw6lid

CLI Examples:

salt-run vault.unseal

salt.runners.venafiapi

Support for Venafi

	depends:

	
	vcert Python module

	configuration:

	In order to connect to Venafi services you need to specify it in
Salt master configuration.
Example for Venafi Cloud (using env variables):

	venafi:
	api_key: "sdb://osenv/CLOUDAPIKEY"

Example for Venafi Platform (using env variables):

	venafi:
	base_url: "https://tpp.example.com/"
tpp_user: admin
tpp_password: "sdb://osenv/TPP_PASSWORD"
trust_bundle: "/opt/venafi/bundle.pem"

	
salt.runners.venafiapi.del_cached_domain(domains)

	Delete cached domains from the master

CLI Example:

salt-run venafi.del_cached_domain domain1.example.com,domain2.example.com

	
salt.runners.venafiapi.list_domain_cache()

	List domains that have been cached

CLI Example:

salt-run venafi.list_domain_cache

	
salt.runners.venafiapi.renew(minion_id, dns_name=None, zone=None, country=None, state=None, loc=None, org=None, org_unit=None, key_password=None, csr_path=None, pkey_path=None)

	Request a new certificate

CLI Example:

salt-run venafi.request <minion_id> <dns_name>

	
salt.runners.venafiapi.request(minion_id, dns_name=None, zone=None, country=None, state=None, loc=None, org=None, org_unit=None, key_password=None, csr_path=None, pkey_path=None)

	Request a new certificate

CLI Example:

salt-run venafi.request <minion_id> <dns_name>

	
salt.runners.venafiapi.show_cert(dns_name)

	Show issued certificate for domain

CLI Example:

salt-run venafi.show_cert example.com

salt.runners.virt

Control virtual machines via Salt

	
salt.runners.virt.force_off(name)

	Force power down the named virtual machine

	
salt.runners.virt.host_info(host=None)

	Return information about the host connected to this master

	
salt.runners.virt.init(name, cpu, mem, image, hypervisor='kvm', host=None, seed=True, nic='default', install=True, start=True, disk='default', saltenv='base', enable_vnc=False, seed_cmd='seed.apply', enable_qcow=False, serial_type='None')

	This routine is used to create a new virtual machine. This routines takes
a number of options to determine what the newly created virtual machine
will look like.

	name
	The mandatory name of the new virtual machine. The name option is
also the minion id, all minions must have an id.

	cpu
	The number of cpus to allocate to this new virtual machine.

	mem
	The amount of memory to allocate to this virtual machine. The number
is interpreted in megabytes.

	image
	The network location of the virtual machine image, commonly a location
on the salt fileserver, but http, https and ftp can also be used.

	hypervisor
	The hypervisor to use for the new virtual machine. Default is kvm.

	host
	The host to use for the new virtual machine, if this is omitted
Salt will automatically detect what host to use.

	seed
	Set to False to prevent Salt from seeding the new virtual machine.

	nic
	The nic profile to use, defaults to the "default" nic profile which
assumes a single network interface per VM associated with the "br0"
bridge on the master.

	install
	Set to False to prevent Salt from installing a minion on the new VM
before it spins up.

	disk
	The disk profile to use

	saltenv
	The Salt environment to use

	enable_vnc
	Whether a VNC screen is attached to resulting VM. Default is False.

	seed_cmd
	If seed is True, use this execution module function to seed new VM.
Default is seed.apply.

	enable_qcow
	Clone disk image as a copy-on-write qcow2 image, using downloaded
image as backing file.

	serial_type
	Enable serial console. Set to 'pty' for serial console or 'tcp' for
telnet.
Default is 'None'

	
salt.runners.virt.list(host=None, quiet=False, hyper=None)

	List the virtual machines on each host, this is a simplified query,
showing only the virtual machine names belonging to each host.
A single host can be passed in to specify an individual host
to list.

	
salt.runners.virt.migrate(name, target='')

	Migrate a VM from one host to another. This routine will just start
the migration and display information on how to look up the progress.

	
salt.runners.virt.next_host()

	Return the host to use for the next autodeployed VM. This queries
the available host and executes some math the determine the most
"available" next host.

	
salt.runners.virt.pause(name)

	Pause the named VM

	
salt.runners.virt.purge(name, delete_key=True)

	Destroy the named VM

	
salt.runners.virt.query(host=None, quiet=False)

	Query the virtual machines. When called without options all hosts
are detected and a full query is returned. A single host can be
passed in to specify an individual host to query.

	
salt.runners.virt.reset(name)

	Force power down and restart an existing VM

	
salt.runners.virt.resume(name)

	Resume a paused VM

	
salt.runners.virt.start(name)

	Start a named virtual machine

	
salt.runners.virt.vm_info(name, quiet=False)

	Return the information on the named VM

salt.runners.vistara

Vistara Runner

Runner to interact with the Vistara (http://www.vistarait.com/) REST API

	codeauthor:

	Brad Thurber <brad.thurber@gmail.com>

To use this runner, the Vistara client_id and Vistara oauth2 client_key
and client_secret must be set in the master config.

For example /etc/salt/master.d/_vistara.conf:

vistara:
 client_id: client_012345
 client_key: N0tReallyaR3alKeyButShouldB12345
 client_secret: ThisI5AreallyLongsecretKeyIwonderwhyTheyMakethemSoBigTheseDays00

	
salt.runners.vistara.delete_device(name, safety_on=True)

	Deletes a device from Vistara based on DNS name or partial name. By default,
delete_device will only perform the delete if a single host is returned. Set
safety_on=False to delete all matches (up to default API search page size)

CLI Example:

salt-run vistara.delete_device 'hostname-101.mycompany.com'
salt-run vistara.delete_device 'hostname-101'
salt-run vistara.delete_device 'hostname-1' safety_on=False

salt.runners.winrepo

Runner to manage Windows software repo

	
salt.runners.winrepo.genrepo(opts=None, fire_event=True)

	Generate winrepo_cachefile based on sls files in the winrepo_dir

	opts
	Specify an alternate opts dict. Should not be used unless this function
is imported into an execution module.

	fire_eventTrue
	Fire an event on failure. Only supported on the master.

CLI Example:

salt-run winrepo.genrepo

	
salt.runners.winrepo.update_git_repos(opts=None, clean=False, masterless=False)

	Checkout git repos containing Windows Software Package Definitions

	opts
	Specify an alternate opts dict. Should not be used unless this function
is imported into an execution module.

	cleanFalse
	Clean repo cachedirs which are not configured under
winrepo_remotes.

Warning

This argument should not be set to True if a mix of git and
non-git repo definitions are being used, as it will result in the
non-git repo definitions being removed.

New in version 2015.8.0.

CLI Examples:

salt-run winrepo.update_git_repos
salt-run winrepo.update_git_repos clean=True

sdb modules

	cache

	cache Module

	confidant

	An SDB module for getting credentials from confidant.

	consul

	Consul sdb Module

	couchdb

	CouchDB sdb Module

	env

	Environment sdb Module

	etcd_db

	etcd Database Module

	keyring_db

	Keyring Database Module

	memcached

	Memcached sdb Module

	redis_sdb

	Redis SDB module

	rest

	Generic REST API SDB Module

	sqlite3

	SQLite sdb Module

	tism

	tISM - the Immutable Secrets Manager SDB Module

	vault

	Vault SDB Module

	yaml

	Pull sdb values from a YAML file

salt.sdb.cache

cache Module

	maintainer:

	SaltStack

	maturity:

	New

	platform:

	all

New in version 2017.7.0.

This module provides access to Salt's cache subsystem.

Like all sdb modules, the cache module requires a configuration profile to
be configured in either the minion or master configuration file. This profile
requires very little. In the example:

mastercloudcache:
 driver: cache
 bank: cloud/active/ec2/my-ec2-conf/saltmaster
 cachedir: /var/cache/salt

The driver refers to the cache module, bank refers to the cache bank
that contains the data and cachedir (optional), if used, points to an
alternate directory for cache data storage.

master_ip: sdb://mastercloudcache/public_ips

It is also possible to override both the bank and cachedir options
inside the SDB URI:

master_ip: sdb://mastercloudcache/public_ips?cachedir=/var/cache/salt

For this reason, both the bank and the cachedir options can be
omitted from the SDB profile. However, if the bank option is omitted,
it must be specified in the URI:

master_ip: sdb://mastercloudcache/public_ips?bank=cloud/active/ec2/my-ec2-conf/saltmaster

	
salt.sdb.cache.delete(key, service=None, profile=None)

	Get a value from the cache service

	
salt.sdb.cache.get(key, service=None, profile=None)

	Get a value from the cache service

	
salt.sdb.cache.set_(key, value, service=None, profile=None)

	Set a key/value pair in the cache service

salt.sdb.confidant

An SDB module for getting credentials from confidant.

