SALTSTACK

Salt Documentation
Release 3007.5

VMware, Inc.

Jun 26, 2025

CONTENTS

Salt Project 1
1.1 AboutSalt e 1
1.2 AbOUt OuUr SPONSOTS v v v it e e e e e e 2
1.3 Download andinstall Salt 2
1.4 Technical support L e 2
1.5 Salt Project documentation i e e 3
1.6 Security advisories 3
1.7 Joinour community e e e e e e e e 3
1.8 License. e e 4
Introduction to Salt 5
2.1 The 30 second SUMMATYttt v it et e e e e e 5
2.2 Simplicity e 5
2.3 Parallelexecution e 5
24 Buildson proventechnology 6
2.5 Pythonclientinterface L 6
2.6 Fast, flexible, scalable e 6
2.7 0PN . . .o e 6
Salt system architecture 7
3.1 OVEIVIEW oo 7
3.2 WhatisSalt? e 7
3.3 The Salt system architecture L 7
Contributing to Salt: A Guide for Contributors 13
4.1 Choosing the Right Branch for Your PullRequest 13
4.2 Setting Up Your Salt Development Environment 14
4.3 Saltissues e e 16
44 Hackingaway oo e e 17
4.5 Troubleshooting e 22
Salt Project maintenance policies 25
51 Issuemanagement e 25
5.2 Pullrequest management e e 26
5.3 Salt Enhancement Proposals (SEP) process o i 26
Installation 27
Configuring Salt 29
7.1 Configuring Salt 29
7.2 Configuring the Salt Master e 32

10

11

12

13

7.3 Configuring the Salt Minion o e
7.4 Configuring the Salt Proxy Minion
7.5 Deltaproxy minions
7.6 Configuration file examples L L e
7.7 Minion Blackout Configuration L e
7.8 Access Control System
7.9 JobManagement e
7.10 Managing the Job Cache e
7.11 Storing Job Results in an External Systemo L L oL oL
712 LoggINg
7.13 External Logging Handlers.
7.14 SaltFile Server e
7.15 Git Fileserver Backend Walkthrough L L
7.16 MinionFS Backend Walkthrough L
7.17 Salt Package Manager i e e
7.18 Storing Data in Other Databases e
7.19 Running the Salt Master/Minion as an Unprivileged User
7.20 Using cronwith Salt e
7.21 Use cron to initiate a highstate L L
7.22 Hardening Salt
7.23 Security disclosure policy
7.24 SaltChannels e
7.25 Salt Transport L L e e e
7.26 Master Tops System e
7.27 Renderers e e
Using Salt

81 Grains
8.2 Storing Static Datainthe Pillaro Lo L
8.3 Targeting Minions e
84 TheSaltMine e
85 Runners e
8.6 SaltEngines e e
8.7 WhatisYAMLand How ToUselt. it
8.8 Understanding Jinja e e
8.9 TutorialsIndex e
8.10 Troubleshooting e
8.11 Frequently Asked Questions e
8.12 Salt Best Practices. o i i i e e
Remote Execution

9.1 Running Commands on Salt Minions e
9.2 Writing Execution Modules L
93 Returners
9.4 EXecutors

Configuration Management
10.1 State System Reference L

Return Codes
11.1 Retcode Passthrough L

Utility Modules - Code Reuse in Custom Modules

Events & Reactor

359
359
364
382
392
396
398
399
401
437
560
577
585

595
595
597
608
628

631
632

705
705

707

711

13.1
13.2
13.3

Event System . . .
Beacons
Reactor System . .

14 Orchestration

14.1

Orchestrate Runner

15 Solaris
Solaris-specific Behaviour L

15.1

16 Salt SSH

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

16.11

Getting Started . .
Salt SSH Roster . .

Deploy sshkey forsalt-ssh. o

Calling Salt SSH . .
States Via Salt SSH

Targeting with Salt SSH o e
Configuring Salt SSH L e
Running Salt SSH as non-root user i
Define CLI Options with Saltfile
16.10 Advanced options with salt-ssh L L

Debugging salt-ssh

16.12 Different Python Versions L

17 Thorium Complex Reactor
Starting the Thorium Engine e

17.1
17.2
17.3
17.4

Thorium Modules .

Writing Thorium Formulaso
The Thorium Register e

18 Salt Cloud

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9
18.10
18.11
18.12
18.13

Configuration . . .

Configuration Inheritance L

QuickStart
Using Salt Cloud .
Core Configuration

Windows Configuration e
Cloud Provider Specifics e
Miscellaneous Options vt i it i e e
Troubleshooting Steps L e
Extending Salt Cloud
Using Salt Cloud from Salt

Feature Comparison

Tutorials

19 Salt Proxy Minion

19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8

New in 2017.7.0 . .
New in 2016.11.0 .
New in 2016.3 . . .
New in 2015.8.2 . .
New in 2015.8 . . .
Getting Started . .

The __proxyenabled__ directive L

SSH Proxymodules

739
739

751
751

753
753
753
754
754
755
755
756
756
756
757
757
761

763
763
763
763
766

769
769
769
770
770
781
793
796
930
936
939
949
954
958

965
965
966
966
967
967
967
976
979

20

21

22

23

24

25

26

Network Automation

20.1 New in Carbon (2016.11) e e e e e e
20.2 NAPALM . . .
203 JUNOS . o v o oo e e e e,

Salt Virt
21.1 Salt Virt Tutorial e

Onedir Packaging

22.1 Relenvonedir packaging
22.2 Docker Containers e
223 Package Grain.
224 Howtobuildonedironly
22,5 Howtobuild rpm packages
22.6 Howtobuilddebpackages. L e
22.7 How to build MacOS packages e
22.8 How to build Windows packages
229 Howtoaccess pythonbinary e
22.10 Testing the packages

Command Line Reference

23.1 salt-api. e e
23.2 salt-call e
233 salt ..o
234 salt-cloud e
235 salt-Cp . . .
23.6 salt-extend L e e
237 salt-key ..o
23.8 salt-master. e
239 salt-minion e e
23.10 Salt-ProXy o o e e e
2311 salt-run e e e
23.12 salt-sshi. o
23.13 salt-syndic L e
2314 SPIML e e e

Pillars
Master Tops

Salt Module Reference

26.1 authmodules e e e
26.2 beaconmodules e e
26.3 cachemodules e
264 cloudmodules. e
26.5 enginemodules
26.6 executionmodules e
26.7 executorsmodules e e
26.8 fileserver modules L e e
269 grainsmodules
26.10 netapimodules L
26.11 outputmodules L e

987
987
987
994

999
999
1000
1000
1000

1003
1003
1003
1003
1003
1004
1004
1005
1005
1006
1006

1009
1009
1010
1013
1017
1017
1019
1020
1024
1025
1027
1028
1029
1033
1034

27

28

29

30

31

32

26.12 pillarmodules L e
26.13 proxy modules
26.14 queuemodules
26.15 rostermodules
26.16 runner modules L. L
26.17 sdbmodules L e e
26.18 serializer modules. e e
26.19 statemodules e e
26.20 thorium modules
26.21 tokenmodules
26.22 master topsmodules
26.23 wheel modules e

APIs
27.1 Pythonclient APL o e e
27.2 netapimodules e

Architecture
28.1 High Availability Featuresin Salt
282 SaltSyndic. e

Minion Data Cache
29.1 Pluggable Data Cache e
29.2 Configuring the Minion Data Cache

Slots

30.1 Execution functions e e
30.2 Example Usage o o ot i i e
30.3 Execution module returns as file contentsordata

Windows

31.1 Multi-minion setup on Windows L e e
31.2 Windows Package Manager
31.3 Windows-specific Behaviour

Developing Salt

32,1 OVEIVIEW o oo it
322 SaltClient e e
323 Salt Master e
324 SaltMinion e
32.5 ANoteon ClearFuncs vs. AESFuncs
32.6 Changelog e
32.7 Contributing to Salt: A Guide for Contributors
32.8 Deprecating Code L e
329 Python 2 Deprecation FAQ L
32.10 Installing Salt for development e
32.11 GitHub Labels and Milestones e
32.12 Logging Internals o e e
32.13 Package Providers e
32.14 PullRequests o L
32.15 Pull Request Requirements o i e e
32.16 Pull Request CI/CD test suite i it i it et e e e e e e
32.17 Release NOtes o i i i e
32.18 Reporting Bugs
32.19 Salt EXtensions o i it e e e

32.20 Salt Topology o o e 2844
32.21 Developing Salt Tutorial e 2844
32.22 Modular Systems L 2848
32.23 Salt Extend e 2864
32.24 Salt's Test Suite e 2867
32.25 Integration Tests o L L e e 2874
32.26 Writing Unit Tests o o o 0 o i e 2885
32.27 SaltStack GitPolicy o 2901
32.28 Salt Conventions e 2902
32.29 Salt code and internals e e 2933
32.30 Salt Community Projects L e 2944
33 Release notes 2947
33.1 Upcomingrelease e e 2947
33.2 Previousreleases e 2947
34 Venafi Tools for Salt 4445
34.1 Introduction e 4445
34.2 Runner Functions e e e e e 4446
34.3 Transfer certificate to aminion e e e 4447
35 Glossary 4449
Salt Module Index 4453
HTTP Routing Table 4459

vi

CHAPTER

ONE

SALT PROJECT

license Apache-2.0

pypl downloads [S4kfmanth

discord SaltProject

Follow risaltstack 5.6k

Follow @Salt_Project_0S

SALT

PROJECT

« Latest Salt Documentation
« Open an issue (bug report, feature request, etc.)

Salt is the world's fastest, most intelligent and scalable automation engine.

1.1 About Salt

Built on Python, Salt is an event-driven automation tool and framework to deploy, configure, and manage complex
IT systems. Use Salt to automate common infrastructure administration tasks and ensure that all the components of
your infrastructure are operating in a consistent desired state.

Salt has many possible uses, including configuration management, which involves:
« Managing operating system deployment and configuration.

« Installing and configuring software applications and services.

https://github.com/saltstack/salt/blob/master/LICENSE
https://pypi.org/project/salt
https://discord.com/invite/J7b7EscrAs
https://www.reddit.com/r/saltstack/
https://twitter.com/intent/follow?screen_name=Salt_Project_OS
https://docs.saltproject.io/en/latest/
https://github.com/saltstack/salt/issues/new/choose

Salt Documentation, Release 3007.5

« Managing servers, virtual machines, containers, databases, web servers, network devices, and more.
« Ensuring consistent configuration and preventing configuration drift.

Salt is ideal for configuration management because it is pluggable, customizable, and plays well with many existing
technologies. Salt enables you to deploy and manage applications that use any tech stack running on nearly any
operating system, including different types of network devices such as switches and routers from a variety of vendors.

In addition to configuration management Salt can also:

« Automate and orchestrate routine IT processes, such as common required tasks for scheduled server down-
times or upgrading operating systems or applications.

+ Create self-aware, self-healing systems that can automatically respond to outages, common administration
problems, or other important events.

1.2 About our sponsors

Salt powers VMware by Broadcom's Tanzu Salt (previously Aria Automation Config / vRealize Automation SaltStack
Config / SaltStack Enterprise), and can be found under the hood of products from Juniper, Cisco, Cloudflare, Nutanix,
SUSE, and Tieto, to name a few.

The original sponsor of our community, SaltStack, was acquired by VMware in 2020. VMware was later acquired by
Broadcom in 2023. The Salt Project remains an open source ecosystem that Broadcom supports and contributes to.
Broadcom ensures the code integrity and quality of the Salt modules by acting as the official sponsor and manager
of the Salt project. Many of the core Salt Project contributors are also Broadcom employees. This team carefully
reviews and enhances the Salt modules to ensure speed, quality, and security.

1.3 Download and install Salt

Salt is tested and packaged to run on CentOS, Debian, RHEL, Ubuntu, MacOS, Windows, and more. Download Salt
and get started now. See supported operating systems for more information.

To download and install Salt, see:
« The Salt install guide
— Salt Project Repository: Linux (RPM) - Where Salt rpm packages are officially stored and distributed.
— Salt Project Repository: Linux (DEB) - Where Salt deb packages are officially stored and distributed.

— Salt Project Repository: GENERIC - Where Salt Windows, macOS, etc. (non-rpm, non-deb) packages
are officially stored and distributed.

1.4 Technical support

Report bugs or problems using Salt by opening an issue: https://github.com/saltstack/salt/issues

To join our community forum where you can exchange ideas, best practices, discuss technical support questions,
and talk to project maintainers, join our Discord server: Salt Project Community Discord

2 Chapter 1. Salt Project

https://docs.saltproject.io/salt/install-guide/en/latest/topics/salt-supported-operating-systems.html
https://www.vmware.com/products/app-platform/tanzu-salt
https://investors.broadcom.com/news-releases/news-release-details/broadcom-completes-acquisition-vmware
https://investors.broadcom.com/news-releases/news-release-details/broadcom-completes-acquisition-vmware
https://docs.saltproject.io/salt/install-guide/en/latest/topics/salt-supported-operating-systems.html
https://docs.saltproject.io/salt/install-guide/en/latest/index.html
https://packages.broadcom.com/artifactory/saltproject-rpm
https://packages.broadcom.com/artifactory/saltproject-deb
https://packages.broadcom.com/artifactory/saltproject-generic
https://github.com/saltstack/salt/issues
https://discord.com/invite/J7b7EscrAs

Salt Documentation, Release 3007.5

1.5 Salt Project documentation

Installation instructions, tutorials, in-depth API and module documentation:
« The Salt install guide
« The Salt user guide
« Latest Salt documentation

« Salt's contributing guide

1.6 Security advisories

Keep an eye on the Salt Project Security Announcements landing page. Salt Project recommends subscribing to
the Salt Project Security RSS feed to receive notification when new information is available regarding security an-
nouncements.

Other channels to receive security announcements include the Salt Community mailing list and the Salt Project
Community Discord.

1.6.1 Responsibly reporting security vulnerabilities

When reporting security vulnerabilities for Salt or other SaltStack projects, refer to the SECURITY.md file found in
this repository.

1.7 Join our community

Salt is built by the Salt Project community, which includes more than 3,000 contributors working in roles just like
yours. This well-known and trusted community works together to improve the underlying technology and extend
Salt by creating a variety of execution and state modules to accomplish the most common tasks or solve the most
important problems that people in your role are likely to face.

If you want to help extend Salt or solve a problem with Salt, you can join our community and contribute today.
Please be sure to review our Code of Conduct. Also, check out some of our community resources including:

« Salt Project Community Discord

« Salt Project YouTube channel

« Salt Project Community Notes and Wiki

There are lots of ways to get involved in our community. Every month, there are around a dozen opportunities to
meet with other contributors and the Salt Core team and collaborate in real time. The best way to keep track is by
subscribing to the Salt Project Community Events Calendar on the main https://saltproject.io website.

If you have additional questions, email us at saltproject.pdl@broadcom.com or reach out directly to the Community
Discord. We'd be glad to have you join our community!

1.5. Salt Project documentation 3

https://docs.saltproject.io/salt/install-guide/en/latest/index.html
https://docs.saltproject.io/salt/user-guide/en/latest/
https://docs.saltproject.io/en/latest/
https://docs.saltproject.io/en/master/topics/development/contributing.html
https://saltproject.io/security-announcements/
https://saltproject.io/security-announcements/index.xml
https://groups.google.com/forum/#!forum/salt-users
https://discord.com/invite/J7b7EscrAs
https://discord.com/invite/J7b7EscrAs
https://github.com/saltstack/salt/blob/master/SECURITY.md
https://github.com/saltstack/salt/blob/master/CODE_OF_CONDUCT.md
https://discord.com/invite/J7b7EscrAs
https://www.youtube.com/channel/UCpveTIucFx9ljGelW63-BWg
https://github.com/saltstack/community/
https://saltproject.io
mailto:saltproject.pdl@broadcom.com

Salt Documentation, Release 3007.5

1.8 License

Salt is licensed under the Apache 2.0 license. Please see the LICENSE file for the full text of the Apache license,
followed by a full summary of the licensing used by external modules.

A complete list of attributions and dependencies can be found here: salt/DEPENDENCIES.md

4 Chapter 1. Salt Project

https://github.com/saltstack/salt/blob/master/LICENSE
https://github.com/saltstack/salt/blob/master/DEPENDENCIES.md

CHAPTER

TWO

INTRODUCTION TO SALT

We’re not just talking about NaCl.
2.1 The 30 second summary

Salt is:

« A configuration management system. Salt is capable of maintaining remote nodes in defined states. For
example, it can ensure that specific packages are installed and that specific services are running.

« A distributed remote execution system used to execute commands and query data on remote nodes. Salt
can query and execute commands either on individual nodes or by using an arbitrary selection criteria.

It was developed in order to bring the best solutions found in the world of remote execution together and make them
better, faster, and more malleable. Salt accomplishes this through its ability to handle large loads of information, and
not just dozens but hundreds and even thousands of individual servers quickly through a simple and manageable
interface.

2.2 Simplicity

Providing versatility between massive scale deployments and smaller systems may seem daunting, but Salt is very
simple to set up and maintain, regardless of the size of the project. The architecture of Salt is designed to work with
any number of servers, from a handful of local network systems to international deployments across different data
centers. The topology is a simple server/client model with the needed functionality built into a single set of daemons.
While the default configuration will work with little to no modification, Salt can be fine tuned to meet specific needs.

2.3 Parallel execution

The core functions of Salt:
« enable commands to remote systems to be called in parallel rather than serially
« use a secure and encrypted protocol
« use the smallest and fastest network payloads possible
« provide a simple programming interface

Salt also introduces more granular controls to the realm of remote execution, allowing systems to be targeted not
just by hostname, but also by system properties.

Salt Documentation, Release 3007.5

2.4 Builds on proven technology

Salt takes advantage of a number of technologies and techniques. The networking layer is built with the excellent
ZeroMQ networking library, so the Salt daemon includes a viable and transparent AMQ broker. Salt uses public
keys for authentication with the master daemon, then uses faster AES encryption for payload communication; au-
thentication and encryption are integral to Salt. Salt takes advantage of communication via msgpack, enabling fast
and light network traffic.

2.5 Python client interface

In order to allow for simple expansion, Salt execution routines can be written as plain Python modules. The data
collected from Salt executions can be sent back to the master server, or to any arbitrary program. Salt can be called
from a simple Python API, or from the command line, so that Salt can be used to execute one-off commands as well
as operate as an integral part of a larger application.

2.6 Fast, flexible, scalable

The result is a system that can execute commands at high speed on target server groups ranging from one to very
many servers. Salt is very fast, easy to set up, amazingly malleable and provides a single remote execution architec-
ture that can manage the diverse requirements of any number of servers. The Salt infrastructure brings together the
best of the remote execution world, amplifies its capabilities and expands its range, resulting in a system that is as
versatile as it is practical, suitable for any network.

2.7 Open

Salt is developed under the Apache 2.0 license, and can be used for open and proprietary projects. Please submit
your expansions back to the Salt project so that we can all benefit together as Salt grows. Please feel free to sprinkle
Salt around your systems and let the deliciousness come forth.

6 Chapter 2. Introduction to Salt

https://zeromq.org/
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://msgpack.org/
http://www.apache.org/licenses/LICENSE-2.0.html

CHAPTER

THREE

SALT SYSTEM ARCHITECTURE

3.1 Overview

This page provides a high-level overview of the Salt system architecture and its different components.

3.2 What is Salt?

Salt is a Python-based open-source remote execution framework used for:
« Configuration management
» Automation
« Provisioning

« Orchestration

3.3 The Salt system architecture

The following diagram shows the primary components of the basic Salt architecture:

Salt Documentation, Release 3007.5

Salt Architecture

Modular & flexible
cLOUD FILE SERVER

VMWARE FILE
AWS GITFS
DIGITALOCEAN MASTER SVN

WHEEL AUTH

w20 —(¥8)— O™
KEY Ve PAM
SALT MINE/ \PILLAR
RUNNER REACTOR @ [@ ENGINE API

SLACK
SQS
LOGSTASH

I I X

EVENT BUS T

OMQ/TORNADO / SSH OMQ/TORNADO / SSH
MINION MINION MINION MINION

WINDOWS LINUX PROXY MINION LEGACY OS
RETURNER RETURNER RETURNER RETURNER

o 2 & =)
00O 00O 00 00

BEACON GRAINS BEACON GRAINS BEACON GRAINS BEACON GRAINS

The following sections describe some of the core components of the Salt architecture.

3.3.1 Salt Masters and Salt Minions

Salt uses the master-client model in which a master issues commands to a client and the client executes the command.
In the Salt ecosystem, the Salt Master is a server that is running the salt-master service. It issues commands
to one or more Salt Minions, which are servers that are running the salt-minion service and that are registered
with that particular Salt Master.

Another way to describe Salt is as a publisher-subscriber model. The master publishes jobs that need to be executed
and Salt Minions subscribe to those jobs. When a specific job applies to that minion, it will execute the job.

When a minion finishes executing a job, it sends job return data back to the master. Salt has two ports used by
default for the minions to communicate with their master(s). These ports work in concert to receive and deliver data
to the Message Bus. Salt’s message bus is ZeroMQ, which creates an asynchronous network topology to provide the
fastest communication possible.

8 Chapter 3. Salt system architecture

Salt Documentation, Release 3007.5

3.3.2 Targets and grains

The master indicates which minions should execute the job by defining a target. A target is the group of minions,
across one or many masters, that a job's Salt command applies to.

Note: A master can also be managed like a minion and can be a target if it is running the salt-minion service.

The following is an example of one of the many kinds of commands that a master might issue to a minion. This
command indicates that all minions should install the Vim application:

[salt -v 'x'" pkg.install vim

In this case the glob '*' is the target, which indicates that all minions should execute this command. Many other
targeting options are available, including targeting a specific minion by its ID or targeting minions by their shared
traits or characteristics (called grains in Salt).

Salt comes with an interface to derive information about the underlying system. This is called the grains interface,
because it presents Salt with grains of information. Grains are collected for the operating system, domain name, IP
address, kernel, OS type, memory, and many other system properties. You can also create your own custom grain
data.

Grain data is relatively static. However, grain data is refreshed when system information changes (such as network
settings) or when a new value is assigned to a custom grain.

3.3.3 Open event system (event bus)
The event system is used for inter-process communication between the Salt Master and Salt Minions. In the event
system:
« Events are seen by both the master and minions.
« Events can be monitored and evaluated by both.
The event bus lays the groundwork for orchestration and real-time monitoring.

All minions see jobs and results by subscribing to events published on the event system. Salt uses a pluggable event
system with two layers:

« ZeroMQ (0MOQ) - The current default socket-level library providing a flexible transport layer.
« Tornado - Full TCP-based transport layer event system.

One of the greatest strengths of Salt is the speed of execution. The event system’s communication bus is more
efficient than running a higher-level web service (http). The remote execution system is the component that all
components are built upon, allowing for decentralized remote execution to spread load across resources.

3.3.4 Salt states

In addition to remote execution, Salt provides another method for configuring minions by declaring which state a
minion should be in, otherwise referred to as Salt states. Salt states make configuration management possible. You
can use Salt states to deploy and manage infrastructure with simple YAML files. Using states, you can automate
recursive and predictable tasks by queueing jobs for Salt to implement without needing user input. You can also add
more complex conditional logic to state files with Jinja.

To illustrate the subtle differences between remote execution and configuration management, take the command
referenced in the previous section about Targets and grains in which Salt installed the application Vim on all minions:

3.3. The Salt system architecture 9

Salt Documentation, Release 3007.5

Methodology

Implementation

Result

Remote execution

Configuration manage-

ment

« Run salt -v

1 * 1 p kg .
install vim
from the terminal

Write a YAML state
file that checks
whether Vim is
installed

This state file is
then applied to the
targeted minions

Remotely installs Vim on the targeted minions

Ensures that Vim is always installed on the tar-
geted minions

Salt analyzes the state file and determines what
actions need to be taken to ensure the minion
complies with the state declarations

If Vim is not installed, it automates the processes
to install Vim on the targeted minions

The state file that verifies Vim is installed might look like the following example:

- pkgs:
- vim

install_vim_now:
pkg.installed:

File:/srv/salt/vim_install.sls

To apply this state to a minion, you would use the state.apply module, such as in the following example:

[salt '"x' state.apply vim_install

This command applies the vim_install state to all minions.

Formulas are collections of states that work in harmony to configure a minion or application. For example, one state

might trigger another state.

3.3.5 The Top file

It is not practical to manually run each state individually targeting specific minions each time. Some environments
have hundreds of state files targeting thousands of minions.

Salt offers two features to help with this scaling problem:

« The top.sls file - Maps Salt states to their applicable minions.

- Highstate execution - Runs all Salt states outlined in top.s's in a single execution.

The top file maps which states should be applied to different minions in certain environments. The following is an

example of a simple top file:

File: /srv/salt/top.sls

base:
I*I-

- all_server_setup

(continues on next page)

10

Chapter 3. Salt system architecture

Salt Documentation, Release 3007.5

(continued from previous page)

'Olwebserver':
- web_server_setup

In this example, base refers to the Salt environment, which is the default. You can specify more than one environ-
ment as needed, such as prod, dev, QA, etc.

Groups of minions are specified under the environment, and states are listed for each set of minions. This top
file indicates that a state called all_server_setup should be applied to all minions '*' and the state called
web_server_setup should be applied to the @1lwebserver minion.

To run the Salt command, you would use the state.highstate function:

[salt * state.highstate

This command applies the top file to the targeted minions.

3.3.6 Salt pillar

Salt’s pillar feature takes data defined on the Salt Master and distributes it to minions as needed. Pillar is primarily
used to store secrets or other highly sensitive data, such as account credentials, cryptographic keys, or passwords.
Pillar is also useful for storing non-secret data that you don't want to place directly in your state files, such as
configuration data.

Salt pillar brings data into the cluster from the opposite direction as grains. While grains are data generated from
the minion, the pillar is data generated from the master.

Pillars are organized similarly to states in a Pillar state tree, where top. sls acts to coordinate pillar data to environ-
ments and minions privy to the data. Information transferred using pillar has a dictionary generated for the targeted
minion and encrypted with that minion’s key for secure data transfer. Pillar data is encrypted on a per-minion basis,
which makes it useful for storing sensitive data specific to a particular minion.

3.3.7 Beacons and reactors

The beacon system is a monitoring tool that can listen for a variety of system processes on Salt Minions. Beacons
can trigger reactors which can then help implement a change or troubleshoot an issue. For example, if a service’s
response times out, the reactor system can restart the service.

Beacons are used for a variety of purposes, including:
+ Automated reporting
« Error log delivery
» Microservice monitoring
« User shell activity
+ Resource monitoring

When coupled with reactors, beacons can create automated pre-written responses to infrastructure and application
issues. Reactors expand Salt with automated responses using pre-written remediation states.

Reactors can be applied in a variety of scenarios:
« Infrastructure scaling

« Notifying administrators

3.3. The Salt system architecture 11

Salt Documentation, Release 3007.5

« Restarting failed applications
« Automatic rollback

When both beacons and reactors are used together , you can create unique states customized to your specific needs.

3.3.8 Salt runners and orchestration

Salt runners are convenience applications executed with the salt-run command. Salt runners work similarly to
Salt execution modules. However, they execute on the Salt Master instead of the Salt Minions. A Salt runner can be
a simple client call or a complex application.

Salt provides the ability to orchestrate system administrative tasks throughout the enterprise. Orchestration makes
it possible to coordinate the activities of multiple machines from a central place. It has the added advantage of being
able to control the sequence of when certain configuration events occur. Orchestration states execute on the master
using the state runner module.

12 Chapter 3. Salt system architecture

CHAPTER

FOUR

CONTRIBUTING TO SALT: A GUIDE FOR CONTRIBUTORS

So, you want to contribute to the Salt project? That's fantastic! There are many ways you can help improve Salt:
« Use Salt and report bugs with clear, detailed descriptions.
« Join a working group to collaborate with other contributors.

« Answer questions on platforms like the community Discord, the salt-users mailing list, Server Fault, or
r/saltstack on Reddit.

« Fix bugs or contribute to the documentation.
« Submit workarounds, patches, or code (even without tests).

« Share your experiences and solutions to problems you've solved using Salt.

4.1 Choosing the Right Branch for Your Pull Request

We appreciate your contributions to the project! To ensure a smooth and efficient workflow, please follow these
guidelines when submitting a Pull Request. Each type of contribution—whether it's fixing a bug, adding a feature,
updating documentation, or fixing tests—should be targeted at the appropriate branch. This helps us manage changes
effectively and maintain stability across versions.

» Bug Fixes:

Create your Pull Request against the oldest supported branch where the bug exists. This ensures that the fix
can be applied to all relevant versions.

« New Features:
For new features or enhancements, create your Pull Request against the master branch.
« Documentation Updates:

Documentation changes should be made against the master branch, unless they are related to a bug fix, in
which case they should follow the same branch as the bug fix.

« Test Fixes:

Pull Requests that fix broken or failing tests should be created against the oldest supported branch where the
issue occurs.

13

https://github.com/saltstack/community
https://discord.com/invite/J7b7EscrAs
https://groups.google.com/forum/#!forum/salt-users
https://serverfault.com/questions/tagged/saltstack
https://www.reddit.com/r/saltstack/
https://saltstack.gitlab.io/open/docs/docs-hub/topics/contributing.html

Salt Documentation, Release 3007.5

4.2 Setting Up Your Salt Development Environment

To hack on Salt or the docs you're going to need to set up your development environment. If you already have a
workflow that you're comfortable with, you can use that, but otherwise this is an opinionated guide for setting up
your dev environment. Follow these steps and you'll end out with a functioning dev environment and be able to
submit your first PR.

This guide assumes at least a passing familiarity with Git, a common version control tool used across many open
source projects, and is necessary for contributing to Salt. For an introduction to Git, watch Salt Docs Clinic - Git
For the True Beginner. Because of its widespread use, there are many resources for learning more about Git. One
popular resource is the free online book Learn Git in a Month of Lunches.

4.2.1 pyenv, Virtual Environments, and you

We recommend pyenv, since it allows installing multiple different Python versions, which is important for testing
Salt across all the versions of Python that we support.

On Linux

Install pyenv:

git clone https://github.com/pyenv/pyenv.git ~/.pyenv

export PATH="S$HOME/.pyenv/bin:$PATH"

git clone https://github.com/pyenv/pyenv-virtualenv.git $(pyenv root)/plugins/
—pyenv-virtualenv

On Mac

Install pyenv using brew:

brew update
brew install pyenv
brew install pyenv-virtualenv

Now add pyenv to your .bashrc:

echo 'export PATH="$HOME/.pyenv/bin:$PATH"' >> ~/.bashrc
pyenv init 2>> ~/.bashrc
pyenv virtualenv-init 2>> ~/.bashrc

For other shells, see the pyenv instructions.

Go ahead and restart your shell. Now you should be able to install a new version of Python:

[pyenv install 3.9.18]

If that fails, don't panic! You're probably just missing some build dependencies. Check out pyenv common build
problems.

Now that you've got your version of Python installed, you can create a new virtual environment with this command:

14 Chapter 4. Contributing to Salt: A Guide for Contributors

https://git-scm.com/
https://www.youtube.com/watch?v=zJw6KNvmuq4&ab_channel=SaltStack
https://www.youtube.com/watch?v=zJw6KNvmuq4&ab_channel=SaltStack
https://www.manning.com/books/learn-git-in-a-month-of-lunches
https://github.com/pyenv/pyenv
https://github.com/pyenv/pyenv#basic-github-checkout
https://github.com/pyenv/pyenv/wiki/Common-build-problems
https://github.com/pyenv/pyenv/wiki/Common-build-problems

Salt Documentation, Release 3007.5

[pyenv virtualenv 3.9.18 salt]

Then activate it:

{pyenv activate salt]

Sweet! Now you're ready to clone Salt so you can start hacking away! If you get stuck at any point, check out the
resources at the beginning of this guide. Discord and GitHub Discussions are particularly helpful places to go.

4.2.2 Get the source!

Salt uses the fork and clone workflow for Git contributions. See Using the Fork-and-Branch Git Workflow for how
to implement it. But if you just want to hurry and get started you can go ahead and follow these steps:

Clones are so shallow. Well, this one is anyway:

[git clone --depth=1 --origin salt https://github.com/saltstack/salt.git J

This creates a shallow clone of Salt, which should be fast. Most of the time that's all you'll need, and you can
start building out other commits as you go. If you really want all 108,300+ commits you can just run git fetch
--unshallow. Then go make a sandwich because it's gonna be a while.

You're also going to want to head over to GitHub and create your own fork of Salt. Once you've got that set up you
can add it as a remote:

[git remote add yourname <YOUR SALT REMOTE>]

If you use your name to refer to your fork, and sa'lt to refer to the official Salt repo you'll never get upstream or
origin confused.

Note: Each time you start work on a new issue you should fetch the most recent changes from salt/upstream.

4.2.3 Set up pre-commit and nox

Here at Salt we use pre-commit and nox to make it easier for contributors to get quick feedback, for quality control,
and to increase the chance that your merge request will get reviewed and merged. Nox enables us to run multiple
different test configurations, as well as other common tasks. You can think of it as Make with superpowers. Pre-
commit does what it sounds like: it configures some Git pre-commit hooks to run black for formatting, isort for
keeping our imports sorted, and pylint to catch issues like unused imports, among others. You can easily install
them in your virtualenv with:

python -m pip install pre-commit nox
pre-commit install

Warning: Currently there is an issue with the pip-tools-compile pre-commit hook on Windows. The details
around this issue are included here: https://github.com/saltstack/salt/issues/56642. Please ensure you export
SKIP=pip-tools-compile to skip pip-tools-compile.

Now before each commit, it will ensure that your code at least looks right before you open a pull request. And with
that step, it's time to start hacking on Salt!

4.2. Setting Up Your Salt Development Environment 15

https://blog.scottlowe.org/2015/01/27/using-fork-branch-git-workflow/
https://github.com/saltstack/salt/fork
https://pre-commit.com/
https://nox.thea.codes/en/stable/
https://github.com/saltstack/salt/issues/56642

Salt Documentation, Release 3007.5

4.2.4 Set up imagemagick

One last prerequisite is to have imagemagick installed, as it is required by Sphinx for generating the HTML
documentation.

On Mac, via homebrew
brew install {imagemagick

Example Linux installation: Debian-based
sudo apt install imagemagick

4.3 Salt issues

4.3.1 Create your own

Perhaps you've come to this guide because you found a problem in Salt, and you've diagnosed the cause. Maybe you
need some help figuring out the problem. In any case, creating quality bug reports is a great way to contribute to
Salt even if you lack the skills, time, or inclination to fix it yourself. If that's the case, head on over to Salt's issue
tracker on GitHub.

Creating a good report can take a little bit of time - but every minute you invest in making it easier for others to
reproduce and understand your issue is time well spent. The faster someone can understand your issue, the faster it
will be able to get fixed correctly.

The thing that every issue needs goes by many names, but one at least as good as any other is MCVE - Minimum
Complete Verifiable Example.

In a nutshell:

+ Minimum: All of the extra information has been removed. Will 2 or 3 lines of master/minion config still
exhibit the behavior?

« Complete: Minimum also means complete. If your example is missing information, then it's not complete.
Salt, Python, and OS versions are all bits of information that make your example complete. Have you provided
the commands that you ran?

« Verifiable: Can someone take your report and reproduce it?

Slow is smooth, and smooth is fast - it may feel like you're taking a long time to create your issue if you're creating a
proper MCVE, but a MCVE eliminates back and forth required to reproduce/verify the issue so someone can actually
create a fix.

4.3.2 Pick an issue

If you don't already have an issue in mind, you can search for help wanted issues. If you also search for good first issue
then you should be able to find some issues that are good for getting started contributing to Salt. Documentation
issues are also good starter issues. When you find an issue that catches your eye (or one of your own), it's a good
idea to comment on the issue and mention that you're working on it. Good communication is key to collaboration
- so if you don't have time to complete work on the issue, just leaving some information about when you expect to
pick things up again is a great idea!

16 Chapter 4. Contributing to Salt: A Guide for Contributors

https://github.com/saltstack/salt/issues/new/choose
https://github.com/saltstack/salt/issues/new/choose
https://github.com/saltstack/salt/issues?q=is%3Aissue+is%3Aopen+label%3A%22help+wanted%22
https://github.com/saltstack/salt/issues?q=is%3Aissue+is%3Aopen+label%3A%22help+wanted%22+label%3A%22good+first+issue%22
https://github.com/saltstack/salt/issues?q=is%3Aissue+is%3Aopen+label%3Adocumentation+
https://github.com/saltstack/salt/issues?q=is%3Aissue+is%3Aopen+label%3Adocumentation+

Salt Documentation, Release 3007.5

4.4 Hacking away

4.4.1 Salt, tests, documentation, and you

Before approving code contributions, Salt requires:
« documentation
« meaningful passing tests
« correct code

Documentation fixes just require correct documentation.

4.4.2 What if | don't write tests or docs?

If you aren't into writing documentation or tests, we still welcome your contributions! But your PR will be labeled
Needs Testcase and Help Wanted until someone can get to write the tests/documentation. Of course, if you
have a desire but just lack the skill we are more than happy to collaborate and help out! There's the documentation
working group and the testing working group. We also regularly stream our test clinic live on Twitch every Tuesday
afternoon and Thursday morning, Central Time. If you'd like specific help with tests, bring them to the clinic. If no
community members need help, you can also just watch tests written in real time.

4.4.3 Documentation

Salt uses both docstrings, as well as normal reStructuredText files in the salt/doc folder for documentation.
Sphinx is used to generate the documentation, and does require imagemagick. See Set up imagemagick for more
information.

Before submitting a documentation PR, it helps to first build the Salt docs locally on your machine and preview them.
Local previews helps you:

« Debug potential documentation output errors before submitting a PR.

« Saves you time by not needing to use the Salt CI/CD test suite to debug, which takes more than 30 minutes to
run on a PR.

« Ensures the final output looks the way you intended it to look.
To set up your local environment to preview the core Salt and module documentation:

1. Install the documentation dependencies. For example, on Ubuntu:

sudo apt-get update

sudo apt-get install -y enchant-2 git gcc imagemagick make zliblg-devK
~Llibc-dev libffi-dev g++ libxml2 libxml2-dev libxslt-dev libcurl4-
—openssl-dev libssl-dev libgnutls28-dev xz-utils 1inkscape

2. Navigate to the folder where you store your Salt repository and remove any .nox directories that might be in
that folder:

[rm -rf .nox]

3. Install pyenv for the version of Python needed to run the docs. As of the time of writing, the Salt docs theme
is not compatible with Python 3.10, so you'll need to run 3.9 or earlier. For example:

4.4. Hacking away 17

https://saltstack.gitlab.io/open/docs/docs-hub/topics/home.html
https://saltstack.gitlab.io/open/docs/docs-hub/topics/home.html
https://github.com/saltstack/community/tree/master/working_groups/wg-Testing
https://www.twitch.tv/saltprojectoss

Salt Documentation, Release 3007.5

pyenv install 3.9.18
pyenv virtualenv 3.9.18 salt-docs
echo 'salt-docs' > .python-version

4. Activate pyenv if it's not auto-activated:

[pyenv exec pip install -U pip setuptools wheel

5. Install nox into your pyenv environment, which is the utility that will build the Salt documentation:

[pyenv exec pip install nox

Since we use NoX, you can build your docs and view them in your browser with this one-liner:

python -m nox -e 'docs-html(compress=False, clean=False)'; cd doc/_build/html;
— python -m webbrowser http://localhost:8000/contents.html; python -m http.
—server

The first time you build the docs, it will take a while because there are a lot of modules. Maybe you should go grab
some dessert if you already finished that sandwich. But once nox and Sphinx are done building the docs, python
should launch your default browser with the URL http://localhost:8000/contents.html. Now you can navigate to your
docs and ensure your changes exist. If you make changes, you can simply run this:

cd -; python -m nox -e 'docs-html(compress=False, clean=False)'; cd doc/_
—~build/html; python -m http.server

And then refresh your browser to get your updated docs. This one should be quite a bit faster since Sphinx won't
need to rebuild everything.

Alternatively, you could build the docs on your local machine and then preview the build output. To build the docs
locally:

[pyenv exec nox -e 'docs-html(compress=False, clean=True)'

The output from this command will put the preview files in: doc > _build > html.

If your change is a docs-only change, you can go ahead and commit/push your code and open a PR. You can indicate
that it's a docs-only change by adding [Documentation] to the title of your PR. Otherwise, you'll want to write
some tests and code.

4.4.4 Running development Salt

Note: If you run into any issues in this section, check the Troubleshooting section.

If you're going to hack on the Salt codebase you're going to want to be able to run Salt locally. The first thing you
need to do is install Salt as an editable pip install:

[python -m pip install -e

This will let you make changes to Salt without having to re-install it.

After all of the dependencies and Salt are installed, it's time to set up the config for development. Typically Salt runs
as root, but you can specify which user to run as. To configure that, just copy the master and minion configs. We
have .gitignore setup to ignore the Local/ directory, so we can put all of our personal files there.

18 Chapter 4. Contributing to Salt: A Guide for Contributors

http://localhost:8000/contents.html

Salt Documentation, Release 3007.5

[mkdir -p local/etc/salt/

Create a master config file as local/etc/salt/master:

cat <<EOF >local/etc/salt/master
user: S$(whoami)

root_dir: $PWD/local/
publish_port: 55505

ret_port: 55506

EOF

And a minion config as local/etc/salt/minion:

cat <<EOF >local/etc/salt/minion
user: S$(whoami)

root_dir: $PWD/local/

master: localhost

id: saltdev

master_port: 55506

EOF

Now you can start your Salt master and minion, specifying the config dir.

salt-master --config-dir=local/etc/salt/ --log-level=debug --daemon
salt-minion --config-dir=local/etc/salt/ --log-level=debug --daemon

Now you should be able to accept the minion key:

[salt—key -c local/etc/salt -Ay

And check that your master/minion are communicating:

[salt -c local/etc/salt * test.version

Rather than running test.version from your master, you can run it from the minion instead:

[salt—call -c local/etc/salt test.version

)

Note that you're running salt—call instead of salt, and you're not specifying the minion (*), but if you're

running the dev version then you still will need to pass in the config dir. Now that you've got Salt running, you can

hack away on the Salt codebase!

If you need to restart Salt for some reason, if you've made changes and they don't appear to be reflected, this is one

option:

kill -INT $(pgrep salt-master)
kill -INT $(pgrep salt-minion)

If you'd rather not use kil1, you can have a couple of terminals open with your salt virtualenv activated and omit

the ——daemon argument. Salt will run in the foreground, so you can just use ctrl+c to quit.

4.4. Hacking away

19

Salt Documentation, Release 3007.5

4.4.5 Test first? Test last? Test meaningfully!

You can write tests first or tests last, as long as your tests are meaningful and complete! Typically the best tests for
Salt are going to be unit tests. Testing is a whole topic on its own, But you may also want to write functional or
integration tests. You'll find those in the tests/ directory.

When you're thinking about tests to write, the most important thing to keep in mind is, “What, exactly, am I testing?”
When a test fails, you should know:

« What, specifically, failed?
« Why did it fail?
« As much as possible, what do I need to do to fix this failure?
If you can't answer those questions then you might need to refactor your tests.

When you're running tests locally, you should make sure that if you remove your code changes your tests are failing.
If your tests aren't failing when you haven't yet made changes, then it's possible that you're testing the wrong thing.

But whether you adhere to TDD/BDD, or you write your code first and your tests last, ensure that your tests are
meaningful.

4.4.6 Running tests

As previously mentioned, we use nox, and that's how we run our tests. You should have it installed by this point
but if not you can install it with this:

[python -m pip install nox]

Now you can run your tests:

[python -m nox -e "test-3(coverage=False)" -- tests/unit/cli/test_batch.py]

It's a good idea to install espeak or use say on Mac if you're running some long-running tests. You can do something

like this:

python -m nox -e "test-3(coverage=False)" -- tests/unit/cli/test_batch.py;K
—espeak "Tests done, woohoo!"

That way you don't have to keep monitoring the actual test run.

[python -m nox -e "test-3(coverage=False)" -- --core-tests]

You can enable or disable test groups locally by passing their respected flag:
« --no-fast-tests - Tests that are ~10s or faster. Fast tests make up ~75% of tests and can run in 10 to 20 minutes.
+ --slow-tests - Tests that are ~10s or slower.
« --core-tests - Tests of any speed that test the root parts of salt.
« --flaky-jail - Test that need to be temporarily skipped.

In your PR, you can enable or disable test groups by setting a label. All fast, slow, and core tests specified in the
change file will always run.

« test:no-fast

« test:core

20 Chapter 4. Contributing to Salt: A Guide for Contributors

https://docs.saltproject.io/en/master/topics/tutorials/writing_tests.html
https://github.com/espeak-ng/espeak-ng

Salt Documentation, Release 3007.5

. test:slow

. test:flaky-jail

4.4.7 Changelog and commit!

When you write your commit message you should use imperative style. Do this:
Add frobnosticate capability

Don't do this:
Added frobnosticate capability

But that advice is backwards for the changelog. We follow the keepachangelog approach for our changelog, and
use towncrier to generate it for each release. As a contributor, all that means is that you need to add a file to the
salt/changelog directory, using the <issue #>.<type>.md format. For instance, if you fixed issue 123,
you would do:

[echo "Made sys.doc inform when no minions return" > changelog/123.fixed.md]

And that's all that would go into your file. When it comes to your commit message, it's usually a good idea to add
other information, such as

« What does a reviewer need to know about the change that you made?
« If someone isn't an expert in this area, what will they need to know?

This will also help you out, because when you go to create the PR it will automatically insert the body of your commit
messages.

See the changelog docs for more information.

4.4.8 Pull request time!

Once you've done all your dev work and tested locally, you should check out our PR guidelines. After you read that
page, it's time to open a new PR. Fill out the PR template - you should have updated or created any necessary docs,
and written tests if you're providing a code change. When you submit your PR, we have a suite of tests that will run
across different platforms to help ensure that no known bugs were introduced.

4.4.9 Now what?

You've made your changes, added documentation, opened your PR, and have passing tests... now what? When can
you expect your code to be merged?

When you open your PR, a reviewer will get automatically assigned. If your PR is submitted during the week you
should be able to expect some kind of communication within that business day. If your tests are passing and we're
not in a code freeze, ideally your code will be merged that week or month. If you haven't heard from your assigned
reviewer, ping them on GitHub or Community Discord.

It's likely that your reviewer will leave some comments that need addressing - it may be a style change, or you forgot
a changelog entry, or need to update the docs. Maybe it's something more fundamental - perhaps you encountered
the rare case where your PR has a much larger scope than initially assumed.

Whatever the case, simply make the requested changes (or discuss why the requests are incorrect), and push up your
new commits. If your PR is open for a significant period of time it may be worth rebasing your changes on the most
recent changes to Salt. If you need help, the previously linked Git resources will be valuable.

4.4. Hacking away 21

https://keepachangelog.com/en/1.0.0/
https://docs.saltproject.io/en/latest/topics/development/changelog.html
https://docs.saltproject.io/en/master/topics/development/pull_requests.html
https://github.com/saltstack/salt/compare
https://discord.com/invite/J7b7EscrAs

Salt Documentation, Release 3007.5

But if, for whatever reason, you're not interested in driving your PR to completion then just note that in your PR.
Something like, “I'm not interested in writing docs/tests, I just wanted to provide this fix - someone else will need to
complete this PR If you do that then we'll add a “Help Wanted” label and someone will be able to pick up the PR,
make the required changes, and it can eventually get merged in.

In any case, now that you have a PR open, congrats! You're a Salt developer! You rock!

4.5 Troubleshooting

4.5.1 zmgq.core.error.ZMQError
Once the minion starts, you may see an error like the following:

&)

zmgq.core.error.ZMQError: ipc path */path/to/your/virtualenv/var/run/salt/minion/minion_event_7824dcbcfd7a8f6755939af70b9
is longer than 107 characters (sizeof(sockaddr_un.sun_path)).

This means that the path to the socket the minion is using is too long. This is a system limitation, so the only
workaround is to reduce the length of this path. This can be done in a couple different ways:

1. Create your virtualenv in a path that is short enough.

2. Edit the :conf_minion:sock_d1r minion config variable and reduce its length. Remember that this path is
relative to the value you set in :conf_minion:root_d-r.

NOTE: The socket path is limited to 107 characters on Solaris and Linux, and 103 characters on BSD-based systems.

4.5.2 No permissions to access ...

If you forget to pass your config path to any of the salt* commands, you might see

No permissions to access "/var/log/salt/master", are you running as the
correct user?

Just pass —c local/etc/salt (or whatever you named it)

4.5.3 File descriptor limit

You might need to raise your file descriptor limit. You can check it with:

[ulimit -n]

If the value is less than 3072, you should increase it with:

ulimit -n 3072
For c-shell:
limit descriptors 3072

22 Chapter 4. Contributing to Salt: A Guide for Contributors

Salt Documentation, Release 3007.5

4.5.4 Pygit2 or other dependency install fails

You may see some failure messages when installing requirements. You can directly access your nox environment
and possibly install pygit (or other dependency) that way. When you run nox, you'll see a message like this:

nox > Re-using existing virtual environment at .nox/pytest-parametrized-3-
—crypto-none-transport-zeromg-coverage-false.

For this, you would be able to install with:

.nox/pytest-parametrized-3-crypto-none-transport-zeromg-coverage-false/bin/
—~python -m pip install pygit2

4.5. Troubleshooting 23

Salt Documentation, Release 3007.5

24 Chapter 4. Contributing to Salt: A Guide for Contributors

CHAPTER

FIVE

SALT PROJECT MAINTENANCE POLICIES

This document explains the current project maintenance policies. The goal of these policies are to reduce the main-
tenance burden on core maintainers of the Salt Project and to encourage more active engagement from the Salt
community.

« Issue management
o Pull request management

« Salt Enhancement Proposals (SEP) process

5.1 Issue management

Issues for the Salt Project are critical to Salt community communication and to find and resolve issues in the Salt
Project. As such, the issue tracker needs to be kept clean and current to the currently supported releases of Salt.
They also need to be free of feature requests, arguments, and trolling.

We have decided to update our issue policy to be similar to RedHat community project policies.
Community members who repeatedly violate these policies are subject to bans.
1. All issues that were not opened against a currently supported release of Salt will be closed.

« When an old release of Salt is marked out of support, all issues opened against the now defunct release
will be closed.

« If the issue is still present in the current release of Salt, submit a new issue. Do not re-open the old issue
after it has been closed.

« When opening a new issue that was a bug in a previous release of Salt, you must validate it against
a currently supported release of Salt for consideration. Issues that do not show the problem against a
current release will be closed without consideration.

2. Only defects can be submitted to the issue tracker.
« Feature requests without a PR will be immediately closed.

« Feature requests must be designated as a feature being developed and owned by the issue submitter and
assigned to a release. Otherwise they will be immediately closed.