Configuring the Confidant module

The module can be configured via sdb in the minion config:

confidant:
 driver: confidant
 # The URL of the confidant web service
 url: 'https://confidant-production.example.com'
 # The context to use for KMS authentication
 auth_context:
 from: example-production-iad
 to: confidant-production-iad
 user_type: service
 # The KMS master key to use for authentication
 auth_key: "alias/authnz"
 # Cache file for KMS auth token
 token_cache_file: /run/confidant/confidant_token
 # The duration of the validity of a token, in minutes
 token_duration: 60
 # key, keyid and region can be defined in the profile, but it's generally
 # best to use IAM roles or environment variables for AWS auth.
 keyid: 98nh9h9h908h09kjjk
 key: jhf908gyeghehe0he0g8h9u0j0n0n09hj09h0
 region: us-east-1

	depends:

	confidant-common, confidant-client

Module Documentation

	
salt.sdb.confidant.get(key, profile=None)

	Read pillar data from Confidant via its API.

CLI Example:

salt myminion sdb.get 'sdb://confidant/credentials'

Valid keys are: credentials, credentials_metadata, result. credentials
returns a dict of joined credential_pairs, credentials_metadata returns a
dict of metadata relevant to the credentials mapped to the confidant
service, and result returns a bool that can be used to determine if the sdb
call succeeded or failed to fetch credentials from confidant (or from local
cache). If result is false, the data in credentials or credentials_metadata
can't be trusted.

salt.sdb.consul

Consul sdb Module

	maintainer:

	SaltStack

	maturity:

	New

	platform:

	all

This module allows access to Consul using an sdb:// URI

Like all sdb modules, the Consul module requires a configuration profile to
be configured in either the minion or master configuration file. This profile
requires very little. For example:

myconsul:
 driver: consul
 host: 127.0.0.1
 port: 8500
 token: b6376760-a8bb-edd5-fcda-33bc13bfc556
 scheme: http
 consistency: default
 dc: dev
 verify: True

The driver refers to the Consul module, all other options are optional.
For option details see: https://python-consul.readthedocs.io/en/latest/#consul

	
salt.sdb.consul.get(key, profile=None)

	

	
salt.sdb.consul.get_conn(profile)

	Return a client object for accessing consul

	
salt.sdb.consul.set_(key, value, profile=None)

	

salt.sdb.couchdb

CouchDB sdb Module

	maintainer:

	SaltStack

	maturity:

	New

	depends:

	python2-couchdb

	platform:

	all

This allow interaction between Salt and a CouchDB [couchdb.apache.org]
database. It uses salt's sdb system to allow for inserts and retrevals
using the sdb:// prefix in salt configuration files.

To use the couchbase sdb module, it must first be configured in the salt
master or minion config. The following arguments are required:

couchdb_sdb:
 driver: couchdb
 host: localhost
 port: 5984
 database: salt_sdb

One could then query the CouchDB instance via an sdb:// URI such as the
following:

password: sdb://couchdb_sdb/mykey

To use this interface, you must track IDs on your own or have another source
to do the map-reduce logic necessary to calculate the ID you wish to fetch.

Additional contributions to build true map-reduce functionality into this module
would be welcome.

	
salt.sdb.couchdb.get(key, profile=None)

	Get a value from couchdb by id

	
salt.sdb.couchdb.set_(key, value, profile=None)

	Set a key/value pair in couchdb

salt.sdb.env

Environment sdb Module

	maintainer:

	SaltStack

	maturity:

	New

	depends:

	None

	platform:

	all

This module allows access to environment variables using an sdb:// URI.

Example configuration for this module:

osenv:
 driver: env

WARNING:

OS environment variables will be available
to read via SDB.
Please make sure you don't have any sensitive data
in your environment variables!!

Example usage of sdb env module:

set some env var:
 cmd.run:
 - name: echo {{ salt['sdb.set']('sdb://osenv/foo', 'bar') }}
 - order: 1

{% if salt['sdb.get']('sdb://osenv/foo') == 'bar' %}
always-changes-and-succeeds:
 test.succeed_with_changes:
 - name: foo
{% else %}
always-changes-and-fails:
 test.fail_with_changes:
 - name: foo
{% endif %}

The above example will return success.

The env sdb module can also be used with salt cloud.
Assuming you have exported the environment variable named
compute (and have osenv defined).
The example below will look for the salt cloud config key compute_name
in the environment:

my-openstack-config:
 compute_name: sdb://osenv/compute
 ..snip

	
salt.sdb.env.get(key, profile=None)

	Get a value

	
salt.sdb.env.set_(key, value, profile=None)

	Set a key/value pair

salt.sdb.etcd_db

etcd Database Module

	maintainer:

	SaltStack

	maturity:

	New

	depends:

	python-etcd or etcd3-py

	platform:

	all

New in version 2015.5.0.

This module allows access to the etcd database using an sdb:// URI. This
package is located at https://pypi.python.org/pypi/python-etcd.

Like all sdb modules, the etcd module requires a configuration profile to
be configured in either the minion or master configuration file. This profile
requires very little. In the example:

myetcd:
 driver: etcd
 etcd.host: 127.0.0.1
 etcd.port: 2379

The driver refers to the etcd module, etcd.host refers to the host that
is hosting the etcd database and etcd.port refers to the port on that host.

In order to choose whether to use etcd API v2 or v3, you can put the following
configuration option in the same place as your etcd configuration. This option
defaults to true, meaning you will use v2 unless you specify otherwise.

etcd.require_v2: True

password: sdb://myetcd/mypassword

	
salt.sdb.etcd_db.delete(key, service=None, profile=None)

	Get a value from the etcd service

	
salt.sdb.etcd_db.get(key, service=None, profile=None)

	Get a value from the etcd service

	
salt.sdb.etcd_db.set_(key, value, service=None, profile=None)

	Set a key/value pair in the etcd service

salt.sdb.keyring_db

Keyring Database Module

	maintainer:

	SaltStack

	maturity:

	New

	depends:

	keyring

	platform:

	all

This module allows access to the keyring package using an sdb:// URI. This
package is located at https://pypi.python.org/pypi/keyring.

Care must be taken when using keyring. Not all keyend backends are supported on
all operating systems. Also, many backends require an agent to be running in
order to work. For instance, the "Secret Service" backend requires a compatible
agent such as gnome-keyring-daemon or kwallet to be running. The
keyczar backend does not seem to enjoy the benefits of an agent, and so using
it will require either that the password is typed in manually (which is
unreasonable for the salt-minion and salt-master daemons, especially in
production) or an agent is written for it.

Like all sdb modules, the keyring module requires a configuration profile to
be configured in either the minion or master configuration file. This profile
requires very little. In the example:

mykeyring:
 driver: keyring
 service: system

The driver refers to the keyring module, service refers to the service
that will be used inside of keyring (which may be likened unto a database
table) and mykeyring refers to the name that will appear in the URI:

password: sdb://mykeyring/mypassword

The underlying backend configuration must be configured via keyring itself. For
examples and documentation, see keyring:

https://pypi.python.org/pypi/keyring

New in version 2014.1.4.

	
salt.sdb.keyring_db.get(key, service=None, profile=None)

	Get a value from a keyring service

	
salt.sdb.keyring_db.set_(key, value, service=None, profile=None)

	Set a key/value pair in a keyring service

salt.sdb.memcached

Memcached sdb Module

	maintainer:

	SaltStack

	maturity:

	New

	depends:

	python-memcached

	platform:

	all

This module allows access to memcached using an sdb:// URI. This
package is located at https://pypi.python.org/pypi/python-memcached.

Like all sdb modules, the memcached module requires a configuration profile to
be configured in either the minion or master configuration file. This profile
requires very little. In the example:

mymemcache:
 driver: memcached
 memcached.host: localhost
 memcached.port: 11211

The driver refers to the memcached module, host and port the
memcached server to connect to (defaults to localhost and 11211,
and mymemcached refers to the name that will appear in the URI:

password: sdb://mymemcached/mykey

	
salt.sdb.memcached.get(key, profile=None)

	Get a value from memcached

	
salt.sdb.memcached.set_(key, value, profile=None)

	Set a key/value pair in memcached

salt.sdb.redis_sdb

Redis SDB module

New in version 2019.2.0.

This module allows access to Redis using an sdb:// URI.

Like all SDB modules, the Redis module requires a configuration profile to
be configured in either the minion or master configuration file. This profile
requires very little. For example:

sdb_redis:
 driver: redis
 host: 127.0.0.1
 port: 6379
 password: pass
 db: 1

The driver refers to the Redis module, all other options are optional.
For option details see: https://redis-py.readthedocs.io/en/latest/.

	
salt.sdb.redis_sdb.delete(key, profile=None)

	Delete a key from the Redis SDB.

	
salt.sdb.redis_sdb.get(key, profile=None)

	Get a value from the Redis SDB.

	
salt.sdb.redis_sdb.set_(key, value, profile=None)

	Set a value into the Redis SDB.

salt.sdb.rest

Generic REST API SDB Module

	maintainer:

	SaltStack

	maturity:

	New

	platform:

	all

New in version 2015.8.0.

This module allows access to a REST interface using an sdb:// URI.

Like all REST modules, the REST module requires a configuration profile to
be configured in either the minion or master configuration file. This profile
requires very little. In the example:

my-rest-api:
 driver: rest
 urls:
 url: https://api.github.com/
 keys:
 url: https://api.github.com/users/{{user}}/keys
 backend: requests

The driver refers to the REST module, and must be set to rest in order
to use this driver. Each of the other items inside this block refers to a
separate set of HTTP items, including a URL and any options associated with it.
The options used here should match the options available in
salt.utils.http.query().

In order to call the urls item in the example, the following reference can
be made inside a configuration file:

github_urls: sdb://my-rest-api/urls

Key/Value pairs may also be used with this driver, and merged into the URL using
the configured renderer (jinja, by default). For instance, in order to use
the keys item in the example, the following reference can be made:

github_urls: sdb://my-rest-api/keys?user=myuser

This will cause the following URL to actually be called:

https://api.github.com/users/myuser/keys

Key/Value pairs will NOT be passed through as GET data. If GET data needs to be
sent to the URL, then it should be configured in the SDB configuration block.
For instance:

another-rest-api:
 driver: rest
 user_data:
 url: https://api.example.com/users/
 params:
 user: myuser

	
salt.sdb.rest.get(key, service=None, profile=None)

	Get a value from the REST interface

	
salt.sdb.rest.query(key, value=None, service=None, profile=None)

	Get a value from the REST interface

	
salt.sdb.rest.set_(key, value, service=None, profile=None)

	Set a key/value pair in the REST interface

salt.sdb.sqlite3

SQLite sdb Module

	maintainer:

	SaltStack

	maturity:

	New

	platform:

	all

This module allows access to sqlite3 using an sdb:// URI

Like all sdb modules, the sqlite3 module requires a configuration profile to
be configured in either the minion or master configuration file. This profile
requires very little. For example:

mysqlite:
 driver: sqlite3
 database: /tmp/sdb.sqlite
 table: sdb
 create_table: True

The driver refers to the sqlite3 module, database refers to the sqlite3
database file. table is the table within the db that will hold keys and
values (defaults to sdb). The database and table will be created if they
do not exist.

Advanced Usage:

Instead of a table name, it is possible to provide custom SQL statements to
create the table(s) and get and set values.

myadvanced
 driver: sqlite3
 database: /tmp/sdb-advanced.sqlite
create_statements:
 - "CREATE TABLE advanced (a text, b text, c blob, d blob)"
 - "CREATE INDEX myidx ON advanced (a)"
get_query: "SELECT d FROM advanced WHERE a=:key"
set_query: "INSERT OR REPLACE INTO advanced (a, d) VALUES (:key, :value)"

	
salt.sdb.sqlite3.get(key, profile=None)

	Get a value from sqlite3

	
salt.sdb.sqlite3.set_(key, value, profile=None)

	Set a key/value pair in sqlite3

salt.sdb.tism

tISM - the Immutable Secrets Manager SDB Module

	maintainer:

	tISM

	maturity:

	New

	platform:

	all

New in version 2017.7.0.

This module will decrypt PGP encrypted secrets against a tISM server.

sdb://<profile>/<encrypted secret>

sdb://tism/hQEMAzJ+GfdAB3KqAQf9E3cyvrPEWR1sf1tMvH0nrJ0bZa9kDFLPxvtwAOqlRiNp0F7IpiiVRF+h+sW5Mb4ffB1TElMzQ+/G5ptd6CjmgBfBsuGeajWmvLEi4lC6/9v1rYGjjLeOCCcN4Dl5AHlxUUaSrxB8akTDvSAnPvGhtRTZqDlltl5UEHsyYXM8RaeCrBw5Or1yvC9Ctx2saVp3xmALQvyhzkUv5pTb1mH0I9Z7E0ian07ZUOD+pVacDAf1oQcPpqkeNVTQQ15EP0fDuvnW+a0vxeLhkbFLfnwqhqEsvFxVFLHVLcs2ffE5cceeOMtVo7DS9fCtkdZr5hR7a+86n4hdKfwDMFXiBwSIPMkmY980N/H30L/r50+CBkuI/u4M2pXDcMYsvvt4ajCbJn91qaQ7BDI=

A profile must be setup in the minion configuration or pillar. If you want to
use sdb in a runner or pillar you must also place a profile in the master
configuration.

tism:
 driver: tism
 url: https://my.tismd:8080/decrypt
 token: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhZG1pbiI6MSwiZXhwIjoxNTg1MTExNDYwLCJqdGkiOiI3NnA5cWNiMWdtdmw4Iiwia2V5cyI6WyJBTEwiXX0.RtAhG6Uorf5xnSf4Ya_GwJnoHkCsql4r1_hiOeDSLzo

	
salt.sdb.tism.get(key, service=None, profile=None)

	Get a decrypted secret from the tISMd API

salt.sdb.vault

Vault SDB Module

	maintainer:

	SaltStack

	maturity:

	New

	platform:

	all

New in version 2016.11.0.

This module allows access to Hashicorp Vault using an sdb:// URI.

Base configuration instructions are documented in the execution module docs.
Below are noted extra configuration required for the sdb module, but the base
configuration must also be completed.

Like all sdb modules, the vault module requires a configuration profile to
be configured in either the minion configuration file or a pillar. This profile
requires only setting the driver parameter to vault:

myvault:
 driver: vault

Once configured you can access data using a URL such as:

password: sdb://myvault/secret/passwords/mypassword

In this URL, myvault refers to the configuration profile,
secret/passwords is the path where the data resides, and mypassword is
the key of the data to return.

The above URI is analogous to running the following vault command:

$ vault read -field=mypassword secret/passwords

Further configuration

The following options can be set in the profile:

	patch
	When writing data, partially update the secret instead of overwriting it completely.
This is usually the expected behavior, since without this option,
each secret path can only contain a single mapping key safely.
Defaults to False for backwards-compatibility reasons.

New in version 3007.0.

	
salt.sdb.vault.get(key, profile=None)

	Get a value from the vault service

	
salt.sdb.vault.set_(key, value, profile=None)

	Set a key/value pair in the vault service

salt.sdb.yaml

Pull sdb values from a YAML file

	maintainer:

	SaltStack

	maturity:

	New

	platform:

	all

New in version 2017.7.0.

Configuration:

my-yaml-file:
 driver: yaml
 files:
 - /path/to/foo.yaml
 - /path/to/bar.yaml

The files are merged together and the result is searched using the same
mechanism Salt uses for searching Grains and Pillar data structures.

Optional configuration:

my-yaml-file:
 driver: yaml
 files:
 - /path/to/foo.yaml
 - /path/to/bar.yaml
 merge:
 strategy: smart
 merge_list: false
 gpg: true

New in version 2018.3.0.