« Discussions about features can be held in the GitHub Discussions tab or in the community Open Hour.
+ Questions will be immediately closed.
3. Issues must submit sufficient information.

« Issues must follow the relevant template for information.

25

https://github.com/saltstack/salt/discussions
https://saltproject.io/calendar/

Salt Documentation, Release 3007.5

« Issues that do not give sufficient information about the nature of the issue and how to reproduce the
issue will be immediately closed.

« Issues that do not comply will be immediately closed.

5.2 Pull request management

The Salt pull request (PR) queue has been a challenge to maintain for the entire life of the project. This is in large
part due to the incredibly active and vibrant community around Salt.

Unfortunately, it has proven to be too much for the core team and the greater Salt community to manage. As such,
we deem it necessary to make fundamental changes to how we manage the PR queue:

1. All PRs opened against releases of Salt that are no longer supported will be closed immediately.
2. Closed PRs can be resubmitted, NOT re-opened.

3. PRs need to provide full tests for all of the code affected, regardless of whether the PR author wrote the code
affected.

4. PR tests need to be written using the current test mechanism (pytest).
5. PRs need to pass tests.
6. PRs must NOT increase the overall test time by a noticeable length.

7. PRs must NOT add new plugins directly to Salt unless sanctioned by the Salt core team. New plugins should
be made into Salt Extensions.

8. PRs that have not been updated due to inactivity will be closed. Inactivity is determined by a lack of submitter
activity for the space of 1 month.

9. PR tests should always maintain or increase total code coverage.

5.3 Salt Enhancement Proposals (SEP) process

A message from Thomas Hatch, creator of Salt:

In 2019, we decided to create a community process to discuss and review Salt Enhancement Proposals (SEPs). Un-
fortunately, I feel that this process has not proven to be an effective way to solve the core issues around Salt En-
hancements. Overall, the Salt enhancement process has proven itself to be more of a burden than an accelerant to
Salt stability, security, and progress. As such, I feel that the current optimal course of action is to shut the process
down.

Instead of the Salt Enhancement Proposal process, we will add a time in the Open Hour for people to present ideas
and concepts to better understand if they are worth their effort to develop. Extensive documentation around more
intrusive or involved enhancements should be included in pull requests (PRs). Conversations about enhancements
can also be held in the Discussions tab in GitHub.

By migrating the conversation into the PR process, we ensure that we are only reviewing viable proposals instead
of being burdened with requests that the core team is expected to fulfill.

Effective immediately (January 2024), we are archiving and freezing the SEP repo.

26 Chapter 5. Salt Project maintenance policies

https://saltproject.io/calendar/
https://github.com/saltstack/salt/discussions

CHAPTER

SIX

INSTALLATION

See the Salt Install Guide for the current installation instructions.

27

https://docs.saltproject.io/salt/install-guide/en/latest/

Salt Documentation, Release 3007.5

28 Chapter 6. Installation

CHAPTER

SEVEN

CONFIGURING SALT

This section explains how to configure user access, view and store job results, secure and troubleshoot, and how to
perform many other administrative tasks.

7.1 Configuring Salt

Salt configuration is very simple. The default configuration for the master will work for most installations and the
only requirement for setting up a minion is to set the location of the master in the minion configuration file.

The configuration files will be installed to /etc/salt and are named after the respective components, /etc/
salt/master,and /etc/salt/minion.

7.1.1 Master Configuration

By default the Salt master listens on ports 4505 and 4506 on all interfaces (0.0.0.0). To bind Salt to a specific IP,
redefine the “interface” directive in the master configuration file, typically /etc/salt/master, as follows:

- #interface: 0.0.0.0
+ dinterface: 10.0.0.1

After updating the configuration file, restart the Salt master. See the master configuration reference for more details
about other configurable options.

7.1.2 Minion Configuration

Although there are many Salt Minion configuration options, configuring a Salt Minion is very simple. By default
a Salt Minion will try to connect to the DNS name ”salt”; if the Minion is able to resolve that name correctly, no
configuration is needed.

If the DNS name “salt” does not resolve to point to the correct location of the Master, redefine the master” directive
in the minion configuration file, typically /etc/salt/minion, as follows:

- #master: salt
+ master: 10.0.0.1

After updating the configuration file, restart the Salt minion. See the minion configuration reference for more details
about other configurable options.

29

Salt Documentation, Release 3007.5

7.1.3 Proxy Minion Configuration

A proxy minion emulates the behaviour of a regular minion and inherits their options.
Similarly, the configuration file is /etc/salt/proxy and the proxy tries to connect to the DNS name “salt”.

In addition to the regular minion options, there are several proxy-specific - see the proxy minion configuration refer-
ence.

7.1.4 Running Salt

1. Start the master in the foreground (to daemonize the process, pass the -d flag):

[salt—master]

2. Start the minion in the foreground (to daemonize the process, pass the -d flag):

[salt—m'in'ion

Having trouble?

The simplest way to troubleshoot Salt is to run the master and minion in the foreground with log level set to
debug:

[salt—master --log-level=debug

For information on salt's logging system please see the logging document.

Run as an unprivileged (non-root) user
To run Salt as another user, set the user parameter in the master config file.

Additionally, ownership, and permissions need to be set such that the desired user can read from and write to the
following directories (and their subdirectories, where applicable):

« /etc/salt

« /var/cache/salt
« /var/log/salt

+ /var/run/salt

More information about running salt as a non-privileged user can be found here.

There is also a full troubleshooting guide available.

30 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

7.1.5 Key Identity
Salt provides commands to validate the identity of your Salt master and Salt minions before the initial key exchange.

Validating key identity helps avoid inadvertently connecting to the wrong Salt master, and helps prevent a potential
MiTM attack when establishing the initial connection.

Master Key Fingerprint

Print the master key fingerprint by running the following command on the Salt master:

[salt—key -F master]

Copy the master. pub fingerprint from the Local Keys section, and then set this value as the master_finger
in the minion configuration file. Save the configuration file and then restart the Salt minion.

Minion Key Fingerprint

Run the following command on each Salt minion to view the minion key fingerprint:

[salt—call --local key.finger]

Compare this value to the value that is displayed when you run the salt-key --finger <MINION_ID> com-
mand on the Salt master.

7.1.6 Key Management

Salt uses AES encryption for all communication between the Master and the Minion. This ensures that the commands
sent to the Minions cannot be tampered with, and that communication between Master and Minion is authenticated
through trusted, accepted keys.

Before commands can be sent to a Minion, its key must be accepted on the Master. Run the salt-key command
to list the keys known to the Salt Master:

[root@master ~]# salt-key -L
Unaccepted Keys:

alpha

bravo

charlie

delta

Accepted Keys:

This example shows that the Salt Master is aware of four Minions, but none of the keys has been accepted. To accept
the keys and allow the Minions to be controlled by the Master, again use the salt—-key command:

[root@master ~]# salt-key -A
[root@master ~|# salt-key -L
Unaccepted Keys:

Accepted Keys:

alpha

bravo

charlie

delta

7.1. Configuring Salt 31

Salt Documentation, Release 3007.5

The sa'lt-key command allows for signing keys individually or in bulk. The example above, using —A bulk-accepts
all pending keys. To accept keys individually use the lowercase of the same option, —a keyname.

See also:
salt-key manpage
7.1.7 Sending Commands

Communication between the Master and a Minion may be verified by running the test.version command:

[root@master ~]# salt alpha test.version
alpha:
2018.3.4

Communication between the Master and all Minions may be tested in a similar way:

[root@master ~]# salt 'x' test.version
alpha:
2018.3.4
bravo:
2018.3.4
charlie:
2018.3.4
delta:
2018.3.4

Each of the Minions should send a 2018. 3.4 response as shown above, or any other salt version installed.

7.1.8 What's Next?

Understanding targeting is important. From there, depending on the way you wish to use Salt, you should also
proceed to learn about Remote Execution and Configuration Management.

7.2 Configuring the Salt Master

The Salt system is amazingly simple and easy to configure, the two components of the Salt system each have a respec-
tive configuration file. The salt-master is configured via the master configuration file, and the salt-minion
is configured via the minion configuration file.

See also:
Example master configuration file.

The configuration file for the salt-master is located at /etc/salt/master by default. Atomic included configura-
tion files can be placed in /etc/salt/master.d/*.conf. Warning: files with other suffixes than .conf will not
be included. A notable exception is FreeBSD, where the configuration file is located at /usr/local/etc/salt.
The available options are as follows:

32 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

7.2.1 Primary Master Configuration

interface

Default: 0.0.0.0 (all interfaces)

The local interface to bind to, must be an IP address.

[interface: 192.168.0.1]

ipvé

Default: False

Whether the master should listen for IPv6 connections. If this is set to True, the interface option must be adjusted
too (for example: interface: '::')

[iva: True]

publish_port

Default: 4505

The network port to set up the publication interface.

[publish_port: 4505

master_id

Default: None

The id to be passed in the publish job to minions. This is used for MultiSyndics to return the job to the requesting
master.

Note: This must be the same string as the syndic is configured with.

[master_id: MasterOfMaster

user

Default: root

The user to run the Salt processes

[user: root

Note: Starting with version 3006.0, Salt's offical packages ship with a default configuration which runs the Master as
a non-priviledged user. The Master's configuration file has the user option set to user: salt. Unless you are absolutly

7.2. Configuring the Salt Master 33

Salt Documentation, Release 3007.5

sure want to run salt as some other user, care should be taken to preserve this setting in your Master configuration
file..

enable_ssh_minions

Default: False

Tell the master to also use salt-ssh when running commands against minions.

[enable_ssh_minions: True]

Note: Enabling this does not influence the limitations on cross-minion communication. The Salt mine and
publish.publish do not work from regular minions to SSH minions, the other way around is partly possi-
ble since 3007.0 (during state rendering on the master). This means you can use the mentioned functions to call out
to regular minions in s'ls templates and wrapper modules, but state modules (which are executed on the remote)
relying on them still do not work.

ret_port

Default: 4506

The port used by the return server, this is the server used by Salt to receive execution returns and command execu-
tions.

[ret_port: 4506]

pidfile

Default: /var/run/salt-master.pid

Specify the location of the master pidfile.

[pidfile: /var/run/salt-master.pid

root_dir

Default: /

The system root directory to operate from, change this to make Salt run from an alternative root.

[root_dir: /]

Note: This directory is prepended to the following options: pki_dir, cachedir, sock_dir, log_file,
autosign_file,autoreject_file,pidfile,autosign_grains_dir.

34 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

conf_file

Default: /etc/salt/master

The path to the master's configuration file.

[conf_file: /etc/salt/master]

pki_dir

Default: <LIB_STATE_DIR>/pki/master
The directory to store the pki authentication keys.

<LIB_STATE_DIR> 1is the pre-configured variable state directory set during installation via
--salt-lib-state-dir. It defaults to /etc/salt. Systems following the Filesystem Hierarchy Stan-
dard (FHS) might set it to /var/1lib/salt.

[pki_dir: /etc/salt/pki/master J

cluster_id

New in version 3007.

When defined, the master will operate in cluster mode. The master will send the cluster key and id to minions instead
of its own key and id. The master will also forward its local event bus to other masters defined by cluster_peers

[cluster_id: master_cluster]

cluster_peers

New in version 3007.

When cluster_peers is defined, this setting is a list of other master (hostnames or IPs) that will be in the cluster.

cluster_peers:
- master2
- master3

cluster_pki_dir

New in version 3007.

When cluster_pki_dir is defined, this sets the location of where this cluster will store its cluster public and
private key as well as any minion keys. This setting will default to the value of pki_d1r, but should be changed to
the filesystem location shared between peers in the cluster.

[cluster_pki_dir: /my/gluster/share/pki]

7.2. Configuring the Salt Master 35

Salt Documentation, Release 3007.5

cluster_pool_port

New in version 3007.2.

When cluster_pool_port is defined, it sets the TCP port number HAProxy listens on for incoming TCP con-
nections. The default is 4520

[cluster_pool_port: 4520]

extension_modules

Changed in version 2016.3.0: The default location for this directory has been moved. Prior to this version, the location
was a directory named extmods in the Salt cachedir (on most platforms, /var/cache/salt/extmods). It has
been moved into the master cachedir (on most platforms, /var/cache/salt/master/extmods).

Directory where custom modules are synced to. This directory can contain subdirectories for each of Salt's module
types such as runners, output, wheel, modules, states, returners, engines, utils, etc. This path is
appended to root_dir.

Note, any directories or files not found in the module_dirs location will be removed from the extension_modules
path.

[extension_modules: /root/salt_extmods]

extmod_whitelist/extmod_blacklist

New in version 2017.7.0.

By using this dictionary, the modules that are synced to the master's extmod cache using saltutil.sync_* can be limited.
If nothing is set to a specific type, then all modules are accepted. To block all modules of a specific type, whitelist an
empty list.

extmod_whitelist:
modules:
- custom_module
engines:
- custom_engine
pillars: []

extmod_blacklist:
modules:
- specific_module

Valid options:
« modules
« states
« grains
« renderers
« returners

« output

» proxy

36 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

 runners
« wheel

+ engines
« queues
« pillar

- utils

« sdb

« cache

« clouds
« tops

e roster

« tokens

module_dirs

Default: []

Like extension_modules, but a list of extra directories to search for Salt modules.

module_dirs:
- /var/cache/salt/minion/extmods

cachedir

Default: /var/cache/salt/master
The location used to store cache information, particularly the job information for executed salt commands.

This directory may contain sensitive data and should be protected accordingly.

[cachedir: /var/cache/salt/master

verify_env

Default: True

Verify and set permissions on configuration directories at startup.

[verify_env: True

7.2. Configuring the Salt Master

37

Salt Documentation, Release 3007.5

keep_jobs

Default: 24
Set the number of hours to keep old job information. Note that setting this option to © disables the cache cleaner.

Deprecated since version 3006: Replaced by keep_jobs_seconds

[keep_jobs: 24 J

keep_jobs_seconds

Default: 86400

Set the number of seconds to keep old job information. Note that setting this option to 0 disables the cache cleaner.

[keep_jobs_seconds: 86400]

gather_job_timeout

New in version 2014.7.0.
Default: 10

The number of seconds to wait when the client is requesting information about running jobs.

[gather_job_timeout: 10]

timeout

Default: 5

Set the default timeout for the salt command and api.

loop_tinterval

Default: 60

The loop_interval option controls the seconds for the master's Maintenance process check cycle. This process updates
file server backends, cleans the job cache and executes the scheduler.

maintenance_interval

New in version 3006.0.
Default: 3600

Defines how often to restart the master's Maintenance process.

[maintenance_interval: 9600]

38 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

output

Default: nested

Set the default outputter used by the salt command.

outputter_dirs

Default: []

A list of additional directories to search for salt outputters in.

[outputter_dirs: []

output_file

Default: None

Set the default output file used by the salt command. Default is to output to the CLI and not to a file. Functions the
same way as the ”--out-file” CLI option, only sets this to a single file for all salt commands.

{output_file: /path/output/file

show_timeout

Default: True

Tell the client to show minions that have timed out.

[show_timeout: True

show_jid

Default: False
Tell the client to display the jid when a job is published.

[show_jid: False

color

Default: True

By default output is colored, to disable colored output set the color value to False.

[color: False

7.2. Configuring the Salt Master 39

Salt Documentation, Release 3007.5

color_theme

Default: ""

Specifies a path to the color theme to use for colored command line output.

[color_theme: /etc/salt/color_theme

cli_summary

Default: False

When set to True, displays a summary of the number of minions targeted, the number of minions returned, and
the number of minions that did not return.

[cli_summary: False

sock_d1ir

Default: /var/run/salt/master

Set the location to use for creating Unix sockets for master process communication.

[sock_dir: /var/run/salt/master

enable_gpu_grains

Default: False

Enable GPU hardware data for your master. Be aware that the master can take a while to start up when Ispci and/or
dmidecode is used to populate the grains for the master.

[enable_gpu_grains: True

skip_grains

Default: False

MasterMinions should omit grains. A MasterMinion is "a minion function object for generic use on the master”
that omit pillar. A RunnerClient creates a MasterMinion omitting states and renderer. Setting to True can improve
master performance.

[skip_grains: True]

40 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

job_cache

Default: True

The master maintains a temporary job cache. While this is a great addition, it can be a burden on the master for
larger deployments (over 5000 minions). Disabling the job cache will make previously executed jobs unavailable to
the jobs system and is not generally recommended. Normally it is wise to make sure the master has access to a faster
IO system or a tmpfs is mounted to the jobs dir.

[job_cache: True]

Note: Setting the job_cache to False will not cache minion returns, but the JID directory for each job is
still created. The creation of the JID directories is necessary because Salt uses those directories to check for JID
collisions. By setting this option to False, the job cache directory, which is /var/cache/salt/master/
jobs/ by default, will be smaller, but the JID directories will still be present.

Note that the keep_jobs_seconds option can be set to a lower value, such as 3600, to limit the number of
seconds jobs are stored in the job cache. (The default is 86400 seconds.)

Please see the Managing the Job Cache documentation for more information.

minion_data_cache

Default: True

The minion data cache is a cache of information about the minions stored on the master, this information is primarily
the pillar, grains and mine data. The data is cached via the cache subsystem in the Master cachedir under the name
of the minion or in a supported database. The data is used to predetermine what minions are expected to reply from
executions.

[minion_data_cache: True]

cache

Default: localfs

Cache subsystem module to use for minion data cache.

[cache: consul

memcache_expire_seconds

Default: 0

Memcache is an additional cache layer that keeps a limited amount of data fetched from the minion data cache for a
limited period of time in memory that makes cache operations faster. It doesn't make much sense for the localfs
cache driver but helps for more complex drivers like consu'l.

This option sets the memcache items expiration time. By default is set to O that disables the memcache.

[memcache_expire_seconds: 30

7.2. Configuring the Salt Master 41

Salt Documentation, Release 3007.5

memcache_max_items

Default: 1024

Set memcache limit in items that are bank-key pairs. ILe the list of minion_0/data, minion_0/mine, minion_1/data
contains 3 items. This value depends on the count of minions usually targeted in your environment. The best one
could be found by analyzing the cache log with memcache_debug enabled.

[memcache_max_items: 1024

memcache_full_cleanup

Default: False

If cache storage got full, i.e. the items count exceeds the memcache_max_1items value, memcache cleans up its
storage. If this option set to False memcache removes the only one oldest value from its storage. If this set set to
True memcache removes all the expired items and also removes the oldest one if there are no expired items.

[memcache_full_cleanup: True

memcache_debug

Default: False

Enable collecting the memcache stats and log it on debug log level. If enabled memcache collect information about
how many fetch calls has been done and how many of them has been hit by memcache. Also it outputs the rate
value that is the result of division of the first two values. This should help to choose right values for the expiration
time and the cache size.

[memcache_debug: True]

ext_job_cache

Default: ''

Used to specify a default returner for all minions. When this option is set, the specified returner needs to be properly
configured and the minions will always default to sending returns to this returner. This will also disable the local
job cache on the master.

[ext_job_cache: redis

event_return

New in version 2015.5.0.
Default: ''

Specify the returner(s) to use to log events. Each returner may have installation and configuration requirements.
Read the returner's documentation.

Note: Not all returners support event returns. Verify that a returner has an event_return() function before
configuring this option with a returner.

42 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

event_return:
- syslog
- splunk

event_return_queue

New in version 2015.5.0.
Default: 0

On busy systems, enabling event_returns can cause a considerable load on the storage system for returners. Events
can be queued on the master and stored in a batched fashion using a single transaction for multiple events. By
default, events are not queued.

[event_return_queue: 0

event_return_whitelist

New in version 2015.5.0.
Default: []
Only return events matching tags in a whitelist.

Changed in version 2016.11.0: Supports glob matching patterns.

event_return_whitelist:
- salt/master/a_tag
- salt/run/*/ret

event_return_blacklist

New in version 2015.5.0.
Default: []
Store all event returns _except_ the tags in a blacklist.

Changed in version 2016.11.0: Supports glob matching patterns.

event_return_blacklist:
- salt/master/not_this_tag
- salt/wheel/*/ret

7.2. Configuring the Salt Master 43

Salt Documentation, Release 3007.5

max_event_size

New in version 2014.7.0.
Default: 1048576

Passing very large events can cause the minion to consume large amounts of memory. This value tunes the maximum
size of a message allowed onto the master event bus. The value is expressed in bytes.

[max_event_size: 1048576]

master_job_cache

New in version 2014.7.0.
Default: Tlocal_cache

Specify the returner to use for the job cache. The job cache will only be interacted with from the salt master and
therefore does not need to be accessible from the minions.

[master_job_cache: redis]

job_cache_store_endtime

New in version 2015.8.0.
Default: False

Specify whether the Salt Master should store end times for jobs as returns come in.

[job_cache_store_endtime: False J

enforce_mine_cache

Default: False

By-default when disabling the minion_data_cache mine will stop working since it is based on cached data, by en-
abling this option we explicitly enabling only the cache for the mine system.

[enforce_mine_cache: False

max_minions

Default: 0

The maximum number of minion connections allowed by the master. Use this to accommodate the number of
minions per master if you have different types of hardware serving your minions. The default of ® means unlimited
connections. Please note that this can slow down the authentication process a bit in large setups.

[max_minions: 100

44 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

con_cache

Default: False

If max_minions is used in large installations, the master might experience high-load situations because of having to
check the number of connected minions for every authentication. This cache provides the minion-ids of all connected
minions to all MWorker-processes and greatly improves the performance of max_minions.

[con_cache: True]

presence_events

Default: False

Causes the master to periodically look for actively connected minions. Presence events are fired on the event bus on
a regular interval with a list of connected minions, as well as events with lists of newly connected or disconnected
minions. This is a master-only operation that does not send executions to minions.

[presence_events: False

detect_remote_minions

Default: False

When checking the minions connected to a master, also include the master's connections to minions on the port
specified in the setting remote_minions_port. This is particularly useful when checking if the master is connected
to any Heist-Salt minions. If this setting is set to True, the master will check all connections on port 22 by default
unless a user also configures a different port with the setting remote_minions_port.

Changing this setting will check the remote minions the master is connected to when using presence events, the
manage runner, and any other parts of the code that call the connected_ids method to check the status of connected
minions.

[detect_remote_minions: True

remote_minions_port

Default: 22

The port to use when checking for remote minions when detect_remote_minions is set to True.

[remote_minions_port: 2222

ping_on_rotate

New in version 2014.7.0.
Default: False

By default, the master AES key rotates every 24 hours. The next command following a key rotation will trigger a
key refresh from the minion which may result in minions which do not respond to the first command after a key
refresh.

7.2. Configuring the Salt Master 45

Salt Documentation, Release 3007.5

To tell the master to ping all minions immediately after an AES key refresh, set ping_on_rotate to True. This
should mitigate the issue where a minion does not appear to initially respond after a key is rotated.

Note that enabling this may cause high load on the master immediately after the key rotation event as minions
reconnect. Consider this carefully if this salt master is managing a large number of minions.

If disabled, it is recommended to handle this event by listening for the aes_key_rotate event with the key tag
and acting appropriately.

[ping_on_rotate: False

transport

Default: zeromq

Changes the underlying transport layer. ZeroMQ is the recommended transport while additional transport layers
are under development. Supported values are zeromq and tcp (experimental). This setting has a significant impact
on performance and should not be changed unless you know what you are doing!

[transport: zeromqg

transport_opts

Default: {}

(experimental) Starts multiple transports and overrides options for each transport with the provided dictionary This
setting has a significant impact on performance and should not be changed unless you know what you are doing!
The following example shows how to start a TCP transport alongside a ZMQ transport.

transport_opts:
tcp:
publish_port: 4605
ret_port: 4606
zeromq: []

master_stats

Default: False

Turning on the master stats enables runtime throughput and statistics events to be fired from the master event bus.
These events will report on what functions have been run on the master and how long these runs have, on average,
taken over a given period of time.

master_stats_event_iter

Default: 60

The time in seconds to fire master_stats events. This will only fire in conjunction with receiving a request to the
master, idle masters will not fire these events.

46 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

sock_pool_size

Default: 1

To avoid blocking waiting while writing a data to a socket, we support socket pool for Salt applications. For example,
a job with a large number of target host list can cause long period blocking waiting. The option is used by ZMQ
and TCP transports, and the other transport methods don't need the socket pool by definition. Most of Salt tools,
including CLI, are enough to use a single bucket of socket pool. On the other hands, it is highly recommended to set
the size of socket pool larger than 1 for other Salt applications, especially Salt API, which must write data to socket
concurrently.

[sock_pool_size: 15]

ipc_mode

Default: ipc

The ipc strategy. (i.e., sockets versus tcp, etc.) Windows platforms lack POSIX IPC and must rely on TCP based
inter-process communications. ipc_mode is set to tcp by default on Windows.

[ipc_mode: ipc

ipc_write_buffer

Default: 0

The maximum size of a message sent via the IPC transport module can be limited dynamically or by sharing an
integer value lower than the total memory size. When the value dynamic is set, salt will use 2.5% of the total
memory as ipc_write_buffer value (rounded to an integer). A value of 0 disables this option.

[ipc_write_buffer: 10485760

tcp_master_pub_port

Default: 4512
The TCP port on which events for the master should be published if ipc_mode is TCP.

[tcp_master_pub_port: 4512

tcp_master_pull_port

Default: 4513
The TCP port on which events for the master should be pulled if ipc_mode is TCP.

[tcp_master_pull_port: 4513

7.2. Configuring the Salt Master 47

Salt Documentation, Release 3007.5

tcp_master_publish_pull

Default: 4514

The TCP port on which events for the master should be pulled fom and then republished onto the event bus on the
master.

[tcp_master_publish_pull: 4514

tcp_master_workers

Default: 4515

The TCP port for mworkers to connect to on the master.

[tcp_master_workers: 4515]

auth_events

New in version 2017.7.3.
Default: True

Determines whether the master will fire authentication events. Authentication events are fired when a minion per-
forms an authentication check with the master.

[auth_events: True

minion_data_cache_events

New in version 2017.7.3.
Default: True

Determines whether the master will fire minion data cache events. Minion data cache events are fired when a minion
requests a minion data cache refresh.

[minion_data_cache_events: True

http_connect_timeout

New in version 2019.2.0.
Default: 20

HTTP connection timeout in seconds. Applied when fetching files using tornado back-end. Should be greater than
overall download time.

[http_connect_timeout: 20

48 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

http_request_timeout

New in version 2015.8.0.
Default: 3600

HTTP request timeout in seconds. Applied when fetching files using tornado back-end. Should be greater than
overall download time.

[http_request_timeout: 3600]

use_yamlloader_old

New in version 2019.2.1.
Default: False

Use the pre-2019.2 YAML renderer. Uses legacy YAML rendering to support some legacy inline data structures. See
the 2019.2.1 release notes for more details.

[use_yamlloader_old: False]

req_server_niceness

New in version 3001.
Default: None

Process priority level of the ReqServer subprocess of the master. Supported on POSIX platforms only.

[req_server_niceness: 9

pub_server_niceness

New in version 3001.
Default: None

Process priority level of the PubServer subprocess of the master. Supported on POSIX platforms only.

[pub_server_niceness: 9

fileserver_update_niceness

New in version 3001.
Default: None

Process priority level of the FileServerUpdate subprocess of the master. Supported on POSIX platforms only.

[fi1eserver_update_niceness: 9

7.2. Configuring the Salt Master 49

Salt Documentation, Release 3007.5

maintenance_niceness

New in version 3001.
Default: None

Process priority level of the Maintenance subprocess of the master. Supported on POSIX platforms only.

[maintenance_niceness: 9

mworker_niceness

New in version 3001.
Default: None

Process priority level of the MWorker subprocess of the master. Supported on POSIX platforms only.

[mworker_niceness: 9

mworker_queue_niceness

New in version 3001.
default: None

process priority level of the MWorkerQueue subprocess of the master. supported on POSIX platforms only.

[mworker_queue_niceness: 9]

event_return_niceness

New in version 3001.
default: None

process priority level of the EventReturn subprocess of the master. supported on POSIX platforms only.

[event_return_niceness: 9

event_publisher_niceness

New in version 3001.
default: none

process priority level of the EventPublisher subprocess of the master. supported on POSIX platforms only.

[event_publisher_niceness: 9

50 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

reactor_niceness

New in version 3001.
default: None

process priority level of the Reactor subprocess of the master. supported on POSIX platforms only.

[reactor_niceness: 9

7.2.2 Salt-SSH Configuration

roster

Default: flat

Define the default salt-ssh roster module to use

[roster: cache]

roster_defaults

New in version 2017.7.0.

Default settings which will be inherited by all rosters.

roster_defaults:
user: daniel
sudo: True
priv: /root/.ssh/id_rsa
tty: True

roster_file

Default: /etc/salt/roster

Pass in an alternative location for the salt-ssh flat roster file.

[roster_file: /root/roster

rosters

Default: None

Define locations for f lat roster files so they can be chosen when using Salt API. An administrator can place roster
files into these locations. Then, when calling Salt AP, the roster_ file parameter should contain a relative path
to these locations. That is, roster_file=/foo/roster will be resolved as /etc/salt/roster.d/foo/
roster etc. This feature prevents passing insecure custom rosters through the Salt APL

rosters:
- J/etc/salt/roster.d
- /opt/salt/some/more/rosters

7.2. Configuring the Salt Master 51

Salt Documentation, Release 3007.5

ssh_passwd

Default: ''

The ssh password to log in with.

[ssh_passwd: v

ssh_priv_passwd

Default: ''

Passphrase for ssh private key file.

[ssh_priv_passwd: J 0

ssh_port

Default: 22

The target system's ssh port number.

[ssh_port: 22

ssh_scan_ports

Default: 22

Comma-separated list of ports to scan.

[ssh_scan_ports: 22

ssh_scan_timeout

Default: 0.01

Scanning socket timeout for salt-ssh.

[ssh_scan_timeout: 0.01

ssh_sudo

Default: False

Boolean to run command via sudo.

[ssh_sudo: False

52

Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

ssh_timeout

Default: 60

Number of seconds to wait for a response when establishing an SSH connection.

[ssh_timeout: 60

ssh_user

Default: root

The user to log in as.

[ssh_user: root

ssh_log_file

New in version 2016.3.5.
Default: /var/log/salt/ssh
Specify the log file of the salt-ssh command.

[ssh_log_file: /var/log/salt/ssh]

ssh_minion_opts

Default: None

Pass in minion option overrides that will be inserted into the SHIM for salt-ssh calls. The local minion config is not
used for salt-ssh. Can be overridden on a per-minion basis in the roster (ninion_opts)

ssh_minion_opts:
gpg_keydir: /root/gpg

ssh_use_home_key

Default: False

Set this to True to default to using ~/.ssh/id_rsa for salt-ssh authentication with minions

[ssh_use_home_key: False

7.2. Configuring the Salt Master 53

Salt Documentation, Release 3007.5

ssh_1identities_only

Default: False

Set this to True to default salt-ssh to run with —o IdentitiesOnly=yes. This option is intended for situations
where the ssh-agent offers many different identities and allows ssh to ignore those identities and use the only one
specified in options.

[ssh_identities_only: False]

ssh_1list_nodegroups

Default: {}

List-only nodegroups for salt-ssh. Each group must be formed as either a comma-separated list, or a YAML list. This
option is useful to group minions into easy-to-target groups when using salt-ssh. These groups can then be targeted
with the normal -N argument to salt-ssh.

ssh_list_nodegroups:
groupA: minionl,minion2
groupB: minionl,minion3

Default: False

Run the ssh_pre_{flight script defined in the salt-ssh roster. By default the script will only run when the thin dir does
not exist on the targeted minion. This will force the script to run and not check if the thin dir exists first.

thin_extra_mods

Default: None

List of additional modules, needed to be included into the Salt Thin. Pass a list of importable Python modules that
are typically located in the site-packages Python directory so they will be also always included into the Salt Thin,
once generated.

min_extra_mods

Default: None

Identical as thin_extra_mods, only applied to the Salt Minimal.

thin_exclude_saltexts

Default: False

By default, Salt-SSH autodiscovers Salt extensions in the current Python environment and adds them to the Salt
Thin. This disables that behavior.

Note: When the list of modules/extensions to include in the Salt Thin changes for any rea-
son (e.g. Saltext was added/removed, thin_exclude_saltexts, thin_saltext_allowlist or
thin_saltext_blocklist was changed), you typically need to regenerate the Salt Thin by passing
--regen—thin to the next Salt-SSH invocation.

54 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

thin_saltext_allowlist

Default: None

A list of Salt extension distribution names which are allowed to be included in the Salt Thin (when
thin_exclude_saltexts is inactive) and they are discovered. Any extension not in this list will be excluded.
If unset, all discovered extensions are added, unless present in thin_saltext_blocklist.

thin_saltext_blocklist

Default: None

A list of Salt extension distribution names which should never be included in the Salt Thin (when
thin_exclude_saltexts is inactive).

7.2.3 Master Security Settings
open_mode

Default: False

Open mode is a dangerous security feature. One problem encountered with pki authentication systems is that keys
can become “mixed up” and authentication begins to fail. Open mode turns off authentication and tells the master
to accept all authentication. This will clean up the pki keys received from the minions. Open mode should not be
turned on for general use. Open mode should only be used for a short period of time to clean up pki keys. To turn
on open mode set this value to True.

[open_mode: False

auto_accept

Default: False

Enable auto_accept. This setting will automatically accept all incoming public keys from minions.

[auto_accept: False

keysize

Default: 2048

The size of key that should be generated when creating new keys.

[keysize: 2048

7.2. Configuring the Salt Master 55

Salt Documentation, Release 3007.5

autosign_timeout

New in version 2014.7.0.
Default: 120

Time in minutes that a incoming public key with a matching name found in pki_dir/minion_autosign/keyid is au-
tomatically accepted. Expired autosign keys are removed when the master checks the minion_autosign directory.
This method to auto accept minions can be safer than an autosign_file because the keyid record can expire and is
limited to being an exact name match. This should still be considered a less than secure option, due to the fact that
trust is based on just the requesting minion id.

autosign_file

Default: not defined

If the autosign_fi'le is specified incoming keys specified in the autosign_file will be automatically accepted.
Matches will be searched for first by string comparison, then by globbing, then by full-string regex matching. This
should still be considered a less than secure option, due to the fact that trust is based on just the requesting minion
id.

Changed in version 2018.3.0: For security reasons the file must be readonly except for its owner. If
permissive_pki_access is True the owning group can also have write access, but if Salt is running as root
it must be a member of that group. A less strict requirement also existed in previous version.

autoreject_file

New in version 2014.1.0.
Default: not defined

Works like autosign_f1ile, but instead allows you to specify minion IDs for which keys will automatically be
rejected. Will override both membership in the autosign_file and the auto_accept setting.

autosign_grains_dir

New in version 2018.3.0.
Default: not defined

If the autosign_grains_dir is specified, incoming keys from minions with grain values that match those
defined in files in the autosign_grains_dir will be accepted automatically. Grain values that should be accepted
automatically can be defined by creating a file named like the corresponding grain in the autosign_grains_dir and
writing the values into that file, one value per line. Lines starting with a # will be ignored. Minion must be configured
to send the corresponding grains on authentication. This should still be considered a less than secure option, due to
the fact that trust is based on just the requesting minion.

Please see the Autoaccept Minions from Grains documentation for more information.

[autosign_grains_dir: /etc/salt/autosign_grains

56 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

permissive_pki_access

Default: False

Enable permissive access to the salt keys. This allows you to run the master or minion as root, but have a non-root
group be given access to your pki_dir. To make the access explicit, root must belong to the group you've given access
to. This is potentially quite insecure. If an autosign_file is specified, enabling permissive_pki_access will allow group
access to that specific file.

[permissive_pki_access: False]

publisher_acl

Default: {}

Enable user accounts on the master to execute specific modules. These modules can be expressed as regular expres-
sions.

publisher_acl:
fred:
- test.ping
- pkg.x

publisher_acl_blacklist

Default: {}
Blacklist users or modules

This example would blacklist all non sudo users, including root from running any commands. It would also blacklist
any use of the cmd” module.

This is completely disabled by default.

publisher_acl_blacklist:
users:
- root
- '"A(?2!sudo_) .*$' # all non sudo users
modules:
- cmd. *
- test.echo

sudo_acl

Default: False

Enforce publisher_acland publisher_acl_blacklist when users have sudo access to the salt command.

[sudo_acl: False]

7.2. Configuring the Salt Master 57

Salt Documentation, Release 3007.5

external_auth

Default: {}

The external auth system uses the Salt auth modules to authenticate and validate users to access areas of the Salt
system.

external_auth:
pam:
fred:
- test.x

token_expire

Default: 43200
Time (in seconds) for a newly generated token to live.

Default: 12 hours

[token_expire: 43200

token_expire_user_override

Default: False
Allow eauth users to specify the expiry time of the tokens they generate.

A boolean applies to all users or a dictionary of whitelisted eauth backends and usernames may be given:

token_expire_user_override:
pam:
- fred
- tom
ldap:
- gary

keep_acl_in_token

Default: False

Set to True to enable keeping the calculated user's auth list in the token file. This is disabled by default and the auth
list is calculated or requested from the eauth driver each time.

Note: keep_acl_in_token will be forced to True when using external authentication for REST API (rest is present
under external_auth). This is because the REST API does not store the password, and can therefore not retroactively
fetch the ACL, so the ACL must be stored in the token.

[keep_acl_in_token: False

58 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

eauth_acl_module

Default: ''

Auth subsystem module to use to get authorized access list for a user. By default it's the same module used for
external authentication.

[eauth_acl_module: django

file_recv

Default: False

Allow minions to push files to the master. This is disabled by default, for security purposes.

[file_recv: False

file_recv_max_size

New in version 2014.7.0.
Default: 100
Set a hard-limit on the size of the files that can be pushed to the master. It will be interpreted as megabytes.

[file_recv_max_size: 100

master_sign_pubkey

Default: False

Sign the master auth-replies with a cryptographic signature of the master's public key. Please see the tutorial how
to use these settings in the Multimaster-PKI with Failover Tutorial

[master_sign_pubkey: True

master_sign_key_name

Default: master_s1ign

The customizable name of the signing-key-pair without suffix.

[master_sign_key_name: <filename_without_suffix>

7.2. Configuring the Salt Master 59

https://docs.saltproject.io/en/latest/topics/tutorials/multimaster_pki.html

Salt Documentation, Release 3007.5

master_pubkey_signature

Default: master_pubkey_signature

The name of the file in the master's pki-directory that holds the pre-calculated signature of the master's public-key.

[master_pubkey_signature: <filename>

)

master_use_pubkey_signature

Default: False

Instead of computing the signature for each auth-reply,
master_pubkey_signature must also be set for this.

use

a pre-calculated signature. The

{master_use_pubkey_signature: True

rotate_aes_key

Default: True

Rotate the salt-masters AES-key when a minion-public is deleted with salt-key. This is a very important security-
setting. Disabling it will enable deleted minions to still listen in on the messages published by the salt-master. Do

not disable this unless it is absolutely clear what this does.

[rotate_aes_key: True

publish_session

Default: 86400

The number of seconds between AES key rotations on the master.

[publish_session: Default: 86400

publish_signing_algorithm

New in version 3006.9.

Default: PKCS1v15-SHA1

The RSA signing algorithm used by this minion when connecting to the master's request channel. Valid values are
PKCS1v15-SHAL and PKCS1v15-SHA224. Minions must be at version 3006.9 or greater if this is changed

from the default setting.

60

Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

ssl

New in version 2016.11.0.
Default: None

TLS/SSL connection options. This could be set to a dictionary containing arguments corresponding to python ss'l.
wrap_socket method. For details see Tornado and Python documentation.

Note: to set enum arguments values like cert_reqs and ss1_version use constant names without ssl module
prefix: CERT_REQUIRED or PROTOCOL_SSLv23.

ssl:
keyfile: <path_to_keyfile>
certfile: <path_to_certfile>
ssl_version: PROTOCOL_TLSvl 2

preserve_minion_cache

Default: False

By default, the master deletes its cache of minion data when the key for that minion is removed. To preserve the
cache after key deletion, set preserve_minion_cache to True.

WARNING: This may have security implications if compromised minions auth with a previous deleted minion ID.

[preserve_minion_cache: False]

allow_minion_key_revoke

Default: True

Controls whether a minion can request its own key revocation. When True the master will honor the minion's
request and revoke its key. When False, the master will drop the request and the minion's key will remain accepted.

[allow_minion_key_revoke: False J

optimization_order

Default: [0, 1, 2]

In cases where Salt is distributed without .py files, this option determines the priority of optimization level(s) Salt's
module loader should prefer.

Note: This option is only supported on Python 3.5+.

optimization_order:
- 2

-0
1

7.2. Configuring the Salt Master 61

http://www.tornadoweb.org/en/stable/tcpserver.html#tornado.tcpserver.TCPServer
https://docs.python.org/3/library/ssl.html#ssl.wrap_socket

Salt Documentation, Release 3007.5

7.2.4 Master Large Scale Tuning Settings
max_open_files

Default: 100000

Each minion connecting to the master uses AT LEAST one file descriptor, the master subscription connection. If
enough minions connect you might start seeing on the console(and then salt-master crashes):

Too many open files (tcp_listener.cpp:335)
Aborted (core dumped)

[max_open_files: 100000]

By default this value will be the one of ulimit -Hn, i.e., the hard limit for max open files.

To set a different value than the default one, uncomment, and configure this setting. Remember that this value
CANNOT be higher than the hard limit. Raising the hard limit depends on the OS and/or distribution, a good way
to find the limit is to search the internet for something like this:

[raise max open files hard limit debian

worker_threads

Default: 5

The number of threads to start for receiving commands and replies from minions. If minions are stalling on replies
because you have many minions, raise the worker_threads value.

Worker threads should not be put below 3 when using the peer system, but can drop down to 1 worker otherwise.
Standards for busy environments:
« Use one worker thread per 200 minions.

« The value of worker_threads should not exceed 1% times the available CPU cores.

Note: When the master daemon starts, it is expected behaviour to see multiple salt-master processes, even if
'worker_threads' is set to '1'. At a minimum, a controlling process will start along with a Publisher, an EventPub-
lisher, and a number of MWorker processes will be started. The number of MWorker processes is tuneable by the
'worker_threads' configuration value while the others are not.

[worker_threads: 5]

pub_hwm

Default: 1000

The zeromq high water mark on the publisher interface.

[pub_hwm: 1000

62 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

zmq_backlog

Default: 1000
The listen queue size of the ZeroMQ backlog.

[zmq_backlog: 1000]

7.2.5 Master Module Management

runner_dirs

Default: []

Set additional directories to search for runner modules.

runner_dirs:
- /Jvar/lib/salt/runners

utils_dirs

New in version 2018.3.0.
Default: []

Set additional directories to search for util modules.

utils_dirs:
- /Jvar/lib/salt/utils

cython_enable

Default: False

Set to true to enable Cython modules (.pyx files) to be compiled on the fly on the Salt master.

[cython_enable: False]

7.2.6 Master State System Settings

state_top

Default: top.sls

The state system uses a "top” file to tell the minions what environment to use and what modules to use. The state_top
file is defined relative to the root of the base environment. The value of ”state_top” is also used for the pillar top file

[state_top: top.sls]

7.2. Configuring the Salt Master 63

Salt Documentation, Release 3007.5

state_top_saltenv

This option has no default value. Set it to an environment name to ensure that only the top file from that environment
is considered during a highstate.

Note: Using this value does not change the merging strategy. For instance, if top_file_merging_strategy
is set to merge, and state_top_saltenv is set to foo, then any sections for environments other than foo in
the top file for the foo environment will be ignored. With state_top_saltenv set to base, all states from
all environments in the base top file will be applied, while all other top files are ignored. The only way to set
state_top_saltenv to something other than base and not have the other environments in the targeted top
file ignored, would be to set top_file_merging_strategy tomerge_all.

[state_top_saltenv: dev

top_file_merging_strategy

Changed in version 2016.11.0: A merge_a'll strategy has been added.
Default: merge

When no specific fileserver environment (a.k.a. saltenv) has been specified for a highstate, all environments' top
files are inspected. This config option determines how the SLS targets in those top files are handled.

When set to merge, the base environment's top file is evaluated first, followed by the other environments' top
files. The first target expression (e.g. '*') for a given environment is kept, and when the same target expression
is used in a different top file evaluated later, it is ignored. Because base is evaluated first, it is authoritative. For
example, if there is a target for ' x ' for the foo environment in both the base and foo environment's top files, the
one in the foo environment would be ignored. The environments will be evaluated in no specific order (aside from
base coming first). For greater control over the order in which the environments are evaluated, use env_order.
Note that, aside from the base environment's top file, any sections in top files that do not match that top file's
environment will be ignored. So, for example, a section for the ga environment would be ignored if it appears in
the dev environment's top file. To keep use cases like this from being ignored, use the merge_all strategy.

When set to same, then for each environment, only that environment's top file is processed, with the others being
ignored. For example, only the dev environment's top file will be processed for the dev environment, and any
SLS targets defined for dev in the base environment's (or any other environment's) top file will be ignored. If an
environment does not have a top file, then the top file from the default_top config parameter will be used as a
fallback.

When set to merge_all, then all states in all environments in all top files will be applied. The order in which
individual SLS files will be executed will depend on the order in which the top files were evaluated, and the envi-
ronments will be evaluated in no specific order. For greater control over the order in which the environments are
evaluated, use env_order.

[top_file_merging_strategy: same

64 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

env_order

Default: []

When top_file_merging_strategy is set to merge, and no environment is specified for a highstate, this
config option allows for the order in which top files are evaluated to be explicitly defined.

env_order:
- base
- dev

- qga

master_tops

Default: {}

The master_tops option replaces the external_nodes option by creating a pluggable system for the generation of
external top data. The external_nodes option is deprecated by the master_tops option. To gain the capabilities of the
classic external_nodes system, use the following configuration:

master_tops:
ext_nodes: <Shell command which returns yaml>

renderer

Default: jinja|yaml

The renderer to use on the minions to render the state data.

[renderer: jinja|json]

userdata_template

New in version 2016.11.4.
Default: None

The renderer to use for templating userdata files in salt-cloud, if the userdata_template is not set in the cloud
profile. If no value is set in the cloud profile or master config file, no templating will be performed.

[userdata_template: jinja]

jinja_env
New in version 2018.3.0.

Default: {}

jinja_env overrides the default Jinja environment options for all templates except sls templates. To set the options
for sls templates use jinja_sls_env.

7.2. Configuring the Salt Master 65

Salt Documentation, Release 3007.5

Note: The Jinja2 Environment documentation is the official source for the default values. Not all the options listed
in the jinja documentation can be overridden using jinja_env or jinja_sls_env.

The default options are:

jinja_env:
block_start_string: '{%'
block_end_string: '%}'
variable_start_string: '{{'
variable_end_string: '}}'
comment_start_string: '{#'
comment_end_string: '#}'
line_statement_prefix:
line_comment_prefix:
trim_blocks: False
1strip_blocks: False
newline_sequence: '\n'
keep_trailing_newline: False

jinja_sls_env

New in version 2018.3.0.
Default: {}

jinja_sls_env sets the Jinja environment options for sls templates. The defaults and accepted options are exactly the
same as they are for jinja_env.

The default options are:

jinja_sls_env:
block_start_string: '{%'
block_end_string: '%}'
variable_start_string: '{{'
variable_end_string: '}}'
comment_start_string: '{#'
comment_end_string: '#}'
line_statement_prefix:
line_comment_prefix:
trim_blocks: False
lstrip_blocks: False
newline_sequence: '\n'
keep_trailing_newline: False

Example using line statements and line comments to increase ease of use:

If your configuration options are

jinja_sls_env:
line_statement_prefix: '%'
line_comment_prefix: '##'

With these options jinja will interpret anything after a % at the start of a line (ignoreing whitespace) as a jinja
statement and will interpret anything after a ## as a comment.

66 Chapter 7. Configuring Salt

https://jinja.palletsprojects.com/en/2.11.x/api/#jinja2.Environment

Salt Documentation, Release 3007.5

This allows the following more convenient syntax to be used:

(this comment will not stay once rendered)
(this comment remains in the rendered template)
ensure all the formula services are running
% for service in formula_services:
enable_service_{{ service }}:

service.running:

name: {{ service }}

% endfor

The following less convenient but equivalent syntax would have to be used if you had not set the line_statement and
line_comment options:

{# (this comment will not stay once rendered) #}
(this comment remains in the rendered template)
{# ensure all the formula services are running #}
% for service in formula_services %}
enable_service_{{ service }}:

service.running:

name: {{ service }}

% endfor %}

jinja_trim_blocks

Deprecated since version 2018.3.0: Replaced by jinja_env and jinja_sls_env
New in version 2014.1.0.
Default: False

If this is set to True, the first newline after a Jinja block is removed (block, not variable tag!). Defaults to False
and corresponds to the Jinja environment init variable trim_blocks.

[jinja_trim_blocks: False

jinja_lstrip_blocks

Deprecated since version 2018.3.0: Replaced by jinja_env and jinja_sls_env
New in version 2014.1.0.
Default: False

If this is set to True, leading spaces and tabs are stripped from the start of a line to a block. Defaults to False and
corresponds to the Jinja environment init variable lstrip_blocks.

[jinja_lstrip_blocks: False

7.2. Configuring the Salt Master 67

Salt Documentation, Release 3007.5

failhard

Default: False

Set the global failhard flag. This informs all states to stop running states at the moment a single state fails.

[failhard: False

state_verbose

Default: True

Controls the verbosity of state runs. By default, the results of all states are returned, but setting this value to Fa'lse
will cause salt to only display output for states that failed or states that have changes.

[state_verbose: False]

state_output

Default: full

The state_output setting controls which results will be output full multi line:
« full, terse - each state will be full/terse
- mixed - only states with errors will be full
« changes - states with changes and errors will be full

full_id,mixed_id, changes_idand terse_-d are also allowed; when set, the state ID will be used as name
in the output.

[state_output: full

state_output_diff

Default: False

The state_output_diff setting changes whether or not the output from successful states is returned. Useful when
even the terse output of these states is cluttering the logs. Set it to True to ignore them.

[state_output_diff: False

state_output_profile

Default: True

The state_output_profile setting changes whether profile information will be shown for each state run.

[state_output_profile: True

68 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

state_output_pct

Default: False

The state_output_pct setting changes whether success and failure information as a percent of total actions
will be shown for each state run.

[state_output_pct: False]

state_compress_ids

Default: False

The state_compress_ids setting aggregates information about states which have multiple "names” under the
same state ID in the highstate output.

[state_compress_ids: False]

state_aggregate

Default: False

Automatically aggregate all states that have support for mod_aggregate by setting to True.

[state_aggregate: True]

Or pass a list of state module names to automatically aggregate just those types.

state_aggregate:
- pkg

state_events

Default: False

Send progress events as each function in a state run completes execution by setting to True. Progress events are in
the format salt/job/<JID>/prog/<MID>/<RUN NUM>.

[state_events: True

yaml_utfs8

Default: False

Enable extra routines for YAML renderer used states containing UTF characters.

[yaml_uth: False

7.2. Configuring the Salt Master 69

Salt Documentation, Release 3007.5

runner_returns

Default: True

If set to Fa'lse, runner jobs will not be saved to job cache (defined by master_job_cache).

[runner_returns: False]

7.2.7 Master File Server Settings

fileserver_backend

Default: ['roots']

Salt supports a modular fileserver backend system, this system allows the salt master to link directly to third party
systems to gather and manage the files available to minions. Multiple backends can be configured and will be
searched for the requested file in the order in which they are defined here. The default setting only enables the
standard backend roots, which is configured using the file_roots option.

Example:

fileserver_backend:
- roots
- gitfs

Note: For masterless Salt, this parameter must be specified in the minion config file.

fileserver_followsymlinks

New in version 2014.1.0.
Default: True

By default, the file_server follows symlinks when walking the filesystem tree. Currently this only applies to the
default roots fileserver_backend.

[fileserver_followsymlinks: True

fileserver_ignoresymlinks

New in version 2014.1.0.
Default: False

If you do not want symlinks to be treated as the files they are pointing to, set fileserver_ignoresymlinks
to True. By default this is set to False. When set to True, any detected symlink while listing files on the Master
will not be returned to the Minion.

[fileserver_ignoresymlinks: False

70 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

fileserver_list_cache_time

New in version 2014.1.0.
Changed in version 2016.11.0: The default was changed from 30 seconds to 20.
Default: 20

Salt caches the list of files/symlinks/directories for each fileserver backend and environment as they are requested,
to guard against a performance bottleneck at scale when many minions all ask the fileserver which files are available
simultaneously. This configuration parameter allows for the max age of that cache to be altered.

Set this value to O to disable use of this cache altogether, but keep in mind that this may increase the CPU load on
the master when running a highstate on a large number of minions.

Note: Rather than altering this configuration parameter, it may be advisable to use the fileserver.
clear_file_l1ist_cache runner to clear these caches.

[fileserver_list_cache_time: 5

fileserver_verify_config

New in version 2017.7.0.
Default: True

By default, as the master starts it performs some sanity checks on the configured fileserver backends. If any of these
sanity checks fail (such as when an invalid configuration is used), the master daemon will abort.

To skip these sanity checks, set this option to False.

[fileserver_verify_config: False

hash_type

Default: sha256

The hash_type is the hash to use when discovering the hash of a file on the master server. The default is sha256, but
md5, shal, sha224, sha384, and sha512 are also supported.

[hash_type: sha256

file_buffer_size

Default: 1048576

The buffer size in the file server in bytes.

[file_buffer_size: 1048576

7.2. Configuring the Salt Master 71

Salt Documentation, Release 3007.5

file_ignore_regex

Default: ''

A regular expression (or a list of expressions) that will be matched against the file path before syncing the modules
and states to the minions. This includes files affected by the file.recurse state. For example, if you manage your
custom modules and states in subversion and don't want all the ".svn' folders and content synced to your minions,
you could set this to '/.svn($|/)'. By default nothing is ignored.

file_ignore_regex:
- '"/\.svn($]/)"
- /\.git(s]/)!

file_ignore_glob

Default "'

A file glob (or list of file globs) that will be matched against the file path before syncing the modules and states to
the minions. This is similar to file_ignore_regex above, but works on globs instead of regex. By default nothing is
ignored.

file_ignore_glob:
- "*x.pyc'
- '"\x/somefolder/*.bak'
- "*.swp'

Note: Vim's .swp files are a common cause of Unicode errors in file. recurse states which use templating.
Unless there is a good reason to distribute them via the fileserver, it is good practice to include '\ *.swp"' in the
file_1ignore_glob

master_roots

Default: "'
A master-only copy of the file_roots dictionary, used by the state compiler.

Example:

master_roots:
base:
- /srv/salt-master

72 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

roots: Master's Local File Server

file_roots

Changed in version 3005.
Default:

base:
- /srv/salt

Salt runs a lightweight file server written in ZeroMQ to deliver files to minions. This file server is built into the
master daemon and does not require a dedicated port.

The file server works on environments passed to the master. Each environment can have multiple root directories.
The subdirectories in the multiple file roots cannot match, otherwise the downloaded files will not be able to be
reliably ensured. A base environment is required to house the top file.

As of 2018.3.5 and 2019.2.1, it is possible to have __env__ as a catch-all environment.

Example:

file_roots:
base:
- /srv/salt
dev:
- /srv/salt/dev/services
- /srv/salt/dev/states
prod:
- /srv/salt/prod/services
- /srv/salt/prod/states
_env__
- /srv/salt/default

Taking dynamic environments one step further, __env__ can also be used in the file_roots filesystem path
as of version 3005. It will be replaced with the actual saltenv and searched for states and data to provide to the
minion. Note this substitution ONLY occurs for the __env__ environment. For instance, this configuration:

file_roots:
_env__
- /srv/__env__/salt

is equivalent to this static configuration:

file_roots:
dev:
- /srv/dev/salt
test:
- /srv/test/salt
prod:
- /srv/prod/salt

Note: For masterless Salt, this parameter must be specified in the minion config file.

7.2. Configuring the Salt Master 73

Salt Documentation, Release 3007.5

roots_update_dinterval

New in version 2018.3.0.
Default: 60

This option defines the update interval (in seconds) for file_roots.

Note: Since file_roots consists of files local to the minion, the update process for this fileserver backend just
reaps the cache for this backend.

[roots_update_interval: 120]

gitfs: Git Remote File Server Backend

gitfs_remotes

Default: []

When using the g1t fileserver backend at least one git remote needs to be defined. The user running the salt master
will need read access to the repo.

The repos will be searched in order to find the file requested by a client and the first repo to have the file will return
it. Branches and tags are translated into salt environments.

gitfs_remotes:
- git://github.com/saltstack/salt-states.git
- file:///var/git/saltmaster

Note: file:// repos will be treated as a remote and copied into the master's gitfs cache, so only the local refs for
those repos will be exposed as fileserver environments.

As of 2014.7.0, it is possible to have per-repo versions of several of the gitfs configuration parameters. For more
information, see the GitFS Walkthrough.

gitfs_provider

New in version 2014.7.0.

Optional parameter used to specify the provider to be used for gitfs. More information can be found in the GitFS
Walkthrough.

Must be either pygit2 or gitpython. If unset, then each will be tried in that same order, and the first one with
a compatible version installed will be the provider that is used.

[gitfs_provider: gitpython

74 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

gitfs_ssl_verify

Default: True

Specifies whether or not to ignore SSL certificate errors when fetching from the repositories configured in
gitfs_remotes. The False setting is useful if you're using a git repo that uses a self-signed certificate. However,
keep in mind that setting this to anything other True is a considered insecure, and using an SSH-based transport
(if available) may be a better option.

[gitfs_ssl_verify: False J

Note: pygit2 only supports disabling SSL verification in versions 0.23.2 and newer.

Changed in version 2015.8.0: This option can now be configured on individual repositories as well. See here for more
info.

Changed in version 2016.11.0: The default config value changed from False to True.

gitfs_mountpoint

New in version 2014.7.0.
Default: "'

Specifies a path on the salt fileserver which will be prepended to all files served by gitfs. This option can be used in
conjunction with gitfs_root. It can also be configured for an individual repository, see here for more info.

[gitfs_mountpoint: salt://foo/bar]

Note: The salt:// protocol designation can be left off (in other words, foo/bar and salt://foo/bar are
equivalent). Assuming a file baz . sh in the root of a gitfs remote, and the above example mountpoint, this file would
be served up via salt://foo/bar/baz.sh.

gitfs_root

Default: "'

Relative path to a subdirectory within the repository from which Salt should begin to serve files. This is useful when
there are files in the repository that should not be available to the Salt fileserver. Can be used in conjunction with
gitfs_mountpoint. If used, then from Salt's perspective the directories above the one specified will be ignored
and the relative path will (for the purposes of gitfs) be considered as the root of the repo.

[gitfs_root: somefolder/otherfolder]

Changed in version 2014.7.0: This option can now be configured on individual repositories as well. See here for more
info.

7.2. Configuring the Salt Master 75

Salt Documentation, Release 3007.5

gitfs_base

Default: master

Defines which branch/tag should be used as the base environment.

[gitfs_base: salt J

Changed in version 2014.7.0: This option can now be configured on individual repositories as well. See here for more
info.

gitfs_saltenv

New in version 2016.11.0.
Default: []

Global settings for per-saltenv configuration parameters. Though per-saltenv configuration parameters are typically
one-off changes specific to a single gitfs remote, and thus more often configured on a per-remote basis, this parameter
can be used to specify per-saltenv changes which should apply to all remotes. For example, the below configuration
will map the develop branch to the dev saltenv for all gitfs remotes.

gitfs_saltenv:
- dev:
- ref: develop

gitfs_disable_saltenv_mapping

New in version 2018.3.0.
Default: False

When set to True, all saltenv mapping logic is disregarded (aside from which branch/tag is mapped to the base
saltenv). To use any other environments, they must then be defined using per-saltenv configuration parameters.

[gitfs_disable_saltenv_mapping: True]

Note: This is is a global configuration option, see here for examples of configuring it for individual repositories.

gitfs_ref_types

New in version 2018.3.0.
Default: ['branch', 'tag', 'sha']

This option defines what types of refs are mapped to fileserver environments (i.e. saltenvs). It also sets the order
of preference when there are ambiguously-named refs (i.e. when a branch and tag both have the same name). The
below example disables mapping of both tags and SHAs, so that only branches are mapped as saltenvs:

gitfs_ref_types:
- branch

76 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

Note: This is is a global configuration option, see here for examples of configuring it for individual repositories.

Note: sha is special in that it will not show up when listing saltenvs (e.g. with the fileserver. envs runner),
but works within states and with cp. cache_f1 le to retrieve a file from a specific git SHA.

gitfs_saltenv_whitelist

New in version 2014.7.0.
Changed in version 2018.3.0: Renamed from gitfs_env_whitelistto gitfs_saltenv_whitelist
Default: []

Used to restrict which environments are made available. Can speed up state runs if the repos in gitfs_remotes
contain many branches/tags. More information can be found in the GitFS Walkthrough.

gitfs_saltenv_whitelist:
- base
- vl.*
- '"mybranch\d+'

gitfs_saltenv_blacklist

New in version 2014.7.0.
Changed in version 2018.3.0: Renamed from gitfs_env_blacklistto gitfs_saltenv_blacklist
Default: []

Used to restrict which environments are made available. Can speed up state runs if the repos in gitfs_remotes
contain many branches/tags. More information can be found in the GitFS Walkthrough.

gitfs_saltenv_blacklist:
- base
- vl.*x
- 'mybranch\d+'

gitfs_global_lock

New in version 2015.8.9.
Default: True

When set to False, if there is an update lock for a gitfs remote and the pid written to it is not running on the master,
the lock file will be automatically cleared and a new lock will be obtained. When set to True, Salt will simply log a
warning when there is an update lock present.

On single-master deployments, disabling this option can help automatically deal with instances where the master
was shutdown/restarted during the middle of a gitfs update, leaving a update lock in place.

7.2. Configuring the Salt Master 77

Salt Documentation, Release 3007.5

However, on multi-master deployments with the gitfs cachedir shared via GlusterFS, nfs, or another network filesys-
tem, it is strongly recommended not to disable this option as doing so will cause lock files to be removed if they were
created by a different master.

Disable global lock
gitfs_global_lock: False

gitfs_update_interval

New in version 2018.3.0.
Default: 60

This option defines the default update interval (in seconds) for gitfs remotes. The update interval can also be set for
a single repository via a per-remote config option

[gitfs_update_interval: 120

GitFS Authentication Options

These parameters only currently apply to the pygit2 gitfs provider. Examples of how to use these can be found in
the GitFS Walkthrough.

gitfs_user

New in version 2014.7.0.
Default: ''

Along with gitfs_password, is used to authenticate to HTTPS remotes.

[gitfs_user: git]

Note: This is is a global configuration option, see here for examples of configuring it for individual repositories.

gitfs_password

New in version 2014.7.0.
Default: ''

Along with gitfs_user,isused to authenticate to HT TPS remotes. This parameter is not required if the repository
does not use authentication.

[gitfs_password: mypassword]

Note: This is is a global configuration option, see here for examples of configuring it for individual repositories.

78 Chapter 7. Configuring Salt

http://www.gluster.org/

Salt Documentation, Release 3007.5

gitfs_insecure_auth

New in version 2014.7.0.
Default: False

By default, Salt will not authenticate to an HTTP (non-HTTPS) remote. This parameter enables authentication over
HTTP. Enable this at your own risk.

[gitfs_insecure_auth: True]

Note: This is is a global configuration option, see here for examples of configuring it for individual repositories.

gitfs_pubkey

New in version 2014.7.0.
Default: ''

Along with gitfs_privkey (and optionally gitfs_passphrase), is used to authenticate to SSH remotes.
Required for SSH remotes.

[gitfs_pubkey: /path/to/key.pub]

Note: This is is a global configuration option, see here for examples of configuring it for individual repositories.

gitfs_privkey

New in version 2014.7.0.
Default: "'

Along with gitfs_pubkey (and optionally gitfs_passphrase), is used to authenticate to SSH remotes. Re-
quired for SSH remotes.

[gitfs_privkey: /path/to/key]

Note: This is is a global configuration option, see here for examples of configuring it for individual repositories.

gitfs_passphrase

New in version 2014.7.0.
Default: "'

This parameter is optional, required only when the SSH key being used to authenticate is protected by a passphrase.

[gitfs_passphrase: mypassphrase]

7.2. Configuring the Salt Master 79

Salt Documentation, Release 3007.5

Note: This is is a global configuration option, see here for examples of configuring it for individual repositories.

gitfs_refspecs

New in version 2017.7.0.
Default: ['+refs/heads/x:refs/remotes/origin/x', '+refs/tags/*:refs/tags/*']

When fetching from remote repositories, by default Salt will fetch branches and tags. This parameter can be used to
override the default and specify alternate refspecs to be fetched. More information on how this feature works can
be found in the GitFS Walkthrough.

gitfs_refspecs:
- '+refs/heads/*:refs/remotes/origin/x'
- '+refs/tags/*:refs/tags/*"'
- '+refs/pull/*/head:refs/remotes/origin/pr/x"'
- '+refs/pull/*/merge:refs/remotes/origin/merge/*"'

hgfs: Mercurial Remote File Server Backend

hgfs_remotes

New in version 0.17.0.
Default: []

When using the hg fileserver backend at least one mercurial remote needs to be defined. The user running the salt
master will need read access to the repo.

The repos will be searched in order to find the file requested by a client and the first repo to have the file will return
it. Branches and/or bookmarks are translated into salt environments, as defined by the hgfs_branch_method
parameter.

hgfs_remotes:
- https://username@bitbucket.org/username/reponame

Note: As of 2014.7.0, it is possible to have per-repo versions of the hgfs_root, hgfs_mountpoint,
hgfs_base,and hgfs_branch_method parameters. For example:

hgfs_remotes:

- https://username@bitbucket.org/username/repol
- base: saltstates

- https://username@bitbucket.org/username/repo2:
- root: salt
- mountpoint: salt://foo/bar/baz

- https://username@bitbucket.org/username/repo3:
- root: salt/states
- branch_method: mixed

80 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

hgfs_branch_method

New in version 0.17.0.

Default: branches

Defines the objects that will be used as fileserver environments.
« branches - Only branches and tags will be used
« bookmarks - Only bookmarks and tags will be used

« mixed - Branches, bookmarks, and tags will be used

[hgfs_branch_method: mixed]

Note: Starting in version 2014.1.0, the value of the hgfs_base parameter defines which branch is used as the base
environment, allowing for a base environment to be used with an hgfs_branch_method of bookmarks.

Prior to this release, the default branch will be used as the base environment.

hgfs_mountpoint

New in version 2014.7.0.
Default: ''

Specifies a path on the salt fileserver which will be prepended to all files served by hgfs. This option can be used in
conjunction with hgfs_root. It can also be configured on a per-remote basis, see here for more info.

[hgfs_mountpoint: salt://foo/bar J

Note: The salt:// protocol designation can be left off (in other words, foo/bar and salt://foo/bar are
equivalent). Assuming a file baz. sh in the root of an hgfs remote, this file would be served up via salt://foo/
bar/baz.sh.

hgfs_root

New in version 0.17.0.
Default: ''

Relative path to a subdirectory within the repository from which Salt should begin to serve files. This is useful when
there are files in the repository that should not be available to the Salt fileserver. Can be used in conjunction with
hgfs_mountpoint. If used, then from Salt's perspective the directories above the one specified will be ignored
and the relative path will (for the purposes of hgfs) be considered as the root of the repo.

[hgfs_root: somefolder/otherfolder]

Changed in version 2014.7.0: Ability to specify hgfs roots on a per-remote basis was added. See here for more info.

7.2. Configuring the Salt Master 81

Salt Documentation, Release 3007.5

hgfs_base

New in version 2014.1.0.
Default: default

Defines which branch should be used as the base environment. Change this if hgfs_branch_method is set to
bookmarks to specify which bookmark should be used as the base environment.

[hgfs_base: salt

hgfs_saltenv_whitelist

New in version 2014.7.0.
Changed in version 2018.3.0: Renamed from hgfs_env_whitelist to hgfs_saltenv_whitelist
Default: []

Used to restrict which environments are made available. Can speed up state runs if your hgfs remotes contain many
branches/bookmarks/tags. Full names, globs, and regular expressions are supported. If using a regular expression,
the expression must match the entire minion ID.

If used, only branches/bookmarks/tags which match one of the specified expressions will be exposed as fileserver
environments.

If used in conjunction with hgfs_saltenv_blacklist, then the subset of branches/bookmarks/tags which
match the whitelist but do not match the blacklist will be exposed as fileserver environments.

hgfs_saltenv_whitelist:
- base
- vl.*x
- 'mybranch\d+'

hgfs_saltenv_blacklist

New in version 2014.7.0.
Changed in version 2018.3.0: Renamed from hgfs_env_blacklist to hgfs_saltenv_blacklist
Default: []

Used to restrict which environments are made available. Can speed up state runs if your hgfs remotes contain many
branches/bookmarks/tags. Full names, globs, and regular expressions are supported. If using a regular expression,
the expression must match the entire minion ID.

If used, branches/bookmarks/tags which match one of the specified expressions will not be exposed as fileserver
environments.

If used in conjunction with hgfs_saltenv_whitelist, then the subset of branches/bookmarks/tags which
match the whitelist but do not match the blacklist will be exposed as fileserver environments.

hgfs_saltenv_blacklist:
- base
- vl.*
- '"mybranch\d+'

82 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

hgfs_update_interval

New in version 2018.3.0.

Default: 60

This option defines the update interval (in seconds) for hgfs_remotes.

[hgfs_update_interval: 120

svnfs: Subversion Remote File Server Backend

svnfs_remotes

New in version 0.17.0.

Default: []

When using the svn fileserver backend at least one subversion remote needs to be defined. The user running the

salt master will need read access to the repo.

The repos will be searched in order to find the file requested by a client and the first repo to have the file will return
it. The trunk, branches, and tags become environments, with the trunk being the base environment.

svnfs_remotes:
- svn://foo.com/svn/myproject

Note: As of 2014.7.0, it is possible to have per-repo versions of the following configuration parameters:

« svnfs_root

« svnfs_mountpoint
.« svnfs_trunk

« svnfs_branches

. svnfs_tags

For example:

svnfs_remotes:
- svn://foo.com/svn/projectl
- svn://foo.com/svn/project2:
- root: salt
- mountpoint: salt://foo/bar/baz
- svn//foo.com/svn/project3:
- root: salt/states
- branches: branch
- tags: tag

7.2. Configuring the Salt Master

83

Salt Documentation, Release 3007.5

svnfs_mountpoint

New in version 2014.7.0.
Default: ''

Specifies a path on the salt fileserver which will be prepended to all files served by hgfs. This option can be used in
conjunction with svnfs_root. It can also be configured on a per-remote basis, see here for more info.

[svnfs_mountpoint: salt://foo/bar]

Note: The salt:// protocol designation can be left off (in other words, foo/bar and salt://foo/bar are
equivalent). Assuming a file baz . sh in the root of an svnfs remote, this file would be served up via salt://foo/
bar/baz.sh.

svnfs_root

New in version 0.17.0.
Default: ''

Relative path to a subdirectory within the repository from which Salt should begin to serve files. This is useful when
there are files in the repository that should not be available to the Salt fileserver. Can be used in conjunction with
svnfs_mountpoint. If used, then from Salt's perspective the directories above the one specified will be ignored
and the relative path will (for the purposes of svnfs) be considered as the root of the repo.

[svnfs_root: somefolder/otherfolder]

Changed in version 2014.7.0: Ability to specify svnfs roots on a per-remote basis was added. See here for more
info.

svnfs_trunk

New in version 2014.7.0.
Default: trunk

Path relative to the root of the repository where the trunk is located. Can also be configured on a per-remote basis,
see here for more info.

[svnfs_trunk: trunk J

svnfs_branches

New in version 2014.7.0.
Default: branches

Path relative to the root of the repository where the branches are located. Can also be configured on a per-remote
basis, see here for more info.

[svnfs_branches: branches]

84 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

svnfs_tags

New in version 2014.7.0.
Default: tags

Path relative to the root of the repository where the tags are located. Can also be configured on a per-remote basis,
see here for more info.

[svnfs_tags: tags

svnfs_saltenv_whitelist

New in version 2014.7.0.
Changed in version 2018.3.0: Renamed from svnfs_env_whitelist to svnfs_saltenv_whitelist
Default: []

Used to restrict which environments are made available. Can speed up state runs if your svnfs remotes contain
many branches/tags. Full names, globs, and regular expressions are supported. If using a regular expression, the
expression must match the entire minion ID.

If used, only branches/tags which match one of the specified expressions will be exposed as fileserver environments.

If used in conjunction with svnfs_saltenv_blacklist, then the subset of branches/tags which match the
whitelist but do not match the blacklist will be exposed as fileserver environments.

svnfs_saltenv_whitelist:
- base
- vl.*
- '"mybranch\d+'

svnfs_saltenv_blacklist

New in version 2014.7.0.
Changed in version 2018.3.0: Renamed from svnfs_env_blacklist to svnfs_saltenv_blacklist
Default: []

Used to restrict which environments are made available. Can speed up state runs if your svnfs remotes contain
many branches/tags. Full names, globs, and regular expressions are supported. If using a regular expression, the
expression must match the entire minion ID.

If used, branches/tags which match one of the specified expressions will not be exposed as fileserver environments.

If used in conjunction with svnfs_saltenv_whitelist, then the subset of branches/tags which match the
whitelist but do not match the blacklist will be exposed as fileserver environments.

svnfs_saltenv_blacklist:
- base
- vl.*
- '"mybranch\d+'

7.2. Configuring the Salt Master 85

Salt Documentation, Release 3007.5

svnfs_update_interval

New in version 2018.3.0.
Default: 60

This option defines the update interval (in seconds) for svnfs_remotes.

[svnfs_update_interval: 120]

minionfs: MinionFS Remote File Server Backend

minionfs_env
New in version 2014.7.0.

Default: base

Environment from which MinionFS files are made available.

[minionfs_env: minionfs

minionfs_mountpoint

New in version 2014.7.0.
Default: ''

Specifies a path on the salt fileserver from which minionfs files are served.

[minionfs_mountpoint: salt://foo/bar

Note: The salt:// protocol designation can be left off (in other words, foo/bar and salt://foo/bar are
equivalent).

minionfs_whitelist

New in version 2014.7.0.
Default: []

Used to restrict which minions' pushed files are exposed via minionfs. If using a regular expression, the expression
must match the entire minion ID.

If used, only the pushed files from minions which match one of the specified expressions will be exposed.

If used in conjunction with minionfs_blackl1ist, then the subset of hosts which match the whitelist but do not
match the blacklist will be exposed.

minionfs_whitelist:
- server0l
- devx
- 'mail\d+.mydomain.tld'

86 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

minionfs_blacklist

New in version 2014.7.0.
Default: []

Used to restrict which minions' pushed files are exposed via minionfs. If using a regular expression, the expression
must match the entire minion ID.

If used, only the pushed files from minions which match one of the specified expressions will not be exposed.

If used in conjunction with minionfs_whitelist, then the subset of hosts which match the whitelist but do not
match the blacklist will be exposed.

minionfs_blacklist:
- server0l
- devx
- 'mail\d+.mydomain.tld'

minionfs_update_interval

New in version 2018.3.0.
Default: 60

This option defines the update interval (in seconds) for MinionFs.

Note: Since MinionFS consists of files local to the master, the update process for this fileserver backend just reaps
the cache for this backend.

[minionfs_update_interval: 120

s3fs: S3 File Server Backend
New in version 0.16.0.

See the s3fs documentation for usage examples.

s3fs_update_interval

New in version 2018.3.0.
Default: 60

This option defines the update interval (in seconds) for s3fs.

[sts_update_interval: 120

7.2. Configuring the Salt Master 87

Salt Documentation, Release 3007.5

fileserver_interval

New in version 3006.0.
Default: 3600

Defines how often to restart the master's FilesServerUpdate process.

[fileserver_interval: 9600]

7.2.8 Pillar Configuration

pillar_roots

Changed in version 3005.
Default:

base:
- /srv/pillar

Set the environments and directories used to hold pillar sls data. This configuration is the same as file_roots:
As of 2017.7.5 and 2018.3.1, it is possible to have __env__ as a catch-all environment.

Example:

pillar_roots:
base:
- /srv/pillar
dev:
- /srv/pillar/dev
prod:
- /srv/pillar/prod
__env__
- /srv/pillar/others

Taking dynamic environments one step further, __env__ can also be used in the pillar_roots filesystem path
as of version 3005. It will be replaced with the actual pillarenv and searched for Pillar data to provide to the
minion. Note this substitution ONLY occurs for the __env__ environment. For instance, this configuration:

pillar_roots:
__env__:
- /srv/__env__/pillar

is equivalent to this static configuration:

pillar_roots:
dev:
- /srv/dev/pillar
test:
- /srv/test/pillar
prod:
- /srv/prod/pillar

88 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

on_demand_ext_pillar

New in version 2016.3.6,2016.11.3,2017.7.0.
Default: ['libvirt', 'virtkey']

The external pillars permitted to be used on-demand using pillar.ext.

on_demand_ext_pillar:
- libvirt
- virtkey
- git

Warning: This will allow minions to request specific pillar data via pillar.ext, and may be considered
a security risk. However, pillar data generated in this way will not affect the in-memory pillar data, so this
risk is limited to instances in which states/modules/etc. (built-in or custom) rely upon pillar data generated by
pillar.ext.

decrypt_pillar

New in version 2017.7.0.
Default: []

A list of paths to be recursively decrypted during pillar compilation.

decrypt_pillar:
- 'foo:bar': gpg
- '"lorem:ipsum:dolor’

Entries in this list can be formatted either as a simple string, or as a key/value pair, with the key being the pillar
location, and the value being the renderer to use for pillar decryption. If the former is used, the renderer specified
by decrypt_pillar_default will be used.

decrypt_pillar_delimiter

New in version 2017.7.0.
Default: :

The delimiter used to distinguish nested data structures in the decrypt_pillar option.

decrypt_pillar_delimiter: '|'
decrypt_pillar:

- 'foo|bar': gpg

- 'lorem|ipsum|dolor'

7.2. Configuring the Salt Master 89

Salt Documentation, Release 3007.5

decrypt_pillar_default

New in version 2017.7.0.
Default: gpg

The default renderer used for decryption, if one is not specified for a given pillar key in decrypt_pillar.

[decrypt_pillar_default: my_custom_renderer

decrypt_pillar_renderers

New in version 2017.7.0.
Default: ['gpg']

List of renderers which are permitted to be used for pillar decryption.

decrypt_pillar_renderers:

- gpg
- my_custom_renderer

gpg_decrypt_must_succeed

New in version 3005.
Default: False
If this is True and the ciphertext could not be decrypted, then an error is raised.

Sending the ciphertext through basically is never desired, for example if a state is setting a database password from
pillar and gpg rendering fails, then the state will update the password to the ciphertext, which by definition is not
encrypted.

Warning: The value defaults to False for backwards compatibility. In the Chlor1ine release, this option will
default to True.

[gpg_decrypt_must_succeed: False]

pillar_opts

Default: False

The pillar_opts option adds the master configuration file data to a dict in the pillar called master. This can be
used to set simple configurations in the master config file that can then be used on minions.

Note that setting this option to True means the master config file will be included in all minion's pillars. While
this makes global configuration of services and systems easy, it may not be desired if sensitive data is stored in the
master configuration.

[pillar_opts: False

920 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

pillar_safe_render_error

Default: True

The pillar_safe_render_error option prevents the master from passing pillar render errors to the minion. This is set
on by default because the error could contain templating data which would give that minion information it shouldn't
have, like a password! When set True the error message will only show:

[Rendering SLS 'my.sls' failed. Please see master log for details.]

[pi11ar_safe_render_error: True

ext_pillar

The ext_pillar option allows for any number of external pillar interfaces to be called when populating pillar data.
The configuration is based on ext_pillar functions. The available ext_pillar functions can be found herein:
salt/pillar

By default, the ext_pillar interface is not configured to run.

Default: []

ext_pillar:
- hiera: /etc/hiera.yaml
- cmd_yaml: cat /etc/salt/yaml
- reclass:
inventory_base_uri: /etc/reclass

There are additional details at Pillars

ext_pillar_first

New in version 2015.5.0.
Default: False

This option allows for external pillar sources to be evaluated before pillar_roots. External pillar data is eval-
uated separately from pillar_roots pillar data, and then both sets of pillar data are merged into a single pillar
dictionary, so the value of this config option will have an impact on which key "wins” when there is one of the same
name in both the external pillar data and pillar_roots pillar data. By setting this option to True, ext_pillar
keys will be overridden by pil lar_roots, while leaving it as False will allow ext_pillar keys to override those
frompillar_roots.

Note: For a while, this config option did not work as specified above, because of a bug in Pillar compilation. This
bug has been resolved in version 2016.3.4 and later.

[ext_pillar_first: False

7.2. Configuring the Salt Master 91

https://github.com/saltstack/salt/blob/master/salt/pillar

Salt Documentation, Release 3007.5

pillarenv_from_saltenv

Default: False

When set to True, the pillarenv value will assume the value of the effective saltenv when running states. This
essentially makes salt-run pillar.show_pillar saltenv=dev equivalent to salt-run pillar.
show_pillar saltenv=dev pillarenv=dev.If pillarenv isseton the CLIL it will override this option.

[pillarenv_from_saltenv: True]

Note: For salt remote execution commands this option should be set in the Minion configuration instead.

pillar_raise_on_missing

New in version 2015.5.0.
Default: False

Set this option to True to force a KeyError to be raised whenever an attempt to retrieve a named value from pillar
fails. When this option is set to False, the failed attempt returns an empty string.

Git External Pillar (git_pillar) Configuration Options

git_pillar_provider

New in version 2015.8.0.

Specify the provider to be used for git_pillar. Must be either pygit2 or gitpython. If unset, then both will be
tried in that same order, and the first one with a compatible version installed will be the provider that is used.

[git_pillar_provider: gitpython]

git_pillar_base

New in version 2015.8.0.
Default: master

If the desired branch matches this value, and the environment is omitted from the git_pillar configuration, then the
environment for that git_pillar remote will be base. For example, in the configuration below, the foo branch/tag
would be assigned to the base environment, while bar would be mapped to the bar environment.

git_pillar_base: foo

ext_pillar:
- git:
- foo https://mygitserver/git-pillar.git
- bar https://mygitserver/git-pillar.git

92 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

git_pillar_branch

New in version 2015.8.0.
Default: master

If the branch is omitted from a git_pillar remote, then this branch will be used instead. For example, in the config-
uration below, the first two remotes would use the pillardata branch/tag, while the third would use the foo
branch/tag.

git_pillar_branch: pillardata

ext_pillar:
- git:
- https://mygitserver/pillarl.git
- https://mygitserver/pillar2.git:
- root: pillar
- foo https://mygitserver/pillar3.git

git_pillar_env

New in version 2015.8.0.
Default: '' (unset)

Environment to use for git_pillar remotes. This is normally derived from the branch/tag (or from a per-remote env
parameter), but if set this will override the process of deriving the env from the branch/tag name. For example, in the
configuration below the foo branch would be assigned to the base environment, while the bar branch would need
to explicitly have bar configured as its environment to keep it from also being mapped to the base environment.

git_pillar_env: base

ext_pillar:
- git:
- foo https://mygitserver/git-pillar.git
- bar https://mygitserver/git-pillar.git:
- env: bar

For this reason, this option is recommended to be left unset, unless the use case calls for all (or almost all) of the
git_pillar remotes to use the same environment irrespective of the branch/tag being used.

git_pillar_root

New in version 2015.8.0.
Default: '"'

Path relative to the root of the repository where the git_pillar top file and SLS files are located. In the below config-
uration, the pillar top file and SLS files would be looked for in a subdirectory called pillar.

git_pillar_root: pillar

ext_pillar:
- git:

(continues on next page)

7.2. Configuring the Salt Master 93

Salt Documentation, Release 3007.5

(continued from previous page)

- master https://mygitserver/pillarl.git
- master https://mygitserver/pillar2.git

Note: This is a global option. If only one or two repos need to have their files sourced from a subdirectory, then
git_pillar_root can be omitted and the root can be specified on a per-remote basis, like so:

ext_pillar:
- git:
- master https://mygitserver/pillarl.git
- master https://mygitserver/pillar2.git:
- root: pillar

In this example, for the first remote the top file and SLS files would be looked for in the root of the repository, while
in the second remote the pillar data would be retrieved from the pillar subdirectory.

git_pillar_ssl_verify

New in version 2015.8.0.
Changed in version 2016.11.0.
Default: False

Specifies whether or not to ignore SSL certificate errors when contacting the remote repository. The False setting is
useful if you're using a git repo that uses a self-signed certificate. However, keep in mind that setting this to anything
other True is a considered insecure, and using an SSH-based transport (if available) may be a better option.

In the 2016.11.0 release, the default config value changed from False to True.

[git_pillar_ssl_verify: True]

Note: pygit2 only supports disabling SSL verification in versions 0.23.2 and newer.

git_pillar_global_lock

New in version 2015.8.9.
Default: True

When set to Fa'lse, if there is an update/checkout lock for a git_pillar remote and the pid written to it is not running
on the master, the lock file will be automatically cleared and a new lock will be obtained. When set to True, Salt
will simply log a warning when there is an lock present.

On single-master deployments, disabling this option can help automatically deal with instances where the master
was shutdown/restarted during the middle of a git_pillar update/checkout, leaving a lock in place.

However, on multi-master deployments with the git_pillar cachedir shared via GlusterFS, nfs, or another network
filesystem, it is strongly recommended not to disable this option as doing so will cause lock files to be removed if
they were created by a different master.

94 Chapter 7. Configuring Salt

http://www.gluster.org/

Salt Documentation, Release 3007.5

Disable global lock
git_pillar_global_lock: False

git_pillar_includes

New in version 2017.7.0.
Default: True

Normally, when processing git_pillar remotes, if more than one repo under the same g1t section inthe ext_pillar
configuration refers to the same pillar environment, then each repo in a given environment will have access to the
other repos' files to be referenced in their top files. However, it may be desirable to disable this behavior. If so, set
this value to False.

For a more detailed examination of how includes work, see this explanation from the git_pillar documentation.

[git_pillar_includes: False

git_pillar_update_interval

New in version 3000.
Default: 60

This option defines the default update interval (in seconds) for git_pillar remotes. The update is handled within the
global loop, hence git_pillar_update_interval should be a multiple of Lloop_interval.

[git_pillar_update_interval: 120

Git External Pillar Authentication Options

These parameters only currently apply to the pygit2 git_pillar_provider. Authentication works the same
as it does in gitfs, as outlined in the GitFS Walkthrough, though the global configuration options are named differently
to reflect that they are for git_pillar instead of gitfs.

git_pillar_user

New in version 2015.8.0.
Default: "'

Along with git_pillar_password,is used to authenticate to HTTPS remotes.

[git_pillar_user: git

7.2. Configuring the Salt Master 95

Salt Documentation, Release 3007.5

git_pillar_password

New in version 2015.8.0.
Default: ''

Along with git_pillar_user,is used to authenticate to HTTPS remotes. This parameter is not required if the
repository does not use authentication.

[git_pillar_password: mypassword]

git_pillar_insecure_auth

New in version 2015.8.0.
Default: False

By default, Salt will not authenticate to an HTTP (non-HTTPS) remote. This parameter enables authentication over
HTTP. Enable this at your own risk.

[git_pillar_insecure_auth: True

git_pillar_pubkey

New in version 2015.8.0.
Default: '"'

Along with git_pillar_privkey (and optionally git_pillar_passphrase), is used to authenticate to
SSH remotes.

[git_pillar_pubkey: /path/to/key.pub]

git_pillar_privkey

New in version 2015.8.0.
Default: '

Along withgit_pillar_pubkey (and optionally git_pillar_passphrase),is used to authenticate to SSH
remotes.

[git_pillar_privkey: /path/to/key

96 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

git_pillar_passphrase

New in version 2015.8.0.
Default: ''

This parameter is optional, required only when the SSH key being used to authenticate is protected by a passphrase.

[git_pillar_passphrase: mypassphrase]

git_pillar_refspecs

New in version 2017.7.0.
Default: ['+refs/heads/*:refs/remotes/origin/*', '+refs/tags/x:refs/tags/*"']

When fetching from remote repositories, by default Salt will fetch branches and tags. This parameter can be used
to override the default and specify alternate refspecs to be fetched. This parameter works similarly to its GitFS
counterpart, in that it can be configured both globally and for individual remotes.

git_pillar_refspecs:
- '+refs/heads/*:refs/remotes/origin/*"'
- '+refs/tags/*:refs/tags/*"'
- '+refs/pull/*/head:refs/remotes/origin/pr/«"'
- '+refs/pull/*/merge:refs/remotes/origin/merge/*"'

git_pillar_verify_config

New in version 2017.7.0.
Default: True

By default, as the master starts it performs some sanity checks on the configured git_pillar repositories. If any of
these sanity checks fail (such as when an invalid configuration is used), the master daemon will abort.

To skip these sanity checks, set this option to False.

[git_pillar_verify_config: False]

Pillar Merging Options
pillar_source_merging_strategy

New in version 2014.7.0.
Default: smart

The pillar_source_merging_strategy option allows you to configure merging strategy between different sources. It
accepts 5 values:

e None:

It will not do any merging at all and only parse the pillar data from the passed environment and 'base' if no
environment was specified.

New in version 2016.3.4.

7.2. Configuring the Salt Master 97

Salt Documentation, Release 3007.5

e Fecurse:

It will recursively merge data. For example, theses 2 sources:

(foo: 42
bar:
elementl: True

bar:
element2: True
baz: quux

will be merged as:

(foo: 42
bar:
elementl: True
element2: True
baz: quux

- aggregate
instructs aggregation of elements between sources that use the #!yamlex renderer.

For example, these two documents:

foo: 42
bar: !aggregate {
elementl: True

}

baz: !aggregate quux

bar: !aggregate {
element2: True

}

baz: !aggregate quux2

will be merged as:

foo: 42
bar:
elementl: True
element2: True
baz:
- quux
- quux2

Note: This requires that the render pipeline defined in the renderer master configuration ends in yamlex.

. overwrite:
Will use the behaviour of the 2014.1 branch and earlier.
Overwrites elements according the order in which they are processed.

First pillar processed:

98 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

A:
first_key: blah
second_key: blah

Second pillar processed:

A:
third_key: blah
fourth_key: blah

will be merged as:

A:
third_key: blah
fourth_key: blah

« smart (default):

Guesses the best strategy based on the “renderer” setting.

Note: In order for yamlex based features such as ! aggregate to work as expected across documents using the

default smart merge strategy, the renderer config option must be set to jinja|yamlex or similar.

pillar_merge_1lists

New in version 2015.8.0.
Default: False

Recursively merge lists by aggregating them instead of replacing them.

[pillar_merge_lists: False

pillar_includes_override_sls

New in version 2017.7.6,2018.3.1.

Default: False

Prior to version 2017.7.3, keys from pillar includes would be merged on top of the pillar SLS. Since 2017.7.3, the

includes are merged together and then the pillar SLS is merged on top of that.

Set this option to True to return to the old behavior.

[pillar_includes_override_sls: True

7.2. Configuring the Salt Master

99

Salt Documentation, Release 3007.5

Pillar Cache Options

pillar_cache

New in version 2015.8.8.
Default: False

A master can cache pillars locally to bypass the expense of having to render them for each minion on every request.
This feature should only be enabled in cases where pillar rendering time is known to be unsatisfactory and any
attendant security concerns about storing pillars in a master cache have been addressed.

When enabling this feature, be certain to read through the additional pillar_cache_x configuration options to
fully understand the tunable parameters and their implications.

[pillar_cache: False J

Note: Setting pillar_cache: True has no effect on targeting minions with pillar.

pillar_cache_ttl

New in version 2015.8.8.
Default: 3600

If and only if a master has set pillar_cache: True, the cache TTL controls the amount of time, in seconds,
before the cache is considered invalid by a master and a fresh pillar is recompiled and stored. The cache TTL does
not prevent pillar cache from being refreshed before its TTL expires.

pillar_cache_backend

New in version 2015.8.8.

Default: disk

If an only if a master has set pillar_cache: True, one of several storage providers can be utilized:
« disk (default):

The default storage backend. This caches rendered pillars to the master cache. Rendered pillars are serialized
and deserialized as msgpack structures for speed. Note that pillars are stored UNENCRYPTED. Ensure that
the master cache has permissions set appropriately (sane defaults are provided).

« memory [EXPERIMENTAL]:

An optional backend for pillar caches which uses a pure-Python in-memory data structure for maximal per-
formance. There are several caveats, however. First, because each master worker contains its own in-memory
cache, there is no guarantee of cache consistency between minion requests. This works best in situations
where the pillar rarely if ever changes. Secondly, and perhaps more importantly, this means that unencrypted
pillars will be accessible to any process which can examine the memory of the salt-master! This may
represent a substantial security risk.

[pillar_cache_backend: disk

100 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

7.2.9 Master Reactor Settings
reactor

Default: []

Defines a salt reactor. See the Reactor documentation for more information.

reactor:
- 'salt/minion/x/start':
- salt://reactor/startup_tasks.sls

reactor_refresh_interval

Default: 60

The TTL for the cache of the reactor configuration.

[reactor_refresh_interval: 60

reactor_worker_threads

Default: 10

The number of workers for the runner/wheel in the reactor.

[reactor_worker_threads: 10

reactor_worker_hwm

Default: 10000

The queue size for workers in the reactor.

[reactor_worker_hwm: 10000

7.2.10 Salt-API Master Settings

There are some settings for salt-api that can be configured on the Salt Master.

api_logfile

Default: /var/log/salt/api
The logfile location for salt-api.

[api_logfile: /var/log/salt/api

7.2. Configuring the Salt Master

101

Salt Documentation, Release 3007.5

api_pidfile

Default: /var/run/salt-api.pid

If this master will be running sa'lt-ap1, specify the pidfile of the salt-api daemon.

[api_pidfile: /var/run/salt-api.pid]

rest_timeout

Default: 300

Used by salt-api for the master requests timeout.

[rest_timeout: 300]

netapi_enable_clients

New in version 3006.0.

Default: []

Used by salt—api to enable access to the listed clients. Unless a client is addded to this list, requests will be
rejected before authentication is attempted or processing of the low state occurs.

This can be used to only expose the required functionality via salt-api.

Configuration with all possible clients enabled:

netapi_enable_clients:
- Tlocal
- local_async
- local_batch
- local_subset
- runner
- runner_async
- ssh
- wheel
- wheel_async

Note: Enabling all clients is not recommended - only enable the clients that provide the functionality required.

7.2.11 Syndic Server Settings

A Salt syndic is a Salt master used to pass commands from a higher Salt master to minions below the syndic. Using
the syndic is simple. If this is a master that will have syndic servers(s) below it, set the order_masters setting to
True.

If this is a master that will be running a syndic daemon for passthrough the syndic_master setting needs to be
set to the location of the master server.

Do not forget that, in other words, it means that it shares with the local minion its ID and PKI directory.

102 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

order_masters

Default: False

Extra data needs to be sent with publications if the master is controlling a lower level master via a syndic minion. If
this is the case the order_masters value must be set to True

[order_masters: False]

syndic_master

Changed in version 2016.3.5,2016.11.1: Set default higher level master address.
Default: masterofmasters

If this master will be running the salt-synd1ic to connect to a higher level master, specify the higher level master
with this configuration value.

[syndic_master: masterofmasters]

You can optionally connect a syndic to multiple higher level masters by setting the syndic_master value to a list:

syndic_master:
- masterofmastersl
- masterofmasters2

Each higher level master must be set up in a multi-master configuration.

syndic_master_port

Default: 4506

If this master will be running the salt-synd-c to connect to a higher level master, specify the higher level master
port with this configuration value.

[syndic_master_port: 4506]

syndic_pidfile

Default: /var/run/salt-syndic.pid

If this master will be running the salt—-synd c to connect to a higher level master, specify the pidfile of the syndic
daemon.

[syndic_pidfile: /var/run/syndic.pid]

7.2. Configuring the Salt Master 103

Salt Documentation, Release 3007.5

syndic_log_file

Default: /var/log/salt/syndic

If this master will be running the salt-synd1 c to connect to a higher level master, specify the log file of the syndic
daemon.

[syndic_log_file: /var/log/salt-syndic.log]

syndic_failover

New in version 2016.3.0.
Default: random

The behaviour of the multi-syndic when connection to a master of masters failed. Can specify random (default)
or ordered. If set to random, masters will be iterated in random order. If ordered is specified, the configured
order will be used.

[syndic_failover: random]

syndic_wait

Default: 5

The number of seconds for the salt client to wait for additional syndics to check in with their lists of expected minions
before giving up.

[syndic_wait: 5

syndic_forward_all_events

New in version 2017.7.0.
Default: False

Option on multi-syndic or single when connected to multiple masters to be able to send events to all connected
masters.

[syndic_forward_all_events: False

7.2.12 Peer Publish Settings

Salt minions can send commands to other minions, but only if the minion is allowed to. By default "Peer Publica-
tion” is disabled, and when enabled it is enabled for specific minions and specific commands. This allows secure
compartmentalization of commands based on individual minions.

104 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

peer

Default: {}

The configuration uses regular expressions to match minions and then a list of regular expressions to match functions.
The following will allow the minion authenticated as foo.example.com to execute functions from the test and pkg
modules.

peer:
foo\.example\.com:

- test\..x*

- pkg\..x

This will allow all minions to execute all commands:

peer:
.*:

This is not recommended, since it would allow anyone who gets root on any single minion to instantly have root on
all of the minjons!

It is also possible to limit target hosts with the Compound Matcher. You can achieve this by adding another layer in
between the source and the allowed functions:

peer:
'.*x\.example\.com':
- 'G@role:db':
- test\..x
- pkg\..x

Note: Notice that the source hosts are matched by a regular expression on their minion ID, while target hosts can
be matched by any of the available matchers.

Note that globbing and regex matching on pillar values is not supported. You can only match exact values.

peer_run

Default: {}

The peer_run option is used to open up runners on the master to access from the minions. The peer_run configuration
matches the format of the peer configuration.

The following example would allow foo.example.com to execute the manage.up runner:

peer_run:
foo.example.com:
- manage.up

7.2. Configuring the Salt Master 105

Salt Documentation, Release 3007.5

7.2.13 Master Logging Settings
log_file

Default: /var/log/salt/master

The master log can be sent to a regular file, local path name, or network location. See also Log_f1ile.

Examples:

[Iog_file: /var/log/salt/master]
[Iog_fﬂe: file:///dev/log]
[Iog_file: udp://loghost:10514 J
log_level

Default: warning

The level of messages to send to the console. See also log_level.

[Iog_level: warning J

Any log level below the info level is INSECURE and may log sensitive data. This currently includes: #. profile #.
debug #. trace #. garbage #. all

log_level_logfile

Default: warning

The level of messages to send to the log file. See also log_level_logfile. When it is not set explicitly it will
inherit the level set by Log_level option.

[Iog_level_logfile: warning]

Any log level below the info level is INSECURE and may log sensitive data. This currently includes: #. profile #.
debug #. trace #. garbage #. all

log_datefmt

Default: %H : %M : %S

The date and time format used in console log messages. See also Log_datefmt.

[Iog_datefmt: 1o%H 1 %M : %S]

106 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

log_datefmt_logfile

Default: %Y-%m-%d %H:%M:%S

The date and time format used in log file messages. See also log_datefmt_logfile.

[Iog_datefmt_logfile: %Y —-%m—=%d 9%H:%M:%S"']

log_fmt_console

Default: [%(levelname)-8s] %(message)s

The format of the console logging messages. See also Llog_fmt_console.

Note: Log colors are enabled in Llog_fmt_console rather than the color config since the logging system is
loaded before the master config.

Console log colors are specified by these additional formatters:
%(colorlevel)s %(colorname)s %(colorprocess)s %(colormsg)s

Since it is desirable to include the surrounding brackets, '[' and ']', in the coloring of the messages, these color
formatters also include padding as well. Color LogRecord attributes are only available for console logging.

log_fmt_console: '%(colorlevel)s %(colormsg)s'
log_fmt_console: '[%(levelname)-8s] %(message)s'

log_fmt_logfile

Default: %(asctime)s,%(msecs)03d [%(name)-17s][%(levelname)-8s] %(message)s

The format of the log file logging messages. See also log_fmt_logfile.

log_fmt_logfile: '%(asctime)s,%(msecs)03d [%(name)-17s][%(levelname)-8s]
—%(message)s'

log_granular_levels

Default: {}

This can be used to control logging levels more specifically. See also Log_granular_levels.

log_rotate_max_bytes

Default: 0

The maximum number of bytes a single log file may contain before it is rotated. A value of 0 disables this feature.
Currently only supported on Windows. On other platforms, use an external tool such as 'logrotate' to manage log
files. log_rotate_max_bytes

7.2. Configuring the Salt Master 107

Salt Documentation, Release 3007.5

log_rotate_backup_count

Default: 0

The number of backup files to keep when rotating log files. Only used if log_rotate_max_bytes is greater than
0. Currently only supported on Windows. On other platforms, use an external tool such as 'logrotate’ to manage log
files. log_rotate_backup_count

7.2.14 Node Groups

nodegroups

Default: {}

Node groups allow for logical groupings of minion nodes. A group consists of a group name and a compound target.

nodegroups:
groupl: 'L@foo.domain.com,bar.domain.com,baz.domain.com or blx.domain.com'
group2: 'GEos:Debian and foo.domain.com'
group3: 'GEos:Debian and N@groupl'
group4:
- 'G@foo:bar'
—_ lorl
- 'G@foo:baz'

More information on using nodegroups can be found here.