Setting the gpg option to true (default is false) will decrypt
embedded GPG-encrypted data using the GPG renderer.

	
salt.sdb.yaml.get(key, profile=None)

	Get a value from the dictionary

	
salt.sdb.yaml.set_(*args, **kwargs)

	Setting a value is not supported; edit the YAML files directly

serializer modules

salt.serializers

This module implements all the serializers needed by salt.
Each serializer offers the same functions and attributes:

	deserialize:

	function for deserializing string or stream

	serialize:

	function for serializing a Python object

	available:

	flag that tells if the serializer is available
(all dependencies are met etc.)

	
exception salt.serializers.DeserializationError(message, line_num=None, buf='', marker=' <======================', trace=None)

	Raised when stream of string failed to be deserialized

	
exception salt.serializers.SerializationError(message='')

	Raised when stream of string failed to be serialized

	configparser

	salt.serializers.configparser

	json

	salt.serializers.json

	keyvalue

	salt.serializers.keyvalue

New in version 3006.0.

	msgpack

	salt.serializers.msgpack

	plist

	salt.serializers.plist

New in version 3001.

	python

	salt.serializers.python

	tomlmod

	salt.serializers.tomlmod

	yaml

	salt.serializers.yaml

	yamlex

	salt.serializers.yamlex

salt.serializers.configparser

salt.serializers.configparser

New in version 2016.3.0.

Implements a configparser serializer.

	
exception salt.serializers.configparser.DeserializationError(message, line_num=None, buf='', marker=' <======================', trace=None)

	Raised when stream of string failed to be deserialized

	
exception salt.serializers.configparser.SerializationError(message='')

	Raised when stream of string failed to be serialized

	
salt.serializers.configparser.deserialize(stream_or_string, **options)

	Deserialize any string or stream like object into a Python data structure.

	Parameters:

	
	stream_or_string -- stream or string to deserialize.

	options -- options given to lower configparser module.

	
salt.serializers.configparser.serialize(obj, **options)

	Serialize Python data to a configparser formatted string or file.

	Parameters:

	
	obj -- the data structure to serialize

	options -- options given to lower configparser module.

salt.serializers.json

salt.serializers.json

Implements JSON serializer.

It's just a wrapper around json (or simplejson if available).

	
exception salt.serializers.json.DeserializationError(message, line_num=None, buf='', marker=' <======================', trace=None)

	Raised when stream of string failed to be deserialized

	
exception salt.serializers.json.SerializationError(message='')

	Raised when stream of string failed to be serialized

	
salt.serializers.json.deserialize(stream_or_string, **options)

	Deserialize any string or stream like object into a Python data structure.

	Parameters:

	
	stream_or_string -- stream or string to deserialize.

	options -- options given to lower json/simplejson module.

	
salt.serializers.json.serialize(obj, **options)

	Serialize Python data to JSON.

	Parameters:

	
	obj -- the data structure to serialize

	options -- options given to lower json/simplejson module.

salt.serializers.keyvalue

salt.serializers.keyvalue

New in version 3006.0.

Implements keyvalue serializer which can be used for serializing or
deserializing any file which defines keys and values separated by a common
set of characters, such environment files, which are in "KEY=value" format.

Options:

	param line_ending:

	String representation of LF or CRLF to be used for serialization to a
file. Defaults to \r\n on Windows and \n on other operating
systems.

	param quoting:

	Boolean flag to determine if values should be quoted (True) during
serialization or dequoted (False) during deserialization. Defaults
to None (no action).

	param separator:

	String representing the character(s) used when concatenating or reading
key/value pairs. Defaults to =.

A dataset such as:

foo: bar
wang: chung

or

- [foo, bar]
- [wang, chung]

can be represented as:

foo=bar
wang=chung

	
exception salt.serializers.keyvalue.DeserializationError(message, line_num=None, buf='', marker=' <======================', trace=None)

	Raised when stream of string failed to be deserialized

	
exception salt.serializers.keyvalue.SerializationError(message='')

	Raised when stream of string failed to be serialized

	
salt.serializers.keyvalue.dequote(value)

	Remove extra quotes around a string.

	
salt.serializers.keyvalue.deserialize(stream_or_string, **options)

	Deserialize any string or stream like object into a Python data structure.

	Parameters:

	
	stream_or_string -- stream or string to deserialize.

	options -- options given to the function

	
salt.serializers.keyvalue.quote(txt)

	Wraps a text around quotes.

{% set my_text = 'my_text' %}
{{ my_text | quote }}

will be rendered as:

'my_text'

	
salt.serializers.keyvalue.serialize(obj, **options)

	Serialize Python data to environment file.

	Parameters:

	
	obj -- the data structure to serialize

	options -- options given to the function

salt.serializers.msgpack

salt.serializers.msgpack

Implements MsgPack serializer.

	
exception salt.serializers.msgpack.DeserializationError(message, line_num=None, buf='', marker=' <======================', trace=None)

	Raised when stream of string failed to be deserialized

	
exception salt.serializers.msgpack.SerializationError(message='')

	Raised when stream of string failed to be serialized

	
salt.serializers.msgpack.deserialize(stream_or_string, **options)

	Deserialize any string of stream like object into a Python data structure.

	Parameters:

	
	stream_or_string -- stream or string to deserialize.

	options -- options given to lower msgpack module.

	
salt.serializers.msgpack.serialize(obj, **options)

	Serialize Python data to MsgPack.

	Parameters:

	
	obj -- the data structure to serialize

	options -- options given to lower msgpack module.

salt.serializers.plist

salt.serializers.plist

New in version 3001.

Implements plist serializer.

Wrapper around plistlib.

	
exception salt.serializers.plist.DeserializationError(message, line_num=None, buf='', marker=' <======================', trace=None)

	Raised when stream of string failed to be deserialized

	
exception salt.serializers.plist.SerializationError(message='')

	Raised when stream of string failed to be serialized

	
salt.serializers.plist.deserialize(stream_or_string, **options)

	Deserialize any string or stream like object into a Python data structure.

	Parameters:

	
	stream_or_string -- stream or string to deserialize.

	options -- options given to lower plist module.

	Returns:

	Deserialized data structure.

	
salt.serializers.plist.serialize(value, **options)

	Serialize Python data to plist. To create a binary plist pass
fmt: FMT_BINARY as an option.

	Parameters:

	
	obj -- the data structure to serialize

	options -- options given to lower plist module.

	Returns:

	bytes of serialized plist.

salt.serializers.python

salt.serializers.python

New in version 2016.3.0.

Implements a Python serializer (via pprint.format)

	
salt.serializers.python.serialize(obj, **options)

	Serialize Python data to a Python string representation (via pprint.format)

	Parameters:

	
	obj -- the data structure to serialize

	options -- options given to pprint.format

salt.serializers.toml

salt.serializers.tomlmod

Implements TOML serializer.

It's just a wrapper around the python toml module.

	
exception salt.serializers.tomlmod.DeserializationError(message, line_num=None, buf='', marker=' <======================', trace=None)

	Raised when stream of string failed to be deserialized

	
exception salt.serializers.tomlmod.SerializationError(message='')

	Raised when stream of string failed to be serialized

	
salt.serializers.tomlmod.deserialize(stream_or_string, **options)

	Deserialize from TOML into Python data structure.

	Parameters:

	
	stream_or_string -- toml stream or string to deserialize.

	options -- options given to the python toml module.

	
salt.serializers.tomlmod.serialize(obj, **options)

	Serialize Python data to TOML.

	Parameters:

	
	obj -- the data structure to serialize.

	options -- options given to the python toml module.

salt.serializers.yaml

salt.serializers.yaml

Implements YAML serializer.

Underneath, it is based on pyyaml and use the safe dumper and loader.
It also use C bindings if they are available.

	
salt.serializers.yaml.BaseDumper

	alias of CSafeDumper

	
salt.serializers.yaml.BaseLoader

	alias of CSafeLoader

	
exception salt.serializers.yaml.ConstructorError(context=None, context_mark=None, problem=None, problem_mark=None, note=None)

	

	
exception salt.serializers.yaml.DeserializationError(message, line_num=None, buf='', marker=' <======================', trace=None)

	Raised when stream of string failed to be deserialized

	
class salt.serializers.yaml.Dumper(stream, default_style=None, default_flow_style=False, canonical=None, indent=None, width=None, allow_unicode=None, line_break=None, encoding=None, explicit_start=None, explicit_end=None, version=None, tags=None, sort_keys=True)

	Overwrites Dumper as not for pollute legacy Dumper

	
yaml_multi_representers = {<class 'salt.serializers.yaml.EncryptedString'>: <function EncryptedString.yaml_dumper>, <class 'NoneType'>: <function SafeRepresenter.represent_none>, <class 'str'>: <function SafeRepresenter.represent_str>, <class 'bool'>: <function SafeRepresenter.represent_bool>, <class 'int'>: <function SafeRepresenter.represent_int>, <class 'float'>: <function SafeRepresenter.represent_float>, <class 'list'>: <function SafeRepresenter.represent_list>, <class 'tuple'>: <function SafeRepresenter.represent_list>, <class 'dict'>: <function SafeRepresenter.represent_dict>, <class 'set'>: <function SafeRepresenter.represent_set>, <class 'datetime.date'>: <function SafeRepresenter.represent_date>, <class 'datetime.datetime'>: <function SafeRepresenter.represent_datetime>, None: <function SafeRepresenter.represent_undefined>, <class 'collections.OrderedDict'>: <function SafeRepresenter.represent_dict>}

	

	
class salt.serializers.yaml.EncryptedString

	
	
static yaml_constructor(loader, tag, node)

	

	
static yaml_dumper(dumper, data)

	

	
yaml_tag = '!encrypted'

	

	
class salt.serializers.yaml.Loader(stream)

	Overwrites Loader as not for pollute legacy Loader

	
yaml_multi_constructors = {'!encrypted': <function EncryptedString.yaml_constructor>, 'tag:yaml.org,2002:binary': <function SafeConstructor.construct_yaml_binary>, 'tag:yaml.org,2002:bool': <function SafeConstructor.construct_yaml_bool>, 'tag:yaml.org,2002:float': <function SafeConstructor.construct_yaml_float>, 'tag:yaml.org,2002:int': <function SafeConstructor.construct_yaml_int>, 'tag:yaml.org,2002:map': <function SafeConstructor.construct_yaml_map>, 'tag:yaml.org,2002:null': <function SafeConstructor.construct_yaml_null>, 'tag:yaml.org,2002:omap': <function SafeConstructor.construct_yaml_omap>, 'tag:yaml.org,2002:pairs': <function SafeConstructor.construct_yaml_pairs>, 'tag:yaml.org,2002:seq': <function SafeConstructor.construct_yaml_seq>, 'tag:yaml.org,2002:set': <function SafeConstructor.construct_yaml_set>, 'tag:yaml.org,2002:str': <function SafeConstructor.construct_yaml_str>, 'tag:yaml.org,2002:timestamp': <function SafeConstructor.construct_yaml_timestamp>}

	

	
class salt.serializers.yaml.OrderedDict

	Dictionary that remembers insertion order

	
clear() → None. Remove all items from od.

	

	
copy() → a shallow copy of od

	

	
fromkeys(value=None)

	Create a new ordered dictionary with keys from iterable and values set to value.

	
items() → a set-like object providing a view on D's items

	

	
keys() → a set-like object providing a view on D's keys

	

	
move_to_end(key, last=True)

	Move an existing element to the end (or beginning if last is false).

Raise KeyError if the element does not exist.

	
pop(key[, default]) → v, remove specified key and return the corresponding value.

	If the key is not found, return the default if given; otherwise,
raise a KeyError.

	
popitem(last=True)

	Remove and return a (key, value) pair from the dictionary.

Pairs are returned in LIFO order if last is true or FIFO order if false.

	
setdefault(key, default=None)

	Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

	
update([E,]**F) → None. Update D from dict/iterable E and F.

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]

	
values() → an object providing a view on D's values

	

	
exception salt.serializers.yaml.ScannerError(context=None, context_mark=None, problem=None, problem_mark=None, note=None)

	

	
exception salt.serializers.yaml.SerializationError(message='')

	Raised when stream of string failed to be serialized

	
salt.serializers.yaml.deserialize(stream_or_string, **options)

	Deserialize any string of stream like object into a Python data structure.

	Parameters:

	
	stream_or_string -- stream or string to deserialize.

	options -- options given to lower yaml module.

	
salt.serializers.yaml.serialize(obj, **options)

	Serialize Python data to YAML.

	Parameters:

	
	obj -- the data structure to serialize

	options -- options given to lower yaml module.

salt.serializers.yamlex

salt.serializers.yamlex

YAMLEX is a format that allows for things like sls files to be
more intuitive.

It's an extension of YAML that implements all the salt magic:
- it implies omap for any dict like.
- it implies that string like data are str, not unicode
- ...

For example, the file states.sls has this contents:

foo:
 bar: 42
 baz: [1, 2, 3]

The file can be parsed into Python like this

from salt.serializers import yamlex

with open('state.sls', 'r') as stream:
 obj = yamlex.deserialize(stream)

Check that obj is an OrderedDict

from salt.utils.odict import OrderedDict

assert isinstance(obj, dict)
assert isinstance(obj, OrderedDict)

yamlex __repr__ and __str__ objects' methods render YAML understandable
string. It means that they are template friendly.

print '{0}'.format(obj)

returns:

{foo: {bar: 42, baz: [1, 2, 3]}}

and they are still valid YAML:

from salt.serializers import yaml
yml_obj = yaml.deserialize(str(obj))
assert yml_obj == obj

yamlex implements also custom tags:

!aggregate

this tag allows structures aggregation.

For example:

placeholder: !aggregate foo
placeholder: !aggregate bar
placeholder: !aggregate baz

is rendered as

placeholder: [foo, bar, baz]

!reset

this tag flushes the computing value.

placeholder: {!aggregate foo: {foo: 42}}
placeholder: {!aggregate foo: {bar: null}}
!reset placeholder: {!aggregate foo: {baz: inga}}

is roughly equivalent to

placeholder: {!aggregate foo: {baz: inga}}

Document is defacto an aggregate mapping.

	
class salt.serializers.yamlex.AggregatedMap

	

	
class salt.serializers.yamlex.AggregatedSequence(iterable=(), /)

	

	
salt.serializers.yamlex.BaseDumper

	alias of SafeDumper

	
salt.serializers.yamlex.BaseLoader

	alias of CSafeLoader

	
exception salt.serializers.yamlex.ConstructorError(context=None, context_mark=None, problem=None, problem_mark=None, note=None)

	

	
exception salt.serializers.yamlex.DeserializationError(message, line_num=None, buf='', marker=' <======================', trace=None)

	Raised when stream of string failed to be deserialized

	
class salt.serializers.yamlex.Dumper(stream, default_style=None, default_flow_style=False, canonical=None, indent=None, width=None, allow_unicode=None, line_break=None, encoding=None, explicit_start=None, explicit_end=None, version=None, tags=None, sort_keys=True)

	sls dumper.

	
represent_odict(data)

	

	
yaml_multi_representers = {<class 'NoneType'>: <function SafeRepresenter.represent_none>, <class 'bytes'>: <function SafeRepresenter.represent_binary>, <class 'str'>: <function SafeRepresenter.represent_str>, <class 'bool'>: <function SafeRepresenter.represent_bool>, <class 'int'>: <function SafeRepresenter.represent_int>, <class 'float'>: <function SafeRepresenter.represent_float>, <class 'list'>: <function SafeRepresenter.represent_list>, <class 'tuple'>: <function SafeRepresenter.represent_list>, <class 'dict'>: <function Dumper.represent_odict>, <class 'set'>: <function SafeRepresenter.represent_set>, <class 'datetime.date'>: <function SafeRepresenter.represent_date>, <class 'datetime.datetime'>: <function SafeRepresenter.represent_datetime>, None: <function SafeRepresenter.represent_undefined>}

	

	
class salt.serializers.yamlex.Loader(stream)

	Create a custom YAML loader that uses the custom constructor. This allows
for the YAML loading defaults to be manipulated based on needs within salt
to make things like sls file more intuitive.