7.2.15 Range Cluster Settings

range_server

Default: 'range:80'

The range server (and optional port) that serves your cluster information https://github.com/ytoolshed/range/wiki/
%22yamlfile%22-module-file-spec

[range_server: range:80

7.2.16 Include Configuration

Configuration can be loaded from multiple files. The order in which this is done is:
1. The master config file itself
2. The files matching the glob in default_include
3. The files matching the glob in inc lude (if defined)

Each successive step overrides any values defined in the previous steps. Therefore, any config options defined in one
of the default_include files would override the same value in the master config file, and any options defined
in include would override both.

108 Chapter 7. Configuring Salt

https://github.com/ytoolshed/range/wiki/%22yamlfile%22-module-file-spec
https://github.com/ytoolshed/range/wiki/%22yamlfile%22-module-file-spec

Salt Documentation, Release 3007.5

default_include

Default: master.d/*.conf

The master can include configuration from other files. Per default the master will automatically include all config
files from master.d/*.conf where master.d is relative to the directory of the master configuration file.

Note: Salt creates files in the master . d directory for its own use. These files are prefixed with an underscore. A
common example of this is the _schedule. conf file.

include

Default: not defined

The master can include configuration from other files. To enable this, pass a list of paths to this option. The paths
can be either relative or absolute; if relative, they are considered to be relative to the directory the main minion
configuration file lives in. Paths can make use of shell-style globbing. If no files are matched by a path passed to this
option then the master will log a warning message.

Include files from a master.d directory in the same
directory as the master config file
include: master.d/x

Include a single extra file into the configuration
include: /etc/roles/webserver

Include several files and the master.d directory
include:

- extra_config

- master.d/x*

- J/etc/roles/webserver

7.2.17 Keepalive Settings

tcp_keepalive

Default: True

The tcp keepalive interval to set on TCP ports. This setting can be used to tune Salt connectivity issues in messy
network environments with misbehaving firewalls.

[tcp_keepalive: True

7.2. Configuring the Salt Master 109

Salt Documentation, Release 3007.5

tcp_keepalive_cnt

Default: -1

Sets the ZeroMQ TCP keepalive count. May be used to tune issues with minion disconnects.

[tcp_keepalive_cnt: =1l

tcp_keepalive_idle

Default: 300

Sets ZeroMQ TCP keepalive idle. May be used to tune issues with minion disconnects.

[tcp_keepalive_idle: 300

tcp_keepalive_intvl

Default: -1

Sets ZeroMQ TCP keepalive interval. May be used to tune issues with minion disconnects.

[tcp_keepalive_intvl': =i

7.2.18 Windows Software Repo Settings

winrepo_provider

New in version 2015.8.0.

Specify the provider to be used for winrepo. Must be either pygit2 or gitpython. If unset, then both will be
tried in that same order, and the first one with a compatible version installed will be the provider that is used.

[winrepo_provider: gitpython]

winrepo_dir

Changed in version 2015.8.0: Renamed from win_repo towinrepo_dir.
Default: /srv/salt/win/repo

Location on the master where the winrepo_remotes are checked out for pre-2015.8.0 minions. 2015.8.0 and later
minions use winrepo_remotes_ng instead.

[winrepo_dir: /srv/salt/win/repo

110 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

winrepo_dir_ng

New in version 2015.8.0: A new ng repo was added.
Default: /srv/salt/win/repo-ng

Location on the master where the winrepo_remotes_ng are checked out for 2015.8.0 and later minions.

[winrepo_dir_ng: /srv/salt/win/repo-ng

winrepo_cachefile

Changed in version 2015.8.0: Renamed from win_repo_mastercachefile towinrepo_cachefile

Note: 2015.8.0 and later minions do not use this setting since the cachefile is now generated by the minion.

Default: winrepo.p

Path relative to winrepo_dir where the winrepo cache should be created.

[winrepo_cachefile: winrepo.p

winrepo_remotes

Changed in version 2015.8.0: Renamed from win_gitrepos towinrepo_remotes
Default: ['https://github.com/saltstack/salt-winrepo.git']

List of git repositories to checkout and include in the winrepo for pre-2015.8.0 minions. 2015.8.0 and later minions
use winrepo_remotes_ng instead.

winrepo_remotes:
- https://github.com/saltstack/salt-winrepo.git

To specify a specific revision of the repository, prepend a commit ID to the URL of the repository:

winrepo_remotes:
- '<commit_id> https://github.com/saltstack/salt-winrepo.git'

Replace <commit_id> with the SHA1 hash of a commit ID. Specifying a commit ID is useful in that it allows one
to revert back to a previous version in the event that an error is introduced in the latest revision of the repo.

winrepo_remotes_ng

New in version 2015.8.0: A new ng repo was added.
Default: ['https://github.com/saltstack/salt-winrepo-ng.git']

List of git repositories to checkout and include in the winrepo for 2015.8.0 and later minions.

winrepo_remotes_ng:
- https://github.com/saltstack/salt-winrepo-ng.git

To specify a specific revision of the repository, prepend a commit ID to the URL of the repository:

7.2. Configuring the Salt Master 111

Salt Documentation, Release 3007.5

winrepo_remotes_ng:
- '<commit_id> https://github.com/saltstack/salt-winrepo-ng.git'

Replace <commit_id> with the SHA1 hash of a commit ID. Specifying a commit ID is useful in that it allows one
to revert back to a previous version in the event that an error is introduced in the latest revision of the repo.

winrepo_branch

New in version 2015.8.0.
Default: master

If the branch is omitted from a winrepo remote, then this branch will be used instead. For example, in the con-
figuration below, the first two remotes would use the winrepo branch/tag, while the third would use the foo
branch/tag.

winrepo_branch: winrepo

winrepo_remotes:
- https://mygitserver/winrepol.git
- https://mygitserver/winrepo2.git:
- foo https://mygitserver/winrepo3.git

winrepo_ssl_verify

New in version 2015.8.0.
Changed in version 2016.11.0.
Default: False

Specifies whether or not to ignore SSL certificate errors when contacting the remote repository. The False setting is
useful if you're using a git repo that uses a self-signed certificate. However, keep in mind that setting this to anything
other True is a considered insecure, and using an SSH-based transport (if available) may be a better option.

In the 2016.11.0 release, the default config value changed from False to True.

[winrepo_ssl_verify: True

Winrepo Authentication Options

These parameters only currently apply to the pygit2 winrepo_provider. Authentication works the same as
it does in gitfs, as outlined in the GitFS Walkthrough, though the global configuration options are named differently
to reflect that they are for winrepo instead of gitfs.

112 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

winrepo_user

New in version 2015.8.0.
Default: ''

Along with winrepo_password, is used to authenticate to HTTPS remotes.

[winrepo_user: git]

winrepo_password

New in version 2015.8.0.
Default: ''

Along with winrepo_user, is used to authenticate to HTTPS remotes. This parameter is not required if the
repository does not use authentication.

[winrepo_password: mypassword]

winrepo_insecure_auth

New in version 2015.8.0.
Default: False

By default, Salt will not authenticate to an HTTP (non-HTTPS) remote. This parameter enables authentication over
HTTP. Enable this at your own risk.

[winrepo_insecure_auth: True]

winrepo_pubkey

New in version 2015.8.0.
Default: ''

Along with winrepo_privkey (and optionally winrepo_passphrase), is used to authenticate to SSH re-
motes.

[winrepo_pubkey: /path/to/key.pub]

winrepo_privkey

New in version 2015.8.0.
Default: ''

Along withwinrepo_pubkey (and optionally winrepo_passphrase), is used to authenticate to SSH remotes.

[winrepo_privkey: /path/to/key]

7.2. Configuring the Salt Master 113

Salt Documentation, Release 3007.5

winrepo_passphrase

New in version 2015.8.0.
Default: ''

This parameter is optional, required only when the SSH key being used to authenticate is protected by a passphrase.

[winrepo_passphrase: mypassphrase]

winrepo_refspecs

New in version 2017.7.0.
Default: ['+refs/heads/*:refs/remotes/origin/*', '+refs/tags/x:refs/tags/*"']

When fetching from remote repositories, by default Salt will fetch branches and tags. This parameter can be used
to override the default and specify alternate refspecs to be fetched. This parameter works similarly to its GitFS
counterpart, in that it can be configured both globally and for individual remotes.

winrepo_refspecs:
- '+refs/heads/*:refs/remotes/origin/*"'
- '+refs/tags/*:refs/tags/*"'
- '+refs/pull/*/head:refs/remotes/origin/pr/«"'
- '+refs/pull/*/merge:refs/remotes/origin/merge/*"'

7.2.19 Configure Master on Windows

The master on Windows requires no additional configuration. You can modify the master configuration by creat-
ing/editing the master config file located at c:\salt\conf\master. The same configuration options available
on Linux are available in Windows, as long as they apply. For example, SSH options wouldn't apply in Windows.
The main differences are the file paths. If you are familiar with common salt paths, the following table may be useful:

linux Paths Windows Paths
/etc/salt <---> c:\salt\conf
/ <---> c:\salt

So, for example, the master config file in Linux is /etc/salt/master. In Windows the master config file is
c:\salt\conf\master. The Linux path /etc/salt becomes c:\salt\conf in Windows.

Common File Locations

Linux Paths Windows Paths
conf_file: /etc/salt/master conf_file: c:\salt\conf\master
log_file: /var/log/salt/master log_file: c:\salt\var\log\salt\master

pidfile: /var/run/salt-master.pid pidfile: c:\salt\var\run\salt-master.pid

114 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

Common Directories

Linux Paths Windows Paths
cachedir: /var/cache/salt/master cachedir: c:\salt\var\cache\
salt\master
extension_modules: /var/cache/salt/ c:\salt\var\cache\salt\master)\
master/extmods extmods
pki_dir: /etc/salt/pki/master pki_dir: c:\salt\conf\pki\master
root_dir: / root_dir: c:\salt
sock_dir: /var/run/salt/master sock_dir: c:\salt\var\run\salt\
master
Roots
file_roots
Linux Paths Windows Paths
/srv/salt c:\salt\srv\salt

/srv/spm/salt c:\salt\srv\spm\salt

pillar_roots

Linux Paths Windows Paths

/srv/pillar c:\salt\srv\pillar
/srv/spm/pillar c:\salt\srv\spm\pillar

Win Repo Settings

Linux Paths Windows Paths

winrepo_dir: /srv/salt/win/repo winrepo_dir: c:\salt\srv\salt\win\repo
winrepo_dir_ng: /srv/salt/win/ winrepo_dir_ng: c:\salt\srv\salt\win\
repo-ng repo-ng

7.3 Configuring the Salt Minion

The Salt system is amazingly simple and easy to configure. The two components of the Salt system each have a respec-
tive configuration file. The salt-master is configured via the master configuration file, and the salt-minion
is configured via the minion configuration file.

See also:
example minion configuration file

The Salt Minion configuration is very simple. Typically, the only value that needs to be set is the master value so the
minion knows where to locate its master.

7.3. Configuring the Salt Minion 115

Salt Documentation, Release 3007.5

By default, the salt-minion configuration will be in /etc/salt/minion. A notable exception is FreeBSD, where
the configuration will be in /usr/local/etc/salt/minion

7.3.1 Minion Primary Configuration

master

Default: sa'lt
The hostname or IP address of the master. See 1pv6 for IPv6 connections to the master.

Default: salt

[master: salt]

master:port Syntax

New in version 2015.8.0.

The master config option can also be set to use the master's IP in conjunction with a port number by default.

[master: localhost:1234]

For IPv6 formatting with a port, remember to add brackets around the IP address before adding the port and enclose
the line in single quotes to make it a string:

[master: '[2001:db8:85a3:8d3:1319:8a2e:370:7348]:1234"']

Note: Ifaportis specified in the master aswellasmaster_port, the master_port setting will be overridden
by the master configuration.

List of Masters Syntax

The option can also be set to a list of masters, enabling multi-master mode.

master:
- addressl
- address2

Changed in version 2014.7.0: The master can be dynamically configured. The master value can be set to an module
function which will be executed and will assume that the returning value is the ip or hostname of the desired master.
If a function is being specified, then the master_type option must be set to func, to tell the minion that the value
is a function to be run and not a fully-qualified domain name.

master: module.function
master_type: func

In addition, instead of using multi-master mode, the minion can be configured to use the list of master addresses as
a failover list, trying the first address, then the second, etc. until the minion successfully connects. To enable this
behavior, set master_type to failover:

116 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

master:

- addressl

- address2
master_type: failover

color

Default: True

By default output is colored. To disable colored output, set the color value to False.

ipvé

Default: None

Whether the master should be connected over IPv6. By default salt minion will try to automatically detect IPv6
connectivity to master.

[iva: True]

master_uri_format

New in version 2015.8.0.

Specify the format in which the master address will be evaluated. Valid options are default or ip_only. If
ip_on'ly is specified, then the master address will not be split into IP and PORT, so be sure that only an IP (or
domain name) is set in the master configuration setting.

[master_uri_format: ip_only]

master_tops_first

New in version 2018.3.0.
Default: False

SLS targets defined using the Master Tops system are normally executed after any matches defined in the Top File.
Set this option to True to have the minion execute the Master Tops states first.

[master_tops_first: True]

master_type

New in version 2014.7.0.
Default: str

The type of the master variable. Can be str, failover, func or disable.

[master_type: str]

7.3. Configuring the Salt Minion 117

Salt Documentation, Release 3007.5

If this option is str (default), multiple hot masters are configured. Minions can connect to multiple masters simul-
taneously (all master are “hot”).

[master_type: failover]

If this option is set to failover, master must be a list of master addresses. The minion will then try each master
in the order specified in the list until it successfully connects. master_alive_interval must also be set, this
determines how often the minion will verify the presence of the master.

[master_type: func]

If the master needs to be dynamically assigned by executing a function instead of reading in the static master value,
set this to func. This can be used to manage the minion's master setting from an execution module. By simply
changing the algorithm in the module to return a new master ip/fqdn, restart the minion and it will connect to the
new master.

As of version 2016.11.0 this option can be set to disable and the minion will never attempt to talk to the master.
This is useful for running a masterless minion daemon.

[master_type: disable]

max_event_size

New in version 2014.7.0.
Default: 1048576

Passing very large events can cause the minion to consume large amounts of memory. This value tunes the maximum
size of a message allowed onto the minion event bus. The value is expressed in bytes.

[max_event_size: 1048576]

enable_legacy_startup_events

New in version 2019.2.0.
Default: True

When a minion starts up it sends a notification on the event bus with a tag that looks like this: salt/minion/
<minion_id>/start. For historical reasons the minion also sends a similar event with an event tag like this:
minion_start. This duplication can cause a lot of clutter on the event bus when there are many minions.
Set enable_legacy_startup_events: False in the minion config to ensure only the salt/minion/
<minion_id>/start events are sent. Beginning with the 3001 Salt release this option will default to False.

[enable_legacy_startup_events: True]

118 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

master_failback

New in version 2016.3.0.
Default: False

If the minion is in multi-master mode and the :conf_minion master_type" configuration option is set to fai lover,
this setting can be set to True to force the minion to fail back to the first master in the list if the first master is back
online.

[master_failback: False

master_failback_interval

New in version 2016.3.0.
Default: 0

If the minion is in multi-master mode, the :conf_minion master_type" configuration is set to failover, and the
master_failback option is enabled, the master failback interval can be set to ping the top master with this
interval, in seconds.

[master_faiIback_interval: 0

master_alive_interval

Default: 0

Configures how often, in seconds, the minion will verify that the current master is alive and responding. The minion
will try to establish a connection to the next master in the list if it finds the existing one is dead. This setting can
also be used to detect master DNS record changes when a minion has been disconnected.

[master_alive_interval: 30

master_shuffle

New in version 2014.7.0.
Deprecated since version 2019.2.0.

Default: False

Warning: This option has been deprecated in Salt 2019.2. 0. Please use random_master instead.

[master_shuffle: True

7.3. Configuring the Salt Minion 119

Salt Documentation, Release 3007.5

random_master

New in version 2014.7.0.

Changed in version 2019.2.0: The master_failback option can be used in conjunction with random_master
to force the minion to fail back to the first master in the list if the first master is back online. Note that master_type
must be set to failover in order for the master_failback setting to work.

Default: False

If master is a list of addresses, shuffle them before trying to connect to distribute the minions over all available
masters. This uses Python's random. shuffle method.

If multiple masters are specified in the 'master’ setting as a list, the default behavior is to always try to connect to
them in the order they are listed. If random_master is set to True, the order will be randomized instead upon
Minion startup. This can be helpful in distributing the load of many minions executing salt-call requests, for
example, from a cron job. If only one master is listed, this setting is ignored and a warning is logged.

[random_master: True

Note: When the failover, master_failback, and random_master options are used together, only the
’secondary masters” will be shuffled. The first master in the list is ignored in the random.shuffle call. See
master_failback for more information

retry_dns

Default: 30

Set the number of seconds to wait before attempting to resolve the master hostname if name resolution fails. Defaults
to 30 seconds. Set to zero if the minion should shutdown and not retry.

[retry_dns: 30

retry_dns_count

New in version 2018.3.4.
Default: None

Set the number of attempts to perform when resolving the master hostname if name resolution fails. By default the
minion will retry indefinitely.

[retry_dns_count: 3

120 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

master_port

Default: 4506

The port of the master ret server, this needs to coincide with the ret_port option on the Salt master.

[master_port: 4506

publish_port

Default: 4505

The port of the master publish server, this needs to coincide with the publish_port option on the Salt master.

[publish_port: 4505

source_interface_name

New in version 2018.3.0.

The name of the interface to use when establishing the connection to the Master.

Note: If multiple IP addresses are configured on the named interface, the first one will be selected. In that case, for
a better selection, consider using the source_address option.

Note: To use an IPv6 address from the named interface, make sure the option 1pVvé6 is enabled, i.e., ipv6: true.

Note: If the interface is down, it will avoid using it, and the Minion will bind to ©0.0.0. 0 (all interfaces).

Warning: This option requires modern version of the underlying libraries used by the selected transport:
« zeromg requires pyzmq >= 16.0.1 and Libzmq >=4.1.6

« tcp requires tornado >=4.5

Configuration example:

[source_interface_name: bond0.1234

7.3. Configuring the Salt Minion 121

Salt Documentation, Release 3007.5

source_address

New in version 2018.3.0.

The source IP address or the domain name to be used when connecting the Minion to the Master. See 1pv6 for IPv6
connections to the Master.

Warning: This option requires modern version of the underlying libraries used by the selected transport:

« zeromg requires pyzmq >= 16.0.1 and Libzmq >=4.1.6

« tcp requires tornado >= 4.5

Configuration example:

[source_address: if-bond0-1234.sjc.us-west.internal]

source_ret_port

New in version 2018.3.0.

The source port to be used when connecting the Minion to the Master ret server.

Warning: This option requires modern version of the underlying libraries used by the selected transport:
« zeromq requires pyzmq >= 16.0.1 and libzmqg >=4.1.6

« tcp requires tornado >=4.5

Configuration example:

[source_ret_port: 49017

source_publish_port

New in version 2018.3.0.

The source port to be used when connecting the Minion to the Master publish server.

Warning: This option requires modern version of the underlying libraries used by the selected transport:

« zeromq requires pyzmq >= 16.0.1 and libzmqg >=4.1.6

+ tcp requires tornado >=4.5

Configuration example:

[source_publish_port: 49018

122 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

user

Default: root

The user to run the Salt processes

[user: root]
sudo_user
Default: ''

The user to run salt remote execution commands as via sudo. If this option is enabled then sudo will be used to
change the active user executing the remote command. If enabled the user will need to be allowed access via the
sudoers file for the user that the salt minion is configured to run as. The most common option would be to use the
root user. If this option is set the user option should also be set to a non-root user. If migrating from a root minion
to a non root minion the minion cache should be cleared and the minion pki directory will need to be changed to
the ownership of the new user.

[sudo_user: root]

pidfile

Default: /var/run/salt-minion.pid

The location of the daemon's process ID file

[pidfile: /var/run/salt-minion.pid

root_d1ir

Default: /

This directory is prepended to the following options: pki_dir, cachedir, log_file, sock_dir, and
pidfile.

[root_dir: /

conf_file

Default: /etc/salt/minion

The path to the minion's configuration file.

[conf_file: /etc/salt/minion

7.3. Configuring the Salt Minion 123

Salt Documentation, Release 3007.5

pki_dir

Default: <LIB_STATE_DIR>/pki/minion
The directory used to store the minion's public and private keys.

<LIB_STATE_DIR> 1is the pre-configured variable state directory set during installation via
--salt-lib-state-dir. It defaults to /etc/salt. Systems following the Filesystem Hierarchy Stan-
dard (FHS) might set it to /var/lib/salt.

[pki_dir: Jetc/salt/pki/minion

id

Default: the system's hostname
See also:

Salt Walkthrough

The Setting up a Salt Minion section contains detailed information on how the hostname is determined.

Explicitly declare the id for this minion to use. Since Salt uses detached ids it is possible to run multiple minions on
the same machine but with different ids.

[id: foo.bar.com

minion_id_caching

New in version 0.17.2.
Default: True

Caches the minion id to a file when the minion's 1d is not statically defined in the minion config. This setting prevents
potential problems when automatic minion id resolution changes, which can cause the minion to lose connection
with the master. To turn off minion id caching, set this config to False.

For more information, please see Issue #7558 and Pull Request #8488.

[minion_id_caching: True

append_domain

Default: None

Append a domain to a hostname in the event that it does not exist. This is useful for systems where socket.
getfqdn () does not actually result in a FQDN (for instance, Solaris).

[append_domain: foo.org

124 Chapter 7. Configuring Salt

https://github.com/saltstack/salt/issues/7558
https://github.com/saltstack/salt/pull/8488

Salt Documentation, Release 3007.5

minion_id_remove_domain

New in version 3000.
Default: False

Remove a domain when the minion id is generated as a fully qualified domain name (either by the user provided
id_function, or by Salt). This is useful when the minions shall be named like hostnames. Can be a single domain
(to prevent name clashes), or True, to remove all domains.

Examples:

« minion_id_remove_domain = foo.org - FQDN = king_bob.foo.org --> minion_id = king_bob - FQDN =
king_bob.bar.org --> minion_id = king_bob.bar.org

« minion_id_remove_domain = True - FQDN = king_bob.foo.org --> minion_id = king_bob - FQDN =
king_bob.bar.org --> minion_id = king_bob

For more information, please see issue 49212 and PR 49378.

[minion_id_remove_domain: foo.org

minion_id_lowercase

Default: False

Convert minion id to lowercase when it is being generated. Helpful when some hosts get the minion id in uppercase.
Cached ids will remain the same and not converted.

[minion_id_lowercase: True

cachedir

Default: /var/cache/salt/minion
The location for minion cache data.

This directory may contain sensitive data and should be protected accordingly.

[cachedir: /var/cache/salt/minion

color_theme

Default: ""

Specifies a path to the color theme to use for colored command line output.

[color_theme: /etc/salt/color_theme

7.3. Configuring the Salt Minion 125

https://github.com/saltstack/salt/issues/49212
https://github.com/saltstack/salt/pull/49378

Salt Documentation, Release 3007.5

append_minionid_config_dirs

Default: [] (the empty list) for regular minions, [' cachedir '] for proxy minions.

Append minion_id to these configuration directories. Helps with multiple proxies and minions running on the same
machine. Allowed elements in the list: pki_dir, cachedir, extension_modules. Normally not needed

unless running several proxies and/or minions on the same machine.

append_minionid_config_dirs:

- pki_dir
- cachedir

verify_env

Default: True

Verify and set permissions on configuration directories at startup.

[verify_env: True

Note: When set to True the verify_env option requires WRITE access to the configuration directory (/etc/salt/).
In certain situations such as mounting /etc/salt/ as read-only for templating this will create a stack trace when

state.apply is called.

cache_jobs

Default: False

The minion can locally cache the return data from jobs sent to it, this can be a good way to keep track of the minion
side of the jobs the minion has executed. By default this feature is disabled, to enable set cache_jobs to True.

[cache_jobs: False

grains

Default: (empty)
See also:
Using grains in a state

Statically assigns grains to the minion.

grains:
roles:
- webserver
- memcache
deployment: datacenter4
cabinet: 13
cab_u: 14-15

126

Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

grains_blacklist

Default: []

Each grains key will be compared against each of the expressions in this list. Any keys which match will be filtered
from the grains. Exact matches, glob matches, and regular expressions are supported.

Note: Some states and execution modules depend on grains. Filtering may cause them to be unavailable or run
unreliably.

New in version 3000.

grains_blacklist:
- cpu_flags
- zmgx*
- ipv[46]

grains_cache

Default: False

The minion can locally cache grain data instead of refreshing the data each time the grain is referenced. By default
this feature is disabled, to enable set grains_cache to True.

[grains_cache: False

grains_cache_expiration

Default: 300

Grains cache expiration, in seconds. If the cache file is older than this number of seconds then the grains cache will
be dumped and fully re-populated with fresh data. Defaults to 5 minutes. Will have no effect if grains_cache is
not enabled.

[grains_cache_expiration: 300

grains_deep_merge

New in version 2016.3.0.
Default: False

The grains can be merged, instead of overridden, using this option. This allows custom grains to defined different
subvalues of a dictionary grain. By default this feature is disabled, to enable set grains_deep_merge to True.

[grains_deep_merge: False

For example, with these custom grains functions:

def customl_k1():
return {"customl": {"k1": "v1"}}

(continues on next page)

7.3. Configuring the Salt Minion 127

Salt Documentation, Release 3007.5

def customl_k2():
return {"customl": {"k2": "v2"}}

(continued from previous page)

Without grains_deep_merge, the result would be:

customl:
ki: vl

With grains_deep_merge, the result will be:

customl:
ki: v1
k2: v2

grains_refresh_every

Default: 0

The grains_refresh_every setting allows for a minion to periodically check its grains to see if they have
changed and, if so, to inform the master of the new grains. This operation is moderately expensive, therefore care

should be taken not to set this value too low.
Note: This value is expressed in minutes.

A value of 10 minutes is a reasonable default.

[grains_refresh_every: 0]

grains_refresh_pre_exec

New in version 3005.

Default: False

The grains_refresh_pre_exec setting allows for a minion to check its grains prior to the execution of any
operation to see if they have changed and, if so, to inform the master of the new grains. This operation is moderately

expensive, therefore care should be taken before enabling this behavior.

[grains_refresh_pre_exec: True

metadata_server_grains

New in version 2017.7.0.

Default: False

Set this option to enable gathering of cloud metadata from http://169.254.169.254/1latest for use in

grains (see here for more information).

[metadata_server_grains: True

128

Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

fibre_channel_grains

Default: False

The fibre_channel_grains setting will enable the fc_wwn grain for Fibre Channel WWN's on the minion.
Since this grain is expensive, it is disabled by default.

[fibre_channel_grains: True]

iscsi_grains

Default: False

The iscsi_grains setting will enable the iscsi_1iqgn grain on the minion. Since this grain is expensive, it is
disabled by default.

[iscsi_grains: True]

nvme_grains

Default: False

The nvme_grains setting will enable the nvme_nqgn grain on the minion. Since this grain is expensive, it is
disabled by default.

[nvme_grains: True]

mine_enabled

New in version 2015.8.10.
Default: True

Determines whether or not the salt minion should run scheduled mine updates. If this is set to False then the mine
update function will not get added to the scheduler for the minion.

[mine_enabled: True

mine_return_job

New in version 2015.8.10.
Default: False

Determines whether or not scheduled mine updates should be accompanied by a job return for the job cache.

[mine_return_job: False

7.3. Configuring the Salt Minion 129

Salt Documentation, Release 3007.5

mine_functions

Default: Empty

Designate which functions should be executed at mine_interval intervals on each minion. See this documentation on
the Salt Mine for more information. Note these can be defined in the pillar for a minion as well.

example minion configuration file

mine_functions:
test.ping: []
network.ip_addrs:
interface: etho
cidr: '10.0.0.0/8'

mine_interval

Default: 60

The number of minutes between mine updates.

[mine_interval: 60

sock_dir

Default: /var/run/salt/minion

The directory where Unix sockets will be kept.

[sock_dir: /var/run/salt/minion

enable_fqdns_grains

Default: True

In order to calculate the fqdns grain, all the IP addresses from the minion are processed with underlying calls to
socket.gethostbyaddr which can take 5 seconds to be released (after reaching socket. timeout) when
there is no fqdn for that IP. These calls to socket.gethostbyaddr are processed asynchronously, however, it
still adds 5 seconds every time grains are generated if an IP does not resolve. In Windows grains are regenerated
each time a new process is spawned. Therefore, the default for Windows is Fa'lse. In many cases this value does
not make sense to include for proxy minions as it will be FQDN for the host running the proxy minion process, so
the default for proxy minions is False . On macOS, FQDN resolution can be very slow, therefore the default for
macOS is False as well. All other OSes default to True. This option was added here.

[enable_fqdns_grains: False

130

Chapter 7. Configuring Salt

https://github.com/saltstack/salt/pull/55581

Salt Documentation, Release 3007.5

enable_gpu_grains

Default: True

Enable GPU hardware data for your master. Be aware that the minion can take a while to start up when Ispci and/or
dmidecode is used to populate the grains for the minion, so this can be set to Fa'lse if you do not need these grains.

[enable_gpu_grains: False]

outputter_dirs

Default: []

A list of additional directories to search for salt outputters in.

{outputter_dirs: []]

backup_mode

Default: ''

Make backups of files replaced by file.managed and file.recurse state modules under cachedir in
file_backup subdirectory preserving original paths. Refer to File State Backups documentation for more details.

[backup_mode: minion]

acceptance_wait_time

Default: 10

The number of seconds to wait until attempting to re-authenticate with the master.

[acceptance_wait_time: 10]

acceptance_wait_time_max

Default: 0

The maximum number of seconds to wait until attempting to re-authenticate with the master. If set, the wait will
increase by acceptance_wait_time seconds each iteration.

[acceptance_wait_time_max: 0]]

7.3. Configuring the Salt Minion 131

Salt Documentation, Release 3007.5

rejected_retry

Default: False

If the master denies or rejects the minion's public key, retry instead of exiting. These keys will be handled the same
as waiting on acceptance.

[rejected_retry: False

random_reauth_delay

Default: 10

When the master key changes, the minion will try to re-auth itself to receive the new master key. In larger envi-
ronments this can cause a syn-flood on the master because all minions try to re-auth immediately. To prevent this
and have a minion wait for a random amount of time, use this optional parameter. The wait-time will be a random
number of seconds between 0 and the defined value.

[random_reauth_delay: 60

master_tries

New in version 2016.3.0.
Default: 1

The number of attempts to connect to a master before giving up. Set this to -1 for unlimited attempts. This allows
for a master to have downtime and the minion to reconnect to it later when it comes back up. In 'failover' mode,
which is set in the master_type configuration, this value is the number of attempts for each set of masters. In
this mode, it will cycle through the list of masters for each attempt.

master_tries is different than auth_tries because auth_tries attempts to retry auth attempts with a
single master. auth_tries is under the assumption that you can connect to the master but not gain authorization
from it. master_tries will still cycle through all of the masters in a given try, so it is appropriate if you expect
occasional downtime from the master(s).

[master_tries: 1

auth_tries

New in version 2014.7.0.
Default: 7

The number of attempts to authenticate to a master before giving up. Or, more technically, the number of consecutive
SaltReqTimeoutErrors that are acceptable when trying to authenticate to the master.

[auth_tries: 7

132 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

auth_timeout

New in version 2014.7.0.
Default: 5

When waiting for a master to accept the minion's public key, salt will continuously attempt to reconnect until
successful. This is the timeout value, in seconds, for each individual attempt. After this timeout expires, the minion
will wait for acceptance_wait_time seconds before trying again. Unless your master is under unusually heavy
load, this should be left at the default.

Note: For high latency networks try increasing this value

[auth_timeout: 5]

auth_safemode

New in version 2014.7.0.
Default: False

If authentication fails due to SaltReqTimeoutError during a ping_interval, this setting, when set to True, will cause
a sub-minion process to restart.

[auth_safemode: False]

request_channel_timeout

New in version 3006.2.
Default: 30

The default timeout timeout for request channel requests. This setting can be used to tune minions to better handle
long running pillar and file client requests.

[request_channel_timeout: 30]

request_channel_tries

New in version 3006.2.
Default: 3

The default number of times the minion will try request channel requests. This setting can be used to tune minions
to better handle long running pillar and file client requests by retrying them after a timeout happens.

[request_channel_tries: 3

7.3. Configuring the Salt Minion 133

Salt Documentation, Release 3007.5

ping_interval

Default: 0

Instructs the minion to ping its master(s) every n number of minutes. Used primarily as a mitigation technique
against minion disconnects.

[ping_interval: 0]

random_startup_delay

Default: 0

The maximum bound for an interval in which a minion will randomly sleep upon starting up prior to attempting
to connect to a master. This can be used to splay connection attempts for cases where many minions starting up at
once may place undue load on a master.

For example, setting this to 5 will tell a minion to sleep for a value between 0 and 5 seconds.

[random_startup_delay: 5]

recon_default

Default: 1000

The interval in milliseconds that the socket should wait before trying to reconnect to the master (1000ms = 1 second).

[recon_default: 1000]

recon_max

Default: 10000

The maximum time a socket should wait. Each interval the time to wait is calculated by doubling the previous time.
If recon_max is reached, it starts again at the recon_default.

Short example:
« reconnect 1: the socket will wait 'recon_default' milliseconds
« reconnect 2: 'recon_default' * 2
« reconnect 3: ('recon_default' * 2) * 2
« reconnect 4: value from previous interval * 2
« reconnect 5: value from previous interval * 2

« reconnect x: if value >= recon_max, it starts again with recon_default

[recon_max: 10000]

134 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

recon_randomize

Default: True

Generate a random wait time on minion start. The wait time will be a random value between recon_default and
recon_default + recon_max. Having all minions reconnect with the same recon_default and recon_max value kind
of defeats the purpose of being able to change these settings. If all minions have the same values and the setup is
quite large (several thousand minions), they will still flood the master. The desired behavior is to have time-frame
within all minions try to reconnect.

[recon_randomize: True]

loop_1interval

Default: 1

The loop_interval sets how long in seconds the minion will wait between evaluating the scheduler and running
cleanup tasks. This defaults to 1 second on the minion scheduler.

[loop_interval: 1]

pub_ret

Default: True

Some installations choose to start all job returns in a cache or a returner and forgo sending the results back to a
master. In this workflow, jobs are most often executed with --async from the Salt CLI and then results are evaluated
by examining job caches on the minions or any configured returners. WARNING: Setting this to False will disable
returns back to the master.

[pub_ret: True]

return_retry_timer

Default: 5

The default timeout for a minion return attempt.

[return_retry_timer: 5

return_retry_timer_max

Default: 10

The maximum timeout for a minion return attempt. If non-zero the minion return retry timeout will be a random
int between return_retry_timer and return_retry_timer_max

[return_retry_timer_max: 10

7.3. Configuring the Salt Minion 135

Salt Documentation, Release 3007.5

return_retry_tries

Default: 3

The maximum number of retries for a minion return attempt.

[return_retry_tries: 3]

cache_sreqs

Default: True

The connection to the master ret_port is kept open. When set to False, the minion creates a new connection for
every return to the master.

[cache_sreqs: True]

ipc_mode

Default: ipc

Windows platforms lack POSIX IPC and must rely on slower TCP based inter- process communications. ipc_mode
is set to tcp on such systems.

[ipc_mode: ipc]

ipc_write_buffer

Default: 0

The maximum size of a message sent via the IPC transport module can be limited dynamically or by sharing an
integer value lower than the total memory size. When the value dynamic is set, salt will use 2.5% of the total
memory as ipc_write_buffer value (rounded to an integer). A value of 0 disables this option.

[-i pc_write_buffer: 10485760]

tcp_pub_port

Default: 4510

Publish port used when 1pc_mode is set to tcp.

[tcp_pub_port: 4510]

136 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

tcp_pull_port

Default: 4511

Pull port used when ipc_mode is set to tcp.

[tcp_pull_port: 4511

transport

Default: zeromq

Changes the underlying transport layer. ZeroMQ is the recommended transport while additional transport layers
are under development. Supported values are zeromq and tcp (experimental). This setting has a significant impact
on performance and should not be changed unless you know what you are doing!

[transport: zeromq]

syndic_finger

Default: ''
The key fingerprint of the higher-level master for the syndic to verify it is talking to the intended master.

[syndic_finger: 'ab:30:65:2a:d6:9€:20:4f:d8:b2:f3:a7:d4:65:50:10"']

http_connect_timeout

New in version 2019.2.0.
Default: 20

HTTP connection timeout in seconds. Applied when fetching files using tornado back-end. Should be greater than
overall download time.

[http_connect_timeout: 20

http_request_timeout

New in version 2015.8.0.
Default: 3600

HTTP request timeout in seconds. Applied when fetching files using tornado back-end. Should be greater than
overall download time.

[http_request_timeout: 3600

7.3. Configuring the Salt Minion 137

Salt Documentation, Release 3007.5

proxy_host

Default: ''

The hostname used for HTTP proxy access.

[proxy_host: proxy.my-domain

proxy_port

Default: 0

The port number used for HTTP proxy access.

[proxy_port: 31337

proxy_username

Default: ''

The username used for HT'TP proxy access.

[proxy_username : charon

proxy_password

Default: ''

The password used for HTTP proxy access.

[proxy_password: obolus

no_proxy

New in version 2019.2.0.
Default: []
List of hosts to bypass HTTP proxy

Note: This key does nothing unless proxy_host etc is configured, it does not support any kind of wildcards.

[no_proxy: ['127.0.0.1"', 'foo.tld']

138

Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

use_yamlloader_old

New in version 2019.2.1.
Default: False

Use the pre-2019.2 YAML renderer. Uses legacy YAML rendering to support some legacy inline data structures. See
the 2019.2.1 release notes for more details.

[use_yamlloader_old: False]

7.3.2 Docker Configuration

docker .update_mine

New in version 2017.7.8,2018.3.3.
Changed in version 2019.2.0: The default value is now False
Default: True

If enabled, when containers are added, removed, stopped, started, etc., the mine will be updated with the results of
docker.ps verbose=True all=True host=True. This mine data is used by mine.get_docker. Set
this option to False to keep Salt from updating the mine with this information.

Note: This option can also be set in Grains or Pillar data, with Grains overriding Pillar and the minion config file
overriding Grains.

Note: Disabling this will of course keep mine. get_docker from returning any information for a given minion.

[docker.update_mine: False]

docker.compare_container_networks

New in version 2018.3.0.

Default: {'static': ['Aliases', 'Links', 'IPAMConfig'], 'automatic':
['IPAddress', 'Gateway', 'GlobalIPv6Address', 'IPv6Gateway']}

Specifies which keys are examined by docker.compare_container_networks.

Note: This should not need to be modified unless new features added to Docker result in new keys added to the
network configuration which must be compared to determine if two containers have different network configs. This
config option exists solely as a way to allow users to continue using Salt to manage their containers after an API
change, without waiting for a new Salt release to catch up to the changes in the Docker API.

docker.compare_container_networks:
static:
- Aliases
- Links
(continues on next page)

7.3. Configuring the Salt Minion 139

Salt Documentation, Release 3007.5

(continued from previous page)

- IPAMConfig
automatic:

- IPAddress

- Gateway

- GlobalIPv6Address

- IPv6Gateway

optimization_order

Default: [0, 1, 2]

In cases where Salt is distributed without .py files, this option determines the priority of optimization level(s) Salt's
module loader should prefer.

Note: This option is only supported on Python 3.5+.

optimization_order:
- 2

-0
1

7.3.3 Minion Execution Module Management

disable_modules

Default: [] (all execution modules are enabled by default)
The event may occur in which the administrator desires that a minion should not be able to execute a certain module.
However, the sys module is built into the minion and cannot be disabled.

This setting can also tune the minion. Because all modules are loaded into system memory, disabling modules will
lower the minion's memory footprint.

Modules should be specified according to their file name on the system and not by their virtual name. For example,
to disable cmd, use the string cmdmod which corresponds to salt.modules.cmdmod.

disable_modules:
- test
- solr

140 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

disable_returners

Default: [] (all returners are enabled by default)

If certain returners should be disabled, this is the place

disable_returners:
- mongo_return

whitelist_modules

Default: [] (Module whitelisting is disabled. Adding anything to the config option will cause only the listed modules
to be enabled. Modules not in the list will not be loaded.)

This option is the reverse of disable_modules. If enabled, only execution modules in this list will be loaded and
executed on the minion.

Note that this is a very large hammer and it can be quite difficult to keep the minion working the way you think it
should since Salt uses many modules internally itself. At a bare minimum you need the following enabled or else
the minion won't start.

whitelist_modules:
- cmdmod
- test
- config

module_dirs

Default: []

A list of extra directories to search for Salt modules

module_dirs:
- Jvar/lib/salt/modules

returner_dirs

Default: []

A list of extra directories to search for Salt returners

returner_dirs:
- /var/lib/salt/returners

7.3. Configuring the Salt Minion 141

Salt Documentation, Release 3007.5

states_dirs

Default: []

A list of extra directories to search for Salt states

states_dirs:
- Jvar/lib/salt/states

grains_dirs

Default: []

A list of extra directories to search for Salt grains

grains_dirs:
- /var/lib/salt/grains

render_dirs

Default: []

A list of extra directories to search for Salt renderers

render_dirs:
- /var/lib/salt/renderers

utils_dirs

Default: []

A list of extra directories to search for Salt utilities

utils_dirs:
- /var/lib/salt/utils

cython_enable

Default: False

Set this value to true to enable auto-loading and compiling of . pyx modules, This setting requires that gcc and
cython are installed on the minion.

[cython_enable: False

142 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

enable_zip_modules

New in version 2015.8.0.

Default: False

Set this value to true to enable loading of zip archives as extension modules. This allows for packing module code with
specific dependencies to avoid conflicts and/or having to install specific modules' dependencies in system libraries.

[enable_zip_modules: False

}

providers

Default: (empty)

A module provider can be statically overwritten or extended for the minion via the providers option. This can
be done on an individual basis in an SLS file, or globally here in the minion config, like below.

providers:
service: systemd

modules_max_memory

Default: -1

Specify a max size (in bytes) for modules on import. This feature is currently only supported on *NIX operating

systems and requires psutil.

[modules_max_memory: -1

extmod_whitelist/extmod_blacklist

New in version 2017.7.0.

By using this dictionary, the modules that are synced to the minion's extmod cache using saltutil.sync_* can be
limited. If nothing is set to a specific type, then all modules are accepted. To block all modules of a specific type,

whitelist an empty list.

extmod_whitelist:
modules:
- custom_module
engines:
- custom_engine
pillars: []

extmod_blacklist:
modules:
- specific_module

Valid options:
« beacons

« clouds

7.3. Configuring the Salt Minion

143

Salt Documentation, Release 3007.5

« sdb

« modules
» states

« grains

« renderers
« returners
» proxy

« engines
« output

« utils

« pillar

7.3.4 Top File Settings

state_top

Default: top.sls

The state system uses a "top” file to tell the minions what environment to use and what modules to use. The state_top
file is defined relative to the root of the base environment.

[state_top: top.sls

state_top_saltenv

This option has no default value. Set it to an environment name to ensure that only the top file from that environment
is considered during a highstate.

Note: Using this value does not change the merging strategy. For instance, if top_file_merging_strategy
is set to merge, and state_top_saltenv is set to foo, then any sections for environments other than foo in
the top file for the foo environment will be ignored. With state_top_saltenyv set to base, all states from
all environments in the base top file will be applied, while all other top files are ignored. The only way to set
state_top_saltenv to something other than base and not have the other environments in the targeted top
file ignored, would be to set top_file_merging_strategy tomerge_all.

[state_top_saltenv: dev

144 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

top_file_merging_strategy

Changed in version 2016.11.0: A merge_a'll strategy has been added.
Default: merge

When no specific fileserver environment (a.k.a. saltenv) has been specified for a highstate, all environments' top
files are inspected. This config option determines how the SLS targets in those top files are handled.

When set to merge, the base environment's top file is evaluated first, followed by the other environments' top
files. The first target expression (e.g. '*') for a given environment is kept, and when the same target expression
is used in a different top file evaluated later, it is ignored. Because base is evaluated first, it is authoritative. For
example, if there is a target for ' ' for the foo environment in both the base and foo environment's top files, the
one in the foo environment would be ignored. The environments will be evaluated in no specific order (aside from
base coming first). For greater control over the order in which the environments are evaluated, use env_order.
Note that, aside from the base environment's top file, any sections in top files that do not match that top file's
environment will be ignored. So, for example, a section for the ga environment would be ignored if it appears in
the dev environment's top file. To keep use cases like this from being ignored, use the merge_all strategy.

When set to same, then for each environment, only that environment's top file is processed, with the others being
ignored. For example, only the dev environment's top file will be processed for the dev environment, and any
SLS targets defined for dev in the base environment's (or any other environment's) top file will be ignored. If an
environment does not have a top file, then the top file from the default_top config parameter will be used as a
fallback.

When set to merge_all, then all states in all environments in all top files will be applied. The order in which
individual SLS files will be executed will depend on the order in which the top files were evaluated, and the envi-
ronments will be evaluated in no specific order. For greater control over the order in which the environments are
evaluated, use env_order.

[top_file_merging_strategy: same

env_order

Default: []

When top_file_merging_strategy is set to merge, and no environment is specified for a highstate, this
config option allows for the order in which top files are evaluated to be explicitly defined.

env_order:
- base
- dev

- ga

default_top

Default: base

When top_file_merging_strategy is set to same, and no environment is specified for a highstate (i.e.
environment is not set for the minion), this config option specifies a fallback environment in which to look
for a top file if an environment lacks one.

[default_top: dev

7.3. Configuring the Salt Minion 145

Salt Documentation, Release 3007.5

startup_states

Default: ''

States to run when the minion daemon starts. To enable, set startup_states to:

- highstate: Execute state.highstate
« s'ls: Read in the sls_list option and execute the named sls files

« top: Read top_file option and execute based on that file on the Master

[startup_states: "

sls_1list

Default: []

List of states to run when the minion starts up if startup_statesissetto sls.

sls_list:
- edit.vim
- hyper

start_event_grains

Default: []

List of grains to pass in start event when minion starts up.

start_event_grains:
- machine_-id
- uuid

top_Tfile

Default: ''

Top file to execute if startup_states is set to top.

[top_file: "

7.3.5 State Management Settings

renderer

Default: jinja|yaml

The default renderer used for local state executions

[renderer: jinja|json

146

Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

test

Default: False

Set all state calls to only test if they are going to actually make changes or just post what changes are going to be
made.

[test: False]

state_aggregate

Default: False

Automatically aggregate all states that have support for mod_aggregate by setting to True.

[state_aggregate: True]

Or pass a list of state module names to automatically aggregate just those types.

state_aggregate:
- pkg

state_queue

Default: False

Instead of failing immediately when another state run is in progress, a value of True will queue the new state run
to begin running once the other has finished. This option starts a new thread for each queued state run, so use this
option sparingly.

{state_queue: True]

Additionally, it can be set to an integer representing the maximum queue size which can be attained before the
state runs will fail to be queued. This can prevent runaway conditions where new threads are started until system
performance is hampered.

[state_queue: 2]

state_verbose

Default: True

Controls the verbosity of state runs. By default, the results of all states are returned, but setting this value to Fa'lse
will cause salt to only display output for states that failed or states that have changes.

[state_verbose: True]

7.3. Configuring the Salt Minion 147

Salt Documentation, Release 3007.5

state_output

Default: full

The state_output setting controls which results will be output full multi line:
« full, terse - each state will be full/terse
- mixed - only states with errors will be full
« changes - states with changes and errors will be full

full_id,mixed_id, changes_idand terse_1id are also allowed; when set, the state ID will be used as name
in the output.

[state_output: full

state_output_diff

Default: False

The state_output_diff setting changes whether or not the output from successful states is returned. Useful when
even the terse output of these states is cluttering the logs. Set it to True to ignore them.

[state_output_diff: False

state_output_profile

Default: True

The state_output_profile setting changes whether profile information will be shown for each state run.

[state_output_profile: True

state_output_pct

Default: False

The state_output_pct setting changes whether success and failure information as a percent of total actions
will be shown for each state run.

[state_output_pct: False

state_compress_-ids

Default: False

The state_compress_ids setting aggregates information about states which have multiple “names” under the
same state ID in the highstate output.

[state_compress_ids: False

148 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

autoload_dynamic_modules

Default: True

autoload_dynamic_modules turns on automatic loading of modules found in the environments on the master. This
is turned on by default. To turn off auto-loading modules when states run, set this value to False.

[autoload_dynamic_modules: True]

clean_dynamic_modules

Default: True

clean_dynamic_modules keeps the dynamic modules on the minion in sync with the dynamic modules on the master.
This means that if a dynamic module is not on the master it will be deleted from the minion. By default this is enabled
and can be disabled by changing this value to False.

[clean_dynamic_modules: True]

Note: If extmod_wh1itelist is specified, modules which are not whitelisted will also be cleaned here.

saltenv

Changed in version 2018.3.0: Renamed from environment to saltenv. If environment is used, saltenv
will take its value. If both are used, environment will be ignored and saltenv will be used.

The default fileserver environment to use when copying files and applying states.

[saltenv: dev]

lock_saltenv

New in version 2018.3.0.
Default: False

For purposes of running states, this option prevents using the saltenv argument to manually set the environment.
This is useful to keep a minion which has the saltenv option set to dev from running states from an environment
other than dev.

[Iock_saltenv: True

7.3. Configuring the Salt Minion 149

Salt Documentation, Release 3007.5

shapper_states

Default: False

The snapper_states value is used to enable taking snapper snapshots before and after salt state runs. This allows for
state runs to be rolled back.

For snapper states to function properly snapper needs to be installed and enabled.

[snapper_states: True]

shapper_states_config

Default: root

Snapper can execute based on a snapper configuration. The configuration needs to be set up before snapper can use it.
The default configuration is root, this default makes snapper run on SUSE systems using the default configuration
set up at install time.

[snapper_states_config: root]

global_state_conditions

Default: None

If set, this parameter expects a dictionary of state module names as keys and a list of conditions which must be
satisfied in order to run any functions in that state module.

global_state_conditions:
"x": ["GEglobal_noop:false"]
service: ["not G@virtual_subtype:chroot"]

7.3.6 File Directory Settings
file_client

Default: remote

The client defaults to looking on the master server for files, but can be directed to look on the minion by setting this
parameter to Loca'l.

[file_client: remote

150 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

use_master_when_local

Default: False

When using a local file_client, this parameter is used to allow the client to connect to a master for remote
execution.