	
DEFAULT_MAPPING_TAG = 'tag:yaml.org,2002:omap'

	

	
DEFAULT_SCALAR_TAG = 'tag:yaml.org,2002:str'

	

	
DEFAULT_SEQUENCE_TAG = 'tag:yaml.org,2002:seq'

	

	
compose_document()

	

	
construct_sls_aggregate(node)

	

	
construct_sls_int(node)

	Verify integers and pass them in correctly is they are declared
as octal

	
construct_sls_reset(node)

	

	
construct_sls_str(node)

	Build the SLSString.

	
construct_yaml_omap(node)

	Build the SLSMap

	
resolve_sls_tag(node)

	

	
yaml_constructors = {'tag:yaml.org,2002:null': <function SafeConstructor.construct_yaml_null>, 'tag:yaml.org,2002:bool': <function SafeConstructor.construct_yaml_bool>, 'tag:yaml.org,2002:int': <function Loader.construct_sls_int>, 'tag:yaml.org,2002:float': <function SafeConstructor.construct_yaml_float>, 'tag:yaml.org,2002:binary': <function SafeConstructor.construct_yaml_binary>, 'tag:yaml.org,2002:timestamp': <function SafeConstructor.construct_yaml_timestamp>, 'tag:yaml.org,2002:omap': <function Loader.construct_yaml_omap>, 'tag:yaml.org,2002:pairs': <function SafeConstructor.construct_yaml_pairs>, 'tag:yaml.org,2002:set': <function SafeConstructor.construct_yaml_set>, 'tag:yaml.org,2002:str': <function Loader.construct_sls_str>, 'tag:yaml.org,2002:seq': <function SafeConstructor.construct_yaml_seq>, 'tag:yaml.org,2002:map': <function SafeConstructor.construct_yaml_map>, None: <function SafeConstructor.construct_undefined>, '!aggregate': <function Loader.construct_sls_aggregate>, '!reset': <function Loader.construct_sls_reset>}

	

	
yaml_multi_constructors = {'tag:yaml.org,2002:binary': <function SafeConstructor.construct_yaml_binary>, 'tag:yaml.org,2002:bool': <function SafeConstructor.construct_yaml_bool>, 'tag:yaml.org,2002:float': <function SafeConstructor.construct_yaml_float>, 'tag:yaml.org,2002:map': <function SafeConstructor.construct_yaml_map>, 'tag:yaml.org,2002:null': <function SafeConstructor.construct_yaml_null>, 'tag:yaml.org,2002:pairs': <function SafeConstructor.construct_yaml_pairs>, 'tag:yaml.org,2002:seq': <function SafeConstructor.construct_yaml_seq>, 'tag:yaml.org,2002:set': <function SafeConstructor.construct_yaml_set>, 'tag:yaml.org,2002:timestamp': <function SafeConstructor.construct_yaml_timestamp>}

	

	
class salt.serializers.yamlex.Map

	Map aggregation.

	
class salt.serializers.yamlex.MappingNode(tag, value, start_mark=None, end_mark=None, flow_style=None)

	
	
id = 'mapping'

	

	
class salt.serializers.yamlex.OrderedDict

	Dictionary that remembers insertion order

	
clear() → None. Remove all items from od.

	

	
copy() → a shallow copy of od

	

	
fromkeys(value=None)

	Create a new ordered dictionary with keys from iterable and values set to value.

	
items() → a set-like object providing a view on D's items

	

	
keys() → a set-like object providing a view on D's keys

	

	
move_to_end(key, last=True)

	Move an existing element to the end (or beginning if last is false).

Raise KeyError if the element does not exist.

	
pop(key[, default]) → v, remove specified key and return the corresponding value.

	If the key is not found, return the default if given; otherwise,
raise a KeyError.

	
popitem(last=True)

	Remove and return a (key, value) pair from the dictionary.

Pairs are returned in LIFO order if last is true or FIFO order if false.

	
setdefault(key, default=None)

	Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

	
update([E,]**F) → None. Update D from dict/iterable E and F.

	If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]

	
values() → an object providing a view on D's values

	

	
class salt.serializers.yamlex.SLSMap

	Ensures that dict str() and repr() are YAML friendly.

>>> mapping = OrderedDict([('a', 'b'), ('c', None)])
>>> print mapping
OrderedDict([('a', 'b'), ('c', None)])

>>> sls_map = SLSMap(mapping)
>>> print sls_map.__str__()
{a: b, c: null}

	
class salt.serializers.yamlex.SLSString

	Ensures that str str() and repr() are YAML friendly.

>>> scalar = str('foo')
>>> print 'foo'
foo

>>> sls_scalar = SLSString(scalar)
>>> print sls_scalar
"foo"

	
exception salt.serializers.yamlex.ScannerError(context=None, context_mark=None, problem=None, problem_mark=None, note=None)

	

	
class salt.serializers.yamlex.Sequence(iterable=(), /)

	Sequence aggregation.

	
exception salt.serializers.yamlex.SerializationError(message='')

	Raised when stream of string failed to be serialized

	
salt.serializers.yamlex.aggregate(obj_a, obj_b, level=False, map_class=<class 'salt.utils.aggregation.Map'>, sequence_class=<class 'salt.utils.aggregation.Sequence'>)

	Merge obj_b into obj_a.

>>> aggregate('first', 'second', True) == ['first', 'second']
True

	
salt.serializers.yamlex.deserialize(stream_or_string, **options)

	Deserialize any string of stream like object into a Python data structure.

	Parameters:

	
	stream_or_string -- stream or string to deserialize.

	options -- options given to lower yaml module.

	
salt.serializers.yamlex.merge_recursive(obj_a, obj_b, level=False)

	Merge obj_b into obj_a.

	
salt.serializers.yamlex.serialize(obj, **options)

	Serialize Python data to YAML.

	Parameters:

	
	obj -- the data structure to serialize

	options -- options given to lower yaml module.

state modules

	acme

	ACME / Let's Encrypt certificate management state

	alias

	Configuration of email aliases

	alternatives

	Configuration of the alternatives system

	ansiblegate

	Execution of Ansible modules from within states

	apache

	

	apache_conf

	

	apache_module

	

	apache_site

	

	aptpkg

	Package management operations specific to APT- and DEB-based systems

	archive

	Extract an archive

	artifactory

	This state downloads artifacts from artifactory.

	at

	Configuration disposable regularly scheduled tasks for at.

	augeas

	Configuration management using Augeas

	aws_sqs

	Manage SQS Queues

	beacon

	Management of the Salt beacons

	bigip

	A state module designed to enforce load-balancing configurations for F5 Big-IP entities.

	blockdev

	Management of Block Devices

	boto3_elasticache

	Manage Elasticache with boto3

	boto3_elasticsearch

	Manage Elasticsearch Service

	boto3_route53

	Manage Route53 records with Boto 3

	boto3_sns

	Manage SNS Topics

	boto_apigateway

	Manage Apigateway Rest APIs

	boto_asg

	Manage Autoscale Groups

	boto_cfn

	Connection module for Amazon Cloud Formation

	boto_cloudfront

	Manage CloudFront distributions

	boto_cloudtrail

	Manage CloudTrail Objects

	boto_cloudwatch_alarm

	Manage Cloudwatch alarms

	boto_cloudwatch_event

	Manage CloudTrail Objects

	boto_cognitoidentity

	Manage CognitoIdentity Functions

	boto_datapipeline

	Manage Data Pipelines

	boto_dynamodb

	Manage DynamoDB Tables

	boto_ec2

	Manage EC2

	boto_elasticache

	Manage Elasticache

	boto_elasticsearch_domain

	Manage Elasticsearch Domains

	boto_elb

	Manage ELBs

	boto_elbv2

	Manage AWS Application Load Balancer

	boto_iam

	Manage IAM objects

	boto_iam_role

	Manage IAM roles

	boto_iot

	Manage IoT Objects

	boto_kinesis

	Manage Kinesis Streams

	boto_kms

	Manage KMS keys, key policies and grants.

	boto_lambda

	Manage Lambda Functions

	boto_lc

	Manage Launch Configurations

	boto_rds

	Manage RDSs

	boto_route53

	Manage Route53 records

	boto_s3

	Manage S3 Resources

	boto_s3_bucket

	Manage S3 Buckets

	boto_secgroup

	Manage Security Groups

	boto_sns

	Manage SNS Topics

	boto_sqs

	Manage SQS Queues

	boto_vpc

	Manage VPCs

	bower

	Installation of Bower Packages

	btrfs

	Manage BTRFS file systems.

	cabal

	Installation of Cabal Packages

	ceph

	Manage ceph with salt.

	chef

	Execute Chef client runs

	chocolatey

	Manage Windows Packages using Chocolatey .

	chronos_job

	Configure Chronos jobs via a salt proxy.

	cimc

	A state module to manage Cisco UCS chassis devices.

	cisconso

	State module for Cisco NSO Proxy minions

	cloud

	Using states instead of maps to deploy clouds

	cmd

	Execution of arbitrary commands

	composer

	Installation of Composer Packages

	consul

	Consul Management

	cron

	Management of cron, the Unix command scheduler

	cryptdev

	Opening of Encrypted Devices

	csf

	CSF Ip tables management

	cyg

	Installation of Cygwin packages.

	ddns

	Dynamic DNS updates

	debconfmod

	Management of debconf selections

	dellchassis

	Manage chassis via Salt Proxies.

	disk

	Disk monitoring state

	docker_container

	

	docker_image

	

	docker_network

	

	docker_volume

	

	drac

	Management of Dell DRAC

	dvs

	Manage VMware distributed virtual switches (DVSs) and their distributed virtual portgroups (DVportgroups).

	elasticsearch

	State module to manage Elasticsearch.

	elasticsearch_index

	State module to manage Elasticsearch indices

	elasticsearch_index_template

	State module to manage Elasticsearch index templates

	environ

	Support for getting and setting the environment variables of the current salt process.

	eselect

	Management of Gentoo configuration using eselect

	esxcluster

	Manage VMware ESXi Clusters.

	esxdatacenter

	Salt states to create and manage VMware vSphere datacenters (datacenters).

	esxi

	Manage VMware ESXi Hosts.

	esxvm

	Salt state to create, update VMware ESXi Virtual Machines.

	etcd_mod

	Manage etcd Keys

	ethtool

	Configuration of network device

	event

	Send events through Salt's event system during state runs

	file

	Operations on regular files, special files, directories, and symlinks

	firewall

	State to check firewall configurations

	firewalld

	Management of firewalld

	gem

	Installation of Ruby modules packaged as gems

	git

	States to manage git repositories and git configuration

	github

	Github User State Module

	glance_image

	Management of OpenStack Glance Images

	glassfish

	Manage Glassfish/Payara server .

	glusterfs

	Manage GlusterFS pool.

	gnomedesktop

	Configuration of the GNOME desktop

	gpg

	Manage GPG keychains

	grafana

	Manage Grafana Dashboards

	grafana4_dashboard

	Manage Grafana v4.0 Dashboards

	grafana4_datasource

	Manage Grafana v4.0 data sources

	grafana4_org

	Manage Grafana v4.0 orgs

	grafana4_user

	Manage Grafana v4.0 users

	grafana_dashboard

	Manage Grafana v2.0 Dashboards

	grafana_datasource

	Manage Grafana v2.0 data sources

	grains

	Manage grains on the minion

	group

	Management of user groups

	heat

	Management of Heat

	helm

	

	hg

	Interaction with Mercurial repositories

	highstate_doc

	To be used with processors in module highstate_doc.

	host

	Management of addresses and names in hosts file

	http

	HTTP monitoring states

	icinga2

	Icinga2 state

	idem

	Idem Support

	ifttt

	Trigger an event in IFTTT

	incron

	Management of incron, the inotify cron

	influxdb08_database

	Management of Influxdb 0.8 databases

	influxdb08_user

	Management of InfluxDB 0.8 users

	influxdb_continuous_query

	Management of Influxdb continuous queries

	influxdb_database

	Management of Influxdb databases

	influxdb_retention_policy

	Management of Influxdb retention policies

	influxdb_user

	Management of InfluxDB users

	infoblox_a

	Infoblox A record management.

	infoblox_cname

	Infoblox CNAME management.

	infoblox_host_record

	Infoblox host record management.

	infoblox_range

	Infoblox host record management.

	ini_manage

	Manage ini files

	ipmi

	Manage IPMI devices over LAN

	ipset

	Management of ipsets

	iptables

	Management of iptables

	jboss7

	Manage JBoss 7 Application Server via CLI interface

	jenkins

	Management of Jenkins

	junos

	State modules to interact with Junos devices.

	kapacitor

	Kapacitor state module.

	kernelpkg

	Manage kernel packages and active kernel version

	keyboard

	Management of keyboard layouts

	keystone

	Management of Keystone users

	keystone_domain

	Management of OpenStack Keystone Domains

	keystone_endpoint

	Management of OpenStack Keystone Endpoints

	keystone_group

	Management of OpenStack Keystone Groups

	keystone_project

	Management of OpenStack Keystone Projects

	keystone_role

	Management of OpenStack Keystone Roles

	keystone_role_grant

	Management of OpenStack Keystone Role Grants

	keystone_service

	Management of OpenStack Keystone Services

	keystone_user

	Management of OpenStack Keystone Users

	keystore

	State management of a java keystore

	kmod

	Loading and unloading of kernel modules

	kubernetes

	

	layman

	Management of Gentoo Overlays using layman

	ldap

	Manage entries in an LDAP database

	libcloud_dns

	Manage DNS records and zones using libcloud

	libcloud_loadbalancer

	Apache Libcloud Load Balancer State

	libcloud_storage

	Apache Libcloud Storage State

	linux_acl

	Linux File Access Control Lists

	locale

	Management of languages/locales

	logadm

	Management of logs using Solaris logadm.

	logrotate

	Module for managing logrotate.

	loop

	Loop state

	lvm

	Management of Linux logical volumes

	lvs_server

	Management of LVS (Linux Virtual Server) Real Server

	lvs_service

	Management of LVS (Linux Virtual Server) Service

	lxc

	Manage Linux Containers

	lxd

	Manage LXD profiles.

	lxd_container

	Manage LXD containers.

	lxd_image

	Manage LXD images.

	lxd_profile

	Manage LXD profiles.

	mac_assistive

	Allows you to manage assistive access on macOS minions with 10.9+

	mac_keychain

	Installing of certificates to the keychain

	mac_xattr

	Allows you to manage extended attributes on files or directories

	macdefaults

	Writing/reading defaults from a macOS minion

	macpackage

	Installing of mac pkg files

	makeconf

	Management of Gentoo make.conf

	marathon_app

	Configure Marathon apps via a salt proxy.

	mdadm_raid

	Managing software RAID with mdadm

	memcached

	States for Management of Memcached Keys

	modjk

	State to control Apache modjk

	modjk_worker

	Manage modjk workers

	module

	Execution of Salt modules from within states

	mongodb_database

	Management of MongoDB Databases

	mongodb_user

	Management of MongoDB Users

	monit

	Monit state

	mount

	Mounting of filesystems

	mssql_database

	Management of Microsoft SQLServer Databases

	mssql_login

	Management of Microsoft SQLServer Logins

	mssql_role

	Management of Microsoft SQLServer Databases

	mssql_user

	Management of Microsoft SQLServer Users

	msteams

	Send a message card to Microsoft Teams

	mysql_database

	Management of MySQL databases (schemas)

	mysql_grants

	Management of MySQL grants (user permissions)

	mysql_query

	Execution of MySQL queries

	mysql_user

	Management of MySQL users

	net_napalm_yang

	NAPALM YANG state

	netacl

	Network ACL

	netconfig

	Network Config

	netntp

	Network NTP

	netsnmp

	Network SNMP

	netusers

	Network Users

	network

	Configuration of network interfaces

	neutron_network

	Management of OpenStack Neutron Networks

	neutron_secgroup

	Management of OpenStack Neutron Security Groups

	neutron_secgroup_rule

	Management of OpenStack Neutron Security Group Rules

	neutron_subnet

	Management of OpenStack Neutron Subnets

	nexus

	This state downloads artifacts from Nexus 3.x.

	nfs_export

	Management of NFS exports

	nftables

	Management of nftables

	npm

	Installation of NPM Packages

	ntp

	Management of NTP servers

	nxos

	State module for Cisco NX-OS Switch Proxy and Native minions

	nxos_upgrade

	Manage NX-OS System Image Upgrades.

	openstack_config

	Manage OpenStack configuration file settings.

	openvswitch_bridge

	Management of Open vSwitch bridges.

	openvswitch_db

	Management of Open vSwitch database records.

	openvswitch_port

	Management of Open vSwitch ports.

	opsgenie

	Create/Close an alert in OpsGenie

	pagerduty

	Create an Event in PagerDuty

	pagerduty_escalation_policy

	Manage PagerDuty escalation policies.

	pagerduty_schedule

	Manage PagerDuty schedules.

	pagerduty_service

	Manage PagerDuty services

	pagerduty_user

	Manage PagerDuty users.

	panos

	A state module to manage Palo Alto network devices.

	pbm

	Manages VMware storage policies (called pbm because the vCenter endpoint is /pbm)

	pcs

	Management of Pacemaker/Corosync clusters with PCS

	pdbedit

	Manage accounts in Samba's passdb using pdbedit

	pecl

	Installation of PHP Extensions Using pecl

	pip_state

	Installation of Python Packages Using pip

	pkg

	Installation of packages using OS package managers such as yum or apt-get

	pkgbuild

	The pkgbuild state is the front of Salt package building backend.