[use_master_when_local: False]

file_roots

Default:

base:
- /srv/salt

When using a local file_client, this parameter is used to setup the fileserver's environments. This parameter
operates identically to the master config parameter of the same name.

file_roots:

base:
- /srv/salt

dev:
- /srv/salt/dev/services
- /srv/salt/dev/states

prod:
- /srv/salt/prod/services
- /srv/salt/prod/states

fileserver_followsymlinks

New in version 2014.1.0.
Default: True

By default, the file_server follows symlinks when walking the filesystem tree. Currently this only applies to the
default roots fileserver_backend.

[fileserver_followsymlinks: True

fileserver_ignoresymlinks

New in version 2014.1.0.
Default: False

If you do not want symlinks to be treated as the files they are pointing to, set fileserver_ignoresymlinks
to True. By default this is set to False. When set to True, any detected symlink while listing files on the Master
will not be returned to the Minion.

[fileserver_ignoresymlinks: False

7.3. Configuring the Salt Minion 151

Salt Documentation, Release 3007.5

hash_type

Default: sha256

The hash_type is the hash to use when discovering the hash of a file on the local fileserver. The default is sha256,
but md5, shal, sha224, sha384, and sha512 are also supported.

[hash_type: sha256]

7.3.7 Pillar Configuration

pillar_roots

Default:

base:
- /srv/pillar

When using a local file_client, this parameter is used to setup the pillar environments.

pillar_roots:
base:
- /srv/pillar
dev:
- /srv/pillar/dev
prod:
- /srv/pillar/prod

on_demand_ext_pillar

New in version 2016.3.6,2016.11.3,2017.7.0.
Default: ['libvirt', 'virtkey']

When using a local 1 le_client, this option controls which external pillars are permitted to be used on-demand
using pillar.ext.

on_demand_ext_pillar:
- libvirt
- virtkey
- git

Warning: This will allow a masterless minion to request specific pillar data via pillar.ext, and may be
considered a security risk. However, pillar data generated in this way will not affect the in-memory pillar data, so
this risk is limited to instances in which states/modules/etc. (built-in or custom) rely upon pillar data generated
by pillar.ext.

152 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

decrypt_pillar

New in version 2017.7.0.
Default: []

A list of paths to be recursively decrypted during pillar compilation.

decrypt_pillar:
- 'foo:bar': gpg
- '"lorem:ipsum:dolor'

Entries in this list can be formatted either as a simple string, or as a key/value pair, with the key being the pillar
location, and the value being the renderer to use for pillar decryption. If the former is used, the renderer specified
by decrypt_pillar_default will be used.

decrypt_pillar_delimiter

New in version 2017.7.0.
Default: :

The delimiter used to distinguish nested data structures in the decrypt_pillar option.

decrypt_pillar_delimiter: '|'
decrypt_pillar:

- 'foo|bar': gpg

- 'lorem|ipsum|dolor'

decrypt_pillar_default

New in version 2017.7.0.
Default: gpg

The default renderer used for decryption, if one is not specified for a given pillar key in decrypt_pillar.

[decrypt_pillar_default: my_custom_renderer

decrypt_pillar_renderers

New in version 2017.7.0.
Default: ['gpg']

List of renderers which are permitted to be used for pillar decryption.

decrypt_pillar_renderers:

- gpg
- my_custom_renderer

7.3. Configuring the Salt Minion 153

Salt Documentation, Release 3007.5

gpg_decrypt_must_succeed

New in version 3005.
Default: False
If this is True and the ciphertext could not be decrypted, then an error is raised.

Sending the ciphertext through basically is never desired, for example if a state is setting a database password from
pillar and gpg rendering fails, then the state will update the password to the ciphertext, which by definition is not
encrypted.

Warning: The value defaults to False for backwards compatibility. In the Chlorine release, this option will
default to True.

[gpg_decrypt_must_succeed: False]

pillarenv

Default: None

Isolates the pillar environment on the minion side. This functions the same as the environment setting, but for pillar
instead of states.

[pillarenv: dev]

pillarenv_from_saltenv

New in version 2017.7.0.
Default: False

When set to True, the pillarenv value will assume the value of the effective saltenv when running states.
This essentially makes salt '*' state.sls mysls saltenv=dev equivalent to salt 'x' state.
sls mysls saltenv=dev pillarenv=dev. If pillarenv is set, either in the minion config file or via
the CLL it will override this option.

[pillarenv_from_saltenv: True]

pillar_raise_on_missing

New in version 2015.5.0.
Default: False

Set this option to True to force a KeyError to be raised whenever an attempt to retrieve a named value from pillar
fails. When this option is set to False, the failed attempt returns an empty string.

154 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

minion_pillar_cache

New in version 2016.3.0.
Default: False

The minion can locally cache rendered pillar data under cachedir/pillar. This allows a temporarily dis-
connected minion to access previously cached pillar data by invoking salt-call with the --local and --
pillar_root=:conf_minion:cachedir/pillar options. Before enabling this setting consider that the rendered pillar may
contain security sensitive data. Appropriate access restrictions should be in place. By default the saved pillar
data will be readable only by the user account running salt. By default this feature is disabled, to enable set min-
ion_pillar_cache to True.

[minion_pillar_cache: False

file_recv_max_size

New in version 2014.7.0.
Default: 100

Set a hard-limit on the size of the files that can be pushed to the master. It will be interpreted as megabytes.

[file_recv_max_size: 100

pass_to_ext_pillars

Specify a list of configuration keys whose values are to be passed to external pillar functions.
Suboptions can be specified using the "' notation (i.e. option:suboption)

The values are merged and included in the extra_minion_data optional parameter of the external pillar func-
tion. The extra_minion_data parameter is passed only to the external pillar functions that have it explicitly
specified in their definition.

If the config contains

optl: valuel
opt2:
suboptl: value2
subopt2: value3

pass_to_ext_pillars:
- optl
- opt2: suboptl

the extra_minion_data parameter will be

[{”optl”: "valuel", "opt2": {"suboptl": "value2"}}

7.3. Configuring the Salt Minion 155

Salt Documentation, Release 3007.5

ssh_merge_pillar

New in version 2018.3.2.
Default: True

Merges the compiled pillar data with the pillar data already available globally. This is useful when using salt-ssh
or salt-call --local and overriding the pillar data in a state file:

apply_showpillar:
module.run:
- name: state.apply
- mods:
- showpillar
- kwargs:
pillar:
test: "foo bar"

If set to True, the showpillar state will have access to the global pillar data.

If set to Fa'lse, only the overriding pillar data will be available to the showpillar state.

7.3.8 Security Settings
open_mode

Default: False

Open mode can be used to clean out the PKI key received from the Salt master, turn on open mode, restart the minion,
then turn off open mode and restart the minion to clean the keys.

[open_mode: False

master_finger

Default: "'

Fingerprint of the master public key to validate the identity of your Salt master before the initial key exchange. The
master fingerprint can be found as master . pub by running "salt-key -F master” on the Salt master.

[master_finger: 'ba:30:65:2a:d6:9e:20:4f:d8:b2:f3:a7:d4:65:11:13"

keysize

Default: 2048

The size of key that should be generated when creating new keys.

[keysize: 2048

156 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

permissive_pki_access

Default: False

Enable permissive access to the salt keys. This allows you to run the master or minion as root, but have a non-root
group be given access to your pki_dir. To make the access explicit, root must belong to the group you've given access
to. This is potentially quite insecure.

[permissive_pki_access: False]

verify_master_pubkey_sign

Default: False

Enables verification of the master-public-signature returned by the master in auth-replies. Please see the tutorial on
how to configure this properly Multimaster-PKI with Failover Tutorial

New in version 2014.7.0.

[verify_master_pubkey_sign: True]

If this is set to True, master_sign_pubkey must be also set to True in the master configuration file.

master_sign_key_name

Default: master_sign

The filename without the .pub suffix of the public key that should be used for verifying the signature from the master.
The file must be located in the minion's pki directory.

New in version 2014.7.0.

[master_sign_key_name: <filename_without_suffix>

autosign_grains

New in version 2018.3.0.
Default: not defined

The grains that should be sent to the master on authentication to decide if the minion's key should be accepted
automatically.

Please see the Autoaccept Minions from Grains documentation for more information.

autosign_grains:
- uuid
- server_id

7.3. Configuring the Salt Minion 157

https://docs.saltproject.io/en/latest/topics/tutorials/multimaster_pki.html

Salt Documentation, Release 3007.5

always_verify_signature

Default: False

If verify_master_pubkey_sign is enabled, the signature is only verified if the public-key of the master
changes. If the signature should always be verified, this can be set to True.

New in version 2014.7.0.

[always_verify_signature: True]

cmd_blacklist_glob

Default: []

If cmd_blacklist_glob is enabled then any shell command called over remote execution or via salt-call will
be checked against the glob matches found in the ¢md_blacklist_glob list and any matched shell command will be
blocked.

Note: This blacklist is only applied to direct executions made by the salt and salt-call commands. This does NOT
blacklist commands called from states or shell commands executed from other modules.

New in version 2016.11.0.

cmd_blacklist_glob:
- 'rm % '
- 'cat /Jetc/x !

cmd_whitelist_glob

Default: []

If cmd_whitelist_glob is enabled then any shell command called over remote execution or via salt-call will be
checked against the glob matches found in the cmd_whitelist_glob list and any shell command NOT found in the list
will be blocked. If cmd_whitelist_glob is NOT SET, then all shell commands are permitted.

Note: This whitelist is only applied to direct executions made by the salt and salt-call commands. This does NOT
restrict commands called from states or shell commands executed from other modules.

New in version 2016.11.0.

cmd_whitelist_glob:
- 'ls % !
- 'cat /etc/fstab'

158 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

ssl

New in version 2016.11.0.
Default: None

TLS/SSL connection options. This could be set to a dictionary containing arguments corresponding to python ss'l.
wrap_socket method. For details see Tornado and Python documentation.

Note: to set enum arguments values like cert_reqs and ss1_version use constant names without ssl module
prefix: CERT_REQUIRED or PROTOCOL_SSLv23.

ssl:
keyfile: <path_to_keyfile>
certfile: <path_to_certfile>
ssl_version: PROTOCOL_TLSvl 2

encryption_algorithm

New in version 3006.9.
Default: OAEP-SHA1

The RSA encryption algorithm used by this minion when connecting to the master's request channel. Valid values
are OAEP-SHA1 and OAEP-SHA224

signing_algorithm

New in version 3006.9.
Default: PKCS1v15-SHA1

The RSA signing algorithm used by this minion when connecting to the master's request channel. Valid values are
PKCS1v15-SHA1L and PKCS1v15-SHA224

7.3.9 Reactor Settings

reactor

Default: []

Defines a salt reactor. See the Reactor documentation for more information.

[reactor: [1

7.3. Configuring the Salt Minion 159

http://www.tornadoweb.org/en/stable/tcpserver.html#tornado.tcpserver.TCPServer
https://docs.python.org/3/library/ssl.html#ssl.wrap_socket

Salt Documentation, Release 3007.5

reactor_refresh_interval

Default: 60

The TTL for the cache of the reactor configuration.

[reactor_refresh_interval: 60

reactor_worker_threads

Default: 10

The number of workers for the runner/wheel in the reactor.

[reactor_worker_threads: 10]

reactor_worker_hwm

Default: 10000

The queue size for workers in the reactor.

[reactor_worker_hwm: 10000

7.3.10 Thread Settings

multiprocessing

Default: True

If multiprocessingisenabled when a minion receives a publication a new process is spawned and the command
is executed therein. Conversely, if multiprocessing is disabled the new publication will be run executed in a
thread.

[multiprocessing: True

process_count_max

New in version 2018.3.0.
Default: -1

Limit the maximum amount of processes or threads created by salt-minion. This is useful to avoid resource
exhaustion in case the minion receives more publications than it is able to handle, as it limits the number of spawned
processes or threads. —1 is the default and disables the limit.

[process_count_max: -1

160 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

7.3.11 Minion Logging Settings
log_file

Default: /var/log/salt/minion

The minion log can be sent to a regular file, local path name, or network location. See also Log_f1ile.

Examples:

[Iog_file: /var/log/salt/minion]
[Iog_fﬂe: file:///dev/log]
[Iog_file: udp://loghost:10514 J
log_level

Default: warning

The level of messages to send to the console. See also log_level.

[Iog_level: warning J

Any log level below the info level is INSECURE and may log sensitive data. This currently includes: #. profile #.
debug #. trace #. garbage #. all

log_level_logfile

Default: warning

The level of messages to send to the log file. See also log_level_logfile. When it is not set explicitly it will
inherit the level set by Log_level option.

[Iog_level_logfile: warning]

Any log level below the info level is INSECURE and may log sensitive data. This currently includes: #. profile #.
debug #. trace #. garbage #. all

log_datefmt

Default: %H : %M : %S

The date and time format used in console log messages. See also Log_datefmt.

[Iog_datefmt: 1o%H 1 %M : %S]

7.3. Configuring the Salt Minion 161

Salt Documentation, Release 3007.5

log_datefmt_logfile

Default: %Y-%m-%d %H:%M:%S

The date and time format used in log file messages. See also log_datefmt_logfile.

[Iog_datefmt_logfile: %Y —-%m—=%d 9%H:%M:%S"']

log_fmt_console

Default: [%(levelname)-8s] %(message)s

The format of the console logging messages. See also Llog_fmt_console.

Note: Log colors are enabled in Llog_fmt_console rather than the color config since the logging system is
loaded before the minion config.

Console log colors are specified by these additional formatters:
%(colorlevel)s %(colorname)s %(colorprocess)s %(colormsg)s

Since it is desirable to include the surrounding brackets, '[' and ']', in the coloring of the messages, these color
formatters also include padding as well. Color LogRecord attributes are only available for console logging.

log_fmt_console: '%(colorlevel)s %(colormsg)s'
log_fmt_console: '[%(levelname)-8s] %(message)s'

log_fmt_logfile

Default: %(asctime)s,%(msecs)03d [%(name)-17s][%(levelname)-8s] %(message)s

The format of the log file logging messages. See also log_fmt_logfile.

log_fmt_logfile: '%(asctime)s,%(msecs)03d [%(name)-17s][%(levelname)-8s]
—%(message)s'

log_granular_levels

Default: {}

This can be used to control logging levels more specifically. See also Log_granular_levels.

log_rotate_max_bytes

Default: 0

The maximum number of bytes a single log file may contain before it is rotated. A value of 0 disables this feature.
Currently only supported on Windows. On other platforms, use an external tool such as 'logrotate' to manage log
files. log_rotate_max_bytes

162 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

log_rotate_backup_count

Default: 0

The number of backup files to keep when rotating log files. Only used if log_rotate_max_bytes is greater than
0. Currently only supported on Windows. On other platforms, use an external tool such as 'logrotate' to manage log
files. log_rotate_backup_count

zmq_mon+itor

Default: False

To diagnose issues with minions disconnecting or missing returns, ZeroMQ supports the use of monitor sockets to
log connection events. This feature requires ZeroMQ 4.0 or higher.

To enable ZeroMQ monitor sockets, set 'zmq_monitor' to 'True' and log at a debug level or higher.

A sample log event is as follows:

[DEBUG] ZeroMQ event: {'endpoint': 'tcp://127.0.0.1:4505', 'event': 512,
'value': 27, 'description': 'EVENT_DISCONNECTED'}

All events logged will include the string ZeroMQ event. A connection event should be logged as the minion starts
up and initially connects to the master. If not, check for debug log level and that the necessary version of ZeroMQ
is installed.

tcp_authentication_retries

Default: 5
The number of times to retry authenticating with the salt master when it comes back online.

Zeromgq does a lot to make sure when connections come back online that they reauthenticate. The tcp transport
should try to connect with a new connection if the old one times out on reauthenticating.

-1 for infinite tries.

tcp_reconnect_backoff

Default: 1

The time in seconds to wait before attempting another connection with salt master when the previous connection
fails while on TCP transport.

failhard

Default: False

Set the global failhard flag. This informs all states to stop running states at the moment a single state fails

[failhard: False

7.3. Configuring the Salt Minion 163

Salt Documentation, Release 3007.5

7.3.12 Include Configuration

Configuration can be loaded from multiple files. The order in which this is done is:
1. The minion config file itself
2. The files matching the glob in default_include
3. The files matching the glob in include (if defined)

Each successive step overrides any values defined in the previous steps. Therefore, any config options defined in one
of the default_1include files would override the same value in the minion config file, and any options defined
in include would override both.

default_include

Default: minion.d/*.conf

The minion can include configuration from other files. Per default the minion will automatically include all config
files from minion.d/*.conf where minion.d is relative to the directory of the minion configuration file.

Note: Salt creates files in the minion.d directory for its own use. These files are prefixed with an underscore. A
common example of this is the _schedule. conf file.

include

Default: not defined

The minion can include configuration from other files. To enable this, pass a list of paths to this option. The paths
can be either relative or absolute; if relative, they are considered to be relative to the directory the main minion
configuration file lives in. Paths can make use of shell-style globbing. If no files are matched by a path passed to this
option then the minion will log a warning message.

Include files from a minion.d directory in the same
directory as the minion config file
include: minion.d/*.conf

Include a single extra file into the configuration
include: /etc/roles/webserver

Include several files and the minion.d directory
include:

- extra_config

- minion.d/x*

- /etc/roles/webserver

164 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

7.3.13 Keepalive Settings
tcp_keepalive

Default: True

The tcp keepalive interval to set on TCP ports. This setting can be used to tune Salt connectivity issues in messy
network environments with misbehaving firewalls.

[tcp_keepalive: True]

tcp_keepalive_cnt

Default: -1

Sets the ZeroMQ TCP keepalive count. May be used to tune issues with minion disconnects.

[tcp_keepalive_cnt: —1!]

tcp_keepalive_idle

Default: 300

Sets ZeroMQ TCP keepalive idle. May be used to tune issues with minion disconnects.

[tcp_keepalive_idle: 300

tcp_keepalive_intvl

Default: -1

Sets ZeroMQ TCP keepalive interval. May be used to tune issues with minion disconnects.

[tcp_keepalive_intvl': -1

7.3.14 Frozen Build Update Settings

These options control how salt.modules.saltutil.update () works with esky frozen apps. For more in-
formation look at https://github.com/cloudmatrix/esky/.

update_url

Default: False (Update feature is disabled)

The url to use when looking for application updates. Esky depends on directory listings to search for new versions.
A webserver running on your Master is a good starting point for most setups.

[update_url: '"http://salt.example.com/minion-updates'

7.3. Configuring the Salt Minion 165

https://github.com/cloudmatrix/esky/

Salt Documentation, Release 3007.5

update_restart_services

Default: [] (service restarting on update is disabled)

A list of services to restart when the minion software is updated. This would typically just be a list containing the
minion's service name, but you may have other services that need to go with it.

[update_restart_services: ['salt-minion']

7.3.15 Windows Software Repo Settings

These settings apply to all minions, whether running in masterless or master-minion mode.

winrepo_cache_expire_min

New in version 2016.11.0.
Default: 1800

If set to a nonzero integer, then passing refresh=True to functions in the windows pkg module will not
refresh the windows repo metadata if the age of the metadata is less than this value. The exception to this is pkg.
refresh_db, which will always refresh the metadata, regardless of age.

[winrepo_cache_expire_min: 1800

winrepo_cache_expire_max

New in version 2016.11.0.
Default: 21600

If the windows repo metadata is older than this value, and the metadata is needed by a function in the windows
pkg module, the metadata will be refreshed.

[winrepo_cache_expire_max: 86400

winrepo_source_dir

Default: salt://win/repo-ng/

The source location for the winrepo sls files.

[winrepo_source_dir: salt://win/repo-ng/

166 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

7.3.16 Standalone Minion Windows Software Repo Settings

The following settings are for configuring the Windows Software Repository (winrepo) on a masterless minion. To
run in masterless minion mode, set the file_client to local or run salt-call with the -—local option

Important: These config options are only valid for minions running in masterless mode

winrepo_dir

Changed in version 2015.8.0: Renamed fromwin_repo towinrepo_dir. This option did not have a default value
until this version.

Default: C:\salt\srv\salt\win\repo

Location on the minion f1le_roots where winrepo files are kept. This is also where the winrepo_remotes
are cloned to by winrepo.update_git_repos

[winrepo_dir: 'D:\winrepo']

winrepo_dir_ng

New in version 2015.8.0: A new ng repo was added.
Default: C:\salt\srv\salt\win\repo-ng

Location on the minion 71 le_roots where winrepo files are kept for 2018.8.0 and later minions. This is also where
the winrepo_remotes are cloned to by winrepo.update_git_repos

[winrepo_dir_ng: /srv/salt/win/repo-ng]

winrepo_cachefile

Changed in version 2015.8.0: Renamed from win_repo_cachefile to winrepo_cachefile. Also, this op-
tion did not have a default value until this version.

Default: winrepo.p

The name of the winrepo cache file. The file will be created at root of the directory specified by winrepo_dir_ng.

[winrepo_cachefile: winrepo.p]

winrepo_remotes

Changed in version 2015.8.0: Renamed from win_gitrepos to winrepo_remotes. Also, this option did not
have a default value until this version.

New in version 2015.8.0.

Default: ['https://github.com/saltstack/salt-winrepo.git']

List of git repositories to checkout and include in the winrepo

7.3. Configuring the Salt Minion 167

Salt Documentation, Release 3007.5

winrepo_remotes:
- https://github.com/saltstack/salt-winrepo.git

To specify a specific revision of the repository, prepend a commit ID to the URL of the repository:

winrepo_remotes:
- '<commit_id> https://github.com/saltstack/salt-winrepo.git'

Replace <commit_1id> with the SHA1 hash of a commit ID. Specifying a commit ID is useful in that it allows one
to revert back to a previous version in the event that an error is introduced in the latest revision of the repo.

winrepo_remotes_ng

New in version 2015.8.0: A new ng repo was added.
Default: ['https://github.com/saltstack/salt-winrepo-ng.git']

List of git repositories to checkout and include in the winrepo for 2015.8.0 and later minions.

winrepo_remotes_ng:
- https://github.com/saltstack/salt-winrepo-ng.git

To specify a specific revision of the repository, prepend a commit ID to the URL of the repository:

winrepo_remotes_ng:
- '<commit_id> https://github.com/saltstack/salt-winrepo-ng.git'

Replace <commit_id> with the SHA1 hash of a commit ID. Specifying a commit ID is useful in that it allows one
to revert back to a previous version in the event that an error is introduced in the latest revision of the repo.

7.4 Configuring the Salt Proxy Minion

The Salt system is amazingly simple and easy to configure. The two components of the Salt system each have a respec-
tive configuration file. The salt-master is configured via the master configuration file, and the salt-proxy is
configured via the proxy configuration file.

See also:
example proxy minion configuration file

The Salt Minion configuration is very simple. Typically, the only value that needs to be set is the master value so the
proxy knows where to locate its master.

By default, the salt-proxy configuration will be in /etc/salt/proxy. A notable exception is FreeBSD, where the
configuration will be in /usr/local/etc/salt/proxy

With the Salt 3004 release, the ability to configure proxy minions using the delta proxy was introduced. The delta
proxy provides the ability for a single control proxy minion to manage multiple proxy minions.

See also:

Installing and Using Deltaproxy

168 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

7.4.1 Proxy-specific Configuration Options

add_proxymodule_to_opts

New in version 2015.8.2.

Changed in version 2016.3.0.

Default: False

Add the proxymodule LazyLoader object to opts.

[add_proxymodule_to_opts: True]

proxy_merge_grains_in_module

New in version 2016.3.0.
Changed in version 2017.7.0.
Default: True

If a proxymodule has a function called gra-ins, then call it during regular grains loading and merge the results with
the proxy's grains dictionary. Otherwise it is assumed that the module calls the grains function in a custom way and
returns the data elsewhere.

[proxy_merge_grains_in_module: False J

proxy_keep_alive

New in version 2017.7.0.
Default: True

Whether the connection with the remote device should be restarted when dead. The proxy module must implement
the a'live function, otherwise the connection is considered alive.

[proxy_keep_alive: False J

proxy_keep_alive_interval

New in version 2017.7.0.
Default: 1

The frequency of keepalive checks, in minutes. It requires the proxy_keep_alive option to be enabled (and the
proxy module to implement the alive function).

[proxy_keep_alive_interval: 5]

7.4. Configuring the Salt Proxy Minion 169

Salt Documentation, Release 3007.5

proxy_always_alive

New in version 2017.7.0.
Default: True

Whether the proxy should maintain the connection with the remote device. Similarly to proxy_keep_alive,
this option is very specific to the design of the proxy module. When proxy_always_alive is set to False, the
connection with the remote device is not maintained and has to be closed after every command.

[proxy_always_alive: False]

proxy_merge_pillar_in_opts

New in version 2017.7.3.
Default: False

Whether the pillar data to be merged into the proxy configuration options. As multiple proxies can run on the same
server, we may need different configuration options for each, while there's one single configuration file. The solution
is merging the pillar data of each proxy minion into the opts.

[proxy_merge_pillar_in_opts: True J

proxy_deep_merge_pillar_in_opts

New in version 2017.7.3.
Default: False.

Deep merge of pillar data into configuration opts. This option is evaluated only when
proxy_merge_pillar_in_opts is enabled.

proxy_merge_pillar_in_opts_strategy

New in version 2017.7.3.
Default: smart.

The strategy used when merging pillar configuration into opts. This option is evaluated only when
proxy_merge_pillar_in_opts is enabled.

proxy_mines_pillar

New in version 2017.7.3.
Default: True.

Allow enabling mine details using pillar data. This evaluates the mine configuration under the pillar, for the
following regular minion options that are also equally available on the proxy minion: mine_interval, and
mine_functions.

170 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

7.5 Delta proxy minions

Welcome to the delta proxy minion installation guide. This installation guide explains the process for installing and
using delta proxy minion which is available beginning in version 3004.

This guide is intended for system and network administrators with the general knowledge and experience required in
the field. This guide is also intended for users that have ideally already tested and used standard Salt proxy minions
in their environment before deciding to move to a delta proxy minion environment. See Salt proxy minions for more
information.

Note: If you have not used standard Salt proxy minions before, consider testing and deploying standard Salt proxy
minions in your environment first.

7.5.1 Proxy minions vs. delta proxy minions
Salt can target network devices through Salt proxy minions, Proxy minions allow you to control network devices
that, for whatever reason, cannot run the standard Salt minion. Examples include:

+ Network gear that has an API but runs a proprietary operating system

« Devices with limited CPU or memory

« Devices that could run a minion but will not for security reasons

A proxy minion acts as an intermediary between the Salt master and the device it represents. The proxy minion runs
on the Salt master and then translates commands from the Salt master to the device as needed.

By acting as an intermediary for the actual minion, proxy minions eliminate the need to establish a constant con-
nection from a Salt master to a minion. Proxy minions generally only open a connection to the actual minion when
necessary.

Proxy minions also reduce the amount of CPU or memory the minion must spend checking for commands from the
Salt master. Proxy minions use the Salt master's CPU or memory to check for commands. The actual minion only
needs to use CPU or memory to run commands when needed.

Note: For more information about Salt proxy minions, see:
« Salt proxy minions

« Salt proxy modules

When delta proxy minions are needed

Normally, you would create a separate instance of proxy minion for each device that needs to be managed. However,
this doesn't always scale well if you have thousands of devices. Running several thousand proxy minions can require
a lot of memory and CPU.

A delta proxy minion can solve this problem: it makes it possible to run one minion that acts as the intermediary
between the Salt master and the many network devices it can represent. In this scenario, one device (the delta proxy
minion on the Salt master) runs several proxies. This configuration boosts performance and improves the overall
scalability of the network.

7.5. Delta proxy minions 171

https://docs.saltproject.io/en/latest/topics/proxyminion/index.html
https://docs.saltproject.io/en/latest/topics/proxyminion/index.html
https://docs.saltproject.io/en/latest/topics/proxyminion/index.html
https://docs.saltproject.io/en/latest/ref/proxy/all/index.html#all-salt-proxy

Salt Documentation, Release 3007.5

7.5.2 Key terms

The following lists some important terminology that is used throughout this guide:

Term

Definition

Salt master

minion

proxy minion

delta proxy minion

control proxy

managed device

pillar file

top file

The Salt master is a central node running the Salt master server. The Salt master
issues commands to minions.

Minijons are nodes running the Salt minion service. Minions listen to commands
from a Salt master and perform the requested tasks, then return data back to the Salt
master as needed.

A Salt master that is running the proxy-minion service. The proxy minion acts as
an intermediary between the Salt master and the device it represents. The proxy
minion runs on the Salt master and then translates commands from the Salt master
to the device. A separate instance of proxy minion is needed for each device that is
managed.

A Salt master that is running the delta proxy-minion service. The delta proxy minion
acts as the intermediary between the Salt master and the many network devices it
can represent. Only one instance of the delta proxy service is needed to run several
proxies.

The control proxy runs on the Salt master. It manages a list of devices and issues
commands to the network devices it represents. The Salt master needs at least one
control proxy, but it is possible to have more than one control proxy, each managing
a different set of devices.

A device (such as Netmiko) that is managed by proxy minions or by a control proxy
minion. The proxy minion or control proxy only creates a connection to the actual
minion it needs to issue a command.

Pillars are structures of data (files) defined on the Salt master and passed through to
one or more minions when the minion needs access to the pillar file. Pillars allow
confidential, targeted data to be securely sent only to the relevant minion. Because
all configurations for delta proxy minions are done on the Salt master (not on the
minions), you use pillar files to configure the delta proxy-minion service.

The top file is a pillar file that maps which states should be applied to different min-
ions in certain environments.

7.5.3 Pre-installation

Before you start

Before installing the delta proxy minion, ensure that:

« Your network device and firmware are supported.

« The Salt master that is acting as the control proxy minion has network access to the devices it is managing.

+ You have installed, configured, and tested standard Salt proxy minions in your environment before introducing
delta proxy minions into your environment.

172

Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

Install or upgrade Salt

Ensure your Salt masters are running at least Salt version 3004. For instructions on installing or upgrading Salt, see
the Salt Install Guide.

7.5.4 Installation

Before you begin the delta proxy minion installation process, ensure you have read and completed the Pre-installation
steps.

Overview of the installation process
Similar to proxy minions, all the delta proxy minion configurations are done on the Salt master rather than on the
minions that will be managed. The installation process has the following phases:

1. Configure the master to use delta proxy - Create a configuration file on the Salt master that defines its proxy
settings.

2. Create a pillar file for each managed device - Create a pillar file for each device that will be managed by the
delta proxy minion and reference these minions in the top file.

3. Create a control proxy configuration file - Create a control proxy file that lists the devices that it will manage.
Then, reference this file in the top file.

4. Start the delta proxy minion - Start the delta proxy-minion service and validate that it has been set up correctly.

Configure the master to use delta proxy

In this step, you'll create a configuration file on the Salt master that defines its proxy settings. This is a general
configuration file that tells the Salt master how to handle all proxy minions.

To create this configuration:

1. On the Salt master, navigate to the /etc/salt directory. In this directory, create a file named proxy if one
doesn't already exist.

2. Open the file in your preferred editor and add the following configuration information:

Use delta proxy metaproxy
metaproxy: deltaproxy

Disable the FQDNS grain
enable_fqdns_grains: False

Enabled multprocessing
multiprocessing: True

Note: See the following section about delta proxy configuration options for a more detailed description of these
configuration options.

3. Save the file.

Your Salt master is now configured to use delta proxy. Next, you need to Create a pillar file for each managed device.

7.5. Delta proxy minions 173

https://docs.saltproject.io/salt/install-guide/en/latest/

Salt Documentation, Release 3007.5

Delta proxy configuration options

The following table describes the configuration options used in the delta proxy configuration file:

Field Description

metaproxy Set this configuration option to deltaproxy. If this option is set to proxy or if

this line is not included in the file, the Salt master will use the standard proxy service
instead of the delta proxy service.

enable_fqdns_grains If your router does not have the ability to use Reverse DNS lookup to obtain the

Fully Qualified Domain Name (fqdn) for an IP address, you'll need to change the
enable_fqdns_gra‘ins setting in the pillar configuration file to False instead.

multiprocessing Multi-processing is the ability to run more than one task or process at the same time.

A delta proxy minion has the ability to run with multi-processing turned off.
If you plan to run with multi-processing enabled, you should also enable the
skip_connect_on_1init setting to True.

skip_connect_on_init This setting tells the control proxy whether or not it should make a connection to

the managed device when it starts. When set to True, the delta proxy minion will
only connect when it needs to issue commands to the managed devices.

Create a pillar file for each managed device

Each device that needs to be managed by delta proxy needs a separate pillar file on the Salt master. To create this

file:

1.
2.

Navigate to the /srv/pillar directory.

In this directory create a new pillar file for a minion. For example,
my_managed_device_pillar_file_01.sls.

. Open the new file in your preferred editor and add the necessary configuration information for that minion

and your environment. The following is an example pillar file for a Netmiko device:

rproxy:
proxytype: netmiko
device_type: arista_eos
host: 192.0.2.1
username: myusername
password: mypassword
always_alive: True

Note: The available configuration options vary depending on the proxy type (in other words, the type of device
it is). To read a detailed explanation of the configuration options, refer to the proxy module documentation
for the type of device you need to manage. See:

« Salt proxy modules

« Netmiko Salt proxy module

. Save the file.
. In an editor, open the top file: /srv/pillar/top.sls.
. Add a section to the top file that indicates the minion ID of the device that will be managed. Then, list the

name of the pillar file you created in the previous steps. For example:

174

Chapter 7. Configuring Salt

https://docs.saltproject.io/en/latest/ref/proxy/all/index.html#all-salt-proxy
https://docs.saltproject.io/en/latest/ref/proxy/all/salt.proxy.netmiko_px.html#module-salt.proxy.netmiko_px

Salt Documentation, Release 3007.5

my_managed_device_minion_ID:
- my_managed_device_pillar_file_01

7. Repeat the previous steps for each minion that needs to be managed.

You've now created the pillar file for the minions that will be managed by the delta proxy minion and you have
referenced these files in the top file. Proceed to the next section.

Create a control proxy configuration file

On the Salt master, you'll need to create or edit a control proxy file for each control proxy. The control proxy manages
several devices and issues commands to the network devices it represents. The Salt master needs at least one control
proxy, but it is possible to have more than one control proxy, each managing a different set of devices.

To configure a control proxy, you'll create a file that lists the minion IDs of the minions that it will manage. Then
you will reference this control proxy configuration file in the top file.

To create a control proxy configuration file:

1. On the Salt master, navigate to the /srv/pillar directory. In this directory, create a new proxy configu-
ration file. Give this file a descriptive name, such as control_proxy_01_configuration.sls.

2. Open the file in your preferred editor and add a list of the minion IDs for each device that needs to be managed.
For example:

(proxy:
proxytype: deltaproxy
ids:
- my_managed_device_01
- my_managed_device_02
- my_managed_device_03

L

3. Save the file.
4. In an editor, open the top file: /srv/pillar/top.sls.

5. Add a section to the top file that indicates references the delta proxy control proxy. For example:

base:

my_managed_device_minion_01:

- my_managed_device_pillar_file_01
my_managed_device_minion_02:

- my_managed_device_pillar_file_02
my_managed_device_minion_03:

- my_managed_device_pillar_file_03
delta_proxy_control:

- control_proxy_01_configuration

L

6. Repeat the previous steps for each control proxy if needed.

7. In an editor, open the proxy config file: /etc/salt/proxy. Add a section for metaproxy and set it's value
to deltaproxy.

[metaproxy: deltaproxy

Now that you have created the necessary configurations, proceed to the next section.

7.5. Delta proxy minions 175

Salt Documentation, Release 3007.5

Start the delta proxy minion

After you've successfully configured the delta proxy minion, you need to start the proxy minion service for each
managed device and validate that it is working correctly.

Note: This step explains the process for starting a single instance of a delta proxy minion. Because starting each
minion individually can potentially be very time-consuming, most organizations use a script to start their delta
proxy minions since there are typically many devices being managed. Consider implementing a similar script for
your environment to save time in deployment.

To start a single instance of a delta proxy minion and test that it is configured correctly:

1. In the terminal for the Salt master, run the following command, replacing the placeholder text with the actual
minion ID:

[sudo salt-proxy --proxyid=<control_proxy_id> J

2. To test the delta proxy minion, run the following test.version command on the Salt master and target a
specific minion. For example:

Lsalt my_managed_device_minion_ID test.version J

This command returns an output similar to the following:

3004

local: ’

After you've successfully started the delta proxy minions and verified that they are working correctly, you can now
use these minions the same as standard proxy minions.

7.5.5 Additional resources

This reference section includes additional resources for delta proxy minions.
For reference, see:

« Salt proxy minions

« Salt proxy modules

« Netmiko Salt proxy module

7.6 Configuration file examples

« Example master configuration file

« Example minion configuration file

« Example proxy minion configuration file

176 Chapter 7. Configuring Salt

https://docs.saltproject.io/en/latest/topics/proxyminion/index.html
https://docs.saltproject.io/en/latest/ref/proxy/all/index.html#all-salt-proxy
https://docs.saltproject.io/en/latest/ref/proxy/all/salt.proxy.netmiko_px.html#module-salt.proxy.netmiko_px

Salt Documentation, Release 3007.5

7.6.1 Example master configuration file

Primary configuration settings
AAAAAAAAHHHRRRRRRAAAAAAAA AR AR BRAHAAAAA

This configuration file is used to manage the behavior of the Salt Master.
Values that are commented out but have an empty line after the comment are
defaults that do not need to be set in the config. If there is no blank line
after the comment then the value is presented as an example and is not the
default.

* oW W ™ W

Per default, the master will automatically include all config files
from master.d/x.conf (master.d is a directory in the same directory
as the main master config file).
#default_include: master.d/*x.conf

The address of the interface to bind to:
#interface: 0.0.0.0

Whether the master should listen for IPv6 connections. If this is set toK
~True,

the interface option must be adjusted, too. (For example: "interface: '::'")
#ipv6: False

The tcp port used by the publisher:
#publish_port: 4505

The user under which the salt master will run. Salt will update all

permissions to allow the specified user to run the master. The exception is
the job cache, which must be deleted if this user is changed. If the

modified files cause conflicts, set verify_env to False.

#user: root

Tell the master to also use salt-ssh when running commands against minions.
#enable_ssh_minions: False

The port used by the communication interface. The ret (return) port is the
interface used for the file server, authentication, job returns, etc.
#ret_port: 4506

Specify the location of the daemon process ID file:
#pidfile: /var/run/salt-master.pid

The root directory prepended to these options: pki_dir, cachedir,

sock_dir, log_file, autosign_file, autoreject_file, extension_modules,
key_logfile, pidfile, autosign_grains_dir:

#root_dir: /

The path to the master's configuration file.
#conf_file: /etc/salt/master

Directory used to store public key data:
#pki_dir: /etc/salt/pki/master

(continues on next page)

7.6. Configuration file examples 177

Salt Documentation, Release 3007.5

(continued from previous page)

Key cache. Increases master speed for large numbers of accepted
keys. Available options: 'sched'. (Updates on a fixed schedule.)
Note that enabling this feature means that minions will not be

available to target for up to the length of the maintenance loop
which by default is 60s.

#key_cache: '

Directory to store job and cache data:

This directory may contain sensitive data and should be protectedil
—accordingly.

#

#cachedir: /var/cache/salt/master

Directory where custom modules sync to. This directory can contain
subdirectories for each of Salt's module types such as "runners",
"output", "wheel"”, "modules", "states', "returners", "engines",
"utils", etc.

Note, any directories or files not found in the ‘module_dirs’
location will be removed from the extension_modules path.

T OW W W W W

#extension_modules: /var/cache/salt/master/extmods

Directory for custom modules. This directory can contain subdirectories for
each of Salt's module types such as "runners", "output'", "wheel", "modules',
"states'", '"returners", "engines", "utils'", etc.

#module_dirs: []

Verify and set permissions on configuration directories at startup:
#verify_env: True

Set the number of hours to keep old job information in the job cache.
This option is deprecated by the keep_jobs_seconds option.
#keep_jobs: 24

Set the number of seconds to keep old job information in the job cache:
#keep_jobs_seconds: 86400

The number of seconds to wait when the client is requesting information
about running jobs.
#gather_job_timeout: 10

Set the default timeout for the salt command and api. The default is 5
seconds.
#timeout: 5

The loop_interval option controls the seconds for the master's maintenance
process check cycle. This process updates file server backends, cleans the
job cache and executes the scheduler.

#loop_interval: 60

Set the default outputter used by the salt command. The default is "nested".

(continues on next page)

178 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)

#output: nested

To set a list of additional directories to search for salt outputters, setl
~the

outputter_dirs option.

#outputter_dirs: []

Set the default output file used by the salt command. Default is to output
to the CLI and not to a file. Functions the same way as the "--out-file"

CLI option, only sets this to a single file for all salt commands.
#output_file: None

Return minions that timeout when running commands like test.ping
#show_timeout: True

Tell the client to display the jid when a job is published.
#show_jid: False

By default, output is colored. To disable colored output, set the colorR
<value

to False.

#color: True

Do not strip off the colored output from nested results and state outputs
(true by default).

strip_colors: False

To display a summary of the number of minions targeted, the number of

minions returned, and the number of minions that did not return, set the
cli_summary value to True. (False by default.)

#

#cli_summary: False

Set the directory used to hold unix sockets:
#sock_dir: /var/run/salt/master

The master can take a while to start up when lspci and/or dmidecode is used
to populate the grains for the master. Enable if you want to see GPUR
—hardware

data for your master.

enable_gpu_grains: False

*

The master maintains a job cache. While this is a great addition, it can be
a burden on the master for larger deployments (over 5000 minions).

Disabling the job cache will make previously executed jobs unavailable to

the jobs system and is not generally recommended.

#job_cache: True

Cache minion grains, pillar and mine data via the cache subsystem in the
cachedir or a database.

#minion_data_cache: True

(continues on next page)

7.6. Configuration file examples 179

Salt Documentation, Release 3007.5

(continued from previous page)

Cache subsystem module to use for minion data cache.

#cache: localfs

Enables a fast in-memory cache booster and sets the expiration time.
#memcache_expire_seconds: 0

Set a memcache limit in items (bank + key) per cache storage (driver +R
—driver_opts).

#memcache_max_1items: 1024

Each time a cache storage got full cleanup all the expired items not justR
—the oldest one.

#memcache_full_cleanup: False

Enable collecting the memcache stats and log it on ‘debug’ log level.
#memcache_debug: False

Store all returns in the given returner.

Setting this option requires that any returner-specific configuration also

be set. See various returners in salt/returners for details on required

configuration values. (See also, event_return_queue, and event_return_queue_
—max_seconds below.)

#

#event_return: mysql

On busy systems, enabling event_returns can cause a considerable load on

the storage system for returners. Events can be queued on the master and

stored in a batched fashion using a single transaction for multiple events.
By default, events are not queued.

#event_return_queue: 0

In some cases enabling event return queueing can be very helpful, but theR
—bus

may not busy enough to flush the queue consistently. Setting this to all
—reasonable

value (1-30 seconds) will cause the queue to be flushed when the oldestR
—event is older

than ‘event_return_queue_max_seconds regardless of how many events are inR
—the queue.

#event_return_queue_max_seconds: 0

Only return events matching tags in a whitelist, supports glob matches.
#event_return_whitelist:

- salt/master/a_tag

- salt/run/*/ret

Store all event returns xxexcept#*x the tags in a blacklist, supports globs.
#event_return_blacklist:

- salt/master/not_this_tag

- salt/wheel/*/ret

Passing very large events can cause the minion to consume large amounts of
memory. This value tunes the maximum size of a message allowed onto the

master event bus. The value is expressed in bytes.

#max_event_size: 1048576

(continues on next page)

180 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)

Windows platforms lack posix IPC and must rely on slower TCP based inter-
process communications. Set ipc_mode to 'tcp' on such systems
#i1pc_mode: 1ipc

Overwrite the default tcp ports used by the minion when ipc_mode is set to
< 'tep!

#tcp_master_pub_port: 4510

#tcp_master_pull_port: 4511

By default, the master AES key rotates every 24 hours. The next command

following a key rotation will trigger a key refresh from the minion whichR
—may

result in minions which do not respond to the first command after a keyR
~refresh.

#

To tell the master to ping all minions immediately after an AES key refresh,
- set

ping_on_rotate to True. This should mitigate the issue where a minion doesl
—~not

appear to initially respond after a key is rotated.

Note that ping_on_rotate may cause high load on the master immediately after
the key rotation event as minions reconnect. Consider this carefully if this
salt master is managing a large number of minions.

If disabled, it is recommended to handle this event by listening for the
'aes_key_rotate' event with the 'key' tag and acting appropriately.
ping_on_rotate: False

IO I W W W W W W

By

By default, the master deletes its cache of minion data when the key forK
—that

minion i1s removed. To preserve the cache after key deletion, set

'preserve_minion_cache' to True.

#

WARNING: This may have security implications if compromised minions authR
—with

a previous deleted minion ID.

#preserve_minion_cache: False

Allow or deny minions from requesting their own key revocation
#allow_minion_key_revoke: True

If max_minions is used in large installations, the master might experience
high-load situations because of having to check the number of connected
minions for every authentication. This cache provides the minion-ids of
all connected minions to all MWorker-processes and greatly improves the
performance of max_minions.

con_cache: False

W W W ™R

BN

The master can include configuration from other files. To enable this,
pass a list of paths to this option. The paths can be either relative or
absolute; if relative, they are considered to be relative to the directory

(continues on next page)

I

7.6. Configuration file examples 181

Salt Documentation, Release 3007.5

(continued from previous page)

the main master configuration file lives in (this file). Paths can make use
of shell-style globbing. If no files are matched by a path passed to this
option, then the master will log a warning message.

Include a config file from some other path:
include: /Jetc/salt/extra_config

Include config from several files and directories:
include:
- /Jetc/salt/extra_config

S e E R

Large-scale tuning settings #Ht#HH
AAAAAAAHHHRRBRBRRAAAAAAAAAARRRRHRRHRRAAAAA
Max open files

Each minion connecting to the master uses AT LEAST one file descriptor, the
master subscription connection. If enough minions connect you might start
seeing on the console (and then salt-master crashes):

Too many open files (tcp_listener.cpp:335)

Aborted (core dumped)

HoH H H O H W W W

By default this value will be the one of ‘ulimit -Hn', ie, the hard limitR
~for
max open files.

If you wish to set a different value than the default one, uncomment and
configure this setting. Remember that this value CANNOT be higher than the
hard limit. Raising the hard limit depends on your 0OS and/or distribution,
a good way to find the limit is to search the internet. For example:

raise max open files hard limit debian

ST T T

#max_open_files: 100000

The number of worker threads to start. These threads are used to manage
return calls made from minions to the master. If the master seems to be
running slowly, increase the number of threads. This setting can not be
set lower than 3.
#worker_threads: 5

TR oW W

Set the ZeroMQ high water marks
http://api.zeromqg.org/3-2:zmqg-setsockopt

The listen queue size / backlog
#zmqg_backlog: 1000

The publisher interface ZeroMQPubServerChannel
#pub_hwm: 10060

The master may allocate memory per-event and not
reclaim it.
To set a high-water mark for memory allocation, use

(continues on next page)

182 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)

ipc_write_buffer to set a high-water mark for message

buffering.

Value: In bytes. Set to 'dynamic' to have Salt select

a value for you. Default is disabled.

ipc_write_buffer: 'dynamic'

These two batch settings, batch_safe_limit and batch_safe_size, are used to
automatically switch to a batch mode execution. If a command would have been
sent to more than <batch_safe_limit> minions, then run the command in

batches of <batch_safe_size>. If no batch_safe_size is specified, a default
of 8 will be used. If no batch_safe_limit is specified, then no automatic

batching will occur.

#batch_safe_limit: 100
#batch_safe_size: 8

Master stats enables stats events to be fired from the master at close
to the defined interval

#master_stats: False

#master_stats_event_1iter: 60

HitH#H# Security settings #it###
AAAAAAAHHHR R B HBRAAAAAAA AR ARG BRBHBBAAAAA

Enable passphrase protection of Master private key. Although a string value
1s acceptable; passwords should be stored in an external vaulting mechanism
and retrieved via sdb. See https://docs.saltproject.io/en/latest/topics/sdb/
Passphrase protection is off by default but an example of an sdb profile and
query i1s as follows.

masterkeyring:

driver: keyring

service: system

#
#

key_pass: sdb://masterkeyring/key_pass

Enable passphrase protection of the Master signing_key. This only applies if
master_sign_pubkey is set to True. This is disabled by default.

master_sign_pubkey: True

signing_key_pass: sdb://masterkeyring/signing_pass

Enable '"open mode", this mode still maintains encryption, but turns off

authentication, this is only intended for highly secure environments or for
the situation where your keys end up in a bad state. If you run in open mode
you do so at your own risk!

#open_mode: False

Enable auto_accept, this setting will automatically accept all incoming
public keys from the minions. Note that this is insecure.
#auto_accept: False

The size of key that should be generated when creating new keys.
#keysize: 2048

(continues on next page)

7.6. Configuration file examples 183

Salt Documentation, Release 3007.5

(continued from previous page)

Time in minutes that an incoming public key with a matching name found in
pki_dir/minion_autosign/keyid is automatically accepted. Expired autosigni
—keys

are removed when the master checks the minion_autosign directory.

0 equals no timeout

autosign_timeout: 120

If the autosign_file is specified, incoming keys specified in the

autosign_file will be automatically accepted. This is insecure. Regular
expressions as well as globing lines are supported. The file must bel
—readonly

except for the owner. Use permissive_pki_access to allow the group writeR
—access.

#autosign_file: /Jetc/salt/autosign.conf

Works like autosign_file, but instead allows you to specify minion IDs for
which keys will automatically be rejected. Will override both membership in
the autosign_file and the auto_accept setting.

#autoreject_file: /etc/salt/autoreject.conf

If the autosign_grains_dir is specified, incoming keys from minions withR
~gratin

values matching those defined in files in this directory will be accepted

automatically. This is insecure. Minions need to be configured to send thel
—grains.

#autosign_grains_dir: /etc/salt/autosign_grains

Enable permissive access to the salt keys. This allows you to run the

master or minion as root, but have a non-root group be given access to

your pki_dir. To make the access explicit, root must belong to the group

you've given access to. This is potentially quite insecure. If an autosign_
~file

1s specified, enabling permissive_pki_access will allow group access to that
specific file.

#permissive_pki_access: False

Allow users on the master access to execute specific commands on minions.
This setting should be treated with care since it opens up execution
capabilities to non root users. By default this capability is completely
disabled.
#publisher_acl:
larry:

- test.ping

- network. *

Blacklist any of the following users or modules
This example would blacklist all non sudo users, including root from

running any commands. It would also blacklist any use of the "cmd"
module. This is completely disabled by default.

S T R N

(continues on next page)

184 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)

#

Check the list of configured users in client ACL against users on the
system and throw errors if they do not exist.

#client_acl_verify: True

#

#publisher_acl_blacklist:

users:

- root

- '"A(?!sudo_).xS' # all non sudo users
modules:

- cmd

Enforce publisher_acl & publisher_acl_blacklist when users have sudo
access to the salt command.

#

#sudo_acl: False

The external auth system uses the Salt auth modules to authenticate and
validate users to access areas of the Salt system.
#external_auth:

pam:

fred:

- test.x
#

Time (in seconds) for a newly generated token to live. Default: 12 hours
#token_expire: 43200

#

Allow eauth users to specify the expiry time of the tokens they generate.
A boolean applies to all users or a dictionary of whitelisted eauth backends
and usernames may be given.

token_expire_user_override:

pam:

- fred

- tom

ldap:

- gary

#

#token_expire_user_override: False

Set to True to enable keeping the calculated user's auth list in the token
file. This is disabled by default and the auth list is calculated orHR
—requested

from the eauth driver each time.

#

Note: ‘keep_acl_in_token will be forced to True when using externall
—authentication

for REST API ('rest 1is present under ‘external_auth'). This is because theR
—REST API

does not store the password, and can therefore not retroactively fetch thel
<ACL, so

the ACL must be stored in the token.

#keep_acl_1in_token: False

(continues on next page)

7.6. Configuration file examples 185

Salt Documentation, Release 3007.5

(continued from previous page)

Auth subsystem module to use to get authorized access list for a user. ByR
~default it's

the same module used for external authentication.

#eauth_acl_module: django

Allow minions to push files to the master. This is disabled by default, for
security purposes.
#file_recv: False

Set a hard-1limit on the size of the files that can be pushed to the master.
It will be interpreted as megabytes. Default: 100
#file_recv_max_size: 100

Signature verification on messages published from the master.

This causes the master to cryptographically sign all messages published toHR
~1ts event

bus, and minions then verify that signature before acting on the message.

#

This is False by default.

#

Note that to facilitate interoperability with masters and minions that arel
~different

versions, i1f sign_pub_messages is True but a message is received by aR
—minion with

no signature, it will still be accepted, and a warning message will bel
—logged.

Conversely, if sign_pub_messages is False, but a minion receives a signed

message it will be accepted, the signature will not be checked, and aK
—warning message

will be logged. This behavior went away in Salt 2014.1.0 and these twol
—Ssituations

will cause minion to throw an exception and drop the message.
sign_pub_messages: False

H R

By

Signature verification on messages published from minions

This requires that minions cryptographically sign the messages they
publish to the master. If minions are not signing, then log thisR
—~information

at loglevel 'INFO' and drop the message without acting on tit.

require_minion_sign_messages: False

H H

The below will drop messages when their signatures do not validate.
Note that when this option is False but ‘require_minion_sign_messages 1sK
~True

minions MUST sign their messages but the validity of their signatures
1s ignored.

These two config options exist so a Salt infrastructure can be moved
to signing minion messages gradually.

drop_messages_signature_fail: False

Use TLS/SSL encrypted connection between master and minion.

(continues on next page)

186 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)
Can be set to a dictionary containing keyword arguments corresponding toK
—~Python's
'ssl.wrap_socket' method.
Default is None.
#ssl:
keyfile: <path_to_keyfile>
certfile: <path_to_certfile>
ssl_version: PROTOCOL_TLSv1_2

witHu# Salt-SSH Configuration #HitH###
HURABHABHAABRABREAABRAG AR BHARHABRAAR AR RHH

Define the default salt-ssh roster module to use
#roster: flat

Pass in an alternative location for the salt-ssh ‘flat' roster file
#roster_file: /etc/salt/roster

Define locations for "flat' roster files so they can be chosen when usingR®
—Salt API.

An administrator can place roster files into these locations. Then when
calling Salt API, parameter 'roster_file' should contain a relative path to
these locations. That is, '"roster_file=/foo/roster" will be resolved as
"/etc/salt/roster.d/foo/roster" etc. This feature prevents passing insecure
custom rosters through the Salt API.

S N

#rosters:
- Jetc/salt/roster.d
- Jopt/salt/some/more/rosters

The ssh password to log in with.
#ssh_passwd: "'

#The target system's ssh port number.
#ssh_port: 22

Comma-separated list of ports to scan.
#ssh_scan_ports: 22

Scanning socket timeout for salt-ssh.
#ssh_scan_timeout: 0.01

Boolean to run command via sudo.
#ssh_sudo: False

Boolean to run ssh_pre_flight script defined in roster. By default

the script will only run if the thin_dir does not exist on the targeted

minion. This forces the script to run regardless of the thin dir existing
or not.

#ssh_run_pre_flight: True

Number of seconds to wait for a response when establishing an SSHE
—connection.

(continues on next page)

7.6. Configuration file examples 187

Salt Documentation, Release 3007.5

(continued from previous page)

#ssh_timeout: 60

The user to log in as.
#ssh_user: root

The log file of the salt-ssh command:
#ssh_log_file: /var/log/salt/ssh

Pass in minion option overrides that will be inserted into the SHIM for
salt-ssh calls. The local minion config is not used for salt-ssh. Can be
overridden on a per-minion basis in the roster ('minion_opts")
#ssh_minion_opts:

gpg_keydir: /root/gpg

Set this to True to default to using ~/.ssh/id_rsa for salt-ssh
authentication with minions
#ssh_use_home_key: False

Set this to True to default salt-ssh to run with " '-o IdentitiesOnly=yes '
This option is intended for situations where the ssh-agent offers many

different identities and allows ssh to ignore those identities and use the
only one specified in options.

#ssh_1identities_only: False

List-only nodegroups for salt-ssh. Each group must be formed as either a

comma-separated list, or a YAML list. This option is useful to group minions
into easy-to-target groups when using salt-ssh. These groups can then be

targeted with the normal -N argument to salt-ssh.

#ssh_list_nodegroups: {}

salt-ssh has the ability to update the flat roster file if a minion is not
found in the roster. Set this to True to enable 1it.
#ssh_update_roster: False

HHHRH Master Module Management #HH#HH##
HABBHABHBHAABERAABHRAABRAABBBAARRRAA B RAAGH
Manage how master side modules are loaded.

Add any additional locations to look for master runners:
#runner_dirs: []

Add any additional locations to look for master utils:
#utils_dirs: []

Enable Cython for master side modules:
#cython_enable: False

HitH#H# State System settings #it###
AAAAAAAAHGHBRBHBRAAAAAAAA AR ARG RBHBHAAAAA
The state system uses a '"top" file to tell the minions what environment to
use and what modules to use. The state_top file is defined relative to the

(continues on next page)

188 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)

root of the base environment as defined in "File Server settings" below.
#state_top: top.sls

The master_tops option replaces the external_nodes option by creating
a plugable system for the generation of external top data. The external_
—nodes

option is deprecated by the master_tops option.

#
#
To gain the capabilities of the classic external_nodes system, use the
following configuration:
master_tops:

ext_nodes: <Shell command which returns yaml>

#

#master_tops: {}

The renderer to use on the minions to render the state data
#renderer: jinja|yaml

Default Jinja environment options for all templates except sls templates
#jinja_env:

block_start_string: '{%'
block_end_string: '%}'
variable_start_string: '{{'
variable_end_string: '}}'
comment_start_string: '{#'
comment_end_string: '#}'
line_statement_prefix:
line_comment_prefix:
trim_blocks: False
lstrip_blocks: False
newline_sequence: '\n'
keep_trailing_newline: False

IOF T W OF O W I W I W W

BN

Jinja environment options for sls templates
#jinja_sls_env:
block_start_string: '{%'
block_end_string: '%}'
variable_start_string: '{{'
variable_end_string: '}}'
comment_start_string: '{#'
comment_end_string: '#}'
line_statement_prefix:
line_comment_prefix:
trim_blocks: False
lstrip_blocks: False
newline_sequence: '\n'
keep_trailing_newline: False

oI T W W I W W W W W R

T

The failhard option tells the minions to stop immediately after the first
failure detected in the state execution, defaults to False
#failhard: False

(continues on next page)

7.6. Configuration file examples 189

Salt Documentation, Release 3007.5

(continued from previous page)

The state_verbose and state_output settings can be used to change the way

state system data is printed to the display. By default all data is printed.
The state_verbose setting can be set to True or False, when set to False

all data that has a result of True and no changes will be suppressed.
#state_verbose: True

The state_output setting controls which results will be output full multil
~line

full, terse - each state will be full/terse

mixed - only states with errors will be full

changes - states with changes and errors will be full

full_id, mixed_id, changes_id and terse_1id are also allowed;

when set, the state ID will be used as name in the output

#state_output: full

H oH H W R

The state_output_diff setting changes whether or not the output from

successful states is returned. Useful when even the terse output of these
states is cluttering the logs. Set it to True to ignore them.
#state_output_diff: False

The state_output_profile setting changes whether profile information
will be shown for each state run.
#state_output_profile: True

The state_output_pct setting changes whether success and failure information
as a percent of total actions will be shown for each state run.
#state_output_pct: False

The state_compress_1ids setting aggregates information about states whichR
—have

multiple "names'" under the same state ID in the highstate output.
#state_compress_ids: False

Automatically aggregate all states that have support for mod_aggregate by
setting to 'True'. Or pass a list of state module names to automatically
aggregate just those types.

state_aggregate:
- pkg

I OW W W B

#state_aggregate: False

Send progress events as each function in a state run completes execution
by setting to 'True'. Progress events are in the format

'salt/job/<JID>/prog/<MID>/<RUN NUM>'.

#state_events: False

HitHn# File Server settings #HitH###
HURBHARBHHRBRHHRBEHRBRBRBRHHRBEHRRRHRRR S Y

Salt runs a lightweight file server written in zeromq to deliver files to
minions. This file server is built into the master daemon and does not

require a dedicated port.

(continues on next page)

190 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)

The file server works on environments passed to the master, each environment
can have multiple root directories, the subdirectories in the multiple file
roots cannot match, otherwise the downloaded files will not be able to be
reliably ensured. A base environment is required to house the top file.
Example:
file_roots:
base:
- /srv/salt/
dev:
- /srv/salt/dev/services
- /srv/salt/dev/states
prod:
- /srv/salt/prod/services
- /srv/salt/prod/states

file_roots:
base:
- /srv/salt

oI T I W I W I W I T W I W W W W W R

The master_roots setting configures a master-only copy of the file_rootsK
—dictionary,

used by the state compiler.

#master_roots:

base:

- /srv/salt-master

When using multiple environments, each with their own top file, the
default behaviour is an unordered merge. To prevent top files from
being merged together and instead to only use the top file from the
requested environment, set this value to 'same'.
#top_file_merging_strategy: merge

To specify the order in which environments are merged, set the ordering
i1n the env_order option. Given a conflict, the last matching value will
win.

#env_order: ['base', 'dev', 'prod']

If top_file_merging_strategy is set to 'same' and an environment does not

contain a top file, the top file in the environment specified by default_top
will be used instead.

#default_top: base

The hash_type is the hash to use when discovering the hash of a file on
the master server. The default is sha256, but md5, shal, sha224, sha384 and
sha512 are also supported.

WARNING: While md5 and shal are also supported, do not use them due to the
high chance of possible collisions and thus security breach.

SR I N

Prior to changing this value, the master should be stopped and all Salt

(continues on next page)

7.6. Configuration file examples 191

Salt Documentation, Release 3007.5

(continued from previous page)

caches should be cleared.
#hash_type: sha256

The buffer size in the file server can be adjusted here:
#file_buffer_size: 1048576

A regular expression (or a list of expressions) that will be matched

against the file path before syncing the modules and states to the minions.
This includes files affected by the file.recurse state.

For example, if you manage your custom modules and states in subversion

and don't want all the '.svn' folders and content synced to your minions,

you could set this to '/\.svn($|/)'. By default nothing is ignored.
#file_ignore_regex:

= '"/\.svn(s|/)'

o= 1/\.git(s]/)"

A file glob (or list of file globs) that will be matched against the file
path before syncing the modules and states to the minions. This is similar
to file_ignore_regex above, but works on globs instead of regex. By default
nothing is ignored.

file_ignore_glob:

- '*.pyc'

- 'x/somefolder/*.bak'

- 'x.swp'

File Server Backend

#

Salt supports a modular fileserver backend system, this system allows

the salt master to link directly to third party systems to gather and

manage the files available to minions. Multiple backends can be

configured and will be searched for the requested file in the order in which
they are defined here. The default setting only enables the standard backend
"roots" which uses the "file_roots" option.

#fileserver_backend:

— roots

#

To use multiple backends list them in the order they are searched:
#fileserver_backend:
- git

- roots

#
#
Uncomment the line below if you do not want the file_server to follow
symlinks when walking the filesystem tree. This is set to True

by default. Currently this only applies to the default roots

fileserver_backend.

#fileserver_followsymlinks: False

#

#

#

#

#

#

Uncomment the line below if you do not want symlinks to be

treated as the files they are pointing to. By default this is set to
False. By uncommenting the line below, any detected symlink while listing
files on the Master will not be returned to the Minion.
fileserver_ignoresymlinks: True

(continues on next page)

192 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)

#

The fileserver can fire events off every time the fileserver 1is updated,

these are disabled by default, but can be easily turned on by setting this
flag to True

#fileserver_events: False

Git File Server Backend Configuration

#

Optional parameter used to specify the provider to be used for gitfs. MustR
—be

either pygit2 or gitpython. If unset, then both will be tried (in that

order), and the first one with a compatible version installed will be the

provider that is used.

#

#gitfs_provider: pygit2

Along with gitfs_password, is used to authenticate to HTTPS remotes.
gitfs_user: '!'

Along with gitfs_user, is used to authenticate to HTTPS remotes.
This parameter is not required if the repository does not usel
—authentication.

#gitfs_password: ''

By default, Salt will not authenticate to an HTTP (non-HTTPS) remote.

This parameter enables authentication over HTTP. Enable this at your ownK
~risk.

#gitfs_insecure_auth: False

Along with gitfs_privkey (and optionally gitfs_passphrase), is used to

authenticate to SSH remotes. This parameter (or its per-remote counterpart)
1s required for SSH remotes.

#gitfs_pubkey: ''

Along with gitfs_pubkey (and optionally gitfs_passphrase), is used to

authenticate to SSH remotes. This parameter (or its per-remote counterpart)
1s required for SSH remotes.

#gitfs_privkey: ''

This parameter is optional, required only when the SSH key being used to
authenticate is protected by a passphrase.
#gitfs_passphrase: ''

When using the git fileserver backend at least one git remote needs to be
defined. The user running the salt master will need read access to the repo.

#
#
#
The repos will be searched in order to find the file requested by a client
and the first repo to have the file will return 1it.
When using the git backend branches and tags are translated into salt
environments.

Note: file:// repos will be treated as a remote, so refs you want used must
exist in that repo as *localx refs.

(continues on next page)

7.6. Configuration file examples 193

Salt Documentation, Release 3007.5

(continued from previous page)

#gitfs_remotes:
- git://github.com/saltstack/salt-states.git
- file:///var/git/saltmaster

The gitfs_ssl_verify option specifies whether to ignore ssl certificate
errors when contacting the gitfs backend. You might want to set this to
false if you're using a git backend that uses a self-signed certificate but
keep in mind that setting this flag to anything other than the default ofR
~True

1s a security concern, you may want to try using the ssh transport.
#gitfs_ssl_verify: True

#

The gitfs_root option gives the ability to serve files from a subdirectory
within the repository. The path is defined relative to the root of the

repository and defaults to the repository root.

#gitfs_root: somefolder/otherfolder

#

The refspecs fetched by gitfs remotes

#gitfs_refspecs:

I OW R W B

- '+refs/heads/*:refs/remotes/origin/*"'
- '+refs/tags/*:refs/tags/*"'

#

#

HH### Pillar settings Hit###

AAAAAAAHAHR B R BRAAAAAAAAAARHRHRRRRRARAAAA

Salt Pillars allow for the building of global data that can be madeR
—selectively

available to different minions based on minion grain filtering. The Salt
Pillar is laid out in the same fashion as the file server, withR
—environments,

a top file and sls files. However, pillar data does not need to be in the
highstate format, and is generally just key/value pairs.

#pillar_roots:

base:

- /srv/pillar

#

#ext_pillar:

- hiera: /etc/hiera.yaml

- cmd_yaml: cat /etc/salt/yaml

A list of paths to be recursively decrypted during pillar compilation.

Entries in this list can be formatted either as a simple string, or as a

key/value pair, with the key being the pillar location, and the value being
the renderer to use for pillar decryption. If the former is used, the

renderer specified by decrypt_pillar_default will be used.

#decrypt_pillar:

- '"foo:bar': gpg

- 'lorem:ipsum:dolor'

The delimiter used to distinguish nested data structures in the
decrypt_pillar option.

(continues on next page)

194 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)

#decrypt_pillar_delimiter: ':'

The default renderer used for decryption, if one is not specified for al
—given

pillar key in decrypt_pillar.

#decrypt_pillar_default: gpg

List of renderers which are permitted to be used for pillar decryption.
#decrypt_pillar_renderers:

- gpg

If this is 'True and the ciphertext could not be decrypted, then an errorR
1S

raised.

#gpg_decrypt_must_succeed: False

The ext_pillar_first option allows for external pillar sources to populate

before file system pillar. This allows for targeting file system pillar from
ext_pillar.

#ext_pillar_first: False

The external pillars permitted to be used on-demand using pillar.ext
#on_demand_ext_pillar:

- libvirt

- virtkey

The pillar_gitfs_ssl_verify option specifies whether to ignore ssli
—certificate

errors when contacting the pillar gitfs backend. You might want to set thisK
—to

false if you're using a git backend that uses a self-signed certificate but
keep in mind that setting this flag to anything other than the default ofR
True

1s a security concern, you may want to try using the ssh transport.
#pillar_gitfs_ssl_verify: True

The pillar_opts option adds the master configuration file data to a dict in
the pillar called "master'". This is used to set simple configurations in the
master config file that can then be used on minions.

#pillar_opts: False

The pillar_safe_render_error option prevents the master from passing pillar
render errors to the minion. This is set on by default because the errorR
—~could

contain templating data which would give that minion information it shouldn
't

have, like a password! When set true the error message will only show:

Rendering SLS 'my.sls' failed. Please see master log for details.
#pillar_safe_render_error: True

The pillar_source_merging_strategy option allows you to configure mergingR
—~Strategy

(continues on next page)

7.6. Configuration file examples 195

Salt Documentation, Release 3007.5

(continued from previous page)
between different sources. It accepts five values: none, recurse, aggregate,
- overwrite,
or smart. None will not do any merging at all. Recurse will mergel
—recursively mapping of data.
Aggregate instructs aggregation of elements between sources that use the #!
—yamlex renderer. Overwrite
will overwrite elements according the order in which they are processed.R
~This 1is
behavior of the 2014.1 branch and earlier. Smart guesses the best strategyR
—based
on the '"renderer" setting and is the default value.
#pillar_source_merging_strategy: smart

Recursively merge lists by aggregating them instead of replacing them.
#pillar_merge_lists: False

Set this option to True to force the pillarenv to be the same as thel
—effective

saltenv when running states. If pillarenv is specified this option will be
ignored.

#pillarenv_from_saltenv: False

Set this option to 'True' to force a 'KeyError' to be raised whenever an

attempt to retrieve a named value from pillar fails. When this option is set
to 'False', the failed attempt returns an empty string. Default is 'False'.
#pillar_raise_on_missing: False

Git External Pillar (git_pillar) Configuration Options

Specify the provider to be used for git_pillar. Must be either pygit2 or
gitpython. If unset, then both will be tried in that same order, and the
first one with a compatible version installed will be the provider that
is used.

#git_pillar_provider: pygit2

O W W W W

If the desired branch matches this value, and the environment is omitted

from the git_pillar configuration, then the environment for that git_pillar
remote will be base.

#git_pillar_base: master

If the branch is omitted from a git_pillar remote, then this branch will
be used instead
#git_pillar_branch: master

Environment to use for git_pillar remotes. This is normally derived from
the branch/tag (or from a per-remote env parameter), but if set this will
override the process of deriving the env from the branch/tag name.
#git_pillar_env: "'

Path relative to the root of the repository where the git_pillar top file
and SLS files are located.
#git_pillar_root: ''

(continues on next page)

196 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)

Specifies whether or not to ignore SSL certificate errors when contacting
the remote repository.
#git_pillar_ssl_verify: False

When set to False, if there is an update/checkout lock for a git_pillar
remote and the pid written to it is not running on the master, the lock
file will be automatically cleared and a new lock will be obtained.
#git_pillar_global_lock: True

Git External Pillar Authentication Options

#

Along with git_pillar_password, is used to authenticate to HTTPS remotes.
#git_pillar_user: "'

Along with git_pillar_user, is used to authenticate to HTTPS remotes.
This parameter is not required if the repository does not usel
—authentication.

#git_pillar_password: ''

By default, Salt will not authenticate to an HTTP (non-HTTPS) remote.
This parameter enables authentication over HTTP.
#git_pillar_insecure_auth: False

Along with git_pillar_privkey (and optionally git_pillar_passphrase),
1s used to authenticate to SSH remotes.
#git_pillar_pubkey: ''

Along with git_pillar_pubkey (and optionally git_pillar_passphrase),
1s used to authenticate to SSH remotes.
#git_pillar_privkey: "'

This parameter is optional, required only when the SSH key being used
to authenticate is protected by a passphrase.
#git_pillar_passphrase: ''

The refspecs fetched by git_pillar remotes
#git_pillar_refspecs:

- '+refs/heads/*:refs/remotes/origin/*'

- '+refs/tags/*:refs/tags/*"'

A master can cache pillars locally to bypass the expense of having toR
—render them

for each minion on every request. This feature should only be enabled inR
—cases

where pillar rendering time is known to be unsatisfactory and any attendantR
—security

concerns about storing pillars in a master cache have been addressed.

#

When enabling this feature, be certain to read through the additionalk

< ‘pillar_cache_x""

configuration options to fully understand the tunable parameters and theirR

(continues on next page)

7.6. Configuration file examples 197

Salt Documentation, Release 3007.5

(continued from previous page)
—implications.
#
Note: setting ' ‘pillar_cache: True'' has no effect on targeting MinionsR
wwith Pillars.
See https://docs.saltproject.io/en/latest/topics/targeting/pillar.html
#pillar_cache: False

If and only if a master has set ' ‘pillar_cache: True' ', the cache TTLR
—controls the amount

of time, in seconds, before the cache is considered invalid by a master andR
—~a fresh

pillar is recompiled and stored.

The cache TTL does not prevent pillar cache from being refreshed before itsK
~TTL expires.

#pillar_cache_ttl: 3600

If and only if a master has set ‘pillar_cache: True', one of severall
—storage providers

can be utilized.

#

‘disk': The default storage backend. This caches rendered pillars to theR
—master cache.

Rendered pillars are serialized and deserialized as msgpackK
wstructures for speed.

Note that pillars are stored UNENCRYPTED. Ensure that the masterl
—cache

has permissions set appropriately. (Same defaults are provided.)

#

memory: [EXPERIMENTAL] An optional backend for pillar caches which uses al
—pure-Python

in-memory data structure for maximal performance. There are severall
—caveats,

however. First, because each master worker contains its own in-
—memory cache,

there is no guarantee of cache consistency between minion requests.H
~This

works best in situations where the pillar rarely if ever changes.R
—Secondly,

and perhaps more importantly, this means that unencrypted pillarsK
—will

be accessible to any process which can examine the memory of thel
< ‘salt-master !

This may represent a substantial security risk.

#

#pillar_cache_backend: disk

A master can also cache GPG data locally to bypass the expense of having toR
—render them

for each minion on every request. This feature should only be enabled inR
—cases

where pillar rendering time is known to be unsatisfactory and any attendantR
—security

(continues on next page)

198 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)

concerns about storing decrypted GPG data in a master cache have beenKk
—addressed.

#

When enabling this feature, be certain to read through the additional " “gpg_
—cache_x'"

configuration options to fully understand the tunable parameters and theirR
—implications.

#gpg_cache: False

If and only if a master has set ' ‘gpg_cache: True' ', the cache TTL controlsR
—the amount

of time, in seconds, before the cache is considered invalid by a master andR
—~a fresh

pillar is recompiled and stored.

#gpg_cache_ttl: 86400

If and only if a master has set ‘gpg_cache: True', one of several storagel
—providers

can be utilized. Available options are the same as ' 'pillar_cache_backend ".
#gpg_cache_backend: disk

H#HRH#H Reactor Settings H##AH#
HUARBHABBABEHARBABEHABRABBHABHAB R AR AB R HTY

Define a salt reactor. See https://docs.saltproject.io/en/latest/topics/
—reactor/

#reactor: []

#Set the TTL for the cache of the reactor configuration.
#reactor_refresh_interval: 60

#Configure the number of workers for the runner/wheel in the reactor.
#reactor_worker_threads: 10

#Define the queue size for workers in the reactor.
#reactor_worker_hwm: 10000

HHEHEH Syndic settings #H##H#H
AARAAAAAHGHBRBRBRAAAAAAA AR AR HBHBRAAAAA

The Salt syndic is used to pass commands through a master from a higher

master. Using the syndic is simple. If this is a master that will have

syndic servers(s) below it, then set the "order_masters" setting to True.
#

If this is a master that will be running a syndic daemon for passthrough,R
—then

the '"syndic_master'" setting needs to be set to the location of the masterR
~server

to receive commands from.

Set the order_masters setting to True if this master will command lower
masters' syndic interfaces.

(continues on next page)

7.6. Configuration file examples 199

Salt Documentation, Release 3007.5

(continued from previous page)

#order_masters: False

If this master will be running a salt syndic daemon, syndic_master tells
this master where to receive commands from.
#syndic_master: masterofmasters

This is the 'ret_port' of the MasterOfMaster:
#syndic_master_port: 4506

PID file of the syndic daemon:
#syndic_pidfile: /var/run/salt-syndic.pid

The log file of the salt-syndic daemon:
#syndic_log_file: /var/log/salt/syndic

The behaviour of the multi-syndic when connection to a master of mastersR
~failed.

Can specify '‘random’' (default) or "“‘ordered''. If set to ' ‘random ,R
—masters

will be iterated in random order. If "““ordered’'’ 1is specified, theR
—configured

order will be used.

#syndic_failover: random

The number of seconds for the salt client to wait for additional syndics to
check in with their lists of expected minions before giving up.
#syndic_wait: 5

HHtH## Peer Publish settings #HHt#H#
AARAAAAHARRRRBRBRAAAAAAAAA AR RBRRRAAAAA
Salt minions can send commands to other minions, but only if the minion 1is

allowed to. By default "Peer Publication" is disabled, and when enabled it
1s enabled for specific minions and specific commands. This allows secure
compartmentalization of commands based on individual minions.

The configuration uses regular expressions to match minions and then a list
of regular expressions to match functions. The following will allow the

minion authenticated as foo.example.com to execute functions from the test
and pkg modules.

#peer:

foo.example.com:

- test.x

- pkg.*

#

This will allow all minions to execute all commands:

#peer:

#oooR2

- %

#

This i1s not recommended, since it would allow anyone who gets root on any
single minion to instantly have root on all of the minions!

(continues on next page)

200 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)

Minions can also be allowed to execute runners from the salt master.

Since executing a runner from the minion could be considered a securityl
~risk,

1t needs to be enabled. This setting functions just like the peer setting

except that it opens up runners instead of module functions.

#

ALl peer runner support is turned off by default and must be enabled before
using. This will enable all peer runners for all minions:

#peer_run:
#ooox2

- Lk
#

To enable just the manage.up runner for the minion foo.example.com:
#peer_run:
foo.example.com:

- manage. up

#

#

Hit#u# Mine settings #it#n#

AARAAAAAAAHBRBBBBRRAAAAAAAAAAAHRRRRRH

Restrict mine.get access from minions. By default any minion has a fullR
—access

to get all mine data from master cache. In acl definion below, only pcreR
—matches

are allowed.

mine_get:

o %8

- Lk

#

The example below enables minion foo.example.com to get 'network.interfaces
—' mine

data only, minions webx to get all network.* and disk.* mine data and allR
—other

minions won't get any mine data.

mine_get:

foo.example.com:

- network.interfaces

web. x:

- network. %

- disk.x*

HitH#H# Logging settings #it###

AARAAAAAHGH R R BRAAAAAAAAAA ARG HHHRRHAAAA

The location of the master log file

The master log can be sent to a regular file, local path name, or network

location. Remote logging works best when configured to use rsyslogd(8) (e.g.
'file:///dev/log), with rsyslogd(8) configured for network logging. TheR
—URI

format is: <file|udp|tcp>://<host|socketpath>:<port-if-required>/<log-

(continues on next page)

7.6. Configuration file examples 201

Salt Documentation, Release 3007.5

(continued from previous page)
~facility>
#log_file: /var/log/salt/master
#log_file: file:///dev/log
#log_file: udp://loghost:10514

#log_file: /var/log/salt/master
#key_logfile: /var/log/salt/key

The level of messages to send to the console.
One of 'garbage', 'trace', 'debug', info', 'warning', 'error', 'critical'.

#
#
#
The following log levels are considered INSECURE and may log sensitive data:
['profile', 'garbage', 'trace', 'debug', 'all']

#

#

log_level: warning

The level of messages to send to the log file.

One of 'garbage', 'trace', 'debug', 'info', 'warning', 'error', 'critical'.
If using 'log_granular_levels' this must be set to the highest desiredR
~level.

#log_level_logfile: warning

The date and time format used in log messages. Allowed date/time formatting
can be seen here: http://docs.python.org/library/time.html#time.strftime
#log_datefmt: '%H:%M:%S"'

#log_datefmt_logfile: '%Y-%m-%d %H:%M:%S"

The format of the console logging messages. Allowed formatting options can
be seen here: http://docs.python.org/library/logging.html#logrecord-
—attributes

Console log colors are specified by these additional formatters:

%(colorlevel)s
%(colorname) s
%(colorprocess)s
%(colormsg)s

Since 1t 1is desirable to include the surrounding brackets, '[' and ']', 1in
the coloring of the messages, these color formatters also include padding as
well. Color LogRecord attributes are only available for console logging.

oI W W OR W W W W W B

T

#log_fmt_console: '%(colorlevel)s %(colormsg)s'

#log_fmt_console: '[%(levelname)-8s] %(message)s'

#

#log_fmt_logfile: '%(asctime)s,%(msecs)03d [%(name)-17s][%(levelname)-8s]
—%(message)s'

This can be used to control logging levels more specificically. This
example sets the main salt library at the 'warning' level, but sets

'salt.modules' to log at the 'debug' level:

log_granular_levels:

(continues on next page)

202 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)

'salt': 'warning'

'salt.modules': 'debug'
#

#log_granular_levels: {}

HH#HAH# Node Groups H#HA#H

AAAAAAAHH R B BRAAAAAAAA A AR HRHRAAAAAA

Node groups allow for logical groupings of minion nodes. A group consists of
a group name and a compound target. Nodgroups can reference other nodegroups
with 'N@' classifier. Ensure that you do not have circular references.

#

#nodegroups:

groupl: 'L@foo.domain.com,bar.domain.com,baz.domain.com or blx.domain.com’
group2: 'GEos:Debian and foo.domain.com'

group3: 'GE@os:Debian and N@groupl'

group4:

- 'G@foo:bar'

- 'or'!

- 'G@foo:baz'

#HHt### Range Cluster settings #HtHH#H

AARAAAAAHRRRHBHBRAAAAAAAA AR ARG HHHBRAAAAA

The range server (and optional port) that serves your cluster information
https://github.com/ytoolshed/range/wiki/%22yamlfile%22-module-file-spec

#

#range_server: range:80

#####t Windows Software Repo settings #####
AAAAAAAAHHBRB BB RRAAAAAAAA AR AR R BB BRRAAAAH

Location of the repo on the master:

#winrepo_dir_ng: '/srv/salt/win/repo-ng’'

#

List of git repositories to include with the local repo:
#winrepo_remotes_ng:

- 'https://github.com/saltstack/salt-winrepo-ng.git'

#####t Windows Software Repo settings - Pre 2015.8 #####
AAAAAAAAAHRRR R R RAAAAAAAA AR AR RRAAAAAAAAAAARRRRH
Legacy repo settings for pre-2015.8 Windows minions.

#

Location of the repo on the master:

#winrepo_dir: '/srv/salt/win/repo’

#

Location of the master's repo cache file:
#winrepo_mastercachefile: '/srv/salt/win/repo/winrepo.p’
#

List of git repositories to include with the local repo:
#winrepo_remotes:

(continues on next page)

7.6. Configuration file examples 203

Salt Documentation, Release 3007.5

(continued from previous page)

- 'https://github.com/saltstack/salt-winrepo.git'

The refspecs fetched by winrepo remotes
#winrepo_refspecs:

- '+refs/heads/*:refs/remotes/origin/*"'

- '+refs/tags/*:refs/tags/*'

#

HHRHH Returner settings HHRHBH

HUBHBAAAABHHBRAAAABHRBRAAABBRRBHAARBRBRBHAAH
Which returner(s) will be used for minion's result:
#return: mysql

Hittui# Miscellaneous settings #it###H#
AARAAAAARBHRB BB BRAAAAAAAAA AR BBRARAARA AR A

Default match type for filtering events tags: startswith, endswith, find,&
—~regex, fnmatch

#event_match_type: startswith

Save runner returns to the job cache
#runner_returns: True

Permanently include any available Python 3rd party modules into thin andR
—minimal Salt

when they are generated for Salt-SSH or other purposes.

The modules should be named by the names they are actually imported insidel
—~the Python.

The value of the parameters can be either one module or a comma separatedR
~list of them.

#thin_extra_mods: foo,bar

#min_extra_mods: foo,bar,baz

A H Keepalive settings HH##R#AHS
AAAAAAAHHHRHB BB RAAAAAAAA AR AR BBRRRAAAAA A

Warning: Failure to set TCP keepalives on the salt-master can result in
not detecting the loss of a minion when the connection is lost or when
its host has been terminated without first closing the socket.

Salt's Presence System depends on this connection status to know if a minion
is "present".

ZeroMQ now includes support for configuring SO_KEEPALIVE if supported by
the 0S. If connections between the minion and the master pass through

a state tracking device such as a firewall or VPN gateway, there 1is

the risk that it could tear down the connection the master and minion
without informing either party that their connection has been taken away.
Enabling TCP Keepalives prevents this from happening.

IOF W W OW T W W W W B

-

Overall state of TCP Keepalives, enable (1 or True), disable (0 or False)
or leave to the 0S defaults (-1), on Linux, typically disabled. DefaultR
—~True, enabled.

#tcp_keepalive: True

(continues on next page)

204 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)

How long before the first keepalive should be sent in seconds. Default 300
to send the first keepalive after 5 minutes, 0S default (-1) is typicallyR
—7200 seconds

on Linux see /proc/sys/net/ipv4/tcp_keepalive_time.

#tcp_keepalive_1idle: 300

How many lost probes are needed to consider the connection lost. Default -1
to use 0S defaults, typically 9 on Linux, see /proc/sys/net/ipv4/tcp_
—keepalive_probes.

#tcp_keepalive_cnt: -1

How often, in seconds, to send keepalives after the first one. Default -1 to
use 0S defaults, typically 75 seconds on Linux, see

/proc/sys/net/ipv4/tcp_keepalive_intvl.

#tcp_keepalive_intvl: -1

HHH#HH NetAPI settings HA###
HABBHARHBHAARBRAAGHRAABHAAABBHAARBRAAGRRAA SRR

Allow the raw_shell parameter to be used when calling Salt SSH client viaR
—API

#netapi_allow_raw_shell: True

Set a list of clients to enable in in the API
#netapi_enable_clients: []

HHt### Master Cluster Settings #HHtHHH
HARBHAAHRAABHRAABHRARB ARG BAABHRAABRRAABRAABHRAASHHH

Settings for configuring salt master to work in a cluster configurationi
—~behind

a load balancer.

-

When defined, the master will operate in cluster mode. The master will send
the cluster key and id to minions instead of its own key and id. The master
will also forward its local event bus to other masters defined by

"‘cluster_peers '’

#cluster_id: master_cluster

Defines the other masters in the cluster. Can be IP addresses or hostnames
#cluster_peers:

— master 2

- master 3

When " ‘cluster_pki_dir' ' 1is defined, this sets the location of where this

cluster will store its cluster public and private key as well as any minion
keys. This setting will default to the value of '‘pki_dir'', but should be
changed to the filesystem location shared between peers in the cluster.
#cluster_pki_dir: /my/gluster/share/pki

The port required to be open for a master cluster to properly function

(continues on next page)

7.6. Configuration file examples 205

Salt Documentation, Release 3007.5

(continued from previous page)

{#cluster_pool_port: 4520

7.6.2 Example minion configuration file

#####t Primary configuration settings #####
RAAAAAAAHBHBBBBRRAAAAAAAA AR AR BRBRRRAAAAA

This configuration file is used to manage the behavior of the Salt Minion.
With the exception of the location of the Salt Master Server, values thatR
—are

commented out but have an empty line after the comment are defaults thatK
—heed

not be set in the config. If there is no blank line after the comment, the
value i1s presented as an example and is not the default.

BN

Per default the minion will automatically include all config files
from minion.d/x.conf (minion.d is a directory in the same directory
as the main minion config file).

#default_include: minion.d/*.conf

Set the location of the salt master server. If the master server cannot be
resolved, then the minion will fail to start.
#master: salt

Set http proxy information for the minion when doing requests
#proxy_host:

#proxy_port:

#proxy_username:

#proxy_password:

List of hosts to bypass HTTP proxy. This key does nothing unless proxy_hostR
—etc 1is

configured, it does not support any kind of wildcards.

#no_proxy: []

If multiple masters are specified in the 'master' setting, the defaultl
—~behavior

1s to always try to connect to them in the order they are listed. If random_
—master

1s set to True, the order will be randomized upon Minion startup instead.H
—~This can

be helpful in distributing the load of many minions executing salt-calll
—requests,

for example, from a cron job. If only one master is listed, this setting isK
—1ilgnored

and a warning will be logged.

#random_master: False

NOTE: Deprecated in Salt 2019.2.0. Use 'random_master' instead.
#master_shuffle: False

(continues on next page)

206 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)

Minions can connect to multiple masters simultaneously (all masters
are "hot'"), or can be configured to failover if a master becomes
unavailable. Multiple hot masters are configured by setting this
value to "str'". Failover masters can be requested by setting

to "failover". MAKE SURE TO SET master_alive_interval if you are
using failover.

Setting master_type to 'disable' lets you have a running minion (withR
—engines and

beacons) without a master connection

master_type: str

HoH H W W W W

Poll interval in seconds for checking if the master is still there. Only
respected if master_type above is "failover'". To disable the intervalR
—entirely,

set the value to -1. (This may be necessary on machines which have highR
—nhumbers

of TCP connections, such as load balancers.)

master_alive_interval: 30

If the minion is in multi-master mode and the master_type configurationi
—option

is set to "failover", this setting can be set to "True" to force the minion
to fail back to the first master in the list if the first master is backR
—online.

#master_failback: False

If the minion is in multi-master mode, the "master_type'" configuration isK
—set to

"failover", and the "master_failback" option is enabled, the master failback
interval can be set to ping the top master with this interval, in seconds.
#master_failback_interval: O

Set whether the minion should connect to the master via IPv6:
#1pv6: False

Set the number of seconds to wait before attempting to resolve

the master hostname if name resolution fails. Defaults to 30 seconds.
Set to zero if the minion should shutdown and not retry.

retry_dns: 30

* oW W R

Set the number of times to attempt to resolve

the master hostname if name resolution fails. Defaults to None,
which will attempt the resolution indefinitely.
retry_dns_count: 3

H o W W

Set the port used by the master reply and authentication server.
#master_port: 4506

The user to run salt.
#user: root

The user to run salt remote execution commands as via sudo. If this optionl

(continues on next page)

7.6. Configuration file examples 207

Salt Documentation, Release 3007.5

(continued from previous page)
~1s
enabled then sudo will be used to change the active user executing thel
—~remote
command. If enabled the user will need to be allowed access via the sudoers
file for the user that the salt minion is configured to run as. The most
common option would be to use the root user. If this option is set the user
option should also be set to a non-root user. If migrating from a rootl
—minion
to a non root minion the minion cache should be cleared and the minion pki
directory will need to be changed to the ownership of the new user.
#sudo_user: root

Specify the location of the daemon process ID file.
#pidfile: /var/run/salt-minion.pid

The root directory prepended to these options: pki_dir, cachedir, log_file,
sock_dir, pidfile.
#root_dir: /

The path to the minion's configuration file.
#conf_file: /etc/salt/minion

The directory to store the pki information in
#pki_dir: /etc/salt/pki/minion

Explicitly declare the id for this minion to use, if left commented the 1id
will be the hostname as returned by the python call: socket.getfqdn()
Since salt uses detached ids it is possible to run multiple minions on the
same machine but with different ids, this can be useful for salt compute
clusters.

id:

ST I N N

Cache the minion id to a file when the minion's id is not statically defined
in the minion config. Defaults to "True". This setting prevents potential
problems when automatic minion i1d resolution changes, which can cause the
minion to lose connection with the master. To turn off minion id caching,
set this config to ' ‘False''

#minion_id_caching: True

W W W R

Convert minion id to lowercase when it is being generated. Helpful when some
hosts get the minion id in uppercase. Cached ids will remain the same and

not converted. For example, Windows minions often have uppercase minion

names when they are set up but not always. To turn on, set this config to

" True'’

#minion_1id_lowercase: False

Append a domain to a hostname in the event that it does not exist. This 1is
useful for systems where socket.getfqdn() does not actually result in a

FQDN (for instance, Solaris).

#append_domain:

Custom static grains for this minion can be specified here and used in SLS

(continues on next page)

208 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)

files just like all other grains. This example sets 4 custom grains, with
the 'roles' grain having two values that can be matched against.

#grains:

roles:

3 - webserver

- memcache

deployment: datacenter4
cabinet: 13

cab_u: 14-15

#

#

#

#

Where cache data goes.
This data may contain sensitive data and should be protected accordingly.
cachedir: /var/cache/salt/minion

Append minion_id to these directories. Helps with

multiple proxies and minions running on the same machine.

Allowed elements in the list: pki_dir, cachedir, extension_modules

Normally not needed unless running several proxies and/or minions on thel
—same machine

Defaults to ['cachedir'] for proxies, [] (empty list) for regular minions
#append_minionid_config_dirs:

Verify and set permissions on configuration directories at startup.
#verify_env: True

The minion can locally cache the return data from jobs sent to it, this

can be a good way to keep track of jobs the minion has executed

(on the minion side). By default this feature is disabled, to enable, set
cache_jobs to True.

#cache_jobs: False

Set the directory used to hold unix sockets.
#sock_dir: /var/run/salt/minion

In order to calculate the fgdns grain, all the IP addresses from the minion
are processed with underlying calls to ‘socket.gethostbyaddr ™ which can take
5 seconds to be released (after reaching ‘socket.timeout') when there is no
fqdn for that IP. These calls to ‘socket.gethostbyaddr'® are processed
asynchronously, however, it still adds 5 seconds every time grains are
generated if an IP does not resolve. In Windows grains are regenerated each
time a new process is spawned. Therefore, the default for Windows isH

< False".

On macOS, FQDN resolution can be very slow, therefore the default for macOSH
~1s

I OW W R W W

‘False' as well. All other 0Ses default to 'True’

enable_fqdns_grains: True

The minion can take a while to start up when lspci and/or dmidecode is used
to populate the grains for the minion. Set this to False if you do not need
GPU hardware grains for your minion.

enable_gpu_grains: True

(continues on next page)

7.6. Configuration file examples 209

Salt Documentation, Release 3007.5

(continued from previous page)

Set the default outputter used by the salt-call command. The default 1is
"nested".
#output: nested

To set a list of additional directories to search for salt outputters, setl
~the

outputter_dirs option.

#outputter_dirs: []

By default output is colored. To disable colored output, set the color value
to False.
#color: True

Do not strip off the colored output from nested results and state outputs
(true by default).

strip_colors: False

Backup files that are replaced by file.managed and file.recurse under

'cachedir'/file_backup relative to their original location and appended
with a timestamp. The only valid setting is "minion". Disabled by default.
#

Alternatively this can be specified for each file in state files:

Jetc/ssh/sshd_config:

file.managed:

- source: salt://ssh/sshd_config

- backup: minion

#

#backup_mode: minion

When waiting for a master to accept the minion's public key, salt will

continuously attempt to reconnect until successful. This is the time, 1in
seconds, between those reconnection attempts.

#acceptance_wait_time: 10

If this is nonzero, the time between reconnection attempts will increase by
acceptance_wait_time seconds per iteration, up to this maximum. If this 1is
set to zero, the time between reconnection attempts will stay constant.
#acceptance_wait_time_max: 0O

If the master rejects the minion's public key, retry instead of exiting.
Rejected keys will be handled the same as waiting on acceptance.
#rejected_retry: False

When the master key changes, the minion will try to re-auth itself toR
—receive

the new master key. In larger environments this can cause a SYN flood on the
master because all minions try to re-auth immediately. To prevent this and

have a minion wait for a random amount of time, use this optional parameter.
The wait-time will be a random number of seconds between 0 and the definedR®
—value.

#random_reauth_delay: 60

(continues on next page)

210 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)

To avoid overloading a master when many minions startup at once, all
—~randomized

delay may be set to tell the minions to wait before connecting to thel
—master.

This value is the number of seconds to choose from for a random number. For
example, setting this value to 60 will choose a random number of seconds toR
—~delay

on startup between zero seconds and sixty seconds. Setting to '0' willl
—disable

this feature.

#random_startup_delay: 0

When waiting for a master to accept the minion's public key, salt will

continuously attempt to reconnect until successful. This is the timeoutl
—value,

in seconds, for each individual attempt. After this timeout expires, thel
—minion

will wait for acceptance_wait_time seconds before trying again. Unless yourR
—master

1s under unusually heavy load, this should be left at the default.
#auth_timeout: 60

Number of consecutive SaltReqTimeoutError that are acceptable when trying to
authenticate.
#auth_tries: 7

The number of attempts to connect to a master before giving up.

Set this to -1 for unlimited attempts. This allows for a master to have
downtime and the minion to reconnect to it later when it comes back up.
In 'failover' mode, it is the number of attempts for each set of masters.
In this mode, it will cycle through the list of masters for each attempt.

This is different than auth_tries because auth_tries attempts to
retry auth attempts with a single master. auth_tries 1s under the
assumption that you can connect to the master but not gain
authorization from it. master_tries will still cycle through all
the masters in a given try, so it is appropriate if you expect
occasional downtime from the master(s).

#master_tries: 1

R N L E R

If authentication fails due to SaltReqTimeoutError during a ping_interval,
cause sub minion process to restart.
#auth_safemode: False

Ping Master to ensure connection is alive (minutes).
#ping_interval: 0O

To auto recover minions if master changes IP address (DDNS)
master_alive_interval: 10
#
#

master_tries: -1

(continues on next page)

7.6. Configuration file examples 211

Salt Documentation, Release 3007.5

(continued from previous page)
Minions won't know master is missing until a ping fails. After the pingR
~fail,
the minion will attempt authentication and likely fails out and cause all
—restart.
When the minion restarts it will resolve the masters IP and attempt tol
—reconnect.

If you don't have any problems with syn-floods, don't bother with the
three recon_* settings described below, just leave the defaults!

The ZeroMQ pull-socket that binds to the masters publishing interface tries
to reconnect immediately, if the socket is disconnected (for example if

the master processes are restarted). In large setups this will have all
minions reconnect immediately which might flood the master (the ZeroMQ-
~default

1s usually a 100ms delay). To prevent this, these three recon_x settings

can be used.

recon_default: the interval in milliseconds that the socket should waitl
—before

I OW W W W W

trying to reconnect to the master (1000ms = 1 second)

#

recon_max: the maximum time a socket should wait. each interval the time tol
—wait

is calculated by doubling the previous time. if recon_max isH
—reached,

it starts again at recon_default. Short example:

#

reconnect 1: the socket will wait 'recon_default' milliseconds
reconnect 2: 'recon_default' x 2

reconnect 3: ('recon_default' * 2) % 2

reconnect 4: value from previous interval x 2

reconnect 5: value from previous interval x 2

reconnect x: if value >= recon_max, it starts again with recon_
~default

#

recon_randomize: generate a random wait time on minion start. The wait timel
Swill

be a random value between recon_default and recon_default +
recon_max. Having all minions reconnect with the samel
wrecon_default

and recon_max value kind of defeats the purpose of beingR
—able to

change these settings. If all minions have the same valuesR
—and your

setup is quite large (several thousand minions), they willR
—still

flood the master. The desired behavior is to havel

—~timeframe within
all minions try to reconnect.

#

Example on how to use these settings. The goal: have all minions reconnectl
—within a

(continues on next page)

212 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)
60 second timeframe on a disconnect.
recon_default: 1000
recon_max: 59000
recon_randomize: True

Each minion will have a randomized reconnect value between 'recon_default'’
and 'recon_default + recon_max', which in this example means between 1000ms
60000ms (or between 1 and 60 seconds). The generated random-value will be
doubled after each attempt to reconnect. Lets say the generated random
value is 11 seconds (or 11000ms).

reconnect 1: wait 11 seconds

reconnect 2: wait 22 seconds

reconnect 3: wait 33 seconds

reconnect 4: wait 44 seconds

reconnect 5: wait 55 seconds

reconnect 6: wait time is bigger than 60 seconds (recon_default + recon_max)
reconnect 7: wait 11 seconds

reconnect 8: wait 22 seconds

reconnect 9: wait 33 seconds

reconnect x: etc.

In a setup with ~6000 hosts these settings would average the reconnects
to about 100 per second and all hosts would be reconnected within 60K
—seconds.

recon_default: 100

recon_max: 5000

recon_randomize: False

oI WK O T I W I T W R I I W W W W W W W W W

The loop_1interval sets how long in seconds the minion will wait between
evaluating the scheduler and running cleanup tasks. This defaults to 1
second on the minion scheduler.

loop_1interval: 1

R R E L LR

Some installations choose to start all job returns in a cache or a returner
and forgo sending the results back to a master. In this workflow, jobs

are most often executed with --async from the Salt CLI and then results

are evaluated by examining job caches on the minions or any configuredi
—returners.

WARNING: Setting this to False will **xdisablex* returns back to the master.
#pub_ret: True

TR oW W

The grains can be merged, instead of overridden, using this option.

This allows custom grains to defined different subvalues of a dictionary

grain. By default this feature is disabled, to enable set grains_deep_merge
to " True'

#grains_deep_merge: False

The grains_refresh_every setting allows for a minion to periodically check
1ts grains to see if they have changed and, if so, to inform the master
of the new grains. This operation is moderately expensive, therefore

(continues on next page)

7.6. Configuration file examples 213

Salt Documentation, Release 3007.5

(continued from previous page)

care should be taken not to set this value too low.
Note: This value is expressed in __minutes__!

A value of 10 minutes i1s a reasonable default.