	pkgng

	Manage package remote repo using FreeBSD pkgng

	pkgrepo

	Management of APT/DNF/YUM/Zypper package repos

	portage_config

	Management of Portage package configuration on Gentoo

	ports

	Manage software from FreeBSD ports

	postgres_cluster

	Management of PostgreSQL clusters

	postgres_database

	Management of PostgreSQL databases

	postgres_extension

	Management of PostgreSQL extensions

	postgres_group

	Management of PostgreSQL groups (roles)

	postgres_initdb

	Initialization of PostgreSQL data directory

	postgres_language

	Management of PostgreSQL languages

	postgres_privileges

	Management of PostgreSQL Privileges

	postgres_schema

	Management of PostgreSQL schemas

	postgres_tablespace

	Management of PostgreSQL tablespace

	postgres_user

	Management of PostgreSQL users (roles)

	powerpath

	Powerpath configuration support

	probes

	Network Probes

	process

	Process Management

	proxy

	Allows you to manage proxy settings on minions

	pushover

	

	pyenv

	Managing python installations with pyenv

	pyrax_queues

	Manage Rackspace Queues

	quota

	Management of POSIX Quotas

	rabbitmq_cluster

	Manage RabbitMQ Clusters

	rabbitmq_plugin

	Manage RabbitMQ Plugins

	rabbitmq_policy

	Manage RabbitMQ Policies

	rabbitmq_upstream

	Manage RabbitMQ Upstreams

	rabbitmq_user

	Manage RabbitMQ Users

	rabbitmq_vhost

	Manage RabbitMQ Virtual Hosts

	rbac_solaris

	Management of Solaris RBAC

	rbenv

	Managing Ruby installations with rbenv

	rdp

	Manage RDP Service on Windows servers

	redismod

	Management of Redis server

	reg

	Manage the Windows registry

	restconf

	RESTCONF State module for Proxy minions

	rsync

	State to synchronize files and directories with rsync.

	rvm

	Managing Ruby installations and gemsets with Ruby Version Manager (RVM)

	salt_proxy

	Salt proxy state

	saltmod

	Control the Salt command interface

	saltutil

	Saltutil State

	schedule

	Management of the Salt scheduler

	selinux

	Management of SELinux rules

	serverdensity_device

	Monitor Server with Server Density

	service

	Starting or restarting of services and daemons

	slack

	Send a message to Slack

	smartos

	Management of SmartOS Standalone Compute Nodes

	smtp

	Sending Messages via SMTP

	snapper

	Managing implicit state and baselines using snapshots

	solrcloud

	States for solrcloud alias and collection configuration

	splunk

	Splunk User State Module

	splunk_search

	Splunk Search State Module

	sqlite3

	Management of SQLite3 databases

	ssh_auth

	Control of entries in SSH authorized_key files

	ssh_known_hosts

	Control of SSH known_hosts entries

	stateconf

	Stateconf System

	status

	Minion status monitoring

	statuspage

	StatusPage

	supervisord

	Interaction with the Supervisor daemon

	svn

	Manage SVN repositories

	sysctl

	Configuration of the kernel using sysctl

	sysfs

	Configuration of the kernel using sysfs

	syslog_ng

	State module for syslog_ng

	sysrc

	State to work with sysrc

	telemetry_alert

	Manage Telemetry alert configurations

	test

	Test States

	testinframod

	

	timezone

	Management of timezones

	tls

	Enforce state for SSL/TLS

	tomcat

	Manage Apache Tomcat web applications

	trafficserver

	Control Apache Traffic Server

	tuned

	Interface to Red Hat tuned-adm module

	uptime

	Monitor Web Server with Uptime

	user

	Management of user accounts.

	vagrant

	Manage Vagrant VMs

	vault

	

	vbox_guest

	VirtualBox Guest Additions installer state

	victorops

	Create an Event in VictorOps

	virt

	Manage virt

	virtualenv_mod

	Setup of Python virtualenv sandboxes.

	webutil

	Support for htpasswd module.

	win_appx

	Manage Microsoft Store apps on Windows.

	win_certutil

	Installing of certificates to the Windows Certificate Manager

	win_dacl

	Windows Object Access Control Lists

	win_dism

	Installing of Windows features using DISM

	win_dns_client

	Module for configuring DNS Client on Windows systems

	win_firewall

	State for configuring Windows Firewall

	win_iis

	Microsoft IIS site management

	win_lgpo

	Manage Windows Local Group Policy

	win_lgpo_reg

	LGPO - Registry.pol

	win_license

	Installation and activation of windows licenses

	win_network

	Configuration of network interfaces on Windows hosts

	win_path

	Manage the Windows System PATH

	win_pki

	Microsoft certificate management via the Pki PowerShell module.

	win_powercfg

	This module allows you to control the power settings of a windows minion via powercfg.

	win_servermanager

	Manage Windows features via the ServerManager powershell module.

	win_shortcut

	State module for creating shortcuts on Windows.

	win_smtp_server

	Module for managing IIS SMTP server configuration on Windows servers.

	win_snmp

	Module for managing SNMP service settings on Windows servers.

	win_system

	Management of Windows system information

	win_task

	State module for adding and removing scheduled tasks using the Windows Task Scheduler.

	win_wua

	Installation of Windows Updates using the Windows Update Agent

	win_wusa

	Microsoft Updates (KB) Management

	winrepo

	Manage Windows Package Repository

	wordpress

	This state module is used to manage Wordpress installations

	x509

	Manage X509 Certificates

	x509_v2

	Manage X.509 certificates

	xml

	XML Manager

	xmpp

	Sending Messages over XMPP

	zabbix_action

	

	zabbix_host

	

	zabbix_hostgroup

	

	zabbix_mediatype

	

	zabbix_template

	

	zabbix_user

	

	zabbix_usergroup

	

	zabbix_usermacro

	

	zabbix_valuemap

	

	zcbuildout

	Management of zc.buildout

	zenoss

	State to manage monitoring in Zenoss.

	zfs

	States for managing zfs datasets

	zk_concurrency

	Control concurrency of steps within state execution using zookeeper

	zone

	Management of Solaris Zones

	zookeeper

	Zookeeper State

	zpool

	States for managing zpools

salt.states.acme

ACME / Let's Encrypt certificate management state

New in version 2016.3.0.

See also the module documentation

reload-gitlab:
 cmd.run:
 - name: gitlab-ctl hup

dev.example.com:
 acme.cert:
 - aliases:
 - gitlab.example.com
 - email: acmemaster@example.com
 - webroot: /opt/gitlab/embedded/service/gitlab-rails/public
 - renew: 14
 - fire_event: acme/dev.example.com
 - onchanges_in:
 - cmd: reload-gitlab

	
salt.states.acme.cert(name, aliases=None, email=None, webroot=None, test_cert=False, renew=None, keysize=None, server=None, owner='root', group='root', mode='0640', certname=None, preferred_challenges=None, tls_sni_01_port=None, tls_sni_01_address=None, http_01_port=None, http_01_address=None, dns_plugin=None, dns_plugin_credentials=None, manual_auth_hook=None, manual_cleanup_hook=None)

	Obtain/renew a certificate from an ACME CA, probably Let's Encrypt.

	Parameters:

	
	name -- Common Name of the certificate (DNS name of certificate)

	aliases -- subjectAltNames (Additional DNS names on certificate)

	email -- e-mail address for interaction with ACME provider

	webroot -- True or a full path to webroot. Otherwise use standalone mode

	test_cert -- Request a certificate from the Happy Hacker Fake CA (mutually exclusive with 'server')

	renew -- True/'force' to force a renewal, or a window of renewal before expiry in days

	keysize -- RSA key bits

	server -- API endpoint to talk to

	owner -- owner of the private key file

	group -- group of the private key file

	mode -- mode of the private key file

	certname -- Name of the certificate to save

	preferred_challenges -- A sorted, comma delimited list of the preferred
challenge to use during authorization with the
most preferred challenge listed first.

	tls_sni_01_port -- Port used during tls-sni-01 challenge. This only affects
the port Certbot listens on. A conforming ACME server
will still attempt to connect on port 443.

	tls_sni_01_address -- The address the server listens to during tls-sni-01
challenge.

	http_01_port -- Port used in the http-01 challenge. This only affects
the port Certbot listens on. A conforming ACME server
will still attempt to connect on port 80.

	https_01_address -- The address the server listens to during http-01 challenge.

	dns_plugin -- Name of a DNS plugin to use (currently only 'cloudflare')

	dns_plugin_credentials -- Path to the credentials file if required by the specified DNS plugin

	manual_auth_hook -- Path to the authentication hook script.

	manual_cleanup_hook -- Path to the cleanup or post-authentication hook script.