HoH H W W W W

If the value is set to zero, this check is disabled.
#grains_refresh_every: 1

The grains_refresh_pre_exec setting allows for a minion to check its grains
prior to the execution of any operation to see if they have changed and, if
so, to inform the master of the new grains. This operation is moderately

expensive, therefore care should be taken before enabling this behavior.
#grains_refresh_pre_exec: False

Cache grains on the minion. Default is False.
#grains_cache: False

Cache rendered pillar data on the minion. Default is False.

This may cause 'cachedir'/pillar to contain sensitive data that should be
protected accordingly.

#minion_pillar_cache: False

Grains cache expiration, in seconds. If the cache file is older than this

number of seconds then the grains cache will be dumped and fully re-
—populated

with fresh data. Defaults to 5 minutes. Will have no effect if 'grains_cache

!
s

1s not enabled.
grains_cache_expiration: 300

Determines whether or not the salt minion should run scheduled mine updates.
Defaults to "True". Set to "False" to disable the scheduled mine updates

(this essentially just does not add the mine update function to the minion's
scheduler).

#mine_enabled: True

Determines whether or not scheduled mine updates should be accompanied by al
—job

return for the job cache. Defaults to "False". Set to "True" to include job
returns in the job cache for mine updates.

#mine_return_job: False

Example functions that can be run via the mine facility
NO mine functions are established by default.

Note these can be defined in the minion's pillar as well.
#mine_functions:

test.ping: []

network.ip_addrs:

interface: etho

cidr: '10.0.0.0/8'

RS

(continues on next page)

214 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)

The number of minutes between mine updates.
#mine_interval: 60

Windows platforms lack posix IPC and must rely on slower TCP based inter-
process communications. 1ipc_mode is set to 'tcp' on such systems.
#ipc_mode: 1ipc

Overwrite the default tcp ports used by the minion when ipc_mode is set to
—'tep!

#tcp_pub_port: 4510

#tcp_pull_port: 4511

Passing very large events can cause the minion to consume large amounts of
memory. This value tunes the maximum size of a message allowed onto the

minion event bus. The value is expressed in bytes.

#max_event_size: 1048576

When a minion starts up it sends a notification on the event bus with a tag
that looks like this: ‘salt/minion/<minion_id>/start’ . For historicalK
~reasons

the minion also sends a similar event with an event tag like this:

‘minion_start'. This duplication can cause a lot of clutter on the event bus
when there are many minions. Set ‘enable_legacy_startup_events: False' inR
—the

minion config to ensure only the ‘salt/minion/<minion_1id>/start’ events are
sent. Beginning with the ‘Sodium™ Salt release this option will default to
‘False’

#enable_legacy_startup_events: True

To detect failed master(s) and fire events on connect/disconnect, set
master_alive_interval to the number of seconds to poll the masters for
connection events.

#

#master_alive_1interval: 30

The minion can include configuration from other files. To enable this,

pass a list of paths to this option. The paths can be either relative or
absolute; if relative, they are considered to be relative to the directory
the main minion configuration file lives in (this file). Paths can make use
of shell-style globbing. If no files are matched by a path passed to this
option then the minion will log a warning message.

Include a config file from some other path:
include: /Jetc/salt/extra_config

IO W W OF W W W W W W

Include config from several files and directories:
#include:

- Jetc/salt/extra_config

- Jetc/roles/webserver

The syndic minion can verify that it is talking to the correct master viaR
—the

(continues on next page)

7.6. Configuration file examples 215

Salt Documentation, Release 3007.5

(continued from previous page)

key fingerprint of the higher-level master with the '"syndic_finger" config.
#syndic_finger: ''

#

#

#

Minion module management #it###
AAAAAAAHHHR BB BBRAAAAAAA AR ARG RHBHBBAAAAA

Disable specific modules. This allows the admin to limit the level of

access the master has to the minion. The default here is the empty list,
below is an example of how this needs to be formatted in the config file
#disable_modules:

- cmdmod

- test

#disable_returners: []

This is the reverse of disable_modules. The default, like disable_modules,H
—1s the empty list,

but if this option is set to *anything* then *onlyx those modules will load.
Note that this is a very large hammer and it can be quite difficult to keepK
—the minion working

the way you think it should since Salt uses many modules internally itself.H
—~ At a bare minimum

you need the following enabled or else the minion won't start.
#whitelist_modules:

- cmdmod

- test

- config

Modules can be loaded from arbitrary paths. This enables the easy deployment
of third party modules. Modules for returners and minions can be loaded.

Specify a list of extra directories to search for minion modules and

returners. These paths must be fully qualified!

#module_dirs: []

#returner_dirs: []

#states_dirs: []

#render_dirs: []

#utils_dirs: []

#

A module provider can be statically overwritten or extended for the minion
via the providers option, in this case the default module will be

overwritten by the specified module. In this example the pkg module will
be provided by the yumpkg5 module instead of the system default.
#providers:

pkg: yumpkgs

#

Enable Cython modules searching and loading. (Default: False)
#cython_enable: False

#

Specify a max size (in bytes) for modules on import. This feature isH
—currently

only supported on *nix operating systems and requires psuttil.

modules_max_memory: -1

(continues on next page)

216 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)

H#HRAH State Management Settings #H#H#AH#
AAAAAAAAHHRRRRRBRRAAAAAAAA AR R RBRBRRRAAAAA

The default renderer to use in SLS files. This is configured as a
pipe-delimited expression. For example, jinja|yaml will first run jinja
templating on the SLS file, and then load the result as YAML. This syntax 1is
documented in further depth at the following URL:

https://docs.saltproject.io/en/latest/ref/renderers/#composing-renderers
NOTE: The "shebang" prefix (e.g. "#!jinja|yaml") described in the
documentation linked above is for use in an SLS file to override the default

renderer, it should not be used when configuring the renderer here.

renderer: jinja|yaml

o O OH OH R R R H K H K R

The failhard option tells the minions to stop immediately after the first
failure detected in the state execution. Defaults to False.

#failhard: False

#

Reload the modules prior to a highstate run.

#autoload_dynamic_modules: True

#

clean_dynamic_modules keeps the dynamic modules on the minion in sync with
the dynamic modules on the master, this means that if a dynamic module 1is
not on the master it will be deleted from the minion. By default, this is
enabled and can be disabled by changing this value to False.
#clean_dynamic_modules: True

By

Renamed from ' ‘environment ' to " ‘saltenv . If '‘environment' ' 1is used,

‘‘saltenv'’ will take its value. If both are used, ' ‘environment'' will be
ignored and " ‘saltenv'' will be used.

Normally the minion is not isolated to any single environment on the master
when running states, but the environment can be isolated on the minion side
by statically setting it. Remember that the recommended way to manage

environments is to isolate via the top file.

#saltenv: None

#

Isolates the pillar environment on the minion side. This functions the same
as the environment setting, but for pillar instead of states.

#pillarenv: None

#

Set this option to True to force the pillarenv to be the same as the

effective saltenv when running states. Note that if pillarenv is specified,
this option will be ignored.

#pillarenv_from_saltenv: False

#

Set this option to 'True' to force a 'KeyError' to be raised whenever an

attempt to retrieve a named value from pillar fails. When this option is set
to 'False', the failed attempt returns an empty string. Default is 'False'.
#pillar_raise_on_missing: False

(continues on next page)

7.6. Configuration file examples 217

Salt Documentation, Release 3007.5

(continued from previous page)
#
If using the local file directory, then the state top file name needs to be
defined, by default this is top.sls.
#state_top: top.sls

#

Run states when the minion daemon starts. To enable, set startup_states to:
'highstate' -- Execute state.highstate

'sls' -- Read in the sls_list option and execute the named sls files

'top' -- Read top_file option and execute based on that file on the Master
#startup_states: "'

#

List of states to run when the minion starts up if startup_states is 'sls':
#sls_1list:

- edit.vim
- hyper
#

List of grains to pass in start event when minion starts up:
#start_event_grains:

- machine_1id

- uuid

#

Top file to execute if startup_states is 'top':
#top_file: ''

Automatically aggregate all states that have support for mod_aggregate by
setting to True. Or pass a list of state module names to automatically
aggregate just those types.

state_aggregate:
- pkg

TOH W W R W W

#state_aggregate: False

Instead of failing immediately when another state run is in progress, all
—value

of True will queue the new state run to begin running once the other has

finished. This option starts a new thread for each queued state run, so use
this option sparingly. Additionally, it can be set to an integerR
—representing

the maximum queue size which can be attained before the state runs will fail
to be queued. This can prevent runaway conditions where new threads are

started until system performance is hampered.

#

#state_queue: False

Disable requisites during state runs by specifying a single requisite
or a list of requisites to disable.

disabled_requisites: require_1in

disabled_requisites:
- require

W OW W R W W

(continues on next page)

218 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)

- require_1in

If set, this parameter expects a dictionary of state module names as keys

and list of conditions which must be satisfied in order to run any functions
i1n that state module.

#

#global_state_conditions:

"x": ["G@global_noop:false"]

service: ["not GE@virtual_subtype:chroot']

HitHn# File Directory Settings #HitH###
HURBHARBHHRBRHHRBEHRBEHRRRHHRBEHBREHRRRHHH

The Salt Minion can redirect all file server operations to a locall
—directory,

this allows for the same state tree that is on the master to be used if

copied completely onto the minion. This is a literal copy of the settings on
the master but used to reference a local directory on the minion.

BN

Set the file client. The client defaults to looking on the master server for
files, but can be directed to look at the local file directory setting

defined below by setting it to "local". Setting a local file_client runs the
minion in masterless mode.

#file_client: remote

The file directory works on environments passed to the minion, eachR
—environment
can have multiple root directories, the subdirectories in the multiple file
roots cannot match, otherwise the downloaded files will not be able to be
reliably ensured. A base environment is required to house the top file.
Example:
file_roots:
base:
- /srv/salt/
dev:
- /srv/salt/dev/services
- /srv/salt/dev/states
prod:
- /srv/salt/prod/services
- /srv/salt/prod/states

file_roots:
base:
- /srv/salt

oI T I OF I W W W W W W W W W R W

Uncomment the line below if you do not want the file_server to follow
symlinks when walking the filesystem tree. This is set to True

by default. Currently this only applies to the default roots
fileserver_backend.

fileserver_followsymlinks: False

Uncomment the line below if you do not want symlinks to be
treated as the files they are pointing to. By default this is set to

(continues on next page)

S T T N

7.6. Configuration file examples 219

Salt Documentation, Release 3007.5

(continued from previous page)
False. By uncommenting the line below, any detected symlink while listing
files on the Master will not be returned to the Minion.
#fileserver_ignoresymlinks: True

#

The hash_type is the hash to use when discovering the hash of a file on

the local fileserver. The default is sha256, but md5, shal, sha224, sha384
and sha512 are also supported.

#

WARNING: While md5 and shal are also supported, do not use them due to the
high chance of possible collisions and thus security breach.

#

Warning: Prior to changing this value, the minion should be stopped and all
Salt caches should be cleared.

#hash_type: sha256

The Salt pillar is searched for locally if file_client is set to local. If
this is the case, and pillar data is defined, then the pillar_roots need to
also be configured on the minion:

#pillar_roots:

base:

- /srv/pillar

If this is 'True and the ciphertext could not be decrypted, then an errorR
~1Ss

raised.

#gpg_decrypt_must_succeed: False

Set a hard-limit on the size of the files that can be pushed to the master.
It will be interpreted as megabytes. Default: 100

#file_recv_max_size: 100

#

#

HitH i # Security settings #Hit###
AAAAAAAHHHRRR B R BB AAAAAAAAA AR RRHHBRAHAAAAA

Enable '"open mode", this mode still maintains encryption, but turns off

authentication, this is only intended for highly secure environments or for
the situation where your keys end up in a bad state. If you run in open mode
you do so at your own risk!

#open_mode: False

The size of key that should be generated when creating new keys.
#keysize: 2048

Enable permissive access to the salt keys. This allows you to run the

master or minion as root, but have a non-root group be given access to

your pki_dir. To make the access explicit, root must belong to the group
you've given access to. This is potentially quite insecure.
#permissive_pki_access: False

The state_verbose and state_output settings can be used to change the way
state system data is printed to the display. By default all data is printed.
The state_verbose setting can be set to True or False, when set to False

(continues on next page)

220 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)

all data that has a result of True and no changes will be suppressed.
#state_verbose: True

The state_output setting controls which results will be output full multil
—line

full, terse - each state will be full/terse

mixed - only states with errors will be full

changes - states with changes and errors will be full

full_1id, mixed_id, changes_id and terse_id are also allowed;

when set, the state ID will be used as name in the output

#state_output: full

The state_output_diff setting changes whether or not the output from

successful states is returned. Useful when even the terse output of these
states is cluttering the logs. Set it to True to ignore them.
#state_output_diff: False

The state_output_profile setting changes whether profile information
will be shown for each state run.
#state_output_profile: True

The state_output_pct setting changes whether success and failure information
as a percent of total actions will be shown for each state run.
#state_output_pct: False

The state_compress_1ids setting aggregates information about states whichK
—have

multiple "names" under the same state ID in the highstate output.
#state_compress_1ids: False

Fingerprint of the master public key to validate the identity of your SaltR
—master

before the initial key exchange. The master fingerprint can be found byR
—~running

"salt-key -f master.pub" on the Salt master.

#master_finger: ''

Use TLS/SSL encrypted connection between master and minion.

Can be set to a dictionary containing keyword arguments corresponding toR
—~Python's

'ssl.wrap_socket' method.

Default is None.

#ssl:

keyfile: <path_to_keyfile>

certfile: <path_to_certfile>

ssl_version: PROTOCOL_TLSv1_2

Grains to be sent to the master on authentication to check if the minion'sH
—key

will be accepted automatically. Needs to be configured on the master.
#autosign_grains:

- uuid

(continues on next page)

7.6. Configuration file examples 221

Salt Documentation, Release 3007.5

(continued from previous page)

- server_id

HAHBHAA Reactor Settings Hut###
HURABHABHARBHAB AR RRAB AR BHABRABRRAB ARG R HAY

Define a salt reactor. See https://docs.saltproject.io/en/latest/topics/
—~reactor/

#reactor: []

#Set the TTL for the cache of the reactor configuration.
#reactor_refresh_interval: 60

#Configure the number of workers for the runner/wheel in the reactor.
#reactor_worker_threads: 10

#Define the queue size for workers in the reactor.
#reactor_worker_hwm: 10000

HitthnitH Thread settings #HitH###
AARAAAAAHHRBBBRBRARAAAAAA AR ARG RBBRRAAAA A

Disable multiprocessing support, by default when a minion receives a

publication a new process is spawned and the command i1s executed therein.

#

WARNING: Disabling multiprocessing may result in substantial slowdowns

when processing large pillars. See https://github.com/saltstack/salt/issues/
38758

for a full explanation.

#multiprocessing: True

Limit the maximum amount of processes or threads created by salt-minion.

This is useful to avoid resource exhaustion in case the minion receives more
publications than it is able to handle, as it limits the number of spawned

processes or threads. -1 is the default and disables the limit.
#process_count_max: -1

HitHn# Logging settings HitH###
AAAAAAAAHGHH R B HBRAAAAAAA AR ARG HRBHBRAAAAA

The location of the minion log file

The minion log can be sent to a regular file, local path name, or network

location. Remote logging works best when configured to use rsyslogd(8) (e.g.
" “file:///dev/log’ "), with rsyslogd(8) configured for network logging. TheR
—URI

format is: <file|udp|tcp>://<host|socketpath>:<port-if-required>/<log-
~facility>

#log_file: /var/log/salt/minion

#log_file: file:///dev/log

#log_file: udp://loghost:10514

#

#log_file: /var/log/salt/minion

(continues on next page)

222 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)

#key_logfile: /var/log/salt/key

The level of messages to send to the console.
One of 'garbage', 'trace', 'debug', 'info', 'warning', 'error', 'critical'.

The following log levels are considered INSECURE and may log sensitive data:
['profile', 'garbage', 'trace', 'debug', 'all']

Default: 'warning'
log_level: warning

IOF W W R W W R

The level of messages to send to the log file.

One of 'garbage', 'trace', 'debug', info', 'warning', 'error', 'critical'.
If using 'log_granular_levels' this must be set to the highest desiredR
~level.

Default: 'warning'

#log_level_logfile:

The date and time format used in log messages. Allowed date/time formatting
can be seen here: http://docs.python.org/library/time.html#time.strftime
#log_datefmt: '%H:%M:%S"'

#log_datefmt_logfile: '%Y-%m-%d %H:%M:%S"'

The format of the console logging messages. Allowed formatting options can
be seen here: http://docs.python.org/library/logging.html#logrecord-
—attributes

#

Console log colors are specified by these additional formatters:

#

%(colorlevel)s

%(colorname)s

%(colorprocess)s

%(colormsg)s

#

Since it is desirable to include the surrounding brackets, '[' and ']', 1in
the coloring of the messages, these color formatters also include padding as
well. Color LogRecord attributes are only available for console logging.

-

#log_fmt_console: '%(colorlevel)s %(colormsg)s'

#log_fmt_console: '[%(levelname)-8s] %(message)s'

#

#log_fmt_logfile: '%(asctime)s,%(msecs)03d [%(name)-17s][%(levelname)-8s]
~%(message) s’

This can be used to control logging levels more specificically. This
example sets the main salt library at the 'warning' level, but sets

'salt.modules' to log at the 'debug' level:

log_granular_levels:

"salt': 'warning'

"salt.modules': 'debug'
#
#

log_granular_levels: {}

(continues on next page)

7.6. Configuration file examples 223

Salt Documentation, Release 3007.5

(continued from previous page)

To diagnose issues with minions disconnecting or missing returns, ZeroMQ
supports the use of monitor sockets to log connection events. This
feature requires ZeroMQ 4.0 or higher.

To enable ZeroMQ monitor sockets, set 'zmg_monitor' to 'True' and log at a
debug level or higher.

A sample log event is as follows:

[DEBUG] ZeroMQ event: {'endpoint': 'tcp://127.0.0.1:4505', 'event': 512,
"'value': 27, 'description': '"EVENT_DISCONNECTED'}

All events logged will include the string 'ZeroMQ event'. A connection event
should be logged as the minion starts up and initially connects to the
master. If not, check for debug log level and that the necessary version of
ZeroMQ is installed.

S T L E E E T E E R T T

#zmg_monitor: False

Number of times to try to authenticate with the salt master whenl
—reconnecting

to the master

#tcp_authentication_retries: 5

Hittni# Module configuration #HitH###
RAAAAAAAHRBBHBBBRRAAAAAAAA AR AR BBBBRRAAAAH

Salt allows for modules to be passed arbitrary configuration data, any data
passed here in valid yaml format will be passed on to the salt minionK
—modules

for use. It is STRONGLY recommended that a naming convention be used inH
—which

the module name is followed by a . and then the value. Also, all top level
data must be applied via the yaml dict construct, some examples:

#

You can specify that all modules should run in test mode:

#test: True

#

A simple value for the test module:

#test.foo: foo

#

A list for the test module:

#test.bar: [baz,quo]

#

A dict for the test module:

#test.baz: {spam: sausage, cheese: bread}

#

#

HitH## Update settings HHt###H#
AAAAAAAHHRRRRBRBRHAAAAAAAAARRRRRRBHBRAAAAAA

Using the features in Esky, a salt minion can both run as a frozen app and
be updated on the fly. These options control how the update process

(continues on next page)

224 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)
(saltutil.update()) behaves.
#
The url for finding and downloading updates. Disabled by default.
#update_url: False
#
The list of services to restart after a successful update. Empty by default.
#update_restart_services: []

HitH i Keepalive settings Hit##H##
AARAAAAABHRBHB BB RRAAAAAAAAA AR HBBBBRRAAAA AR

ZeroMQ now includes support for configuring SO_KEEPALIVE if supported by
the 0S. If connections between the minion and the master pass through

a state tracking device such as a firewall or VPN gateway, there 1is

the risk that it could tear down the connection the master and minion
without informing either party that their connection has been taken away.
Enabling TCP Keepalives prevents this from happening.

S N NS

By

Overall state of TCP Keepalives, enable (1 or True), disable (0 or False)
or leave to the 0S defaults (-1), on Linux, typically disabled. DefaultK
~True, enabled.

#tcp_keepalive: True

E'Y

How long before the first keepalive should be sent in seconds. Default 300
to send the first keepalive after 5 minutes, 0S default (-1) is typicallyR
—7200 seconds

on Linux see /proc/sys/net/ipv4/tcp_keepalive_time.

#tcp_keepalive_1idle: 300

How many lost probes are needed to consider the connection lost. Default -1
to use 0S defaults, typically 9 on Linux, see /proc/sys/net/ipv4/tcp_
—keepalive_probes.

#tcp_keepalive_cnt: -1

How often, in seconds, to send keepalives after the first one. Default -1 to
use 0S defaults, typically 75 seconds on Linux, see

/proc/sys/net/ipv4/tcp_keepalive_intvl.

#tcp_keepalive_intvl: -1

Hit###H Windows Software settings HHHHRHS
AAAAAAAAHHRH BB RAAAAAAAA AR ARG BBBRARAAAA A

Location of the repository cache file on the master:
#win_repo_cachefile: 'salt://win/repo/winrepo.p'’

HAHHAA Returner settings HA##H##
HABBHAAAHBARBBRARBRRAAB ARG BAAARRAABBRAABRAH

Default Minion returners. Can be a comma delimited string or a list:
#

#return: mysql

#

(continues on next page)

7.6. Configuration file examples 225

Salt Documentation, Release 3007.5

(continued from previous page)

#return: mysql,slack, redis

#

#return:

- mysql

- hipchat

- slack

#Hittui# Miscellaneous settings #Ut###tH

AARAAAAAHHRRBBBBRRAAAAAAA AR AR B BBRARAAAAA

Default match type for filtering events tags: startswith, endswith, find,R
—regex, fnmatch

#event_match_type: startswith

7.6.3 Example proxy minion configuration file

####t# Primary configuration settings #####

AAAAAAAAH R BHBHBRAAAAAAAAAA ARG R BB HBBAAAAA

This configuration file is used to manage the behavior of all Salt Proxy

Minions on this host.

With the exception of the location of the Salt Master Server, values thatl
~are

commented out but have an empty line after the comment are defaults thatR
—need

not be set in the config. If there is no blank line after the comment, the
value is presented as an example and is not the default.

Per default the proxy minion will automatically include all config files
from proxy.d/*.conf (proxy.d is a directory in the same directory

as the main minion config file).

#default_include: proxy.d/*.conf

Backwards compatibility option for proxymodules created before 2015.8.2
This setting will default to 'False' in the 2016.3.0 release

Setting this to True adds proxymodules to the __opts__ dictionary.

This breaks several Salt features (basically anything that serializes
__opts__ over the wire) but retains backwards compatibility.
#add_proxymodule_to_opts: True

W oW ™R

Set the location of the salt master server. If the master server cannot be
resolved, then the minion will fail to start.
#master: salt

If a proxymodule has a function called 'grains', then call it during
regular grains loading and merge the results with the proxy's grains
dictionary. Otherwise it i1s assumed that the module calls the grains
function in a custom way and returns the data elsewhere

Default to False for 2016.3 and 2016.11. Switch to True for 2017.7.0.
proxy_merge_grains_in_module: True

FHoH H H W W W

(continues on next page)

226 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)

If a proxymodule has a function called 'alive' returning a boolean
flag reflecting the state of the connection with the remove device,
when this option is set as True, a scheduled job on the proxy will
try restarting the connection. The polling frequency depends on the
next option, 'proxy_keep_alive_interval'. Added in 2017.7.0.
proxy_keep_alive: True

T oI W W W

The polling interval (in minutes) to check if the underlying connection
with the remote device is still alive. This option requires
'proxy_keep_alive' to be configured as True and the proxymodule to
implement the 'alive' function. Added in 2017.7.0.
proxy_keep_alive_interval: 1

H oH H W R

By default, any proxy opens the connection with the remote device when
initialized. Some proxymodules allow through this option to open/close
the session per command. This requires the proxymodule to have this
capability. Please consult the documentation to see if the proxy type
used can be that flexible. Added in 2017.7.0.

proxy_always_alive: True

S Y

If multiple masters are specified in the 'master' setting, the defaultR
—behavior

1s to always try to connect to them in the order they are listed. If random_
—master is

set to True, the order will be randomized instead. This can be helpful inl
—distributing

the load of many minions executing salt-call requests, for example, from aR
—cron job.

If only one master is listed, this setting is ignored and a warning will beR
—logged.

#random_master: False

Minions can connect to multiple masters simultaneously (all masters

are '"hot"), or can be configured to failover if a master becomes

unavailable. Multiple hot masters are configured by setting this

value to "str". Failover masters can be requested by setting

to "failover'". MAKE SURE TO SET master_alive_interval if you are

using failover.

master_type: str

Poll interval in seconds for checking if the master is still there. Only
respected if master_type above is "failover".

master_alive_interval: 30

Set whether the minion should connect to the master via IPv6:
#ipv6: False

Set the number of seconds to wait before attempting to resolve

the master hostname if name resolution fails. Defaults to 30 seconds.
Set to zero if the minion should shutdown and not retry.

retry_dns: 30

(continues on next page)

7.6. Configuration file examples 227

Salt Documentation, Release 3007.5

(continued from previous page)

Set the port used by the master reply and authentication server.
#master_port: 4506

The user to run salt.
#user: root

Setting sudo_user will cause salt to run all execution modules under an sudo
to the user given in sudo_user. The user under which the salt minionK
~process

itself runs will still be that provided in the user config above, but all

execution modules run by the minion will be rerouted through sudo.
#sudo_user: saltdev

Specify the location of the daemon process ID file.
#pidfile: /var/run/salt-minion.pid

The root directory prepended to these options: pki_dir, cachedir, log_file,
sock_dir, pidfile.
#root_dir: /

The directory to store the pki information in
#pki_dir: /etc/salt/pki/minion

Where cache data goes.
This data may contain sensitive data and should be protected accordingly.
#cachedir: /var/cache/salt/minion

Append minion_id to these directories. Helps with

multiple proxies and minions running on the same machine.

Allowed elements in the list: pki_dir, cachedir, extension_modules

Normally not needed unless running several proxies and/or minions on thekK
—~same machine

Defaults to ['cachedir'] for proxies, [] (empty list) for regular minions
append_minionid_config_dirs:

- cachedir

Verify and set permissions on configuration directories at startup.
#verify_env: True

The minion can locally cache the return data from jobs sent to it, this

can be a good way to keep track of jobs the minion has executed

(on the minion side). By default this feature is disabled, to enable, set
cache_jobs to True.

#cache_jobs: False

Set the directory used to hold unix sockets.
#sock_dir: /var/run/salt/minion

Set the default outputter used by the salt-call command. The default 1is

(continues on next page)

228 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)

"nested".
#output: nested
#

By default output is colored. To disable colored output, set the color value
to False.
#color: True

Do not strip off the colored output from nested results and state outputs
(true by default).

strip_colors: False

Backup files that are replaced by file.managed and file.recurse under

'cachedir'/file_backup relative to their original location and appended
with a timestamp. The only valid setting is "minion". Disabled by default.
#

Alternatively this can be specified for each file in state files:

Jetc/ssh/sshd_config:

file.managed:

- source: salt://ssh/sshd_config

- backup: minion

#

#backup_mode: minion

When waiting for a master to accept the minion's public key, salt will

continuously attempt to reconnect until successful. This is the time, 1in
seconds, between those reconnection attempts.

#acceptance_wait_time: 10

If this is nonzero, the time between reconnection attempts will increase by
acceptance_wait_time seconds per iteration, up to this maximum. If this 1is
set to zero, the time between reconnection attempts will stay constant.
#acceptance_wait_time_max: 0O

If the master rejects the minion's public key, retry instead of exiting.
Rejected keys will be handled the same as waiting on acceptance.
#rejected_retry: False

When the master key changes, the minion will try to re-auth itself toK
—receive

the new master key. In larger environments this can cause a SYN flood on the
master because all minions try to re-auth immediately. To prevent this and

have a minion wait for a random amount of time, use this optional parameter.
The wait-time will be a random number of seconds between 0 and the definedR
—value.

#random_reauth_delay: 60

When waiting for a master to accept the minion's public key, salt will

continuously attempt to reconnect until successful. This is the timeoutk
—value,

in seconds, for each individual attempt. After this timeout expires, thel
—minion

will wait for acceptance_wait_time seconds before trying again. Unless yourR

(continues on next page)

7.6. Configuration file examples 229

Salt Documentation, Release 3007.5

(continued from previous page)

—master
1s under unusually heavy load, this should be left at the default.
#auth_timeout: 60

Number of consecutive SaltReqTimeoutError that are acceptable when trying to
authenticate.
#auth_tries: 7

If authentication fails due to SaltReqTimeoutError during a ping_tinterval,
cause sub minion process to restart.
#auth_safemode: False

Ping Master to ensure connection is alive (minutes).
#ping_interval: 0

To auto recover minions i1f master changes IP address (DDNS)
auth_tries: 10

auth_safemode: False

ping_interval: 90

#

Minions won't know master is missing until a ping fails. After the pingR
~fail,

the minion will attempt authentication and likely fails out and cause al
—~restart.

When the minion restarts it will resolve the masters IP and attempt tol
—reconnect.

If you don't have any problems with syn-floods, don't bother with the
three recon_* settings described below, just leave the defaults!

The ZeroMQ pull-socket that binds to the masters publishing interface tries
to reconnect immediately, if the socket is disconnected (for example if

the master processes are restarted). In large setups this will have all
minions reconnect immediately which might flood the master (the ZeroMQ-
~default

1s usually a 100ms delay). To prevent this, these three recon_x settings

can be used.

recon_default: the interval in milliseconds that the socket should waitl
~before

I OW W W W B

trying to reconnect to the master (1000ms = 1 second)

#

recon_max: the maximum time a socket should wait. each interval the time toN
swait

is calculated by doubling the previous time. if recon_max isH
—reached,

it starts again at recon_default. Short example:

#

reconnect 1: the socket will wait 'recon_default' milliseconds
reconnect 2: 'recon_default' x 2

reconnect 3: ('recon_default' x 2) * 2

reconnect 4: value from previous interval * 2

reconnect 5: value from previous interval * 2

(continues on next page)

230 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)
reconnect x: if value >= recon_max, it starts again with recon_
~default
#
recon_randomize: generate a random wait time on minion start. The wait timel
Swill

be a random value between recon_default and recon_default +
recon_max. Having all minions reconnect with the samel
—~recon_default

and recon_max value kind of defeats the purpose of beingR
—able to

change these settings. If all minions have the same valuesR
—and your

setup is quite large (several thousand minions), they willR
~still

flood the master. The desired behavior is to havel

—~timeframe within
all minions try to reconnect.

#

Example on how to use these settings. The goal: have all minions reconnectl
swithin a

60 second timeframe on a disconnect.

recon_default: 1000

recon_max: 59000

recon_randomize: True

Each minion will have a randomized reconnect value between 'recon_default'
and 'recon_default + recon_max', which in this example means between 1000ms
60000ms (or between 1 and 60 seconds). The generated random-value will be
doubled after each attempt to reconnect. Lets say the generated random
value is 11 seconds (or 11000ms).

reconnect 1: wait 11 seconds

reconnect 2: wait 22 seconds

reconnect 3: wait 33 seconds

reconnect 4: wait 44 seconds

reconnect 5: wait 55 seconds

reconnect 6: wait time is bigger than 60 seconds (recon_default + recon_max)
reconnect 7: wait 11 seconds

reconnect 8: wait 22 seconds

reconnect 9: wait 33 seconds

reconnect x: etc.

oI T I OF I T I P I I W I W W W I W W W W B

In a setup with ~6000 thousand hosts these settings would average thel
—reconnects

to about 100 per second and all hosts would be reconnected within 60K
—seconds.

recon_default: 100

recon_max: 5000

recon_randomize: False

The loop_interval sets how long in seconds the minion will wait between
evaluating the scheduler and running cleanup tasks. This defaults to a

(continues on next page)

W OW W R W W

7.6. Configuration file examples 231

Salt Documentation, Release 3007.5

(continued from previous page)

sane 60 seconds, but if the minion scheduler needs to be evaluated more
often lower this value
#loop_interval: 60

The grains_refresh_every setting allows for a minion to periodically check
its grains to see if they have changed and, if so, to inform the master
of the new grains. This operation is moderately expensive, therefore

care should be taken not to set this value too low.

Note: This value is expressed in __minutes__!

#
#
#
#
#
#
#
A value of 10 minutes is a reasonable default.

#

If the value is set to zero, this check is disabled.
#grains_refresh_every: 1

Cache grains on the minion. Default is False.
#grains_cache: False

Grains cache expiration, in seconds. If the cache file is older than this

number of seconds then the grains cache will be dumped and fully re-
—populated

with fresh data. Defaults to 5 minutes. Will have no effect if 'grains_cache

I
—

1s not enabled.
grains_cache_expiration: 300

Windows platforms lack posix IPC and must rely on slower TCP based inter-
process communications. Set ipc_mode to 'tcp' on such systems
#ipc_mode: 1ipc

Overwrite the default tcp ports used by the minion when in tcp mode
#tcp_pub_port: 4510
#tcp_pull_port: 4511

Passing very large events can cause the minion to consume large amounts of
memory. This value tunes the maximum size of a message allowed onto the

minion event bus. The value is expressed in bytes.

#max_event_size: 1048576

To detect failed master(s) and fire events on connect/disconnect, set
master_alive_interval to the number of seconds to poll the masters for
connection events.

#

#master_alive_interval: 30

The minion can include configuration from other files. To enable this,

pass a list of paths to this option. The paths can be either relative or
absolute; 1if relative, they are considered to be relative to the directory
the main minion configuration file lives in (this file). Paths can make use
of shell-style globbing. If no files are matched by a path passed to this
option then the minion will log a warning message.

S N

(continues on next page)

232 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)

#

Include a config file from some other path:

include: /etc/salt/extra_config

#

Include config from several files and directories:
#include:

- Jetc/salt/extra_config

- Jetc/roles/webserver

#

#

#

#HHt### Minion module management #HHtHHH

AAAAAAAAHHRHRHHBRAAAAAAA AR AR HBHBRAAAAA

Disable specific modules. This allows the admin to limit the level of

access the master has to the minion.

#disable_modules: [cmd,test]

#disable_returners: []

#

Modules can be loaded from arbitrary paths. This enables the easy deployment
of third party modules. Modules for returners and minions can be loaded.
Specify a list of extra directories to search for minion modules and

returners. These paths must be fully qualified!

#module_dirs: []

#returner_dirs: []

#states_dirs: []

#render_dirs: []

#utils_dirs: []

#

A module provider can be statically overwritten or extended for the minion
via the providers option, in this case the default module will be

overwritten by the specified module. In this example the pkg module will
be provided by the yumpkg5 module instead of the system default.
#providers:

pkg: yumpkgs

#

Enable Cython modules searching and loading. (Default: False)
#cython_enable: False

#

Specify a max size (in bytes) for modules on import. This feature isH
—currently

only supported on *nix operating systems and requires psutil.

modules_max_memory: -1

HA#BH State Management Settings HA###
AAAAARAAHHHRRR BB RRAAAAAARAAAHRHRRRHRRRRAAAAA

The default renderer to use in SLS files. This is configured as a
pipe-delimited expression. For example, jinja|yaml will first run jinja
templating on the SLS file, and then load the result as YAML. This syntax 1is
documented in further depth at the following URL:

S N

https://docs.saltproject.io/en/latest/ref/renderers/#composing-renderers

(continues on next page)

7.6. Configuration file examples 233

Salt Documentation, Release 3007.5

(continued from previous page)

#

NOTE: The "shebang" prefix (e.g. "#!jinja|yaml") described in the

documentation linked above is for use in an SLS file to override the default
renderer, it should not be used when configuring the renderer here.

#

#renderer: jinja|yaml

#

The failhard option tells the minions to stop immediately after the first

failure detected in the state execution. Defaults to False.

#failhard: False

#

Reload the modules prior to a highstate run.

#autoload_dynamic_modules: True

#

clean_dynamic_modules keeps the dynamic modules on the minion in sync with
the dynamic modules on the master, this means that if a dynamic module 1is

not on the master it will be deleted from the minion. By default, this 1is

enabled and can be disabled by changing this value to False.
#clean_dynamic_modules: True

#

Normally, the minion is not isolated to any single environment on the master
when running states, but the environment can be isolated on the minion side
by statically setting it. Remember that the recommended way to manage

environments is to isolate via the top file.

#environment: None

#

If using the local file directory, then the state top file name needs to be
defined, by default this is top.sls.

#state_top: top.sls

#

Run states when the minion daemon starts. To enable, set startup_states to:
'highstate' -- Execute state.highstate

'sls' -- Read in the sls_list option and execute the named sls files

'top' -- Read top_file option and execute based on that file on the Master
#startup_states: "'

#

List of states to run when the minion starts up if startup_states is 'sls':
#sls_1list:

- edit.vim

- hyper

#

Top file to execute if startup_states is 'top':

#top_file: "'

Automatically aggregate all states that have support for mod_aggregate by
setting to True. Or pass a list of state module names to automatically
aggregate just those types.

state_aggregate:
- pkg

TOI OB W R W W

#state_aggregate: False

(continues on next page)

234 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)

HHt### File Directory Settings #HHt#HH
AARAAAAHHHRHRRRRRAAAAAAAAAARRRRRRRRRRHAAAAA

The Salt Minion can redirect all file server operations to a locall
—directory,

this allows for the same state tree that is on the master to be used if

copied completely onto the minion. This is a literal copy of the settings on
the master but used to reference a local directory on the minion.

Set the file client. The client defaults to looking on the master server for
files, but can be directed to look at the local file directory setting

defined below by setting it to "local". Setting a local file_client runs the
minion in masterless mode.

#file_client: remote

The file directory works on environments passed to the minion, eachl
—environment
can have multiple root directories, the subdirectories in the multiple file
roots cannot match, otherwise the downloaded files will not be able to be
reliably ensured. A base environment is required to house the top file.
Example:
file_roots:
base:
- /srv/salt/
dev:
- /srv/salt/dev/services
- /srv/salt/dev/states
prod:
- /srv/salt/prod/services
- /srv/salt/prod/states

file_roots:
base:
- /srv/salt

R T R N N L E T

The hash_type is the hash to use when discovering the hash of a file in
the local fileserver. The default is sha256 but sha224, sha384 and sha512
are also supported.

* W W W™ W

WARNING: While md5 and shal are also supported, do not use it due to thel
—~high chance
of possible collisions and thus security breach.

WARNING: While md5 is also supported, do not use it due to the high chance
of possible collisions and thus security breach.

Warning: Prior to changing this value, the minion should be stopped and all
Salt caches should be cleared.
#hash_type: sha256

O W W W R W

The Salt pillar is searched for locally if file_client is set to local. If
this is the case, and pillar data is defined, then the pillar_roots need to

(continues on next page)

7.6. Configuration file examples 235

Salt Documentation, Release 3007.5

(continued from previous page)

also be configured on the minion:
#pillar_roots:

base:

- /srv/pillar

#

#

#H#HBHY Security settings HH#E#HEH

AAAAAAAAHHHRH R RRAAAAAAAAAARRRRRRHHRRRAAAAA

Enable '"open mode", this mode still maintains encryption, but turns off

authentication, this is only intended for highly secure environments or for
the situation where your keys end up in a bad state. If you run in open mode
you do so at your own risk!

#open_mode: False

Enable permissive access to the salt keys. This allows you to run the

master or minion as root, but have a non-root group be given access to

your pki_dir. To make the access explicit, root must belong to the group
you've given access to. This is potentially quite insecure.
#permissive_pki_access: False

The state_verbose and state_output settings can be used to change the way

state system data is printed to the display. By default all data is printed.
The state_verbose setting can be set to True or False, when set to False

all data that has a result of True and no changes will be suppressed.
#state_verbose: True

The state_output setting controls which results will be output full multil
~line

full, terse - each state will be full/terse

mixed - only states with errors will be full

changes - states with changes and errors will be full

full_1id, mixed_id, changes_id and terse_id are also allowed;

when set, the state ID will be used as name in the output

#state_output: full

The state_output_diff setting changes whether or not the output from

successful states is returned. Useful when even the terse output of these
states is cluttering the logs. Set it to True to ignore them.
#state_output_diff: False

The state_output_profile setting changes whether profile information
will be shown for each state run.
#state_output_profile: True

The state_output_pct setting changes whether success and failure information
as a percent of total actions will be shown for each state run.
#state_output_pct: False

The state_compress_1ids setting aggregates information about states whichR
—have

multiple "names" under the same state ID in the highstate output.
#state_compress_1ids: False

(continues on next page)

236 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)

Fingerprint of the master public key to validate the identity of your SaltR
—master

before the initial key exchange. The master fingerprint can be found byR
—running

"salt-key -F master" on the Salt master.

#master_finger: ''

HitH i Thread settings #HitH###
AAAAAAAAAHBRB BB RRRAAAAAAA AR AR BRBRRRAAA A

Disable multiprocessing support, by default when a minion receives a

publication a new process i1s spawned and the command i1s executed therein.
#multiprocessing: True

HitH## Logging settings #Hit###
AAAAAAAHHRRHBHBRBRAAAAAAA AR ARG HHHBRAAAAA

The location of the minion log file

The minion log can be sent to a regular file, local path name, or network

location. Remote logging works best when configured to use rsyslogd(8) (e.g.
"‘file:///dev/log), with rsyslogd(8) configured for network logging. TheR
—URI

format is: <file|udp|tcp>://<host|socketpath>:<port-if-required>/<log-
~facility>

#log_file: /var/log/salt/minion

#log_file: file:///dev/log

#log_file: udp://loghost:10514

#

#log_file: /var/log/salt/minion

#key_logfile: /var/log/salt/key

The level of messages to send to the console.
One of 'garbage', 'trace', 'debug', 'info', 'warning', 'error', 'critical'.

The following log levels are considered INSECURE and may log sensitive data:
['profile', 'garbage', 'trace', 'debug', 'all']

Default: 'warning'
log_level: warning

TOWOW W W W W R

The level of messages to send to the log file.

One of 'garbage', 'trace', 'debug', info', 'warning', 'error', 'critical'.
If using 'log_granular_levels' this must be set to the highest desiredR
~level.

Default: 'warning'

#log_level_logfile:

The date and time format used in log messages. Allowed date/time formatting
can be seen here: http://docs.python.org/library/time.html#time.strftime
#log_datefmt: '%H:%M:%S"'

(continues on next page)

7.6. Configuration file examples 237

Salt Documentation, Release 3007.5

(continued from previous page)

#log_datefmt_logfile: '%Y-%m-%d %H:%M:%S"'

The format of the console logging messages. Allowed formatting options can
be seen here: http://docs.python.org/library/logging.html#logrecord-
—attributes

#

Console log colors are specified by these additional formatters:

#

%(colorlevel)s

%(colorname)s

%(colorprocess)s

%(colormsg)s

#

Since it is desirable to include the surrounding brackets, '[' and ']', in
the coloring of the messages, these color formatters also include padding as
well. Color LogRecord attributes are only available for console logging.
#

#log_fmt_console: '%(colorlevel)s %(colormsg)s'

#log_fmt_console: '[%(levelname)-8s] %(message)s'

#

#log_fmt_logfile: '%(asctime)s,%(msecs)03d [%(name)-17s][%(levelname)-8s]
~%(message) s’

This can be used to control logging levels more specificically. This
example sets the main salt library at the 'warning' level, but sets

'salt.modules' to log at the 'debug' level:

log_granular_levels:

"salt': 'warning'

"salt.modules': 'debug'
#
#

log_granular_levels: {}

To diagnose issues with minions disconnecting or missing returns, ZeroMQ
supports the use of monitor sockets # to log connection events. This
feature requires ZeroMQ 4.0 or higher.

To enable ZeroMQ monitor sockets, set 'zmqg_monitor' to 'True' and log at a
debug level or higher.

A sample log event is as follows:

[DEBUG] ZeroMQ event: {'endpoint': 'tcp://127.0.0.1:4505', 'event': 512,
'value': 27, 'description': '"EVENT_DISCONNECTED'}

All events logged will include the string 'ZeroMQ event'. A connection event
should be logged on the as the minion starts up and initially connects tol
—the

master. If not, check for debug log level and that the necessary version of
ZeroMQ is installed.

#

#zmg_monitor: False

#
#
#
#
#
#
#
#
#
#
#
#
#
#

(continues on next page)

238 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)

Hu#t## Module configuration #ut#
AAAAAAAHHHHRRBHBRRAAAAAAA AR AR RHHBRAHAAAAA

Salt allows for modules to be passed arbitrary configuration data, any data
passed here in valid yaml format will be passed on to the salt minionK
—modules

for use. It is STRONGLY recommended that a naming convention be used inK
—which

the module name is followed by a . and then the value. Also, all top level
data must be applied via the yaml dict construct, some examples:

#

You can specify that all modules should run in test mode:

#test: True

#

A simple value for the test module:

#test.foo: foo

#

A list for the test module:

#test.bar: [baz,quo]

#

A dict for the test module:

#test.baz: {spam: sausage, cheese: bread}

#

#

A H Update settings #HH##R#AHS

AAAAAAAA AR RRAAAAAAAAA AR AR R RRRAAAAA

Using the features in Esky, a salt minion can both run as a frozen app and
be updated on the fly. These options control how the update process

(saltutil.update()) behaves.

#

The url for finding and downloading updates. Disabled by default.
#update_url: False

#

The list of services to restart after a successful update. Empty by default.
#update_restart_services: []

HitH i Keepalive settings Hit##H##
AAARAAAAAABHH BB BB RARAAAAAAAAAARBHBB BB BRRRAAAAH

ZeroMQ now includes support for configuring SO_KEEPALIVE if supported by
the 0S. If connections between the minion and the master pass through

a state tracking device such as a firewall or VPN gateway, there is

the risk that it could tear down the connection the master and minion
without informing either party that their connection has been taken away.
Enabling TCP Keepalives prevents this from happening.

S NS

By

Overall state of TCP Keepalives, enable (1 or True), disable (0 or False)
or leave to the 0S defaults (-1), on Linux, typically disabled. DefaultK
~True, enabled.

#tcp_keepalive: True

£

How long before the first keepalive should be sent in seconds. Default 300
to send the first keepalive after 5 minutes, 0S default (-1) is typicallyR

(continues on next page)

7.6. Configuration file examples 239

Salt Documentation, Release 3007.5

(continued from previous page)

7200 seconds
on Linux see /proc/sys/net/ipv4/tcp_keepalive_time.
#tcp_keepalive_1idle: 300

How many lost probes are needed to consider the connection lost. Default -1
to use 0S defaults, typically 9 on Linux, see /proc/sys/net/ipv4/tcp_
—keepalive_probes.

#tcp_keepalive_cnt: -1

How often, in seconds, to send keepalives after the first one. Default -1 to
use 0S defaults, typically 75 seconds on Linux, see

/proc/sys/net/ipv4/tcp_keepalive_intvl.

#tcp_keepalive_intvl: -1

HitHi# Windows Software settings HitH###t#
HUEBBHAAAAB BB BHAAARBHRBHAAAR BB HAAAR B BB HAAH

Location of the repository cache file on the master:
#win_repo_cachefile: 'salt://win/repo/winrepo.p'

HAHRAAH? Returner settings HA#A#A#H
HUBBRAAAAB BB AAABB BB ERAARB R BB HAAAB BB R HAAH

Which returner(s) will be used for minion's result:
#return: mysql

7.7 Minion Blackout Configuration

New in version 2016.3.0.

Salt supports minion blackouts. When a minion is in blackout mode, all remote execution commands are disabled.
This allows production minions to be put “on hold”, eliminating the risk of an untimely configuration change.

Minion blackouts are configured via a special pillar key, minion_blackout. If this key is set to True, then the
minion will reject all incoming commands, except for saltutil.refresh_pillar. (The exception isimportant,
so minions can be brought out of blackout mode)

Salt also supports an explicit whitelist of additional functions that will be allowed during blackout. This is configured
with the special pillar key minion_blackout_whitelist, which is formed as a list:

minion_blackout_whitelist:
- test.version
- pillar.get

240 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

7.8 Access Control System

New in version 0.10.4.

Salt maintains a standard system used to open granular control to non administrative users to execute Salt commands.
The access control system has been applied to all systems used to configure access to non administrative control
interfaces in Salt.

These interfaces include, the peer system, the external auth system and the publisher acl system.

The access control system mandated a standard configuration syntax used in all of the three aforementioned systems.
While this adds functionality to the configuration in 0.10.4, it does not negate the old configuration.

Now specific functions can be opened up to specific minions from specific users in the case of external auth and
publisher ACLs, and for specific minions in the case of the peer system.

7.8.1 Publisher ACL system

The salt publisher ACL system is a means to allow system users other than root to have access to execute select salt
commands on minions from the master.

Note: publisher_acl is useful for allowing local system users to run Salt commands without giving them root
access. If you can log into the Salt master directly, then publisher_acl allows you to use Salt without root
privileges. If the local system is configured to authenticate against a remote system, like LDAP or Active Directory,
then publisher_acl will interact with the remote system transparently.

external_auth is useful for salt—api or for making your own scripts that use Salt's Python APL It can be
used at the CLI (with the —a flag) but it is more cumbersome as there are more steps involved. The only time it is
useful at the CLI is when the local system is not configured to authenticate against an external service but you still
want Salt to authenticate against an external service.

For more information and examples, see this Access Control System section.

The publisher ACL system is configured in the master configuration file via the publisher_acl configuration
option. Under the publisher_acl configuration option the users open to send commands are specified and
then a list of the minion functions which will be made available to specified user. Both users and functions could
be specified by exact match, shell glob or regular expression. This configuration is much like the external auth
configuration:

publisher_acl:
Allow thatch to execute anything.
thatch:
- %
Allow fred to use test and pkg, but only on "webx*" minions.
fred:
- webx*:
- test.x
- pkg.*
Allow admin and managers to use saltutil module functions
admin|manager_.x:
- saltutil.*
Allow users to use only my_mod functions on "webx" minions with specificl
—arguments.
user_.*:

(continues on next page)

7.8. Access Control System 241

Salt Documentation, Release 3007.5

(continued from previous page)

- webx*:
- 'my_mod.*"':

args:
- 'a.x!
_ |b-*l

kwargs:
"kwa': 'kwa.x'
"kwb': "kwb'

Permission Issues

Directories required for publisher_acl must be modified to be readable by the users specified:

chmod 755 /var/cache/salt /var/cache/salt/master /var/cache/salt/master/jobs /
—var/run/salt /var/run/salt/master

Note: In addition to the changes above you will also need to modify the permissions of /var/log/salt and the existing
log file to be writable by the user(s) which will be running the commands. If you do not wish to do this then you
must disable logging or Salt will generate errors as it cannot write to the logs as the system users.

If you are upgrading from earlier versions of salt you must also remove any existing user keys and re-start the Salt
master:

rm /var/cache/salt/.x*key
service salt-master restart

Whitelist and Blacklist

Salt's authentication systems can be configured by specifying what is allowed using a whitelist, or by specifying
what is disallowed using a blacklist. If you specify a whitelist, only specified operations are allowed. If you specify
a blacklist, all operations are allowed except those that are blacklisted.

See publisher_acl and publisher_acl_blacklist.

7.8.2 External Authentication System

Salt's External Authentication System (eAuth) allows for Salt to pass through command authorization to any external
authentication system, such as PAM or LDAP.

Note: eAuth using the PAM external auth system requires salt-master to be run as root as this system needs root
access to check authentication.

Note: publisher_ac' is useful for allowing local system users to run Salt commands without giving them root
access. If you can log into the Salt master directly, then publisher_acl allows you to use Salt without root
privileges. If the local system is configured to authenticate against a remote system, like LDAP or Active Directory,
then publisher_acl will interact with the remote system transparently.

242 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

external_auth is useful for salt—api or for making your own scripts that use Salt's Python APL It can be
used at the CLI (with the —a flag) but it is more cumbersome as there are more steps involved. The only time it is
useful at the CLI is when the local system is not configured to authenticate against an external service but you still
want Salt to authenticate against an external service.

For more information and examples, see this Access Control System section.

External Authentication System Configuration

The external authentication system allows for specific users to be granted access to execute specific functions on
specific minions. Access is configured in the master configuration file and uses the access control system:

external_auth:
pam:
thatch:
- 'webx':
- test.x
- network. x
steve|admin.*:
= %

The above configuration allows the user thatch to execute functions in the test and network modules on the min-
ions that match the web™ target. User steve and the users whose logins start with admn, are granted unrestricted
access to minion commands.

Salt respects the current PAM configuration in place, and uses the login' service to authenticate.

Note: The PAM module does not allow authenticating as root.

Note: state.sls and state.highstate will return “Failed to authenticate!” if the request timeout is reached. Use -t flag
to increase the timeout

To allow access to wheel modules or runner modules the following @ syntax must be used:

external_auth:

pam:
thatch:
- '@wheel' # to allow access to all wheel modules
- '"@runner' # to allow access to all runner modules
- '@jobs' # to allow access to the jobs runner and/or wheel module

Note: The runner/wheel markup is different, since there are no minions to scope the acl to.

Note: Globs will not match wheel or runners! They must be explicitly allowed with @wheel or @runner.

7.8. Access Control System 243

Salt Documentation, Release 3007.5

Warning: All users that have external authentication privileges are allowed to run saltutil. findjob. Be
aware that this could inadvertently expose some data such as minion IDs.

Matching syntax

The structure of the external_auth dictionary can take the following shapes. User and function matches are
exact matches, shell glob patterns or regular expressions; minion matches are compound targets.

By user:

external_auth:
<eauth backend>:
<user or group%>:
- <regex to match function>

By user, by minion:

external_auth:
<eauth backend>:
<user or group%>:
<minion compound target>:
- <regex to match function>

By user, by runner/wheel:

external_auth:
<eauth backend>:
<user or group%>:
<@runner or @Ewheel>:
- <regex to match function>

By user, by runner+wheel module:

external_auth:
<eauth backend>:
<user or group%>:
<@module_name>:
- <regex to match function without module_name>

Groups

To apply permissions to a group of users in an external authentication system, append a % to the ID:

external_auth:
pam:
admins%:
L

- 'pkg.*!

244 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

Limiting by function arguments

Positional arguments or keyword arguments to functions can also be whitelisted.

New in version 2016.3.0.

external_auth:
pam:
my_user:
_ l*l:
- 'my_mod.*':
args:
—_ la.*l
- 'h.*!'
kwargs:
'kwa': 'kwa.*x'
"kwb': "kwb'
- '@runner':
- 'runner_mod.*':
args:
- la.x!
- 'b.x!
kwargs:
"kwa': 'kwa.x'
"kwb': "kwb'

The rules:
1. The arguments values are matched as regexp.
. If arguments restrictions are specified the only matched are allowed.

. If an argument isn't specified any value is allowed.

=W N

. To skip an arg use “everything” regexp .*. Le. if arg0 and arg2 should be limited but argl and other
arguments could have any value use:

args:
- 'value0'
_ l.*l
- 'value2'

Usage

The external authentication system can then be used from the command-line by any user on the same system as the
master with the —a option:

[$ salt -a pam web* test.version J

The system will ask the user for the credentials required by the authentication system and then publish the command.

7.8. Access Control System 245

Salt Documentation, Release 3007.5

Tokens

With external authentication alone, the authentication credentials will be required with every call to Salt. This can
be alleviated with Salt tokens.

Tokens are short term authorizations and can be easily created by just adding a —T option when authenticating:

[$ salt -T -a pam web* test.version]

Now a token will be created that has an expiration of 12 hours (by default). This token is stored in a file named
salt_token in the active user's home directory.

Once the token is created, it is sent with all subsequent communications. User authentication does not need to be
entered again until the token expires.

Token expiration time can be set in the Salt master config file.

LDAP and Active Directory

Note: LDAP usage requires that you have installed python-ldap.

Salt supports both user and group authentication for LDAP (and Active Directory accessed via its LDAP interface)

OpenLDAP and similar systems

LDAP configuration happens in the Salt master configuration file.

Server configuration values and their defaults:

Server to auth against
auth.ldap.server: localhost

Port to connect via
auth.ldap.port: 389

Use TLS when connecting
auth.ldap.tls: False

Use STARTTLS when connecting
auth.ldap.starttls: False

LDAP scope level, almost always 2
auth.ldap.scope: 2

Server specified in URI format
auth.ldap.uri: '' # Overrides .ldap.server, .ldap.port, .ldap.tls above

Verify server's TLS certificate
auth.ldap.no_verify: False

Bind to LDAP anonymously to determine group membership
Active Directory does not allow anonymous binds without speciall

(continues on next page)

246 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)
—configuration
In addition, if auth.ldap.anonymous is True, empty bind passwords are notR
wpermitted.
auth.ldap.anonymous: False

FOR TESTING ONLY, this is a VERY insecure setting.

If this is True, the LDAP bind password will be ignored and
access will be determined by group membership alone with

the group memberships being retrieved via anonymous bind
auth.ldap.auth_by_group_membership_only: False

Require authenticating user to be part of this Organizational Unit
This can be blank if your LDAP schema does not use this kind of OU
auth.ldap.groupou: 'Groups'

Object Class for groups. An LDAP search will be done to find all groups ofR
~this

class to which the authenticating user belongs.

auth.ldap.groupclass: 'posixGroup'

Unique ID attribute name for the user
auth.ldap.accountattributename: 'memberuU-id’

These are only for Active Directory
auth.ldap.activedirectory: False
auth.ldap.persontype: 'person'

auth.ldap.minion_stripdomains: []

Redhat Identity Policy Audit
auth.ldap.freeipa: False

Authenticating to the LDAP Server

There are two phases to LDAP authentication. First, Salt authenticates to search for a users' Distinguished Name
and group membership. The user it authenticates as in this phase is often a special LDAP system user with read-only
access to the LDAP directory. After Salt searches the directory to determine the actual user's DN and groups, it
re-authenticates as the user running the Salt commands.

If you are already aware of the structure of your DNs and permissions in your LDAP store are set such that users
can look up their own group memberships, then the first and second users can be the same. To tell Salt this is the
case, omit the auth. ldap.bindpw parameter. Note this is not the same thing as using an anonymous bind. Most
LDAP servers will not permit anonymous bind, and as mentioned above, if auth.ldap.anonymous is False you cannot
use an empty password.

You can template the binddn like this:

auth.ldap.basedn: dc=saltstack,dc=com
auth.ldap.binddn: uid={{ username }},cn=users,cn=accounts,dc=saltstack,dc=com

Salt will use the password entered on the salt command line in place of the bindpw.

To use two separate users, specify the LDAP lookup user in the binddn directive, and include a bindpw like so

7.8. Access Control System 247

Salt Documentation, Release 3007.5

auth.ldap.binddn: uid=1ldaplookup,cn=sysaccounts,cn=etc,dc=saltstack,dc=com
auth.ldap.bindpw: mypassword

As mentioned before, Salt uses a filter to find the DN associated with a user. Salt substitutes the {{ username
} 7} value for the username when querying LDAP

[auth.ldap.filter: uid={{ username }}]

Determining Group Memberships (OpenLDAP / non-Active Directory)

For OpenLDAP, to determine group membership, one can specify an OU that contains group data. This is prepended
to the basedn to create a search path. Then the results are filtered against auth.ldap.groupclass, default
posixGroup, and the account's 'name' attribute, nemberU-id by default.

[auth.ldap.groupou: Groups]

Note that as of 2017.7, auth.ldap.groupclass can refer to either a groupclass or an objectClass. For some LDAP
servers (notably OpenLDAP without the memberOf overlay enabled) to determine group membership we need to
know both the objectClass and the memberU-id attributes. Usually for these servers you will want a auth.
ldap.groupclass of posixGroup and an auth. ldap.groupattribute of memberuUid

LDAP servers with the memberOf overlay will have entries similar to auth. ldap.groupclass: personand
auth.ldap.groupattribute: memberOf.

When using the ldap ('DC=domain,DC=com’') eauth operator, sometimes the records returned from LDAP or
Active Directory have fully-qualified domain names attached, while minion IDs instead are simple hostnames. The
parameter below allows the administrator to strip off a certain set of domain names so the hostnames looked up in
the directory service can match the minion IDs.

auth.ldap.minion_stripdomains: ['.external.bigcorp.com', '.internal.bigcorp.
—~com']

Determining Group Memberships (Active Directory)

Active Directory handles group membership differently, and does not utilize the groupou configuration variable.
AD needs the following options in the master config:

auth.ldap.activedirectory: True
auth.ldap.filter: sAMAccountName={{username}}
auth.ldap.accountattributename: sAMAccountName
auth.ldap.groupclass: group
auth.ldap.persontype: person

To determine group membership in AD, the username and password that is entered when LDAP is requested as the
eAuth mechanism on the command line is used to bind to AD's LDAP interface. If this fails, then it doesn't matter
what groups the user belongs to, he or she is denied access. Next, the distinguishedName of the user is looked
up with the following LDAP search:

(&(<value of auth.ldap.accountattributename>={{usernamel})
(objectClass=<value of auth.ldap.persontype>)

)

248 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

This should return a distinguishedName that we can use to filter for group membership. Then the following LDAP
query is executed:

(&(member=<distinguishedName from search above>)
(objectClass=<value of auth.ldap.groupclass>)

)

external_auth:
ldap:
test_ldap_user:
I*I:
- test.ping

To configure a LDAP group, append a % to the ID:

external_auth:

ldap:
test_ldap_group%:
— Tx!':
- test.echo

In addition, if there are a set of computers in the directory service that should be part of the eAuth definition, they
can be specified like this:

external_auth:
ldap:
test_ldap_group%:
- ldap('DC=corp,DC=example,DC=com'):
- test.echo

The string inside ldap () above is any valid LDAP/AD tree limiter. OU= in particular is permitted as long as it
would return a list of computer objects.

7.8.3 Peer Communication

Salt 0.9.0 introduced the capability for Salt minions to publish commands. The intent of this feature is not for Salt
minions to act as independent brokers one with another, but to allow Salt minions to pass commands to each other.

In Salt 0.10.0 the ability to execute runners from the master was added. This allows for the master to return collective
data from runners back to the minions via the peer interface.

The peer interface is configured through two options in the master configuration file. For minions to send commands
from the master the peer configuration is used. To allow for minions to execute runners from the master the
peer_run configuration is used.

Since this presents a viable security risk by allowing minions access to the master publisher the capability is turned
off by default. The minions can be allowed access to the master publisher on a per minion basis based on regular
expressions. Minions with specific ids can be allowed access to certain Salt modules and functions.

7.8. Access Control System 249

Salt Documentation, Release 3007.5

Peer Configuration
The configuration is done under the peer setting in the Salt master configuration file, here are a number of config-
uration possibilities.

The simplest approach is to enable all communication for all minions, this is only recommended for very secure
environments.

peer:
.*:
— .*

This configuration allows minions with IDs ending in .example.com access to the test, ps, and pkg module func-
tions.

peer:
.*x\.example.com:
- test\..x*
- ps\..x
- pkg\..x

The configuration logic is simple, a regular expression is passed for matching minion ids, and then a list of expressions
matching minion functions is associated with the named minion. For instance, this configuration will also allow
minions ending with foo.org access to the publisher.

peer:
.*x\.example.com:
- test\..x
- ps\..x
- pkg\..x
.x\.foo.org:
- test\..x*
- ps\..x*
- pkg\..x

Note: Functions are matched using regular expressions as well.

It is also possible to limit target hosts with the Compound Matcher. You can achieve this by adding another layer in
between the source and the allowed functions:

peer:
'".x\.example\.com':
- 'G@role:db':
- test\..x*
- pkg\..x

Note: Notice that the source hosts are matched by a regular expression on their minion ID, while target hosts can
be matched by any of the available matchers.

Note that globbing and regex matching on pillar values is not supported. You can only match exact values.

250 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

Peer Runner Communication

Configuration to allow minions to execute runners from the master is done via the peer_run option on the master.
The peer _run configuration follows the same logic as the peer option. The only difference is that access is granted
to runner modules.

To open up access to all minions to all runners:

peer_run:
.*:
- %

This configuration will allow minions with IDs ending in example.com access to the manage and jobs runner func-
tions.

peer_run:
.xexample.com:
- manage. *
- jobs.x*

Note: Functions are matched using regular expressions.

Using Peer Communication

The publish module was created to manage peer communication. The publish module comes with a number of func-
tions to execute peer communication in different ways. Currently there are three functions in the publish module.
These examples will show how to test the peer system via the salt-call command.

To execute test.version on all minions:

[# salt-call publish.publish * test.version]

To execute the manage.up runner:

[# salt-call publish.runner manage.up]

To match minions using other matchers, use tgt_type:

salt-call publish.publish 'webserv* and not G@os:Ubuntu' test.version tgt_
—type="'compound'

Note: In pre-2017.7.0 releases, use expr_forminstead of tgt_type.

7.8. Access Control System 251

Salt Documentation, Release 3007.5

7.8.4 When to Use Each Authentication System

publisher_acl is useful for allowing local system users to run Salt commands without giving them root ac-
cess. If you can log into the Salt master directly, then publisher_acl allows you to use Salt without root privi-
leges. If the local system is configured to authenticate against a remote system, like LDAP or Active Directory, then
publisher_acl will interact with the remote system transparently.

external_auth is useful for salt-api or for making your own scripts that use Salt's Python APL It can be
used at the CLI (with the —a flag) but it is more cumbersome as there are more steps involved. The only time it is
useful at the CLI is when the local system is not configured to authenticate against an external service but you still
want Salt to authenticate against an external service.

7.8.5 Examples

The access controls are manifested using matchers in these configurations:

publisher_acl:
fred:
- web*:
- pkg.list_pkgs
- test.x
- apache.x

In the above example, fred is able to send commands only to minions which match the specified glob target. This
can be expanded to include other functions for other minions based on standard targets (all matchers are supported
except the compound one).

external_auth:
pam:
dave:

- test.version

- mongo*:
- network.x*

- log*:
- network.x*
- pkg.*

- 'G@Ros:RedHat':
- kmod. *

steve:
- %

The above allows for all minions to be hit by test.version by dave, and adds a few functions that dave can execute on
other minions. It also allows steve unrestricted access to salt commands.

Note: Functions are matched using regular expressions.

252 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

7.9 Job Management

New in version 0.9.7.

Since Salt executes jobs running on many systems, Salt needs to be able to manage jobs running on many systems.

7.9.1 The Minion proc System

Salt Minions maintain a proc directory in the Salt cachedir. The proc directory maintains files named after the
executed job ID. These files contain the information about the current running jobs on the minion and allow for jobs
to be looked up. This is located in the proc directory under the cachedir, with a default configuration it is under
/var/cache/salt/{master |minion}/proc.

7.9.2 Functions in the saltutil Module

Salt 0.9.7 introduced a few new functions to the saltutil module for managing jobs. These functions are:
1. running Returns the data of all running jobs that are found in the proc directory.
2. find_job Returns specific data about a certain job based on job id.

signal_job Allows for a given jid to be sent a signal.

term_job Sends a termination signal (SIGTERM, 15) to the process controlling the specified job.

A

ki1l1l_job Sends a kill signal (SIGKILL, 9) to the process controlling the specified job.

These functions make up the core of the back end used to manage jobs at the minion level.

7.9.3 The jobs Runner

A convenience runner front end and reporting system has been added as well. The jobs runner contains functions
to make viewing data easier and cleaner.

The jobs runner contains a number of functions...

active

The active function runs saltutil.running on all minions and formats the return data about all running jobs in a much
more usable and compact format. The active function will also compare jobs that have returned and jobs that are
still running, making it easier to see what systems have completed a job and what systems are still being waited on.

[# salt-run jobs.active

7.9. Job Management 253

Salt Documentation, Release 3007.5

lookup_jid

When jobs are executed the return data is sent back to the master and cached. By default it is cached for 86400
seconds, but this can be configured via the keep_jobs_seconds option in the master configuration. Using the
lookup_jid runner will display the same return data that the initial job invocation with the salt command would
display.

[# salt-run jobs.lookup_jid <job id number> J

list_jobs

Before finding a historic job, it may be required to find the job id. 1ist_jobs will parse the cached execution data
and display all of the job data for jobs that have already, or partially returned.

[# salt-run jobs.list_jobs]

7.9.4 Scheduling Jobs

Salt's scheduling system allows incremental executions on minions or the master. The schedule system exposes the
execution of any execution function on minions or any runner on the master.

Scheduling can be enabled by multiple methods:

+ schedu'le option in either the master or minion config files. These require the master or minion application
to be restarted in order for the schedule to be implemented.

« Minion pillar data. Schedule is implemented by refreshing the minion's pillar data, for example by using
saltutil.refresh_pillar

« The schedule state or schedule module

Note: The scheduler executes different functions on the master and minions. When running on the master the
functions reference runner functions, when running on the minion the functions specify execution functions.

A scheduled run has no output on the minion unless the config is set to info level or higher. Refer to
minion-logging-settings.

States are executed on the minion, as all states are. You can pass positional arguments and provide a YAML dict of
named arguments.

schedule:
jobl:
function: state.sls
seconds: 3600
job_args:
- httpd
kwargs:
test: True

This will schedule the command: state.sls httpd test=True every 3600 seconds (every hour).

254 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

schedule:
job1l:
function: state.sls
seconds: 3600
job_args:
- httpd
kwargs:
test: True
splay: 15

This will schedule the command: state.sls httpd test=True every 3600 seconds (every hour) splaying the
time between 0 and 15 seconds.

schedule:
job1l:
function: state.sls
seconds: 3600
job_args:
- httpd
kwargs:
test: True
splay:
start: 10
end: 15

This will schedule the command: state.sls httpd test=True every 3600 seconds (every hour) splaying the
time between 10 and 15 seconds.

Schedule by Date and Time

New in version 2014.7.0.

Frequency of jobs can also be specified using date strings supported by the Python dateutil library. This requires
the Python dateutil library to be installed.

schedule:
jobl:
function: state.sls
job_args:
- httpd
kwargs:
test: True
when: 5:00pm

This will schedule the command: state.sls httpd test=True at 5:00 PM minion localtime.

schedule:
jobl:
function: state.sls
job_args:
- httpd
kwargs:
test: True

(continues on next page)

7.9. Job Management 255

Salt Documentation, Release 3007.5

(continued from previous page)

when:
- Monday 5:00pm
- Tuesday 3:00pm
- Wednesday 5:00pm
- Thursday 3:00pm
- Friday 5:00pm

This will schedule the command: state.sls httpd test=True at 5:00 PM on Monday, Wednesday and Fri-
day, and 3:00 PM on Tuesday and Thursday.

schedule:
job1l:
function: state.sls
job_args:
- httpd
kwargs:
test: True
when:
- 'tea time'

whens:
tea time: 1:40pm
deployment time: Friday 5:00pm

The Salt scheduler also allows custom phrases to be used for the when parameter. These whens can be stored as either
pillar values or grain values.

schedule:
jobl:
function: state.sls
seconds: 3600
job_args:
- httpd
kwargs:
test: True
range:
start: 8:00am
end: 5:00pm

This will schedule the command: state.sls httpd test=True every 3600 seconds (every hour) between the
hours of 8:00 AM and 5:00 PM. The range parameter must be a dictionary with the date strings using the dateutil
format.

schedule:
jobl:
function: state.sls
seconds: 3600
job_args:
- httpd
kwargs:
test: True
range:

(continues on next page)

256 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

(continued from previous page)
invert: True
start: 8:00am
end: 5:00pm

Using the invert option for range, this will schedule the command state.sls httpd test=True every 3600
seconds (every hour) until the current time is between the hours of 8:00 AM and 5:00 PM. The range parameter must
be a dictionary with the date strings using the dateutil format.

schedule:
jobl:
function: pkg.install
kwargs:
pkgs: [{'bar': '>1.2.3'}]
refresh: true
once: '2016-01-07T14:30:00'

This will schedule the function pkg.install to be executed once at the specified time. The schedule entry job1l
will not be removed after the job completes, therefore use schedule.delete to manually remove it afterwards.

The default date format is ISO 8601 but can be overridden by also specifying the once_fmt option, like this:

schedule:
jobl:
function: test.ping
once: 2015-04-22T720:21:00
once_fmt: '%Y-%m-%dT%H:%M:%S"

Maximum Parallel Jobs Running

New in version 2014.7.0.

The scheduler also supports ensuring that there are no more than N copies of a particular routine running. Use this
for jobs that may be long-running and could step on each other or pile up in case of infrastructure outage.

The default for maxrunningis 1

schedule:
long_running_job:
function: big_file_transfer
jid_include: True
maxrunning: 1

Cron-like Schedule

New in version 2014.7.0.

schedule:
job1l:
function: state.sls
cron: 'x/15 x *x % x'
job_args:
- httpd

(continues on next page)

7.9. Job Management 257

Salt Documentation, Release 3007.5

(continued from previous page)
kwargs:
test: True

The scheduler also supports scheduling jobs using a cron like format. This requires the Python croniter library.

Job Data Return

New in version 2015.5.0.

By default, data about jobs runs from the Salt scheduler is returned to the master. Setting the return_job param-
eter to False will prevent the data from being sent back to the Salt master.

schedule:
job1l:
function: scheduled_job_function
return_job: False

Job Metadata

New in version 2015.5.0.

It can be useful to include specific data to differentiate a job from other jobs. Using the metadata parameter special
values can be associated with a scheduled job. These values are not used in the execution of the job, but can be used
to search for specific jobs later if combined with the return_job parameter. The metadata parameter must be
specified as a dictionary, othewise it will be ignored.

schedule:
jobl:
function: scheduled_job_function
metadata:
foo: bar

Run on Start

New in version 2015.5.0.

By default, any job scheduled based on the startup time of the minion will run the scheduled job when the minion
starts up. Sometimes this is not the desired situation. Using the run_on_start parameter set to False will cause
the scheduler to skip this first run and wait until the next scheduled run:

schedule:
jobl:
function: state.sls
seconds: 3600
run_on_start: False
job_args:
- httpd
kwargs:
test: True

258 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

Until and After

New in version 2015.8.0.

schedule:
job1l:
function: state.sls
seconds: 15
until: '12/31/2015 11:59pm'
job_args:
- httpd
kwargs:
test: True

Using the until argument, the Salt scheduler allows you to specify an end time for a scheduled job. If this argument
is specified, jobs will not run once the specified time has passed. Time should be specified in a format supported by
the dateutil library. This requires the Python dateutil library to be installed.

New in version 2015.8.0.

schedule:
job1l:
function: state.sls
seconds: 15
after: '12/31/2015 11:59pm’
job_args:
- httpd
kwargs:
test: True

Using the after argument, the Salt scheduler allows you to specify an start time for a scheduled job. If this argument
is specified, jobs will not run until the specified time has passed. Time should be specified in a format supported by
the dateutil library. This requires the Python dateutil library to be installed.

Scheduling States

schedule:
log-loadavg:
function: cmd.run
seconds: 3660
job_args:
- 'logger -t salt < /proc/loadavg'
kwargs:
stateful: False
shell: /bin/sh

7.9. Job Management 259

Salt Documentation, Release 3007.5

Scheduling Highstates

To set up a highstate to run on a minion every 60 minutes set this in the minion config or pillar:

schedule:
highstate:
function: state.highstate
minutes: 60

Time intervals can be specified as seconds, minutes, hours, or days.

Scheduling Runners

Runner executions can also be specified on the master within the master configuration file:

schedule:
run_my_orch:
function: state.orchestrate

hours: 6
splay: 600
job_args:

- orchestration.my_orch

The above configuration is analogous to running salt-run state.orch orchestration.my_orch every
6 hours.

Scheduler With Returner

The scheduler is also useful for tasks like gathering monitoring data about a minion, this schedule option will gather
status data and send it to a MySQL returner database:

schedule:

uptime:
function: status.uptime
seconds: 60
returner: mysql

meminfo:
function: status.meminfo
minutes: 5
returner: mysql

Since specifying the returner repeatedly can be tiresome, the schedule_returner option is available to specify
one or a list of global returners to be used by the minions when scheduling.

260 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

7.10 Managing the Job Cache

The Salt Master maintains a job cache of all job executions which can be queried via the jobs runner. This job cache
is called the Default Job Cache.

7.10.1 Default Job Cache

A number of options are available when configuring the job cache. The default caching system uses local storage
on the Salt Master and can be found in the job cache directory (on Linux systems this is typically /var/cache/
salt/master/jobs). The default caching system is suitable for most deployments as it does not typically require
any further configuration or management.

The default job cache is a temporary cache and jobs will be stored for 86400 seconds. If the default cache needs to
store jobs for a different period the time can be easily adjusted by changing the keep_jobs_seconds parameter
in the Salt Master configuration file. The value passed in is measured in seconds:

[keep_jobs_seconds: 86400

Reducing the Size of the Default Job Cache

The Default Job Cache can sometimes be a burden on larger deployments (over 5000 minions). Disabling the job cache
will make previously executed jobs unavailable to the jobs system and is not generally recommended. Normally it
is wise to make sure the master has access to a faster IO system or a tmpfs is mounted to the jobs dir.

However, you can disable the job_cache by setting it to False in the Salt Master configuration file. Setting this
value to False means that the Salt Master will no longer cache minion returns, but a JID directory and jid file for
each job will still be created. This JID directory is necessary for checking for and preventing JID collisions.

The default location for the job cache is in the /var /cache/salt/master/jobs/ directory.

Setting the job_cache to Fa'lse in addition to setting the keep_ jobs_seconds option to a smaller value, such
as 3600, in the Salt Master configuration file will reduce the size of the Default Job Cache, and thus the burden on
the Salt Master.

Note: Changing the keep_jobs_seconds option sets the number of seconds to keep old job information and
defaults to 86400 seconds. Do not set this value to ® when trying to make the cache cleaner run more frequently,
as this means the cache cleaner will never run.

7.10.2 Additional Job Cache Options

Many deployments may wish to use an external database to maintain a long term register of executed jobs. Salt
comes with two main mechanisms to do this, the master job cache and the external job cache.

See Storing Job Results in an External System.

7.10. Managing the Job Cache 261

Salt Documentation, Release 3007.5

7.11 Storing Job Results in an External System

After a job executes, job results are returned to the Salt Master by each Salt Minion. These results are stored in the
Default Job Cache.

In addition to the Default Job Cache, Salt provides two additional mechanisms to send job results to other systems
(databases, local syslog, and others):

« External Job Cache
« Master Job Cache

The major difference between these two mechanism is from where results are returned (from the Salt Master or
Salt Minion). Configuring either of these options will also make the Jobs Runner functions to automatically
query the remote stores for information.

7.11.1 External Job Cache - Minion-Side Returner

When an External Job Cache is configured, data is returned to the Default Job Cache on the Salt Master like usual,
and then results are also sent to an External Job Cache using a Salt returner module running on the Salt Minion.

SQL
Redis
Syslog
ODBC

Master

return data

Minions

« Advantages: Data is stored without placing additional load on the Salt Master.

« Disadvantages: Each Salt Minion connects to the external job cache, which can result in a large number of
connections. Also requires additional configuration to get returner module settings on all Salt Minions.

7.11.2 Master Job Cache - Master-Side Returner

New in version 2014.7.0.

Instead of configuring an External Job Cache on each Salt Minion, you can configure the Master Job Cache to send
job results from the Salt Master instead. In this configuration, Salt Minions send data to the Default Job Cache as
usual, and then the Salt Master sends the data to the external system using a Salt returner module running on the
Salt Master.

262 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

SQL
Redis
Syslog
ODBC

Master

return data

Minions

« Advantages: A single connection is required to the external system. This is preferred for databases and similar
systems.

+ Disadvantages: Places additional load on your Salt Master.

7.11.3 Configure an External or Master Job Cache

Step 1: Understand Salt Returners

Before you configure a job cache, it is essential to understand Salt returner modules ("returners”). Returners are
pluggable Salt Modules that take the data returned by jobs, and then perform any necessary steps to send the data to
an external system. For example, a returner might establish a connection, authenticate, and then format and transfer
data.

The Salt Returner system provides the core functionality used by the External and Master Job Cache systems, and
the same returners are used by both systems.

Salt currently provides many different returners that let you connect to a wide variety of systems. A complete
list is available at all Salt returners. Each returner is configured differently, so make sure you read and follow the
instructions linked from that page.

For example, the MySQL returner requires:
« A database created using provided schema (structure is available at M\ySQL returner)
« A user created with privileges to the database
+ Optional SSL configuration
A simpler returner, such as Slack or HipChat, requires:
« An API key/version
« The target channel/room

« The username that should be used to send the message

7.11. Storing Job Results in an External System 263

Salt Documentation, Release 3007.5

Step 2: Configure the Returner

After you understand the configuration and have the external system ready, the configuration requirements must be
declared.

External Job Cache

The returner configuration settings can be declared in the Salt Minion configuration file, the Minion's pillar data, or
the Minion's grains.

If external_job_cache configuration settings are specified in more than one place, the options are retrieved
in the following order. The first configuration location that is found is the one that will be used.

« Minion configuration file
» Minion's grains

« Minion's pillar data

Master Job Cache

The returner configuration settings for the Master Job Cache should be declared in the Salt Master's configuration
file.

Configuration File Examples

MySQL requires:

mysql.host: 'salt'
mysql.user: 'salt'
mysql.pass: 'salt'
mysql.db: 'salt'
mysql.port: 3306

Slack requires:

slack.channel: 'channel'
slack.api_key: 'key'
slack.from_name: 'name'

After you have configured the returner and added settings to the configuration file, you can enable the External or
Master Job Cache.

Step 3: Enable the External or Master Job Cache

Configuration is a single line that specifies an already-configured returner to use to send all job data to an external
system.

264 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

External Job Cache

To enable a returner as the External Job Cache (Minion-side), add the following line to the Salt Master configuration
file:

[ext_job_cache: <returner>]

For example:

[ext_job_cache: mysql]

Note: When configuring an External Job Cache (Minion-side), the returner settings are added to the Minion con-
figuration file, but the External Job Cache setting is configured in the Master configuration file.

Master Job Cache

To enable a returner as a Master Job Cache (Master-side), add the following line to the Salt Master configuration file:

[master_job_cache: <returner>]

For example:

[master_job_cache: mysql]

Verify that the returner configuration settings are in the Master configuration file, and be sure to restart the salt-
master service after you make configuration changes. (service salt-master restart).

7.12 Logging

The Salt Project tries to get the logging to work for you and help us solve any issues you might find along the way.

If you want to get some more information on the nitty-gritty of salt's logging system, please head over to the logging
development document, if all you're after is salt's logging configurations, please continue reading.

7.12.1 Log Levels

The log levels are ordered numerically such that setting the log level to a specific level will record all log statements
at that level and higher. For example, setting log_Tlevel: error will log statementsaterror,critical,and
quiet levels, although nothing should be logged at quiet level.

Most of the logging levels are defined by default in Python's logging library and can be found in the official Python
documentation. Salt uses some more levels in addition to the standard levels. All levels available in salt are shown
in the table below.

Note: Python dependencies used by salt may define and use additional logging levels. For example, the Python 2
version of the multiprocessing standard Python library uses the levels subwarning, 25 and subdebug, 5.

7.12. Logging 265

https://docs.python.org/3/library/logging.html#levels
https://docs.python.org/3/library/logging.html#levels
https://docs.python.org/3/library/multiprocessing.html#logging

Salt Documentation, Release 3007.5

Level Numeric value Description

quiet 1000 Nothing should be logged at this level
critical 50 Critical errors

error 40 Errors

warning 30 Warnings

info 20 Normal log information

profile 15 Profiling information on salt performance
debug 10 Information useful for debugging both salt implementations and salt code
trace 5 More detailed code debugging information
garbage 1 Even more debugging information

all 0 Everything

Any log level below the info level is INSECURE and may log sensitive data. This currently includes: #. profile #.
debug #. trace #. garbage #. all

7.12.2 Available Configuration Settings
log_file
The log records can be sent to a regular file, local path name, or network location. Remote logging works best when

configured to use rsyslogd(8) (e.g: file:///dev/log), with rsyslogd(8) configured for network logging. The
format for remote addresses is:

[<file|udp|tcp>://<host|socketpath>:<port—1f—requﬁred>/<log—facility>

)

Where log-facility is the symbolic name of a syslog facility as defined in the SysLogHandler
documentation. It defaults to LOG_USER.

Default: Dependent of the binary being executed, for example, for salt-master, /var/log/salt/master.

Examples:

log_file: /var/log/salt/master

log_file: /var/log/salt/minion

log_file: file:///dev/log

log_file: file:///dev/log/LOG_DAEMON

— o N Y

log_file: udp://loghost:10514

- J J J

266 Chapter 7. Configuring Salt

https://docs.python.org/3/library/logging.handlers.html#logging.handlers.SysLogHandler.encodePriority
https://docs.python.org/3/library/logging.handlers.html#logging.handlers.SysLogHandler.encodePriority

Salt Documentation, Release 3007.5

log_Tlevel

Default: warning

The level of log record messages to send to the console. One of all, garbage, trace, debug, profile, info,
warning, error,critical, quiet.

[Iog_levelz warning

Note: Add log_level: quiet in salt configuration file to completely disable logging. In case of running salt
in command line use --log-level=quiet instead.

log_level_logfile

Default: info

The level of messages to send to the log file. One of all, garbage, trace, debug, profile, info,warning,
error,critical, quiet

[Iog_level_logfile: warning

log_datefmt

Default: %H:%M: %

The date and time format used in console log messages. Allowed date/time formatting matches those used in time.
strftime().

[Iog_datefmt: "%H : %M : %S

log_datefmt_logfile

Default: %Y-%m-%d %H:%M:%S

The date and time format used in log file messages. Allowed date/time formatting matches those used in time.
strftime().

[log_datefmt_logfile: %Y —-%m—=%d 9%H:%M:%S"'

log_fmt_console

Default: [%(levelname)-8s] %(message)s

The format of the console logging messages. All standard python logging LogRecord attributes can be used. Salt
also provides these custom LogRecord attributes to colorize console log output:

"%(colorlevel)s" # log level name colorized by level
"%(colorname)s" # colorized module name
"%(colorprocess)s" # colorized process number
"%(colormsg)s" # log message colorized by level

7.12. Logging 267

https://docs.python.org/3/library/time.html#time.strftime
https://docs.python.org/3/library/time.html#time.strftime
https://docs.python.org/3/library/time.html#time.strftime
https://docs.python.org/3/library/time.html#time.strftime
https://docs.python.org/3/library/logging.html#logging.LogRecord

Salt Documentation, Release 3007.5

Note: The %(colorlevel)s, %(colorname)s, and %(colorprocess) LogRecord attributes also include
padding and enclosing brackets, [and] to match the default values of their collateral non-colorized LogRecord
attributes.

[1og_fmt_console: '[%(levelname)-8s] %(message)s'

log_fmt_logfile

Default: % (asctime)s,%(msecs)03d [%(name)-17s][%(levelname)-8s] %(message)s

The format of the log file logging messages. All standard python logging LogRecord attributes can be used. Salt
also provides these custom LogRecord attributes that include padding and enclosing brackets [and]:

"%(bracketlevel)s"
"%(bracketname)s"
"%(bracketprocess)s"

equivalent to [%(levelname)-8s]

equivalent to [%(name)-17s]

equivalent to [%(process)5s]

log_fmt_logfile: '%(asctime)s,%(msecs)03d [%(name)-17s][%(levelname)-8s]
~%(message)s'

log_granular_levels

Default: {}

This can be used to control logging levels more specifically, based on log call name. The example sets the main salt
library at the 'warning' level, sets salt.modu'les to log at the debug level, and sets a custom module to the all
level:

log_granular_levels:
'salt': 'warning'
'salt.modules': 'debug'

'salt.loader.saltmaster.ext.module.custom_module': 'all'

You can determine what log call name to use here by adding % (module) s to the log format. Typically, it is the
path of the file which generates the log without the trailing . py and with path separators replaced with .

log_fmt_jid

Default: [JID: %(jid)s]
The format of the JID when added to logging messages.

[Iog_fmt_jid: '[IID: %(jid)s]’

268 Chapter 7. Configuring Salt

https://docs.python.org/3/library/logging.html#logging.LogRecord

Salt Documentation, Release 3007.5

External Logging Handlers

Besides the internal logging handlers used by salt, there are some external which can be used, see the external logging
handlers document.

7.13 External Logging Handlers

7.14 Salt File Server

Salt comes with a simple file server suitable for distributing files to the Salt minions. The file server is a stateless
ZeroMQ server that is built into the Salt master.

The main intent of the Salt file server is to present files for use in the Salt state system. With this said, the Salt file
server can be used for any general file transfer from the master to the minions.

7.14.1 File Server Backends
In Salt 0.12.0, the modular fileserver was introduced. This feature added the ability for the Salt Master to integrate
different file server backends. File server backends allow the Salt file server to act as a transparent bridge to external

resources. A good example of this is the g1t backend, which allows Salt to serve files sourced from one or more git
repositories, but there are several others as well. Click here for a full list of Salt's fileserver backends.

Enabling a Fileserver Backend

Fileserver backends can be enabled with the fileserver_backend option.

fileserver_backend:
- git

See the documentation for each backend to find the correct value to add to fileserver_backend in order to
enable them.

Using Multiple Backends

If fileserver_backend is not defined in the Master config file, Salt will use the roots backend, but the
fileserver_backend option supports multiple backends. When more than one backend is in use, the files
from the enabled backends are merged into a single virtual filesystem. When a file is requested, the backends will
be searched in order for that file, and the first backend to match will be the one which returns the file.

fileserver_backend:
- roots
- git

With this configuration, the environments and files defined in the file_roots parameter will be searched first,
and if the file is not found then the git repositories defined in gi tfs_remotes will be searched.

7.13. External Logging Handlers 269

Salt Documentation, Release 3007.5

Defining Environments

Just as the order of the values in i leserver_backend matters, so too does the order in which different sources
are defined within a fileserver environment. For example, given the below file_roots configuration, if both
/srv/salt/dev/foo.txt and /srv/salt/prod/foo.txt exist on the Master, then salt://foo.txt
would point to /srv/salt/dev/foo.txt in the dev environment, but it would point to /srv/salt/prod/
foo.txt in the base environment.

file_roots:

base:

- /srv/salt/prod
ga:

- /srv/salt/qa

- /srv/salt/prod
dev:

- /srv/salt/dev

- /srv/salt/qa

- /srv/salt/prod

Similarly, when using the git backend, if both repositories defined below have a hotfix23 branch/tag, and both
of them also contain the file bar . txt in the root of the repository at that branch/tag, then salt://bar.txt in
the hotf1ix23 environment would be served from the f1irst repository.

gitfs_remotes:
- https://mydomain.tld/repos/first.git
- https://mydomain.tld/repos/second.git

Note: Environments map differently based on the fileserver backend. For instance, the mappings are explic-
itly defined in roots backend, while in the VCS backends (git, hg, svn) the environments are created from
branches/tags/bookmarks/etc. For the minion backend, the files are all in a single environment, which is specified
by the minionfs_env option.

See the documentation for each backend for a more detailed explanation of how environments are mapped.

7.14.2 Requesting Files from Specific Environments
The Salt fileserver supports multiple environments, allowing for SLS files and other files to be isolated for better
organization.

For the default backend (called roots), environments are defined using the roots option. Other backends (such
as gitfs) define environments in their own ways. For a list of available fileserver backends, see here.

270 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

Querystring Syntax

Any salt:// file URL can specify its fileserver environment using a querystring syntax, like so:

[salt://path/to/file?saltenVZfoo

In Reactor configurations, this method must be used to pull files from an environment other than base.

In States

Minions can be instructed which environment to use both globally, and for a single state, and multiple methods for
each are available:

Globally

A minijon can be pinned to an environment using the environment option in the minion config file.
Additionally, the environment can be set for a single call to the following functions:

. state.apply

. state.highstate

« state.sls

« State. top

Note: When the saltenv parameter is used to trigger a highstate using either state.apply or state.
highstate, only states from that environment will be applied.

On a Per-State Basis

Within an individual state, there are two ways of specifying the environment. The first is to add a saltenv argu-
ment to the state. This example will pull the file from the config environment:

/etc/foo/bar.conf:
file.managed:
- source: salt://foo/bar.conf
- user: foo
- mode: 600
- saltenv: config

Another way of doing the same thing is to use the querystring syntax described above:

/etc/foo/bar.conf:
file.managed:
- source: salt://foo/bar.conf?saltenv=config
- user: foo
- mode: 600

7.14. Salt File Server 271

Salt Documentation, Release 3007.5

Note: Specifying the environment using either of the above methods is only necessary in cases where a state from
one environment needs to access files from another environment. If the SLS file containing this state was in the
config environment, then it would look in that environment by default.

7.14.3 File Server Configuration

The Salt file server is a high performance file server written in ZeroMQ. It manages large files quickly and with little
overhead, and has been optimized to handle small files in an extremely efficient manner.

The Salt file server is an environment aware file server. This means that files can be allocated within many root
directories and accessed by specifying both the file path and the environment to search. The individual environments
can span across multiple directory roots to create overlays and to allow for files to be organized in many flexible
ways.

Periodic Restarts

The file server will restart periodically. The reason for this is to prevent any files erver backends which may not
properly handle resources from endlessly consuming memory. A notable example of this is using a git backend with
the pygit2 library. How often the file server restarts can be controlled with the fileserver_interval in your
master's config file.

Environments
The Salt file server defaults to the mandatory base environment. This environment MUST be defined and is used
to download files when no environment is specified.

Environments allow for files and sls data to be logically separated, but environments are not isolated from each other.
This allows for logical isolation of environments by the engineer using Salt, but also allows for information to be
used in multiple environments.

Directory Overlay
The environment setting is a list of directories to publish files from. These directories are searched in order to
find the specified file and the first file found is returned.

This means that directory data is prioritized based on the order in which they are listed. In the case of this
file_roots configuration:

file_roots:
base:
- /srv/salt/base
- /srv/salt/failover

If a file's URL is salt://httpd/httpd.conf, it will first search for the file at /srv/salt/base/httpd/
httpd.conf. If the file is found there it will be returned. If the file is not found there, then /srv/salt/
failover/httpd/httpd.conf will be used for the source.

This allows for directories to be overlaid and prioritized based on the order they are defined in the configuration.

It is also possible to have file_roots which supports multiple environments:

272 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

file_roots:
base:
- /srv/salt/base
dev:
- /srv/salt/dev
- /srv/salt/base
prod:
- /srv/salt/prod
- /srv/salt/base

This example ensures that each environment will check the associated environment directory for files first. If a file
is not found in the appropriate directory, the system will default to using the base directory.

Local File Server

New in version 0.9.8.

The file server can be rerouted to run from the minion. This is primarily to enable running Salt states without a Salt
master. To use the local file server interface, copy the file server data to the minion and set the file_roots option on
the minion to point to the directories copied from the master. Once the minion file_roots option has been set,
change the file_client option to local to make sure that the local file server interface is used.

7.14.4 The cp Module

The cp module is the home of minion side file server operations. The cp module is used by the Salt state system,
salt-cp, and can be used to distribute files presented by the Salt file server.

Escaping Special Characters

The salt:// wurl format can potentially contain a query string, for example salt://dir/file.txt?
saltenv=base. You can prevent the fileclient/fileserver from interpreting ? as the initial token of a query string
by referencing the file with salt://| rather than salt://.

/etc/marathon/conf/?checkpoint:
file.managed:
- source: salt://|hw/config/?checkpoint
- makedirs: True

Environments

Since the file server is made to work with the Salt state system, it supports environments. The environments are
defined in the master config file and when referencing an environment the file specified will be based on the root
directory of the environment.

7.14. Salt File Server 273

Salt Documentation, Release 3007.5

get_file

The cp.get_file function can be used on the minion to download a file from the master, the syntax looks like this:

[salt 'x' cp.get_file salt://vimrc /etc/vimrc]

This will instruct all Salt minions to download the vimrc file and copy it to /etc/vimrc

Template rendering can be enabled on both the source and destination file names like so:

[salt 'x' cp.get_file "salt://{{grains.os}}/vimrc" /etc/vimrc template=jinja J

This example would instruct all Salt minions to download the vimrc from a directory with the same name as their
OS grain and copy it to /etc/vimrc

For larger files, the cp.get_file module also supports gzip compression. Because gzip is CPU-intensive, this should
only be used in scenarios where the compression ratio is very high (e.g. pretty-printed JSON or YAML files).

To use compression, use the gzip named argument. Valid values are integers from 1 to 9, where 1 is the lightest
compression and 9 the heaviest. In other words, 1 uses the least CPU on the master (and minion), while 9 uses the
most.

[salt "x' cp.get_file salt://vimrc /etc/vimrc gzip=5]

Finally, note that by default cp.get_file does not create new destination directories if they do not exist. To change
this, use the maked1irs argument:

[salt "x' cp.get_file salt://vimrc /etc/vim/vimrc makedirs=True]

In this example, /etc/vim/ would be created if it didn't already exist.

get_dir

The cp.get_dir function can be used on the minion to download an entire directory from the master. The syntax is
very similar to get_file:

[salt 'x' cp.get_dir salt://etc/apache2 /etc J

cp.get_dir supports template rendering and gzip compression arguments just like get_file:

[salt 'x' cp.get_dir salt://etc/{{pillar.webserver}} /etc gzip=5 template:jinja]

7.14.5 File Server Client Instance
A client instance is available which allows for modules and applications to be written which make use of the Salt file
server.

The file server uses the same authentication and encryption used by the rest of the Salt system for network commu-
nication.

274 Chapter 7. Configuring Salt

Salt Documentation, Release 3007.5

fileclient Module

The salt/fileclient.py module is used to set up the communication from the minion to the master. When
creating a client instance using the fileclient module, the minion configuration needs to be passed in. When using
the fileclient module from within a minion module the built in __opts__ data can be passed:

import salt.minion
import salt.fileclient

def get_file(path, dest, saltenv='"base"):

mirrn

Used to get a single file from the Salt master

CLI Example:

salt 'x' cp.get_file salt://vimrc /etc/vimrc

Get the fileclient object

client = salt.fileclient.get_file_client(__opts__)
Call get_file

return client.get_file(path, dest, False, saltenv)

Creating a fileclient instance outside of a minion module where the __opts__ data is not available, it needs to be
generated:

import salt.fileclient
import salt.config

def get_file(path, dest, saltenv='"base"):

mnirrn

Used to get a single file from the Salt master

Get the configuration data

opts = salt.config.minion_config("/etc/salt/minion")
Get the fileclient object

client = salt.fileclient.get_file_client(opts)

Call get_file

return client.get_file(path, dest, False, saltenv)

7.15 Git Fileserver Backend Walkthrough

Note: This walkthrough assumes basic knowledge of Salt. To get up to speed, check out the Salt Walkthrough.

The gitfs backend allows Salt to serve files from git repositories. It can be enabled by adding git to the
fileserver_backend list, and configuring one or more repositories in gitfs_remotes.

Branches and tags become Salt fileserver environments.

Note: Branching and tagging can result in a lot of potentially-conflicting top files, for this reason it may be useful
toset top_file_merging_strategy to same in the minions' config files if the top files are being managed in

7.15. Git Fileserver Backend Walkthrough 275

Salt Documentation, Release 3007.5

a GitFS repo.

7.15.1 Installing Dependencies

Both pygit2 and GitPython are supported Python interfaces to git. If compatible versions of both are installed, pygit2
will be preferred. In these cases, GitPython can be forced using the gitfs_provider parameter in the master
config file.

Note: It is recommended to always run the most recent version of any the below dependencies. Certain features of
GitFS may not be available without the most recent version of the chosen library.

pygit2
The minimum supported version of pygit2 is 0.20.3. Availability for this version of pygit2 is still limited, though the
SaltStack team is working to get compatible versions available for as many platforms as possible.

For the Fedora/EPEL versions which have a new enough version packaged, the following command would be used
to install pygit2:

[# yum install python-pygit2 J

Provided a valid version is packaged for Debian/Ubuntu (which is not currently the case), the package name would
be the same, and the following command would be used to install it:

[# apt-get install python-pygit2]

If pygit2 is not packaged for the platform on which the Master is running, the pygit2 website has installation instruc-
tions here. Keep in mind however that following these instructions will install libgit2 and pygit2 without system
packages. Additionally, keep in mind that SSH authentication in pygit2 requires libssh2 (not libssh) development
libraries to be present before libgit2 is built. On some Debian-based distros pkg-conf1ig is also required to link
libgit2 with libssh2.

Note: If you are receiving the error "Unsupported URL Protocol” in the Salt Master log when making a connection
using SSH, review the libssh2 details listed above.

Additionally, version 0.21.0 of pygit2 introduced a dependency on python-cffi, which in turn depends on newer
releases of libffi. Upgrading libffi is not advisable as several other applications depend on it, so on older LTS linux
releases pygit2 0.20.3 and libgit2 0.20.0 is the recommended combination.

Warning: pygit2 is actively developed and frequently makes non-backwards-compatible API changes, even
in minor releases. It is not uncommon for pygit2 upgrades to result in errors in Salt. Please take care when
upgrading pygit2, and pay close attention to the changelog, keeping an eye out for API changes. Errors can be
reported on the SaltStack issue tracker.

276 Chapter 7. Configuring Salt

https://github.com/libgit2/pygit2
https://github.com/gitpython-developers/GitPython
https://github.com/libgit2/pygit2
https://github.com/gitpython-developers/GitPython
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://libgit2.org/
https://github.com/libgit2/pygit2
https://www.libssh2.org/
https://libgit2.org/
https://libgit2.org/
https://pypi.org/project/cffi
http://sourceware.org/libffi/
http://sourceware.org/libffi/
https://github.com/libgit2/pygit2
https://libgit2.org/
https://github.com/libgit2/pygit2
https